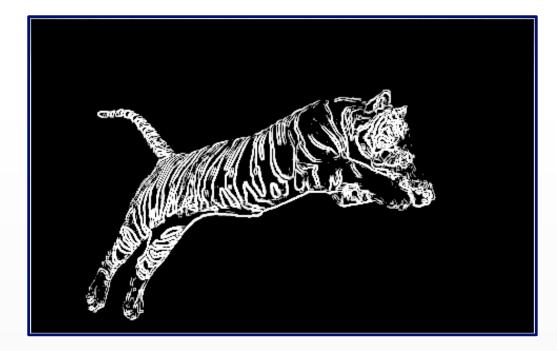
Basic Image Processing Algorithms

PPKE-ITK

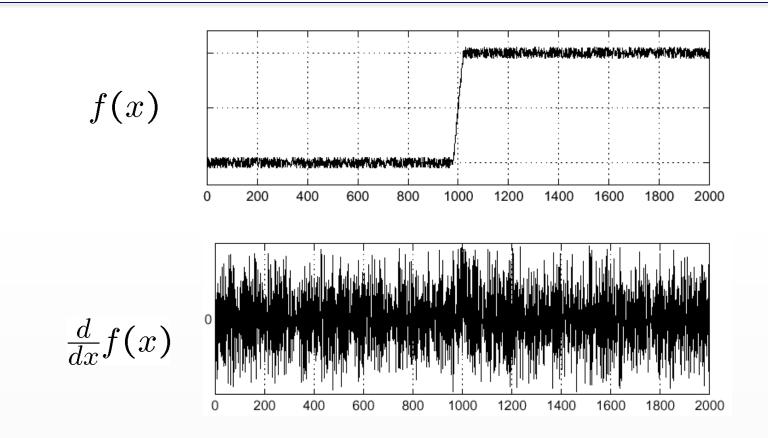
Lecture 3.

Recap: first/second order edge detection

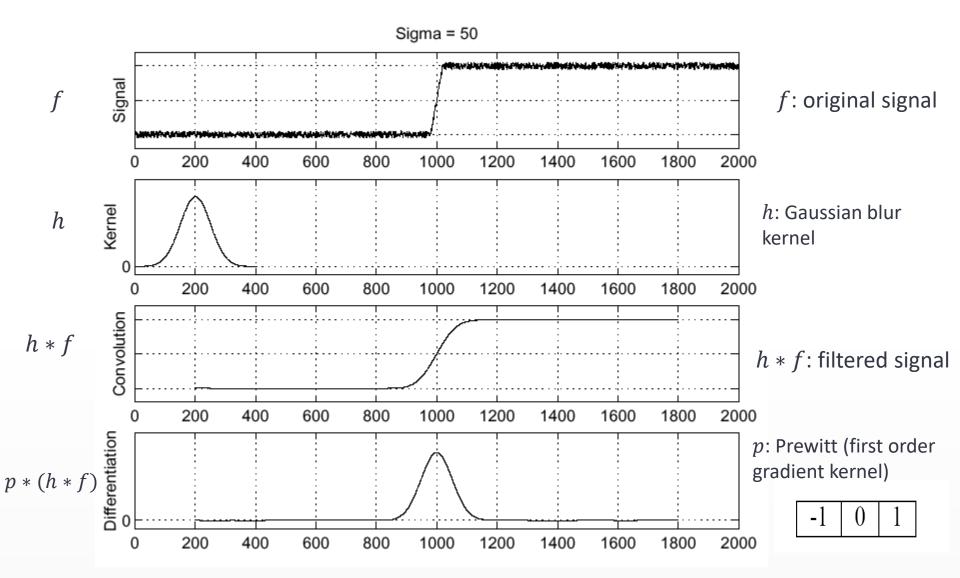
• Noise filtering is required...



Noise filtering (1D demonstration)



• Where is the edge?

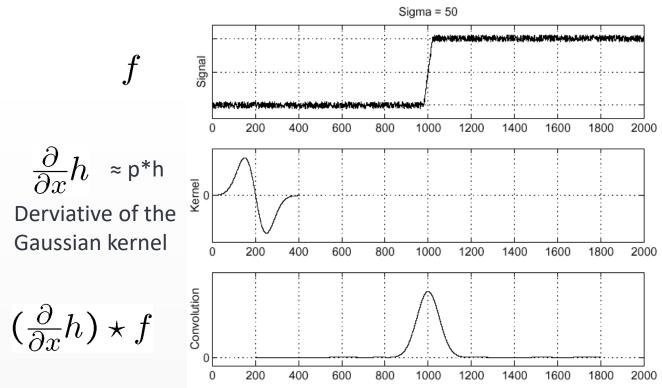


Smoothing the signal with Gaussian kernel, followed by applying a first order Prewitt kernel

Associativity of convolution: p * (h * f) = (p * h) * f

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

 No need for applying 2 convolutions, only one with the derivative of Gaussian operator (can also be approximated by a discrete kernel)

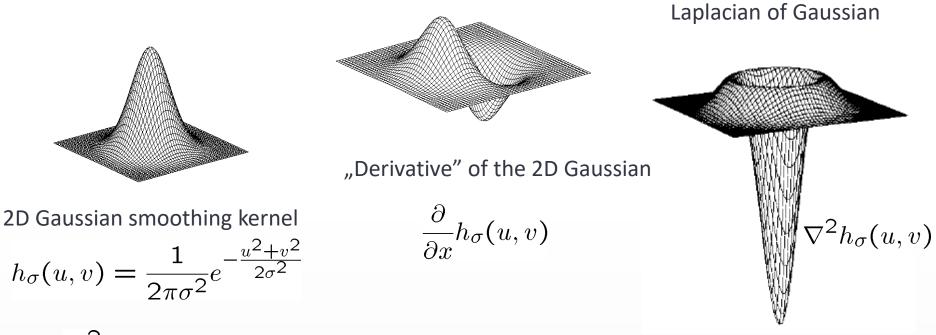


Second order case: Laplacian of Gaussian (LoG)

Smoothing + Laplace = conv. with LoG operator

Sigma = 50 والمرجع أرواليا الألي أتحصاف والكافك والأربان وأراك f Signal h: Gaussian smoothing kernel *l*: Laplace-kernel Kernel 0 $\frac{\partial^2}{\partial r^2}h \approx l * h$ σ Convolution $\left(\frac{\partial^2}{\partial r^2}h\right) \star f$

2D edge detection with filtering:

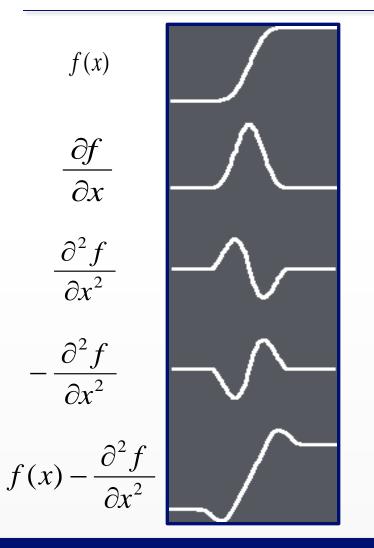


• ∇^2 henceforward the **Laplace** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Determining kernel coefficients with discrete approximation of the 2D function

Edge Enhancement



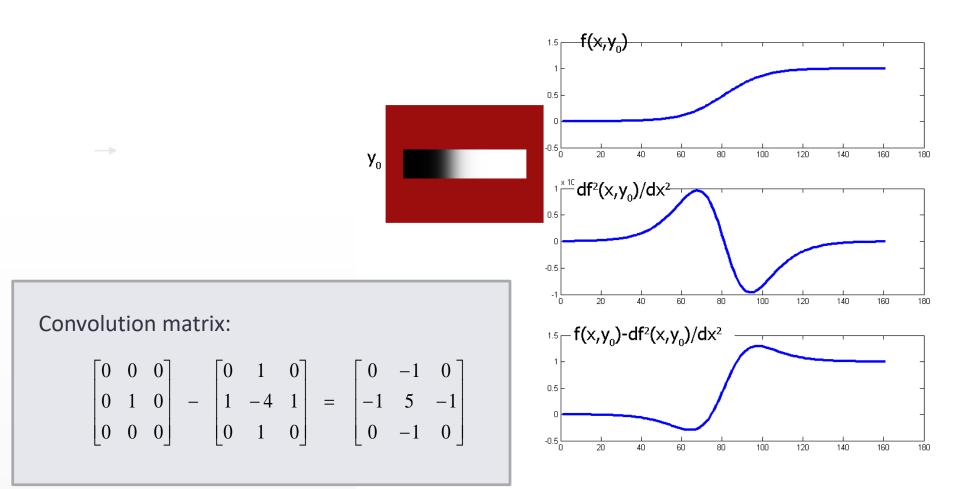
Kernel for edge enhancement with Laplace operator:

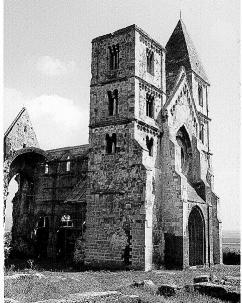
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Original image

Edge enhanced image

Edge crispening

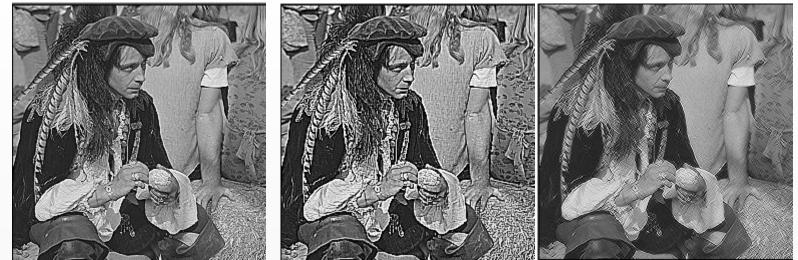




Edge crispening variants

Often enhances the image qualiy

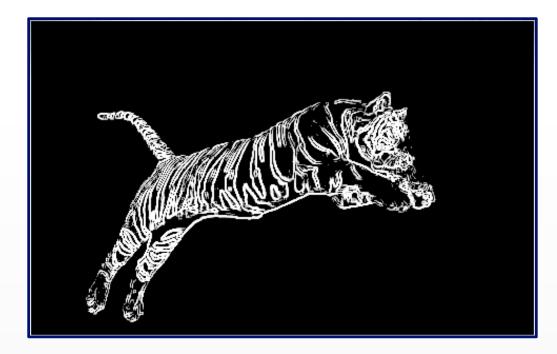
$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

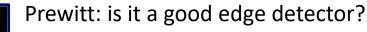


Canny edge detector

Evaluation of first/second order edge detection

- Prewitt kernel + threshold
 - is it a good edge detector?



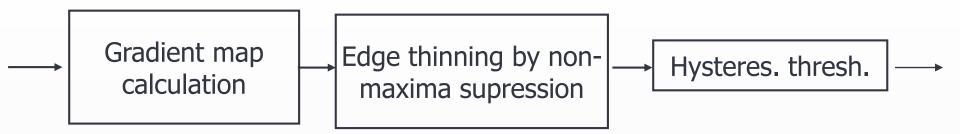


Canny edge detector

- Remember: properties of a good edge detector:
 - Good detection:
 - · detects as many real edges as possible
 - does not create false edges
 - Good localization:
 - the detected edges should be as close to the real edges as possible
 - Isotropic:
 - all edges are detected regardless of their direction
- John F. *Canny* has developed an edge detector in 1986 to meet these requirements.

Canny edge detector

- Goal: extracting a **connected**, **one-pixel-thick** edge network
- Filtering Gaussian noise
- Three main steps:



Canny - 1st step: gradient map

• Noise reduction:

• The original image is convolved with a Gaussian kernel to reduce image noise.

• Gradient intensity and direction calculation:

- The horizontal and vertical derivative image is calculated (e.g. with Prewitt kernel)
- At each pixel (*i*, *j*) calculate:
 - d(i, j) gradient magnitude (how sharp is the edge proportional to the gradient magnitude)

$$\|\nabla f\|_{ij} \propto d(i,j) = \sqrt{[d^x(i,j)]^2 + [d^y(i,j)]^2}$$

• n(i, j) edge normal (perpendicular to the direction)

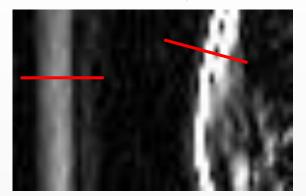
 $n(i,j) = \arctan\left(\frac{d^{x}(i,j)}{d^{y}(i,j)}\right)$

EDGE NORMAL

EDGE DIRECTION

Canny – 2nd step: Non-max Suppression

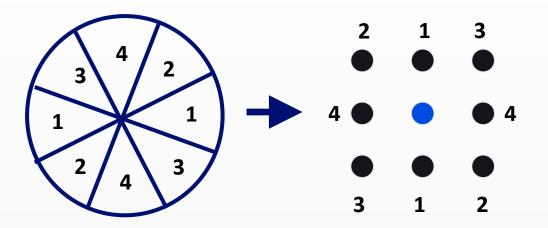
- Goal: thinning the edges
- The gradient map may contain "thick" regions with large gradient values. Earlier methods may classify all of these points as edges.
- Along the highlighted line segments perpendicular to the edges (marked with red) we should only mark a single point as edge point, the one which is <u>locally the brightest</u>



Canny Edge detector

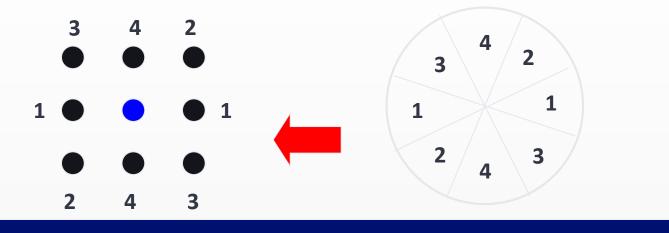
3. Non-Maximum Suppression step for edge thinning:

- Each edge is categorized into one of 4 main edge directions (0°, 45°, 90°, 135°), based on the gradient direction image (θ).
- At every pixel, it suppresses the edge, by setting its value to 0, if its magnitude is not greater than the magnitude of the two neighbors in the gradient direction:



Canny – 2nd step: Non-max Suppression

- Each edge is categorized into one of 4 main edge directions (0°, 45°, 90°, 135°), based on the gradient direction image
 - to each pixel (i, j) we assign the principal direction a(i, j), which one is the closest to local edge normal n(i, j)
- 2. At every pixel, it suppresses the edge, if its magnitude is not greater than the magnitude of the two neighbors in the gradient direction:
 - If local edge magnitude d(i, j) is smaller than in any neighboring pixel in the a(i, j) direction set G(i, j): = 0. Otherwise (local max) : G(i, j): = d(i, j)
- 3. Result: *G* image obtained from the *d* gradient-magnitude map, where the edge-candidate regions become thin



Canny – 3rd step: Thresholding

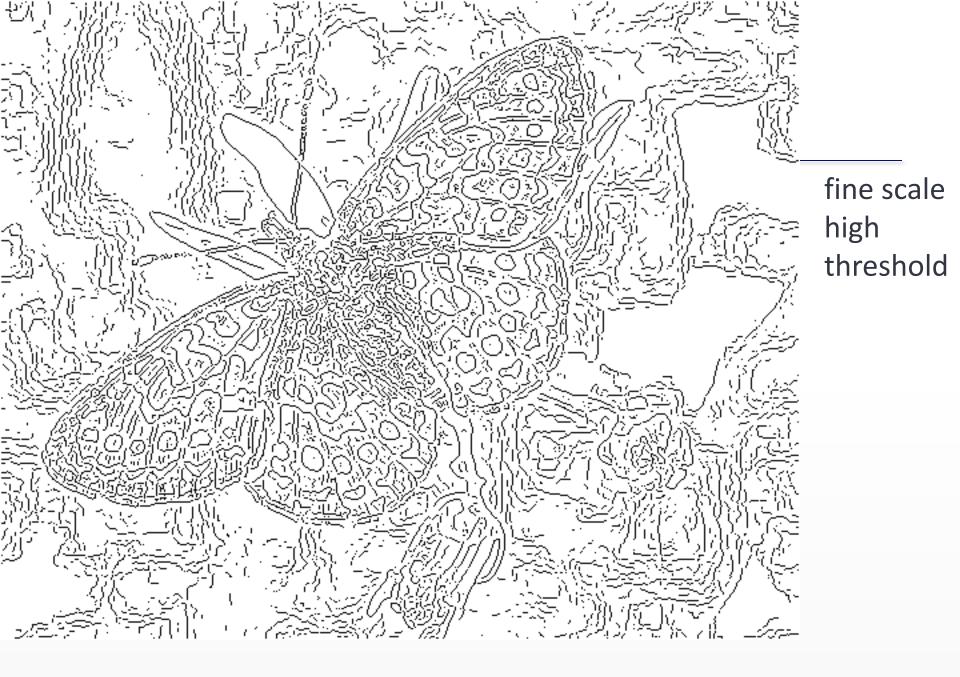
- \odot Naive solution: thresholding the G map with a threshold t
 - If t is too small, we obtain many false edge points. If t is too large: valid edges disappear.
 - If the gradient magnitude of the edges fluctuates around the threshold, many disruptions (broken edge segments) may appear
- Improved solution: hysteresis thresholding
 - Using 2 thresholds t_1 and t_2 ($t_1 < t_2$):
 - If the value of G(x, y) is larger than t_2 , (x, y) is certainly edge point
 - If the value of G(x, y) is smaller than t_1 , (x, y) is certainly <u>not an</u> edge point
 - If the value of G(x, y) is between the threshold, we mark it as edge point if and only if it has a neighboring pixel already classified as edge in the direction perpendicular to the edge normal

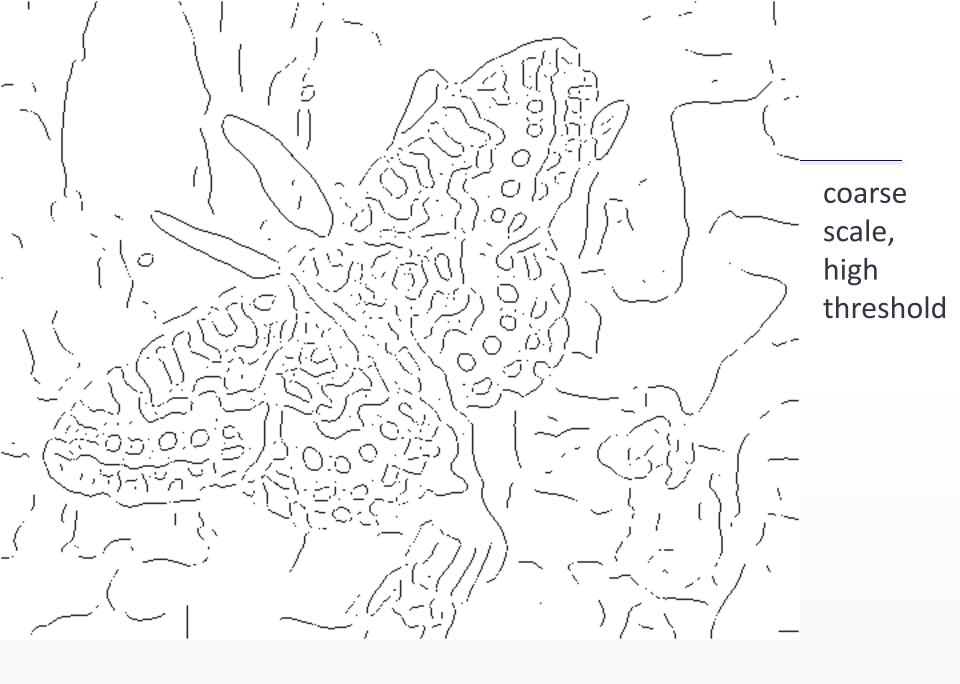
Input image

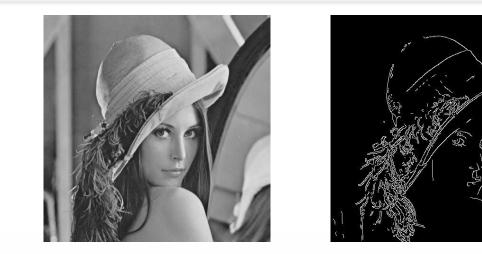
Norm of gradient: "d"

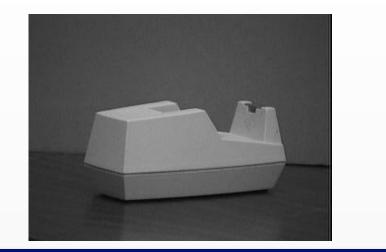
After thinning (E) (non-maximum suppression)

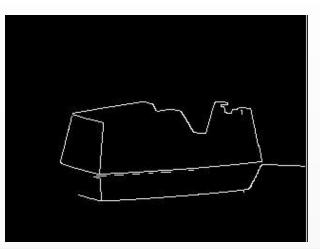
hysteresis thresholding

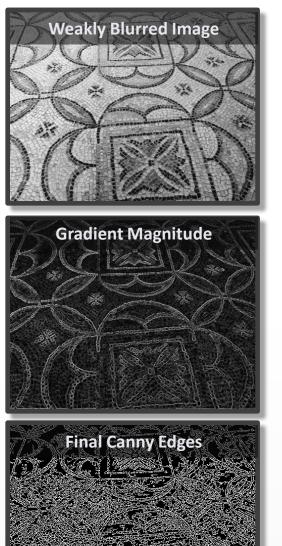


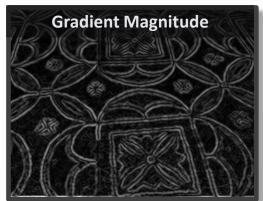












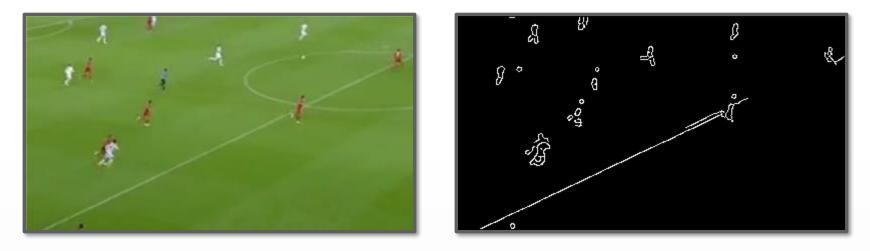
October 1, 2019

Basic Image Processing Algorithms

Line detection with Hough Transfrom

Hough Transformation

• An example of Canny edge detector...



- ...where straight lines are not detected perfectly.
- The objective of the Hough transformation is to find the lines on a binary image, from fragments/points of the line.

Finding lines in an image

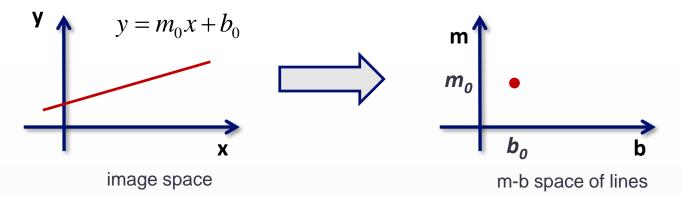
- Option 1:
 - Search for the line at every possible position/orientation
 - What is the cost of this operation?
- Option 2:
 - Use a voting scheme: Hough transform

Finding lines in an image

- The basic idea:
 - A line can be written in the following form:

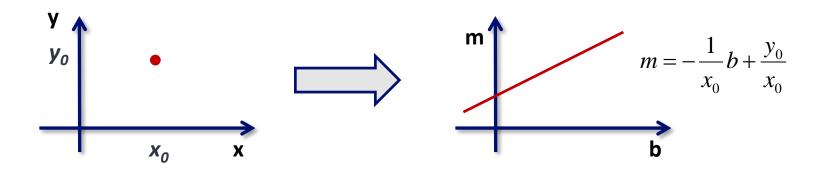
$$y = mx + b$$

where *m* is the slope of the line and *b* is the y-intercept.



- Connection between image (x,y) and the (m,b) spaces
 - A line in the image corresponds to a point in "m-b" space
 - To go from image space to (m-b) space:
 - given a set of points (x,y), find all (m,b) such that y = mx + b

Finding lines in an image

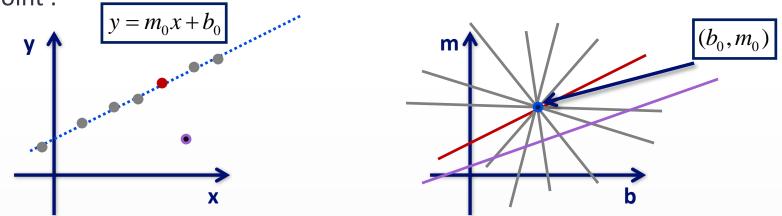


- Connection between image (x,y) and (m,b) spaces
 - What does a point (x_o, y_o) in the image space map to?
 - For a fixed y = y₀, x = x₀ point in the image space, we get a line in the (m, b) space with a slope -1/x₀ and an m-intercept: y₀/x₀:

$$m = -\frac{1}{x_0}b + \frac{y_0}{x_0}$$

Hough Transformation

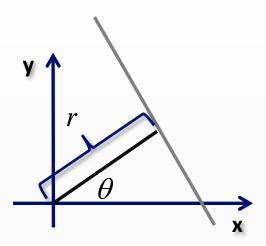
- The basic idea:
 - For the points that lie on the same line in the Euclidian space, their corresponding line in the parameter space will cross each other in one point :



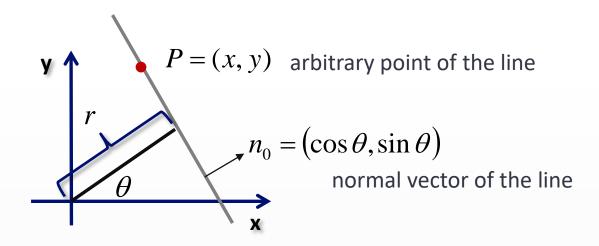
- This point will be *m=m₀* and *b=b₀*, the slope and intercept of the line in the image space.
 We have the equation of the line!
- But, there is a problem with this equation of the line: vertical lines cannot be described (their slope would be infinite).

Hough Transformation

- To be able to describe all possible lines with two scalar parameters, we will use a **polar representation** of the line
- Each line is described by (r, θ) instead of (m, b), where
 - *r* is the perpendicular distance from the line to the origin
 - θ is the angle this perpendicular makes with the x axis



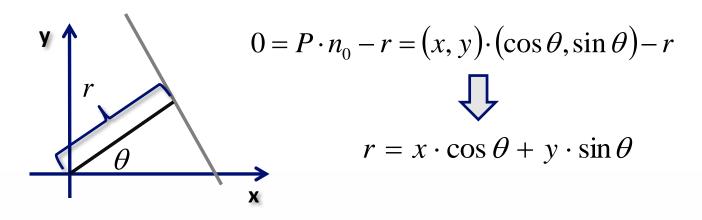
• Mathematical basis for using the **polar equation** of the line is the Hesse normal form^{*}: $0 = P \cdot n_0 - r$



- *r*: perpendicular distance from the line to the origin
- θ : the angle this perpendicular makes with the x axis

* https://en.wikipedia.org/wiki/Hesse_normal_form

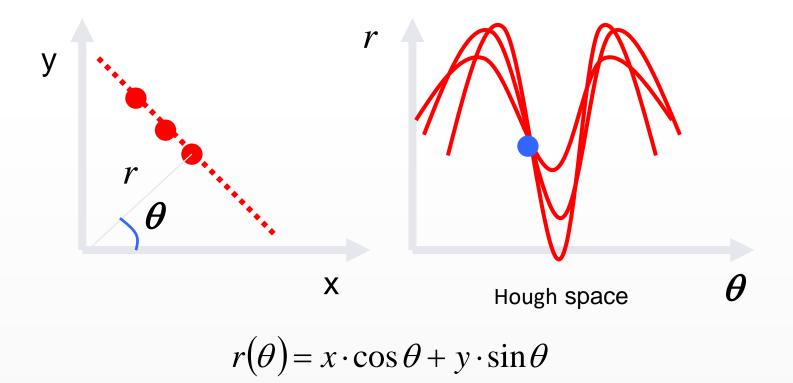
• Hesse normal form based polar equation of the line:

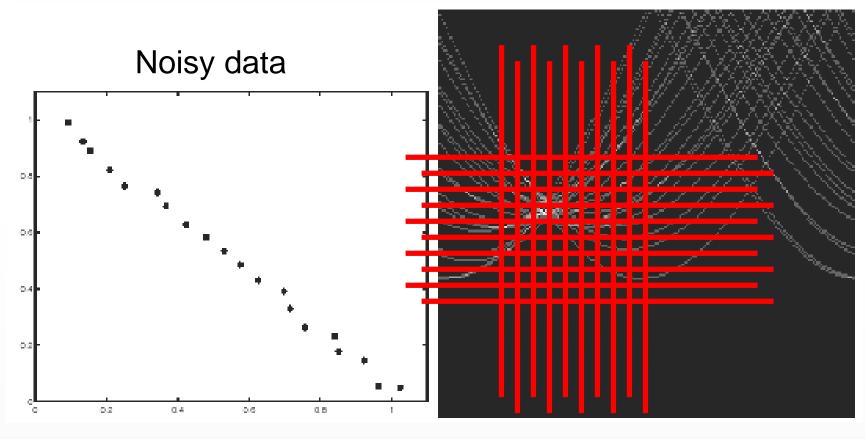


- The (r, θ) parameter space is called Hough space.
- A point in the Euclidian space is a sinusoid in the Hough space, described by the following equation:

$$r(\theta) = x \cdot \cos \theta + y \cdot \sin \theta$$

 All the sinusoid curves of the points in one line in the Euclidian space, cross each other in one point in the Hough space.





features

votes

Issue: Grid size needs to be adjusted...

Hough transform algorithm

- Basic Hough transform algorithm
 - 1. for all r, θ : initialize H[r, θ]=0
 - 2. for each edge point I[x,y] in the image

for θ = 0 to 180

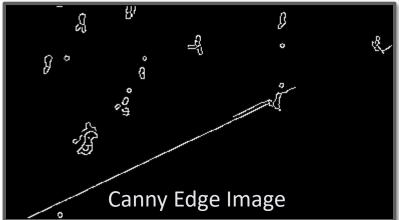
 $r = x \cdot \cos \theta + y \cdot \sin \theta$

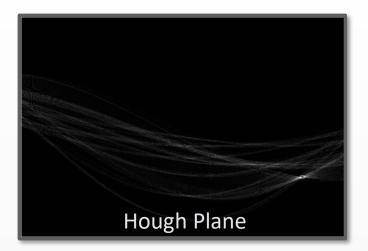
H[r, θ] += 1

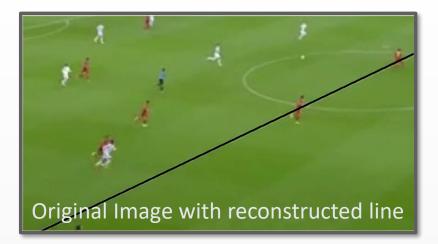
- 3. Find the value(s) of (r, θ) where H[r, θ] is maximum
- 4. The detected line in the image is given by

 $r = x \cdot \cos \theta + y \cdot \sin \theta$

• What's the running time (measured in # votes)?







Extensions

- Extension 1: Use the image gradient
 - 1. same
 - for each edge point I[x,y] in the image compute unique (r, θ) based on local image gradient at (x,y)
 H[r, θ] += 1
 - 3. same
 - 4. same
- Extension 2
 - give more votes for stronger edges
- Extension 3
 - change the sampling of (r, θ) to give more/less resolution
- Extension 4
 - The same procedure can be used with circles, squares, or any other shape

Hough demos

- Lines, circles and ellipses: <u>http://dersmon.github.io/HoughTransformationDemo/</u>
- Circle : http://www.markschulze.net/java/hough/

Image Enhancement

What is Image Enhancement?

- Image enhancement is the manipulation or transformation of the image to improve the visual appearance or to help further automatic processing steps.
- There is no general theory behind it, the result is highly application dependent and subjective.
 - e.g. in many cases the goal is to improve the quality for human viewing (Medical Imaging, Satellite Images)
- Enhancement is closely related to image recovery.
- Examples:
 - Contrast enhancement
 - Edge enhancement
 - Noise removal/smoothing

Types of Image Enhancement

- There are two main categories:
 - Spatial Domain Methods
 - Frequency Domain Methods
- In the Spatial Domain we are directly manipulating pixel values, through..
 - Point-wise Intensity Transformation
 - Histogram Transformations
 - Spatial Filtering
 - LSI (Linear Shift-Invariant)
 - Non-Linear
 - etc.

The Histogram of an Image

4.5 × 10⁴

3.5

• Histogram:

h(k) = the number of pixels on the image with value k.

Original Image*

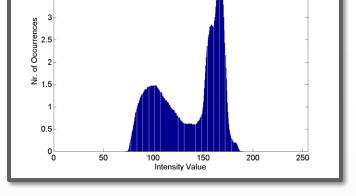


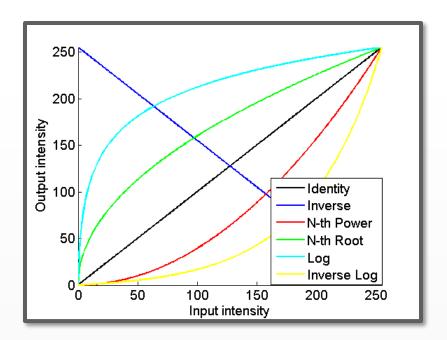
Image Histogram

 The histogram normalized with the total number of pixels gives us the *probability density function* of the intensity values.

* Modified version of Riverscape with Ferry by Salomon van Ruysdael (1639)

- Point wise transformations are operating directly on pixel values, independently of the values of its neighboring pixels.
- We can describe the transformation as follows:
 - Let x and y be two grayscale images, and let T be a pointwise image enhancement transformation that transforms x to y:

$$y(n_1, n_2) = T[x(n_1, n_2)]$$



• Inverse transformation: $y(n_1, n_2) = 255 - x(n_1, n_2)$

Original Image*

Inverse Image

*Hand with Reflecting Sphere by M. S. Escher (1935)

- Log transformation: $y(n_1, n_2) = c \cdot \log(x(n_1, n_2) + 1)$
 - Expands low and compresses high pixel value range

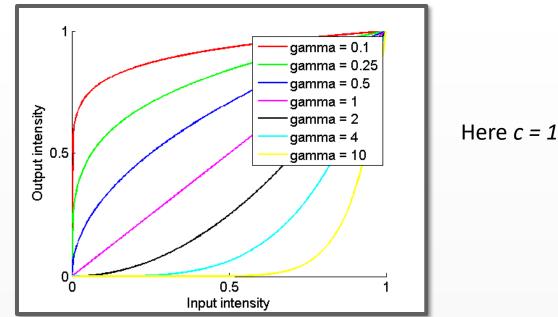
Original Image*

Log Image

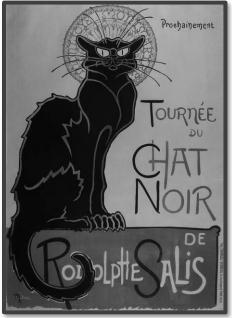
Log Image after histogram stretching

* Abbaye du Thoronet by Lucien Hervé (1951)

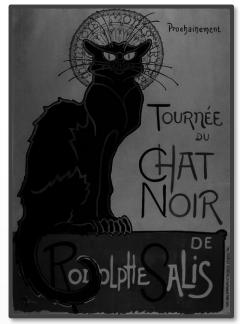
- Power-law transformation: $y(n_1, n_2) = c \cdot x(n_1, n_2)^{\gamma}$
 - Commonly referred to as gamma transformation
 - Originally it was developed to compensate the input-output characteristics of CRT displays.
 - The expended/compressed region depends on γ:

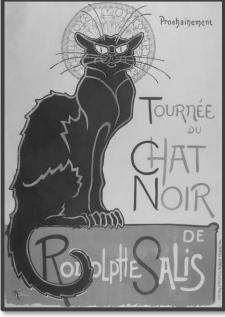


• Power-law transformation: $y(n_1, n_2) = c \cdot x(n_1, n_2)^{\gamma}$



Original Image*

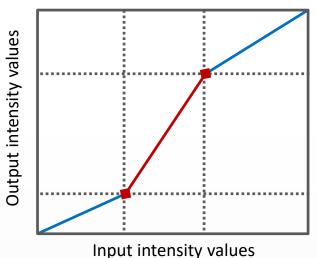




* Le chat Noir, Poster of Théophile Steinlen (1896)

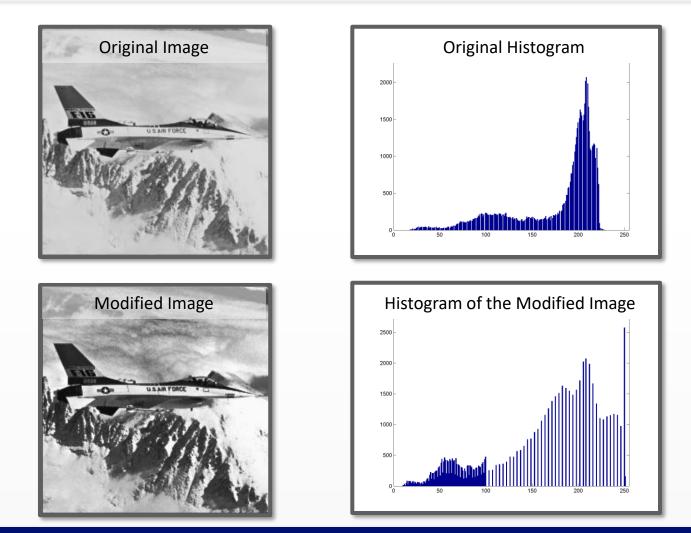
Dynamic Range Expansion

 Piecewise linear expansion/compression of predefined intensity ranges:



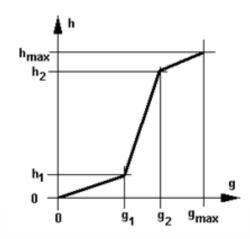
• The red intensity range was expanded, while the blue ranges were compressed.

Dynamic Range Expansion



Dynamic Range Expansion

- Example: extracting the intensity values from the $[g_1 \ g_2]$ interval to a wider $[h_1 \ h_2]$ domain
 - Enhanced contrast in the selected region, details are better observable and distinguishable.
 - In the remaining image regions the contrast decreases



• Histogram Stretching:

- Based on the histogram we can see that the image does not use the whole range of possible intensities:
 - Minimum intensity level: 72
 - Maximum intensity level: 190
- With the following transformation we can stretch the intensity values so they use the whole available range:

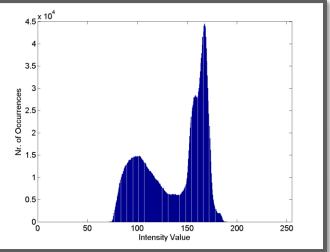
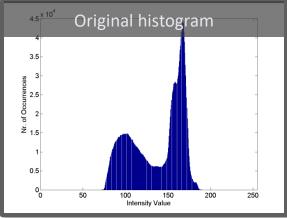


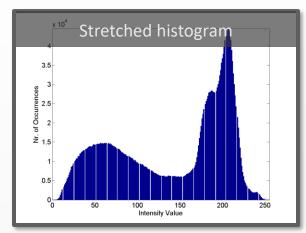
Image Histogram

$$y(n_1, n_2) = \frac{255}{x_{\text{max}} - x_{\text{min}}} \cdot (x(n_1, n_2) - x_{\text{min}})$$

$$x_{\max} = \max_{n_1, n_2} (x(n_1, n_2))$$
 $x_{\min} = \min_{n_1, n_2} (x(n_1, n_2))$

• Histogram Stretching:





- Histogram stretching with various transfer functions:
 - Linear:

$$y(n_1, n_2) = \frac{255}{x_{\max} - x_{\min}} \cdot (x(n_1, n_2) - x_{\min}) = 255 \cdot \frac{x(n_1, n_2) - x_{\min}}{x_{\max} - x_{\min}}$$

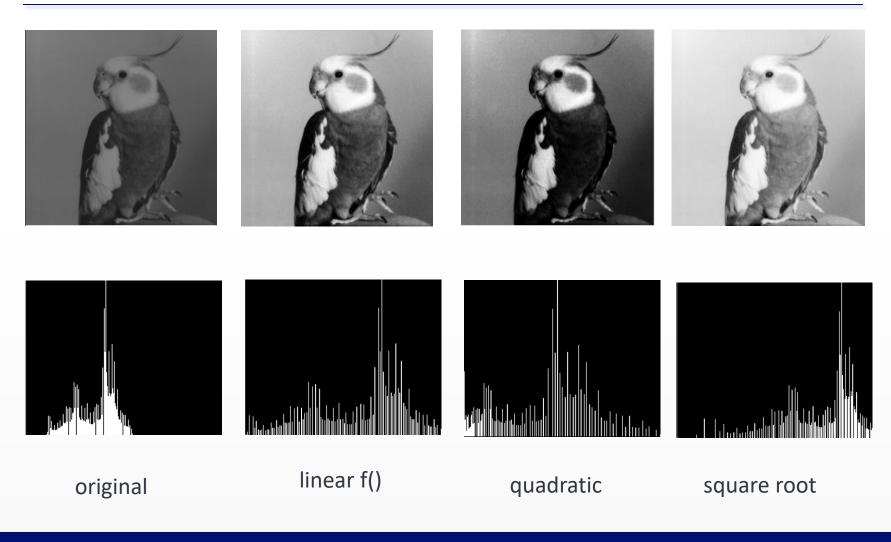
• Quadratic:

$$y(n_1, n_2) = 255 \cdot \left(\frac{x(n_1, n_2) - x_{\min}}{x_{\max} - x_{\min}}\right)^2$$

• Square root

$$y(n_1, n_2) = 255 \cdot \sqrt{\frac{x(n_1, n_2) - x_{\min}}{x_{\max} - x_{\min}}}$$

Histogram stretching - results



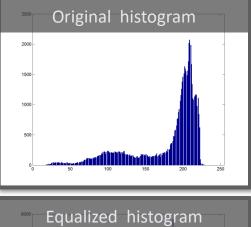
Histogram stretching - results

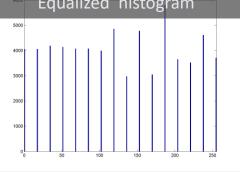
linear f()

square root

• Histogram Equalization:

• The goal is to increase the contrast, by distributing the occurrences of the intensity values evenly through the entire dynamic range.

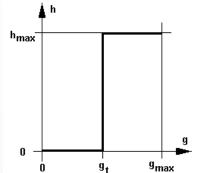




Histogram equalization background

• Simple thresholding

• For different g_t values



Basic Image Processing Algorithms

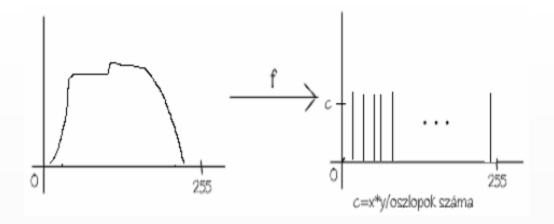
Optimal threshold value

- Task: converting a grayscale image to binary (black&white).
 What is the optimal threshold value?
 - A possible good solution is to prescribe that the number of black and white pixels should be approximately the same in the output image.
 - The g_t threshold value can be calculated from the histogram, (P is the total number of pixels):

$$\sum_{i=0}^{g_t} h[i] \approx \sum_{i=g_t+1}^{255} h[i] \approx \frac{P}{2}$$

Generalization: histogram equalization

- **Goal**: contrast enhancement
- Transform: step (staircase) function. The number of columns determines number of color (intensity) values appearing in the output, (e.g. number of columns=16, 32, 64, etc.).



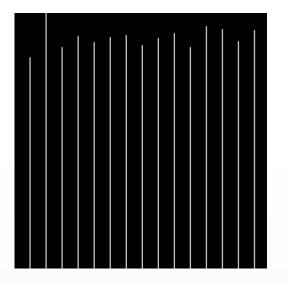
Histogram equalization – c output values

Goal: determining the t₀=0, t₁, ... t_{c-1},t_c=255 dividing points, where:

$$\sum_{i=0}^{t_j} h[i] \approx P \cdot \frac{j}{c} \quad j \in \{1...c\}$$

- c is the number of different gray levels in the output image (c=2 for thresholding, but it can also be 16, 32, ... 256 as well)
- *P* is the total number of pixels again.

Histogram equalization - result



16 level ouptut

Histogram of the output image

- Adaptive Histogram Equalization:
 - applies histogram equalization on parts of the image (called tiles) independently
 - Use post processing to reduce artifacts at the borders of the tiles.

[1] Zuiderveld, Karel. "Contrast Limited Adaptive Histograph Equalization." Graphic Gems IV. San Diego: Academic Press Professional, 1994. 474–485.

• Smoothing:

- Reduce the noise that may corrupt the image.
- A few noise types we will work with:
 - Impulse noise, (aka salt and pepper noise)
 - Additive Gaussian Noise

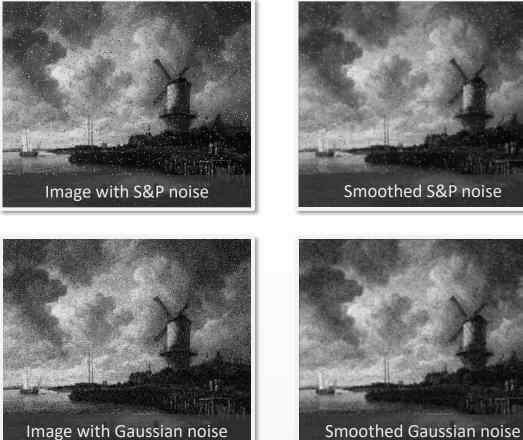
Additive Gaussian Noise

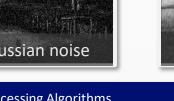
Impulse Noise

The windmill at Wijk bij Duurstede by Jacob van Ruisdael (1670)

• Gaussian Smoothing:

• With *σ*=0.75





• Gaussian Smoothing:

• With *σ*=1.5

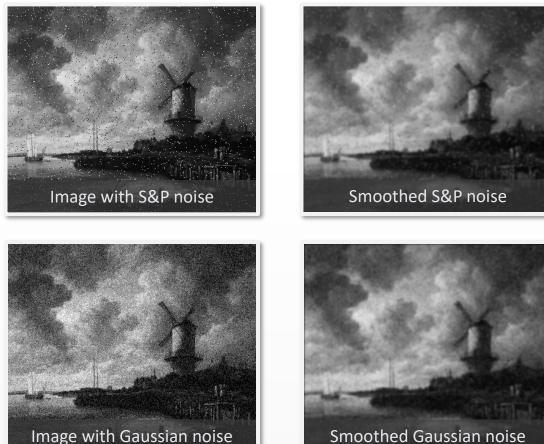


Image with Gaussian noise

Basic Image Processing Algorithms

• Spatially Adaptive Noise Smoothing:

• The smoothing takes into account the local characteristics of the image:

$$y(n_{1}, n_{2}) = \left(1 - \frac{\sigma_{n}^{2}}{\sigma_{l}^{2}}\right) \cdot x(n_{1}, n_{2}) + \frac{\sigma_{n}^{2}}{\sigma_{l}^{2}} \overline{x}(n_{1}, n_{2})$$

$$\sigma_{l}^{2}(n_{1}, n_{2}) = \sum_{(n_{1}, n_{2}) \in N} \left(x(n_{1}, n_{2}) - \overline{x}(n_{1}, n_{2})\right)^{2}$$

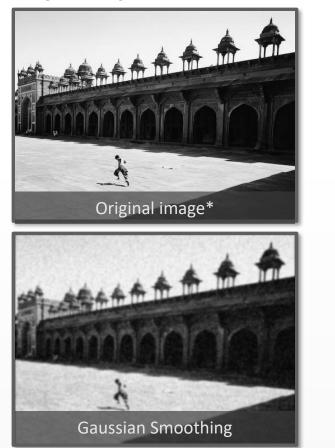
$$\overline{x}(n_{1}, n_{2}) = \frac{1}{|N|} \sum_{(n_{1}, n_{2}) \in N} x(n_{1}, n_{2})$$

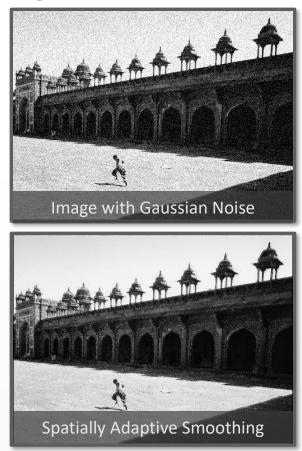
Local variance of the image

Local average of the image

Variance of the noise: either known a priori, or has to be measured

• Spatially Adaptive Noise Smoothing:





* Fatepuhr Sikri, Inde by Lucien Hervé (1955)