Basic Image Processing

PPKE-ITK

Lecture 2.

2D Convolution

September 17, 2019

- We look at the image as a 2D function:
 f(x, y)
 - x and y are the pixel coordinates
 - *f* is a gray level from [0,255]

Image f

- We can define different transformations:
 - Intensity value inversion:

g(x, y) = 255 - f(x, y)

Image g

- We look at the image as a 2D function:
 f(x, y)
 - x and y are the pixel coordinates
 - *f* is a gray level from [0,255]

Image *f*

- We can define different transformations:
 - Intensity shift with constant: g(x, y) = f(x, y) + 100

Image g

- We look at the image as a 2D function:
 f(x, y)
 - x and y are the pixel coordinates
 - *f* is a gray level from [0,255]

Image *f*

- We can define different transforms:
 - Weighting :

 $g(x, y) = f(x, y) \cdot w(x, y)$

Image w $w(x, y) \in [0.5, 2]$

- We look at the image as a 2D function:
 f(x, y)
 - x and y are the pixel coordinates
 - *f* is a gray level from [0,255]

Image f

- We can define different transformations:
 - Average on an *N* neighborhood : f(x, y) = average N(f(x, y))

Image g

- We look at the image as a 2D function: f(x, y)
- We can define different transformations:
 - Intensity value inversion: g(x, y) = 255 f(x, y)
 - Intensity shift with constant: g(x, y) = f(x, y) + 100
 - Weighting: $g(x, y) = f(x, y) \cdot w(x, y)$
 - Average on an *N* neighborhood: g(x, y) = average N(f(x, y))
- In this lecture, there are two important properties of the transformations we want to use on images: linearity and shift invariance

• Linearity:

$$T[f_1(x, y) + f_2(x, y)] = T[f_1(x, y)] + T[f_2(x, y)]$$
$$T[\alpha \cdot f(x, y)] = \alpha \cdot T[f(x, y)]$$

- e.g.: weighting is linear, intensity inversion is non-linear
- Spatial Invariance (SI): for any [k, l] spatial shift vector,

T[f(x, y)] = g(x, y)T[f(x-k, y-l)] = g(x-k, y-l)

- e.g.: weighting is not SI, intensity inversion is SI
- e.g.: averaging on neighborhood is both linear and SI, we call it LSI

Unit Impulse Function

• 2D Unit Impulse function (Delta function) on \mathbb{Z} as follows:

Convolution

• *Impulse response* is the output of an LSI transformation if the input was the Delta function: $\delta(x, y) \rightarrow T \rightarrow h(x, y)$

If *T* is an LSI system:

$$T[f(x, y)] = g(x, y)$$

Then we can define convolution as follows:

g

$$(x, y) = f(x, y) * h(x, y) =$$

= $h(x, y) * f(x, y) =$
= $\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k, l) \cdot h(x - k, y - l)$

Derivation of Convolution

$$g(x, y) = T[f(x, y)] =$$

$$= T\left[\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k, l)\delta(x-k, y-l)\right] =$$
Linearity
$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k, l) \cdot T[\delta(x-k, y-l)] =$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f(k, l) \cdot h(x-k, y-l)$$
Spatial Invariance

September 17, 2019

The Properties of Convolution

• Commutative:

$$f \ast g = g \ast f$$

• Associative:

$$f \ast (g \ast h) = (f \ast g) \ast h$$

• Distributive:

$$f \ast (g+h) = f \ast g + f \ast h$$

• Associative with scalar multiplication:

$$\alpha(f \ast g) = (\alpha f) \ast g$$

2D convolution for image processing

In practice both the *h* kernel and the *f* image have finite size.
Typically the size of *h* is much smaller than the image size (3 × 3, 5 × 5, 5 × 7 etc.)

2D convolution in Practice

• Let h and \hat{h} be $(2r_1 + 1) \times (2r_2 + 1)$ sized kernels where \hat{h} is the rotated version of h with 180°

$$h = \begin{bmatrix} a_{-r_{1},-r_{2}} & \cdots & a_{-r_{1},r_{2}} \\ \vdots & \ddots & \vdots \\ a_{r_{1},-r_{2}} & \cdots & a_{r_{1},r_{2}} \end{bmatrix} \text{ and } \hat{h} = \begin{bmatrix} a_{r_{1},r_{2}} & \cdots & a_{r_{1},-r_{2}} \\ \vdots & \ddots & \vdots \\ a_{-r_{1},r_{2}} & \cdots & a_{-r_{1},-r_{2}} \end{bmatrix}$$

$$g(x, y) = \sum_{l=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} f(k, l) \cdot h(x - k, y - l) =$$
$$= \sum_{k=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} h(k, l) \cdot f(x - k, y - l) =$$

$$= \sum_{k=-r_1}^{r_1} \sum_{l=-r_2}^{r_2} \hat{h}(k,l) \cdot f(x+k, y+l)$$

Size of the Convolved Image

In general:

Size of the input image: $A \times B$

Size of the kernel: $C \times D$

Size of the output image: $(A + C - 1) \times (B + D - 1)$

Boundary Effects

• What happens at the border of the image?

Original image with the problematic area

Zero padding

Circular padding

Mirroring

Repeating border

Applications

- Possible application of convolution:
 - Smoothing/Noise reduction
 - Edge detection
 - Edge enhancement
- Depending on the task the *sum of the elements of the kernel matrix* can be different:
 - 1: smoothing, edge enhancement

E.g.:
$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

• 0: edge detection

E.g.:
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Bluring for noise filtering

Noisy image

Result of bluring

Computational requirements

- For k_s kernel size and P image size (area, measured in pixels) approximately $\sim k_s P$ operations are needed.
- For large kernel size the execution may be slow

Decreasing the computational need for a simple (averaging) blur operation

Calculation of I_f with dynamic programing in ~P time:

- Auxiliary-auxiliary image: $t(x,y) = \sum_{i=1}^{5} f(x,j)$
 - Calculation of image *t*:

 $t(x,1) \coloneqq f(x,1), x = 1 \dots w; \quad t(x,y) = t(x,y-1) + f(x,y)$

• Calculation of *I_f* using image *t*:

$$I_f(1, y) \coloneqq t(1, y), y = 1 \dots h; \ I_f(x, y) = I_f(x - 1, y) + t(x, y)$$

4+7=11

Utilization of the integral image

 Sum of pixel values in an arbitrary sized sub-rectangle can be calculated by applying 3 additive operations using the integral image:

$$\sum_{i=a}^{c} \sum_{j=b}^{d} f(i,j) = I_{f}(c,d) - I_{f}(a-1,d) - I_{f}(c,b-1) + I_{f}(a-1,b-1)$$

• Example (a=1, b=1, c=2, d=2): 11-6-3+1=3

	1	0	2	1		1	1	3	4
f	2	0	1	0	I_{f}	3	3	6	7
	3	1	1	0		6	7	11	12
	1	0	1	4		7	8	13	18

Using integral image for quick blurring (simple averaging kernel)

$$\tilde{f}(x,y) = \frac{1}{(2r+1)^2} \sum_{i=-r}^{r} \sum_{j=-r}^{r} f(x+i,y+j)$$

(2r+1)² addition + 1 division operations

Example: $r=5 \rightarrow$ For the whole image ~122P operations

calc. integral image

$$\widetilde{f}(x, y) = \frac{1}{(2r+1)^2} (I_f(x+r, y+r) - I_f(x-r-1, y+r) - I_f(x+r, y-r-1) + I_f(x-r-1, x-r-1))$$

$$-I_f(x+r, y-r-1) + I_f(x-r-1, x-r-1))$$

$$3 \text{ addition}$$

$$+1 \text{ division}$$
Example: r=5 \rightarrow For the whole image ~ 2P+4P=6P operations

calc. bluring

Optional homework (a bit more than a convolution)

 Construct an efficient contrast calculating algorithm using the integral image! Contrast is calculated as the standard deviation of pixel values of the (2r+1)² size neighborhood of each pixel.

$$\sigma^{2}(x, y) = \frac{1}{(2r+1)^{2}} \sum_{i=-r}^{r} \sum_{j=-r}^{r} \left[f(x+i, y+j) - \tilde{f}(x, y) \right]^{2}$$

where:
$$\tilde{f}(x, y) = \frac{1}{(2r+1)^2} \sum_{i=-r}^{r} \sum_{j=-r}^{r} f(x+i, y+j)$$

Hint:

$$\sigma^{2}(x, y) = \left\{ \frac{1}{(2r+1)^{2}} \sum_{i=-r}^{r} \sum_{j=-r}^{r} \left[f(x+i, y+j) \right]^{2} \right\} - \left[\tilde{f}(x, y) \right]^{2}$$

- Gaussian blur:
 - Weights are defined by a 2D Gaussian function
 - 2 parameters: **size of the window** and the **standard deviation** of the Gaussian

- Gaussian blur:
 - Weights are defined by a 2D Gaussian function
 - 2 parameters: window size and the width of the Gaussian
 - E.g. kernel size = 5x5; $\sigma = 1.5$;

0.01440.02810.03510.02810.01440.02810.05470.06830.05470.02810.03510.06830.08530.06830.03510.02810.05470.06830.05470.02810.01440.02810.03510.02810.0144

• E.g. kernel size = 3x3; $\sigma = 1.5$;

0.09470.11830.09470.11830.14780.11830.09470.11830.0947

• Gaussian blur:

Convolution examples – averaging blur

Input Image

Average blur

Convolution examples- Gaussian blur

Gaussian blur

- Goal: extracting the object contours
- Edge points: brightness changes sharply

Goals of edge detection

- Goal: extracting curves from 2D images
 - More compact content representation then pixel
 - Segmentation, recognition, scratch filtering

Goals of edge detection

- Extracting image information, structures
 - Corners, lines, borders
- Not always simple...

- Properties of a good edge filter:
 - (Near) zero output in homogeneous regions (constant intensity)
 - Good detection :
 - detects as many real edges as possible
 - does not create false edges (because of e.g. image noise)
 - Good localization: detected edges should be as close as possible to the real edges
 - Isotropic: filter response independent on edge directions
 - all edges are detected regardless of their direction

Basic structures

- Edge: sharp intensity change (steep or continuous)
- Line: thin, long region with approx. uniform width and intensity level
- **Blob**: closed region with homogeneous intensity
- **Corner**: breaking or direction change of a contour or edge

Origin and types of edges

• Various effects may cause edges

Sharp change in surface normals

Continuos change in surface depth

Change in surface color

Changes cased by illumination/shadows

• Basic edge types

Parameters of an edge

- Edge normal: vector, perpendicular to the edge, pointing toward the steepest intensity change
 - Alternatively: edge direction a vector pointing towards the direction of the line
- **Position**: center point
- Strength: intensity ratio w.r.t. neighborhood

Image representation

• Image: gray value is function of the x and y coordinates (intensity function): f(x, y)

- Edge: locations on the image where the intensity changes sharply (usually at the contour of objects)
- We are searching for places where the **gradient** of the 2D function (the image) is high.
- Main types of edge detection:
 - First order derivative
 - Second order derivative
 - Others:
 - Complex methods e.g. Canny method
 - Phase Congruancy

• Edge detection with first order derivative:

• Using the gradient vector:

$$\nabla f = \left[\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y} \right]^{T}$$

 $\neg T$

• The approximation of the partial derivatives:

• Approximation of the *x* directional partial derivative:

• For better localization, use a symmetric formula around pixel (x, y)

$$\frac{\partial f}{\partial x} \approx f(x+1, y) - f(x-1, y)$$

Corresponding convolutional kernel:

 $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$

• For noise reduction, apply y directional smoothing (i.e. do not blur a sharp vertical edge)

$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

x directional Prewitt operator: **vertical** edge detectior

• Approximation of the *y* directional partial derivative:

• For better localization, use a symmetric formula around pixel (x, y)

$$\frac{\partial f}{\partial y} \approx f(x, y+1) - f(x, y-1)$$

Corresponding convolutional kernel:

$$\begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

• For noise reduction, apply x directional smoothing (i.e. do not blur a sharp horizontal edge)

$$\begin{bmatrix} -1\\0\\1 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1\\0 & 0 & 0\\1 & 1 & 1 \end{bmatrix}$$

y directional Prewitt operator: **horizontal** edge detectior

• Edge detection with first order derivative:

• Edge detection with first order derivative:

Other first-order methods

Sobel operator

 $\partial/\partial x$

 $\partial/\partial y$

• Roberts operator

Emphasize edges with 45 degree slopes

Second order edge detection: motivation

Horizontal edge detection in the following image:

Top: intensity function along a selected horizontal line*Center*: x directional first derivative*Bottom*: x directional second derivative

Second order case: instead of extreme values, search for zero crossing

Real photo: intensity profile below the red line segment

Edge detection with second order derivative

Calculating the divergence of the gradient vector

$$\nabla^2 f = \left(\frac{\partial}{\partial x}, \quad \frac{\partial}{\partial y}\right) \cdot \nabla f = \frac{\partial^2}{\partial x^2} f + \frac{\partial^2}{\partial y^2} f$$

• Approximation for x direction:

$$\frac{\partial^2 f(x,y)}{\partial x^2} \approx \frac{\frac{f(x+1,y) - f(x,y)}{v} - \frac{f(x,y) - f(x-1,y)}{v}}{v} = \frac{1}{v} \left[f(x+1,y) - 2f(x,y) + f(x-1,y) \right]$$

just a constant – v: distance of neighboring pixel centers

Edge detection with second order derivative

• Approximation of the second order derivatives for x and y directions

$$\frac{\partial^2 f(x,y)}{\partial x^2} \propto f(x+1,y) - 2f(x,y) + f(x-1,y)$$
$$\frac{\partial^2 f(x,y)}{\partial y^2} \propto f(x,y+1) - 2f(x,y) + f(x,y-1)$$

- Kernel for the second order gradient calculation with convolution:
 - Laplace operator:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \Rightarrow \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} + \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0\\ 1 & -4 & 1\\ 0 & 1 & 0 \end{bmatrix}$$

• There are other variations. (e.g. Second order Prewitt)

• Edge detection with second order derivative:

Laplace edge detector

Prewitt 2nd order detector

• Thresholding:

• To eliminate weak edges, a threshold can be used on the gradient image:

Prewitt first order gradient image

Prewitt first order gradient image with threshold = 120

Coming next week: Reducing the effect of noise on edge images

- Edge detection with noise reduction:
 - 1. step: Noise reduction by convolution with Gaussian filter
 - 2. step: Edge detection by convolution with Laplacian kernel
- Since convolution operation is associative we can convolve the Gaussian smoothing filter with the Laplacian filter first, and then convolve this hybrid filter (*Laplacian of Gaussian: LoG*) with the image.

