
PPKE-ITK

Lecture 4.



10/13/2018 2

 Recap: Gaussian Smoothing – efficient for Gaussian noise, but…

Basic Image Processing Algorithms

Image with salt and 
pepper noise

Gaussian blur with 
convolution

Image credit ® Prof. Vladimir Székely, BME
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 Rank filter:
1. Consider the actual pixel and its neighborhood (e.g. 3×3=9 pixel sized 

window),

2. Sort the observed pixel values according to gray level,

3. Take the k-th value from this row as the new pixel value

 Median filter: k is the middle pixel value in the row:
k=[(2W+1)2-1]/2, if W is the half side size of the neighborhood

 Non-Linear filter
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Blur with convolution Median filter

 Median filter: replaces each pixel with the median value of its 
analyzed neighborhood. (Median value: the center element of 
sorted values) 

• Very effective against impulse („salt and pepper”) noise:

Input image with salt
and pepper noise



 Median filter: replaces each pixel with the median value of its 
analyzed neighborhood. (Median value: the center element of 
sorted values) 

• Very effective against impulse („salt and pepper”) noise:

• Not so effective against Gaussian noise.
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Original image Image with S&P noise Median filtered S&P noise
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 Order statistic filtering:
• Based on the sorted pixel intensity levels in the analyzed neighborhood.

• If after sorting… 

 we take the middle element, we get back the median filter.

 We take the maximum element to filter „pepper” and min to filter 
„salt” noise.

• But max filter will highlight „salt”, while min filter will highlight „pepper”.
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Image with S&P noise Maximum filtered S&P noise Minimum filtered S&P noise
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 Order statistic filtering:
• Mid-point filtering: 

 works well on Gaussian or uniform noise

• Alpha-trimmed mean filter:

 Where Nr is a reduced neighborhood, not containing the lowest and 
highest α element of N.

 If α = 0, we get back the arithmetic mean.

 If α = |N|-1, we get back the median filter.
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 The Wallis operator can help to adjust local contrast: 

• where the local contrast:

• is the local average:

• is the desired local contrast, is the desired mean value of all pixels,
p is a weighting factor of the mean compensation, while Amax is
maximizing the local contrast modification.
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 We can describe the image the following way:

where (2) is the local mean and (1) is the deviation from the local mean.

• With the transformation we want to „push” the local mean and standard
deviation to a predefined desired value:

• We are almost there, but if the local contrast is too low, the weighting in
(1) may get too high, this is why we maximize it with Amax:
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Original Image Image after applying Wallis operator
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 The anisotropic diffusion is a technique aiming at reducing
image noise without blurring significant parts of the image
content.

 It was first proposed by Dénes Gábor in 1965 and later by
Perona and Malik around 1990.

 Non-linear and space-variant transformation.

 The main idea is that the effect of blurring in each direction is
inversely proportional to the gradient value in that direction:

• allows diffusion along the edges or in edge-free territories, but penalizes
diffusion orthogonal to the edge direction.

 AD is an iterative process
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P. Perona, J Malik (July 1990). "Scale-space and edge detection using anisotropic diffusion". IEEE Tr. PAMI, 12 (7): 629–639.
D. Gabor, “Information theory in electron microscopy,” Laboratory Investigation, vol. 14/6, pp. 801–807, 1965.
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Original Image Noisy Image

Gaussian Blurred Image AD Image
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Original Image Noisy Image AD Image
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 Assumption:
• The image is smooth inside the objects, with jumps across the

boundaries.

• The noise component has high variation.

 The goal of Total Variation based noise removal is to minimize
the total variation of the image while keep the result as close to
the original input image as possible.

 It was introduced by Rudin, Osher and Fatemi in 1992.
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Rudin, L. I.; Osher, S.; Fatemi, E. (1992). "Nonlinear total variation based noise removal algorithms". Physica D 60: 259–268
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 TV of the output image 𝑦 is defined as the integral of the
absolute gradient of the signal:

 On the other hand, we also measure the difference between
the original image 𝑥 and the output image 𝑦 by L2 norm 𝐸:

 The goal function for Total Variation based regularization:

where λ is the regularization parameter.
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Original Image Noisy Image

Gaussian Blurred Image TV Image

Matlab Code: http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html
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Original Image Noisy Image TV Image

Matlab Code: http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html
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 A transformation maps data between (different) domains.
 The Fourier Transform changes between the representation in

the time domain and in the frequency domain.
 The information is the same in both domains, only the

representation is different.
 It is a reversible transform.
 It builds on the fact that any function can be represented as a

weighted sum of sinusoid functions:

 If we can describe sinusoids we can describe every function.
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 Forward transform:  map an image 𝑥(𝑛1, 𝑛2) of size 𝑁1 × 𝑁2
from the spatial domain into the 𝑋(𝜔1, 𝜔2) frequency domain

• even if the image is real the spectrum is complex due to the complex 
exponential factors

• 𝜔1, 𝜔2 frequencies: continuous variables

• 𝑋(𝜔1, 𝜔2) continuous Fourier transform or spectrum of the discrete 
image

• Drawback: no computable representation of 𝑋(𝜔1, 𝜔2)

• Solution: Discrete Fourier Transform (DFT): sample the continuous 
spectrum with equally spaced frequencies
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 We sample one period of the Fourier transform in evenly 
spaced frequencies:
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The size of the image in 
the spatial domain is N1xN2

The size of the image in 
the frequency  domain will 

be the same: N1xN2

Only one 
period is kept
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 Forward formula:  gives the description of the image in the 
discrete frequency domain 

 Inverse Fourier transform:  maps from the discrete frequency 
domain back to the discrete spatial domain

• algorithmically it has the same structure as the forward transform, 
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 DFT is an exact transform, there is no transformation error.
• Not surprising, since we use the same image size for the representation of

both x(n1, n2) and X(ω1, ω2).

 Most of the properties of continuous FT hold for DFT
• Except linear shift of FT becomes circular shift for DFT.

 DFT and inverse DFT are computable transformations
 There are fast ways to compute the DFT: Fast Fourier Transform

• If the size of the image is NxN, then the naive implementation requires
N4 multiplications: N2 for each (k1,k2) point.

• The FFT with row/column decomposition requires only N2log2N
multiplications.

 FFT makes the Fourier transformation applicable in many
practical cases.
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 Analogy of Fourier coefficient based representation: 
• Consider the image as a superposition of sinusoid/cosine waves with 

different amplitudes, frequencies and directions

• 1D case in formulas: (𝑥𝑛: signal, 𝑋𝑘 Fourier coefficient)

• 2D case (e.g. image) visualization:
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• real part of an 𝑋 𝑘1, 𝑘2 Fourier coefficient is the amplitude of a cos-
wave, while the imaginary part is the amplitude of a sinusoid wave

• wavelength and orientation of the waves are encoded in the 𝑘1, 𝑘2
position coordinates of the coefficients in the 2D Fourier map 

orientation:

Slide credit ® Prof. Vladimir Székely, BME
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Re-arrangement of 
the coefficient matrix

DFT abs. value image

 In the center of the DFT array 
𝑋00 is the zero-frequency 
coefficient (DC component)

 Distance from the center
• Frequency of the corresponding 

sin/cos wave

 Orientation
• Direction perpendicular to the 

wavefront
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 Log transformation:
• Commonly used to visualize the Fourier transform of an image
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Original Image* Log of the magnitude of 
the DFT 

The magnitude of the DFT 

*Chez Mondrian by András Kertész (1926)
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 In the transformed map, directions of strong lines are 
perpendicular to the major contours in the image: 

• A line- horizontal ledges (párkányok)

• B line- slim vertical columns. 

• C and D lines – periodic vertical patterns with the frequency „n = 32” : 
decoration of the windows behind the columns
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 No characteristic lines in the transform 
←  ridges of fingerprints run in any directions

 At d distance from the center a significant ring shaped 
maximum

← the average spatial frequency of the fingerprint ridges is d-times the 
basic frequency fb, and there exist no nominant directions
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 Low-Pass Filter (LPF): 

• Filtering out the large spatial frequencies
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Result of filtering out large frequencies. Erased all coeff. a.) above 16 fb, b.) above 8 fb

a) b) 

Slide credit ® Prof. Vladimir Székely, BME



 High-Pass Filter (HPF)

• Filtering out the low spatial frequencies
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a) b) 

Result of filtering out large frequencies. Erased all coeff. a.) below 4 fb, b.) below 10 fb

Slide credit ® Prof. Vladimir Székely, BME
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Original Image*

*Chez Mondrian by András Kertész (1926)

Magnitude of the 
Discrete Fourier Transform
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Original Image*

*Chez Mondrian by András Kertész (1926)

Magnitude of the centered
Discrete Fourier Transform
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Original Image*

*Chez Mondrian by András Kertész (1926)

Magnitude of the DFT Phase of the DFT
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Magnitude

MagnitudeOriginal Image

Original Image Magnitude

MagnitudeOriginal Image

Original Image
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Phase Magnitude Magnitude Phase
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1. Complex numbers from the 2D curve points:
2. 1D DFT transform calculated for the complete closed curve

3. Setting high frequency Cn coefficient to zero, then recovering 
of the approximate contour points by inverse transform
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 Motivation: image with large dynamic range, e.g. natural 
scene on brightly sunny day, recorded on a  medium with 
small dynamic range results in image contrast significantly 
reduced especially in dark and bright regions
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 Goal: reduce the dynamic 
range, increase contrast 

 Example for a spatial filter also 
using Fourier-based steps
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 It simultaneously normalizes the brightness across an image
and increases contrast.

 Assumes the following image model: the image is formed by
recording the light reflected from the objects illuminated by a
light source.

 We want to reduce the illumination component, and increase
the reflectance component.
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Illumination: slowly varying, main contributor to dynamic range

Reflectance: rapidly varying, main contributor to local contrast
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 The main steps of homomorphic filtering:
1. To separate the two components we first use log transformation:

2. Since we assume that the illumination component varies slowly and the
reflectance varies rapidly, we can get the two component by using
(Fourier-based) low and high pass filters:

3. Weight the two component:

4. Transform back to the original range, using the exponential transform.
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Original Image Image after homomorphic filtering

Basic Image Processing Algorithms



Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

Introduction to Fourier Transform (https://www.youtube.com/watch?v=1JnayXHhjlg)

Introduction to Compex Exponential Function (https://www.youtube.com/watch?v=qjT3XvS7Qno)
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