
Lab 04
Basic Image Processing

Fall 2019

Part 1
Line detection with Hough Transform

2

Hough Transform – Introducing the Hough space

3

x

y

b

m
y = m0 x + b0

b0

m0

image space m-b space

everything OK,
except when m=∞

x

y

θ

r
r(θ) = x⋅cos(θ) + y⋅sin(θ)

θ0

r0

image space Hough space (r-θ space)

r
θ

everything OK,
no exception

Hough Transform – The discretized Hough space

4

I =

h

w

The origin of the image is at the
top left corner. The maximal length
line segment on this image is the
diagonal, therefore

H =

n_radii

n_theta

We want the Hough space to be a matrix. For this we have
to discretize the angle and radius values. This is done with
a resolution of 1, meaning that the number of columns is
n_theta = 180 as θ goes from 1° to 180°, and n_radii has
the same value as and hence the resolution of the
matrix along this dimension is 1 pixel.

Hough Transform – Algorithm

5

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)

Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

Return
Return the matrix containing the votes.

Example: running of the algorithm

6

Initialization
For all r and theta initialize H(r, theta) = 0

I =

H =

The size of the input image
was used to determine the
maximal possible radius,
which gives the number

of rows in H.

Example: running of the algorithm

7

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

I =

H =

In this first iteration the first
edge point is selected; it is

I(3, 3)

Example: running of the algorithm

8

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180

I =

H =

I(3, 3)

In this first iteration the first
θ value is selected; it is

theta = 1

Example: running of the algorithm

9

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)

I =

H =

I(3, 3)
theta = 1

r(1°) = 3⋅cos(1°) + 3⋅sin(1°) = 3.05

Example: running of the algorithm

10

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value

I =

H =

I(3, 3)
theta = 1

r(1°) = 3.05

The computed radius value
is rounded

r = 3

Example: running of the algorithm

11

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

I =

H =

I(3, 3)
theta = 1

r(1°) = 3.05

r = 3

The element at H(3, 1) is
selected and its value is

incremented.

Example: running of the algorithm

12

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

I =

H =

I(3, 3)
theta = 1

r(1°) = 3.05

r = 3

Innermost loop core is done,
do the next iteration!

Example: running of the algorithm

13

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180

I =

H =

I(3, 3)

In this second iteration the
next θ value is selected; it is

theta = 2

Example: running of the algorithm

14

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)

I =

H =

I(3, 3)
theta = 2

r(2°) = 3⋅cos(2°) + 3⋅sin(2°) = 3.10

Example: running of the algorithm

15

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value

I =

H =

I(3, 3)
theta = 2

r(1°) = 3.10

The computed radius value
is rounded

r = 3

Example: running of the algorithm

16

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

I =

H =

I(3, 3)
theta = 2

r(1°) = 3.10

r = 3

The element at H(3, 2) is
selected and its value is

incremented.

Example: running of the algorithm

17

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

I =

H =

I(3, 3)
theta = 2

r(1°) = 3.10

r = 3

Innermost loop core is done,
do the next iteration!

Example: running of the algorithm

18

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

I =

H =

After the completion of all iterations with the
theta angle the Hough matrix is filled with votes

coming from the edge pixel at I(3, 3)

I(3, 3)

Example: running of the algorithm

19

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

I =

H =

The next iteration of the outer loop continues this
process with the next edge pixel: I(3, 4)

Example: running of the algorithm

20

Initialization
For all r and theta initialize H(r, theta) = 0

Voting
For each edge point I(x, y) in the image

For each theta value theta = 1:180
Calculate the radius using the formula

r(θ) = x⋅cos(θ) + y⋅sin(θ)
Do the quantization (rounding) of the radius value
Store the vote (increment H(r, theta) by one)

I =

H =

After the completion of all iterations with the
theta angle the Hough matrix is filled with votes

coming from the edge pixel at I(3, 4)

These votes are combined with the votes coming
from the previous edge pixel, so now there are

values in H that were incremented twice.

I(3, 4)

Non-maximum suppression – Goal

21

The use of non-maximum suppression is to process data containing multiple local
maxima points and return the ‘true’ maxima values (and their locations).

The problem:

va
lu

e

Given (a usually noisy) data we want to find the first k maxima
points where the distance between any two maxima points is
greater than p.

va
lu

e

va
lu

e

k = 3, p = 2 k = 2, p = 9 k = 5, p = 1

Non-maximum suppression – Algorithm

22

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array
Suppress the maximum point and all the points in its radius p neighborhood
Decrease k by 1

Return
Return the array containing the maxima points.

Example: running of the algorithm

23

Initialization
Initialize the array of the found maxima points (it has k elements). k = 3, p = 2

va
lu

e
return:

Example: running of the algorithm

24

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

k = 3, p = 2

va
lu

e
return:

k = 3

Example: running of the algorithm

25

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array

k = 3, p = 2

va
lu

e
return:

k = 3

Example: running of the algorithm

26

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array
Suppress the maximum point and all the points in its neighborhood with a radius p
Decrease k by 1.

k = 3, p = 2

va
lu

e
return:

p p

k = 3

k := 2

Example: running of the algorithm

27

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array

k = 3, p = 2

va
lu

e
return:

k = 2

Example: running of the algorithm

28

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array
Suppress the maximum point and all the points in its neighborhood with a radius p
Decrease k by 1.

k = 3, p = 2

va
lu

e
return:

p p

k = 2

k := 1

Example: running of the algorithm

29

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array

k = 3, p = 2

va
lu

e
return:

k = 1

Example: running of the algorithm

30

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array
Suppress the maximum point and all the points in its neighborhood with a radius p
Decrease k by 1.

k = 3, p = 2

va
lu

e
return:

p p

k = 1

k := 0

Example: running of the algorithm

31

Initialization
Initialize the array of the found maxima points (it has k elements).

Iterative counting
While k is not zero

Find the global maximum in the data
Put this maximum point into the return array
Suppress the maximum point and all the points in its neighborhood with a radius p
Decrease k by 1.

Return
Return the array containing the maxima points.

k = 3, p = 2

return:
va

lu
e

Now please

download the ‘Lab 04’ code package

from the

submission system

32

https://users.itk.ppke.hu/~nasma1/kep

Exercise 1
Implement the function my_hough in which:
Realize the Hough Transform algorithm as described on Slide 5.
● Initialize the H matrix, where

○ the number of rows is the longest possible r radius on your original image (diagonal)
○ the number of columns is 180, referring the range of the angle theta ∈ [1, 180]

● Iterate through your input image (input_img) with two (nested) for loops,
and compute the (rounded) r radius at every nonzero pixel with all the
possible θ values. Increment H at the appropriate location.

● After processing every edge pixel, return the Hough matrix.

Since the Hough transformation is applied on binary edge images, you can be
sure that the input image is a black-and-white 0, 1 logical binary matrix.

Test your function with script1.m
33

61°

122°

The comments in amber are
not part of the Matlab figure.

Exercise 2
Implement the function non_max_sup which has 3 input parameters:
● H: input matrix
● k: number of maxima points, whose neighboring regions should be suppressed,
● p: the radius of the region around a maximum to be suppressed.

The algorithm to be implemented: while k > 0 do the followings
● find the maximum value of your Hough space array (H), collect its r and theta

index in r_vect and t_vect arrays,
● replace the values in the [-p, p] neighborhood of the maximum point with zeros
● decrease k

See next slide for tips & tricks!

35

Exercise 2 – continued
Practical things to consider
there is a function called ind2sub which translates a linear indexing coordinate to
a 2D one. You can use this trick for finding the location of the global maximum.

To avoid illegal indices when replacing the elements of H, use only integers >= 1
if H(x_n, y_n) is the center of the neighborhood
then H(x_1:x_2, y_1:y_2) = 0

where
x_1 = maximum of { 1; x_n-p}
x_2 = minimum of {size(H, 1); x_n+p}
y_1 = …
y_2 = …

Test your function with script2.m
36

Exercise 3

After implementing the Hough algorithm and the non-maximum suppression,
please open script3.m and try to understand what is happening there.

Run the script, examine the result and try to adjust the parameters to get
something similar to the result presented on the next slide.

37

Part 2
Image enhancement

39

40

41

42

43

Exercise 4
Implement the function calc_hist_vector in which:
● Create the empty hist_vector as an accumulator vector, the number of

elements should be the number of possible pixel intensities (256).
● Iterate through your input image (input_img) with two (nested) for loops,

registering the intensity-values of every pixel in your accumulator vector:
hist_vector(idx) = hist_vector(idx) + 1;

(Be careful! Image intensity ∈ [0, 255], Matlab vector index ∈ [1, 256])

The sum of your hist_vector should give the total number of pixels present in
your image.

Run script4.m which will plot your returned vector as a bar chart.

44

Exercise 5
Implement the function stretch_lin in which:
● Find the minimum and maximum intensity values of your input image

(input_img).
● Stretch its dynamic range with the formula given on Slide 41.

Your resulting image should contain rounded values in the range [0, 255] with type
uint8.

Run script5.m to check your implementation.

46

Exercise 6
Implement the function stretch_log in which:
● Apply the point-wise log transformation at every pixel (as given on Slide 43).
● Find the minimum and maximum intensity values of your transformed image.
● Stretch its dynamic range with the formula given on Slide 41.

Your resulting image should contain rounded values in the range [0, 255] with type
uint8.

Run script6.m to check your implementation.

48

THE END

50

