
CS 280: Homework 8 Solutions

Date of Handout: 24 Nov 99
Problem 1: (5 points) Assume that all possible Turing machines are writ-

ten down in the sequence M1,M2,M3, . . . . Assume that all strings of �nite
length are written down without any repetitions in the sequence w1, w2, w3, . . .
Prove that the language

Ld =
{
wi
∣∣Mi does not accept wi

}
is not r.e. (This is Lemma 8.1 in the text and was discussed in class.)

Assume that Ld is accepted by a Turing machine M . This Turing machine
must appear as Mi for some positive integer i in the sequence of Turing
machines. By definition of Ld, if wi ∈ L(Mi) then wi /∈ Ld and if wi /∈ L(Mi)
then wi ∈ Ld. Thus L(Mi) 6= Ld and the assumption that Ld is accepted by
a Turing machine is false.

In words: Ld differs from the language accepted by the ith Turing machine
on the ith string. Therefore, there is no Turing machine which accepts Ld.

Problem 2: Assume there is an algorithm to decide if two Turing machines
M1 and M2 accept exactly the same language. Use that algorithm to construct

(a) (10 points) an algorithm to decide if the language accepted by a Turing
machine M is empty,

(b) (10 points) an algorithm to decide if a Turing machine M accepts a
string w (this is Lu in the text).

(5 points) Argue that no algorithm can tell if two C programs perform the
same task in possibly di�erent ways.

Assume that algorithm A can decide if L(M1) = L(M2) when it is input
M1 and M2.

(a): Construct a Turing machine M2 which rejects every string and hence
has L(M2) = φ. For example, you can construct M2 by taking the start state
to be the reject state. Feed M and M2 as inputs to algorithm A. If L(M) =
L(M2), conclude that M accepts the empty language. If L(M) 6= L(M2),
conclude that the language accepted by M is not empty.

(b): Construct a Turing machine M ′ which works as follows. M ′ starts
off by keeping its input aside. Then M ′ simulates M on w. If M never halts
on w, then M ′ never halts on any input and thus accepts only the empty

1



language. If M rejects w, then M ′ rejects its input whatever it is. Thus, in
this case too, M ′ accepts only the empty language. However, if M accepts
w then M ′ accepts its input whatever it is. Thus, in this case, L(M ′) = Σ∗.

If the action of a Turing machine M on a string w is thought of as a
function call M(w), this construction can be written down as follows:

M’(w’)
{
result = M(w);
if result == REJECT
return REJECT;
else if result == ACCEPT
return ACCEPT;
}

This makes it clear that M ′ goes into an infinite loop on any input w′ if M
goes into an infinite loop on w; that M ′ accepts any input w′ if M accepts w;
and that M ′ rejects any input w′ if M rejects w. The language accepted by
M ′ is the null language when M does not accept w and Σ∗ when M accepts
w.

Feed M ′ and a Turing machine M2 which accepts the null language to
algorithm A. If L(M ′) = L(M2) then M does not accept w. If L(M ′) 6=
L(M2), then M accepts w.

The constructions in (a) and (b) are different ways of showing that it
is undecidable whether two Turing machines accept the same language. If
it were decidable, the two constructions give algorithms to decide the ac-
ceptance of a string by a Turing machine and the problem of whether the
language accepted by a Turing machine is empty. But both these problems
are undecidable.

Given two Turing machines, they can be converted into two C programs
easily. The C program can store a variable that will give the state of the
Turing machine, an array that corresponds to the tape of the Turing machine
and an integer that gives the position of the head of the Turing machine on
the tape. Thus, if it is possible to compare and decide if two C programs do
the same task, it is possible to decide if two Turing machines accept the same
language by translating the Turing machines into C programs and then using
the decision procedure that compares C programs. But it is impossible to
decide using an algorithm if two Turing machines accept the same language.
So it must be impossible to decide if two C programs do the same task.

2



Problem 3: (10 points) Assume there is an algorithm to decide if a Turing
machine M accepts a string w (this is Lu in the text). Use this to give an
algorithm to decide if a Turing machine M halts on the input w (this is the
halting problem).

Assume that algorithm A can decide if a Turing machine M accepts a
string w.

Construct M ′ as follows:

M’(w)
{
result = M(w);
if result == REJECT or result == ACCEPT
return ACCEPT;
}

Clearly, M ′ accepts w if and only if M halts on w. Feed M ′ and w as inputs
to algorithm A. If it says that M ′ accepts w then M halts on w. If it says
that M ′ does not accept w, then M does not halt on w.

3


