
Lab 09
Basic Image Processing

Fall 2019





 

It is important to understand all the spaces and their dimensionalities in this task.

Consider an S space:              . In this space, every           is a pixel. 

Each pixel of the image has a feature vector       and for the whole image we have 
a set of features:

We define a set of labels too:     . In this set, every           is a label (e.g. ‘class1’,’class2’,...)

To each pixel of the image we assign a label                and for the whole image we 
have a set of labels: 

The     set is the set of all possible     labelings. For an N × M image there are            
                    possible good labelings

Spaces & dimensions

3



So which one is the right segmentation? To find an answer to this question, we 
define a probability measure on the set of all possible labelings:

This probability measure gives the likelihood of      being a good labelling given   . 
 

We look for a labeling     for which                is maximal. Using the Bayes theorem:

where           does not depend on the chosen labeling.

Now we just have to define                 and           .

Problem formulation

4



So our problem is

Let’s transform this to an energy-minimization problem (details in lecture slides):

Energy-minimization problem



In the energy-minimization problem the posterior (feature-dependent) term is

where every label     is represented by a Gaussian distribution 

Therefore, the posterior probability for a pixel is

Posterior



In the energy-minimization problem the prior (neighbor-dependent) term is

where 

Prior



The final form of the Energy function

or in an expanded form:

8



The final form of the Energy function minimalization
Our aim is to minimize the energy function, and find a suitable omega labeling for 
which the energy function is minimal:

and that is:

9



Now we know the equation of the best labeling. How to compute it, how to get a 
good labeling? This is an optimization problem!

After defining the parameters (i.e. the number of classes and some others too) the 
MRF segmentation algorithm has 3 main steps:

1. Define regions
For every class label we should give a sample containing some feature vectors 
from that class.

2. Initialize labeling
For every feature vector we assign a label. This assignment can be random or it 
can be based on some knowledge, e.g. per-pixel Maximum a Posteriori (MAP)

3. Run optimization
Optimization is an iterative process in which we reduce the energy function.

The segmentation algorithm

10



In this step we select some parts of the input image and use these parts to 
estimate the properties of each class.

E.g. on a grayscale image the feature of a pixel is the pixel intensity. The class will 
be described using a Gaussian that models the mean intensity and standard 
deviation of the pixel intensities in the selected region:

1. Define regions

11

where the mean and std are the 
empirical mean and std:



Random
The random initialization is pretty straightforward, assign a random label to every 
pixel (preferably using uniform distribution).

Maximum a Posteriori (MAP)
For each pixel, find the most likely class label based on the formula

Please note that this is the posterior part of the energy function. In practice the 
MAP initialization gives a good estimation, however it can be very noisy due to the 
fact that MAP does not care about the neighboring pixels.

2. Initialize labeling

12



ICM
A gradient descent method, well described in the lecture slides. (This method is 
already implemented in today’s code).

Modified Metropolis Dynamics (MMD)
An initial temperature (T0) and a temperature decay (c) is given. In every iteration 
a trail perturbation (𝜂) is constructed which only differs in one label. Compute the 
difference of the energy functions with the original and the perturbed labeling. 
(𝚫U = U(𝜂) – U(𝜔)) The new labeling is given by the Metropolis criteria:

where 𝜉 is a uniform random number [0,1). 
Also, T is updated: T = c·T

3. Run optimization

13



Now please 

download the ‘Lab 09’ code package

from the

submission system

14

https://users.itk.ppke.hu/~nasma1/kep


Some comments about the provided code
Today’s code package contains an input folder, function files, a script file and a 
.mat file describing a colormap.

Today you’ll complete the partially implemented functions.

After each exercise you can test your code by running the script MRF_script with 
the appropriate parameters. Before each run, please set the parameters (in the 
first lines of the script) as described on the slides.

THESE METHODS USE RANDOM INITIALIZATIONS AND PERTURBATIONS! 
EVERY RUN WILL YIELD A DIFFERENT RESULT!

THE FIGURES IN THIS DOCUMENT ARE EXAMPLES!
15



Exercise 1
Complete the function gmrf_defineRegions in which implement the body of 
the second loop:
● The corners of the rectangle are stored in the object rects{ind}
● Crop the relevant part of the input image (the rectangle defined by the y1, y2, x1, x2 

fields of the rectangle object). The input image is params.InputImage.
● Compute the mean and standard deviation of the pixel intensities of the cropped region 

(use the mean and std functions). Save them into the MRF model variable:
mrf.gauss_params{ind}.mean and mrf.gauss_params{ind}.dev fields.

● Compute the normal probability density function of the input image. Use the function 
normpdf. Arguments are the input image (in double format), and the previously 
computed mean and standard deviation. The –log() of the normal PDF must be saved 
into mrf.logProbs{ind}.

16



Test 1
Run the script MRF_script after setting the following parameters:
● params.InputImgPath = 'input/trin3.bmp';

● params.NumOfClasses = 4;

● params.InitMethod   = 'RAND';

● params.OptiMethod   = 'ICM';

The script will raise a figure. You will see the four (pre defined) regions displayed with red 
border. After the careful observation of the initialized image, press ENTER to run the 
optimization.

17



Test 1

18Right after initialization



Test 1

19After the optimization process finished



Exercise 2
Complete the function gmrf_initClassMaskMAP in which implement the body 
of the nested loop:
● For every pixel (y,x) find the class index for which mrf.logProbs{cind}(y,x) is 

minimal.
● The minimal class index should be called minind and it will be stored in the 

mrf.classmask field at the location (y,x). (This is already implemented.)

20



Test 2
Run the script MRF_script after setting the following parameters:
● params.InputImgPath = 'input/trin3.bmp';

● params.NumOfClasses = 4;

● params.InitMethod   = 'MAP'; ⇦ changed!
● params.OptiMethod   = 'ICM';

The script will raise a figure. You will see the four (pre defined) regions displayed with red 
border. After the careful observation of the initialized image, press ENTER to run the 
optimization.

21



Test 1

22Right after initialization



Test 1

23After the optimization process finished



Exercise 3
Complete the function gmrf_doMMD in which implement the body of the while 
loop:
● Set summa_deltaE to zero.
● Increment the cycle counter.
● For each pixel:

○ Get the current class label at location (y,x) (it is mrf.classmask(y, x))
○ Get the class label of the 8 (or less) neighboring pixels.
○ Get the actual posterior probability (it is mrf.logProbs{C}(y, x) where C is the 

actual class label.)
○ Compute the actual prior probability (–𝛽 times the matching neighboring labels, +𝛽 

times the different neighboring labels)

Description continues on the next slide...
24



Exercise 3
○ Randomly pick a class label. This should be different from the current label of the 

pixel at (y,x).
○ Compute the new posterior and prior probabilities using the new, randomly picked 

class label.
○ Compute the actual and new energies (U = posterior + prior).
○ Compute the energy change (dU = U_new - U_act)
○ If this gain is less than 0 or the gain is higher than 0 but a random float from the 

[0,1) interval is smaller than exp(-dU/T), then update:
■ summa_deltaE, increase its value by abs(dU)
■ mrf.classmask(y, x), store the randomly picked label into the class mask

After updating all the pixels in one iteration, update the temperature (T), multiply it by c and 
store the new value. Therefore, the next iteration will use the updated temperature.

25



Test 3
Run the script MRF_script after setting the following parameters:
● params.InputImgPath = 'input/trin3.bmp';

● params.NumOfClasses = 4;

● params.InitMethod   = 'RAND'; ⇦ changed! 
● params.OptiMethod   = 'MMD'; ⇦ changed!

The script will raise a figure. You will see the four (pre defined) regions displayed with red 
border. After the careful observation of the initialized image, press ENTER to run the 
optimization.

26



Test 1

27Right after initialization



Test 1

28After the optimization process finished



Test 4
Run the script MRF_script after setting the following parameters:
● params.InputImgPath = 'input/trin3.bmp';

● params.NumOfClasses = 4;

● params.InitMethod   = 'MAP'; ⇦ changed! 
● params.OptiMethod   = 'MMD';

The script will raise a figure. You will see the four (pre defined) regions displayed with red 
border. After the careful observation of the initialized image, press ENTER to run the 
optimization.

29



Test 1

30Right after initialization



Test 1

31After the optimization process finished



THE END

32


