Assignment 2

Basic Image Processing
Fall 2019

Overview

In this assignment three image enhancement methods has to be implemented:

Part 1: Wallis operator
Image enhancement technique, in a way that the local mean and local contrast of
your image to be forced toward predefined values.

Part 2: Anisotropic diffusion (Perona-Malik diffusion)
Image enhancement technique: allows blurring (noise filtering) in directions with
low gradient value, but penalizes diffusion orthogonal to the edge direction.

Part 3: Median filter
Image enhancement technique: very efficient tool to remove salt & pepper noise.

Part 1
Wallis operator

Theory of Part 1

Calculating local means through your image: at every position, calculate the
average in a predefined neighborhood:

z(ny,ny) |,\E|ZZ z(ny + i,n2 + j)

1=—7J]=—T

where
e n,n, row&column coordinates,
o r radius (in which local neighborhood is interpreted),
o |N| number of pixels in the local neighborhood
® X original image,
® X image containing local averages.

Theory of Part 1

Calculating local contrast values through your image: at every position, calculate a
kind of normalized deviation from the local contrast, in a predefined neighborhood:

oi(ni,ng) = i, . Z Z (x(n1 + i,n2 + j) — T(n1 + 4,02 + 5))?

where o

e n,n, row&column coordinates,

o r radius (in which local neighborhood is interpreted),

o |N| number of pixels in the local neighborhood

® X original image,

® X image containing local averages,

® o7 image containing local contrast values.

Theory of Part 1

The Wallis operator itself:
4'477m.;r Od

y(ni,ny) = [x(n1, n2)—2(n1, ny)] +[pZTat+(1-p)Z(n1,n2)]

*’47710.1‘ Ul(n'la n‘?) + 04
where (unseen symbols only):

output image,

desired contrast (scalar --- ¢, is an array),
desired mean (scalar --- x is an array),
maximizing factor for local contrast modification (scalar),
weighting factor of mean compensation (scalar).

ku&q <

max

ASTN

Please
download the ‘Assignment 2’ code package
from the

submission system

The maximum score of this assignment is

5 points

The points will be given in 0.25 point units.
(Meaning that you can get 0, 0.25, 0.5, 0.75, 1, 1.25 etc. points).

https://users.itk.ppke.hu/~nasma1/kep

Exercise 1

Implement the function compute_local mean in which:
e allocate space for your output image (local _mean_img), it should have the
size of your input image (in_img),
e pad your input image with the necessary radius (r), replicating the boundary
values (built-in padarray with replicate option),
e for every pixel location of the output image: calculate the mean value of the
local neighborhood at the specific location on the input image (see Slide 4).

You can assume that the input image is a double type grayscale image with
value-range [0, 1]. The output image should have the same size as your original
input image.

You can test your function by running testl.m

Exercise 2

Implement the function compute local contrast in which:

e allocate space for your output image (local contrast_img), it should have
the size of your input image (in_img),

e pad both of your input images (in_img and local mean_img) with the
necessary radius (r), replicating the boundary values (built-in padarray with
replicate option),

e for every pixel location on the output image: calculate the contrast value of the
local neighborhood at the specific location, on the basis of Slide 5.

You can assume that the input arrays are a double-typed with value-range [0, 1].
You can test your function by running test2.m

Exercise 3

Implement the function apply wallis operator in which:
e allocate space for your output image (processed_img), it should have the size of your input image
(in_img),
e for every pixel location on the output image: calculate the pixel value on the basis of Slide 6, the
equivalence between symbols—function parameters are as follows:

oy processed_img

o x in_img

o X local_mean_img

© x, desired_mean

o o local contrast_img
© o, desired_contrast

o A A max

© p P

You can assume that the input arrays are a double type with value-range [0, 1].
You can test your function by running test3.m

Wallis filtered image

- 1,.‘":5"’ =

Tq = 0-5019690(1 = 0.39216, Anm.r = 4\]’ — 02~ r=4

1

Part 2
Anisotropic diffusion

Anisotropic Diffusion

® The anisotropic diffusion is a technique aiming at reducing
image noise without blurring significant parts of the image
content.

® It was first proposed by Dénes Gabor in 1965 and later by
Perona and Malik around 1990.

® Non-linear and space-variant transformation.

® The main idea is that the effect of blurring in each direction is
inversely proportional to the gradient value in that direction:

* allows diffusion along the edges or in edge-free territories, but penalizes
diffusion orthogonal to the edge direction.
® AD is an iterative process

P. Perona, J Malik (July 1990). "Scale-space and edge detection using anisotropic diffusion”. IEEE Tr. PAMI, 12 (7): 629-639.
D. Gabor, “Information theory in electron microscopy,” Laboratory Investigation, vol. 14/6, pp. 801-807, 1965.

13

Anisotropic Diffusion

Theory* of Part 2 —

It is highly recommended to read the first five sections e
of the Perona-Malik article. etinaeipeiiadis

Fig. 1. A family of I-D signals /(x, 1) obtained by convolving the original
one (bottom) with Gaussian kernels whose variance increases from bot-
tom to top (adapted from Witkin [21]).

Starting point: applying more and more intense
diffusion results in coarser and coarser resolution of
objects.

Arising demand: the standard scale-space paradigm

Ioses the exaCt |Ocation Of ObjeCt-bou ndaries On Fig. 3. Scale-space (scale parameter increasing from top to bottom, and
. . . frorp lcﬂ‘ to right) prociuccd by iso.tmpi_cylincar. diﬂ'usionég(.):‘ 4(“1: L?c

coarser-scale (see Fig. 1. & Fig. 3. of the article). O e Beasaeigfor et . (€A

* The technical details on the upcoming slides are from the article
P. Perona, J Malik: "Scale-space and edge detection using anisotropic diffusion," IEEE Tr. PAMI, vol. 12
no. 7, pp. 629-639., 1990. --- online: http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf

http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf

Theory of Part 2

The heat equation: variation in temperature in a given region over time.

2D case: Given function u(x, y, r) where x, y are spatial coordinates, ¢ is time, and u
itself is the temperature. The heat equation:

ou_, (P,
ot — T \ox2 " 9y

where o is a constant.

(Heat equation intuitively: the rate of change of u« is proportional to the “curvature”
of u — the sharper the corner, the faster it is rounded off.)

16

Theory of Part 2

Anisotropic diffusion:
ol :
i div(c(x,y,t)VI) = Ve - VI +c(x,y, t) AT

where:
e A is the Laplacian,
o V is the gradient,
e div(...) is the divergence,
o c(x, 1) is the diffusion coefficient.

(Please note if ¢(x, y,) is constant, this equation reduces to the isotropic heat diffusion equation.)

¢ should be chosen as a function of the gradient of the brightness-function: this way the conduction can
depend on the edges — high values at intensive regions, lower values at edges:

clx, y, H) = g(IVIx, y,)

17

Theory of Part 2

We have to discretize our continuous equation: 4-nearest-neighbors discretization of the Laplace operator
used:

Izt-l;l = If’j + A [CN g VNI + Ccg - VSI +cCcg - VEI + Cw - VHI]:]

where:
o) is a scalar from [0, 0.25], for numerical stability,
e NSEW stands for North, South, East and West,
e super- and subscripts of the square brackets are applied to all the enclosed terms
o V nearest neighbor difference (and NOT the gradient operation):
© VNIZJ i-]] l]
© VS[U]1+]] l]
© VEIZJ [l]+] i,j
O

v W]i,j Ii,j—]]U

Theory of Part 2

The conduction coefficients should be updated at every iteration as a function of the brightness gradient.
In our case, the norm of the gradient will be approximated with the absolute value of its projection along
the direction of the arc (N/S/EIW):

o =gV, I
o =gV, ID
o ¢, =gV, D
o ¢, =gV, I ID

(Again, V is not the gradient but the nearest neighbor difference.)
(Of course, this is NOT the exact discretization, but the important properties are preserved.)

. —(IVII/K)? where K controls the sensitivity, it is chosen
C. g1(||VI||) = € (V1K) experimentally

1 (behaviors:
C: 92(” VI”) — g, - privileges high-contrast edges over
1+ (||VI||)‘2 low-contrast ones; .
K g, - privileges wide regions over smaller ones)

Exercise 4

Implement the functions g1 and g2 in which:
e realize the formulas on the bottom of Slide 19.

Be careful: they work with arrays as input and output parameters, the operations
should be elementwise inside them (.* ./ .7).

The nearest neighbor difference (the term || V|| on Slide 19) is called nn_diff in
this function.

Please test your functions by running test4.m

20

Exercise 5

Implement the function create_nearest_neighbor_difference_arrays in which:
e first make an enlarged version of your input image with 1 layer padding around it (use the

replicate option),

e then you have to subtract the input image from its different shifted versions (see Slide 18) to create

the different nabla-images.
As an example:

padded:

Please test your functions by running test5.m

original adjusted
here before
subtraction

nabla N: (the red one)

21

Exercise 6

Implement the function apply anisotropic_diffusion in which:

e the input parameter which_g will define which gx function should be used to
create conduction coefficients (if value==1 — g1, else — g2)
e ina for-loop (run the body of the loop iternum times),
o first calculate the different nabla_X arrays with your helper function,
o then create the conduction coeff.s’ arrays (Slide 19 upper part) on the basis of your nabla_X
array and the K input parameter (The expression ”V)(Fi,j || is equivalent to abs(nabla_X)).

o calculate the discretized equation on Slide 18 (do not forget the element-wise multiplications)
o write over your input image array inside the loop with the result of you calculations.

e After iternum iterations, return the last state of the input image as out_img.

Please test your functions by running test6.m

22

Result with g1

original

23

Result with g2

original

Part 3
Median filter

Spatial Filtering

® Median filter: replaces each pixel with the median value of its
analyzed neighborhood. (Median value: the center element of
sorted values)
e Very effective against impulse (,,salt and pepper”) noise:

Input image with salt E— s B e
and pepper noise Blur with convolution Median filter

Exercise 7

Implement the function median_filter in which:
e allocate space for your output image (filtered img), it should have the size
of your input image (in_img),
e pad your input image with the necessary radius (r), replicating the boundary
values (built-in padarray with replicate option),
e for every pixel location of the output image: compute the median (not mean!)
of the values in the neighborhood and store this value as the output.

You can assume that the input image is a double type grayscale image with
value-range [0, 1]. The output image should have the same size as your original
input image.

You can test your function by running test7.m

27

Median filtered image
i +) il

THE END

