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Spatial Filtering

@ Recap: Gaussian Smoothing — efficient for Gaussian noise, but...

Image with salt and Gaussian blur with
pepper noise convolution
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Spatial Filtering

® Rank filter:

1. Consider the actual pixel and its neighborhood (e.g. 3x3=9 pixel sized
window),

2. Sort the observed pixel values according to gray level,
3. Take the k-th value from this row as the new pixel value
® Median filter: k is the middle pixel value in the row:
k=[(2W+1)2-1]/2, if W is the half side size of the neighborhood
® Non-Linear filter
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Spatial Filtering

® Median filter: replaces each pixel with the median value of its
analyzed neighborhood. (Median value: the center element of
sorted values)
e Very effective against impulse (,,salt and pepper”) noise:

" Input image with salt e g B—
and pepper noise Blur with convolution Median filter
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Spatial Filtering

® Median filter: replaces each pixel with the median value of its
analyzed neighborhood. (Median value: the center element of
sorted values)
» Very effective against impulse (,,salt and pepper”) noise:

Original image Image with S&P noise Median filtered S&P noise

» Not so effective against Gaussian noise.
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Spatial Filtering

® Order statistic filtering:
e Based on the sorted pixel intensity levels in the analyzed neighborhood.
e |f after sorting...
+ we take the middle element, we get back the median filter.

* We take the maximum element to filter ,, pepper” and min to filter
,salt” noise.

- [
R SR T T

Image with S&P noise Maximum:filtered:S&P noise Minimum filtered S&P noise

e But max filter will highlight ,salt”, while min filter will highlight ,,pepper”.
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Spatial Filtering

® Order statistic filtering:
e Mid-point filtering:

* works well on Gaussian or uniform noise

y(nl,nz)z%( max {x(m, m,)}+ min {x(ml,mz)}j

(my,m;)eN (my,my)eN

e Alpha-trimmed mean filter:

y(nl’nZ) = Zx(ml,mz)

(my,m;)eN,

IN

-

* Where N, is a reduced neighborhood, not containing the lowest and
highest a element of N.

* If a =0, we get back the arithmetic mean.
* If a=|N]|-1, we get back the median filter.
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Wallis Operator

® The Wallis operator can help to adjust local contrast:

Amax Gd

Amaxal (nl’ n2 ) + Jd

T [p)—(d T (1 o p))_((nu n, )]

Y(nl’ nz) = [X(nl’ nz)_ )—((nl’ nz)]

1 _
e where o, the local contrast: i (M, N;) = N[ >, 2 (x(n,n) = x(n,ny))

(n,ny)eN

e X isthe local average: X(n,n,) = ﬁz Z x(ng, n,)

(ny,nz)eN

e g, is the desired local contrast, X, is the desired mean value of all pixels,
p is a weighting factor of the mean compensation, while A__ is
maximizing the local contrast modification.
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Wallis Operator

® We can describe the image the following way:

X(nv nz) = [X(nv nz)_ )_((nv nz)J * )_((nl’ nz)

M 2)
where (2) is the local mean and (1) is the deviation from the local mean.

e With the transformation we want to ,push” the local mean and standard
deviation to a predefined desired value:

y(nll nz) = [X(nm nz)_ )_((nll n, )] o (zd, n ) + [p)_(d T (1 _Vp))_((nl’ nz)J

it

e We are almost there, but if the local contrast is too low, the weighting in
(1) may get too high, this is why we maximize it with A,

Oy . Anex O g
O, (n1’ nz) Anex O (n1’ nz)"' Oy
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Wallis Operator

Original Image Image after applying Wallis operator
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Anisotropic Diffusion

® The anisotropic diffusion is a technique aiming at reducing
image noise without blurring significant parts of the image
content.

@ It was first proposed by Dénes Gabor in 1965 and later by
Perona and Malik around 1990.

® Non-linear and space-variant transformation.

® The main idea is that the effect of blurring in each direction is
inversely proportional to the gradient value in that direction:

e allows diffusion along the edges or in edge-free territories, but penalizes
diffusion orthogonal to the edge direction.
® AD is an iterative process

P. Perona, J Malik (July 1990). "Scale-space and edge detection using anisotropic diffusion". IEEE Tr. PAMI, 12 (7): 629-639.
D. Gabor, “Information theory in electron microscopy,” Laboratory Investigation, vol. 14/6, pp. 801-807, 1965.
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Anisotropic Diffusion

Gaussian Blurred Image AD Image
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Anisotropic Diffusion

.‘%ﬁ -.‘*'- SR

Original Image

*

Noisy Image
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AD Image
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Total Variation Regularization

® Assumption:

e The image is smooth inside the objects, with jumps across the
boundaries.

e The noise component has high variation.

® The goal of Total Variation based noise removal is to minimize
the total variation of the image while keep the result as close to
the original input image as possible.

@ It was introduced by Rudin, Osher and Fatemi in 1992.

Rudin, L. I.; Osher, S.; Fatemi, E. (1992). "Nonlinear total variation based noise removal algorithms". Physica D 60: 259-268
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Total Variation Regularization

® TV of the output image y is defined as the integral of the
absolute gradient of the signal:

V(y): ZZ\/‘y(nl +1, nz)_ y(nl’ nz)‘z ""y(nl’ n, +1)_ y(nl’ nz)‘2

n Ny

® On the other hand, we also measure the difference between
the original image x and the output image y by L, norm E:

E(X’ y) = Z (X(nv n, )_ Y(nw n, ))2

Ny,N,

® The goal function for Total Variation based regularization:
y =argmin[E(x, y)+AV(y)|
y

where A is the regularization parameter.

Rudin, L. I.; Osher, S.; Fatemi, E. (1992). "Nonlinear total variation based noise removal algorithms". Physica D 60: 259-268
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Total Variation Regularization

Gaussian Blurred Image TV Image

Matlab Code: http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html
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Total Variation Regularization

Original Image Noisy Image

Matlab Code: http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html
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Fourier Transformation
Image filtering in the frequency domain




What is Fourier Transform?

® A transformation maps data between (different) domains.

® The Fourier Transform changes between the representation in
the time domain and in the frequency domain.

® The information is the same in both domains, only the
representation is different.

@ Itis a reversible transform.

@ It builds on the fact that any function can be represented as a
weighted sum of sinusoid functions:

J\\/\V _

o
InoAsy

A

@ If we can describe sinusoids we can describe every function.
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2D Fourier transform

® Forward transform: map an image x(n4, n,) of size N; X N,
from the spatial domain into the X (w{, w,) frequency domain

October 13, 2018

N; 1N, -1 _ _
. —joNy A—jo,N
X(o,0,)= > > x(n,n,)e Mg

n1=0n2=0
even if the image is real the spectrum is complex due to the complex
exponential factors
w1, W, frequencies: continuous variables
X (w1, w,) continuous Fourier transform or spectrum of the discrete
image
Drawback: no computable representation of X (w1, w,)

Solution: Discrete Fourier Transform (DFT): sample the continuous
spectrum with equally spaced frequencies
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Discrete Fourier Transform

® We sample one period of the Fourier transform in evenly

spaced frequencies: The size of the image in
the spatial domain is N;xN,

N,—1N,-14 | |
X (601, 602) = Z Z X(nl, nz)e‘”’lnle‘l“’znz The size of the image in

the frequency domain will
be the same: N;xN,

X (k.. k,) = X (e, 0)2)‘ ki = 0,1, Ny —1

27
1k 1@ = K2 Ko =o,1...,|\:\2—1
N, —1 N, -1 —JN—k1n1 _Jil_kznz Only one
X (kl’ k ) = Z Z X(nl’ nz)e 1 e 2 period is kept

n,=0n,=0
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Discrete Fourier Transform

® Forward formula: gives the description of the image in the
discrete frequency domain

N,—-1N,-1 27[ ——kyn —'2—7[k n
N 1M JN 2N
X (ki ko) = Y Y x(n,n)e ™ e M
n,=0 n,=0

@ Inverse Fourier transform: maps from the discrete frequency
domain back to the discrete spatial domain

NNl JN 1”1 J27[ kan,
x(n,n,) = N N > ZX(kl,k e M "
2 k;=0k,=0

e algorithmically it has the same structure as the forward transform,
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Discrete Fourier Transform

® DFT is an exact transform, there is no transformation error.

e Not surprising, since we use the same image size for the representation of
both x(n,, n,) and X(w,, w,).
® Most of the properties of continuous FT hold for DFT
e Except linear shift of FT becomes circular shift for DFT.
@ DFT and inverse DFT are computable transformations
@ There are fast ways to compute the DFT: Fast Fourier Transform

e |f the size of the image is NxN, then the naive implementation requires
N* multiplications: N? for each (k,,k,) point.

e The FFT with row/column decomposition requires only N?log,N
multiplications.

® FFT makes the Fourier transformation applicable in many
practical cases.
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Interpretation of Fourier coefficients

® Analogy of Fourier coefficient based representation:

e Consider the image as a superposition of sinusoid/cosine waves with
different amplitudes, frequencies and directions

e 1D case in formulas: (x,: signal, X} Fourier coefficient)
— 271
X, =Y X, exp(j=—kn)
0 N

N/2-1 272. 272.
Xy = Xo + Xy €OS(7N) + Y Z(Re(xk)cos(W knj— Im(Xk)sin(W knD

k=1

X,: real number, average of the function

e 2D case (e.g. image) visualization:
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Interpretation of 2D Fourier coefficients

1 2

X (k;, k) eXp(jZ”(kl % +k, nZD + X (=ky,—k, ) exp(— jZﬂ(kl % +k, :IZD =

1 NZ

Re(X (k. k, )} 2 C()S(Z?Z’[kl % +k, nz]] —Im{X(k,, k, )}- Z'S"{Zﬂ[kl % +k, :Ijj

orientation: C—
k2/N2 k1:3 k2:2 f :1/2

1 |\|2 1

real part of an X(k, k,) Fourier coefficient is the amplitude of a cos-
wave, while the imaginary part is the amplitude of a sinusoid wave

wavelength and orientation of the waves are encoded in the (k4, k,)
position coordinates of the coefficients in the 2D Fourier map

- wavelength: : :
E (L B LS
A N, N,

Spatial frequency:

a = arctan
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lllustration of the periodicity of coefficients
Centered DFT: better visualization

@ In the center of the DFT array
X Is the zero-frequency
coefficient (DC component)

@ Distance from the center

Xy 0= Xoo e Frequency of the corresponding
sin/cos wave

Re-arrangement of f = \/(kll N1)2 + (k2 / N2)2

the coefficient matrix

= Xo,o

® Orientation

e Direction perpendicular to the
wavefront

o =arctan((k, /N, )/(k, / N,))

DFT abs. value image
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Point-wise Intensity Transformation

® Log transformation:
e Commonly used to visualize the Fourier transform of an image

Original Image* The magnitude of the DFT Log of the magnitude of
the DFT

*Chez Mondrian by Andras Kertész (1926)
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Imaged absolute values of DFT coefficients —

facade of the Notre Dame Paris

32

@ In the transformed map, directions of strong lines are

perpendicular to the major contours in the image:
e A line- horizontal ledges (parkanyok)
e B line- slim vertical columns.

e Cand D lines — periodic vertical patterns with the frequency ,n = £32”
decoration of the windows behind the columns
October 13, 2018
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Imaged absolute values of DFT coefficients—
analysing fingerprint images

® No characteristic lines in the transform
& ridges of fingerprints run in any directions
® At d distance from the center a significant ring shaped
maximum

& the average spatial frequency of the fingerprint ridges is d-times the
basic frequency f,, and there exist no nominant directions
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Filtering in the DFT space

® Low-Pass Filter (LPF):
e Filtering out the large spatial frequencies

Result of filtering out large frequencies. Erased all coeff. a.) above 16 f,, b.) above 8 f,

Slide credit ® Prof. Vladimir Székely, BME
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Filtering in the DFT space

® High-Pass Filter (HPF)
e Filtering out the low spatial frequencies

Result of filtering out large frequencies. Erased all coeff. a.) below 4 f,, b.) below 10 f,

Slide credit ® Prof. Vladimir Székely, BME
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Discrete Fourier Transform

405 px

October 13, 2018

303 px

303 px

0 T 21

Original Image*

Magnitude of the

Discrete Fourier Transform

*Chez Mondrian by Andrds Kertész (1926)
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Discrete Fourier Transform

405 px
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303 px

303 px

Original Image*

Magnitude of the centered

Discrete Fourier Transform

*Chez Mondrian by Andrds Kertész (1926)
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Discrete Fourier Transform

Original Image* Magnitude of the DFT Phase of the DFT

*Chez Mondrian by Andrds Kertész (1926)
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Discrete Fourier Transform - Examples

Original Image
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Original Image
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Magnitude Original Image

Magnitude Original Image
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Discrete Fourier Transform

Magnitude Magnitude
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Representing curves with Fourier-descriptors

Complex numbers from the 2D curve points: Z, = X + 1Y,
2. 1D DFT transform calculated for the complete closed curve

K-1
C, = Y7, exp(i = n-k)
k=0
3. Setting high frequency C_ coefficient to zero, then recovering
of the approximate contour points by inverse transform

LN
TOYY T

[EEY

Reconstruction of letters ,L” and ,T” with 2, 3, 4 and 8 Fourier coefficients




Homomorphic filtering

® Motivation: image with large dynamic range, e.g. natural
scene on brightly sunny day, recorded on a medium with
small dynamic range results in image contrast significantly
reduced especially in dark and bright regions

® Goal: reduce the dynamic
range, increase contrast

® Example for a spatial filter also
using Fourier-based steps
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Homomorphic filtering

® It simultaneously normalizes the brightness across an image
and increases contrast.

® Assumes the following image model: the image is formed by
recording the light reflected from the objects illuminated by a
light source.

x(n, n,) = i(n1’ nz) ' r(n1’ nz)

I Illumination: slowly varying, main contributor to dynamic range I

I Reflectance: rapidly varying, main contributor to local contrast I

® We want to reduce the illumination component, and increase
the reflectance component.
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Homomorphic filtering

® The main steps of homomorphic filtering:

1.

10/13/2018

To separate the two components we first use log transformation:

log(x(n,, n,)) = log(i(n;, n,)) + log(r(n;, n;))

Since we assume that the illumination component varies slowly and the
reflectance varies rapidly, we can get the two component by using
(Fourier-based) low and high pass filters:

log(i(n,, n,)) = LPF[log(x(n,, n,))]

log(r(n,, n,)) = HPF[log(x(n;, n,))]
Weight the two component:

IOg(Y(nl’ nz)): 71 Iog(i(nl’ nz))+72 Iog(r(nl’ nz))’ where y, <17, >1

Transform back to the original range, using the exponential transform.
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Homomorphic filtering

log(i(n,,n,)) g :
» LPF -

x(n,,n,) A y(n,n,)
| P exp —

__[pp oa(r(n,n,)) ?
4

2

x(ny,n,) =1(ny, n,)r(n;,n,)

log(y(n,,n,)) =, log(i(n,,n,))+ 7, log(r(n,,n,))

y(n;,n,) = [i(nv nz)]y1 [r(nl’ nz)]y2
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Homomorphic filtering

Original Image Image after homomorphic filtering
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Main Sources

Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

Introduction to Fourier Transform (https://www.youtube.com/watch?v=1JnayXHhijlg)

Introduction to Compex Exponential Function (https://www.youtube.com/watch?v=gjT3XvS7Qno)
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https://www.youtube.com/watch?v=1JnayXHhjlg
https://www.youtube.com/watch?v=qjT3XvS7Qno

