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Smoothing/Blurring Edge Detection
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Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transformations:

e Intensity value inversion:
g(x,y) =255 — f(x,y)
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Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transformations:

e Intensity shift with constant:
glx,y) = f(x,y) + 100
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Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transforms:
e Weighting :
glx,y) = f(x,y) -w(x,y)

Image w
w(x,y) € [0.5,2]
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Mathematical background

® We look at the image as a 2D function:

f(x,y)

e x and y are the pixel coordinates
e fisagraylevel from [0,255]

® We can define different transformations:

e Average on an N neighborhood :
f(x,y) = average N(f(x,y))

Image g
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Mathematical background

® We look at the image as a 2D function: f(x,y)

® We can define different transformations:
e Intensity value inversion: g(x,y) = 255 — f(x,y)
e Intensity shift with constant: g(x,y) = f(x,y) + 100
« Weighting: g(x,y) = f(x,y) - w(x,y)
e Average on an N neighborhood: g(x,y) = average N(f(x, y))

® In this lecture, there are two important properties of the
transformations we want to use on images: linearity and shift

invariance
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Mathematical background

® Linearity:

TG Y) + ()] =TLE (X Y]+ T (X, )]
Tla-T(x,y)]=a- T[T (X, y)]

e e.g.: weighting is linear, intensity inversion is non-linear

® Spatial Invariance (SI): for any [k, [] spatial shift vector,

TLT(x yY)I=9(x,y)
TLT(x=k,y=D]=g(x-k,y-I)

e e.g.: weighting is not SI, intensity inversion is Sl
e e.g.: averaging on neighborhood is both linear and SlI, we call it LS
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Unit Impulse Function

@ 2D Unit Impulse function (Delta function) on Z as follows:

1 whenx=0andy=0
o(X,y) = .
0 otherwise
L1,
® For any 2D function f(x,y): """" F— """"
f(x,y)= Z Z&(x k,y—1)-f(k,1)

:—(D I
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Convolution

® Impulse response is the output of an LS| transformation if the
input was the Delta function:  6(X,y) > T — h(X,y)

If Tis an LS| system:
TLT(x y)]=0(xy)

Then we can define convolution as follows:
g(x,y)=f(x,y)*h(x,y) =
=h(x,y)* f(x,y) =

=3 £k 1)-h(x—k, y—1)

kK=—o0 |=—
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Derivation of Convolution

g(x,y)=T[f(x,y)]=

S £ (k. )S(x—k, y—I)} _

|=—00

IIM8

8

k

Linearity —

S (k1) To(x—k, y—1)]=

__— :ii K. 1)-h(x—k, y—1)

Spatial Invariance
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The Properties of Convolution

® Commutative:

fxg=9g=x*f
® Associative:
f(gh)=(f xg)+h
@ Distributive:
f *(g+h): f+g+f=*h

® Associative with scalar multiplication:

a(f *g)=(cf )* g
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2D convolution for image processing

_ convolution kernel
output image !

input image

® In practice both the h kernel and the f image have finite size.

® Typically the size of h is much smaller than the image size
(3%x3,5%X5,5X%X7etc.)
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2D convolution in Practice

® Let hand hbe (2r; + 1) X (2r, + 1) sized
kernels where h is the rotated version of h

with 180° —
_ _ _ _ / / 4\ \y
a—rl,—l'z o a—rl,l’z ar1’r2 o arl’_rz / / 2l \ \ \
h=| . Jandh=| : : AN
a, . Ca,, a. . o / [ IR
B B B ) AN WA h
- o L LTIV 1}
1{ 1 Y1)

g(x,y)= 2> f(k,1)-h(x—k,y—-1)= f
B AT X

- 2 2Nk Ty - A RnR
[ y1o] 221274 |
=" Shik,1) f(x+k,y+1) AN D R W W
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Size of the Convolved Image

Convolutional Kernel

Original Image 1 1 1 1] Output Image
1 111 \
11 1 1|=|f s
: 1 111 1 1 ’
256x256 (R N O I (256+5-1)x(2564+5-1)
5x5

In general:
Size of the input image: A X B
Size of the kernel: C X D
Size of the outputimage: (A +C—-1) X (B+D — 1)
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Boundary Effects

® What happens at the border of the image?

Original image with
the problematic area

Circular padding Repeating border
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Applications

® Possible application of convolution:
e Smoothing/Noise reduction
e Edge detection
e Edge enhancement
® Depending on the task the sum of the elements of the kernel
matrix can be different:
e 1:smoothing, edge enhancement

11111 0 -10
Eg: =111 -15 -1
91111 0 -10
e 0: edge detection
S 1-101 0 1 0
E.g.: -101 1 -4 1
-101 0 1 0
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Smoothing/Blurring

® Simple average:

iif(x+i,y+j)

g(X,y) = aroy 2
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Bluring for noise filtering

Noisy image Result of bluring
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Computational requirements

® For kg kernel size and P image size (area, measured in pixels)
approximately ~k¢ P operations are needed.
® For large kernel size the execution may be slow
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Decreasing the computational need for a simple
(averaging) blur operation

® Integral image: f — I¢

. : 1 0 2 1
auxilliary representation
* .|: 2 0 1 0
’f(’“”zzzf“’” 3 1 1 0
1=1j=1
® E.g I£(3,3) =sum of the values 1 0 1 /
of pixels =11 .
1 0 2
2 0 1 7
3 1 1 12
1 0 1 18
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Calculation of I; with dynamic programing in ~P time:

® Auxiliary-auxiliary image: t(x,y) = Zf(x 7)

e Calculation of image t: j=1
t(x,1)=f(x,1),x=1..w; tl,y) =tl,y—1)+f(x,y)

e Calculation of I¢ using image t:
IF(Ly) =tLy),y=1..h I;(x,y) =I(x—1,y) + t(x,y)

+7=11




Utilization of the integral image

® Sum of pixel values in an arbitrary sized sub-rectangle can be calculated by
applying 3 additive operations using the integral image:

i_}d:f(i,j) =I.(c,d)-1,(a-1,d)—I.(c,b-1)+1,(a—1,b-1)

® Example (a=1, b=1, c=2, d=2): 11-6-3+1=3

1 0 2 1 1 1 3 4
f 20 1 o |l 3 3 6 7

2l || 6 7 11 12

1 0 1 4 /7 8 13 18
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Using integral image for quick blurring (simple
averaging kernel)

f(x,y)= . SN F(x+i,y+j)  (@reL eddition

2 e e . .
(Zr -I-l) =~ + 1 division operations

Example: r=5 - For the whole image ~122P operations

= 1
f(x,y)= (e (X+ry+r)—l,(X=r=Ly+r)—
(2r+1)
—l(X+ry-r-)+1L.(x-r-1,x-r-1)) o
+1 division
Example: r=5 - For the whole image ~ 2P+4P=6P operations
R
calc. integral image calc. bluring
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Optional homework (a bit more than a
convolution)

® Construct an efficient contrast calculating
algorithm using the integral image! Contrast is
calculated as the standard deviation of pixel
values of the (2r+1)? size neighborhood of each

pixel.
c’(X,y) =
( i= rj —r
where:  f(X,y) = (2r+1)222f(x+' Y+
I=—r j=—r
Hint:

GZ(X,y)={ ZZZ[f(X+IY+J)} Foyf

I=—1I J=—T1
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Smoothing/Blurring

® Gaussian blur:
e Weights are defined by a 2D Gaussian function

e 2 parameters: size of the window and the standard deviation of the
Gaussian

Fixed window size,
increasing sigma
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Smoothing/Blurring

® Gaussian blur:
e Weights are defined by a 2D Gaussian function
e 2 parameters: window size and the width of the Gaussian
e E.g. kernel size = 5x5; 0 = 1.5;
(0.0144 0.0281 0.0351 0.0281 0.0144
0.0281 0.0547 0.0683 0.0547 0.0281
0.0351 0.0683 0.0853 0.0683 0.0351

0.0281 0.0547 0.0683 0.0547 0.0281
0.0144 0.0281 0.0351 0.0281 0.0144

e E.g. kernel size = 3x3; 0 = 1.5;

0.0947 0.1183 0.0947
0.1183 0.1478 0.1183
0.0947 0.1183 0.0947
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Smoothing/Blurring

® Gaussian blur:
A L

) $ ?t":”‘."‘ '~. ’ \
r e d ab- -
- NN 5 l -~ -~ 5‘

21x21;0=2 21x21;0=3 i
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Convolution examples —averaging blur

Input Image Average blur




Convolution examples— Gaussian blur

[1 2 3 2 1]
[z 7 11 7 2]
E=1/123 * [3 11 17 11 3]
[z 7 11 7 2]
[1 2 3 2 1]

i S

InpUt Image Gaussian blur
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Edge detection

® Goal: extracting the object contours
® Edge points: brightness changes sharply
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Goals of edge detection

® Goal: extracting curves from 2D images
e More compact content representation then pixel
e Segmentation, recognition, scratch filtering
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Goals of edge detection
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e Corners, lines, borders

® Extracting image information, structures
® Not always simple...

September 17, 2019



W1

object

Edge detection

® Properties of a good edge filter:

e (Near) zero output in homogeneous regions (constant intensity)
e Good detection :

- detects as many real edges as possible

- does not create false edges (because of e.g. image noise)

e Good localization: detected edges should be as close as possible to the
real edges

 |sotropic: filter response independent on edge directions
- all edges are detected regardless of their direction

September 17, 2019
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Basic structures

@ Edge: sharp intensity change (steep or continuous)

@ Line: thin, long region with approx. uniform width and
intensity level

@ Blob: closed region with homogeneous intensity

® Corner: breaking or direction change of a contour or edge

'l e B

Edge Line Blob Corner
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Origin and types of edges

® Various effects may cause edges

% Sharp change in surface normals

e ]
ey

Continuos change in surface depth

N

lfr———
../;\ Change in surface color
MZ Changes cased by illumination/shadows

® Basic edge types

1 /A S

September 17, 2019
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Parameters of an edge

@ Edge normal: vector, perpendicular to the edge, pointing
toward the steepest intensity change

e Alternatively: edge direction — a vector pointing towards the
direction of the line

@ Position: center point
® Strength: intensity ratio w.r.t. neighborhood

EDGE
DIRECTION ¢
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Image representation

® Image: gray value is function of the x and y coordinates
(intensity function): f(x,y)
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Edge Detection

® Edge: locations on the image where the intensity changes
sharply (usually at the contour of objects)
® We are searching for places where the gradient of the 2D
function (the image) is high.
® Main types of edge detection:
e First order derivative
e Second order derivative
e Others:
* Complex methods e.g. Canny method

* Phase Congruancy
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Edge Detection

@ Edge detection with first order derivative:
e Using the gradient vector: T
vi { of af}

ox oy
e The approximation of the partial derivatives:
L im F(x+dx,y) - T(xy) ﬂ:r F(x,y+dy)-T(x,y)
X dx oy dy
~ f(x+1Ly)— f(XVy) ~ f(x,y+1) - f(x,y)

Since the smallest meaningful
discrete value is dx=1 and dy =1.
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Edge Detection

@ Approximation of the x directional partial derivative:
e For better localization, use a symmetric formula around pixel (x, y)

N F(x+1y)— f(x—1y)
OX

 Corresponding convolutional kernel:
-1 0 1]

e For noise reduction, apply y directional smoothing (i.e. do not blur a sharp
vertical edge)

1] (=1 0 1 x directional Prewitt operator:
[—l 0 1]* 1i=||-1 0 1 vertical edge detectior
1 -101
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Edge Detection

@ Approximation of the y directional partial derivative:
e For better localization, use a symmetric formula around pixel (x, y)

 Corresponding convolutional kernel:

of

o f(xy+D) - f(xy-1
& (X, y+1)—f(x,y-1)

-1
0
1

e For noise reduction, apply x directional smoothing (i.e. do not blur a sharp
horizontal edge)

September 17, 2019

-1
0
1

1]

=L =1l =1
0O 0 O
1 1 1

y directional Prewitt operator:
horizontal edge detectior
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Edge Detection

@ Edge detection with first order derivative:

Prewitt detector

Horizontal gradient image Vertical gradient image
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Edge Detection

@ Edge detection with first order derivative:

Horizontal gradient image

gradient image
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Other first-order methods

® Sobel operator

-1 101 -1 | -2 | -1

21012 O 0] O

-1 101 | 2 |
d/0x 0 /0y

® Roberts operator

+1 +1
-1 -1
g1 g2

Emphasize edges with 45 degree slopes



Second order edge detection: motivation

Horizontal edge detection

() P ‘
in the following image: g /

. df(y,)/dx

/&

. dfP(xy,)/dx =N

Dﬁ_d-/ 1
il

asl /_ 1
o E 16

Top: intensity function along a selected horizontal line
Center: x directional first derivative
Bottom: x directional second derivative
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Second order case: instead of extreme values,
search for zero crossing

September 17, 2019
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Extreme values
(first order)

zero crossing
(second order)



Real photo: intensity profile below the red line
segment

=20
0 =3 10 15 20 25 30
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Edge detection with second order derivative

® Calculating the divergence of the gradient vector

ep_ (9 0\ ., _0 @
f= ox' dy f_é‘xzf ayzf

® Approximation for x direction:

fo+1Ly)—fxy) fO,y)—fx—1y)
1% 1%

0 f(x,y) _
ox2 v

fxr+1Ly) = 2f(0y) + fF(x =1L y)]

just a constant — v: distance of neighboring pixel centers
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Edge detection with second order derivative

® Approximation of the second order derivatives for x and y directions

2
a2%?0“f@+440—2ﬂ%yyfﬂx_Ly)
2
: gglxz»y) < floy+1)—2f(x,y) +fx,y—1)

® Kernel for the second order gradient calculation with convolution:
* Laplace operator:

- =1
2 2
ot ot _ 2|+l -2 4|1 -4 1
aXZ 8y2

Ld | 0 1 0

* There are other variations. (e.g. Second order Prewitt)
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Edge Detection

@ Edge detection with second order derivative:

Laplace edge detector Prewitt 2nd order detector
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Edge Detection

@ Thresholding:

e To eliminate weak edges, a threshold can be used on the gradient
image:

Prewitt first order gradient image Prewitt first order gradient image
with threshold =120
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Coming next week:
Reducing the effect of noise on edge images

® Edge detection with noise reduction:
e 1. step: Noise reduction by convolution with Gaussian filter
e 2.step: Edge detection by convolution with Laplacian kernel
@ Since convolution operation is associative we can convolve the
Gaussian smoothing filter with the Laplacian filter first, and
then convolve this hybrid filter (Laplacian of Gaussian: LoG)
with the image.

IR
Lo AR
IR

Gaussian function Laplacian of Gaussian
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