
Lab 12
Basic Image Processing

Fall 2019

1



Video segmentation with temporal histogram
Video - 3D / 4D image sequence, the dimensions are:
● spatial coordinates (row, column),
● color channel,
● frame number.

Statistical background model - temporal histogram: the temporal histogram of 
each (row, column) pixel location is used to generate the background image.

2

time

intensitynu
m

 o
f p

ix
el

s

The value with the highest peak is the value 
of the background pixel at that location:



Steps today
1. load a color video file in MATLAB
2. convert a color frame array (4D) to a grayscale frame array (3D)
3. calculate the background image with the help of the temporal histogram
4. create a moving object detector: the difference of the actual image and the 

background image is binarized and enhanced with some morphology
5. solve a high-level surveillance exercise - counting people walking into and out 

of a building

3



Today’s work

The results of this lab are not going to be uploaded.

The goal is to observe a simple but useful application of video processing.

4



Now please 

download the ‘Lab 12’ code package

from the

submission system

5

https://users.itk.ppke.hu/~nasma1/kep


Exercise 1
Implement the function video_loader in which you have to load an avi file to a 
4D array.

The function has 2 parameters:
● Input1: name of the video file
● Output1: 4D uint8 array (height x width x color_channel x frame_number) of the color 

frame sequence

Please use the VideoReader object, and the hasFrame and readFrame operations on it.

● create the your VideoReader entity as vr = VideoReader(filename)
● allocate space to one uint8 output array with the help of vr.Height and vr.Width 
● the hasFrame helps you to repeatedly check whether any unread frame is still present 

in the vr object, you can use the readFrame operation to read the next frame

Please test your function with the script test1_loader.
6



Exercise 2
Implement the function rgb_video_to_gray_video in which you have to convert 
your 4D color frame array to a 3D grayscale frame array.

The function has 2 parameters:
● Input1: rgb_array - 4D uint8 array, height x width x color_channel x frame_number
● Output1: gray_array - 3D uint8 array, height x width x frame_number

Please use the built-in function rgb2gray frame-wise (and squeeze if necessary).

Please test your function with the script test2_rgb2gray.

7



Exercise 3
Implement the function calculate_background in which you have to calculate the 
mode of the intensities pixel-wise, inside a sliding window range.

The function has 2 parameters:
● Input1: gray_video - 3D uint8 array, height x width x frame_number
● Output1: background - 3D uint8 array, height x width x frame_number

The mode value can be calculated with the built-in function mode, please apply it along the 3rd 
dimension (second parameter).

The sliding window should be interpreted as the past 100 frames - or less, if you are at the 
beginning of the video. Roughly formalizing:
start_idx = max(frame_idx-100, 1);
… gray_video(:, :, start_idx:frame_idx) …

where frame_idx refers to the loop variable iterating on your input array, frame-wise.

Please test your function with the script test3_bg. Please be patient, the 
processing of the frames takes a while. 8



9



Exercise 4
Implement the function detect_blobs in which you have to mask those regions 
which contain moving objects in the video.

The function has 5 parameters:
● Input1: gray_video - 3D uint8 array, height x width x frame_number
● Input2: background - 3D uint8 array, height x width x frame_number
● Output1: diff_th - the thresholded difference of the two inputs, uint8 and same size
● Output2: morph1 - eroded version of diff_th, also uint8 and same size
● Output3: morph2 - dilated version of morph1, also uint8 and same size

Tips and tricks on the next slide!

Please test your function with the script test4_blobdetector. Please be 
patient, the processing of the frames takes a while.

10



Exercise 4 - continued
● Define a threshold for the differences (d_th), 50 is a good choice.
● Convert the two input arrays to have type double (use foo = double(foo);).
● Allocate uint8 type arrays (filled with zeros) for the output args, their size should match 

the size of the input arrays.
● With a for loop iterate through all of the frames and compute the followings:

○ Calculate frame_diff as the abs value of the difference between the actual frame of 
gray_array and background.

○ Update frame_diff, now it should contain its thresholded version (255 if above threshold, 0 
below (or equal)). Use logical operations.

○ Save frame_diff as the appropriate frame of output array diff_th.

○ Apply morphological erosion on this frame_diff array with imerode, with structuring element 
‘disk’ and radius value 3, this should be saved in morph_1,

○ Apply morphological dilation on the result of the erosion with imdilate, with structuring element 
‘disk’ and radius value 7., this should be saved in morph_2. 11



12



Exercise 5
Implement the function walk_in_walk_out_counter in which you have to count 
the number of entering/leaving persons (moving objects) with the help of sensitive 
zones. The function has 5 parameters:
● Input1: morph_2 - 3D uint8 array, height x width x frame_number (the morphologically 

enhanced object-blobs)
● Output1: active_pixels_zoneA - a 1 x frame_number sized vector, containing the 

number of moving objects’ pixels inside zone A for every frame separately
● Output2: active_pixels_zoneB - same as previous, but for zone B
● Output3: active_pixels_zoneC - same as previous, but for zone C
● Output4: persons_inside - a 1 x frame_number sized vector, containing the number of 

persons inside the building at every frame-iteration

Tips and tricks on the upcoming slides!

Please test your function with the script test5_counter. 
(This tester works with the help of a matlab archive, which has been already created 
during test4_blobdetector.) 13



14



15



Exercise 5 - continued
● Convert the morph_2 array to double and scale it to [0, 1].
● Allocate spaces as zero vectors for the first three return values.
● With a for loop iterate through the morph_2 array, along the frame_number 

dimension, and at each frame summarize the number of pixels inside the 
sensitive zones -- coordinates:

○ zoneA: (100:155, 225:255)

○ zoneB: (70:155, 175:205)

○ zoneC: (85:155, 125:155)

○ Save the zone-sums into the active_pixels_zoneX arrays at the appropriate index (given by the 
frame index).

● After the loop, indicate in logical index-vectors, which frames contained more 
active pixels, than a predefined threshold (min_patch_size=90;), like
somebody_in_zoneA = active_pixels_zoneA > min_patch_size;

● Set persons_inside to an empty array, then at this point, please test your 
function with script test5_counter. 16



Exercise 5 - continued
● We will define region-transitions as follows:

○ 0 - zoneA transition → + 0.25 person
○ zoneA - zoneB transition → + 0.25 person
○ zoneB - zoneC transition → + 0.25 person
○ zoneC - 0 transition → + 0.25 person
○ 0 - zoneC transition → - 0.25 person
○ zoneC - zoneB transition → - 0.25 person
○ zoneB - zoneA transition → - 0.25 person
○ zoneA - 0 transition → - 0.25 person

● These transitions will be examined with a 7 unit-wide sliding window, with the help of the logical vectors 
somebody_in_zoneX and with a special logical vector nobody_in_zones:
nobody_in_zones = ~somebody_in_zoneA & ~somebody_in_zoneB & ~somebody_in_zoneC;

● Let’s initialize the vector persons_inside: a zero vector with the same size as our logical vectors.
● Let’s introduce two helper variables, in order to keep records of current and previous transition states 

(current_state, previous_state, respectively). The state-transitions can be abbreviated as ‘0A’, 
‘AB’, ‘BC’, … please store these abbreviations in the helper variables. Initially, both of them should 
have the value of ‘00’. 

17



Exercise 5 - continued
● Let’s create a huge for loop (iterating between 4 and length-3, due to the 7 unit wide sliding window), 

in which:
○ identify in which transition type are you currently in (8 if/elseif branches!)

if nobody_in_zones(frame_idx-3) && somebody_in_zoneA(frame_idx+3)

current_state = '0A';

elseif … 
○ after you have identified the current_state, please compare it (strcmp) with the 

previous_state: 
■ if they are equal, the current element of persons_inside should remain the same as in the 

previous iteration,
■ if they differ:

● update previous_state to current_state,
● give the appropriate value to the current element of persons_inside:

○ if current_state is one of 0A, AB, BC, C0, then increment persons_inside 
current element with +0.25, compared to the previous iteration,

○ if current_state is not in the above list, then decrement the current element of 
persons_inside by -0.25.

● Test your code again with script test5_counter. 18



THE END


