
Assignment 2
Basic Image Processing

Fall 2019



Overview
In this assignment three image enhancement methods has to be implemented:

Part 1: Wallis operator
Image enhancement technique, in a way that the local mean and local contrast of 
your image to be forced toward predefined values.

Part 2: Anisotropic diffusion (Perona-Malik diffusion)
Image enhancement technique: allows blurring (noise filtering) in directions with 
low gradient value, but penalizes diffusion orthogonal to the edge direction. 

Part 3: Median filter
Image enhancement technique: very efficient tool to remove salt & pepper noise.
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Part 1
Wallis operator
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Theory of Part 1
Calculating local means through your image: at every position, calculate the 
average in a predefined neighborhood:

where
● n1, n2 row & column coordinates,
● r radius (in which local neighborhood is interpreted),
● |N| number of pixels in the local neighborhood
● x original image,
● x̄ image containing local averages.
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Theory of Part 1
Calculating local contrast values through your image: at every position, calculate a 
kind of normalized deviation from the local contrast, in a predefined neighborhood:

where
● n1, n2 row & column coordinates,
● r radius (in which local neighborhood is interpreted),
● |N| number of pixels in the local neighborhood
● x original image,
● x̄ image containing local averages,
● σl image containing local contrast values.
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Theory of Part 1
The Wallis operator itself:

where (unseen symbols only):
● y output image,
● σd desired contrast (scalar --- σl is an array),
● x̄d desired mean (scalar --- x̄ is an array),
● Amax maximizing factor for local contrast modification (scalar),
● p weighting factor of mean compensation (scalar).

6



Please 

download the ‘Assignment 2’ code package

from the

submission system

The maximum score of this assignment is 
5 points

The points will be given in 0.25 point units.
(Meaning that you can get 0, 0.25, 0.5, 0.75, 1, 1.25 etc. points).
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https://users.itk.ppke.hu/~nasma1/kep


Exercise 1
Implement the function compute_local_mean in which:
● allocate space for your output image (local_mean_img), it should have the 

size of your input image (in_img),
● pad your input image with the necessary radius (r), replicating the boundary 

values (built-in padarray with replicate option),
● for every pixel location of the output image: calculate the mean value of the 

local neighborhood at the specific location on the input image (see Slide 4).

You can assume that the input image is a double type grayscale image with 
value-range [0, 1]. The output image should have the same size as your original 
input image.
You can test your function by running test1.m
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Exercise 2
Implement the function compute_local_contrast in which:
● allocate space for your output image (local_contrast_img), it should have 

the size of your input image (in_img),
● pad both of your input images (in_img and local_mean_img) with the 

necessary radius (r), replicating the boundary values (built-in padarray with 
replicate option),

● for every pixel location on the output image: calculate the contrast value of the 
local neighborhood at the specific location, on the basis of Slide 5.

You can assume that the input arrays are a double-typed with value-range [0, 1].
You can test your function by running test2.m
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Exercise 3
Implement the function apply_wallis_operator in which:

● allocate space for your output image (processed_img), it should have the size of your input image 
(in_img),

● for every pixel location on the output image: calculate the pixel value on the basis of Slide 6, the 
equivalence between symbols–function parameters are as follows:

○ y processed_img

○ x in_img

○ x̄ local_mean_img

○ x̄d desired_mean

○ σl local_contrast_img

○ σd desired_contrast

○ Amax A_max

○ p p

You can assume that the input arrays are a double type with value-range [0, 1].
You can test your function by running test3.m 10
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Part 2
Anisotropic diffusion
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Theory* of Part 2
It is highly recommended to read the first five sections 
of the Perona-Malik article.

Starting point: applying more and more intense 
diffusion results in coarser and coarser resolution of 
objects.

Arising demand: the standard scale-space paradigm 
loses the exact location of object-boundaries on 
coarser-scale (see Fig. 1. & Fig. 3. of the article).

* The technical details on the upcoming slides are from the article 
P. Perona, J Malik: "Scale-space and edge detection using anisotropic diffusion," IEEE Tr. PAMI, vol. 12 
no. 7, pp. 629–639., 1990. --- online: http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf 15

http://image.diku.dk/imagecanon/material/PeronaMalik1990.pdf


Theory of Part 2
The heat equation: variation in temperature in a given region over time.

2D case: Given function u(x, y, t) where x, y are spatial coordinates, t is time, and u 
itself is the temperature. The heat equation:

where α is a constant.

(Heat equation intuitively: the rate of change of u is proportional to the “curvature” 
of u → the sharper the corner, the faster it is rounded off.)
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Theory of Part 2
Anisotropic diffusion:

where:
● ∆ is the Laplacian,
● ∇ is the gradient,
● div(...) is the divergence,
● c(x, y, t) is the diffusion coefficient.

(Please note if c(x, y, t) is constant, this equation reduces to the isotropic heat diffusion equation.)

c should be chosen as a function of the gradient of the brightness-function: this way the conduction can 
depend on the edges → high values at intensive regions, lower values at edges:

c(x, y, t) = g(ǁ∇I(x, y, t)ǁ) 17



Theory of Part 2
We have to discretize our continuous equation: 4-nearest-neighbors discretization of the Laplace operator 
used:

where:
● λ is a scalar from [0, 0.25], for numerical stability,
● N, S, E, W stands for North, South, East and West,
● super- and subscripts of the square brackets are applied to all the enclosed terms
● ∇ nearest neighbor difference (and NOT the gradient operation):

○ ∇NIi,j ≡ Ii-1,j - Ii,j
○ ∇SIi,j ≡ Ii+1,j - Ii,j
○ ∇EIi,j ≡ Ii,j+1 - Ii,j
○ ∇WIi,j ≡ Ii,j-1 - Ii,j 18



Theory of Part 2
The conduction coefficients should be updated at every iteration as a function of the brightness gradient. 
In our case, the norm of the gradient will be approximated with the absolute value of its projection along 
the direction of the arc (N/S/E/W):

● ct
Nij   = g(||∇NIt

i,j ||)
● ct

Sij    = g(||∇SI
t
i,j  ||)

● ct
Eij   = g(||∇EIt

i,j  ||)
● ct

Wij  = g(||∇WIt
i,j||)

(Again, ∇ is not the gradient but the nearest neighbor difference.)
(Of course, this is NOT the exact discretization, but the important properties are preserved.)
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where K controls the sensitivity, it is chosen 
experimentally
(behaviors: 
g1 - privileges high-contrast edges over 
low-contrast ones;
g2 - privileges wide regions over smaller ones)



Exercise 4
Implement the functions g1 and g2 in which:

● realize the formulas on the bottom of Slide 19.

Be careful: they work with arrays as input and output parameters, the operations 
should be elementwise inside them (.*   ./   .^). 

The nearest neighbor difference (the term ||∇I|| on Slide 19) is called nn_diff in 
this function.

Please test your functions by running test4.m
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Exercise 5
Implement the function create_nearest_neighbor_difference_arrays in which:

● first make an enlarged version of your input image with 1 layer padding around it (use the 
replicate option),

● then you have to subtract the input image from its different shifted versions (see Slide 18) to create 
the different nabla-images.

As an example:

Please test your functions by running test5.m 21

I:

padded: original adjusted
here before
subtraction

nabla_N: (the red one)



Exercise 6
Implement the function apply_anisotropic_diffusion in which:

● the input parameter which_g will define which gx function should be used to 
create conduction coefficients (if value==1 → g1, else → g2)

● in a for-loop (run the body of the loop iternum times), 
○ first calculate the different nabla_X arrays with your helper function,
○ then create the conduction coeff.s’ arrays (Slide 19 upper part) on the basis of your nabla_X 

array and the K input parameter (The expression ||∇XIt
i,j || is equivalent to abs(nabla_X)).

○ calculate the discretized equation on Slide 18 (do not forget the element-wise multiplications)
○ write over your input image array inside the loop with the result of you calculations.

● After iternum iterations, return the last state of the input image as out_img.

Please test your functions by running test6.m
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Result with g1
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Result with g2
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Part 3
Median filter
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Exercise 7
Implement the function median_filter in which:
● allocate space for your output image (filtered_img), it should have the size 

of your input image (in_img),
● pad your input image with the necessary radius (r), replicating the boundary 

values (built-in padarray with replicate option),
● for every pixel location of the output image: compute the median (not mean!) 

of the values in the neighborhood and store this value as the output.

You can assume that the input image is a double type grayscale image with 
value-range [0, 1]. The output image should have the same size as your original 
input image.
You can test your function by running test7.m
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THE END
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