
Lab 03
Basic Image Processing

Fall 2019



2



3

2D convolution in practice

The inputs of the 2D 
convolution function 
are the image and 
the kernel.

The output is an 
image which has 
the same size as 
the input.

.8 .9 .3 .4 .3 .8

.0 .2 .3 .4 .2 .1

.2 .8 .2 .1 .2 .3

.5 .3 .2 .1 .3 .2

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

O = 



4

2D convolution in practice

In the output a pixel 
value is computed 
using the values in 
the corresponding 
neighborhood and 
the rotated kernel 
matrix.

The matrices are 
multiplied 
elementwise and 
the values are 
summed. 

.8 .9 .3 .4 .3 .8

.0 .2 .3 .4 .2 .1

.2 .8 .2 .1 .2 .3

.5 .3 .2 .1 .3 .2

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

1.0

O = 

.9 × 1 + .3 × 0 + .4 × 1

.2 × 0 + .3 × -4 + .4 × 0

.8 × 1 + .2 × 0 + .1 × 1

∑ = 1.0



5

2D convolution in practice

With this method 
almost every pixel 
of the output can be 
calculated.

.8 .9 .3 .4 .3 .8

.0 .2 .3 .4 .2 .1

.2 .8 .2 .1 .2 .3

.5 .3 .2 .1 .3 .2

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

1.0

O = 



? ? ?

6

2D convolution in practice

Using this method 
almost every pixel 
of the output can be 
calculated.

The problem is that 
on the edges of the 
output the neighbor- 
hood includes non- 
existing pixels.

.8 .9 .3 .4 .3 .8

.0 .2 .3 .4 .2 .1

.2 .8 .2 .1 .2 .3

.5 .3 .2 .1 .3 .2

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

1.0

O = 



7

2D convolution in practice

Solution: extend the 
image; create a 
zero-padded 
version (add some 
rows and columns 
to the matrix to 
make its size ‘OK’).

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

1.0

O = 

0 0 0 0 0 0 0 0

0 .8 .9 .3 .4 .3 .8 0

0 .0 .2 .3 .4 .2 .1 0

0 .2 .8 .2 .1 .2 .3 0

0 .5 .3 .2 .1 .3 .2 0

0 0 0 0 0 0 0 0



8

2D convolution in practice

With this ‘trick’ the 
non-existing pixels 
can be treated as 
zeros and the 
computation can be 
done just like in the 
previous case.

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

-0.6

1.0

O = 

0 0 0 0 0 0 0 0

0 .8 .9 .3 .4 .3 .8 0

0 .0 .2 .3 .4 .2 .1 0

0 .2 .8 .2 .1 .2 .3 0

0 .5 .3 .2 .1 .3 .2 0

0 0 0 0 0 0 0 0

0 × 1 + 0 × 0 + 0 × 1

.9 × 0 + .3 × -4 + .4 × 0

.2 × 1 + .3 × 0 + .4 × 1

∑ = -0.6



9

2D convolution in practice

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

-0.6

1.0

O = 

0 0 0 0 0 0 0 0

0 .8 .9 .3 .4 .3 .8 0

0 .0 .2 .3 .4 .2 .1 0

0 .2 .8 .2 .1 .2 .3 0

0 .5 .3 .2 .1 .3 .2 0

0 0 0 0 0 0 0 0



10

2D convolution in practice

With the appropriate 
padding even the 
corner pixels can be 
computed.

I = 1 0 1

0 -4 0

1 0 1

K_rot = 

-3.0 -0.6

1.0

O = 

0 0 0 0 0 0 0 0

0 .8 .9 .3 .4 .3 .8 0

0 .0 .2 .3 .4 .2 .1 0

0 .2 .8 .2 .1 .2 .3 0

0 .5 .3 .2 .1 .3 .2 0

0 0 0 0 0 0 0 0

0 × 1 + 0 × 0 + 0 × 1

0 × 0 + .8 × -4 + .9 × 0

0 × 1 + .0 × 0 + .2 × 1

∑ = -3.0



Now please 

download the ‘Lab 03’ code package

from the

submission system

11

https://users.itk.ppke.hu/~nasma1/kep


Exercise 1
Implement the function myconv in which:
● Extend your input image (input_img) with zero-valued boundary cells. Use 

padarray().
● Rotate your kernel (kernel) with 180 degrees, (to ensure the right order of 

elements for element-wise multiplication – see the boxed formula on bottom of 
Slide 2). Use rot90().

● Iterate through your extended image with two (nested) for loops, multiplying 
every portion of your extended image with the rotated kernel (even include the 
corner regions as shown in Slide 10).

● The resulting image (output_img) should have the same size as the input 
image (input_img).

12



Exercise 1 – continued
You can assume that the input of the function is a double type grayscale image with 
values in the [0,1] range. You can also know that the size of the kernel is 3 × 3.

You should return the result of the convolution “as is”, without any scaling or type 
conversion.

Run script1.m to check your implementation, and please examine the result.
● Numerical check:

○ the calculated difference value should be smaller than 10 –9

○ the dynamics range of the convolved image is moved from [0, 1] to approx. [-2.5, 2.5]
● Visual check: the left side of the trees should be black, the right should be white.

13



14



Exercise 2
Modify your function myconv in order to:
● Be able to compute with kernels of size (2k+1) × (2k+1) where k = 1, 2, 3, ...

(it means: your padding should depend on the size of the incoming kernel)

● Furthermore, all of the previous conditions should be satisfied.

Run script2.m to check your implementation, and please examine the result.

15



16



Exercise 3
Modify your function myconv in order to:
● Be able to compute with kernels of size (2a+1) × (2b+1) where

a = 1, 2, 3, ...
b = 1, 2, 3, ...
(it means: your padding should depend on the size of the incoming kernel in 
both dimensions as the kernel is not a square anymore)

● Furthermore, all of the previous conditions should be satisfied.

Run script3.m to check your implementation, and please examine the result.

17

a ≠ b



18



THE END

19


