
PPKE-ITK
Lecture 2.

Basic Image Processing AlgorithmsSeptember 17, 2019 1

Original

Edge DetectionEdge EnhancementSmoothing/Blurring

Basic Image Processing AlgorithmsSeptember 17, 2019 3

 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Intensity value inversion:

𝑔 𝑥, 𝑦 = 255 − 𝑓 𝑥, 𝑦

September 17, 2019 4Basic Image Processing Algorithms

Image 𝑓

Image 𝑔

 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Intensity shift with constant:

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 100

September 17, 2019 5Basic Image Processing Algorithms

Image 𝑓

Image 𝑔

 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transforms:
• Weighting :

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∙ 𝑤 𝑥, 𝑦

September 17, 2019 6Basic Image Processing Algorithms

Image 𝑓

Image 𝑔Image 𝑤

𝑤 𝑥, 𝑦 ∈ [0.5,2]

 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Average on an N neighborhood :

𝑓 𝑥, 𝑦 = average 𝑁 𝑓 𝑥, 𝑦

September 17, 2019 7Basic Image Processing Algorithms

Image 𝑓

Image 𝑔

 We look at the image as a 2D function: 𝑓 𝑥, 𝑦

 We can define different transformations:
• Intensity value inversion: 𝑔 𝑥, 𝑦 = 255 − 𝑓 𝑥, 𝑦

• Intensity shift with constant: 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 100

• Weighting: 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∙ 𝑤 𝑥, 𝑦

• Average on an N neighborhood: 𝑔 𝑥, 𝑦 = average 𝑁 𝑓 𝑥, 𝑦

 In this lecture, there are two important properties of the
transformations we want to use on images: linearity and shift
invariance

Basic Image Processing AlgorithmsSeptember 17, 2019 8

 Linearity:

• e.g.: weighting is linear, intensity inversion is non-linear

 Spatial Invariance (SI): for any [𝑘, 𝑙] spatial shift vector,

• e.g.: weighting is not SI, intensity inversion is SI

• e.g.: averaging on neighborhood is both linear and SI, we call it LSI

)],([)],([

)],([)],([)],(),([2121

yxfTyxfT

yxfTyxfTyxfyxfT







),()],([

),()],([

lykxglykxfT

yxgyxfT





Basic Image Processing AlgorithmsSeptember 17, 2019 9

 2D Unit Impulse function (Delta function) on ℤ as follows:

 For any 2D function 𝑓(𝑥, 𝑦):



 


 otherwise0

0 and 0when 1
),(

yx
yx

 









k l

lkflykxyxf),(),(),(

In 1D:

Basic Image Processing AlgorithmsSeptember 17, 2019 10

 Impulse response is the output of an LSI transformation if the
input was the Delta function:

If T is an LSI system:

Then we can define convolution as follows:

),(),(yxhTyx 

),()],([yxgyxfT 

),(),(),(yxhyxfyxg

),(),(yxfyxh

 









k l

lykxhlkf),(),(

Basic Image Processing AlgorithmsSeptember 17, 2019 11

 ),(),(yxfTyxg

Linearity

Spatial Invariance









  







k l

lykxlkfT),(),(

   








),(),(lykxTlkf
k l



 









k l

lykxhlkf),(),(

Basic Image Processing AlgorithmsSeptember 17, 2019 12

 Commutative:

 Associative:

 Distributive:

 Associative with scalar multiplication:

fggf 

    hgfhgf 

  hfgfhgf 

    gfgf  

Basic Image Processing AlgorithmsSeptember 17, 2019 13

 In practice both the ℎ kernel and the 𝑓 image have finite size.
 Typically the size of ℎ is much smaller than the image size

(3 × 3, 5 × 5, 5 × 7 etc.)

September 17, 2019 14Basic Image Processing Algorithms

𝑔 = ℎ ∗ 𝑓

output image
convolution kernel

input image

      
 

1

1

2

2

,,,
r

rl

r

rl

lykxhlkfyxg








































2121

2121

2121

2121

,,

,,

,,

,,

ˆ and

rrrr

rrrr

rrrr

rrrr

aa

aa

h

aa

aa

h












9

1

y

ĥ

x
     

 

1

1

2

2

,,
r

rk

r

rl

lykxflkh

    
 


1

1

2

2

,,ˆ
r

rk

r

rl

lykxflkh

Basic Image Processing AlgorithmsSeptember 17, 2019 15

 Let ℎ and ෠ℎ be 2𝑟1 + 1 × 2𝑟2 + 1 sized

kernels where ෠ℎ is the rotated version of ℎ
with 180°

In general:

Size of the input image: 𝐴 × 𝐵

Size of the kernel: 𝐶 × 𝐷

Size of the output image: (𝐴 + 𝐶 − 1) × (𝐵 + 𝐷 − 1)



























11111

11111

11111

11111

11111

25

1

256x256 (256+5-1)x(256+5-1)

5x5

Original Image Output Image
Convolutional Kernel

Basic Image Processing AlgorithmsSeptember 17, 2019 16

 What happens at the border of the image?

Zero padding Mirroring

Circular padding Repeating border

Original image with
the problematic area

Basic Image Processing AlgorithmsSeptember 17, 2019 17

 Possible application of convolution:
• Smoothing/Noise reduction

• Edge detection

• Edge enhancement

 Depending on the task the sum of the elements of the kernel
matrix can be different:

• 1: smoothing, edge enhancement

E.g.:

• 0: edge detection

E.g.:















111
111
111

9

1



















101
101
101



















010

141

010




















010
151

010

Basic Image Processing AlgorithmsSeptember 17, 2019 18

 Simple average:

7x7

Original

3x3

11x11

Basic Image Processing AlgorithmsSeptember 17, 2019 19



















111

111

111

9

1
h

 

 





r

ri

r

rj

jyixf
r

yxg),(
12

1
),(

2

September 17, 2019 20Basic Image Processing Algorithms

Noisy image Result of bluring

 For 𝑘𝑠 kernel size and 𝑃 image size (area, measured in pixels)
approximately ~𝑘𝑠𝑃 operations are needed.

 For large kernel size the execution may be slow

September 17, 2019 21Basic Image Processing Algorithms

September 17, 2019 22Basic Image Processing Algorithms

 Integral image: 𝑓 → 𝐼𝑓
auxilliary representation

 E. g. 𝐼𝑓 3,3 = sum of the values

of pixels = 11

1 0 2 1

2 0 1 0

3 1 1 0

1 0 1 4

1 1 3 4

3 3 6 7

6 7 11 12

7 8 13 18

f

fI

1 0 2 1

2 0 1 0

3 1 1 0

1 0 1 4

𝐼𝑓 𝑥, 𝑦 =෍

𝑖=1

𝑥

෍

𝑗=1

𝑦

𝑓 𝑖, 𝑗

 Auxiliary-auxiliary image:
• Calculation of image 𝑡:

• Calculation of 𝐼𝑓 using image 𝑡:

September 17, 2019 23Basic Image Processing Algorithms

4101

0113

0102

1201

181387

121176

7633

4311

5517

1416

1303

1201

:f fI:t

4101

0113

0102

1201

181387

121176

7633

4311

5517

1416

1303

1201

:f fI:t

4101

0113

0102

1201

181387

121176

7633

4311

5517

1416

1303

1201

:f fI:t

4+7=11

𝑡 𝑥, 1 ≔ 𝑓 𝑥, 1 , 𝑥 = 1…𝑤;

𝑡 𝑥, 𝑦 =෍

𝑗=1

𝑦

𝑓 𝑥, 𝑗

𝑡 𝑥, 𝑦 = 𝑡 𝑥, 𝑦 − 1 + 𝑓 𝑥, 𝑦

𝐼𝑓 1, 𝑦 ≔ 𝑡 1, 𝑦 , 𝑦 = 1…ℎ; 𝐼𝑓 𝑥, 𝑦 = 𝐼𝑓 𝑥 − 1, 𝑦 + 𝑡 𝑥, 𝑦

 Sum of pixel values in an arbitrary sized sub-rectangle can be calculated by
applying 3 additive operations using the integral image:

 Example (a=1, b=1, c=2, d=2): 11-6-3+1=3

September 17, 2019 24Basic Image Processing Algorithms

)1b,1a(I)1b,c(I)d,1a(I)d,c(I)j,i(f ffff

c

ai

d

bj


 

1 1 3 4

3 3 6 7

6 7 11 12

7 8 13 18

1 0 2 1

2 0 1 0

3 1 1 0

1 0 1 4

f
fI

September 17, 2019 25Basic Image Processing Algorithms

 
))1rx,1rx(I)1ry,rx(I

)ry,1rx(I)ry,rx(I(
1r2

1
)y,x(f

~

ff

ff2








 

 





r

ri

r

rj
2

)jy,ix(f
1r2

1
)y,x(f

~
(2r+1)2 addition
+ 1 division operations

3 addition
+1 division

Example: r=5 → For the whole image ~122P operations

Example: r=5 → For the whole image ~ 2P+4P=6P operations

calc. integral image calc. bluring

 Construct an efficient contrast calculating
algorithm using the integral image! Contrast is
calculated as the standard deviation of pixel
values of the (2r+1)2 size neighborhood of each
pixel.

September 17, 2019 26Basic Image Processing Algorithms

 

 





r

ri

r

rj
2

)jy,ix(f
1r2

1
)y,x(f

~

 
 

 





r

ri

2r

rj
2

2)y,x(f
~

)jy,ix(f
1r2

1
)y,x(

where:

 
   2

r

ri

r

rj

2

2

2)y,x(f
~

)jy,ix(f
1r2

1
)y,x(












 
 

Hint:

 Gaussian blur:
• Weights are defined by a 2D Gaussian function

• 2 parameters: size of the window and the standard deviation of the
Gaussian

Fixed window size,
increasing sigma

Basic Image Processing AlgorithmsSeptember 17, 2019 27

 Gaussian blur:
• Weights are defined by a 2D Gaussian function

• 2 parameters: window size and the width of the Gaussian

• E.g. kernel size = 5x5; σ = 1.5;

• E.g. kernel size = 3x3; σ = 1.5;

0.01440.02810.03510.02810.0144

0.02810.05470.06830.05470.0281

0.03510.06830.08530.06830.0351

0.02810.05470.06830.05470.0281

0.01440.02810.03510.02810.0144





































0.09470.11830.0947

0.11830.14780.1183

0.09470.11830.0947

Basic Image Processing AlgorithmsSeptember 17, 2019 28

 Gaussian blur:

11x11; σ = 1 11x11; σ = 2 11x11; σ = 3

5x5; σ = 1 5x5; σ = 2 5x5; σ = 3

21x21; σ = 1 21x21; σ = 2 21x21; σ = 3

Basic Image Processing AlgorithmsSeptember 17, 2019 29

Average blur

September 17, 2019 31Basic Image Processing Algorithms

Gaussian blur

 Goal: extracting the object contours
 Edge points: brightness changes sharply

September 17, 2019 32Basic Image Processing Algorithms

 Goal: extracting curves from 2D images
• More compact content representation then pixel

• Segmentation, recognition, scratch filtering

September 17, 2019 33Basic Image Processing Algorithms

 Extracting image information, structures

• Corners, lines, borders
 Not always simple...

September 17, 2019 34Basic Image Processing Algorithms

 Properties of a good edge filter:
• (Near) zero output in homogeneous regions (constant intensity)

• Good detection :

 detects as many real edges as possible

 does not create false edges (because of e.g. image noise)

• Good localization: detected edges should be as close as possible to the
real edges

• Isotropic: filter response independent on edge directions

 all edges are detected regardless of their direction

September 17, 2019 35Basic Image Processing Algorithms

 Edge: sharp intensity change (steep or continuous)
 Line: thin, long region with approx. uniform width and

intensity level
 Blob: closed region with homogeneous intensity
 Corner: breaking or direction change of a contour or edge

September 17, 2019 36Basic Image Processing Algorithms

 Basic edge types

September 17, 2019 37Basic Image Processing Algorithms

Continuos change in surface depth

Change in surface color

Changes cased by illumination/shadows

Sharp change in surface normals

step ramp roof line

 Various effects may cause edges

 Edge normal: vector, perpendicular to the edge, pointing
toward the steepest intensity change

• Alternatively: edge direction – a vector pointing towards the
direction of the line

 Position: center point

 Strength: intensity ratio w.r.t. neighborhood

September 17, 2019 38Basic Image Processing Algorithms

 Image: gray value is function of the x and y coordinates
(intensity function): 𝑓 𝑥, 𝑦

September 17, 2019 39Basic Image Processing Algorithms

 Edge: locations on the image where the intensity changes
sharply (usually at the contour of objects)

 We are searching for places where the gradient of the 2D
function (the image) is high.

 Main types of edge detection:
• First order derivative

• Second order derivative

• Others:

 Complex methods e.g. Canny method

 Phase Congruancy

Basic Image Processing AlgorithmsSeptember 17, 2019 40

 Edge detection with first order derivative:
• Using the gradient vector:

• The approximation of the partial derivatives:

T

y

f

x

f
f 


















),(),1(

),(),(
lim

yxfyxf

dx

yxfydxxf

x

f










),()1,(

),(),(
lim

yxfyxf

dy

yxfdyyxf

y

f










Since the smallest meaningful
discrete value is dx=1 and dy =1.

Basic Image Processing AlgorithmsSeptember 17, 2019 41

 Approximation of the 𝒙 directional partial derivative:
• For better localization, use a symmetric formula around pixel (𝑥, 𝑦)

 Corresponding convolutional kernel:

• For noise reduction, apply 𝑦 directional smoothing (i.e. do not blur a sharp
vertical edge)

),1(),1(yxfyxf
x

f






Basic Image Processing AlgorithmsSeptember 17, 2019 42

 101

 


































101
101
101

1
1
1

101
𝑥 directional Prewitt operator:

vertical edge detectior

 Approximation of the 𝒚 directional partial derivative:
• For better localization, use a symmetric formula around pixel (𝑥, 𝑦)

 Corresponding convolutional kernel:

• For noise reduction, apply 𝑥 directional smoothing (i.e. do not blur a sharp
horizontal edge)

)1,()1,(



yxfyxf

y

f

Basic Image Processing AlgorithmsSeptember 17, 2019 43

𝑦 directional Prewitt operator:
horizontal edge detectior















1
0
1

 












 
















111
000
111

111
1
0
1

 Edge detection with first order derivative:

Prewitt detector

Horizontal gradient image Vertical gradient image

Basic Image Processing AlgorithmsSeptember 17, 2019 44

 Edge detection with first order derivative:

Horizontal gradient image Vertical gradient image

22




























y

f

x

f
f

gradient image

Basic Image Processing AlgorithmsSeptember 17, 2019 45

 Sobel operator

 Roberts operator

Emphasize edges with 45 degree slopes

September 17, 2019 47Basic Image Processing Algorithms

Top: intensity function along a selected horizontal line
Center: x directional first derivative
Bottom: x directional second derivative

Horizontal edge detection
in the following image:

September 17, 2019 48Basic Image Processing Algorithms

Extreme values
(first order)

zero crossing
(second order)

September 17, 2019 49Basic Image Processing Algorithms

Basic Image Processing AlgorithmsSeptember 17, 2019 50

 Calculating the divergence of the gradient vector

 Approximation for 𝑥 direction:

𝛻2𝑓 =
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
∙ 𝛻𝑓 =

𝜕2

𝜕𝑥2
𝑓 +

𝜕2

𝜕𝑦2
𝑓

𝜕2𝑓 𝑥, 𝑦

𝜕𝑥2
≅

𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥, 𝑦
𝑣

−
𝑓 𝑥, 𝑦 − 𝑓 𝑥 − 1, 𝑦

𝑣
𝑣

=

=
1

𝑣2
∙ 𝑓 𝑥 + 1, 𝑦 − 2𝑓 𝑥, 𝑦 + 𝑓 𝑥 − 1, 𝑦

just a constant – 𝑣: distance of neighboring pixel centers

 Approximation of the second order derivatives for 𝑥 and 𝑦 directions

 Kernel for the second order gradient calculation with convolution:

 Laplace operator:

 There are other variations. (e.g. Second order Prewitt)

 121

1

2

1







































010

141

010

Basic Image Processing AlgorithmsSeptember 17, 2019 51










2

2

2

2

y

f

x

f

𝜕2𝑓 𝑥, 𝑦

𝜕𝑥2
∝ 𝑓 𝑥 + 1, 𝑦 − 2𝑓 𝑥, 𝑦 + 𝑓 𝑥 − 1, 𝑦

𝜕2𝑓 𝑥, 𝑦

𝜕𝑦2
∝ 𝑓 𝑥, 𝑦 + 1 − 2𝑓 𝑥, 𝑦 + 𝑓 𝑥, 𝑦 − 1

 Edge detection with second order derivative:

Laplace edge detector Prewitt 2nd order detector

Basic Image Processing AlgorithmsSeptember 17, 2019 52

 Thresholding:
• To eliminate weak edges, a threshold can be used on the gradient

image:

Prewitt first order gradient image Prewitt first order gradient image
with threshold = 120

Basic Image Processing AlgorithmsSeptember 17, 2019 53

 Edge detection with noise reduction:
• 1. step: Noise reduction by convolution with Gaussian filter

• 2. step: Edge detection by convolution with Laplacian kernel

 Since convolution operation is associative we can convolve the
Gaussian smoothing filter with the Laplacian filter first, and
then convolve this hybrid filter (Laplacian of Gaussian: LoG)
with the image.

Gaussian function Laplacian of Gaussian

Basic Image Processing AlgorithmsSeptember 17, 2019 54

