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. INTRODUCTION

E STAND TODAY on the brink of a revolution in

cryptography. The development of cheap digital
hardware has freed it from the design limitations of me-
chanical computing and brought the cost of high grade
cryptographic devices down to where they can be used in
such commercial applications as remote cash dispensers
and computer terminals. In turn, such applications create
a need for new types of cryptographic systems which
minimize the necessity of secure key distribution channels
and supply the equivalent of a written signature. At the
same time, theoretical developments in information theory
and computer science show promise of providing provably
secure crvptosystems, changing this ancient art into a
science.
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The best known cryptographic problem is that of pri-
vacy: preventing the unauthorized extraction of informa-
tion from communications over an insecure channel. In
order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation
hetween two people with no prior acquaintance is a com-
mon occurrence in business, however, and it is unrealistic
to expect initial business contacts to be postponed long
enough for keys to be transmitted by some physical means,
The cost and delay imposed by this key distribution
problem is a major barrier to the transfer of business
communications to large teleprocessing networks.

Section 111 proposes two approaches to transmitting
keying information over public (i.e., insecure) channels

Public key distribution systems public key cryptosystem
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A second problem, amenable to cryptographic solution,
which stands in the way of replacing contemporary busi-
ness communications by teleprocessing systems is au-
thentication. In current business, the validity of contracts
is guaranteed by signatures. A signed contract serves as
legal evidence of an agreement which the holder can
present in court if necessary. The use of signatures, how-
ever, requires the transmission and storage of written
contracts. In order to have a purely digital replacement for
this paper instrument, each user must be able to produce
a message whose authenticity can be checked by anyone,
but which could not have been produced by anyone else,
even the recipient. Since only one person can originate
messages but many people can receive messages, this can
be viewed as a broadcast cipher. Current electronic au-
thentication techniques cannot meet this need.
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I1I. PuBLIC KEY CRYPTOGRAPHY

We propose that it is possible to develop systems of the
type shown in Fig. 2, in which two parties communicating
solely over a public channel and using only publicly known
techniques can create a secure connection. We examine two
approaches to this problem, called public key eryptosys-
tems and public key distribution systems, respectively.
The first are more powerful, lending themselves to the
solution of the authentication problems treated in the next
section, while the second are much closer to realization.
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Fig. 2. Flow of information in public key system.
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A public key cryptosystem is a pair of families
{Exik  wo and {Drlk k) of algorithms representing
invertible transformations, ,

Ex:{M} — M} (2)
Dg:{M| -~ {M] (3)

on a finite message space {M}, such that

1) for every K & {K}, Ex is the inverse of Dy,

92) for every K € {K}and M & {M|, the algorithms Ex
and Dy are easy to compute,

3) for almost every K & {K}, each easily computed al-

 gorithm equivalent to Dy is computationally in-

feasible to derive from Fyg,

4) for every K & {K}, it is feasible to compute inverse
pairs Ex and Dy from K.
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A suggestive, although unfortunately useless, example
of a public key cryptosystem is to encipher the plaintext,
represented as a binary n-vector m, by multiplying it by
an invertible binary n X n matrix &. The cryptogram thus
equals Em. Letting D = E~ 1 we have m = De. Thus, both
enciphering and deciphering require about 2 operations.
Calculation of D from E, however, involves a matrix in-
version which is a harder problem. And it is at least con-
ceptually simpler to obtain an arbitrary pair of inverse
matrices than it is to invert a given matrix. Start with the
identity matrix I and do elementary row and column op-
erations to obtain an arbitrary invertible matrix £. Then
starting with 7 do the inverses of these same elementary
operations in reverse order to obtain I) = E 1. The se-
quence of elementary operations could be easily deter-
mined from a random bit string.

Unfortunately, matrix inversion takes only about n3
operations. The ratio of “cryptanalytic” time (i.e., com-
puting D from E) to enciphering or deciphering time is
thus at most n, and enormous bhlock sizes would be re-
quired to obtain ratios of 10° or greater. Also, it does not
appear that knowledge of the elementary operations used
to obtain K from I greatly reduces the time for computing
D). And, since there is no round-off error in binary arith-
metic, numerical stability is unimportant in the matrix
inversion. In spite of its lack of practicalsutility, this matrix
example is still useful for clarifying the relationships
necessary in a public key cryptosystem. '

A more practical approach to finding a pair of easily
computed inverse algorithms E and 1); such that D is hard
to infer from E, makes use of the difficulty of analyzing
programs in low level languages. Anyone who has fried to
determine what operation is accomplished by someone
else’s machine language program knows that E itself (i.e.,
what E does) can be hard to infer from an algorithm for E.
If the program were to be made purposefully confusing
through addition of unneeded variables and statements,
then determining an inverse algorithm could be made very
difficult. Of course, £ must he complicated enough to
prevent its identification from input—output pairs.

Essentially what is required is a one-way compiler: one
which takes an easily understood program written in a high
level language and translates it into an incomprehensible
program in some machine language. The compiler is one-
way because it must be feasible to do the compilation, but
infeasible to reverse the process. Since efficiency in size of
program and run time are not crucial in this application,
such compilers may be possihle if the structure of the
machine language can be optimized to assist in the con-
fusion.
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We now suggest a new public key distribution system

The new technique makes use of the apparent difficulty
of computing logarithms over a finite field GF(g) with a
prime number ¢ of elements. Let

= qXmodg, forl<X<gqg-1, (4)

where « is a fixed primitive element of GF(g), then X is
referred to as the logarithm of Y to the base o, mod g:

X =log, Ymod g, fori1<Y<gqg-—1. (5)

Calculation of Y from X is easy, taking at most 2 X logs g
multiplications [6, pp. 398-422]. For example, for X =
18,

Y= al® = (09922 X o (6)

Computing X from Y, on the other hand can be much more
difficult and, for certain carefully chosen values of g, re-
quires on the order of ¢'/2 operations, using the best known
algorithm [7, pp. 9, 575-576}, [8].
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Each user generates an independent random number
X; chosen uniformly from the set of integers {1,2,+ -+ ,g ~
1}. Each keeps X; secret, but places

Y, = «¥Ximod g ‘ (7)

in a public file with his hame and address. When users ¢
and ; wish to communicate privately, they use

Kij = «® % mod q (8)
as their key. User i obtains K;; by obtaining Y, from the
public file and letting

K= ¥Y;Ximod q (9)

= (/)X mod ¢ (10)
= @ XiXi s XX mod q. (11)

User j obtains K;; in the similar fashion
K;j=Y;%i mod q. (12)

Another user must compute K;; from Y; and Y, for ex-
ample, by computing

I{ﬁj‘ e Yi (log. ¥} mod q. (13)

We thus see that if logs mod ¢ are easily computed the
system can be broken. While we do not currently have a
proof of the converse (i.e., that the system is secure if logs
mod g are difficult to compute), neither do we see any way
to compute K;; from Y; and Y; without first obtaining ei-
ther X; or X;.



New directions in Cryptography

IV. ONie-WAY AUTHENTICATION

The problem of authentication is perhaps an even more
serious barrier to the universal adoption of telecommun-
ications for business transactions than the problem of key
distribution. Authentication is at the heart of any system
involving contracts and billing. Without it, business cannot
function. Current electronic authentication systems cannot
meet the need for a purely digital, unforgeable, message
dependent signature. They provide protection against
third party forgeries, but do not protect against disputes
between transmitter and receiver.

In order to develop a system capable of replacing the
current written contract with some purely electronic form

of coonmunication, we must discover a digital phenomenon
with the same properties as a written signature. It must be
easy for anyone to recognize the signature as authentic, but
impossible for anyone other than the legitimate signer to
produce it. We will call any such technique one-way au-
thentication. Since any digital signal can be copied pre-
cisely, a true digital signature must be recognizable without
being known.
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Consider the “login” problem in a multiuser computer
system. When setting up his account, the user chooses a
password which is entered into the system’s password di-
rectory. Each time he logs in, the user is again asked to
provide his password. By keeping this password secret
from all other users, forged logins are prevented. This,
however, makes it vital to preserve the security of the
password directory since the information it contains would
allow perfect impersonation of any user. The problem is
further compounded if system operators have legitimate
reasons for accessing the directory. Allowing such legiti-
mate accesses, but preventing all others, is next to im-
possible.
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This leads to the apparently impossible requirement for
a new login procedure capable of judging the authenticity
of passwords without actually knowing them. While ap-
pearing to be a logical impossibility, this proposal is easily
satisfied. When the user first enters his password PW, the
computer automatically and transparently computes a
function f(PW) and stores this, not PW, in the password.
directory. At each successive login, the computer calculates
f(X), where X is the proffered password, and compares
f(X) with the stored value f(PW). If and only if they are
equal, the user is accepted as being authentic. Since the
function f must be calculated once per login, its compu-
tation time must be small. A million instructions (costing
approximately $0.10 at bicentennial prices) seems to be
a reasonable limit on this computation. If we could ensure,
however, that calculation of /! required 10%° or more in-
structions, someone who had subverted the system to ob-
tain the password directory could not in practice obtain
PW from f(PW), and could thus not perform an unau-
thorized login. Note that f(PW) is not accepted as a pass-
word by the login program since it will automatically
compute f(f(PW)) which will not match the entry f(PW)
in the password directory.
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We assume that the function f is public information, so
that it is not ignorance of f which makes calculation of f~!
difficult. Such functions are called one-way functions and
were first employed for use in login procedures by R. M.
Needham [9, p. 91]. They are also discussed in two recent
papers [10], [11] which suggest interesting approaches to
the design of one-way functions.

More precisely, a function f is a one-way function if, for
any argument x in the domain of f, it is easy to compute the
corresponding value f(x), yet, for almost all y in the range
of f, it is computationally infeasible to solve the equation
y = f(x) for any suitable argument x. |

A public key cryptosystem can be used to produce a true
one-way authentication system as follows. If user A wishes
to send a message M to user B, he “deciphers” it in his
secret deciphering key and sends D4 (M). When user B
receives it, he can read it, and be assured of its authenticity
by “enciphering” it with user A’s public enciphering key
E 4. B also saves D4 (M) as proof that the message came
from A. Anyone can check this claimn by operating on
D 4 (M) with the publicly known operation E4 to recover
M. Since only A could have generated a message with this
property, the solution to the one-way authentication
problem would follow immediately from the development
of public key cryptosystems.
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Abstract

An encryption method is presented with the novel property that publicly re-
vealing an encryption key does not thereby reveal the corresponding decryption
key. This has two important consequences:

1. Couriers or other secure means are not needed to transmit keys, since a
message can be enciphered using an encrvption key publicly revealed by
the mtended recipient. Only he can decipher the message, since only he
knows the corresponding decryption key.

2. A message can be “signed” using a privately held decryption key. Anvone
can verify this signature using the corresponding publicly revealed en-
cryption key. Signatures cannot be forged, and a signer cannot later deny
the validity of his signature. This has obvious applications in “electronic
mail” and “electronic funds transter” systems.

A message 18 encrypted by representing it as a mumber M, raising M to a
publicly specified power e, and then taking the remainder when the result is
divided by the publicly specified product, n, of two large secret prime numbers
p and ¢. Decryption is similar; only a different, secret, power d 1s used, where
c-d=1 (mod (p—1)-(¢g—1)). The security of the system rests in part on
the difficulty of factoring the published divisor, n.
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I Introduction

The era of “electronic mail™ [10] may soon be upon us; we must ensure that two
important properties of the current “paper mail” svstem are preserved: (a) messages
are private, and (b) messages can be signed. We demonstrate in this paper how to
build these capabilities into an electronic mail systemn.

At the heart of our proposal is a new encryption method. This method provides
an implementation of a “public-key cryptosyvstem,” an elegant concept invented by
Diffie and Hellman [1]. Their article motivated our research, since they presented
the concept but not any practical implementation of such a system. Readers familiar
with [1] may wish to skip directly to Section V for a description of our method.
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V  Our Encryption and Decryption Methods

To encrvpt a message M with our method. using a public encryvption keyv (e, n).
proceed as follows. (Here ¢ and n are a pair of positive integers.)

First. represent the message as an integer between 0 and n — 1. (Break a long
message into a series of blocks, and represent each block as such an integer.) Use any
standard representation. The purpose here is not to encrypt the message but only to
get 1t into the numeric form necessary for encryvption.

Then. encrypt the message by raising it to the eth power modulo n. That is. the
result (the ciphertext ') is the remainder when M€ is divided by n.

To decrypt the ciphertext. raise it to another power d. again modulo n. The
encryption and decryption algorithms £ and D are thus:

C' = E(M)=M° (mod n), for a message M .
D(C)=C" (mod n). for a ciphertext C' .

Note that encryption does not increase the size of a message: both the message
and the ciphertext are integers in the range 0 to n — 1.

The encryption key is thus the pair of positive integers (e.n). Similarly, the
decryption key is the pair of positive integers (d.n). Each user makes his encryption
key public, and keeps the corresponding decrvption key private. (These integers
should properly be subscripted as in n4.e4. and d 4. since each user has his own set.
However, we will only consider a typical set, and will omit the subscripts.)
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How should vou choose vour encryvption and decryption kevs, if you want to use
our method?

You first compute n as the product of two primes p and ¢:
n=up-q.
These primes are very large, “random”™ primes. Although vou will make n public,
the factors p and g will be effectively hidden from evervone else due to the enormous

difficulty of factoring n. This also hides the way d can be derived from e.

You then pick the integer d to be a large. random integer which is relatively prime
to (p—1)- (g —1). That is. check that d satisfies:

oed(d,. (p—1)-(g—1))=1

The integer e is finally computed from p, ¢, and d to be the “multiplicative inverse”
of d, modulo (p—1)- (¢ —1). Thus we have

c-d=1 (mod (p—1)-(qg—1)).
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We demonstrate the correctness of the deciphering algorithm using an identity due

to Euler and Fermat [7]: for any integer (message) M which is relatively prime to n,

M =1 (mod n) . (3)

Here o(n) is the Euler totient function ¢iving number of positive integers less than n
which are relatively prime to n. For prime numbers p,
olp)=p—1.
In our case, we have by elementary properties of the totient function [7]:
o(n) = olp)-olq)
(p—1)-(¢—1) (4)
= n—(p+q)+1.

Since d is relatively prime to o(n).

it has a multiplicative inverse e in the ring of
integers modulo o(n):

e-d=1 (mod ¢(n)).

Med = MEAH = M (mmod n).
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B How to Find Large Prime Numbers

Each user must (privately) choose two large random numbers p and ¢ to create his
own encryption and decryption kevs. These numbers must be large so that it is not
computationally feasible for anvone to factor n = p - ¢. (Remember that n, but not
p or g. will be in the public file.) We recommend using 100-digit (decimal) prime
nunbers p and ¢, so that n has 200 digits.

To find a 100-digit “random”™ prime number. generate (odd) 100-digit random
numbers until a prime number is found. By the prime number theorem [7], about
(In 10"™") /2 = 115 numbers will be tested before a prime is found.

To gain additional protection against sophisticated factoring algorithms. p and ¢
should differ in length by a few digits, both (p — 1) and (¢ — 1) should contain large
prime factors, and ged(p — 1.g — 1) should be small. The latter condition is easily
checked.

To find a prime number p such that (p — 1) has a large prime factor. generate a
large random prime nuwmber w, then let p be the first prime in the sequence 7 - u + 1,
for i = 2.4.6,.... (This shouldn’t take too long.) Additional security is provided by
ensuring that (v — 1) also has a large prime factor.
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C How to Choose d

[t is very easy to choose a number d which is relatively prime to ¢(n). For example.
any prime number greater than max(p.q) will do. It is important that o should be
chosen from a large enough set so that a cryptanalyst cannot find it by direct search.

D How to Compute ¢ from d and ¢(n)

To compute e, use the following variation of Euclid’s algorithm for computing the
greatest common divisor of ¢(n) and d. (See exercise 4.5.2.15 in [3].) Calculate
egcd(@(n), d) by computing a series xq, xy, ra, ..., Where g = o(n), vy =d, and x; | =
ri—1 (mod x;), until an r; equal to 0 i1s found. Then ged(zg. 1) = 2.1, Compute
for each x; numbers a; and b; such that x; = a; - g+ b; - . If 2y = 1 then by,
is the multiplicative inverse of r; (mod xy). Since & will be less than 2log,(n). this
computation is very rapid.

[f ¢ turns out to be less than log,(n), start over by choosing another value of d.
This guarantees that every encrypted message (except M =0 or M = 1) undergoes
some “wrap-around” (reduction modulo n) .
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VIII A Small Example

Consider the case p = 47.q = 59.n = p-q = 47 - 59 = 2773, and d = 157. Then
O(2773) = 46 - 58 = 2668, and ¢ can be computed as follows:
To = 2668, a5 =1, by = 0.
=157, a;, =0, by = 1.
Ty =156,  ay =1, by, = —16 (since 2668 = 157 - 16 4 156) .
Ty =1, a3 =—1, by =17 (since 157 =1-1564+1) .

N

N

§

Therefore ¢ = 17, the multiplicative inverse (mod 2668) of d = 157.

With n = 2773 we can encode two letters per block, substituting a two-digit num-
ber for each letter: blank = 00, A = 01. B =02, ..., Z = 26. Thus the message

ITS ALL GREEK TO ME

(Julius Caesar, I, ii, 288, paraphrased) is encoded:

0920 1900 0112 1200 0718 0505 1100 2015 0013 0500
Since ¢ = 10001 in binary, the first block (M = 920) is enciphered:
MY = ((((1)*- M)yH)*HH)? - M =948 (mod 2773) .
The whole message is enciphered as:
0948 2342 1084 1444 2663 2390 0778 0774 0219 1655 .

The reader can check that deciphering works: 9487 = 920 (mod 2773). etc.
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We show in the next sections that all the obvious approaches for breaking our
systemn are at least as difficult as factoring n. While factoring large numbers is not
provably difficult, it is a well-known problem that has been worked on for the last three
hundred vears by many famous mathematicians. Fermat (16017-1665) and Legendre
(1752-1833) developed factoring algorithis; some of today’s more efficient algorithims
are based on the work of Legendre. As we shall see in the next section. however, no
one has vet found an alegorithm which can factor a 200-digit number in a reasonable
amount of time. We conclude that our system has already been partially “certified”
by these previous efforts to find efficient factoring algorithms.

In the following sections we consider wavs a cryptanalyst might try to determine
the secret decryption key from the publicly revealed encryption kev. We do not
consider ways of protecting the decryption key from theft; the usual physical security
methods should suffice.  (For example, the encryption device could be a separate
device which could also be used to generate the encrvption and decryption kevs. such
that the decrvption key is never printed out (even for its owner) but only used to
decrypt messages. The device could erase the decrvption key if it was tampered with. )
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A Factoring n

Factoring n would enable an enemy cryptanalyst to “break”™ our method. The factors
of n enable him to compute ¢(n) and thus d. Fortunately, factoring a number seems
to be much more difficult than determining whether it is prime or composite.

Table 1 gives the number of
operations needed to factor n with Schroeppel's method. and the time required if
each operation uses one microsecond. for various lengths of the number n (in decimal

digits).
Table 1

Digits  Number of operations  Time

50 1.4 x 10" 3.9 hours

75 9.0 x 102 104 days

100 2.3 x 101 74 vears

200 1.2 x 10% 3.8 % 107 vears
300 1.5 x 10% 4.9 % 10" vears

500 1.3 x 104 1.2 % 10*" vears
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B Computing ¢(n) Without Factoring n

If a cryptanalyvst could compute ¢(n) then he could break the system by computing d
as the multiplicative inverse of ¢ modulo ¢(n) (using the procedure of Section VII D).

We argue that this approach is no easier than factoring n since it enables the
cryvptanalyst to easily factor n using ¢(n). This approach to factoring n has not
turned out to be practical.

How can n be factored using o(n)? First. (p + ¢) is obtained from n and o¢(n) =
n—(p+q)+ 1. Then (p—q) is the square root of (p + ¢q)? — 4n. Finally, ¢ is half the
difference of (p + ¢) and (p — g).

Therefore breaking our svstem by computing o(n) is no easier than breaking our
system by factoring n. (This is why n must be composite; ¢(n) is trivial to compute
if 7 is prime.)
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C Determining d Without Factoring n or Computing o(n).

Of course. d should be chosen from a large enough set so that a direct search for it is
unfeasible.

We argue that computing d is no easier for a eryptanalvst than factoring n. since
once d is known n could be factored easily. This approach to factoring has also not
turned out to be fruitful.

A knowledge of d enables n to be factored as follows. Once a cryptanalvst knows d
he can calculate e-d — 1. which is a umltl]:ln of ¢(n). Miller [6] has shown that n can
be factored using any multiple of ¢(n). Therefore if 7 is large a cryptanalyvst should
not be able to determine d anv easier than he can tfactor n.

A ceryptanalvst may hope to find a d" which is equivalent to the d secretly held by
a user of the public-key cryvptosystem. If such values d" were common then a brute-
force search could break the system. However, all such " differ by the least common
multiple of (p — 1) and (g — 1). and finding one enables n to be factored. (In (3) and

(5). @(n) can be replaced by I m(p —1.qg —1).) Finding any such ' is ’rhmntf re as
difficult as factoring n.
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D Computing D in Some Other Way

Although this problem of “computing e-th roots modulo n without factoring n” is
not a well-known difficult problem like factoring, we feel reasonably confident that it
is computationally intractable. It may be possible to prove that any general method
of breaking our scheme vields an efficient factoring algorithm. This would establish
that anv wav of breaking our scheme must be as difficult as factoring. We have not
been able to prove this conjecture. however.

Our method should be certified by having the above conjecture of intractability
withstand a concerted attempt to disprove it. The reader is challenged to find a way
to “break” our method.



