
SSL / TLS

PPKE, ITK

Csapodi Márton

Secure Network Protocols for

the OSI Stack

Application layer ssh, S/MIME, PGP, Kerberos, WSS

Transport layer TLS, [SSL]

Network layer IPsec

Data Link layer [PPTP, L2TP], IEEE 802.1X,

IEEE 802.1AE, IEEE 802.11i

(WPA2)Physical layer Quantum Cryptography

Communication layers Security protocols

SSL/TLS Protocol Layers

Secure

Transport Layer

TLS

TCP

IP

Application

Transport

Fragmentation

Compression

Authentication

Encryption
Insecure Transport

Layer

TCP

IP

ApplicationApplication

Sockets

Handshake
Change

CipherSpec
Alert

Application

Application Data (messages)

TLS - Record Protocol (records)

SSL/TLS Protocol Layers

TCP - Transport Protocol (stream)

IP - Network Protocol (packets)

SSL/TLS Operation Phases (high level)

• TCP Connection setup (Syn+Ack)

• Handshake (key establishment)

– Negotiate (agree on) algorithms, methods

– Authenticate server and optionally client, establish keys

• Data transfer

• Secure Teardown

• TCP connection closure (Fin+Ack)

Client

Server

Syn

+Ack

Handshake
Data

Transfer Teardown
Fin

+Ack

Data transfer: Record Protocol

• Assumes underlying reliable communication (TCP)

• Four services (in order):

– Fragment: break TCP stream into fragments (<16KB)

• Pipeline: send processed frag 1 while processing 2 and receiving 3

– Compress (lossless) each fragment

• Reduce processing, communication time

• Ciphertext cannot be compressed – must compress before

• Risk: exposure of amount of redundancy → compression attacks

– Authenticate: [seq#||type||version||length||comp_fragment]

– Encrypt

• After padding (if necessary)

• Finally, add header: type (protocol), version & length

Fragmentation, compression,

authentication, encryption

[Compressed] Data MAC Padding

TCP Header

Record Header

n * Block Cipher Size

Record Body

Application Data (Segment 1)

Record Header Encrypted Data

Application Data (Segment 2)

5 Bytes

Fragmentation, compression,

authentication, encryption

Message sent by the application, e.g. HTTP request

Message sent by th he application, e.g. HTTP request

<16KB <16KB <16KB

Send each block via TCP

Fragment

Compress

MAC

Encrypt

Pad (if needed)

Fragmentation, compression,

authentication, encryption

Message sent by the application, e.g. HTTP request

Message sent by th he application, e.g. HTTP request

<16KB <16KB <16KB

Send each block via TCP

Fragment

Compress

MAC

Encrypt

Pad (if needed)

Fragment then Compress:

simpler - but revealing ?

TLS1.1,1.2: pad to fixed-lengths

to hide exact length

Exploited: CRIME, TIME attacks

Often CBC; which IV?

SSL, TLS 1.0: from prev. block

➔Chosen-plaintext Block Attack

TLS1.1, 1.2: random IV

Vulnerabilities

• Surprisingly many found, exploited!

• ➔ SSL, TLS1.0: vulnerable record protocol:

– Attacks on RC4 → to be avoided

– CBC IV reuse in session (BEAST)

– MAC-then-encrypt: padding attacks (Lucky13,

POODLE)

– Compress-then-encrypt: CRIME, TIME

– downgrading to use vulnerable version

– etc.

SSL/TLS Handshake Protocol

• The beginning: SSLv2

– SSLv1 was never published, released

• The evolution: from SSLv3 to TLS 1.2

– TLS: the IETF version of SSL

• State-of-Art: TLS 1.3

– Significant changes

• Our focus is on the handshake protocol

Simplified SSLv2 Handshake

SSLv2: important concepts

SSLv2 Session Resumption

SSLv2 Ciphersuite Negotiation

• Client, server sends cipher-suites

• Client specifies choice in client-key-exchange

SSLv2 Ciphersuite Negotiation

• Client, server sends cipher-suites

• Client specifies choice in client-key-exchange

• Example: RC4_128_MD5 chosen

• Vulnerable to downgrade attack!

SSLv2 Downgrade Attack

• Server and client tricked into using (insecure)

40-bit encryption (`export version’)

•

• Attacker may record connection and decrypt

later – no need for real-time cryptanalysis!

The evolution: SSLv3, TLS1.0,

1.1, 1.2
• Main improvements:

– Improved key derivation

• Premaster key → master key → connection keys

– Improved negotiation and handshake integrity

• Prevents SSLv2 downgrade attack

• Secure extensions, protocol-negotiation & more

– DH key exchange and PFS (perfect forward

secrecy)

• SSLv2 allowed only RSA; TLS 1.3: only PFS

– Session-ticket resumption

Basic RSA Handshake: SSL3-

TLS1.2

SSL3-TLS1.2: Key Derivation

• Handshake exchanges premaster key

• Derive master key (PRF: pseudo random

function):

– In case premaster key is not (fully) random

• Weak randomness at a (weak) client

• Weak client reuses same PK-encrypted key

• DH-derived premaster key

SSL3-TLS1.2: Key Derivation

• Handshake exchanges premaster key

• Derive master key:

• Derive key block from master key:

• Chop keys from key-block (A:

authentication, E: encryption):

SSL3-TLS1.2: Agility and Integrity

• SSLv2: limited cipher-agility (ciphersuites)

– And no integrity: vulnerable to downgrade

attack

• SSLv3 to TLS1.2: integrity + improved

agility:

– Handshake integrity – foils downgrade attack!

– Backwards compatibility

– TLS extensions

– Version-dependent key separation

SSL3-TLS1.2: Handshake integrity

• Foils the downgrade attack on SSLv2

• Extend the finish-message validation:

authenticate entire previous handshake

flows

– Some differences between versions:

simplified

SSL3-TLS1.2: Backward

compatibility
• Challenge: upgrading existing protocol

– Unrealistic: all upgrade at same day

– Backward compatibility: new (server, client)

can still work with old (client, server)

• Server selects version based on client’s (in ‘hello’)

• Downgrade prevented using ‘finish’ authentication

• Dilemmas for clients:

– Some servers fail to respond to new

handshake

– ‘Downgrade-dance’ clients: try new versions,

then older → vulnerable!

Advanced Handshake Features

• Client authentication

• Perfect Forward Secrecy (PFS)

- ephemeral Diffie-Hellman keys

• Session resumption (ID-based, ticket)

• TLS 1.3 handshakes

TLS/SSL Client Authentication

• Usually, TLS/SSL used only with server PK

– Only allows client to authenticate server

– Client authentication: encrypt secret (pw, cookie)

• But TLS/SSL also allows client certificates

• How?

– Client authenticates

by signing with

certified PK

• Easy – no PW!

• But: PKI challenges, device dependency

• ➔ Limited use, mainly within organization/community

TLS/SSL Client Authentication
Client Server

ClientHello (ciphersuites, Client_random)

Certificate

ClientKeyExchange (Encrypted Pre_Master_Secret)

Finished

Finished

ServerHello (ciphersuite, Server_random)

ServerHelloDone

CCS

CCS

CertificateRequest

Certificate

CertificateVerify
Signature over all

handshake messages

Acceptable CA
and cert formats

SSL Client Authentication: Issues

Which identifier?
No global, unique namespace

Result: each server use its own client names, certificates

Support for mobility of cert and key…
Smartcard, USB `stick`?

➔Rarely used

Ephemeral Diffie-Hellman keys

• Ephemeral keys: per-connection

– Per-connection public keys ? Why?

• Motivations?

– Perfect forward security: present traffic immune from

future exposure – incl. of past keys

– Historical: ‘export-grade’ (weak) keys (512 bit RSA)

• How?

– Diffie-Hellman key exchange

– Authenticated using long-term keys

TLS/SSL Handshake:

Ephemeral DH

TLS/SSL Ephemeral PK

HandshakeClient Server
ClientHello

Certificate

ClientKeyExchange

Finished

ServerHello

ServerHelloDone

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

ServerKeyExchange

Finished

RSA/DSA Signature

over DH exponent

client’s

exponent

ID-based Session Resumption

• Idea: server, client store (ID, key) per peer

• Reuse in new connections btw same pair

• Saves PK operations (CPU, BW)

Session-ID Resumption

Handshake

Client Server
ClientHello (cipher-suites, resume(session_id), Client_random)

Finished (Confirmation -MAC of handshake messages)

Finished (Confirmation -MAC of handshake messages)

ServerHello (Chosen cipher-suite, session_id, Server_random)

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

In first session of connection (not resumed), client
does not send session_id, and only server sends it

with ServerHello to allow resumption

Session Resumption Issues

• Need to keep state, lookup ID…

– Overhead (➔small cache: less effective)

– Need to share among (many!) replicates of server

– For PFS: ensure keys disappear after ‘period’

• Solution: Client-side caching

(Session-Ticket Hello Extension)

– Ticket contains master key, encrypted by a secret

session ticket key, known (only) to server

• Share with other servers of this site

• Change periodically to enforce PFS

– Uses TLS extension (not in SSL)

Session-Ticket Resumption

– To preserve PFS:

• Tickets ‘expire’ after ‘time period’ (e.g., 24 hours)

• Ticket-key changed rapidly (e.g., every hour or few)

• Ticket-key erased after `time period’ ends (e.g., daily)

– Problem: many servers do not limit ticket-key lifetime

TLS 1.3 ‘Full handshake’: 1-RTT

• No RSA: only DH + signature by server

• 1-RTT: one round trip time

Client Server

Application data (protected)

Finished (Confirmation -MAC of handshake messages)

Finished (Confirmation -MAC of handshake messages)

