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 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Intensity value inversion:

𝑔 𝑥, 𝑦 = 255 − 𝑓 𝑥, 𝑦
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Image 𝑓

Image 𝑔



 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Intensity shift with constant:

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 100
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Image 𝑓

Image 𝑔



 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transforms:
• Weighting :

𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∙ 𝑤 𝑥, 𝑦
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Image 𝑓

Image 𝑔Image 𝑤

𝑤 𝑥, 𝑦 ∈ [0.5,2]



 We look at the image as a 2D function:
𝑓 𝑥, 𝑦
• 𝑥 and 𝑦 are the pixel coordinates

• 𝑓 is a gray level from 0,255

 We can define different transformations:
• Average on an N neighborhood :

𝑓 𝑥, 𝑦 = average 𝑁 𝑓 𝑥, 𝑦
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Image 𝑓

Image 𝑔



 We look at the image as a 2D function: 𝑓 𝑥, 𝑦

 We can define different transformations:
• Intensity value inversion: 𝑔 𝑥, 𝑦 = 255 − 𝑓 𝑥, 𝑦

• Intensity shift with constant: 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 100

• Weighting: 𝑔 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 ∙ 𝑤 𝑥, 𝑦

• Average on an N neighborhood: 𝑔 𝑥, 𝑦 = average 𝑁 𝑓 𝑥, 𝑦

 In this lecture, there are two important properties of the
transformations we want to use on images: linearity and shift
invariance
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 Linearity:

• e.g.: weighting is linear, intensity inversion is non-linear

 Spatial Invariance (SI): for any [𝑘, 𝑙] spatial shift vector,

• e.g.: weighting is not SI, intensity inversion is SI

• e.g.: averaging on neighborhood is both linear and SI, we call it LSI
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 2D Unit Impulse function (Delta function) on ℤ as follows:

 For any 2D function 𝑓(𝑥, 𝑦):
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In 1D:
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 Impulse response is the output of an LSI transformation if the 
input was the Delta function:

If T is an LSI system:

Then we can define convolution as follows: 
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Linearity

Spatial Invariance
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 Commutative:

 Associative:

 Distributive:

 Associative with scalar multiplication: 

fggf 

    hgfhgf 

  hfgfhgf 

    gfgf  
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 In practice both the ℎ kernel and the 𝑓 image have finite size.
 Typically the size of ℎ is much smaller than the image size

(3 × 3, 5 × 5, 5 × 7 etc.)
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𝑔 = ℎ ∗ 𝑓

output image
convolution kernel

input image
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 Let ℎ and ℎ be 2𝑟1 + 1 × 2𝑟2 + 1 sized

kernels where ℎ is the rotated version of ℎ
with 180°



In general:

Size of the input image: 𝐴 × 𝐵

Size of the kernel: 𝐶 × 𝐷

Size of the output image: (𝐴 + 𝐶 − 1) × (𝐵 + 𝐷 − 1)
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256x256 (256+5-1)x(256+5-1)

5x5

Original Image Output Image
Convolutional Kernel
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 What happens at the border of the image?

Zero padding Mirroring

Circular padding Repeating border

Original image with 
the problematic area
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 Possible application of convolution:
• Smoothing/Noise reduction

• Edge detection

• Edge enhancement

 Depending on the task the sum of the elements of the kernel 
matrix can be different:

• 1: smoothing, edge enhancement

E.g.:

• 0: edge detection

E.g.:
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 Simple average:

7x7

Original 

3x3

11x11
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Noisy image Result of bluring



 For 𝑘𝑠 kernel size and 𝑃 image size (area, measured in pixels) 
approximately ~𝑘𝑠𝑃 operations are needed.

 For large kernel size the execution may be slow

September 17, 2019 21Basic Image Processing Algorithms



September 17, 2019 22Basic Image Processing Algorithms

 Integral image: 𝑓 → 𝐼𝑓
auxilliary representation

 E. g. 𝐼𝑓 3,3 = sum of  the values 

of pixels = 11

1 0 2 1
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𝐼𝑓 𝑥, 𝑦 =

𝑖=1

𝑥



𝑗=1

𝑦

𝑓 𝑖, 𝑗



 Auxiliary-auxiliary image:
• Calculation of image 𝑡:

• Calculation of 𝐼𝑓 using image 𝑡: 
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4+7=11

𝑡 𝑥, 1 ≔ 𝑓 𝑥, 1 , 𝑥 = 1…𝑤;

𝑡 𝑥, 𝑦 =

𝑗=1

𝑦

𝑓 𝑥, 𝑗

𝑡 𝑥, 𝑦 = 𝑡 𝑥, 𝑦 − 1 + 𝑓 𝑥, 𝑦

𝐼𝑓 1, 𝑦 ≔ 𝑡 1, 𝑦 , 𝑦 = 1…ℎ; 𝐼𝑓 𝑥, 𝑦 = 𝐼𝑓 𝑥 − 1, 𝑦 + 𝑡 𝑥, 𝑦



 Sum of pixel values in an arbitrary sized sub-rectangle can be calculated by 
applying 3 additive operations using the integral image:

 Example (a=1, b=1, c=2, d=2): 11-6-3+1=3
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+ 1 division operations

3 addition
+1 division

Example: r=5 →    For the whole image ~122P operations

Example: r=5 →    For the whole image ~ 2P+4P=6P operations

calc. integral image calc. bluring



 Construct an efficient contrast calculating
algorithm using the integral image! Contrast is
calculated as the standard deviation of pixel
values of the (2r+1)2 size neighborhood of each
pixel.
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Hint:



 Gaussian blur: 
• Weights are defined by a 2D Gaussian function

• 2 parameters: size of the window and the standard deviation of the 
Gaussian

Fixed window size,
increasing sigma
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 Gaussian blur: 
• Weights are defined by a 2D Gaussian function

• 2 parameters: window size and the width of the Gaussian

• E.g. kernel size = 5x5; σ = 1.5;  

• E.g. kernel size = 3x3; σ = 1.5;  
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 Gaussian blur: 

11x11; σ = 1 11x11; σ = 2 11x11; σ = 3

5x5; σ = 1 5x5; σ = 2 5x5; σ = 3

21x21; σ = 1 21x21; σ = 2 21x21; σ = 3
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Average blur
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Gaussian blur



 Goal: extracting the object contours
 Edge points: brightness changes sharply
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 Goal: extracting curves from 2D images
• More compact content representation then pixel

• Segmentation, recognition,  scratch filtering
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 Extracting image information, structures

• Corners, lines, borders
 Not always simple...
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 Properties of a good edge filter:
• (Near ) zero output in homogeneous regions (constant intensity)

• Good detection : 

 detects as many real edges as possible

 does not create false edges (because of e.g. image noise)

• Good localization: detected edges should be as close as possible to the 
real edges

• Isotropic: filter response independent on edge directions 

 all edges are detected regardless of their direction
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 Edge: sharp intensity change (steep or continuous)
 Line: thin, long region with approx. uniform width and 

intensity level
 Blob: closed region with homogeneous intensity
 Corner: breaking or direction change of a contour or edge
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 Basic edge types

September 17, 2019 37Basic Image Processing Algorithms

Continuos change in surface depth

Change in surface color

Changes cased by illumination/shadows

Sharp change in surface normals

step ramp roof line

 Various effects may cause edges



 Edge normal: vector, perpendicular to the edge, pointing 
toward the steepest intensity change

• Alternatively: edge direction – a vector pointing towards the 
direction of the line

 Position: center point

 Strength: intensity ratio w.r.t. neighborhood 
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 Image: gray value is function of the x and y coordinates 
(intensity function): 𝑓 𝑥, 𝑦
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 Edge: locations on the image where the intensity changes 
sharply (usually at the contour of objects)

 We are searching for places where the gradient of the 2D 
function (the image) is high.

 Main types of edge detection:
• First order derivative

• Second order derivative

• Others:

 Complex methods e.g. Canny method

 Phase Congruancy
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 Edge detection with first order derivative:
• Using the gradient vector:

• The approximation of the partial derivatives:
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Since the smallest meaningful 
discrete value is dx=1 and dy =1.
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 Approximation of the 𝒙 directional partial derivative:
• For better localization, use a symmetric formula around pixel (𝑥, 𝑦)

 Corresponding convolutional kernel:

• For noise reduction, apply 𝑦 directional smoothing (i.e. do not blur a sharp 
vertical edge)
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𝑥 directional Prewitt operator:

vertical edge detectior



 Approximation of the 𝒚 directional partial derivative:
• For better localization, use a symmetric formula around pixel (𝑥, 𝑦)

 Corresponding convolutional kernel:

• For noise reduction, apply 𝑥 directional smoothing (i.e. do not blur a sharp 
horizontal edge)
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𝑦 directional Prewitt operator:
horizontal edge detectior
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 Edge detection with first order derivative:

Prewitt detector

Horizontal gradient image Vertical gradient image
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 Edge detection with first order derivative:

Horizontal gradient image Vertical gradient image
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 Sobel operator

 Roberts operator 

Emphasize edges with 45 degree slopes
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Top: intensity function along a selected horizontal line
Center: x directional first derivative 
Bottom: x directional second derivative

Horizontal edge detection 
in the following image:
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Extreme values 
(first order)

zero crossing 
(second order)
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 Calculating the divergence of the gradient vector

 Approximation for 𝑥 direction:

𝛻2𝑓 =
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
∙ 𝛻𝑓 =

𝜕2

𝜕𝑥2
𝑓 +

𝜕2

𝜕𝑦2
𝑓

𝜕2𝑓 𝑥, 𝑦

𝜕𝑥2
≅

𝑓 𝑥 + 1, 𝑦 − 𝑓 𝑥, 𝑦
𝑣

−
𝑓 𝑥, 𝑦 − 𝑓 𝑥 − 1, 𝑦

𝑣
𝑣

=

=
1

𝑣2
∙ 𝑓 𝑥 + 1, 𝑦 − 2𝑓 𝑥, 𝑦 + 𝑓 𝑥 − 1, 𝑦

just a constant – 𝑣: distance of neighboring pixel centers



 Approximation of the second order derivatives for 𝑥 and 𝑦 directions

 Kernel for the second order gradient calculation with convolution:

 Laplace operator:

 There are other variations. (e.g. Second order Prewitt)
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 Edge detection with second order derivative:

Laplace edge detector Prewitt 2nd order detector
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 Thresholding:
• To eliminate weak edges, a threshold can be used on the gradient 

image:

Prewitt first order gradient image Prewitt first order gradient image 
with threshold  = 120
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 Edge detection with noise reduction:
• 1. step: Noise reduction by convolution with Gaussian filter

• 2. step: Edge detection by convolution with Laplacian kernel

 Since convolution operation is associative we can convolve the 
Gaussian smoothing filter with the Laplacian filter first, and 
then convolve this hybrid filter (Laplacian of Gaussian: LoG) 
with the image.

Gaussian function Laplacian of Gaussian
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