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 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Intensity value inversion:

𝑔 𝑥, 𝑦 = 255 − 𝑓 𝑥, 𝑦
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 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Intensity shift with constant:

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 100
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 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transforms:
• Weighting :

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∙ 𝑤 𝑥, 𝑦
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Image 𝑓

Image 𝑔Image 𝑤

𝑤 𝑥, 𝑦 ∈ [0.5,2]



 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Average on an N neighborhood :

𝑓 𝑥, 𝑦 = average 𝑁 𝑓 𝑥, 𝑦
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 We look at the image as a 2D function: 𝑓 𝑥, 𝑦

 We can define different transformations:
• Intensity value inversion: 𝑔 𝑥, 𝑦 = 255 − 𝑓 𝑥, 𝑦

• Intensity shift with constant: 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 100

• Weighting: 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∙ 𝑤 𝑥, 𝑦

• Average on an N neighborhood: 𝑔 𝑥, 𝑦 = average 𝑁 𝑓 𝑥, 𝑦

 In this lecture, there are two important properties of the
transformations we want to use on images: linearity and shift
invariance

Basic Image Processing AlgorithmsSeptember 17, 2019 8



 Linearity:

• e.g.: weighting is linear, intensity inversion is non-linear

 Spatial Invariance (SI): for any [𝑘, 𝑙] spatial shift vector,

• e.g.: weighting is not SI, intensity inversion is SI

• e.g.: averaging on neighborhood is both linear and SI, we call it LSI
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 2D Unit Impulse function (Delta function) on ℤ as follows:

 For any 2D function 𝑓(𝑥, 𝑦):
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 Impulse response is the output of an LSI transformation if the 
input was the Delta function:

If T is an LSI system:

Then we can define convolution as follows: 
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 Commutative:

 Associative:

 Distributive:

 Associative with scalar multiplication: 

fggf 

    hgfhgf 

  hfgfhgf 

    gfgf  
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 In practice both the ℎ kernel and the 𝑓 image have finite size.
 Typically the size of ℎ is much smaller than the image size

(3 × 3, 5 × 5, 5 × 7 etc.)
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𝑔 = ℎ ∗ 𝑓

output image
convolution kernel

input image
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 Let ℎ and ෠ℎ be 2𝑟1 + 1 × 2𝑟2 + 1 sized

kernels where ෠ℎ is the rotated version of ℎ
with 180°



In general:

Size of the input image: 𝐴 × 𝐵

Size of the kernel: 𝐶 × 𝐷

Size of the output image: (𝐴 + 𝐶 − 1) × (𝐵 + 𝐷 − 1)
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 What happens at the border of the image?

Zero padding Mirroring

Circular padding Repeating border

Original image with 
the problematic area
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 Possible application of convolution:
• Smoothing/Noise reduction

• Edge detection

• Edge enhancement

 Depending on the task the sum of the elements of the kernel 
matrix can be different:

• 1: smoothing, edge enhancement

E.g.:

• 0: edge detection

E.g.:
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 Simple average:

7x7

Original 

3x3

11x11
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Noisy image Result of bluring



 For 𝑘𝑠 kernel size and 𝑃 image size (area, measured in pixels) 
approximately ~𝑘𝑠𝑃 operations are needed.

 For large kernel size the execution may be slow
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 Integral image: 𝑓 → 𝐼𝑓
auxilliary representation

 E. g. 𝐼𝑓 3,3 = sum of  the values 

of pixels = 11

1 0 2 1
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1 0 1 4

1 1 3 4
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 Auxiliary-auxiliary image:
• Calculation of image 𝑡:

• Calculation of 𝐼𝑓 using image 𝑡: 
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𝑡 𝑥, 1 ≔ 𝑓 𝑥, 1 , 𝑥 = 1…𝑤;
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𝐼𝑓 1, 𝑦 ≔ 𝑡 1, 𝑦 , 𝑦 = 1…ℎ; 𝐼𝑓 𝑥, 𝑦 = 𝐼𝑓 𝑥 − 1, 𝑦 + 𝑡 𝑥, 𝑦



 Sum of pixel values in an arbitrary sized sub-rectangle can be calculated by 
applying 3 additive operations using the integral image:

 Example (a=1, b=1, c=2, d=2): 11-6-3+1=3
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 Construct an efficient contrast calculating
algorithm using the integral image! Contrast is
calculated as the standard deviation of pixel
values of the (2r+1)2 size neighborhood of each
pixel.
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 Gaussian blur: 
• Weights are defined by a 2D Gaussian function

• 2 parameters: size of the window and the standard deviation of the 
Gaussian

Fixed window size,
increasing sigma
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 Gaussian blur: 
• Weights are defined by a 2D Gaussian function

• 2 parameters: window size and the width of the Gaussian

• E.g. kernel size = 5x5; σ = 1.5;  

• E.g. kernel size = 3x3; σ = 1.5;  

 

0.01440.02810.03510.02810.0144

0.02810.05470.06830.05470.0281

0.03510.06830.08530.06830.0351

0.02810.05470.06830.05470.0281

0.01440.02810.03510.02810.0144





































0.09470.11830.0947

0.11830.14780.1183

0.09470.11830.0947

Basic Image Processing AlgorithmsSeptember 17, 2019 28



 Gaussian blur: 

11x11; σ = 1 11x11; σ = 2 11x11; σ = 3

5x5; σ = 1 5x5; σ = 2 5x5; σ = 3

21x21; σ = 1 21x21; σ = 2 21x21; σ = 3
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Average blur
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Gaussian blur



 Goal: extracting the object contours
 Edge points: brightness changes sharply

September 17, 2019 32Basic Image Processing Algorithms



 Goal: extracting curves from 2D images
• More compact content representation then pixel

• Segmentation, recognition,  scratch filtering
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 Extracting image information, structures

• Corners, lines, borders
 Not always simple...
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 Properties of a good edge filter:
• (Near ) zero output in homogeneous regions (constant intensity)

• Good detection : 

 detects as many real edges as possible

 does not create false edges (because of e.g. image noise)

• Good localization: detected edges should be as close as possible to the 
real edges

• Isotropic: filter response independent on edge directions 

 all edges are detected regardless of their direction
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 Edge: sharp intensity change (steep or continuous)
 Line: thin, long region with approx. uniform width and 

intensity level
 Blob: closed region with homogeneous intensity
 Corner: breaking or direction change of a contour or edge
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 Basic edge types
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Continuos change in surface depth

Change in surface color

Changes cased by illumination/shadows

Sharp change in surface normals

step ramp roof line

 Various effects may cause edges



 Edge normal: vector, perpendicular to the edge, pointing 
toward the steepest intensity change

• Alternatively: edge direction – a vector pointing towards the 
direction of the line

 Position: center point

 Strength: intensity ratio w.r.t. neighborhood 
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 Image: gray value is function of the x and y coordinates 
(intensity function): 𝑓 𝑥, 𝑦
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 Edge: locations on the image where the intensity changes 
sharply (usually at the contour of objects)

 We are searching for places where the gradient of the 2D 
function (the image) is high.

 Main types of edge detection:
• First order derivative

• Second order derivative

• Others:

 Complex methods e.g. Canny method

 Phase Congruancy
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 Edge detection with first order derivative:
• Using the gradient vector:

• The approximation of the partial derivatives:
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 Approximation of the 𝒙 directional partial derivative:
• For better localization, use a symmetric formula around pixel (𝑥, 𝑦)

 Corresponding convolutional kernel:

• For noise reduction, apply 𝑦 directional smoothing (i.e. do not blur a sharp 
vertical edge)
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 Approximation of the 𝒚 directional partial derivative:
• For better localization, use a symmetric formula around pixel (𝑥, 𝑦)

 Corresponding convolutional kernel:

• For noise reduction, apply 𝑥 directional smoothing (i.e. do not blur a sharp 
horizontal edge)
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𝑦 directional Prewitt operator:
horizontal edge detectior
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 Edge detection with first order derivative:

Prewitt detector

Horizontal gradient image Vertical gradient image
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 Edge detection with first order derivative:

Horizontal gradient image Vertical gradient image
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 Sobel operator

 Roberts operator 

Emphasize edges with 45 degree slopes
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Top: intensity function along a selected horizontal line
Center: x directional first derivative 
Bottom: x directional second derivative

Horizontal edge detection 
in the following image:
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Extreme values 
(first order)

zero crossing 
(second order)
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 Calculating the divergence of the gradient vector

 Approximation for 𝑥 direction:

𝛻2𝑓 =
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just a constant – 𝑣: distance of neighboring pixel centers



 Approximation of the second order derivatives for 𝑥 and 𝑦 directions

 Kernel for the second order gradient calculation with convolution:

 Laplace operator:

 There are other variations. (e.g. Second order Prewitt)
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 Edge detection with second order derivative:

Laplace edge detector Prewitt 2nd order detector
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 Thresholding:
• To eliminate weak edges, a threshold can be used on the gradient 

image:

Prewitt first order gradient image Prewitt first order gradient image 
with threshold  = 120
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 Edge detection with noise reduction:
• 1. step: Noise reduction by convolution with Gaussian filter

• 2. step: Edge detection by convolution with Laplacian kernel

 Since convolution operation is associative we can convolve the 
Gaussian smoothing filter with the Laplacian filter first, and 
then convolve this hybrid filter (Laplacian of Gaussian: LoG) 
with the image.

Gaussian function Laplacian of Gaussian
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