
Lab 08
Basic Image Processing

Fall 2019

It is important to understand all the spaces and their dimensionalities in this task.

Consider an S space:

Every element of S is a vector with n coordinates:

The Si subsets of S are the clusters:

 and

and where

Also, there are μ vectors representing the mean
values aka the centroids of every cluster:

Spaces & dimensions (in pure math)

These are the ‘k’-s in the term
‘k-means’. They tell you the

number of clusters.

4

Spaces & dimensions (in MATLAB)

This is the ‘k’
we praise :)

S = x_1
 x_2
 x_3

n

M = mu_1
 mu_2

 mu_k

n

k

LUT =

m

m

Let us translate the terms of the previous slide into MATLAB.

Consider an S space, represented by a matrix.

Every row of S is a vector with n items:

 S(1,:) = x_1 = [x_11 x_12 … x_1n]

The S_i subsets of S are the clusters. Their rep-
resentations are stored in a look-up-table (LUT).
The index represents the index, the value repre-
sents the cluster # of a row vector x_a of S.

Also, the μ mean vectors are stored in a matrix
similar to S, denoted by M. Its elements are

 M(j,:) = mu_j = [mu_j1 … mu_jn] 5

So what is stored in the LUT?

LUT = 1 3 2 1 3

m = 5

The LUT does the vector-cluster mapping.

Index: 1 2 3 4 5

The LUT is a vector. It has as
many elements as the number of
vectors in the space S.

Every element of
the LUT has an
index and a value.

The value at
position j tells us
which cluster does
vector xj belong to.

6

Now please

download the ‘Lab 08’ code package

from the

submission system

7

https://users.itk.ppke.hu/~nasma1/kep

Exercise 1
Implement the function step1_initialization in which:
● The function has 2 inputs and 2 outputs:

Inputs:

○ S set of points to be clustered
○ k number of clusters

Outputs:

○ LUT the assignment vector
○ M the matrix of centroids

The function should initialize LUT and M as described on the next slide!

After implementation, test your function with the script test1_initialization!
8

Step 1: Initialization
● initialize the LUT (as an 1 × m vector, filled with zeros),
● initialize the M matrix (as a k × n matrix, filled with zeros),
● choose k-many vectors as the initial cluster center points and

store them in M.

Now (to be able to reproduce the results)
we are NOT using random initialization

but an equidistant distribution!

We choose every -th element as an initial center.

E.g:

9

means floor()

S =

The first and then every 3rd element of S
will be selected to be an element of M.

Exercise 2
Implement the function step2_assignment in which:
● The function has 4 inputs and 1 output:

Inputs:

○ S set of points to be clustered
○ k number of clusters

Outputs:

○ LUT the updated assignment vector

The function should update LUT as described on the next slide!

After implementation, test your function with the script test2_assignment!

10

○ LUT the assignment vector
○ M the matrix of centroids

Step 2: Assignment
In this step:

For every x_i vector in S (i=1..m)
For every mu_j vector in M (j=1..k)

Calculate the distance between x_i and mu_j:

From the calculated d_ij distances choose the smallest one,
and store the index of the minimum in the LUT at position i :

11

Exercise 3
Implement the function step3_update in which:
● The function has 4 inputs and 1 output:

Inputs:

○ S set of points to be clustered
○ k number of clusters

Outputs:

○ M the updated matrix of centroids

The function should update M as described on the next slide!

After implementation, test your function with the script test3_update!

12

○ LUT the assignment vector
○ M the matrix of centroids

Step 3: Update
In this step:

For every mu_j vector in M (j=1..k)
Select every x vector of S that is assigned to the j-th cluster:
MATLAB hint: You can index a vector logically! If the LUT is a vector and you write LUT == 1 then this expression
will return a logical vector: 1 if the element == 1, 0 otherwise.

If A = [1 2 3 1 1 2 1] then A == 1 returns [1 0 0 1 1 0 1]

The other trick is that if you index a vector or matrix with a logical vector, the result will be the set of those elements
that has the same indices where the logical vector contained 1-s.

If B = [1 2 3 4 5 6 7 then B(:,[1 0 0 1 1 0 1]) returns [1 4 5 7 .
 2 0 2 0 1 0 7] 2 0 1 7]

Update mu_j: the new value is the mean of the vectors of this cluster:

13

Exercise 4
Implement the function mykmeans in which:
● The function has 2 inputs and 2 outputs:

Inputs:

○ S set of points to be clustered
○ k number of clusters

Outputs:

○ LUT the final assignment vector
○ M the final matrix of centroids

The function should realize the iterative procedure described on the next slide.
Please print the number of iterations after the execution of the iterative procedure.

After implementation, test your function with the script test4_mykmeans!
14

Pseudo-code of the k-means algorithm
function mykmeans(S, k)

Initialization step
while not converged and number of iterations is less than 100

Assignment step
Update step

The algorithm converged if in the update step the sum of the distances between
the old and new cluster center points is less than a threshold:

15

Exercise 4 – result

16

An RGB color image is represented by a 3D matrix. It has h rows, w columns and
3 layers along the 3rd dimension. These layers are the R, G and B color layers.

To be able to cluster an image with the the k-means function we somehow has to
transform the 3D matrix into a 2D array of row vectors.

We are using the MATLAB reshape function. (See upcoming slides).

Let’s work with image data

S =

IMG =

w

h

h × w

17

3

3

rearrangement

How to create a segmented image?

18

S = x_1
x_2
x_3
x_4
x_5
x_6
x_7
x_8

A = a_1 = mu_1
a_2 = mu_1
a_3 = mu_1
a_4 = mu_2
a_5 = mu_2
a_6 = mu_2
a_7 = mu_1
a_8 = mu_2

Before clustering Result of the clustering Replacement result

M = mu_1
mu_2

LUT = 1 1 1 2 2

Index: 1 2 3 4 5 6 7 8

2 1 2

k = 2

After the segmentation is complete we should rearrange the resulted A matrix into
a matrix which has the sizes of the original image. This operation is the reverse of
the transformation seen on the previous slide.

Let’s work with image data

19

OUT =

w

h

3

A =

h × w

3

rearrangement

Exercise 5
Implement the function image_segmenter in which:
● The function has 2 inputs and 1 output:

Inputs:

○ I the RGB image to be clustered (segmented) in double format
○ k number of clusters

Outputs:

○ OUT the final segmented image

The function should convert the image to an S representation, call the function
mykmeans on this array, and using the returned LUT and M create the out image.

After implementation, test your function with the script test5_segmenter!

20

Exercise 5 – result

21

THE END

22

