
Lab 10
Basic Image Processing

Fall 2019

1

2

Warning!
On the Lecture you met with the HOG method

which is the topic of this lab practice.

The original HOG method is a publication of Navneet Dalal and Bill Triggs and it is
mostly used for pedestrian recognition.

Today we are implementing a SIMPLIFIED version of the HOG!
Therefore you may notice differences between the article and this implementation.

Our implementation is referred as the
Poor Man’s Histogram of Oriented Gradients

method.

Poor Man’s Histogram of Oriented Gradients

3

This algorithm is very similar to the original HOG method [1] but it
contains some simplifications. The steps:

0. Creation of cells and blocks
1. Gradient computation
2. Orientation binning
3. Block normalization

The upcoming slides contain the description of the steps.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.404&rep=rep1&type=pdf

0. Creation of cells and blocks

4

The input image must be grayscale. We divide it into 8 × 8 pixel
regions called cells and 2 cell × 2 cell regions called blocks:

cell (8×8 pixels)

block (2×2 cells)

1. Gradient computation

5

Gradient computation is carried out for each cell individually. It is
done by applying an edge detection filter on the grayscale input
image G both horizontally and vertically.

Where G, X, Y are 8×8 size matrices (cells).

1. Gradient computation illustration

6

G =

Hy

Hx
= X (vertical edges)

= Y (horizontal edges)

2. Orientation binning part 1

7

The previous step resulted in two matrices X and Y in which the
gradient vector’s x and y component is stored for every (i, j) point.

So! At every (i, j) point we know two values: and . These are
the vertical and horizontal components of the gradient vector. The
vector’s angle is

and the length of the gradient vector (magnitude) is

2. Orientation binning illustration part 1

8

Y

X M

2. Orientation binning illustration part 1

9

M
.67 .20

.17 .86

10° -25°

80° 45°

Angle of the gradient vectors

Length of the gradient vectors

Gradient vectors visualized

2. Orientation binning part 2

10

After each angle and magnitude is calculated within the cell, a 9 bin
histogram is initialized. The histogram’s bins define 9 intervals from
-90° to 90°:

[-90, -70) [-70, -50) [-50, -30) [-30, -10) [-10, 10) [10, 30) [30, 50) [50, 70) [70, 90)

For every gradient vector in the cell we add the magnitude value to
the appropriate bin.

This procedure results in one orientation histogram per cell.

2. Orientation binning illustration part 2

11

.67 .20

.17 .86

10° -25°

80° 45°

Angle of the gradient vectors

Length of the gradient vectors

Gradient vectors visualized Orientation histogram of the cell
9°

3. Block normalization

12

After every cell’s histogram is calculated the blocks are normalized.

This means that a 2 cell × 2 cell block is selected and the histograms in the block
are normalized with the sum of the histograms of the block.

The stride of the normalization is 1 (it means that the normalization is done with
overlap, aka. one cell contributes in more than one block).

The feature vector:
● in each block: 36 x 1 long vector (concatenation of four 9-long vectors),
● in the entire image: blocknumber x 36 long giant vector.

After the computation of all the cell histogram vectors, blocks are selected on the
image. For each block, the four corresponding vectors are copied, normalized and
concatenated into the block feature vector, which is the descriptor for the block.

13

3. Block normalization illustration

Selecting the
histogram vectors

Normalization and
concatenation

The blocks overlap, meaning that a typical cell is used to create multiple blocks.
The number of blocks is (h – 1) × (w – 1) where h and w are the number of cells in
rows and cols. Finally the image is described by a (h – 1) × (w – 1) × 36 HOG matrix.

14

3. Block normalization illustration

Now please

download the ‘Lab 10’ code package

from the

submission system

15

https://users.itk.ppke.hu/~nasma1/kep

Overview of the exercises:

16

Exercise 1: implement the gradient computation for a single cell (8×8 pixels)

[PHI, MAG] = pmHOG_gradient(I)

Exercise 2: implement the orientation binning for a single cell (8×8 pixels)

[H] = pmHOG_binner(PHI, MAG)

Exercise 3: with the help of the previously implemented functions, implement the
Poor Man’s HOG descriptor computation function which computes the descriptors
for the whole image

[HOG] = pmHOG_extractHOG(I)

Finally, in Exercise 4 you will see an application of the HOG method.

Exercise 1
Complete the function pmHOG_gradient in which compute the gradients of the
cell and return the pixelwise angle and magnitude data. The function has 3
parameters:

○ Input1: input cell image (I)
○ Output1: angle matrix (PHI)
○ Output2: magnitude matrix (MAG)

See the upcoming slides for hints.

17

Exercise 1 – hints
1. Convert the input image to double (with double()).
2. Define the kernels as MATLAB row and column vectors.
3. Use imfilter to apply your kernels with the 'replicate' and 'same'

parameters (as we want to pad the cell with replicated values and we want a
result that has the same size as the input).

4. Compute the phase angle with the atan function. This returns the angles in
radians, convert them to degrees using the rad2deg function.

5. Compute the magnitude of the vectors with the help of the sqrt function.
6. Test your function with the script test1_gradient.

18

Exercise 2
Complete the function pmHOG_binner in which realize the binning of the gradient
values within a cell. The function has 3 parameters:

○ Input1: angle matrix (PHI)
○ Input2: magnitude matrix (MAG)
○ Output: cell histogram (H)

See the upcoming slides for hints.

19

Exercise 2 – hints
1. Initialize an empty 1×9 histogram vector. (zeros)
2. For each bin index:

a. Calculate the interval endpoints (minimum and maximum angle values).
b. Create a logical mask of the phase matrix. Use the MATLAB logical indexing like

LOG_MASK = (PHI >= mini & PHI < maxi)

c. With the help of this logical matrix select those elements from the magnitude
matrix for which the corresponding vector’s angle is in this bin. (So: index the
magnitude matrix with the logical matrix. This returns the appropriate elements).

d. Calculate the sum of the selected magnitude values and store them in the
histogram at the position specified by the bin index.

3. Test your function with the script test2_binner.

20

Exercise 3
Complete the function pmHOG_extractHOG in which you have to divide the
image into blocks, the blocks into cells, and calculate the cell histograms. This
function also does the block normalization and feature-vector collection. It has 2
parameters:

○ Input: image matrix (I)
○ Output: block-normalized histograms of gradients in a matrix for every block (HOG)

See the upcoming slides for hints.

21

Exercise 3 – hints
1. Calculate the number of cells along the vertical and horizontal dimension of

the image. NOTE: You can be sure that the image is grayscale and the image
size is divisible by 8 (which is the cellsize). So the image is a H × W × 1 matrix,
where H = 8h and W = 8w.

2. Initialize the histogram matrix (norm_HOG) with zeros. The size of it is:

(h – 1) × (w – 1) × 36

NOTE: h and w are the number of cells not the image height, width!

Description continues on the next slide...

22

Exercise 3 – hints continued
3. For each block

a. select the 16×16 pixel-sized sub-matrix from the grayscale image according to the block position
b. apply Gaussian filtering (imgaussfilt with standard deviation 0.1) (the center of the block is

more important).
c. initialize an empty feature_vector for the specific block. This will store the concatenated

orientation histogram vectors for the 4 cells within the current block.
d. For each cell (2×2 cells) inside the block

i. select the cell’s sub-matrix from the block,
ii. calculate the phase and magnitude values with the function you created in Exercise 1,
iii. calculate the histogram describing this cell with the function you created in Exercise 2,
iv. append the histogram to the feature_vector,

e. after all the histograms are calculated inside one block, you have to do the block-normalization.
Update the feature_vector, divide its elements by the sum of the vector:

feature_vector = feature_vector / sum(feature_vector)

f. save the normalized feature_vector to the appropriate position of the norm_HOG matrix.
(Save a 1D vector under a specific row&col position of a 3D matrix.)

23

Exercise 3 – testing
First, please test your function with script test3_extractHOG. This is a basic
formal check.

Next, run the script test4_visualizeHOG. This will compute the HOG descriptors
for an image and visualizes the calculated descriptor (plots the direction arrows).

Please examine the results!
Zoom in, search for edges, compare HOG descriptors etc...

24

Exercise 3 – figures

25

Image and its HOG descriptors Same image - zoomed in

Exercise 4
If you open the input folder you see (the grayscale version) of 5 different objects:

We want to detect pedestrians.

26

Exercise 4 continued
There is also a mat file pedestrian_sample.mat. This file contains a sample
HOG descriptor showing a pedestrian walking in front of the camera.

Based on this sample we want to classify the five different inputs and tell whether
they are pedestrians or not (with a confidence).

27

Exercise 4 continued
Complete the function detectPedestrians in which you have to implement a
very simple HOG feature based pedestrian detector.

The function has two inputs (I is the grayscale image of the candidate,
sample_HOG is a HOG model of a sample pedestrian) and one output (score is
the score of the match — how likely is that the candidate is a pedestrian).

Inside the function:

1. Compute the HOG descriptor of the input image.
2. Do an elementwise multiplication between the HOG of the candidate and the

HOG of the pedestrian model.
3. Get rid of the non significant values (keep only elements that are above 0.01).
4. Compute the score as the sum of all elements. Watch out, there are NaN

values in the matrix, use nansum to eliminate them from the summation.

Finally, run script test5_findPedestrians. The script will compute the score of
the 5 images and displays them in a figure. 28

THE END

