

This page intentionally left blank

Cellular neural networks and visual computing

Cellular Nonlinear/neural Network (CNN) technology is both a revolutionary concept and an

experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are

set to change the way analog signals are processed and are paving the way to an entire new analog

computing industry.

This unique undergraduate-level textbook includes many examples and exercises, including CNN

simulator and development software accessible via the Internet. It is an ideal introduction to CNNs

and analogic cellular computing for students, researchers, and engineers from a wide range of

disciplines. Although its prime focus is on visual computing, the concepts and techniques described

in the book will be of great interest to those working in other areas of research, including modeling

of biological, chemical, and physical processes.

Leon Chua is a Professor of Electrical Engineering and Computer Science at the University of

California, Berkeley where he coinvented the CNN in 1988 and holds several patents related to CNN

Technology. He received the Neural Network Pioneer Award, 2000.

Tamás Roska is a Professor of Information Technology at the Pázmány P. Catholic University of

Budapest and head of the Analogical and Neural Computing Laboratory of the Computer and

Automation Research Institute of the Hungarian Academy of Sciences, Budapest and was an early

pioneer of CNN technology and a coinventor of the CNN Universal Machine as an analogic

supercomputer, He has also spent 12 years as a part-time visiting scholar at the University of

California at Berkeley.

Cellular neural networks
and visual computing
Foundation and applications

Leon O. Chua

and

Tamás Roska

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

First published in printed format

ISBN 0-521-65247-2 hardback
ISBN 0-511-03302-8 eBook

Cambridge University Press 2004

2002

(Adobe Reader)

©

To our wives, Diana and Zsuzsa

Contents

Acknowledgements page xi

1 Introduction 1

2 Notation, definitions, andmathematical foundation 7

2.1 Basic notation and definitions 7

2.2 Mathematical foundations 14

3 Characteristics andanalysis of simpleCNN templates 35

3.1 Two case studies: the EDGE and EDGEGRAY templates 35

3.2 Three quick steps for sketching the shifted DP plot 49

3.3 Some other useful templates 50

4 Simulation of theCNNdynamics 100

4.1 Integration of the standard CNN differential equation 100

4.2 Image input 101

4.3 Software simulation 102

4.4 Digital hardware accelerators 110

4.5 Analog CNN implementations 111

4.6 Scaling the signals 113

4.7 Discrete-time CNN (DTCNN) 114

vii

viii Contents

5 BinaryCNNcharacterization viaBoolean functions 115

5.1 Binary and universal CNN truth table 115
5.2 Boolean and compressed local rules 122
5.3 Optimizing the truth table 124

6 UncoupledCNNs: unified theory andapplications 139

6.1 The complete stability phenomenon 139
6.2 Explicit CNN output formula 140
6.3 Proof of completely stable CNN theorem 142
6.4 The primary CNN mosaic 155
6.5 Explicit formula for transient waveform and settling time 156
6.6 Which local Boolean functions are realizable by uncoupled CNNs? 161
6.7 Geometrical interpretations 162
6.8 How to design uncoupled CNNs with prescribed Boolean functions 166
6.9 How to realize non-separable local Boolean functions? 173

7 Introduction to theCNNUniversalMachine 183

7.1 Global clock and global wire 184
7.2 Set inclusion 184
7.3 Translation of sets and binary images 188
7.4 Opening and closing and implementing any morphological operator 190
7.5 Implementing any prescribed Boolean transition function by not more than

256 templates 195
7.6 Minimizing the number of templates when implementing any possible

Boolean transition function 198
7.7 Analog-to-digital array converter 201

8 Back tobasics: Nonlinear dynamics andcomplete stability 205

8.1 A glimpse of things to come 205
8.2 An oscillatory CNN with only two cells 205
8.3 A chaotic CNN with only two cells and one sinusoidal input 210
8.4 Symmetric A template implies complete stability 214
8.5 Positive and sign-symmetric A template implies complete stability 219

ix Contents

8.6 Positive and cell-linking A template implies complete stability 224
8.7 Stability of some sign-antisymmetric CNNs 231
A Appendix to Chapter 8 236

9 TheCNNUniversalMachine (CNN-UM) 239

9.1 The architecture 240
9.2 A simple example in more detail 244
9.3 A very simple example on the circuit level 246
9.4 Language, compiler, operating system 254

10 Template design tools 258

10.1 Various design techniques 258
10.2 Binary representation, linear separability, and simple decomposition 260
10.3 Template optimization 264
10.4 Template decomposition techniques 265

11 CNNs for linear imageprocessing 267

11.1 Linear image processing with B templates is equivalent to spatial convo-
lution with FIR kernels 267

11.2 Spatial frequency characterization 269
11.3 A primer on properties and applications of discrete-space Fourier trans-

form (DSFT) 272
11.4 Linear image processing with A and B templates is equivalent to spatial

convolution with IIR kernels 272

12 CoupledCNNwith linear synapticweights 276

12.1 Active and inactive cells, dynamic local rules 278
12.2 Binary activation pattern and template format 283
12.3 A simple propagating type example with B/W symmetrical rule 284
12.4 The connectivity problem 286

13 Uncoupled standardCNNswith nonlinear synapticweights 290

13.1 Dynamic equations and DP plot 291

x Contents

14 StandardCNNswith delayed synapticweights andmotionanalysis 296

14.1 Dynamic equations 296
14.2 Motion analysis – discrete time and continuous time image acquisition 297

15 Visual microprocessors – analog and digital VLSI implementation
of the CNN Universal Machine

304

15.1 The analog CNN core 304
15.2 Analogic CNN-UM cell 310
15.3 Emulated digital implementation 312
15.4 The visual microprocessor and its computational infrastructure 313
15.5 Computing power comparison 318

16 CNNmodels in the visual pathwayand the ‘‘Bionic Eye” 320

16.1 Receptive field organization, synaptic weights, and cloning template 321
16.2 Some prototype elementary functions and CNN models of the visual

pathway 322
16.3 A simple qualitative “engineering” model of a vertebrate retina 329
16.4 The “Bionic Eye” implemented on a CNN Universal Machine 338

Notes 339
Bibliography 348
Exercises 361
Appendices 389
Index 390

Acknowledgements

We started to teach a formal course devoted entirely to CNN only in 1996, in the Spring
Semester, at Berkeley and in the Autumn Semester in Budapest. Since then, several
versions of Lecture Notes have been iterated. We are indebted to many of our former
students – some of whom have become our coworkers – who have helped us in various
forms we are thankful to all of them. Dr. Ákos Zarándy, Dr. Ken Crounse, Dr. Csaba
Rekecky, Dr. Chai-Wah Wu, Dr. László Kék, Dr. László Nemes, Dr. András Radványi,
and Dr. Péter Szolgay, as well as Tao Yang, An-Shan Huang, Dávid Bálya, Katalin
Keserű, István Petrás and István Szatmári made special efforts to help us during the
many years of forming the text to this present version. We are also grateful to Phil
Meyler for his kind initiative to publish this textbook.

Leon O. Chua and Tamás Roska
Berkeley–Budapest, May 2000

xi

1 Introduction

Scenario

Recent history of the electronic and computer industry can be viewed as three waves
of revolutionary processes.1 The first revolution, making cheap computing power
available via microprocessors in the 1970s, led to the PC industry of the 1980s. The
cheap laser and fiber optics, which resulted in cheap bandwidth at the end of the
1980s, led to the Internet industry of the 1990s. The third wave, the sensor revolution
at the end of the 1990s, will also provide for a new industry. Sensor revolution
means that cheap sensor and MEMS (micro-electro-mechanical system) arrays are
proliferating in almost all the conceivable forms. Artificial eyes, nose, ears, taste,
and somatosensory devices as well as sensing all physical, chemical, and biological
parameters, together with microactuators, etc. are becoming commodities. Thousands
and millions of generically analog signals are produced waiting for processing. A new
computing paradigm is needed. The cited technology assessment1 reads:

The long-term consequence of the coming sensor revolution may be the emergence of a newer analog
computing industry in which digital technology plays a mere supporting role, or in some instances
plays no role at all.

For processing analog array signals, the revolutionary Analogic Cellular Computer
paradigm is a major candidate. The core of this computer is a Cellular Nonlinear/neural
network2 (CNN), an array of analog dynamic processors or cells. The computer archi-
tecture is the CNN Universal Machine,3 with its various physical implementations. At
the same time, Analogic CNN computers mimic the anatomy and physiology of many
sensory and processing organs with an additional capability of stored programmability.
Recent studies on optical and nano-scale implementations open up new horizons on the
atomic and molecular levels.

The CNN was invented by Leon O. Chua and Lin Yang in Berkeley in 1988. Unlike
cellular automata, CNN host processors accepting and generating analog signals, the
time is continuous, and the interaction values are also real values. Unlike lattice
dynamics, the input of the CNN array plays an important role. Moreover, CNN
becomes a rigorous framework for complex systems exhibiting emergent behavior and
the various forms of emergent computations. The notion of the cloning template, the

1

2 Introduction

representation of the local interconnection pattern, is crucial. This allows not only
modeling but also engineering of complex systems.

Stored programmability, invented by John von Neumann, was the key for endowing
digital computers with an almost limitless capability within the digital universe of
signals, opening the door to human invention via digital algorithms and software.
Indeed, according to the Turing–Church thesis, any algorithms on integers conceived
by humans can be represented by Recursive functions/Turing Machines/Grammars.
The CNN Universal Machine is universal not only in a Turing sense but also on analog
array signals. Due to stored programmability, it is also open to human intelligence
with a practically limitless capability within the universe of analog array signals, via
analogic spatio-temporal algorithms and software.

The new world opened by the Analogic CNN computing paradigm is nowadays a
reality. There are operational focal plane visual microprocessors with 4096 or 16 000
processors, which are fully stored, programmable, and there are Walkman-size self-
contained units with image supercomputer speed.

The CNN Universal Chip4 highlighted on the cover of this book represents a mile-
stone in information technology because it is the first operational, fully programmable
industrial-size brain-like stored-program dynamic array computer in the world. This
complete computer on a chip consists of an array of 64 × 64 0.5 micron CMOS cell
processors, where each cell is endowed not only with a photo sensor for direct optical
input of images and videos, but also with communication and control circuitries, as
well as local analog and logic memories. Each CNN cell is interfaced with its nearest
neighbors, as well as with the outside world. This massively parallel focal-plane array
computer is capable of processing 3 trillion equivalent digital operations per second (in
analog mode), a performance which can be matched only by supercomputers. In terms
of the SPA (speed, power, area) measures, this CNN universal chip is far superior to
any equivalent DSP implementation by at least three orders of magnitude in either
speed, power, or area. In fact, by exploiting the state-of-the-art vertical packaging
technologies, close to peta (1015) OPS CNN universal cube can be fabricated with
such universal chips, using 200× 200 arrays.

There are many applications which call for TeraOPS or even PetaOPS in a
Walkman-size device. Some of these applications include high-speed target recogni-
tion and tracking, real-time visual inspection of manufacturing processes, intelligent
vision capable of recognizing context sensitive and moving scenes, as well as appli-
cations requiring real-time fusing of multiple modalities, such as multispectral images
involving visible, infrared, long wave infrared, and polarized lights.

In addition to the immense image and video processing power of the CNN universal
chip, we can exploit its unique brain-like architecture to implement brain-like informa-
tion processing tasks which conventional digital computers have found wanting. Such
brain-like processing operations will necessarily be non-numeric and spatio-temporal
in nature, and will require no more than the accuracy of common neurons, which is

3 Introduction

less than eight bits. Since the computation is a non-iterative wave-like process, the
input–output accuracy is not constrained by the iterative digital process. The CNN
universal chip is therefore an ideal tool for developing and implementing brain-like
information processing schemes. It is this vision of brain-like computing via the CNN
universal chip that makes the publication of this textbook both a timely and historic
event, the first undergraduate textbook on this new computing paradigm.

The textbook

Cellular Nonlinear/neural Networks (CNN) is an invention with rapid proliferation.
After the publication of the cited original paper by Chua and Yang in 1988, several
papers explored the rich dynamics inherent in this simple architecture. Indeed, many
artificial, physical, chemical, as well as living (biological) systems and organs can be
very conveniently modeled via CNN. Hence, the book is written in such a way that no
electronic circuit knowledge is needed to understand the first 14 chapters of this book.
Indeed, it is our teaching experience, at Berkeley and in Budapest, that undergraduate
students from different backgrounds and with a modest knowledge of mathematics and
physics taught in engineering, physics, and chemistry departments, as well as biology
students from similar backgrounds can understand the book.

In Chapter 2, the basic notations, definitions, and mathematical foundation are
presented. The standard CNN architecture is introduced. The cell, the interconnection
structure, the local connectivity pattern, the canonical equations and some useful
notations, and the biological motivation are described. The importance of the local
interconnection “synaptic weight” pattern, the cloning template, or gene, is empha-
sized. Indeed, these templates, mostly defined by 19 parameters, define the complete
array dynamics, which generate an output “image” from an input “image.”

In Chapter 3, after two examples, a simple technique for determining array dynam-
ics, based on cell dynamics, is introduced and explained. Next, 11 useful templates are
shown with examples and rigorous mathematical analysis.

Chapter 4 is devoted to the digital computer simulation of CNN dynamics. Nu-
merical integration algorithms, digital hardware accelerators, as well as the analog
implementation are discussed. An accompanying simulator CANDY is provided in
the Appendix.

In Chapter 5 the characterization of the simplest form of a CNN is explored and
the binary input binary output case is described. It is quite surprising that even this
very basic form with a 3 × 3 neighborhood template could implement 2512 ∼ 10134

different local Boolean functions.
Uncoupled CNN templates constitute a simple class of CNN. Their unified theory

and applications described in Chapter 6 provide a thorough understanding of this class
of CNN.

4 Introduction

In Chapter 7, we begin the introduction of the CNN computer represented by the
CNN Universal Machine architecture. We emphasize the need for local analog and
logic memory, a global clock and global wire, as well as a local logic unit. It is shown,
for example, that every local Boolean function can be realized by using these simple
elements in each cell processor.

In Chapter 8, “Back to Basics,” the mathematical analysis of the stability of CNN
in terms of cloning templates is presented. It turns out that, in most cases, simple
conditions are available to test the templates defining completely stable CNN.

The complete architecture of the CNN Universal Machine is shown in Chapter
9. Moreover, the computational infrastructure consisting of a high-level language, a
compiler, operating system, and a development system are introduced. An example
describing all the elementary details uncovers the basic implementation techniques.

Chapter 10 presents template design and optimization algorithms. The use of a
simple program TEMPO for template optimization and decomposition is prepared and
provided in the Appendix.

Many two-dimensional linear filters can be represented by CNN. These techniques
are shown in Chapter 11 which also introduces the discrete space Fourier transform.

Once we allow spatial coupling, the dynamics of the CNN becomes not only much
richer, but also exotic. The coupled CNN is described in Chapter 12 with a design
method for binary propagation problems. In particular, it turns out that the global
connectivity problem, long considered impossible by locally connected arrays, can
be solved by a quite simple coupled CNN.

Nonlinear and delay type synaptic weights and their use are introduced in Chapters
13 and 14, respectively. These types of CNN are typical in modeling living neural
networks as well as in solving more complex image processing problems.

In Chapter 15, we show the basics of the CMOS analog and digital implemen-
tation of the CNN Universal Machine. Indeed, the first visual microprocessor and
its computational infrastructure are described. A computing power comparison is
really breathtaking: about three orders of magnitude speed advantage for complex
spatio-temporal problems on the same area of silicon.

Finally, in Chapter 16, the surprising similarity between CNN architecture and
models of the visual pathway is highlighted. Models and some measurements in living
retina are compared.

In addition to the many examples in the text, exercises at the end of the book help
both students as well as lecturers to make practical use of the textbook.

The Appendices, provided via the Internet, contain a CNN template library
(TEMLIB), a simple yet efficient simulator (CANDY), and a template design and
optimization tool (TEMPO/TEMMASTER). These design tools provide for a working
environment for the interested reader as well as for the students to explore this new
field of modeling and computing. The text can be taught, typically, as a one-semester
course.

5 Introduction

New developments

More than 1000 reviewed papers and books have been published since the seminal
paper by Chua and Yang on CNN technology. Recently, the scope has started to
broaden in many directions. Various new forms of physical implementations have
started to emerge. Optical implementation is already emerging using molecular level
analog optical memory (Bacteriorhodopsine or polymer materials) and atomic5 and
molecular6 level implementation of the CNN array as well as of the CNN Universal
Machine may become feasible; the Analogic Cellular Computer represents a new
platform for computing. However, this notion of computing contains brand-new
elements and techniques, partially reflecting some forms of nature-made information
processing.

Nature-made information processing has several different manifestations. On the
molecular level this means the protein structures or interacting molecules on a two- or
three-dimensional grid; on the neuronal level it may mean the many sensory organs
and subsequent neural processing. On the functional neuronal level it may mean the
information representation in spatio-temporal memory, the functional laterality of the
brain, as well as the parallel processing places and functional units learned via PET,
NMR, fNMR, etc. On the mathematical-physical level it may mean several dynamic
spatio-temporal processes and phenomena represented by different nonlinear partial
differential equations (PDEs). Autowaves, spiral waves, trigger waves are just a few of
these exotic waves.

In modern image processing, PDE-based techniques are becoming the most chal-
lenging and important new directions. For the analogic CNN computer these are
the native, elementary instructions like the multiplication, addition, XOR, NAND,
etc. in digital computers. A new understanding about computing itself is emerging.
The striking intellectual and scientific challenge is how to combine these diverse
phenomena in useful algorithms running on a standard spatio-temporal computer,
based on the CNN Universal Machine.

The analogic cellular visual microprocessors, embedded in a complete program-
ming environment,7 offer surprising system performance. Two types of tasks are
becoming tractable:

Class K: Kilo real-time [K r/t] frame rate class.
The frame rate of the process in this class is in the order of about a thousand
times faster than the real-time video frame rate (30 frames per second). A typical
experiment is where a pattern classification with more than 10,000 frames per
second was tested (more than 0.33 K r/t). Using current CMOS technology, 1.5
K r/t, that is about 50,000 frame per second, is feasible.

In this Class K, the high frame rate is the key in the computation. Clearly, the sensing
and computing tasks are to be physically integrated. In standard digital technology,

6 Introduction

there is no time for A to D conversion and to complete the calculation, all within a few
microseconds.

Class T: TeraOPS equivalent computing power class.
Even if the frame rate is small, like real-time video (30 frames per second), the
required computing power (per chip) is enormous. Indeed, a trillion operations per
second are to be – and can be – achieved. These TeraOPS chips are capable of
solving a nonlinear PDE on a grid in a few microseconds. The detection of a moving
inner boundary of the left ventricle in an echocardiogram, via an analogic CNN
algorithm combining several waves, local logic, and morphology operators, took
only 250 microseconds on the ACE4K analogic Visual Microprocessor Chip made
in Seville. These chips hosted 4096 cell processors on a chip. This means about
3.0 TeraOPS equivalent computing power, which is about a thousand times faster
than the computing power of an advanced Pentium processor.

A major challenge, not yet solved by any existing technologies, is to build analogic
adaptive sensor-computers,8 where sensing and computing understanding are fully and
functionally integrated on a chip. Adaptive tuning of the sensors, pixel by pixel, is
performed based on the content and context of the dynamically changing scene under
sensing.

2 Notation, definitions, and mathematical
foundation

2.1 Basic notation and definitions

Definition 1: Standard CNN architecture
A standard CNN architecture consists of an M×N rectangular array of cells (C(i, j))
with Cartesian coordinates (i, j), i = 1, 2, . . . , M , j = 1, 2, . . . , N (Fig. 2.1).

Column
j N

C(i, j)

1
1

2

3

Row i

M

2 3

Fig. 2.1.

Remark:
There are applications where M �= N . For example, a 5 × 512 CNN would be more
appropriate for a scanner, fax machine, or copy machine.

Definition 2: Sphere of influence of cell C(i, j)
The sphere of influence, Sr (i, j), of the radius r of cell C(i, j) is defined to be the set
of all the neighborhood cells satisfying the following property

Sr (i, j) = {C(k, l)| max
1≤k≤M,1≤l≤N

{|k − i |, |l − j |} ≤ r} (2.1)

where r is a positive integer.

7

8 Notation, definitions, and mathematical foundation

(a) (b)

C (i, j) C (i, j)

Fig. 2.2. (a) r = 1 (3× 3 neighborhood), (b) r = 2 (5× 5 neighborhood).

We will sometimes refer to Sr (i, j) as a (2r + 1) × (2r + 1) neighborhood. For
example, Fig. 2.2(a) shows an r = 1 (3×3) neighborhood. Fig. 2.2(b) shows an r = 2
(5× 5) neighborhood.

Remarks:
1 In IC implementations, every cell is connected to all its neighbors in Sr (i, j) via

“synaptic” circuits.

2 When r > N/2, and M = N , we have a fully connected CNN where every cell
is connected to every other cell and Sr (i, j) is the entire array. This extreme case
corresponds to the classic Hopfield Net. It is impractical to build any reasonable size
(several thousand cells) Hopfield Net in a VLSI chip. There exists a “commercial”
Hopfield-like chip by INTEL called “ETANN,” type 80170 ($500 in 1995). This
chip has 64 cells which makes it more of an expensive “toy.”

Definition 3: Regular and boundary cells
A cell C(i, j) is called a regular cell with respect to Sr (i, j) if and only if all
neighborhood cells C(k, l) ∈ Sr (i, j) exist. Otherwise, C(i, j) is called a boundary
cell (Fig. 2.3).

Remark:
The outermost boundary cells are called edge cells. Not all boundary cells are edge
cells if r > 1.

Definition 4: Standard CNN
A class 1 M × N standard CNN is defined by an M × N rectangular array of cells
C(i, j) located at site (i, j), i = 1, 2, . . . , M , j = 1, 2, . . . , N . Each cell C(i, j) is
defined mathematically by:

1 State equation
ẋi j = −xi j +

∑
C(k,l)∈Sr (i, j)

A(i, j; k, l)ykl +
∑

C(k,l)∈Sr (i, j)

B(i, j; k, l)ukl + zi j (2.2)

9 2.1 Basic notation and definitions

Boundary cell (if r = 1)

Corner cell

Fig. 2.3.

where xi j ∈ R, ykl ∈ R, ukl ∈ R, and zi j ∈ R are called state, output, input,
and threshold of cell C(i, j), respectively. A(i, j; k, l) and B(i, j; k, l) are called the
feedback and the input synaptic operators to be defined below.

2 Output equation

yi j = f (xi j) = 1

2
|xi j + 1| − 1

2
|xi j − 1| (2.3)

This is called standard nonlinearity (Fig. 2.4).

1

–1

–1 0 1 xij

yij

Fig. 2.4.

3 Boundary conditions
The boundary conditions are those specifying ykl and ukl for cells belonging to Sr (i, j)
of edge cells but lying outside of the M × N array.

10 Notation, definitions, and mathematical foundation

4 Initial state
xi j (0), i = 1, . . . , M, j = 1, . . . , N (2.4)

Remarks:
1 The input ukl is usually the pixel intensity of an M × N gray-scale image or picture

P, normalized without loss of generality, to have the range −1 ≤ ukl ≤ +1 where
“white” is coded by −1 and “black” is coded by +1. For a still image, ukl is a
constant for all time, for a moving image (video) ukl will be a function of time.
Other variables (x(0), y, z) can also be specified as images.

2 In the most general case, A(i, j; k, l), B(i, j; k, l), and zi j may vary with position
(i, j) and time t . Unless otherwise stated, however, we will assume they are space
and time invariant.

3 In the most general case both A(i, j; k, l) and B(i, j; k, l) are nonlinear operators1

which operate on xkl(t), ykl(t), ukl(t), xi j (t), yi j (t), and ui j (t), 0 ≤ t ≤ t0, to
produce a scalar (A(i, j; k, l) ◦ ykl)(t0) and (B(i, j; k, l) ◦ ukl)(t0), 0 ≤ t ≤ t0.

4 We may also introduce synaptic laws depending on the states (C template) and on
mixed variables (D template), respectively.

That is (C(i, j; k, l) ◦ xkl)(t0) and (D(i, j; k, l) ◦ (ukl , xkl , ykl)(t0).

Unless otherwise stated, however, A(i, j; k, l)ykl and B(i, j; k, l)ukl will denote
ordinary multiplication with real coefficients where they may be nonlinear functions of
states, inputs, and outputs of cells C(i, j), C(k, l) and may involve some time delays
(i.e., they may contain a finite time history, as in the case of having a time delay).

The following are some space and time invariant nonlinear examples chosen from
the CNN catalog of applications (CNN Software Library). See some of them in
TEMLIB (Appendix A).

EXAMPLE 2.1:

a (yij)

1

–1

– 0.025 0.025 yij

Fig. 2.5.

11 2.1 Basic notation and definitions

A(i, j; k, l) = a(yi j): depends on output (from TEMPLATE MajorityVoteTaker)
(Fig. 2.5).

EXAMPLE 2.2:

C(i, j; k, l) = c(xi j): depends on state (from TEMPLATE LGTHTUNE) (Fig. 2.6).

c(xij)

xij

1

–3

0.20

Fig. 2.6.

EXAMPLE 2.3:

A(i, j; k, l) = a(ui j , ukl) and B(i, j; k, l) = b(ui j , ukl): depends on two inputs (from
TEMPLATE GrayscaleLineDetector) (Fig. 2.7).

a(uij, ukl)

–0.15 0.15 uij – ukl

1

0.25

1

uij – ukl

b(uij, ukl)

Fig. 2.7.

EXAMPLE 2.4:

A(i, j; k, l) = a(yi j , ykl): depends on two outputs (from TEMPLATE GlobalMaxi-
mumFinder) (Fig. 2.8).

12 Notation, definitions, and mathematical foundation

–1

0.125

–2

0.25

yij – ykl

a(yij, ykl)

Fig. 2.8.

EXAMPLE 2.5:

C(i, j; k, l) = c(xi j , xkl): depends on two states (from TEMPLATE EXTREME)
(Fig. 2.9).

1

–2

–1

– 0.2 0.2

xij – xkl

c(xij, xkl)

Fig. 2.9.

EXAMPLE 2.6:

D(i, j; k, l) = d(ukl , yi j): depends on input and output (from TEMPLATE ERO-
SION) (Fig. 2.10).

d (ukl, yij)

0

–1

1

ukl – yij

Fig. 2.10.

Some examples of time-delay operators:

13 2.1 Basic notation and definitions

EXAMPLE 2.7:

(A(i, j; k, l)ykl)(t) = 0.68ykl(t − 10): depends on the past of the output (from
TEMPLATE SpeedDetection).

EXAMPLE 2.8:

(B(i, j; k, l)ukl)(t) = −0.25ukl(t − 10), (k, l) �= (i, j): depends on the past of the
input (from TEMPLATE ImageDifferenceComputation).

Remarks:

1 A gray-scale image can be represented pixelwise using a one-to-one map between a
picture element (pixel) and a cell. The luminance value of the pixel would be coded
as: black →+1, white →−1, gray → (−1,+1).

2 It is useful and correct to think of the triple {A(i, j; k, l), B(i, j; k, l), zi j } as an
elementary CNN instruction (macro), because they specify how an M × N input
image U at t = 0 will be transformed to produce an M × N output image Y(t) for
all t ≥ 0.

Definition 5: Space-invariant or isotropic CNN
A CNN is space-invariant or isotropic if and only if both the synaptic operators
A(i, j; k, l), B(i, j; k, l) and the threshold zi j do not vary with space. In this case,
we can write

∑
C(k,l)∈Sr (i, j)

A(i, j; k, l)ykl =
∑

|k−i |≤r

∑
|l− j |≤r

A(i − k, j − l)ykl

∑
C(k,l)∈Sr (i, j)

B(i, j; k, l)ukl =
∑

|k−i |≤r

∑
|l− j |≤r

B(i − k, j − l)ukl

zi j = z (2.5)

A standard CNN (with linear synaptic operators) has the following state equation
(using the same notation as in (2.2)):

ẋi j =−xi j +
∑

C(k,l)∈Sr (i, j)

A(i, j; k, l)ykl +
∑

C(k,l)∈Sr (i, j)

B(i, j; k, l)ukl + zi j

+
∑

C(k,l)∈Sr (i, j)

C(i, j; k, l)xkl +
∑

C(k,l)∈Sr (i, j)

D(i, j; k, l)(ukl , xkl , ykl) (2.2∗)

14 Notation, definitions, and mathematical foundation

2.2 Mathematical foundations

2.2.1 Vector and matrix representation and boundary conditions

The system of n = M N ordinary differential equations (ODE) defining a standard (not
necessarily space-invariant) CNN can be recast in the form

ẋi j = hi j (x̃i j , t), i = 1, 2, . . . , M, j = 1, 2, . . . , N (2.6)

where

hi j (x̃i j , t) = −xi j (t)+
∑

C(k,l)∈Sr (i, j)

A(i, j; k, l)ykl(t)+ si j (t)

where

ykl = f (xkl)

si j (t) =
∑

C(k,l)∈Sr (i, j)

B(i, j; k, l)ukl(t)+ zi j (t)

x̃i j is a vector of length (2r + 1)2 whose components include all variables xkl ∈
Sr (i, j), i.e.

{xkl : |k − i | ≤ r, |l − j | ≤ r}
We can cast Eq. (2.6) into the following M × N matrix differential equation which

exhibits a one-to-one correspondence with the CNN architecture

ẋ11 ẋ12 . . . ẋ1N

ẋ21 ẋ22 . . . ẋ2N
...

...
...

ẋM−1,1 ẋM−1,2 . . . ẋM−1,N

ẋM1 ẋM2 . . . ẋM N

=

h11(x̃11) h12(x̃12) . . . h1N (x̃1N)

h21(x̃21) h22(x̃22) . . . h2N (x̃2N)
...

...
...

hM−1,1(x̃M−1,1) hM−1,2(x̃M−1,2) . . . hM−1,N (x̃M−1,N)

hM1(x̃M1) hM2(x̃M2) . . . hM N (x̃M N)

 (2.7)

Definition 6: Virtual cells
Any cell C(k, l), with |k − i | ≤ r, |l − j | ≤ r , and k /∈ {1, 2, . . . , M} and/or l /∈
{1, 2, . . . , N } is called a virtual cell, and the associated xkl , ykl , ukl , and zkl are called
virtual state, virtual output, virtual input, and virtual threshold, respectively.

15 2.2 Mathematical foundations

Boundary conditions
Any virtual variable in xi j of Eq. (2.6) must be specified via various boundary
conditions which are the most commonly used for a 3× 3 neighborhood.

1 Fixed (Dirichlet) boundary conditions
Left virtual cells: yi,0 = α1, ui,0 = β1, i = 1, 2, . . . , M
Right virtual cells: yi,N+1 = α2, ui,N+1 = β2, i = 1, 2, . . . , M
Top virtual cells: y0, j = α3, u0, j = β3, j = 1, 2, . . . , N
Bottom virtual cells: yM+1, j = α4, uM+1, j = β4, j = 1, 2, . . . , N

where αi and βi are user prescribed constants (usually equal to zero).
Circuit interpretation: Add one row or column along the boundary and force each

cell to have a fixed input and output by batteries (Fig. 2.11).

M × N

CNN

Fig. 2.11. The circuit interpretation of the fixed (Dirichlet) boundary condition.

2 Zero-flux (Neumann) boundary conditions (Fig. 2.12)
Left virtual cells: yi,0 = yi,1, ui,0 = ui,1, i = 1, 2, . . . , M
Right virtual cells: yi,N+1 = yi,N , ui,N+1 = ui,N , i = 1, 2, . . . , M
Top virtual cells: y0, j = y1, j , u0, j = u1, j , j = 1, 2, . . . , N
Bottom virtual cells: yM+1, j = yM, j , uM+1, j = uM, j , j = 1, 2, . . . , N .

Remark:
This boundary condition usually applies to the case where there is no input, i.e., ui j =
0 for all (i, j). Because any input would cause energy and/or material flow from the
outside making the system an “open system” in the sense of thermodynamics, CNN

16 Notation, definitions, and mathematical foundation

M × N

CNN
xM1

x11

xM1 xMN

xMN

x1N

x1Nx11

Fig. 2.12. The circuit interpretation of the Neumann boundary condition.

with zero input is called autonomous CNN, and constitutes an important class with
widespread applications in pattern formation and “autowave” generation.

3 Periodic (Toroidal) boundary conditions
Left virtual cells: yi,0 = yi,N , ui,0 = ui,N , i = 1, 2, . . . , M
Right virtual cells: yi,N+1 = yi,1, ui,N+1 = ui,1, i = 1, 2, . . . , M
Top virtual cells: y0, j = yM, j , u0, j = uM, j , j = 1, 2, . . . , N
Bottom virtual cells: yM+1, j = y1, j , uM+1, j = u1, j , j = 1, 2, . . . , N .

A B
BA

D
C

CD

M N

CNN

Fig. 2.13. The circuit interpretation of the Periodic (Toroidal) boundary condition.

Identify each cell from the top row with the corresponding cell in the bottom row,
identify each cell from the left column with the corresponding cell in the right column.

17 2.2 Mathematical foundations

This is equivalent to fabricating a CNN chip on a silicon torus as its substrate.

Vector differential equation
Since virtually all theorems and numerical techniques for solving systems of ODE
are formulated in vector form, we must repack the M × N matrix ODE (2.6) into an
M N × 1 vector ODE. There are many ways to order the variables. We consider three
typical orders:

1 Row-wise packing scheme

2 Diagonal packing scheme

3 Column-wise packing scheme

These packing schemes are shown in Figs 2.14(a), (b), and (c), respectively.

11
11 12 13 1N

MNM3M2M1

11 12

22 23

13 14

21

31

M1

21

31

41

51

M1

1N

2N

3N

MN

1N

2N

3N

MN

(a) (b) (c)

Fig. 2.14. Three (among many others) possible packing schemes.

After repacking, we obtain a system of n = M N vector systems

˙̂x1
˙̂x2
...
˙̂xn

︸ ︷︷ ︸
ẋ

= −

x̂1

x̂2
...

x̂n

︸ ︷︷ ︸
x

+

︸ ︷︷ ︸
Â

ŷ1

ŷ2
...

ŷn

︸ ︷︷ ︸
y

+

︸ ︷︷ ︸
B̂

û1

û2
...

ûn

︸ ︷︷ ︸
u

+

ẑ1

ẑ2
...

ẑn

︸ ︷︷ ︸
z

or in vector form

ẋ = −x+ Ây+ B̂u(t)+ z(t)

yi = f (xi) (2.8)

where x = [x̂1, x̂2, . . . , x̂n]T is the state vector with the same order of state variables.
The two matrices Â and B̂ are n×n matrices whose nonzero entries are the synaptic

weights A(i, j; k, l) and B(i, j; k, l), respectively, corresponding to the above three

18 Notation, definitions, and mathematical foundation

q q

0

0

Fig. 2.15. The band structure of Â and B̂.

packing schemes. Each matrix is quite sparse (most entries are zero) with the band
structure shown in Fig. 2.15.

For M = N , the band has a bandwidth

w = 2q + 1

where

q = N + 1 for row-wise packing schemes,
q = 2N − 2 for diagonal packing schemes,
q = 2N − 1 for column-wise packing schemes.

The band corresponding to the above three packing schemes can be divided into two
or more diagonal sub-bands, each of which is a sparse matrix.

Remarks:
Â and B̂ are very large matrices, e.g., for M = N = 1000 (for HDTV applications),
n = 1,000,000, q = 1001, w = 2003 for row-wise packing scheme, which is only
0.2% of L = 106 (L is the bandwidth of the full matrix). This shows Â and B̂ are very
sparse matrices.

2.2.2 Existence and uniqueness of solutions

To motivate the importance of the questions of “existence and uniqueness of solutions”
for a CNN, a question which has never been an issue in linear circuit and system theory,
consider the following three simple nonlinear circuits.

Example 1
Consider the circuit shown in Fig. 2.16(a) whose state equation is given by

ẋ = − 1

2x
, t ≥ 0 (2.9)

19 2.2 Mathematical foundations

The characteristics of the right-hand side are shown in Fig. 2.16(b). The solution of
Eq. (2.9) with initial condition x(0) = x0 > 0 is given by

x(t) =
√

x2
0 − t, t ≥ 0 (2.10)

and sketched in Fig. 2.16(c). Observe that this circuit has no solution with any initial
state x0 > 0 for t ≥ T = x2

0 .

x x

x

x

x

0

x0

x0
2

t

v

i 2x2v

1

1 F

––

+ +
1

0

0

(a) (b) (c)

–= =

T =

Fig. 2.16. Example of a circuit which has no solution after a finite time T .

Example 2
Consider the circuit shown in Fig. 2.17(a) whose state equation is given by

ẋ = 3

2
x1/3 (2.11)

The characteristics of the right-hand side are shown in Fig. 2.17(b). The solution of
Eq. (2.11) with initial condition x(0) = 0 is given by

x(t) =
{

0, 0 ≤ t ≤ T
(t − T)3/2, t > T

(2.12)

for any T ∈ R. This solution is shown in Fig. 2.17(c) for different choices of
T = T1, T2, . . . , TN . Since T is arbitrary, this circuit has an infinite number of distinct
solutions.

Example 3
Consider the circuit shown in Fig. 2.18(a) whose state equation is given by

ẋ = x2 (2.13)

The characteristics of the right-hand side are shown in Fig. 2.18(b). The solution of
Eq. (2.13) with initial state x(0) = 1 is given by

x = 1

1− t
(2.14)

20 Notation, definitions, and mathematical foundation

x

x

x

x
3

2T1T NT
t

v

i
2

1 F

––

+ +
3

0

0

(a) (b) (c)

–= =v 1/3

2
3

x

Fig. 2.17. Example of a circuit having infinitely many distinct solutions, all with the same initial
state x(0) = 0.

As shown in Fig. 2.18(c), this circuit has a solution which cannot be continuous
beyond t ≥ 1 because it blows up at t = 1. This phenomenon is called a finite escape
time.

x

x

x

x
2

0x

t

v

i

1 F

––

+ +

0 1
0

1

1

(a) (b) (c)

–= =v 2x

Fig. 2.18. Example of a circuit having a finite escape time.

The examples in Fig 2.18 show that even a simple two-element nonlinear circuit
may not have a solution, and even if a solution exists it may not be unique, or may not
be continued for all times t ≥ 0. How do we determine whether a nonlinear circuit has
a unique solution for all times t ≥ 0. This is of fundamental importance for us since
we will be concerned with asymptotic behavior as t →∞. There is no general method
to answer this fundamental question since any method or theorem must exclude such
simple equations as (2.9), (2.11), and (2.13)! Fortunately, for CNN, we can prove the
following:

Theorem 1: Global existence and uniqueness theorem
Assume the standard CNN described by Eq. (2.2) satisfies the following three
hypotheses:

21 2.2 Mathematical foundations

H1: The synaptic operators are linear and memoryless, i.e., A(i, j; k, l)ykl and
B(i, j; k, l)ukl are scalar multiplications, where A(i, j; k, l) and B(i, j; k, l) are
real numbers.

H2: The input ui j (t) and threshold zi j (t) are continuous functions of time.

H3: The nonlinearity f (x) is Lipschitz continuous in the sense that there exists a
constant L such that for all x ′, x ′′ ∈ R

‖ f (x ′)− f (x ′′)‖ ≤ L‖x ′ − x ′′‖ (2.15)

(Note: for the scalar case, the norm is equivalent to the absolute value.)

Then for any initial state xi j (0) ∈ R, the CNN has a unique solution for any t ≥ 0 (see
Fig. 2.19).

f (x)

L

x
x

–L

0

Fig. 2.19.

Remark:
The standard CNN satisfies all three hypotheses H1, H2, and H3.

Proof:
Hypotheses H1 implies we can recast Eq. (2.1) into the vector form

ẋ = −x+ Ây+ B̂u(t)+ z(t) = h(x, t) yi = f (xi) (2.16)

We show first that h(x, t) is Lipschitz continuous with respect to x. Choose any x′,
x′′ ∈ Rn , and let y = [f (x1), . . . , f (xn)]T , so that, y′ = f(x′) and y′′ = f(x′′).

‖h(x′, t)− h(x′′, t)‖ = ‖−x′ + Ây′ + x′′ − Ây′′‖
= ‖x′′ − x′ + Â(y′ − y′′)‖
≤ ‖x′′ − x′‖ + ‖Â‖‖y′ − y′′‖ (2.17)

22 Notation, definitions, and mathematical foundation

Now

‖y′ − y′′‖ =

∥∥∥∥∥∥∥∥∥

f (x ′1)
f (x ′2)
...

f (x ′n)

−

f (x ′′1)
f (x ′′2)

...

f (x ′′n)

∥∥∥∥∥∥∥∥∥

=
√
| f (x ′1)− f (x ′′1)|2 + · · · + | f (x

′
n)− f (x ′′n)|2

≤
√

L2|x ′1 − x ′′1 |2 + L2|x ′2 − x ′′2 |2 + · · · + L2|x ′n − x ′′n |2

(in view of hypothesis H3)

= L

∥∥∥∥∥∥∥∥∥

x ′1 − x ′′1
x ′2 − x ′′2

...

x ′n − x ′′n

∥∥∥∥∥∥∥∥∥
= L

∥∥x′ − x′′
∥∥ (2.18)

Substituting equation (2.18) into equation (2.17), we obtain

‖h(x′, t)− h(x′′, t)‖ ≤ (
1+ L‖ Â‖)‖x′ − x′′‖

= L̂‖x′ − x′′‖ (2.19)

where L̂
�= 1+ L‖Â‖ is a global Lipschitz constant, independent of x and t .

Hence, h(x, t) is uniformly Lipschitz continuous with respect to x. Moreover, since
for each x0 ∈ Rn , h(x0, t) is continuous for all t , in view of H2, we can find a bound
Mx0t0a (which in general depends on x0, t0, and a) such that

‖h(x0, t)‖ ≤ Mx0,t0,a ∀ t ∈ [t0, t0 + a]

Then for all x, such that

‖x− x0‖ ≤ b, t ∈ [t0, t0+ a]

‖h(x, t)‖ ≤ Mx0,t0,a + L̂b

in view of the Lipschitz continuity of h(x, t).
It follows from the Picard–Lindelof Theorem2 that a unique solution exists for a

time duration of

min

(
a,

b

Mx0,t0,a + L̂b

)
second

By choosing b large enough and a > 1/L̂ , one can see that a solution exists for
approximately 1/L̂ seconds where L̂ is independent of x0, t0, a, and b. We can use the
same procedure to show a unique solution exists for the next 1/L̂ seconds, etc. So, a
unique solution exists for any time. �

23 2.2 Mathematical foundations

2.2.3 Boundedness of solutions

Theorem: Explicit solution bound
For all initial states, inputs, and thresholds satisfying

|xi j (0)| ≤ 1, |ui j (t)| ≤ 1, |zi j (t)| ≤ zmax

the solution xi j (t) of the standard CNN with linear memoryless synaptic operators
A(i, j; k, l) and B(i, j; k, l) is uniformly bounded in the sense that there exists a
constant xmax such that

|xi j (t)| ≤ xmax ∀t ≥ 0, 1 ≤ i ≤ M, 1 ≤ j ≤ N

where

xmax = 1+ zmax + max
1≤i≤M
1≤ j≤N

[∑
C(k,l)∈Sr (i, j)

(|A(i, j; k, l)| + |B(i, j; k, l)|)
]

(2.20)

Lemma 1 (Appendix 1)
The complete solution of

ẋ = −x + f (t)

x(0) = x0

is given by

x(t) = x0 e−t +
∫ t

0
e−(t−τ) f (τ) dτ, t ≥ 0

In the special case where f (τ) = f0 where f0 is a constant, we have

x(t) = x0e−t + f0(1− e−t), t ≥ 0

The equivalent electrical circuit is as shown in Fig. 2.20.

x(t) f (t)

+

–

1 Ω

Fig. 2.20.

24 Notation, definitions, and mathematical foundation

Proof of Theorem 2:
ẋi j = −xi j +

∑
C(k,l)∈Sr (i, j)

A(i, j; k, l)ykl

︸ ︷︷ ︸
αi j (t)

+
∑

C(k,l)∈Sr (i, j)

B(i, j; k, l)ukl

︸ ︷︷ ︸
βi j (u(t))︸ ︷︷ ︸

f (t)

+zi j (2.21)

where αi j (t) and βi j (t) are defined for all t ≥ 0 in view of Theorem 1. Applying
Lemma 1,

x(t) = xi j (0) e−t +
∫ t

0
e−(t−τ)[αi j (τ)+ βi j (u(τ))+ zi j (τ)] dτ (2.22)

Applying triangular inequality

x(t) ≤ |xi j (0) e−t | +
∫ t

0
e−(t−τ)[|αi j (τ)| + |βi j (u(τ))| + |zi j (τ)|] dτ

≤ |xi j (0)e−t | + (αmax + βmax + zmax)

∫ t

0
e−(t−τ) dτ (2.23)

where

αmax = max
t≥0

|αi j (t)| ≤
∑

C(k,l)∈Sr (i, j)

|A(i, j; k, l)|max
t≥0

ykl(t) (2.24)

βmax = max
u
|βi j (u)| ≤

∑
C(k,l)∈Sr (i, j)

|B(i, j; k, l)|max
u

ukl(t) (2.25)

But∫ t

0
e−(t−τ) dτ = 1− e−t < 1, t ≥ 0 (2.26)

|ukl(t)| ≤ 1 (2.27)

|xi j (0)| ≤ 1 (2.28)

Hence, (2.21)–(2.28) imply

|xi j (t)| ≤ |xi j (0) e−t | + αmax + βmax + zmax

≤ 1+ zmax +
∑

C(k,l)∈Sr (i, j)

|A(i, j; k, l)| +
∑

C(k,l)∈Sr (i, j)

|B(i, j; k, l)|

≤ 1+ zmax + max
1≤i≤M
1≤ j≤N

[∑
C(k,l)∈Sr (i, j)

(|A(i, j; k, l)| + |B(i, j; k, l)|)
]

= xmax

independent of (i, j). �

25 2.2 Mathematical foundations

Remarks:
1 For space-invariant CNN, |xi j (t)| is bounded by

x̂max = 1+ zmax +
∑

1≤k≤M

∑
1≤l≤N

(|Akl | + |Bkl |
)

(2.29)

2 Theorem 2 imposes a minimum power supply voltage for any CNN circuit imple-
mentation, and is fundamental for designing a CNN circuit.

2.2.4 Space-invariant CNN

Cloning template representation
Since the majority of all CNN applications use only space-invariant standard CNNs
with a 3×3 neighborhood (sphere of influence r = 1), it will be extremely convenient
to introduce some concise notations and terminologies for future analysis.

Consider a typical cell C(i, j) ∈ Sr (i, j) as follows

C(i − 1, j − 1) C(i − 1, j) C(i − 1, j + 1)

C(i, j − 1) C(i, j) C(i, j + 1)

C(i + 1, j − 1) C(i + 1, j) C(i + 1, j + 1)

Let us examine the contributions from the two synaptic operators and the threshold
items in (2.21).

1 Contributions from the feedback synaptic operator A(i, j; k, l)
In view of space-invariance, we can write∑
C(k,l)∈Sr (i, j)

A(i, j; k, l) ykl =
∑

|k−i |≤1

∑
|l− j |≤1

A(k − i, l − j)ykl

= a−1,−1 yi−1, j−1 + a−1,0 yi−1, j + a−1,1 yi−1, j+1

a0,−1 yi, j−1 + a0,0 yi, j + a0,1 yi, j+1

a1,−1 yi+1, j−1 + a1,0 yi+1, j + a1,1 yi+1, j+1

=
1∑

k=−1

1∑
l=−1

ak,l yi+k, j+l (2.30)

where amn = A(m, n)

�=
a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1

�
yi−1, j−1 yi−1, j yi−1, j+1

yi, j−1 yi, j yi, j+1

yi+1, j−1 yi+1, j yi+1, j+1

= A � Yi j (2.31)

where the 3× 3 matrix A is called the feedback cloning template, and the symbol “�”
denotes the summation of dot products, henceforth called a template dot product. In

26 Notation, definitions, and mathematical foundation

discrete mathematics, this operation is called “spatial convolution.” The 3 × 3 matrix
Yi j in (2.31) can be obtained by moving an opaque mask with a 3 × 3 window to
position (i, j) of the M × N output image Y , henceforth called the output image at
C(i, j).

An element akl is called a center (resp., surround) element, weight, or coefficient,
of the feedback template A, if and only if (k, l) = (0, 0) (resp., (k, l) �= (0, 0)).

It is sometimes convenient to decompose the A template as follows

A = A0 + Ā (2.32)

A0 =
0 0 0
0 a0,0 0
0 0 0

Ā =
a−1,−1 a−1,0 a−1,1

a0,−1 0 a0,1

a1,−1 a1,0 a1,1

where A0 and Ā are called the center and surround component templates, respectively.

2 Contributions from the input synaptic operator B(i, j; k, l)
Following the above notation, we can write∑
C(k,l)∈Sr (i, j)

B(i, j; k, l)ykl =
∑

|k−i |≤1

∑
|l− j |≤1

B(k − i, l − j) ukl

=
1∑

k=−1

1∑
l=−1

bklui+k, j+l (2.33)

�=
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

�
ui−1, j−1 ui−1, j ui−1, j+1

ui, j−1 ui, j ui, j+1

ui+1, j−1 ui+1, j ui+1, j+1

= B � Ui j (2.34)

where the 3× 3 matrix B is called the feedforward or input cloning template, and Ui j

is the translated masked input image.
Similarly, we can write

B = B0 + B̄ (2.35)

B0 =
0 0 0
0 b0,0 0
0 0 0

B̄ =
b−1,−1 b−1,0 b−1,1

b0,−1 0 b0,1

b1,−1 b1,0 b1,1

where B0 and B̄ are called the center and surround feedforward template, respectively.

27 2.2 Mathematical foundations

3 Contribution from the threshold terms
zi j = z

Using the above notations, a space-invariant CNN is completely described by

ẋi j = −xi j + A � Yi j + B � Ui j + z (2.36)

We will usually decompose (2.36) as follows

ẋi j = −xi j + a00 f (xi j)︸ ︷︷ ︸
g(xi j)

+ Ā⊗ Yi j + B⊗ Ui j + z︸ ︷︷ ︸
wi j (t)

(2.37)

where

hi j (xi j ;wi j) = g(xi j)+ wi j (xi j , t) (2.38)

is called the rate function, g(xi j) is called the driving-point (DP) component because
it is closely related to a central concept from nonlinear circuit theory, and

wi j (xi j , t) = Ā � Yi j + B � Ui j + z

is called the offset level.

2.2.5 Three simple CNN classes

Each CNN is uniquely defined by three terms of the cloning templates {A, B, z}, which
consist of 19 real numbers for a 3 × 3 neighborhood (r = 1). Since real numbers are
uncountable, there are infinitely many distinct CNN templates, of which the following
three subclasses are the simplest and hence mathematically tractable.

Definition 7: Excitatory and Inhibitory synaptic weights (Fig. 2.21)
A feedback synaptic weight akl is said to be excitatory (resp., inhibitory) if and only if
it is positive (resp., negative).

A synaptic weight is “excitatory” (resp., inhibitory) because it makes the rate
function hi j (xi j , wi j) more positive (less positive) for a positive input, and hence
increases (resp., decreases) ẋi j , namely the rate of growth of xi j (t).

Definition 8: Zero-feedback (feedforward) class C(0, B, z) (Fig. 2.22)
A CNN belongs to the zero-feedback class C(0, B, z) if and only if all feedback
template elements are zero, i.e., A ≡ 0.

Each cell of a zero-feedback CNN is described by

ẋi j = −xi j + B � Ui j + z (2.39)

28 Notation, definitions, and mathematical foundation

U

A

Y

B ∫ dt
uij

xij yijxij

z

f ()+
–

(A

A

, B

B

, z)

Input U State X Output Y

(a)

(b)

Fig. 2.21. A space-invariant CNN C(A, B, z) with a 3× 3 neighborhood S1(i, j). (a) Signal flow
structure of a CNN with a 3× 3 neighborhood. The two shaded cones symbolize the weighted
contributions of input and output voltages of cell C(k, l) ∈ S1(i, j) to the state voltage of the center
cell C(i, j). (b) System structure of a cell C(i, j). Arrows printed in bold mark parallel data paths
from the input and the output of the surround cells ukl and ykl , respectively. Arrows with thinner
lines denote the threshold, input, state, and output, z, ui j , xi j , and yi j , respectively.

Definition 9: Zero-input (Autonomous) class C(A, 0, z) (Fig. 2.23)
A CNN belongs to the zero-input class C(A, 0, z) if and only if all feedforward
template elements are zero, i.e., B ≡ 0.

Each cell of a zero-input CNN is described by

ẋi j = −xi j + A � Yi j + z (2.40)

Definition 10: Uncoupled (scalar) class C(A0, B, z) (Fig. 2.24)
A CNN belongs to the uncoupled class C(A0, B, z) if and only if ai j = 0 except i = j ,
i.e., Ā ≡ 0.

Each cell of an uncoupled CNN is described by a scalar nonlinear ODE which is
not coupled to its neighbors:

ẋi j = −xi j + a00 f (xi j)+ B � Ui j + z (2.41)

29 2.2 Mathematical foundations

Fig. 2.22. Zero-feedback (feedforward) CNN ∈ C(0, B, z). (a) Signal flow structure of a
zero-feedback CNN with a 3× 3 neighborhood. The cone symbolizes the weighted contributions of
input voltages of cells C(k, l) ∈ S1(i, j) to the center cell C(i, j). (b) System structure of a cell
C(i, j). Arrows printed in bold denotes the input signal from the surround cells. In this case, there is
no self-feedback, and no couplings from the outputs of the surround cells.

Fig. 2.23. Zero-input (Autonomous) CNN ∈ C(0, B, z). (a) Signal flow structure of a zero-input
CNN with a 3× 3 neighborhood. The cone symbolizes the weighted contributions of the output
voltage of cells C(k, l) ∈ S1(i, j) to the center cell C(i, j). (b) System structure of a center cell
C(i, j). Arrow printed in bold denotes the signal fed-back from the outputs of the surround cells.
In this case, there are no input signals.

30 Notation, definitions, and mathematical foundation

Fig. 2.24. Uncoupled CNN ∈ C(0, B, z). (a) Signal flow structure of an uncoupled CNN with a
3× 3 neighborhood. The cone symbolizes the weighted contributions of the input voltages of cells
C(k, l) ∈ S1(i, j) to the center cell C(i, j). (b) System structure of a center cell C(i, j). Arrow
printed in bold denotes the input signals from the surround cells. In this case, the data streams
simplified into simple streams marked by thinner arrows, indicating only a “scalar” self-feedback,
but no couplings from the outputs of the surround cells.

So far, we have not mentioned the details of the physical or biological meaning of
the various terms in the CNN equations. To highlight some of these issues, next we
show a possible electronic circuit model of a cell. In Fig. 2.25, voltage-controlled cur-
rent sources are used to implement various coupling terms. These trans-conductances
can be easily constructed on CMOS integrated circuits. The details will be discussed in
Chapter 15. A very rough sketch of a typical living neuron with interacting neighbors
is shown in Fig. 2.26. A more detailed discussion can be found in Chapter 16.

2.2.6 Synaptic signal flow graph representation

Sometimes it will be more convenient to use a synaptic signal flow graph
representation3 for both the A and the B templates as shown in Figs 2.27 and 2.28,
respectively. These two flow graphs show explicitly the directions of the signal flows
from neighboring cells and their associated synaptic weights akl and bkl , respectively.
Except for the symbols {a00, akl} for the synaptic signal flow graph A, and {b00, bkl}

31 2.2 Mathematical foundations

synaptic current sources controlled
by the inputs of surround cells

synaptic current sources controlled
by the outputs of surround cells

current summing
node
of cell C(ij)

total feedback current
total feedforward

 current

input voltage
of cell C(ij)

threshold current
of cell C(ij)

state voltage
of cell C(ij)

output voltage
of cell C(ij)

internal core
of cell C(ij)

ij

f (x)ij

xij

xij

xij

uij

uij

u
ij

aij

zij

yij

yij

b
a

y
ij

–1
,1

i–
1,

 j+
1

b b0,–1 i, j–1

b
u

1,–
1

i+
1,

j–1

b
u

1,
0

i+
1,

 j

b
u1,1

i+1, j+1

b
u

–1,0
i–1, j

b
u

–1
,1

i–1
, j+

1

b u0,1 i, j+1

b
u

–1,–1
i–1, j–1

+

+

+

–

–

–

1

1

YA
ij

a
y

1,
0

i+
1,

 j

a
y1,–1
i+1, j–1

a y0,–1 i, j–1

a
y

–1
,–1

i–1
, j–

1

a
y

–1
,0

i–1
, j

a y0,1 i, j+1

a
y1,1
i+1, j+1

Fig. 2.25. Cell realization of a standard CNN cell C(i, j). All diamond-shape symbols denote a
voltage-controlled current source which injects a current proportional to the indicated controlling
voltage ukl or ykl , weighted by bkl or akl , respectively, except for the rightmost diamond f (xi j) in
the internal core which is a nonlinear voltage controlled current source, resulting in an output
voltage yi j = f (xi j).

32 Notation, definitions, and mathematical foundation

sensory
neuron
C(mn)

ax
on

 y
m

n

dendritic

input
b

mn u
mn

a synapse from the axon
of a sensory (input)
neuron (say from the
“olfactory bulb”) to a
dendrite of neuron C(ij) dendrite

cell body enclosed
by a membrane

axon yij

axon y
kl

neuron
C(ij)

neuron
C(kl)

recurrent

feedback
a
kl y

kl

a synapse from the axon
(output) of neuron C(kl)
to a dendrite of neuron
C(ij)

Fig. 2.26. A caricature of a typical neuron C(i, j) receiving an input from a sensory neuron on the
left and a neighbor neuron below through respective “synapses.”

for the synaptic signal flow graph B, these two signal flow graphs are identical and
hence easy to remember. Observe that the bold heavy edges indicate signal flowing
into cell C(i, j), whereas the light edges indicate signal flowing out from cell C(i, j).
Observe that each synaptic weight occurs exactly twice in each flow graph, and that
they are always associated with a pair of edges, one bold edge and one light edge, with
arrows pointing in the same directions. For example, the coefficient a−10 is associated
with the two edges originating from the North (N) cell and terminating in the South (S)

33 2.2 Mathematical foundations

(a)
a−1,−1 a−1,0 a−1,1

a0,−1 a00 a0,1

a1,−1 a1,0 a1,1

(b)

NW N NE

W E

SW S SE

a00

a1,1 a–1,0 a1,0
a–1,1

a0,1

a1,–1

a0,–1

a1,1

a–1,–1

a1,0

a–1,0

a1,–1

a–1,1

y
i+1, j–1

y
i+1, j

y
i+1, j+1

y
i, j–1

y
i–1, j–1

y
i–1, j

y
i–1, j+1

y
i, j+1a0,–1

a0,1

a–1,–1

Fig. 2.27. Feedback synaptic signal flow graph A associated with the A template.3 (a) The A
template with self-feedback synaptic weight a00, (b) Signal flow graph A.

cell. This is because the “top” cell C(i−1, j) is North of the center cell C(i, j), which
is itself North of the “bottom” cell C(i + 1, j). The same observation applies to the
horizontal pairs, and all diagonal pairs of similarly-directed bold-light edges. Observe
also that for each zero coefficient akl = 0, or bkl = 0, two corresponding edges will
disappear from the corresponding signal flow graph. Hence, for templates with only
a few non-zero entries, their associated synaptic signal flow graphs are particularly
simple. It is in such situations where useful insights can be obtained, specially when
two or more such synaptic signal flow graphs are interconnected to form a composite
synaptic system graph.

34 Notation, definitions, and mathematical foundation

(a)
b−1,−1 b−1,0 b−1,1

b0,−1 b00 b0,1

b1,−1 b1,0 b1,1

(b)

NW N NE

W E

SW S SE

b00

b1,1 b–1,0 b1,0
b–1,1

b0,1

b1,–1

b0,–1

b1,1

b–1,–1

b1,0

b–1,0

b1,–1

b–1,1

u
i+1, j–1

u
i+1, j

u
i+1, j+1

u
i, j–1

u
i–1, j–1

u
i–1, j

u
i–1, j+1

u
i, j+1b0,–1

b0,1

b–1,–1

Fig. 2.28. Input synaptic signal flow graph B associated with the B template. (a) B template with
self-input synaptic weight b00. (b) Signal flow graph B.

3 Characteristics and analysis of simple CNN
templates

3.1 Two case studies: the EDGE and EDGEGRAY templates

3.1.1 The EDGE CNN

EDGE: binary edge detection template

A =
0 0 0
0 0 0
0 0 0

B =
−1 −1 −1
−1 8 −1
−1 −1 −1

z = −1

I Global task
Given: static binary image P
Input: U(t) = P
Initial state: X(0) = Arbitrary (in the examples we choose xi j (0) = 0)

Boundary conditions:1 Fixed type, ui j = 0, yi j = 0 for all virtual cells, denoted by

[U] = [Y] = [0]

Output: Y(t) ⇒ Y(∞) = Binary image showing all edges of P in black.

Remark
The Edge CNN template is designed to work correctly for binary input images only.
If P is a gray-scale image, Y(∞) will in general be gray-scale where black pixels
correspond to sharp edges, near-black pixels correspond to fuzzy edges, and near-white
pixels correspond to noise.

II Local rules
static input ui j → steady state output yi j (∞)

1 white pixel → white, independent of neighbors

2 black pixel → white, if all nearest neighbors are black

3 black pixel → black, if at least one nearest neighbor is white

4 black, gray or white pixel → gray, if nearest neighbors are gray

35

36 Characteristics and analysis of simple CNN templates

III Examples

EXAMPLE 3.1: Image size: 15× 15 (see also Fig. 3.1)

input initial state t = 0.0 t = 0.5

C

B

A

t = 1.0 t = 2.0 t = 3.0

⇑ ⇑ ⇑
–1.0 0.0 1.0

Snapshots are shown in gray scale with 256 levels. Integration time step = 0.1.

time t

Fig. 3.1. Cell transient at three different locations in image of example 3.1. ——————: state variable xi j ;
——: output variable yi j ; ***: output and state are the same.

37 3.1 The EDGE and EDGEGRAY templates

time t

Fig. 3.1. Continued.

EXAMPLE 3.2: Image size: 100× 100

 input state, t = 0.0 t = 0.5

t = 1.0 t = 2.0 t = 3.0

EXAMPLE 3.3: Image size: 100× 100

input final output

38 Characteristics and analysis of simple CNN templates

EXAMPLE 3.4: Image size: 100× 100

input final output

IV Mathematical analysis
State and output equation

ẋi j = g(xi j)+ wi j = hi j (xi j , wi j)

yi j = f (xi j) (3.1)

where

g(xi j) = −xi j (3.2)

wi j = −1+ 8ui j − ui+1, j−1 − ui+1, j − ui+1, j+1 − ui, j−1 − ui, j+1 − ui−1, j−1

−ui−1, j − ui−1, j+1 − 1+ 8ui j −
∑

kl∈S1(i, j)
kl �=i j

ukl (3.3)

We will often refer to the loci � of hi j (xi j ;wi j) associated with the state equation
ẋi j = hi j (xi j ;wi j) as the driving-point (DP) plot of cell C(i, j), because this plot has
a special significance in “nonlinear circuit theory”; namely, it is just the driving-point
characteristics of the nonlinear resistive one-port NR connected across the capacitor
with the port current assumed to be directed away from NR .

Property 1
For any initial state xi j (0) ∈ R, for any constant input ui j ∈ R, the circuit is completely
stable in the sense that all trajectories, independent of initial conditions, tend to an
equilibrium point of Eq. (3.1). In particular, yi j (∞) = limt→∞ yi j (t) ∈ R. Moreover,
if ui j ∈ {−1, 1}, then y(∞) ∈ {−1, 1}.

Proof:
Consider the DP plot � defined by hi j (xi j ;wi j) = −xi j + wi j in Fig. 3.2. Since any
trajectory (i.e. solution) of the state equation ẋi j = hi j (xi j ;wi j) originating from any

39 3.1 The EDGE and EDGEGRAY templates

Γy

xij–1

Q

xij = hij(xij, wij)

xij

yij

Γx

ΓyQ

xQ
–1

yQ2 = 1

Q2

wij > 1

xij

xij

yij

1

Γx

Q2

xQ2

yQ2

–1

1

xij–1

Q1 xij

wij< –1

yij

–1

Γx

Γy

xQ1

Q1

yQ

xij = hij(xij,wij) xij = hij(xij, wij)

(a) (b) (b)

Fig. 3.2. The dynamic route corresponding to the edge detection template. (a) wi j ≤ −1;
(b) −1 < wi j < 1; (c) wi j ≥ 1.

initial state must move along � in accordance with the direction indicated, the directed
loci �x in Fig. 3.2 is called the state dynamic route. The intersection Q of �x with the
horizontal axis is called an equilibrium point. Observe from the three dynamic routes
in Fig. 3.2 that all trajectories originating from any initial state tend to the equilibrium
xi j = xQ. The output yi j can be obtained from the associated output dynamic route
�y . It follows from �y that

y(∞) =

wi j , if |wi j | < 1
1, if wi j ≥ 1
−1, if wi j ≤ −1

(3.4)

�

Property 2 (Local rule 1)
If ui j = −1, then yi j (∞) = −1, independent of ukl ∈ {−1, 1}, k, l ∈ S1(i, j).

Proof:
Since −8 ≤ ∑

kl∈S1(i, j)
kl �=i j

ukl ≤ 8, it follows that

wi j = −1+ 8(− 1)−
∑

kl∈Sl (i, j)
kl �=i j

ukl ≤ −1 (3.5)

Eqs (3.4) and (3.5) ⇒ yi j (∞) = −1. �

40 Characteristics and analysis of simple CNN templates

Property 3 (Local rule 2)
If ui j = 1 and ukl = 1 for all k, l ∈ S1(i, j), then yi j (∞) = −1.

Proof:
Since

∑
kl∈S1(i, j)

kl �=i j
ukl = 8

wi j = −1+ 8(1)−
∑

kl∈S1(i, j)
kl �=i j

ukl = −1 (3.6)

Eqs (3.4) and (3.6) ⇒ yi j (∞) = −1. �

Property 4 (Local rule 3)
If ui j = 1 and if uαβ = −1 for some C(α, β) ∈ S1(i, j), then yi j (∞) = 1.

Proof:
Since

∑
kl∈S1(i, j)

kl �=i j
ukl ≤ 6

wi j = −1+ 8(1)−
∑

kl∈S1(i, j)
kl �=i j

ukl ≥ 1 (3.7)

Eqs (3.4) and (3.7) ⇒ yi j (∞) = 1. �

Property 5 (Local rule 4)
If ui j ∈ [−1, 1] and ukl ∈ [−1, 1] , k, l ∈ S1(i, j), then yi j (∞) ∈ [1, 1].

Proof:
Since

∑
kl∈S1(i, j)

kl �=i j
ukl ∈ [−8, 8] and this sum is not an integer in general, it follows

that wi j ∈ [−17, 15] and is in general not an integer. �

3.1.2 The EDGEGRAY CNN

One objection to the Edge CNN template in Section 3.1.1 is that it works well
only for binary input images. For gray-scale input images, the output may not be a
binary image. Our next CNN template called Edgegray will overcome this problem by
accepting gray-scale input images and always converging to a binary output image.
Any imperfection in the input which we called “noise” will also converge to a binary
output. One application of this CNN template is to convert gray-scale images into
binary images, which can then be used as inputs to many image-processing tasks which
require a binary input image. From an efficient information-processing point of view,

41 3.1 The EDGE and EDGEGRAY templates

gray-scale images contain too much redundancy and require many more “bits” than
binary images. Consequently, in most image-processing systems, the gray-scale input
image at the front end is quickly converted into a binary image which contains only
the relevant information to be extracted, the most important of which being the binary
edges.

EDGEGRAY: gray-scale edge detection template

A =
0 0 0
0 2 0
0 0 0

B =
−1 −1 −1
−1 8 −1
−1 −1 −1

z = −0.5

I Global task
Given: static gray-scale image P

Input: U(t) = P

Initial state: X(0) = 0

Output: Y(t) ⇒ Y(∞) = Binary image where the black pixels correspond to pixels
lying on sharp edges of P, or to fuzzy edges defined roughly to be the union of gray
pixels of P which form one-dimensional (possibly short) line segments, or arcs,
such that the intensity of pixels on one side of the arc differs significantly from the
intensity of neighbor pixels on the other side of the arc.

Remarks
1 Some “edges” in the output may arise due to poor input image quality, or to artifacts

introduced by sensors due to reflections and improper illuminations. Since the
black pixels resulting from these situations are not edges, they must be regarded
as noise.3

2 The above template B is an example of an important class of input templates,
called a Laplacian template, having the properties that all “surround” input synaptic
weights are inhibitory and identical, i.e., bkl = b < 0, but the center synaptic
weight is excitatory and the average of all input synaptic weights is zero; i.e.,∑

kl �=0 bkl + b00 = 0.

II Local rules
Ui j (0) → yi j (∞)

1 white pixel → white, independent of neighbors

2 black pixel → white, if all nearest neighbors are black

3 black pixel → black, if at least one nearest neighbor is white

4 gray pixel → black, if the Laplacian ∇2Ui j
�= B � Ui j > 0.5 and xi j (0) = 0

5 gray pixel → white, if the Laplacian ∇2Ui j < 0.5 and xi j (0) = 0

42 Characteristics and analysis of simple CNN templates

6 gray pixel →

black, if the Laplacian = 0.5 and x(0) > 0
white, if the Laplacian = 0.5 and x(0) < 0

0,

{
if the Laplacian = 0.5 and x(0) = 0
in this case, yi j (∞) = 0 is unstable.

III Examples

EXAMPLE 3.5: Image size: 15× 15 (shows the transient waveforms at pixel A, B, and C)

t = 0, input t = 0, state t = 5

A

B
C

t = 10 t = 20 t = 30

time t

Fig. 3.3. Cell state and output transients for 30 steps at three different locations in the image of
example 3.5 represented by bold and thinner lines, respectively.

43 3.1 The EDGE and EDGEGRAY templates

time t

Fig. 3.3. Continued.

EXAMPLE 3.6: Image size: 100× 100

t = 0, input t = 0, state t = 5

t = 10 t = 20 t = 30

EXAMPLE 3.7: Image size: 100× 100

input final output

44 Characteristics and analysis of simple CNN templates

EXAMPLE 3.8: Noisy image, image size: 100× 100

input final output

IV Mathematical analysis
State and output equations

ẋi j = g(xi j)+ wi j = hi j (xi j ;wi j)

yi j = f (xi j) (3.8)

where

g(xi j) = −xi j + a00 f (xi j)

= −xi j + 2 f (xi j)

= −xi j + |xi j + 1| − |xi j − 1| (3.9)

wi j = −0.5+ 8ui j − ui+1, j−1 − ui+1, j − ui+1, j+1 − ui, j−1

− ui, j+1 − ui−1, j−1 − ui−1, j − ui−1, j+1

= −0.5+ 8ui j −
∑

kl∈S1(i, j)
kl �=i j

ukl (3.10)

Property 6
For any initial state xi j (0), for any constant input ui j ∈ [−1, 1], the CNN is completely
stable in the sense that all trajectories of Eq. (3.1) tend to some equilibrium point
whose location in general depends on the initial state xi j (0), i = 1, 2, . . . , M , j =
1, . . . , N . In particular

yi j (∞) = 1, if wi j > 0 and wi j �= 1

= −1, if wi j < 0 and wi j �= −1 (3.11)

45 3.1 The EDGE and EDGEGRAY templates

1 if wi j = 0, then

yi j (∞) = 1, if xi j (0) ∈ (−∞,−2) ∪ (0, 2]

yi j (∞) = −1, if xi j (0) ∈ [−2, 0) ∪ (2,∞)

= 0, if xi j (0) = 0 (3.12)

In this case, the equilibrium point Q− is unstable.

2 if wi j = 1, then

yi j (∞) = 1, if xi j (0) > −1
= −1, if xi j (0) ≤ −1

}
(3.13)

3 if wi j = −1, then

yi j (∞) = −1, if xi j (0) < 1
= 1, if xi j (0) ≥ 1

}
(3.14)

In this case, the equilibrium point Q0 is unstable.

Proof of Property 1 and Rules 4–6:
The first step is to examine the internal DP plot given by Eq. (3.2). Although this can
be easily sketched directly from the explicit equation given in Eq. (3.2), it is instructive
for our future analysis of more complicated CNNs to construct this curve graphically
by adding the two components−xi j and 2 f (xi j) as shown in the upper part of Fig. 3.4.
Now since

wi j = −0.5+ B � Ui j

and assuming the Laplacian

∇2Ui j
�=B � Ui j = 0.5

it follows that the offset level wi j = 0 and hence

hi j (xi j ;wi j) = gi j (xi j)

In this case, the state dynamic route �x is identical to the internal DP plot gi j (xi j),
except for the addition of arrowheads which indicate the direction a trajectory from any
point on �x must follow. It follows that of the three equilibrium points {Q−, Q0, Q+},
only Q− and Q+ are locally asymptotically stable.

To determine the asymptotic output yi j (∞)
�= limt→∞yi j (t), we simply sketch the

output dynamic route �y directly below �x with the vertical axes aligned with each
other, as shown in Fig. 3.4.

46 Characteristics and analysis of simple CNN templates

Γx

Γy

–xij h (x , 0)ij ij 2 f (x)ij

xij

g (x)ijij

xij

yij

Q0

Q0

Q+

Q+

Q–

Q–

–1

–1

1

2

–1

1

–1–2 0 1 2

–2

–2 0 1 2

Positive saturation region

Negative saturation region

Left segment

Right segment

Central
segment

(linear region)

Fig. 3.4. State and output dynamic routes for the special case of zero offset level (wi j = 0).

Since �x in Fig. 3.4 corresponds to the case ∇2Ui j = 0.5, Local rule 6 follows
directly from this dynamic route. For future analysis, it is crucial to note here that
whenever the equilibrium point lies on the left segment, where xi j < −1, or on the
right segment, where xi j > 1, the output saturates and is always equal to yi j (∞) =
−1, or yi j (∞) = +1, respectively.

Now for wi j �= 0, the external DP plot defined by hi j (xi j ;wi j) = gi j (xi j)+wi j can
be simply obtained by using the internal DP plot gi j (xi j) from Fig. 3.4 as a drafting
template and translating it along the vertical direction upwards (resp., downwards) by
an amount equal to the offset level wi j if wi j > 0 (resp., wi j < 0). This geometrical
interpretation is quite general and extremely useful – this is the reason for calling wi j

the offset level. Since ẋi j = hi j (xi j ;wi j), the dynamic route �x associated with the

47 3.1 The EDGE and EDGEGRAY templates

Γx

ij

ij ij

xij

Q+

1

10–1

Γx
ij ij

ij ij ij

xijQ+
Q–

1

1

–1

0

Γx
ij ij

h (x , w)ij ij ij

xijQ+Q– Q0
1

1

–1

–1

0

Γx

ij ij

ij ij

xijQ0

Q+Q–

1

0

10

–1

–1
(x (0), w)

Γx
ij

ij ij ij

xij

Q+Q–

1

1

–2

–1 0

–1

Γx
ij

h (x , w)ij ij ij

xijQ–

1

–1

–1
0

(c) –1 < w < 0ij

ij

ij

ij

(e) w = 1ij

(f) 1 < w < ∞ij

ijh (x , w)

ij(x (0), w)

h (x , w)ij

(x (0), w)

h (x , w)

(x (0), w)

h (x , w)

ij(x (0), w)

(a) w < –1

ij(x (0), w)

(b) w = –1

(d) 0 < w < 1

–1

Fig. 3.5. State dynamic route for wi j �= 0.

rate function hi j (xi j ;wi j) for each of the six mutually exclusive cases (which covers
the entire range of wi j �= 0) is shown in Figs 3.5(a)–(f), respectively.

Observe that any trajectory originating from any point on the upper (resp., lower)
half plane must move towards right (resp., left) and settle on the right (resp., left)
segment. Hence, at equilibrium the output is always binary: yi j (∞) = +1, or −1.

Now since wi j = −0.5 + ∇2Ui j > 0, if ∇2Ui j > 0.5, then the associated state
dynamic route is given by Figs 3.5(d)–(f), where all trajectories originating from
xi j (0) = 0 tend to Q+. Since xi j (Q+) > 1, we have yi j (∞) = 1, which implies Local
rule 4. Similarly, Local rule 5 (which corresponds to ∇2Ui j < 0.5, or equivalently
wi j < 0) follows from the state dynamic routes shown in Figs 3.5(a)–(c). �

48 Characteristics and analysis of simple CNN templates

Proof of Local rules 1–3:
If ui j = −1, then

wi j = −0.5+ 8(−1)−
∑

kl∈S1(i, j)
kl �=i j

ukl < 0, for all ukl ∈ [−1, 1].

Hence, Local rule 1 then follows from Eq. (3.8), since the trajectories move to Q−.
If ui j = 1, and ukl = 1, for all kl ∈ S1(i, j), then

wi j = −0.5+ 8(1)−
∑

kl∈S1(i, j)
kl �=i j

ukl = −0.5 < 0

Hence, Local rule 2 then follows from Eq. (3.8), since the trajectories move to Q−.
If ui j = 1, and there exist uαβ = −1, then

wi j = −0.5+ 8(1)+ 1−
∑

kl∈S1(i, j)
kl �=i j,kl �=αβ

ukl ≥ 1.5, for all ukl ∈ [−1, 1].

Hence, Local rule 3 then follows from Eq. (3.4). �

V Basins of attraction
Fig. 3.5 shows that the EDGEGRAY CNN has a unique equilibrium point Q− if
wi j < −1 (Fig. 3.5(a)), or Q+ if wi j > 1 (Fig. 3.5(f)). In these cases, all trajectories
xi j (t) will tend to a unique equilibrium point, independent of the initial states xi j (0).
A CNN operating under this initial-state-independent condition is said to be globally
asymptotically stable, or monostable for brevity, and the associated equilibrium point
is called a global point attractor Q. The union of all initial states B(Q) whose
corresponding trajectories tend to Q is called the Basin of attraction of Q. In the above
case we have simply B(Q−) = B(Q+) = R, the real line.

Consider next the two typical cases wi j ∈ (−1, 0) and wi j ∈ (0, 1), as shown in
Figs 3.5(c) and 3.5(d), where there are two locally stable equilibrium points Q− and
Q+, respectively. However, unlike the monostable case, which of the two equilibrium
points the trajectory will converge to depends on the initial state xi j (0). In both Figs
3.5(c) and 3.5(d), the basin of attraction of Q− is given by all points lying to the left
of the unstable equilibrium point Q0; namely, B(Q−) = {xi j : −∞ < xi j < xQ0}.
Similarly, the basin of attraction of Q+ is given by B(Q+) = {xi j : xQ0 < xi j <

∞}. In this case, the unstable equilibrium point Q0 separates the set of all initial
states xi j (0) ∈ R into two basins of attraction and the CNN is said to be bistable.
Observe that the initial state X(0) = 0 which we have prescribed for the EDGEGRAY
CNN guarantees that the trajectories corresponding to any input gray-scale image will
converge to the correct output image.

Finally, consider the two singular cases wi j = −1 and wi j = 1, as shown in Figs
3.5(b) and 3.5(e), where there are only two equilibrium points. In these cases, only one

49 3.2 Three quick steps for sketching the shifted DP plot

equilibrium point is locally stable; namely, Q− in Fig. 3.5(b) with a basin of attraction
B(Q−) = {xi j : −∞ < xi j < xQ+} and Q+ in Fig. 3.5(e) with a basin of attraction
B(Q+) = {xi j : xQ− < xi j < ∞}. The equilibrium points Q+ in Fig. 3.5(b) and Q−
in Fig. 3.5(e) are said to be semi-stable because they lie on the boundaries of these
basins so that arbitrarily small perturbations will cause the trajectories to diverge away
from the basins. Since “noise” is inevitable in any hardware realization, or computer
simulation, these two semi-stable equilibrium points are not observable in practice and
are, therefore, practically speaking, unstable.

3.2 Three quick steps for sketching the shifted DP plot

Since the most useful tool for studying the nonlinear dynamics of any uncoupled CNN
is to analyze its state dynamic route �x it is essential that we develop the skill to
quickly sketch the shifted DP plot �x (wi j), which, in general, depends on both the
threshold zi j and the inputs ukl ∈ Sr (i, j) of all cells belonging to the sphere of
influence Sr (i, j). The following three simple steps are all that is needed:

Given: threshold zi j and inputs ukl ∈ Sr (i, j).

Step 1: Calculate the slope of the middle segment s00 = a00 − 1 and the offset level
wi j = zi j + B � Ui j .

Step 2: Draw a straight-line segment with slope equal to s00 at the point ẋi j = wi j on
the vertical axis and ends at xi j = −1 and xi j = 1, respectively. The two end
points are the left and the right breakpoints of the shifted DP plot.

Step 3: Draw a half line with slope equal to −1 starting from each breakpoint, and
tending to infinity in each direction.

Left saturation region

(Left breakpoint) Right saturation region

slope = –1

slope = –1

slope = s = a – 100

ij

–

ij

ij

00

–1 0 1

x = w

x

ijx

P

+P (Right breakpoint)

Central linear region

Fig. 3.6. A typical shifted DP plot �x (wi j).

50 Characteristics and analysis of simple CNN templates

3.3 Some other useful templates

Our object in this section is to select a gallery of CNN templates which can be
analyzed mathematically and explained. Some are specially developed to illustrate a
particular property – mainly for pedagogical values – and are not necessarily the best
choice for the intended tasks. These templates will be analyzed in the order of their
tractability and complexity. Each CNN is carefully chosen to illustrate either a new
paradigm, mechanism, or application. For ease of reference, we will always follow a
consistent style: each CNN will be identified by a code name (which may not be very
meaningful) copied from the CNN template library, together with an expanded name
which suggests the task it is designed to implement. This will be followed by a listing
of (A, B, z) templates, and the following standard sections:

I Global task
A non-technical description will be given of the input–output image transformation at
the complete image level.

II Local rules
A precise recipe of how an input pixel transforms into an output pixel. Ideally, these
local rules must be complete in the sense that each output pixel can be uniquely
determined by applying these rules to the state and input of all pixels within that sphere
of influence. The local rules may sometimes be redundant if they help to simplify the
interpretation of the recipe, provided they are consistent (do not contradict each other).

The local rule may be more general than needed to specify the global task. For
example, it may apply to a gray-scale input even if the global task specifies only binary
inputs.

III Examples
Several examples will be given. The first example will include:
(a) The input picture U and initial state X(0).

(b) Several consecutive snapshots in time until the transient settles down to a static
output image Y(∞) at t = t∞, where t∞ is called the transient settling time.

(c) Time waveforms of both state xi j (t) and output yi j (t) at several strategically
identified points on the output image Y(t) will be given. The time axis is labeled
in units of the CNN time constant τCNN. For current VLSI technology, 30 ns ≤
τCNN ≤ 200 ns (ns: nanosecond). The transient settling time can be read off
directly from these waveforms by multiplying t∞ with τCNN.

(d) The first example will be repeated for a scaled-up array (usually ten times larger
in each direction) in order to compare their settling times.

IV Mathematical analysis
Ideally, a rigorous mathematical proof will be given for each local rule. Whenever this
is not available (either because a proof has not yet been developed, or the rules do not

51 3.3 Some other useful templates

always hold and therefore need modification) an intuitive proof, often supplemented
by various numerical studies, will be given.

3.3.1 CORNER: convex corner detection template

A =
0 0 0
0 2 0
0 0 0

B =
−1 −1 −1
−1 8 −1
−1 −1 −1

z = −8.5

I Global task
Given: static binary image P
Input: U(t) = P
Initial state: X(0) = 0

Output: Y(t) ⇒ Y(∞) = Binary image, where black pixels correspond to convex
corners in P (where, roughly speaking, a black pixel is a convex corner if it is part
of a convex boundary line of the input image).

II Local rules
ui j (0) → yi j (∞)

1 white pixel → white, independent of neighbors

2 black pixel → black, if and only if it has three or fewer black nearest neighbors (or
equivalently five or more white nearest neighbors)

III Examples

EXAMPLE 3.9: Image size: 15× 15

C

B
A

input initial state output, t = 0.2

t = 0.4 t = 0.6 t = 1.0

Normalized time unit tu = τCNN.

52 Characteristics and analysis of simple CNN templates

EXAMPLE 3.10: Image size: 100× 100

input initial state output, t = 0.2

t = 0.4 t = 0.6 t = 1.0

EXAMPLE 3.11: Realistic scene (100× 100)

input final output

EXAMPLE 3.12: Corner template for image containing pixel level textures (50× 50)

input final output

53 3.3 Some other useful templates

time t

Fig. 3.7. Cell state and output transients for 30 equidistant time steps at three different locations in
the image of example 3.9. ——————: state variable xi j ; ——: output variable yi j .

IV Mathematical analysis

Since the EDGEGRAY and the CORNER CNN have the same A template, their
internal DP plots gi j (xi j) are identical, as already derived earlier in Fig. 3.5(a) (for the
EDGEGRAY template). Moreover, since they have the same B template, the output of
the CORNER CNN is also given by Eq. (3.4) of the EDGEGRAY CNN; namely

yi j (∞) = 1, if wi j > 0 and wi j �= 1
= −1, if wi j < 0 and wi j �= −1

(3.15)

54 Characteristics and analysis of simple CNN templates

where in this case

wi j = −8.5+ 8ui j −
∑

kl∈S1(i, j)
kl �=i j

ukl (3.16)

Now, since ui j = −1 implies wi j < 0 independent of ukl , it follows that any white
input pixel must map into a white output pixel (Local rule 1).

It remains to analyze the case where ui j = 1 (black). In this case, Eq. (3.16)
becomes

wi j = −0.5− (pb − pw) (3.17)

where pb and pw denote, respectively, the total number of black and white surround
(nearest neighbor) pixels of the center cell C(i, j). Since pb + pw = 8, Eq. (3.17)
implies

wi j = −0.5− (2pb − 8) = 7.5− 2pb

= −0.5− (8− 2pw) = −8.5+ 2pw (3.18)

It follows from Eq. (3.18) that

wi j < 0, if pb ≥ 4 (or, pw ≤ 4)

> 0, if pb ≤ 3 (or, pw ≥ 5)

}
(3.19)

Hence, a black input pixel will map to a black output pixel if and only if it has three
or less black surround cells, or it has five or more white surround cells (Local rule 2).

It is interesting to observe that the nonlinear dynamics of the CORNER CNN tend
to extract one pixel-wide horizontal and vertical edges which form the boundary of a
square (e.g., see output image at t = 0.4). In other words, the CORNER CNN seems
to exhibit some intelligence in self-organization by programming itself to carry out
the prescribed global task in two steps: (1) extract horizontal and vertical edges at the
perimeter of a square, and (2) extract the extreme “end” pixel of these edges. This
fascinating self-programming phenomenon can be explained by examining carefully
the time evolution of the transient process.

3.3.2 THRESHOLD: gray-scale to binary threshold template

A =
0 0 0
0 2 0
0 0 0

B =
0 0 0
0 0 0
0 0 0

z = −z∗ ,

55 3.3 Some other useful templates

I Global task
Given: static gray-scale image P and threshold z∗

Input: U(t) = arbitrary or default to U(t) = 0

Initial state: X(0) = P

Output: Y(t) ⇒ Y(∞) = binary image when all pixels P with gray-scale intensity
pi j > z∗ becomes black.

II Local rules
xi j (0) → yi j (∞)

1 xi j (0) < z∗ → white, independent of neighbors

2 xi j (0) > z∗ → black, independent of neighbors

3 xi j (0) = z∗ → z∗, assuming zero noise

III Examples

EXAMPLE 3.13: Image size: 63× 63

input initial state output, t = 0.1

t = 0.2 t = 0.3 t = 0.5

Normalized time unit tu = τCNN, z∗ = −0.4.

56 Characteristics and analysis of simple CNN templates

EXAMPLE 3.14: Image size: 63× 63

input output, z* = 0.8 output, z* = 0.4

output, z* = 0.0 output, z* = –0.4 output, z* = –0.8

EXAMPLE 3.15: Image size: 128× 128

input output, z* = 0.5

output, z* = 0.0 output, z* = –0.5

57 3.3 Some other useful templates

EXAMPLE 3.16: Image size: 100× 100

input output, z* = 0.5

output, z* = 0.0 output, z* = –0.5

Observe that the last two examples show that any image P can be transformed into
a completely black image by a THRESHOLD template with z∗ = −4, or a completely
white image by choosing z∗ = 4. Since these two transformations are quite useful
for many image-processing tasks, we have recognized their importance by classifying
them as separate CNNs in the CNN template Library under the names FILBLACK and
FILWHITE, respectively, which we reproduce in Section 3.3.3.

IV Mathematical analysis (for THRESHOLD)
Since bkl = 0, wi j = −z∗, there is only one shifted DP plot for each threshold z∗, as
shown in Fig. 3.8, independent of the inputs of the neighbors (which is arbitrary for
this template).

It follows from the dynamic route shown in Fig. 3.8. that

yi j (∞) = −1, if xi j (0) < z∗ (Local rule 1)

= 1, if xi j (0) > z∗ (Local rule 2)

= z∗, if xi j (0) = z∗ (Local rule 3)

Observe that yi j (∞) = z∗ when xi j (0) = z∗ because xi j = z∗ in Fig. 3.8 is
an equilibrium point (Q0). However, since Q0 is unstable, any “noise” �x would
eventually drive the “theoretical” gray-scale output to either black (if the noise

58 Characteristics and analysis of simple CNN templates

slope = –1
slope = –1

slope = 1

xij

Γ (w)ij

–

x

–1 0 1

–1

–z*

Q

0 ijQ (x = z*)

+Q

Fig. 3.8. Shifted DP plot �x (wi j) and its dynamic route.

�xi j (0) > 0), or white (if the noise �xi j (0) < 0). Hence, in practice, the above
THRESHOLD CNN will always give a binary output image, assuming one waits long
enough for the transients to settle down.

3.3.3 FILBLACK and FILWHITE templates

FILBLACK: Gray-scale to black CNN

A =
0 0 0
0 2 0
0 0 0

B =
0 0 0
0 0 0
0 0 0

z = 4

I Global task

Given: static gray-scale image P

Input: U(t) = arbitrary or default to U(t) = 0

Initial state: X(0) = P

Output: Y(t) ⇒ Y(∞) = black image (all pixels are black)

II Local rules

xi j (0) → yi j (∞)

Arbitrary xi j (0) ∈ (−∞,∞) → yi j (∞) = 1

59 3.3 Some other useful templates

III Example

EXAMPLE 3.17: Image size 128× 128

Input Output, z = 4.0

FILWHITE: Gray-scale to white CNN

A =
0 0 0
0 2 0
0 0 0

B =
0 0 0
0 0 0
0 0 0

z = −4

I Global task
Given: static gray-scale image P
Input: U(t) = arbitrary or default to U(t) = 0

Initial state: X(0) = P
Output: Y(t) ⇒ Y(∞) = white image (all pixels are white)

II Local rules
xi j (0) → yi j (∞)

Arbitrary xi j (0) ∈ (−∞,∞) → yi j (∞) = −1

III Example

EXAMPLE 3.18: Image size 128× 128

Input Output, z = – 4.0

60 Characteristics and analysis of simple CNN templates

3.3.4 LOGNOT: Logic NOT and set complementation (P → P̄ = Pc) template

A =
0 0 0
0 1 0
0 0 0

B =
0 0 0
0 −2 0
0 0 0

z = 0

I Global task
Given: static binary image P
Input: U(t) = P
Initial state: X(0) = 0

Output: Y(t) ⇒ Y(∞) = binary image where each black pixel in P becomes white,
and vice versa. In set-theoretic or logic notation: Y(∞) = Pc = P̄, where the bar
denotes the “Complement” or “Negation” operator.

II Local rules
xi j (0) → yi j (∞)

1 black pixel → white pixel, independent of initial states

2 white pixel → black pixel, independent of initial states

III Example
EXAMPLE 3.19: Image size: 15× 15

input initial state output, t = 0.1

t = 0.2 t = 0.3 t = 0.5

Normalized time unit tu = tCNN.

IV Mathematical analysis (for LOGNOT)
Since s00 = a00 − 1 = 0, and wi j = −2ui j , where ui j ∈ {−1, 1}, only the two shifted
DP plots shown in Figs 3.9(a) and 3.9(b) need to be considered. The above dynamic
routes show that the LOGNOT template gives rise to a globally asymptotically stable

61 3.3 Some other useful templates

(a) uij = 1⇒ wij = –2 ij = –1 ⇒ wij = 2(b) u

xij

xij xij

–1

–1 10 –1 10

–2

–Q
+Q

xij

Fig. 3.9. Shifted DP plots for the cases ui j = 1 and ui j = −1.

(monostable) CNN provided the inputs are binary. Local rules 1 and 2 follow directly
from Figs 3.9(a) and 3.9(b), respectively.

Remarks
Note that since the middle segment of the shifted DP plot in Figs 3.9 is horizontal, an
ambiguous situation can occur if the inputs are not binary. In particular, when ui j = 0,
the horizontal segment coincides with the closed unit interval [−1, 1] of the xi j -axis,
which implies that all points xi j ∈ [−1, 1] are equilibrium points. Moreover, this
continuum of non-isolated equilibrium points possesses a weaker form of stability
in the sense that if we perturb any equilibrium point on the interior of [−1, 1] by
a sufficiently small amount so that it remains within [−1, 1], then the state of this
CNN will assume this new position, unlike the previous semi-stable case where the
trajectory eventually moves to another point outside of [−1, 1]. In other words, yi j (∞)

can assume any gray-scale value −1 ≤ yi j ≤ 1.
Although the above singular situation rarely occurs in practical CNNs, the possibil-

ity of such weird phenomena can greatly complicate the derivation of a rigorous proof
of many quite general mathematical properties. Even worse, it can make some such
seemingly reasonable properties incorrect. Consequently, it will often be advisable,
if not necessary, to add the reasonable hypothesis that the class of CNNs being
considered for a rigorous mathematical proof has only isolated, and hence a finite
number1 of equilibrium points.

3.3.5 LOGOR: Logic OR and set union ∪ (disjunction ∨) template

A =
0 0 0
0 3 0
0 0 0

B =
0 0 0
0 3 0
0 0 0

z = 2

62 Characteristics and analysis of simple CNN templates

I Global task
Given: two static binary images P1 and P2

Input: U(t) = P1

Initial state: X(0) = P2

Output: Y(t) ⇒ Y(∞) = binary output of the logic operation OR between P1 and P2.
In logic notation, Y(∞) = P1 ∨ P2, where ∨ denotes the “disjunction” operator. In
set-theoretic notation, Y(∞) = P1 ∪ P2, where ∪ denotes the “set union” operator.

II Local rules
ui j (0) xi j (0) → yi j (∞)

1 white pixel white pixel → white, independent of neighbors

2 white pixel black pixel → black, independent of neighbors

3 black pixel white pixel → black, independent of neighbors

4 black pixel black pixel → black, independent of neighbors

III Examples

EXAMPLE 3.20: Image size: 15× 15

input initial state output, t = 0.1

t = 0.2 t = 0.3 t = 0.5

Normalized time unit tu = tCNN.

63 3.3 Some other useful templates

EXAMPLE 3.21: Image size: 100× 100

input initial state output, t = 0.1

t = 0.2 t = 0.3 t = 0.5

IV Mathematical analysis (for LOGOR)
Since this is our first template which belongs to the domain of “Boolean algebra,” or
“switching logic circuits,” where the numbers {0, 1} are used not in a numeric sense,
but in a symbolic sense, it is particularly important to translate any logic truth table
represented in Boolean variables into an equivalent CNN truth table represented in
numerical values before any numerical calculation is made. The reason we will use
both logic truth tables and CNN truth tables in this book is to avail ourselves of
the large body of results in the literature on Boolean functions and their numerous
combinatorial properties. To illustrate the importance of distinguishing these two
equivalent truth table representations, let us consider the logic truth table 3.1(a) and its
equivalent CNN truth table 3.1(b) for defining the LOGOR CNN.

Let us now derive the dynamic routes associated with the LOGOR templates. Since
s00 = a00 − 1 = 2 and wi j = 2 + 3ui j , only the two shifted DP plots shown in
Figs 3.10(a) and 3.10(b) are needed.

Consider first the case ui j = −1 (white) so that the dynamic route is given by
Fig. 3.10(a). In this case, if:

1 xi j (0) = −1 (white), then yi j (∞) = −1 (white), which is Local rule 1.

64 Characteristics and analysis of simple CNN templates

Table 3.1. Two equivalent representations of the LOGOR template.
(a) Logic truth table
for OR operation.

U X(0) Y(∞)

0 0 0 0
1 0 1 1
2 1 0 1
3 1 1 1

(b) CNN truth table
for OR operation.

U X(0) Y(∞)

0 −1 −1 −1
1 −1 1 1
2 −1 −1 1
3 1 1 1

(a) uij = –1 ⇒ wij = –1 ij = 1 ⇒ wij = 5

xij

xij

10

0

5

1

–1

–1

–1

–3

–Q
+Q

+Q0Q

xij

xij

(b) u

slope = 2

slope = –1

slope = –1

slope = –1

slope = –1

slope = 2

Fig. 3.10. Dynamic routes of the LOGOR CNN.

2 xi j (0) = 1 (black), then yi j (∞) = 1 (black), which is Local rule 2.

Consider next the case ui j = 1 (black) so that the dynamic route is given by
Fig. 3.10(b). In this case the CNN is globally asymptotically stable and yi j (∞) = 1,
regardless of the initial conditions, which implies Local rule 3 and Local rule 4.

3.3.6 LOGAND: Logic AND and set intersection ∩ (conjunction ∨) template

A =
0 0 0
0 1.5 0
0 0 0

B =
0 0 0
0 1.5 0
0 0 0

z = −1.5

65 3.3 Some other useful templates

I Global task
Given: two static binary images P1 and P2

Input: U(t) = P1

Initial state: X(0) = P2

Output: Y(t) ⇒ Y(∞) = binary output of the logic operation “AND” between P1 and
P2. In logic notation, Y(∞) = P1∧P2, where∧ denotes the “conjunction” operator.
In set-theoretic notation, Y(∞) = P1 ∩ P2, where ∩ denotes the “intersection”
operator.

II Local rules
ui j (0) xi j (0) → yi j (∞)

1 white pixel white pixel → white, independent of neighbors

2 white pixel black pixel → white, independent of neighbors

3 black pixel white pixel → white, independent of neighbors

4 black pixel black pixel → black, independent of neighbors

III Examples

EXAMPLE 3.22: Image size: 15× 15

input initial state output, t = 0.15

t = 0.3 t = 0.5 t = 0.8

Normalized time unit tu = tCNN.

66 Characteristics and analysis of simple CNN templates

EXAMPLE 3.23: Image size: 100× 100

input initial state output, t = 0.2

t = 0.4 t = 0.6 t = 1.0

IV Mathematical analysis (for LOGAND)
The logic and CNN truth tables for the LOGAND CNN are shown in Tables 3.2(a) and
3.2(b), respectively.

Table 3.2. Two equivalent representations of the LOGAND template.
(a) Logic truth table
for AND operation.

U X(0) Y(0)

0 0 0 0
1 0 1 0
2 1 0 0
3 1 1 1

(b) CNN truth table
for AND operation.

U X(0) Y(0)

0 −1 −1 −1
1 −1 1 −1
2 1 −1 −1
3 1 1 1

Let us now derive the dynamic routes associated with the LOGAND templates.
Since s00 = a00 − 1 = 0.5 and wi j = −1.5 + 1.5ui j , only the two shifted DP plots
shown in Figs 3.11(a) and 3.11(b) are needed.

Consider first the case ui j = −1 (white) so that the dynamic route is given by

67 3.3 Some other useful templates

 (a) uij = –1 ⇒ wij = –1.5 – 1.5 = –3 ij = 1 ⇒ wij = –1.5 + 1.5 = 0(b) u

xij xij
–1

–1

–2

–3

0 1

–1

0 12

–Q

–Q

0Q +Q

xij

xij

slope = –1

slope = –1

slope = 0.5

Fig. 3.11. Dynamic routes of the LOGAND CNN.

Fig. 3.11(a). In this case, the CNN is globally asymptotically stable, and yi j (∞) = −1
(white), regardless of the initial condition, which implies Local rule 1 and Local rule
2.

Consider next the case ui j = 1 (black) so that the dynamic route is given by
Fig. 3.11(b). In this case, if:

(a) xi j (0) = −1 (white), then yi j (∞) = −1 (white), which is Local rule 3.

(b) xi j (0) = 1 (black), then yi j (∞) = 1 (black), which is Local rule 4.

Remark
In our original CNN template library, and previous publications, the threshold value
for the LOGAND template was assigned the value z = −1. While both computer
simulations and measurements made on an early version of the CNN universal chip3

had verified the correct operation of this template, the dynamic routes shown in
Fig. 3.12 corresponding to z = −1 show that this threshold value was a poor
choice (see Fig. 3.12(b)), and could lead to incorrect operations in practice. In
particular, if the initial state xi j (0) = −1, then the output yi j (∞) in Fig. 3.12(b)
coincides with the semi-stable equilibrium point at Q−(xi j = −1). The following
two situations in practice could occur and lead to an incorrect output yi j (∞) = 1
(black), thereby violating Local rule 3. First, any positive perturbation in the state
�xi j > 0 in Fig. 3.12(b) (to the right of Q−) would cause the trajectory to move to
Q+ where yi j (∞) = 1. Second, due to manufacturing tolerance in the chip fabrication
technology, it is virtually impossible to guarantee for the left breakpoint to be exactly
located as shown in Fig. 3.12(b). If this breakpoint is slightly displaced upward so
that only one equilibrium point (Q+) remains, then the trajectory would converge to

68 Characteristics and analysis of simple CNN templates

(a) uij = –1 ⇒ wij = –1 – 1.5 = –2.5 ij = 1 ⇒ wij = –1 + 1.5 = 0.5(b) u

xij
xij

–1
–1

–2

–2.5

0 1

–1

0 1

1

–Q

–Q

+Q

xij

xij

Fig. 3.12. Dynamic routes for the threshold value z = −1.

Q+. Since these two scenarios are quite common, it is astonishing to recall that our
previous computer simulations and actual measurements on a physical chip based on
this flaky design did not expose this potentially disastrous problem. One explanation
could be that the perturbations due to the inevitable numerical or physical noise are
small enough to require a longer “observation time” than had been given.

The above remark clearly points to the usefulness of our dynamic route approach
for analyzing the validity and reliability of CNN templates, and for optimizing their
reliability by finding more robust template coefficients.

3.3.7 LOGDIF: Logic difference and relative set complement (P1 \ P2 = P1 − P2)
template

A =
0 0 0
0 1 0
0 0 0

B =
0 0 0
0 −1 0
0 0 0

z = −1

I Global task
Given: two static binary input images P1 and P2

Input: U(t) = P2

Initial state: X(0) = P1

Output: Y(t) ⇒ Y(∞) = binary image representing the set-theoretic, or logic

complement of P2 relative to P1. In set-theoretic or logic notation, P1 \ P2
�=

P1 − P2
�= {x ∈ P1 : x �∈ P2}, Y(∞) = P1 \ P2, or Y(∞) = P1 − P2, i.e.,

P1 minus P2.

69 3.3 Some other useful templates

II Local rules
ui j (0) xi j (0) → yi j (∞)

1 white pixel ∈ P2 white pixel ∈ P1 → white

2 black pixel ∈ P2 white pixel ∈ P1 → white

3 black pixel ∈ P2 black pixel ∈ P1 → white

4 white pixel ∈ P2 black pixel ∈ P1 → black

III Examples

EXAMPLE 3.24: Image size: 15× 15

input initial state output, t = 0.2

B

C

A

t = 0.4 t = 0.6 t = 1.0

time (τ)

Fig. 3.13. Cell state and output transients for 40 equidistant time steps (0.1) at three different
locations in the image of example 1. The origin (0, 0) is the lower left corner. The pixel locations:
A(7, 7), B(5, 3), C(7, 8). Normalized time unit tu = tCNN. ——————: state variable xi j ; ——: output
variable yi j ; ***: output and state are the same.

70 Characteristics and analysis of simple CNN templates

Fig. 3.13. Continued.

EXAMPLE 3.25: Image size: 100× 100

input initial state output, t = 0.2

t = 0.4 t = 0.6 t = 1.0

71 3.3 Some other useful templates

IV Mathematical analysis (for LOGDIF)
Since s00 = a00 − 1 = 0 and wi j = −1− ui j , ui j ∈ {−1, 1}, only the two shifted DP
plots shown in Figs 3.14(a) and 3.14(b) need to be considered.

(a) uij = –1 ⇒ wij = 0 ij = 1 ⇒ wij = –2(b) u

–1 0 1 –1 0 1

–1

–2

–Q

xij xij

xij xij

Fig. 3.14. Shifted DP plots for the LOGDIF CNN for a00 = 1 where ui j = −1 and ui j = 1,
respectively.

Consider first the case when ui j = −1 (i.e., pixel in P2 is white). It follows from
the dynamic route in Fig. 3.14(a) that if:

(a) xi j (0) = −1 (white), then yi j (∞) = −1 (white), which is Local rule 1.

(b) xi j (0) = 1 (black), then yi j (∞) = 1 (black), which is Local rule 4.

Consider next the case when ui j = 1 (i.e., pixel in P2 is black). It follows from the
dynamic route in Fig. 3.14(b) that if:

(a) xi j (0) = −1 (white), then yi j (∞) = −1 (white), which is Local rule 2.

(b) xi j (0) = 1 (black), then yi j (∞) = −1 (white), which is Local rule 3.

Remarks
Unlike the preceding LOGNOT CNN where both equilibrium points are locally stable
(for binary inputs) in the usual sense, the left equilibrium point xi j = −1 in the
LOGDIF CNN is locally stable in an “unusual” sense, even for binary inputs (in this
case, for ui j = −1). Here, any perturbation of the initial condition towards the origin
will cause the output to be in gray scale (i.e., −1 < yi j (∞) < 1). This is because
any point xi j (0) on the unit interval [−1, 1] is an equilibrium point of this CNN when
ui j = −1, and will therefore remain dormant wherever the initial state xi j (0) lies, so
long as xi j (0) ∈ (−1, 1).

To overcome this “sensitivity-to-initial-condition” drawback, we only need to
enlarge the center feedback synaptic weight from a00 = 1 to any value satisfying

72 Characteristics and analysis of simple CNN templates

1 < a00 < 3. Observe that this CNN will not function correctly if a00 > 3 because in
this case the shifted DP plots in Fig. 3.15, drawn for a00 = 4.0, would violate Local
rule 3.

This analysis demonstrates that the shifted DP plot can be used not only for studying
the nonlinear dynamics of the CNN, but it can also be used to determine its “failure”
boundary, as well as to engineer a “cure,” thereby designing a much more robust if not
optimal CNN for carrying out the same task.

(a) uij = –1 ⇒ wij = 0 ij = 1 ⇒ wij = –2

xij

xij

–1

–3

–1

0

0

1

1

–2

–5

1

–Q

0Q

–Q

+Q

+Q

xij xij

 (b) u

0Q
slope = –1

slope = –1

slope = –1
slope = –1

slope = 3

Fig. 3.15. Shifted DP plot for the case a00 = 4.

3.3.8 SHIFT: Translation (by 1 pixel-unit) template

A =
0 0 0
0 1 0
0 0 0

B =
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

z = 0

where the input template B is chosen from one of eight possibilities corresponding to
the eight compass directions shown in Fig. 3.16.

I Global task3

Given: static binary image P

Input: U(t) = P

Initial state: X(0) = 0

Boundary conditions: ykl = −1, ukl = −1 for all boundary “virtual” cells C(k, l).

Output: Y(t) → Y(∞) = P(x − α, y − β) = translation of the input image P by one
pixel unit along one of eight compass directions (α, β), where α, β ∈ {−1, 0, 1},
and (x, y) denotes the Cartesian coordinate of any pixel of P.

73 3.3 Some other useful templates

B(NW) =
0 0 0
0 0 0
0 0 1

B(N) =
0 0 0
0 0 0
0 1 0

B(NE) =
0 0 0
0 0 0
1 0 0

B(W) =
0 0 0
0 0 1
0 0 0

N

NE

E

SE

S

SW

W

NW

B(E) =
0 0 0
1 0 0
0 0 0

B(SW) =
0 0 1
0 0 0
0 0 0

B(S) =
0 1 0
0 0 0
0 0 0

B(SE) =
1 0 0
0 0 0
0 0 0

Fig. 3.16. Input templates for translating an image by one-pixel unit along the indicated directions.

II Local rules
ui j (0) → yi j (∞)

1 arbitrary (−1 or 1) → 1 (black) if ui+α, j+β = 1

2 arbitrary (−1 or 1) →−1 (white) if ui+α, j+β = −1.

III Examples

EXAMPLE 3.26: Image size: 15× 15

input initial state output, t = 0.1

t = 0.4 t = 0.8 t = 1.0

74 Characteristics and analysis of simple CNN templates

EXAMPLE 3.27:

Input Output

EXAMPLE 3.28:

Input Output

EXAMPLE 3.29:

Input Output

75 3.3 Some other useful templates

EXAMPLE 3.30:

B(NW) B(N) B(NE)

B(W) B(E)

B(SW) B(S) B(SE)

IV Mathematical analysis (for SHIFT template)
Observe that the middle segment of the shifted DP plot is horizontal because s00 =
a00 − 1 = 0. Since bkl = 0 except when kl = i + α, j + β, we have

wi j = 0+
∑

C(k,l)∈S1(i, j)
kl �=i+α, j+β

0× ukl + ui+α, j+β = ui+α, j+β (3.20)

Hence, for binary inputs, only the two shifted DP plots shown in Fig. 3.17 are
possible. In Fig. 3.17(a), yi j (∞) = −1 (white) if ui+α, j+β = −1 (white), regardless of
the neighborhood pixels (Local rule 2). Conversely, Fig. 3.17(b) shows that yi j (∞) =
1 (black) if ui+α, j+β = 1 (Local rule 1).

Remarks
1 For binary inputs, the SHIFT CNN will operate correctly for arbitrary initial states.

2 The eight templates in Fig. 3.16 are not found in the original template library.
They were “synthesized” here for pedagogical purposes, using the shifted DP plot

76 Characteristics and analysis of simple CNN templates

(a) ui+α,j+β = –1 ⇒ wij = –1 i+α,j+β = 1⇒ wij = 1

–1 0 1

–1

–1

0 1

1

xij

xij xij

xij

slope = –1

slope = –1

slope = –1

slope = –1

(b) u

–Q +Q

Fig. 3.17. Two possible shifted DP plots of the SHIFT CNN.

techniques. Indeed, one of the objectives of this book is to illustrate how new CNN
templates can be invented to accomplish a prescribed task in a systematic way.

The following design considerations are therefore rather instructive.
Observe that many distinct templates for implementing the same task can be synthe-
sized. For example, any threshold value z∗ satisfying 0 < z∗ ≤ 1, or −1 < z∗ < 0,
would yield the same results. Hence, this example illustrates that there are lots of
“plays” within the threshold range of |z∗| ≤ 1, all of which are acceptable in principle.
However, observe that if |z∗| is too close to 1, then imperfections in chip manufacturing
technology, or aging, could inadvertently yield a shifted DP plot above the horizontal
axis, as in Fig. 3.18(a), or below the horizontal axis as shown in Fig. 3.18(b), thereby
resulting in operating failures. Consequently, our choice of z∗ = 0 represents an
optimal choice in so far as robustness with respect to variations in z is concerned.

Let us investigate next the robustness issue with respect to the value of the self-
feedback synaptic weight a00. Consider first the case where a00 ≤ 1, as shown in
Fig. 3.19(a) for ui+α, j+β = −1, and in Fig. 3.19(b) for ui+α, j+β = 1, respectively.
Observe that the CNN will still operate correctly in the case where 0 < a00 ≤ 1.
However, when a00 < 0, the left equilibrium point Q− in Fig. 3.19(a), or the right
equilibrium point Q+ in Fig. 3.19(b), lies inside the unit interval (−1, 1), and hence
the output is no longer binary since |yi j | = |xi j | < 1 in this case.

Consider next the shifted DP plots shown in Figs 3.20(a) and 3.20(b) where a00 > 1.
In this case, the CNN will still operate correctly so long as a00 < 2. However, observe
that when a00 > 2, the CNN becomes bistable and a spurious initial condition could
cause the trajectory in Fig. 3.20(a) to switch to Q+, or in Fig. 3.20(b) to switch to Q−,
thereby causing an incorrect operation in either case.

3 The 3 × 3 SHIFT CNN template in Fig. 3.16 can translate an input image by only

77 3.3 Some other useful templates

(a) Shifted DP plot for z* (0,1] (b) Shifted DP plot for z* [–1,0)
 lies inside the shaded area. lies inside the shaded area.

xij xij
–1

–1

0 1

–1 0 1

xij

xij

z* = 0

z* = –0.8

z* = –1
z* = 0.8

z* = 0

z* = 1.0

0.2

–0.2

∈∈

Fig. 3.18. Shifted DP plots for ui+α, j+β = −1 and ui+α, j+β = 1.

(a) ui+α,j+β = –1 (b) ui+α,j+β = 1

xij

a00

xij

–1 0 1

–1 0 1

1

–Q

–Q

0Q

0Q

+Q

+Q

xijslope = –1

slope = –1

slope = –1

slope = –1

slope = –1

= 1 a00 = 1

a00 < 10 < a00 < 10 <

a00 < 0 a00 < 0

Fig. 3.19. Dynamic routes for z∗ = 0, a00 ≤ 1.

78 Characteristics and analysis of simple CNN templates

 (a) ui+α,j+β = –1

 (b) ui+α,j+β = 1

xij

xij

xij

–1 0 1

–1 0 1

1

–Q –Q

–Q

–Q 0Q

0Q +Q

+Q +Q

+Q

a00 = 1

a00 = 1

a00 < 21 <

a00 < 21 <

a00 > 2

a00 > 2

xij

Fig. 3.20. Dynamic routes for z∗ = 0, a00 ≥ 1.

one pixel unit. In order to translate by r > 1 pixel units, it would be necessary to
choose a (2r + 1) × (2r + 1) template. For example, the 5 × 5 template shown
in Fig. 3.21(a) is necessary to shift P in a NE direction by two pixel units. In this
case, observe that we can achieve a higher resolution in the translation angles. For
example, the B template shown in Fig. 3.21(b) will translate the input image P along
a direction approximately halfway between the south and the southwest directions.

79 3.3 Some other useful templates

NE

N

E

W

SW

S

(a) (b)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Fig. 3.21. Two 5 ×5 B templates for shifting P by two pixel units to north and west and by two
pixel units to south and one pixel unit to west, respectively.

3.3.9 CONTOUR-1: Contour detection template

A =
0 0 0
0 2 0
0 0 0

B =
b b b
b 0 b
b b b

z = 4.7

b is defined by the following nonlinear function b(·) of �u = ui j − ukl (due to
symmetry of �u we can write ukl − ui j equivalently):

0.5

–0.45 0.45

0

–1

b

∆u = u – uij kl
∆

Fig. 3.22.

80 Characteristics and analysis of simple CNN templates

I Global task
Given: static gray-scale image P

Input: U(t) = P
Initial state: X(0) = 0

Output: Y(t) ⇒ Y(∞) = binary image, where black pixels correspond to the
sharper edges in P

II Local rules
ui j (0) → yi j (∞)

1 arbitrary [−1, 1] → black, if the pixel has more than two surrounding pixels of
significantly different gray levels (a pixel ukl is significantly different from ui j if the
absolute difference |�u| = |ui j − ukl | is greater than the threshold value where the
nonlinear function b(·) has a nonlinearity (0.45 in the present example)

2 arbitrary [−1, 1] → white, if at most two of the neighboring pixels are significantly
different

III Examples

EXAMPLE 3.31: Contour detection (image size: 15× 15)

input initial state output, t = 0.2

C

B

A

t = 0.4 t = 0.6 t = 1.0

81 3.3 Some other useful templates

time t

Fig. 3.23. State and output transients for 50 equidistant time steps at three different locations in the
image of example 3.31.

EXAMPLE 3.32: Image size: 100× 100

input initial state output, t = 0.2

82 Characteristics and analysis of simple CNN templates

t = 0.4 t = 0.6 t = 1.0

Normalized time unit tu = τCNN.

EXAMPLE 3.33: Image size: 100× 100

input final output

EXAMPLE 3.34: Realistic scene

input final output

83 3.3 Some other useful templates

IV Mathematical analysis (for CONTOUR-1 template)
State and output equation

ẋi j = gi j (xi j)+ wi j
�= hi j (xi j ;wi j)

wi j = f (xi j)

where

gi j (xi j) = −xi j + a00 f (xi j)

= −xi j + 2 f (xi j)

= −xi j + |xi j + 1| + |xi j − 1|
wi j = 4.7+ b(ui j − ui+1, j−1)+ b(ui j − ui+1, j)+ b(ui j − ui+1, j+1)

+ b(ui j − ui, j−1)+ b(ui j − ui, j+1)+ b(ui j − ui−1, j−1)

+ b(ui j − ui−1, j)+ b(ui j − ui−1, j+1)

= 4.7− ps + 0.5pd

= 4.7− (8− pd)+ 0.5pd

Hence

wi j = −3.3+ 1.5pd (3.21)

where

ps = number of approximately similar pixels (i.e., |�u| ≤ 0.45)

pd = number of significantly different pixels (i.e., |�u| > 0.45)

The shifted DP plots corresponding to the two most stringent situations are shown in
Fig. 3.24. Since the shifted DP plot for the case of three or more significantly different

–1

–0.3
–1

1
1.2

1–Q

0Q
+Q +Q

xij

wij

xijslope = –1
slope = –1

slope = 1

= –0.3 wij = 1.2

Fig. 3.24. Two shifted DP plots corresponding to pd = 3 (wi j = 1.2) and pd = 2 (wi j = −0.3).

84 Characteristics and analysis of simple CNN templates

gray pixels is obtained by simply translating the upper DP plot of Fig. 3.24 upwards, all
trajectories must converge to the globally asymptotically stable equilibrium point Q+,
thereby resulting in a black output pixel (Local rule 1). For two or less significantly
different gray pixels, the shifted DP plot is obtained by translating the lower DP plot
of Fig. 3.24 downwards. In this case, all trajectories originating from xi j (0) = 0 must
converge to the “left” equilibrium point Q−, thereby resulting in a white output pixel
(Local rule 2).

Remarks:
A comparison of the output image from Example 3.34 (noisy image) with the output
image obtained by our earlier EDGE template, or EDGEGRAY template (for the same
input image) shows a significantly superior result with the CONTOUR-1 template.
Observe that most of the annoying “noise” pixels from our earlier examples have
been eliminated. Hence, the CONTOUR-1 CNN is capable of not only extracting the
sharper edges from an image, but also simultaneously “filtering” out the “noisy” pixels.
This is our first example which illustrates how “nonlinearity” can be used to achieve
superior image-processing tasks found wanting by classical techniques.

3.3.10 EROSION: Peel-if-it-doesn’t-fit Template

A =
0 0 0
0 2 0
0 0 0

B =
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

where bkl = 0 or 1 (not all zeros), zE = 0.5− p1, and p1 = total number of 1s in the
B template, p1 > 0.

I Global task
Given: static binary image P and a 3 × 3 black and white (checkerboard) pattern

called the structuring element SE , whose black pixels coincide with those in the
B template (black = 1). SE , represented in this way, is also called the structuring
template

Input: U(t) = P
Initial state: X(0) = 0 (i.e., all entries are 0s)

Boundary conditions: ykl = −1, ukl = −1 for all “virtual” boundary cells C(k, l)

Output: Y(t) ⇒ Y(∞) = binary image where each pixel (i, j) = black, if the
translated structuring template SE (i +α, j +β) fits inside P after translating SE to
any pixel (i, j), with the center of SE anchored at C(i, j) (i.e., SE (i+α, j+β) ⊂ P)
Here, α and β are the relative local coordinates of SE = white, otherwise.

For future reference, let us introduce the above erosion operation of the input picture
by the structuring set SE by the symbol %. Using this notation, we can define the
global task exactly via the following set-theoretic identity

Y(∞) = P% SE = {x : SE + x ⊂ P} (3.22)

85 3.3 Some other useful templates

where

SE + x = {p + x : p ∈ SE } (3.23)

is the translation of the set SE to x ∈ SE .

II Local rules
ui j (0) → yi j (∞)

1 arbitrary (black or white) → black if SE (i + α, j + β) ⊂ P
2 arbitrary (black or white) → white if SE (i + α, j + β) �⊂ P (i.e., the translated

structuring template does not fit completely inside P)

III Examples
Since the input template B of the EROSION CNN is defined via the structuring
template SE , and, since there are 29 distinct combinations of 3×3 Boolean (black-and-
white) patterns, there are 29 distinct 3× 3 structuring elements, and hence 29 distinct
EROSION templates. Since many of the templates are quite useful for morphological5

image-processing applications, we will give several such templates and illustrate their
“sculpturing” properties. In particular (e.g., when the center pixel of SE is black), the
output image Y(∞) of an EROSION CNN will be a proper subset of the input image
P, obtained by “peeling off” one or more black pixels (i.e., change black to white)
located on the boundaries of P. Which pixels to peel off are determined by “SE ”;
hence the reason for the name structuring element. Indeed, it is useful to think of SE

as a “scalpel” which can be used to “chip” away selected pixels of a given pattern,
thereby changing its shape. It is this “scalping” property of the structuring template
that makes the EROSION CNN a powerful morphological tool in nonlinear image
processing. The following examples of EROSION B templates, coded by B[Ej] for
future reference, constitute a basic scalping toolkit for morphological image sculptors.

EXAMPLE 3.35: Image size: 15× 15

0 1 0

0 1 1
E1

B[E1] =

0 0 0

input initial state output, t = 0.05

86 Characteristics and analysis of simple CNN templates

t = 0.4 t = 0.6 t = 0.8

Image size in the following examples: 15× 15

EXAMPLE 3.36:

0 0 0
0 1 1

(a) E2
B[E2] =

0 0 0

input output

0 0 0
1 1 0(b) E2

B[E2] =
0 0 0

input output

Normalized time unit tu = τCNN.

87 3.3 Some other useful templates

EXAMPLE 3.37:

0 0 0
0 1 0

E3
B[E3] =

0 1 0

input output

S

EXAMPLE 3.38:

1 0 1
0 0 0

E4
B[E4] =

1 0 1

input output

S

EXAMPLE 3.39:

0 1 0
1 0 1

E5
B[E5] =

0 1 0

input output

S

88 Characteristics and analysis of simple CNN templates

EXAMPLE 3.40:

0 1 0
1 1 1

E6
B[E6] =

0 1 0

input output

S

EXAMPLE 3.41:

1 0 0
0 0 0

E8
B[E8] =

0 0 1

input output

S

EXAMPLE 3.42:

0 0 1
0 1 0

E9
B[E9] =

1 0 0

input output

S

89 3.3 Some other useful templates

EXAMPLE 3.43:

0 0 0
0 0 1

(a)

E10a
B[E10a] =

0 1 0

input output

0 0 0
0 1 1

(b)

E10b
B[E10b] =

0 1 0

input output

S

S

EXAMPLE 3.44:

0 0 0
0 0 1

E11
B[E11] =

0 0 0

input output

S

90 Characteristics and analysis of simple CNN templates

IV Mathematical analysis (for EROSION)
Observe first that since s00 = a00 − 1 = 1, the central segment of the shifted DP plot
has a positive unit slope.

Consider the case when the set of black pixels in the 3 × 3 neighborhood of pixel
C(i, j) of the input image P contains all p1 black pixels of the structuring template
SE as a subset. In this case

wi j = zE +
∑

kl∈{−1,0,1}
bklukl = (0.5− p1)+ 1(p1) = 0.5

independent of the number p1 of black pixels in SE . The shifted DP plot in this case
is shown by the upper curve in Fig. 3.25. It follows from the associated dynamic route
that all trajectories starting from xi j (0) = 0 must converge to Q+. Hence, yi j (∞) = 1
whenever the translated structuring template SE (i +α, j +β) fits inside P (Local rule
1).

For the case when at least one black pixel of SE coincides with the white pixel in P
we have

wi j = zE +
∑

kl∈{−1,0,1}
bklukl = (0.5− p1)+ 1(pb)− 1(p̂1) ≤ −1.5

where pb denotes the number of coincident black pixels in P and SE , p̂1 is the number
of coincident white pixels in P and SE . Since pb < p1 in this case (by assumption)
and p̂1 ≥ 1, hence pb − p1 ≤ −1 and for 1 ≤ pb ≤ 9, it follows that wi j ≤ −1.5.
The lower dynamic route in Fig. 3.25 represents, therefore, the most stringent case that
needs to be considered. Hence, we have yi j (∞) = −1 (Local rule 2).

–1

–1

–2

–2.5

–1.5

0.5

–0.5

1

1
–Q

–Q
+Q

xij

xij

Fig. 3.25. Dynamic routes for the case SE (i + α, j + β) ⊂ P (upper curve) and the case
SE (i + α, j + β) �⊂ P (lower curve).

91 3.3 Some other useful templates

For some values of p1, pb, and p̂1, we show the values of wi j below in Table 3.3.

Table 3.3.

Number of Coincident
black pixels pixels in P
in SE SE Stable
p1 pb p̂1 wi j state Q Local rule number

3 3 0 0.5 Q+ 1
2 1 −1.5 Q− 2
1 2 −3.5 Q− 2
0 3 −5.5 Q− 2

2 2 0 0.5 Q+ 1
1 1 −1.5 Q− 2
0 2 −3.5 Q− 2

3.3.11 DILATION: Grow-until-it-fits template

A =
0 0 0
0 2 0
0 0 0

B =
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

z = zD

where bkl = 0 or 1, zD = p1 − 0.5, and p1 = total number of 1s in the B template,
p1 > 0.

I Global task
Given: static binary image P and a 3×3 black and white (checkerboard) pattern called
the structuring element or its 0–1 representation of the structuring template SD . The
structuring template is related to B by a 180◦ rotation with respect to the origin.

Input: U(t) = P
Initial state: X(0) = 0 (i.e., all entries are 0s)

Boundary conditions: ykl = −1, ukl = −1 for all “virtual” boundary cells C(k, l)

Output: Y(t) ⇒ Y(∞) = binary image generated as follows:

step 1. To each black pixel Cb(i j) ∈ P located at coordinates (i, j) translate the
structuring template SD and anchor it at Cb(i j). Denote this translated set of black
pixels by SD(i j).

step 2. Take the set-theoretic union of SD(i j) over all black pixels Cb(i j) of P:

Y(∞) =
⋃

all (i j) such
that ui j=1

SD(i j)

92 Characteristics and analysis of simple CNN templates

Remarks 1:

For future references, let us denote the above dilation operation of the input picture
P by the structuring set SD by the symbol ⊕. Using this notation, we can define the
global task via the following set-theoretic identity:

Y(∞) = P ⊕ SD =
⋃

over all x∈P

{SD + x : x ∈ P} (3.24)

where

SD + x = {p + x : p ∈ SD} (3.25)

is the translation of the set SD to x ∈ SD .

Observe that if we code the pixels of the set SD by “black = 1” and “white = 0,”
then, having the structuring template SD , the resulting B template is a reflection of SD

with respect to the origin, i.e., by a 180◦ rotation. Hence SD and B are related by a
180◦ rotation.

II Local rules

ui j (0) → yi j (∞)

1 black → black if all eight nearest neighbors of C(i, j) are black

2 black → black if b00 = 1 (equivalently, if the central pixel of the structuring
template SD is black)

3 arbitrary → black, if there is at least one nearest neighbor C(i + α, j + β) of
(−1 or 1) C(i, j) whose color is black and if the color code of the corresponding
pixel bαβ of the B template (at the same relative position (α, β)) is also black, i.e.,
ui+α, j+β = 1 and bαβ = 1

4 arbitrary → white, if there is no nearest neighborhood of (−1 or 1) C(i j) with the
above property

93 3.3 Some other useful templates

III Examples
Image size in the following examples: 15× 15.

EXAMPLE 3.45:

0 0 0
1 1 0

D1
B[D1] =

0 1 0

input initial state output, t = 0.05

t = 0.4 t = 0.6 t = 0.8

S

EXAMPLE 3.46:

0 0 0
1 1 0

(a)

D2
B[D2] =

0 0 0

input output

S

94 Characteristics and analysis of simple CNN templates

0 0 0
0 1 1

(b)

D2
B[D2] =

0 0 0

input output

S

Normalized time unit tu = τCNN.

EXAMPLE 3.47:
0 1 0
0 1 0

D3
B[D3] =

0 0 0

input output

S

EXAMPLE 3.48:

1 0 1
0 0 0

D4
B[D4] =

1 0 1

input output

S

95 3.3 Some other useful templates

EXAMPLE 3.49:

0 1 0
1 0 1

D5
B[D5] =

0 1 0

input output

S

EXAMPLE 3.50:

0 1 0
1 1 1

D6
B[D6] =

0 1 0

input output

S

EXAMPLE 3.51:

0 0 0
0 0 0

D7
B[D7] =

1 0 0

input output

96 Characteristics and analysis of simple CNN templates

EXAMPLE 3.52:

1 0 0
0 0 0

D8
B[D8] =

0 0 1

input output

EXAMPLE 3.53:

0 0 1
0 1 0SD9

B[D9] =
1 0 0

input output

EXAMPLE 3.54:

0 1 0
1 0 0

(a)

D10a
B[D10a] =

0 0 0

input output

S

97 3.3 Some other useful templates

0 1 0
1 1 0

(b)

D10b
B[D10b] =

0 0 0

input output

S

IV Mathematical analysis (for DILATION)
Observe first the central segment of the shifted DP plot has a positive unit slope.

If ui j (0) = 1 and ukl = 1 for all kl ∈ {−1, 0, 1}, then, since p1 > 0 (by
assumption), we have

wi j = zD +
∑

kl∈{−1,0,1}
bklukl = (p1 − 0.5)+

∑
kl∈{−1,0,1}

bkl

= (p1 − 0.5)+ p1

= 2p1 − 0.5 ≥ 1.5

It follows from the dynamic route upper curve in Fig. 3.26 that yi j (∞) = 1 (Local
rule 1).

If ui j (0) = 1 and b00 = 1, i.e., both cell C(i j) and the central pixel of SD are
black, then by anchoring SD at cell C(i, j), the translated set SD(i + α, j + β) has
a black pixel at the location (i, j). Hence yi j (∞) = 1, since the set union operation

–1

–0.5

0.5

1

1

+Q+Q

–Q
xij

xij

Fig. 3.26.

98 Characteristics and analysis of simple CNN templates

of SD(i + α, j + β) with other translated templates will only add more black pixels
(Local rule 2).

Consider the DP plot of Fig. 3.26.
It remains to prove Local rules 3 and 4. Let the number of 1s in B (and hence also

in SD) be denoted by p1. If upon examining a typical B template, we found no black
pixels of P coincide with any black pixels of B at corresponding locations, i.e., if
ui+α, j+β · bαβ = 0 for all (α, β) ∈ {−1, 0, 1}, then since B has p1 non-zero entries,
where p1 > 0,

wi j = zD +
∑

kl∈{−1,0,1}
bklukl = (p1 − 0.5)+ p1(−1) = −0.5.

Hence, in this case, starting from xi j (0) = 0, the dynamic route (lower shifted DP
plot) shown in Fig. 3.26 must converge to Q−. Consequently, C(i j) becomes white.
This proves Local rule 4.

On the other hand, if there is at least one coincident black pixel in both P and B
within the 3× 3 neighborhood of C(i j), then

wi j = (p1 − 0.5)+ pb + p̂1(−1)

where pb denotes the number of coincident black pixels, pb ≥ 1, and p̂1 denotes
the number of non-zero entries of B which do not have coincident black pixels in P.
Clearly, since p̂1 = p1 − pb, we have

wi j = (p1 − 0.5)+ pb − p1 + pb = 2pb − 0.5 ≥ 1.5.

Now since pb ≥ 1, by assumption, the minimum of wi j is 1.5, as is evident
from Table 3.4 showing a few sample relationships among p1, pb, p̂1, wi j and the
equilibrium point where a trajectory originating from xi j = 0 must converge.

Table 3.4.

p1 pb p̂1 wi j Q

0 3 −0.5 Q−
3 1 2 1.5 Q+

2 1 3.5 Q+

0 4 −0.5 Q−
4 1 3 1.5 Q+

2 2 3.5 Q+

Observe that in all cases, we obtain yi j (∞) = 1, which implies Local rule 3.

99 3.3 Some other useful templates

11

0000
b

–1,–1
b

(a) (b) (c)

1

2

3

4

5

6

1 2 3 4 5 6

X

Fig. 3.27. (a) P0: a part of image P; (b) the B template; (c) the structuring element. A typical
situation satisfying Local rule 3.

Remarks 1:
Our above proof only shows that the Local rules 1–4 are a consequence of the dilation
template. It is not obvious that the output image Y(∞) generated by applying these
local rules, or from the template directly by solving the associated ODEs, is identical
to the original set-theoretic definition of the DILATION operation specified in the
Global task. To show that they are indeed identical, let us consider the typical situation
shown in Fig. 3.27, and pick a cell C(i j), identified by “×” in Fig. 3.27(a), located at
i = 3, j = 4. Suppose now that there exists a nearest neighbor (α, β) ∈ {−1, 0,+1}
such that ui+α, j+β = 1 and bαβ = 1. A typical situation satisfying these conditions
is shown in Fig. 3.27(a), where only a part P0 of the input image P is shown with the
relevant rows and columns relabeled from 1–6 for ease of reference, and where the
relevant black pixel at (2, 3) is shown (the other pixels can be black or white). Here,
i = 3, j = 4, α = −1, β = −1, u23 = ui−1, j−1 = 1, and b−1,−1 = 1, as stipulated.
Suppose the 3× 3 input sub-pattern identified by rows {2, 3, 4} and columns {3, 4, 5}
in Fig. 3.27(a) contains a black or white center pixel at location (3, 4). Since B is
obtained by a 180◦ rotation of the structuring template, and, since b−1,−1 = 1, the
“reflected” pixel S11 shown in Fig. 3.27(c) must be black. Now since, by assumption,
pixel (2, 3) of P0 ⊂ P in Fig. 3.27(a) is black, we can anchor the central pixel S00 of
the structuring template SD of Fig. 3.27(c) at pixel location (2, 3) in Fig. 3.27(a). This
is redrawn in Fig. 3.27(c) as the “dash” window SD(2, 3) overlapping a part of the
3× 3 (shown in bold lines) input sub-pattern whose central element “×” is located at
position (3, 4). Observe that in this case the “black” pixel S11 of SD(2, 3) is located at
the same position as the “black or white” center pixel (3, 4) in Fig. 3.27(c). Hence, the
“black or white” pixel “×” must map into a “black” pixel after applying the dilation
operation in view of its set “union” property, and the fact that pixel S11 of SD is black.

Since the same proof above applies if the black pixel is located at any one of the
seven other nearest neighbor positions, pixel (3, 4) must map into black in each case
(Local rule 3).

4 Simulation of the CNN dynamics

Introduction

There are many ways the CNN dynamics can be analyzed and simulated or solved:

• mathematical analysis of qualitative behavior and numerical methods to calculate
the quantitative results, i.e. the signal values at well-defined time instances (usually
at equidistant time sequences),

• software simulators using one of the numerical methods for solving the set of ODEs
of CNN dynamics,

• multi-processor (DSP) digital emulators, hardware accelerator boards, to speed up
the software simulators,

• continuous-time physical implementation of the CNN dynamics in the form of
programmable analog VLSI chips,

• living organs which reflect the CNN dynamics (e.g. the retina or other parts of the
retinotopic visual pathway).

In this chapter we will briefly review them, except the last area to be discussed in
Chapter 16.

4.1 Integration of the standard CNN differential equation

The standard class 1 CNN dynamics with space-invariant templates is described by

ẋi j = −xi j +
r∑

k=−r

r∑
l=−r

akl yi+k, j+l +
r∑

k=−r

r∑
l=−r

bklui+k, j+l + z

y(xkl) = f (xkl)

xi j (0) = xi j0 (4.1)

where a and b are the elements of the space invariant template matrices A and B,
respectively. We want to simulate the solution of these differential equations on a
standard digital computer, like a PC with a Pentium microprocessor.

100

101 4.2 Image input

In general, a differential equation

ẋ = h(x;w)

x = x(t)

x(0) = x0 (4.2)

can be solved by standard numerical integration methods; the simplest one is the
forward Euler formula which calculates the value of x(t + �t) from x(t), �t being
the time step

x(t +�t) ∼= x(t)+�t ẋ(t) = x(t)+�th(x(t);w) (4.3)

(4.3) is qualitatively correct and accurate enough if we use a �t time step small enough
(in CNN we know in advance the range of dynamics of the state and its time derivatives
as well).

Using (4.3) and (4.1), and using an equidistant time step sequence 0, �t , 2�t , . . .,
m�t, . . . for x(t) (x(0), x(1), x(2), . . . , x(m), . . .), we get from xi j (m) the next value
xi j (m + 1).

xi j ((m + 1)�t)
�= xi j (m + 1)

= (1−�t)xi j (m)+�t
r∑

k=−r

r∑
l=−r

akl yi+k, j+l(m)

+�t
r∑

k=−r

r∑
l=−r

bklui+k, j+k(m)+�t z

y(xkl(m + 1)) = f (xkl(m + 1)) (4.4)

where �t and t are defined in normalized time units, tu ; this time unit is τCNN (the
“CNN time constant”).

Observe that we extended the use of the integration formula (4.3) from the scalar
case to the matrix case. This can easily be done since the CNN equations are very
sparse. In general, a universal integration formula may not necessarily be accurate
enough or even converge. Our CNN dynamics, in most practical cases, is very “mild,” a
�t ∼= 0.1 choice usually yields an accurate and convergent solution. In some complex
cases, the “implicit” integration formula

x(t +�t) ∼= x(t)+�t ẋ(t +�t) (4.5)

will always be stable.

4.2 Image input

There are several ways to input an image to the simulators. In case of the human eyes,
each tiny cell has its own photoreceptor (light sensor). Similarly, in the cP400 CNN

102 Simulation of the CNN dynamics

microprocessor chip (22 × 20 cells) each cell has its own light sensor. However, an
electrical input is also provided (to interface to CCD cameras via a frame grabber, or
a special on-chip interface). Using PCs or workstations, usually, the camera → frame
grabber → software file is the way a given image is loaded on to a simulator.

In each case, we need a lens system to project the sharp image with appropriate
illumination and size. Sometimes the transparency can directly be put on to the surface
of the chip when illuminated by a lamp.

A pixel illumination level is coded in the following way: black is +1, white is −1,
gray-scale values are in between. Hence, input, state, and output images can be coded.

4.3 Software simulation

The SimCNN1 software simulator program (for multiple layers) running on a PC has
the following main functions:

• calculates the CNN dynamics for a given template using (4.4),

• displays the input and output pictures, either by a gray-scale code or a color,

• simulates the CNN dynamics for a given sequence of templates (this option will be
described later).

This simulator has its own

• template library (*.TEM files),

• subroutine library (*.CSD files), and

• picture library (*.BMP and *.IMG files).

EXAMPLE 4.1:

103 4.3 Software simulation

In addition to the main functions, several special services are available. SimCNN
and other CNN design tools are used via the Visual Mouse Software Platform called
VisMouse. VisMouse has a CNN specific window menu shown in Example 4.1. Input,
state, output, and other images are shown in different windows; only one is active
(highlighted) at a time (in Example 4.1, the one in the lower position).

To run a simulation using a single template placed in the template library, we have
a simple, special way. We will illustrate this in the following examples.

Examples
We want to calculate the edges of a black and white image. Running the simulation for
calculating the CNN dynamics for the EDGE template, first, we select the functions
shown here in boxes. This means:

• we first download an image from a picture library;

• select a template from the template library;

• run the simulation with the well-defined parameters;

• show the resulting input, state, and output images at various time instants and at
the end of the transients. These steps are shown sequentially on the display outputs
shown in Examples 4.2–4.5.

EXAMPLE 4.2: The image “DIAMOND” is downloaded from the picture library.

104 Simulation of the CNN dynamics

EXAMPLE 4.3: The output in the middle of the transient process (on the right-hand side).

EXAMPLE 4.4: The output at the end (t = 5) of the transient.

105 4.3 Software simulation

EXAMPLE 4.5: The original downloaded image (left) and the input, state, output at the end of
the transient (upper, middle, lower images on the right-hand side).

At the end of the simulation the sequence of the snapshots of the transient can be
played back (and forth). The various signals can also be displayed graphically.

In these simulations the following default values are set: time step is 0.1 (forward
Euler), time duration is 5.0 (50 steps), boundary is fixed at−1.0, and the initial STATE
is the same as the INPUT.

If we want to change these default values or run a sequence of templates we have
to write a CNN Script Description (CSD or simply Script language) program. A
sample program showing the description of the above simulation is shown in Table 4.1.
Reading the comments (right from the % sign), you can start writing your own
program. Indeed, this sample program is stored as a default and you can just edit and
save it.

The template activation is described in the part shown in a box. In our previous
example for the EDGE template (in Chapter 3), we loaded different images to input
and initial state. Here, we used the same input and initial state. If they are different, we
can use the PicFill instruction as mentioned in the comment.

A few templates in the template library can be found in Appendix A. A more detailed
summary of the use of SimCNN can be found in Appendix B.

106 Simulation of the CNN dynamics

Table 4.1. The description of the simulation for the edge template in CSD (Script) language.

{START: SimCNN} % start SimCNN

Initialize SIMCNN CSD
WinLayout 3 % number of windows to be displayed
AssignWinPart 1 INPUT % assign output to the first window
AssignWinPart 2 STATE % assign output to the first window
AssignWinPart 3 OUTPUT % assign output to the first window
WinSetTitle 1 “INPUT”
WinSetTitle 2 “STATE”
WinSetTitle 3 “OUTPUT”

TimeStep 0.1 % in relative time unit
IterNum 50 % number of iterations
OutputSampling 1 % re-sampling rate of the output
Boundary −1.0 % fixed boundary condition
TemplatePath PLATFORM % set the current template library path

SendTo INPUT % send the active image to the INPUT
PicCopy INPUT STATE % copy input to state

% PicFill STATE 0.0 would fill the state
% with 0.0 values, this is not used here

TemLoad edge.tem % load template
RunTem % start simulation

Display INPUT
Display STATE
Display OUTPUT % display the results

Terminate % stop SimCNN
{STOP: SimCNN}

Next we will show three examples to illustrate the role of choosing the correct time
step (�t), initial condition, and boundary condition. Unless otherwise stated the time
step is set at a default value of 0.1.

107 4.3 Software simulation

Examples
In these examples, we show the role of the time step. We used a horizontal connected
component detector template. The boundary condition (called also “frame” in the
simulator) is fixed at [0] (default).

EXAMPLE 4.6: The input picture (far left) and the output and state pairs for three different
time steps: 0.1 (upper pair), 0.2 (middle pair), 2.0 lower pair).

The input image is shown on the far left part in Example 4.6 (it is also placed on
the initial state). Three pairs of images are shown on the right-hand side. The pairs
are: the output (left) and the state (right) in Example 4.6. The three different results
in the consecutive rows represent the final results at the end of the transients for three
different time steps. In the case of the first two time step values, 0.1 and 0.2, correct
results are calculated. For the third, the time step is 2.0, the result is wrong. Moreover,
it starts to oscillate.

Generally, a time step smaller than 0.5 leads to correct results.

108 Simulation of the CNN dynamics

EXAMPLE 4.7: The results of a less robust edge detection template with various initial
conditions (+1, 0, −1 at the top, middle, and lower rows, respectively).

In this example, we show the dependence of the outputs on the initial conditions
(boundary condition is the default [Y] = [U] = [0]). We used a less robust edge
template.

The same pattern is applied three times as the input image. The initial conditions are,
however, different, +1, 0, and −1 (black, gray, and white for all cells), respectively.
The input and the three pairs of output and state are shown in Example 4.7.

Observe that the correct solution is calculated when the initial state is full black
(+1) or zero. If the initial state is white (−1), then the output is wrong.

109 4.3 Software simulation

EXAMPLE 4.8: The effect of the boundary conditions. At different fixed values of boundary
conditions, 0,−1,+1, the resulting output and state pairs are shown in the top, middle,
and lower rows, respectively.

In this example, we show the role of the boundary conditions. The input image is
placed on the initial state (far left on Example 4.8). A horizontal connected component
detector template is used with three different boundary conditions. In the first case the
boundary condition (frame) is fixed to zero, i.e. [Y] = [U] = [0]. The output and
state are correct as shown on the upper image pair in Example 4.8. Next, the boundary
conditions are set to −1.0 and 1.0. The results are shown in the middle and lower
image pairs. In the latter case, the output is wrong. When the boundary conditions are
set to zero flux or periodic, the results start propagating.

110 Simulation of the CNN dynamics

4.4 Digital hardware accelerators

The continuous valued analog dynamics when discretized in time and values can be
simulated by a single microprocessor, as shown above. However, we may assign,
in principle, a digital multiply-and-add unit to each cell. Next, we briefly show an
intermediate solution when a DSP is assigned for a part of the cells. In a way we
emulate the analog dynamics by digital hardware accelerators.

Emulating large CNN arrays needs more computing power. A special hardware
accelerator board (HAB) was developed for simulating up to one-million-pixel arrays
(with on-board memory) with four DSP (16 bit fixed point) chips. Using the HAB,
large arrays can be simulated with cheap PCs.

In fact, in a digital HAB, each DSP calculates the dynamics of a partition of the
whole CNN array. Hence, one physical processor is assigned to several CNN cells as
shown in Fig. 4.1, using four DSPs.

DSP DSP DSP DSP

m
ax

. 1
00

r r

250 250 250 250

Fig. 4.1. The assignment of physical digital processors for many virtual CNN cells.

Actually, the DSP is a reduced instruction set (RISC) processor used for calculating
CNN dynamics. Why do we use only four DSPs on a PC add-in-board? Because the
board cannot host more due to area constraints. In a dedicated unit, in a PC-size box,
16–32 DSPs can be placed. New DSP packages host 4–8 DSP processors in a chip.
Hence, the processor numbers are 4–8 times higher. Since for the calculation of the
CNN dynamics a major part of the DSP is not used, special purpose chips have been
developed (see the “CASTLE” architecture in Chapter 15).

111 4.5 Analog CNN implementations

4.5 Analog CNN implementations

In a CNN analog chip we can place more than 1000 processors (cells). This is because
this special “analogic” (analogic: analog and logic) processor is much smaller than a
DSP, and there is no discretization in time and signal value. Here, physics does the
“numerical integration” in time, in a “single flow” (transient). There is no iteration.
This implementation will be studied later in detail in Chapter 15.

To make a fair comparison, we have to define the equivalent computing power of an
analog CNN chip related to the digital counterpart.

For the calculation of spatio-temporal dynamics, using a digital computer during
one time constant elapsed time

• 10 time steps are taken and 20 multiply/add operations are to be performed (in a
linear system, using forward Euler steps) per cell

This means 200 multiply/add operations per cell.

• Hence, for a 10,000 cell system, this means two million equivalent digital opera-
tions per one time constant elapsed time

In a CNN Universal chip, for a nonlinear array, using 0.5 micron single poly triple
metal technology, the same task on a 100 × 100 cell chip could be implemented with
a 100 ns time constant, hence, this means

• 20 trillion equivalent operations per second, i.e. 20 TeraOps

• Present operational chips: 22×20 cells, 30 mm2, 280 ns, 0.8 micron, hence, 50×50
cells per 2 cm2, i.e. 1 TeraOps

Table 4.2 shows some comparison of computing time for different simulators,
emulators, and the first fully stored programmable analogic CNN Universal chip with
optical input. It is obvious that for those problems which can be solved by the analog
(analogic) chips, the analog array dynamics of the chip outperform all the software
simulators and digital hardware emulators. Comparisons in running time of analogic
CNN algorithms and more advanced CNN Universal chips can be found in Chapter
15.

It is important to emphasize that the analogic CNN technology is an emergent
technology, complexity and speed is doubling sometimes within half a year.

Another type of comparison of the different architectures is shown in Table 4.3 (the
emulated digital chip is not considered here). As a typical operation, an A template is
considered (e.g. Laplace).

Although, the CNN Universal Machine architecture has not been formally intro-
duced, we can say that it is a stored programmable array computer for implementing
sequences of template operations with local analog and local logic memory.

112 Simulation of the CNN dynamics

Table 4.2. Comparison of standard digital and analogic image processing technology. Computing

time in µs (data transfer included) Image size: 128× 128.

Pentium II TMS 320 6X CASTLE CNN chip 0.8 µm,
(MMX) 0.25 µm, Emulated digital τCNN: 250 ns
0.25 µm, 200 MHz 0.5 µm, 66 MHz 22× 20 cells/
233 MHz 8 processors 12 processors optical input

3× 3 convolution
B templates 1,000 427 32 8/14.5b

6τCNN or 1 iteration 2.34 31 125/69

Erosion/dilation
a00 + B templates 500 300 2.7/32a 8/14.5b

6τCNN or 1 iteration 1.7 185/16a 63/35

Laplace
A+ B templates 15,000 6,414 480 10.3/16.8b

15τCNN or 2.3 31 1456/892
15 iterations

Notes: abinary/gray-scale
boptical input and electrical output/electrical input and output.
Italic values indicate the speed advantage compared to the digital
processors in the first two columns.
The first fully functional CNN Universal chip is considered only,
more advanced CNN Universal chips are reviewed in Chapter 15.

Table 4.3.

Number of Analog
“Hardware” processors Discretization Discretization Speed Stored or
/“wetware” /size space in time ns/cell∗ programable digital

Pentium PC
software 1 Y Y 1,000 Y D

DSP 4–16 Y Y 500– Y D
emulator 2,000

Intel 80170 64 Y feed-forward: N ∼20 N A
neurochip feed-back: Y

CNNU chip
cP 400 400–4,000 Y N 2.5–0.1 Y A
cP 4000 (10,000) (0.05)

Human
retina, 10,000,000 Y N ∼1 Limited A
single layer

Note: ∗ calculated as: settling (computing) time/number of cells.

113 4.6 Scaling the signals

It is remarkable that a single operation of a single layer in the retina has, in this very
simple model, the same computing power as the superfast analog chip.

4.6 Scaling the signals

We define an input scale:

white −1+——+——+ 1 black

0

an output scale:

white −1+——+——+ 1 black

0

and a state scale:

−xmax+——+——+ xmax

0

where

xmax = 1+ |z| +
r∑

k=−r

r∑
l=−r

|Akl | + |Bkl |︸ ︷︷ ︸
M

(4.6)

For example, for the binary EDGE template

A =
0 0 0
0 0 0
0 0 0

B =
−1 −1 −1
−1 8 −1
−1 −1 −1

z = −1

xmax = 1+ 1+ 16 = 18

M = 16

We can also calculate the maximum values of ẋi j (and ẍi j)

ẋmax = 1+ |z| + M︸ ︷︷ ︸
xmax

+|z| + M = 1+ 2|z| + 2|M | (4.7)

For the binary EDGE it is 35.
The bounds can be used to design a fixed point simulator. A 16 bit fixed point

representation is specially useful for many CNN analyses. The reason is this:

16 bit ≈ 64,000 values, i.e., ± 32,000 numerical units.

114 Simulation of the CNN dynamics

If the unit signal value (e.g., 1 v or 0.5 v) is represented by 1,000 numerical units
(i.e., 1 mV or 0.5 mV resolution) then the allowed dynamic range (xmax) is 32 units of
signal value. It means xmax = 32. This is a practically reasonable choice. Indeed, this
is the reason why a cheap 16 bit fixed point DSP (Texas TMS 320C25) was used in
the Hardware Accelerator Board.

4.7 Discrete-time CNN (DTCNN)

If we use �t = 1 then we get from (4.4)

xi j (m + 1) =
r∑

k=−r

r∑
l=−r

akl yi+k, j+l(m)+
r∑

k=−r

r∑
l=−r

bklui+k, j+1(m)+ z

ykl(m + 1) = f (xkl(m + 1)) (4.8)

This discrete-time recursive equation is called the discrete-time CNN (DTCNN)
equation. If f (·) is not the standard nonlinear function (unity gain piecewise linear
saturation function), but it is a so-called hard limiter fh(·) (either between +1/−1 or
+1/0, see Fig. 4.2) then equation (4.8) is a DTCNN with hard limiter.2

Let us emphasize that at �t = 1 the DTCNN equation is not necessarily convergent.
In principle if �t is small enough, the discrete-time equation converges to the
continuous-time solution. There are several different physical implementations for
DTCNN, including software, digital hardware, and special purpose VLSI.

f ()
h

x
kl

Fig. 4.2.

5 Binary CNN characterization via Boolean
functions

5.1 Binary and universal CNN truth table

Our objective in this chapter is to show that every space-invariant binary (black-and-
white) CNN belonging to the uncoupled class C(A0, B, z) with a 3 × 3 neighborhood
(r = 1) which maps any static binary 3× 3 input pattern U into a static binary 3× 3
output pattern Y(∞) can be uniquely defined by a Boolean function C of nine binary
input variables1

ui j = [u1, u2, u3, u4, u5, u6, u7, u8, u9]T (5.1)

where ui ∈ {0, 1} denotes one of the nine pixels within the sphere of influence of cell
Ci j as shown in (a) below. Note that we have opted for a “single” rather than a “double”
subscript notation to avoid clutter. Note also that ui j has a subscript (i j) and is set in
a bold face type in order to distinguish it from the input ui j (set in light-face type) of
cell Ci j . Although we can code the nine pixels ukl , kl ∈ {−1, 0, 1} by any combination
of ui , we have chosen the coding scheme shown in (b) below for pedagogical reasons
that will be obvious later. A simple mnemonic to reconstruct this code is to remember
the subscript “5” always refers to the input u00, corresponding to the center cell Ci j ,
whereas the subscripts {8, 4, 2, 6} refer to the surround cells in the N → E → S →
W clockwise compass directions, and the remaining subscripts {7, 9, 1, 3} refer to the
surround cells in the NE → NW → SE → SW clockwise compass directions.

(a) u−1,−1 u−1,0 u−1,1

u0,−1 u0,0 u0,1

u1,−1 u1,0 u1,1

⇒
(b) u9 u8 u7

u6 u5 u4

u3 u2 u1

Now given any static binary input pattern U, the color (black or white, since the
CNN is assumed to be binary) of any output pixel is determined uniquely by only a
small part of U exposed to a 3×3 transparent window centered at cell Ci j , because the
sphere of influence S1(i, j) is assumed to be a 3 × 3 neighborhood. Hence the color
{0, 1} of the output pixel yi j (∞) is uniquely determined by the binary value (0 or 1)
of the nine pixels u1, u2, . . . , u9 exposed by the 3× 3 window. This unique answer is

115

116 Binary CNN characterization via Boolean functions

obtained by solving the system of M × N ODE having the prescribed CNN templates
(A0, B, z), and prescribed initial state x(0). Now even though there are infinitely many
distinct templates (recall the coefficients of A0, B, and z can be any real number,
which is uncountable), there will be only a finite (albeit very large) number of distinct
combinations of 3× 3 “checkerboard” patterns of black and white cells, namely, 29 =
512.

Fig. 5.1 shows how a single binary input is represented.

Fig. 5.1. Representing a single binary input.

117 5.1 Binary and universal CNN truth table

Fig. 5.2. CNN program code of nine variable binary input.

Since each such pattern can map to either a “0” or a “1”, there are exactly2

�
�= 229 = 2512 ≈ 1.3408× 10154 > 10154 (5.2)

distinct Boolean maps of nine binary variables. These maps can be ordered in a table
as shown in Fig. 5.2. Each row shows a different binary nine input one output map.

Let C� denote the universe of all such maps. Now since C� is the maximal set, by
definition, the Boolean map generated by each member of the standard CNN universe
C(A0, B, z) must be a member of C�.3 Hence

C(A0, B, z) ⊂ C� (5.3)

We have just proved the following fundamental result:

118 Binary CNN characterization via Boolean functions

Table 5.1. Truth table for defining any Boolean functions of nine variables.

Binary
pattern Input variables output

number yi j (∞)

u9 u8 u7 u6 u5 u4 u3 u2 u1

0
1
...

510
511

Theorem 1: Binary CNN truth table
Every binary standard CNN with template (A0, B, z) and prescribed initial state X(0)

is a member of the universe C� of all Boolean functions of nine variables and is
therefore uniquely characterized by the CNN truth table shown in Table 5.1, consisting
of 512 rows (one for each distinct 3 × 3 checkerboard pattern), nine input columns
(one for each binary input variable ui), and one output column whose value (0 or 1)
corresponds to yi j (∞).

Theorem 1 gives us the most rigorous method for characterizing a space-invariant
binary CNN, and is therefore of fundamental importance. Since this table will in
general exceed the length of a typical page, let us divide it into 16 component truth
tables each one containing 32 rows. For example, the 16 component truth tables
which characterize the Edge templates are given in Examples 5.1(a)–(p). To clarify
our notation, in the first component table shown in Example 5.1(a), each entry for the
input variables is coded by a “0” or a “1”, instead of our earlier notation of “−1”
and “1”, in order for us to exploit the extensive theory and literature on Boolean
functions, which are almost universally couched in “zeros” and “ones.” Observe
that we have ordered the binary values in the truth table in the same order for
enumerating the binary number 0, 1, 2, 3, . . . , 511, consecutively. Since it is usually
more pleasing for the eye to decode a table of black-and-white cells than a table of
“zeros” and “ones,” we will henceforth code our CNN truth tables by black and white
cells.

To construct the truth table for any binary CNN C(A0, B, z) with the prescribed
initial state x(0), simply solve the associated system of differential equations for each
input of 512 distinct binary patterns listed in Table 5.1 and fill in the corresponding
calculated output, either black (1) or white (0). Since the 512 binary patterns are
fixed, each corresponding to a nine-bit binary expression of an integer N , N =
0, 1, 2, . . . , 511, it is easy to write a computer program to generate the truth table
automatically, given any templates (A0, B, z) and the prescribed initial condition x(0).

119 5.1 Binary and universal CNN truth table

In particular, simply assume a 3 × 3 CNN array (M = N = 3) and find the solution
of the center cell C00.

The truth table for the edge CNN calculated by the above procedure is shown in
Example 5.1, decomposed into 16 components. Clearly, except for displaying a few
of these truth tables for analysis and pedagogical purposes, it is impractical to list the
truth table of all useful CNNs. They can, however, easily be stored on a diskette, to be
retrieved only when needed. Displaying the truth table on a computer screen has the
advantage of showing a continuous table when any part of the table can be scrolled
into entire view.

The alert reader will have already realized that the truth table format of Example 5.1
contains a great deal of redundancy. Indeed, in each of the 16 components shown

EXAMPLE 5.1: Edge CNN

(a) (c) (e) (g)

(b) (d) (f) (h)

120 Binary CNN characterization via Boolean functions

in Example 5.1, the domain of the binary input variables u1, u2, . . . , u9, which
constitutes the bulk of the space of each table, remains unchanged. Hence, we only
need to record the last column of each of these 16 component tables. Since each
column has 32 cells, we need only store 16 × 32 = 512 pixel values (0 or 1) for
each binary CNN C(A0, B, z) with prescribed initial conditions and will be able to
reconstruct these 16 component tables. For maximum space efficiency, we can pack all
16 columns from Example 5.1, each with 32 entries, into 16 rows, next to each other
to form a grid containing exactly 16×32 = 512 cells, as shown in Example 5.2. Since
this table contains the same information as those of Example 5.1, we have achieved
an immerse amount of data compression. Indeed, since this table contains only 512
entries, one for each input pattern, it is a minimal representation. We will henceforth
refer to Example 5.2 as minimal CNN truth table.

121 5.1 Binary and universal CNN truth table

Corollary to Theorem 1
Every space-invariant binary CNN with a 3 × 3 neighborhood and specified by
templates (A0, B, z) and a prescribed initial state X(0) is associated with a unique
minimal CNN truth table.

EXAMPLE 5.2: Minimal CNN truth table

Remarks:
1 The uniqueness assertion in the above corollary is with respect to a given template

(A0, B, z) and initial state X(0). It is not unique with respect to a given “global task”
since a given task in general can be implemented by many distinct CNN templates
(infinitely many indeed).

2 The above corollary only asserts that for every CNN template (A, B, z) and initial
state, there corresponds a minimal truth table, or equivalently, a Boolean function
of nine variables. However, the converse is not true, i.e., given a Boolean function
B ∈ C�, or its associated minimal truth table, there may not exist a CNN template
and an initial state X(0) which yields this truth table. However, we will prove later
that every member of C�, i.e., every Boolean function of nine variables, can be
realized by a CNN universal machine to be studied in depth later. We will prove
later that there are more than 10154 such Boolean functions of nine variables that can
be programmed by a single CNN universal machine. This immensely large number
is greater than the volume of the universe (1084 cm3, calculated as a sphere with a
diameter of 10 thousand million light years)!

122 Binary CNN characterization via Boolean functions

5.2 Boolean and compressed local rules

Every CNN with a 3 × 3 neighborhood or its generalization, the CNN universal
machine, to be presented later, which maps a static binary input image into a static
binary output image, has a unique CNN truth table representation consisting of 512
rows, each one mapping a Boolean expression involving nine Boolean variables into a
“0” or a “1” digit

(d1, d2, . . . , d9) → {0, 1} (5.4)

where di ∈ {0, 1}. We can now define rigorously our earlier heuristic notation of a
local rule:

Definition 1: Complete set of CNN Boolean local rules
Each row of the CNN truth table is called a Boolean CNN local rule. Every CNN with
3× 3 neighbors is rigorously defined by a complete set of 512 Boolean local rules.

Definition 2: Compressed Boolean local rules
Any other rule which can be used to derive one or more Boolean local rules is called a
compressed local rule, or simple local rule if the usage is clear.

The motivation for devising compressed local rules is simply to reduce the large
number (512) of Boolean local rules to a smaller number. They are usually derived by
heuristic methods and may not be adequate in view of the following reasons:

1 While some local rule may correctly reproduce a large subset of Boolean local rules,
it may contradict some others. In this case, we say it is an inconsistent local rule. If
the inconsistency occurs only for a few rare input patterns, it may still be useful for
pedagogical purposes, especially if the local rule compression ratio

γLR
�= number of correctly reproduced

Boolean local rules divided by 512

is sufficiently large, γLR ≤ 1. In this case the errors may be acceptable for
pedagogical reasons, especially if this local rule makes it possible to visualize or
identify the main features of the input image that are to be extracted, modified, or
transformed.

2 The set of compressed local rules are incomplete in the sense that some Boolean
local rules cannot be deduced from them.

Definition 3: Complete set of compressed local rules
A set of compressed local rules is said to be complete if and only if no member of this
set is inconsistent and if all 512 Boolean local rules can be deduced from this set.

123 5.2 Boolean and compressed local rules

Definition 4: Minimal set of compressed local rules
A complete set of compressed local rules is said to be minimal if no member of this
set can be eliminated and still achieve completeness.

Computer-aided method for proving local rules
Given a CNN template (A0, B, z) and initial state X(0), there is presently no systematic
algorithm to derive a complete set

SLR = {S1,S2, . . . ,Sp} (5.5)

of local rules which are sufficient to map any binary input patterns into the prescribed
output patterns obtained by solving the associated system of ODEs. In most cases,
only a subset S−LR ⊂ SLR may be found. On rare occasions, a superset S+LR ⊃ SLR

may be found. On few occasions, some local rules may be redundant, in the sense
that for some input patterns they predict the same output. It is also quite possible that
two or more local rules may contradict each other’s prediction and hence are said to
be inconsistent. Finally, given a complete set of local rules, does there exist a proper
subset which is also complete? If so, is it possible to find a complete set of local rules
which are minimal in the sense that no other complete set exists which contains a
fewer number of elementary local rules? We will now show that all of these questions,
except the last one, can be easily resolved with the help of the CNN truth table, or
equivalently, its associated minimal truth table. We will give a constructive solution to
each question (except the last one) raised above in the form of an algorithm.

Algorithm 1: Checking whether a local rule candidate Si is consistent
1 Use the prescribed template (A0, B, z) and initial state X(0) to derive the associated

CNN truth table T .

2 Apply the local rule S1 to each of the 512 input patterns. In general, S1 may
not be applicable (NA) for some patterns (due to inadequate or overly simplistic
assumptions). In this case, the output cell will be denoted by NA, or simply coded
in gray scale. For those input patterns where S1 is applicable, there are three
possibilities for the output cell: (i) Output is black (coded by Boolean number 1)
and agrees with the corresponding output in the truth table. In this case, the output
will be printed “black.” (ii) Output is white (coded by Boolean number 0) and agrees
with the corresponding output in the truth table. In this case, the output cell will be
printed “white.” (iii) The output is black (resp., white) but the corresponding cell in
the truth table is white (resp., black). In this case, the output cell will be denoted by
a cross �, thereby indicating S1 is inconsistent and is not a valid local rule.

3 The local rule S1 is proved to be valid if and only if it is not inconsistent.

Algorithm 2: Checking whether a set S = {S1,S2, . . . ,Sk} is complete
1 Derive the CNN truth table T , as in Algorithm 1.

124 Binary CNN characterization via Boolean functions

2 Apply Algorithm 1 to each Si ∈ S . If any Si is inconsistent, stop. Otherwise, go to
3.

3 If each output cell is predicted to be either black or white by at least one local rule
Si ∈ S , then S is complete. In this case, we have a rigorous proof of the validity
and completeness of the set of local rules.

Algorithm 3: Given a complete set SLR of local rules, find a smallest proper
subset which is also complete
1 Delete S1 from SLR and apply Algorithm 2 to the remaining set. If it is complete,

delete the first two elements S1 and S2 from SLR and repeat Algorithm 2. Continue
the same “pruning” procedure until the remaining set is no longer complete. In this
case, the immediately preceding remaining set of local rules constitutes the smallest
complete set with respect to the order where the elements of SLR are deleted.

2 Repeat step 1 to all permutations of the ordering of the members of SLR.

3 Any complete set resulting from steps 1 and 2 having the smallest number of
elements is a minimal complete set, relative to SLR.

Remarks:
1 The above choice of minimal complete set may not be unique, since there may exist

several complete sets all containing the same smallest number of elements.

2 The “minimality” derived from Algorithm 3 may not be global in the sense that
there may exist an entirely different set SLR of complete rules in which Algorithm
3 would yield a minimal complete set having fewer elements than that determined
from SLR. The difficulty in deriving a global minimal complete set is that there is
no obvious algorithm to guarantee all distinct sets of complete local rules have been
exhausted. A further difficulty lies in the criterion to be used for certifying which
local rule is qualified as elementary. For otherwise, one could combine several local
rules into a single but more complex local rule. Hence it is necessary to define
“elementary” in the sense that no decomposition into two or more simpler local rules
is possible. The algorithms are contained in the TEMPO program (Appendix C).

5.3 Optimizing the truth table

Recall that once a CNN template is specified a unique truth table can be easily
generated by a simple computer program, say by solving a system of nine ODEs a
total of 512 times, one for each distinct Boolean pattern of nine input variables, or
by some explicit formula that applies only to some specific subclass of CNNs, e.g.,
the uncoupled class. One can examine each of the 512 3 × 3 binary input patterns
and determine whether the output (black or white) of this CNN is “correct” from the

125 5.3 Optimizing the truth table

user’s perspective. The next tables (Examples 5.3–5.13) show the minimal truth tables,
the truth tables and the window truth tables of the CORNER template. However, for
example, among the 32 input patterns shown in Example 5.7 (corresponding to the
Boolean local rules no 96–127) and the 32 input patterns shown in Example 5.8
(corresponding to the Boolean local rules no 160–191) for the CORNER CNN, we
found the “black” output of this CNN for input patterns no 114, 116, 176, 177, 178,
180, and 184 to be “incorrect” in the sense that the center black pixel in each of these
seven input patterns do not look like “corners,” from the perspective of the human
visual system. Similarly, we also disagree with this CNN’s classification (white; i.e.,
not corner) of input pattern nos 115 and 121, because the black center pixel in these two
patterns really look like “corners.” Hence, we would consider these nine classifications
made by the CORNER CNN to be “incorrect.” It is important to note that this does not
mean the CORNER truth table is incorrect, as every truth table is an exact and hence
correct representation of the CNN having the prescribed template. Indeed, from the
perspective of a robot, or some creatures having a different visual system, the above
classifications may be completely acceptable.

From the human perspective, however, it would be desirable to reclassify the above
nine Boolean local rules to obtain an optimized CNN truth table.3 Once this is done,
our next task is to design a CNN template (which may not exist) having this optimized
truth table. If no such template exists, we will show later that a CNN universal
machine can always be used to realize this optimized truth table, or any other truth
table.

EXAMPLE 5.3: Minimal truth table of CORNER template

126 Binary CNN characterization via Boolean functions

EXAMPLE 5.4:

127 5.3 Optimizing the truth table

EXAMPLE 5.5:

128 Binary CNN characterization via Boolean functions

EXAMPLE 5.6: Tables of input–output patterns for CORNER template (1, 2)

129 5.3 Optimizing the truth table

EXAMPLE 5.7: Tables of input–output patterns for CORNER template (3, 4)

130 Binary CNN characterization via Boolean functions

EXAMPLE 5.8: Tables of input–output patterns for CORNER template (5, 6)

131 5.3 Optimizing the truth table

EXAMPLE 5.9: Tables of input–output patterns for CORNER template (7, 8)

132 Binary CNN characterization via Boolean functions

EXAMPLE 5.10: Tables of input–output patterns for CORNER template (9, 10)

133 5.3 Optimizing the truth table

EXAMPLE 5.11: Tables of input–output patterns for CORNER template (11, 12)

134 Binary CNN characterization via Boolean functions

EXAMPLE 5.12: Tables of input–output patterns for CORNER template (13, 14)

135 5.3 Optimizing the truth table

EXAMPLE 5.13: Tables of input–output patterns for CORNER template (15, 16)

136 Binary CNN characterization via Boolean functions

EXAMPLE 5.14: Corrected minimal truth table of CORNER template

squares correspond to corner misclassification (they should be white)
� squares correspond to non-corner misclassification (they should be black)

EXAMPLE 5.15: Optimized minimal truth table of CORNER template

137 5.3 Optimizing the truth table

As an example, all misclassified input patterns by the CORNER CNN are designated
in the minimal truth table shown in Example 5.14 by a white hole pixel if this pixel
should be reclassified as white, and by a crossed pixel if this pixel should be reclassi-
fied as black. The resulting optimized CORNER CNN is shown in Example 5.15.
Examples 5.16 and 5.17 show the binary and decimal code for the CORNER and
optimized CORNER templates, respectively.

EXAMPLE 5.16: Binary code for CORNER template (512 bits)

00000000,00000000,00000000,00000000,00000000,00000001,00000000,00000000

,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000

,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000

,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000

,00000000,00000001,00000000,00000000,00000001,00010111,00000000,00000000

,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000

,00000001,00010111,00000000,00000000,00010111,01111111,00000000,00000000

,00010111,01111111,00000000,00000000,01111111,11111111,00000000,00000000

Decimal code for CORNER template (140 digits)

47,634,102,646,527,572,675,971

,460,498,910,645,354,219,674,273,748,634,236,474,670

,546,006,561,432,941,907,354,541,093,642,727,873,594

,350,604,011,030,198,552,062,948,695,326,343,495,680

EXAMPLE 5.17: Binary code for optimized CORNER template (512 bits)

,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000

,00000000,00000001,00000000,00000000,00000000,00000001,00000000,00000000

,00000000,00000001,00000000,00000000,00000000,00000101,00000000,00000000

,00000000,01010101,00000000,00000000,00000001,01010101,00000000,00000000

,00000000,00000001,00000000,00000000, 00000011,00000011,00000000,00000000

,00000000, 00010001,00000000,00000000,00000011,00110011, 00000000,00000000

,00000000,00000111,00000000, 00000000,00000111,00001111,00000000, 00000000

,00000000,01011111, 00000000,00000000,11111111,11111111, 00000000,00000000

138 Binary CNN characterization via Boolean functions

Decimal code for optimized CORNER template (150 digits)

204,586,913,041,142, 969,522,351,928,009,830

,941,404, 290,185,269,210, 065,083,499,186,859,428,943

,804,165, 897,630,843,608,945,882,697, 576,708,597,045

,469,082,137,675,717, 688,639,024,082, 912,326,647,808

6 Uncoupled CNNs: unified theory and
applications

6.1 The complete stability phenomenon

Our main objective in this section is to derive and prove a general theorem which
unifies all of the CNN templates presented in the preceding chapter, and numerous
others, under one umbrella. In particular, the mathematical analyses presented for all
templates in Chapter 5 could be greatly simplified. We did not present this fundamental
theorem earlier for pedagogical reasons: it is essential for the uninitiated students of
CNN to understand and appreciate the fundamental notion and power of the shifted
DP plots and their dynamic routes.

We have been thoroughly exposed to these rather simple concepts and have learned
to exploit the dynamic routes not only for the analysis of the nonlinear dynamics (i.e.,
transient and asymptotic behaviors), but also as a highly intuitive and potent design
tool for deriving optimum and robust CNN templates.

The alert students who have gone over the previous chapter would have recognized
that, except for a degenerate case, no matter what the initial conditions are, the solution
always converges to a globally asymptotically stable and hence unique equilibrium
point (monostable case), or to one of two locally stable equilibrium points (bistable
case). Although this latter “convergence” property is rather unusual for nonlinear
dynamic circuits having multiple equilibria,1 it is a gift that nature (i.e., the physical
laws) has endowed upon an important class of CNNs on which all current nonlinear
information processing applications are based. Let us first define this crucial CNN
property which provides the raison-d’etre of its existence.

Definition 1: Completely stable (convergent) CNN

An M × N CNN C(A, B, z) is said to be completely stable, or convergent, iff every
solution x(t; x0) with initial state x0 converges to an equilibrium point Q(x0), which
in general depends on x0 ∈ RM×N .

139

140 Uncoupled CNNs

6.2 Explicit CNN output formula

We are now ready to state and prove our long-awaited main theorem which holds for
any uncoupled CNNs. Let C(A0, B, z) denote any space-invariant2 CNN with a sphere
of influence Sr (i j), a feedback template A0 with all feedback synaptic weights ai j = 0
except i = j = 0, an input (feedforward) template B with arbitrary input synaptic
weights bkl ∈ R, where |k − i | ≤ r , |l − j | ≤ r , and an arbitrary threshold z ∈ R.

Theorem 1: Completely stable CNN theorem
Every uncoupled CNN C(A0, B, z) with static binary inputs (ukl = −1 or ukl = 1) is
completely stable. Moreover, the solution waveform xi j (t) increases monotonically to
an equilibrium point Q if xi j (Q) > 0, or decreases monotonically to an equilibrium
point Q if xi j (Q) < 0.

Moreover, except for two degenerate cases which correspond to a semi-stable or a
non-isolated equilibrium, the asymptotic (i.e., steady state) output solution

yi j (∞)
�= lim

t→∞ yi j (t)

can be calculated by the following explicit algebraic formula which depends only on
the initial state xi j (0), on the offset level

wi j = z +
∑

kl∈Sr (i, j)

bklukl (6.1)

of only the neighbor cells C(kl) within the sphere of influence Sr (i j) of radius r of
cell C(i j), and on the value of the self-feedback synaptic weight a00, of which there
are four cases:

Case 1: Strong positive self-feedback case: a00 > 1
In this case, the CNN output is always equal to “1” or “−1” (i.e., binary) for arbitrary
ukl ∈ R, and is given by (assuming |xi j (0)| ≤ 1 and |wi j | �= a00 − 1)

yi j (∞) = sgn[(a00 − 1)xi j (0)+ wi j] (6.2)

where sgn(·) denotes the signum function.3

In addition, the CNN is

1 bistable, if |wi j | < a00 − 1,

2 monostable,4 if |wi j | > a00 − 1,

3 semi-stable, if |wi j | = a00 − 1.

141 6.2 Explicit CNN output formula

In the semi-stable case, we have

yi j (∞) = 1, if xi j (0) > −1 and wi j = a00 − 1 > 0
or if xi j (0) ≥ 1 and wi j = −(a00 − 1) < 0

= −1, if xi j (0) ≤ 1 and wi j = −(a00 − 1) < 0
or if xi j (0) ≤ −1 and wi j = a00 − 1 > 0

Case 2: Unity-gain self-feedback case: a00 = 1
In this case, if wi j �= 0, then the CNN is monostable with a binary output which does
not depend on xi j (0), and is given by

yi j (∞) = sgn[wi j] (6.3)

If wi j = 0, we have the degenerate case of a non-isolated equilibrium where

yi j (∞) = xi j (0) (6.4)

Case 3: Weak positive self-feedback case: 0 < a00 < 1
In this case the CNN is monostable whose output does not depend on xi j (0) and is
given by:

1 If |wi j | > 1− a00, then the output is binary and is given by

yi j (∞) = sgn[wi j − (1− a00)] (6.5)

2 If |wi j | < 1− a00, then the output is given in gray-scale value by

yi j (∞) = xi j (∞) = wi j

1− a00
(6.6)

3 If |wi j | = 1− a00, then

yi j (∞) = sgn[wi j] (6.7)

Case 4: Negative self-feedback case: a00 < 0
In this case the CNN is monostable and the output does not depend on xi j (0), and is
given by

1 If |wi j | > 1− a00, then the output is binary and is given by

yi j (∞) = sgn[wi j − (1− a00)] (6.8)

2 If |wi j | < 1− a00, then the output is given in gray-scale value by

yi j (∞) = xi j (∞) = wi j

1− a00
(6.9)

3 If |wi j | = 1− a00, then

yi j (∞) = sgn[wi j] (6.10)

142 Uncoupled CNNs

6.3 Proof of completely stable CNN theorem

Since ai j = 0 for all (i j) �= (0, 0) in an uncoupled CNN, the associated state equation
is given by

ẋi j = hi j (xi j ;wi j) (6.11)

The rate function is defined by

hi j (xi j ;wi j) = gi j (xi j)+ wi j (6.12)

where

gi j (xi j) = −xi j + a00 f (xi j)

= −xi j + 0.5a00|xi j + 1| − 0.5a00|xi j − 1| (6.13)

is the internal DP plot, and

wi j = z +
∑

kl∈Sr (i, j)

bklukl (6.14)

is the offset level. The dynamics of Eq. (6.11) is completely determined by the shifted
DP plot

hi j (xi j ;wi j) = wi j − xi j + 0.5a00|xi j + 1| − 0.5a00|xi j − 1| (6.15)

The equilibrium points of Eq. (6.11) are obtained by solving the piecewise-linear
equation

wi j − xi j + 0.5a00|xi j + 1| − 0.5a00|xi j − 1| = 0 (6.16)

Equation (6.16) can be solved by plotting the shifted DP plot hi j (xi j ;wi j) via the
graphical method from the previous chapter and then finding its intersections with the
horizontal axis. However, since a00 and wi j are parameters, and not numerical values
as in the previous chapter, let us solve Eq. (6.16) algebraically in each of the four
linear regions – henceforth called the piecewise-linear solution method.

Region 1: xi j + 1 > 0, xi j − 1 > 0
In this region, Eq. (6.16) reduces to the linear equation

wi j − xi j + 0.5a00(xi j + 1)− 0.5a00(xi j − 1) = 0 (6.17)

whose solution is

xi j = wi j + a00, assuming xi j > −1 and xi j > 1 (6.18)

143 6.3 Proof of completely stable CNN theorem

Region 2: xi j + 1 < 0, xi j − 1 < 0
In this region, Eq. (6.16) reduces to the linear equation

wi j − xi j − 0.5a00(xi j + 1)+ 0.5a00(xi j − 1) = 0 (6.19)

whose solution is

xi j = wi j − a00, assuming xi j < −1 and xi j < 1 (6.20)

Region 3: xi j + 1 > 0, xi j − 1 < 0
In this region, Eq. (6.16) reduces to the linear equation

wi j − xi j + 0.5a00(xi j + 1)+ 0.5a00(xi j − 1) = 0 (6.21)

whose solution is

xi j = −wi j

a00 − 1
, assuming xi j > −1 and xi j < 1 (6.22)

Region 4: xi j + 1 < 0, xi j − 1 > 0
Since these two inequalities cannot be satisfied simultaneously, the region where a
solution of Eq. (6.16) lies is the empty set.

Hence, Eq. (6.11) can have at most three equilibrium points whose locations are
summarized in Table 6.1.

Table 6.1. Possible equilibrium points of uncoupled CNNs.

Region Validating inequalities Location Equilibrium point

1 xi j > −1 and xi j > 1 xi j = wi j + a00 Q+
2 xi j < −1 and xi j < 1 xi j = wi j − a00 Q−

3 xi j > −1 and xi j < 1 xi j =
−wi j

a00 − 1
Q0

It is important to observe that since the three equilibrium points in Table 6.1 are
derived from Eqs (6.18), (6.20), and (6.22) by assuming first that a solution exists in
the corresponding linear region, it is necessary to check the validity of each of these
solutions for a given numerical value of a00 and wi j via the two validating inequalities
which each “candidate” solution must satisfy. If a particular equilibrium point xi j (Q)

violates one of the inequalities, then Q is not a valid solution and will henceforth be
called a virtual equilibrium point. To find the conditions that must be satisfied in order
for a CNN to have three equilibrium points, simply substitute the expression for each
equilibrium point xi j = xi j (Q) at Q = Q+, Q−, and Q0 from Table 6.1 into the two
corresponding validating inequalities in column 2 and obtain the following results:

144 Uncoupled CNNs

(a)wi j > −(a00 − 1) (6.23)

(b)wi j < a00 − 1

Observe that if inequality (a) in Eq. (6.23) is violated so that wi j < −(a00 − 1),
then inequality (b) would also be violated, and vice versa. Hence, for these two cases,
the CNN has only one equilibrium point. There are two other possibilities where not
all inequalities in Eq. (6.23) are satisfied, namely, when wi j = −(a00 − 1), or when
wi j = (a00 − 1). In these two degenerate cases, the CNN has two equilibrium points.

Since Theorem 1 must hold for all parameters a00 ∈ R and wi j ∈ R, it is necessary
for us to examine all possible combinations of a00 and wi j which give rise to one, two,
or three equilibrium points, and to investigate their local stability or instability.

A careful examination of all possibilities in the wi j –a00 parameter plane reveals that
there are only 21 regions in the wi j –a00 parameter plane having different behaviors
with respect to the number (3, 2, or 1), qualitative nature (locally stable, semi-stable,
or unstable), and robustness of the equilibrium points, and therefore warrant a separate
analysis. Since the values a00 = 1 and a00 = 0 are found to separate many regions
having different behaviors, it is logical to arrange these 21 regions into four contiguous
groups corresponding to a00 > 1, a00 = 1, 0 < a00 < 1, and a00 < 0, respectively.
Each of these groups can be further subdivided into regions separated by two straight
lines wi j = a00 − 1 and wi j = −(a00 − 1), respectively. Under these subdivisions the
wi j –a00 parameter plane is partitioned into 21 non-overlapping regions. We will show
shortly that all uncoupled CNNs having their wi j –a00 parameters belonging to any one
region must have similar dynamic routes, and hence must exhibit the same qualitative
dynamic behaviors. The following five tables (Tables 6.2–6.6) specify the area in the
wi j –a00 parameter plane corresponding to each of the 21 regions, along with a figure
number which identifies which one among the following seven figures (Figs 6.1–6.7)
contains the associated dynamic routes. These 21 regions partition the universe of all
uncoupled CNNs into 21 subclasses of qualitatively similar CNNs, as shown in the
sub-divided wi j –a00 parameter plane Fig. 6.8.

Since all wi j –a00 parameters are represented in Fig. 6.8(a) and (b), it follows
that the qualitative behaviors of the universe of all uncoupled CNNs are completely
characterized by the 21 dynamic routes shown in Figs 6.1–6.7. Since from any
initial state xi j (0) the solution trajectory from xi j (0) must either flow in one and the
same direction along the dynamic route until it arrives at an equilibrium point, or
it must remain stationary if the initial state is itself an equilibrium point, it follows
that every trajectory converges to an equilibrium point monotonically, i.e., using the
jargon of engineers, there are no “ringings.” This proves that every uncoupled CNN is
completely stable.

It remains for us to derive the explicit formula (6.1)–(6.10) for the four cases listed
in Theorem 6.1. Since the 21 regions in the subdivision diagram of Fig. 6.8 cover
the entire wi j –a00 parameter plane, it suffices for us to examine the corresponding

145 6.3 Proof of completely stable CNN theorem

Table 6.2. Parameter range: a00 > 1.

Region Dynamic route Qualitative behavior

0 < wi j < a00 − 1 Fig. 6.1(a) Bistable at Q− and Q+
−(a00 − 1) < wi j < 0 Fig. 6.1(b) Bistable at Q− and Q+
wi j > a00 − 1 > 0 Fig. 6.1(c) Monostable at Q+
wi j < −(a00 − 1) < 0 Fig. 6.1(d) Monostable at Q−

Table 6.3. Parameter range: a00 > 1.

Region Dynamic route Qualitative behavior

wi j = a00 − 1 Fig. 6.2(a) Semi-stable at Q−
wi j = −(a00 − 1) Fig. 6.2(b) Semi-stable at Q+

Table 6.4. Parameter range: a00 = 1.

Region Dynamic route Qualitative behavior

wi j > 0 Fig. 6.3(a) Monostable at Q+
wi j < 0 Fig. 6.3(b) Monostable at Q−
wi j = 0 Fig. 6.3(c) Continuum of equilibria: −1 ≤ xi j ≤ 1

Table 6.5. Parameter range: 0 < a00 < 1.

Region Dynamic route Qualitative behavior

wi j > 1− a00 > 0 Fig. 6.4(a) Monostable at Q+
wi j < −(1− a00) Fig. 6.4(b) Monostable at Q−
0 < wi j < 1− a00 Fig. 6.4(c) Monostable and gray-scale: 0 < xi j < 1
a00 − 1 < wi j < 0 Fig. 6.4(d) Monostable and gray-scale: −1 < xi j < 0
wi j = 1− a00 > 0 Fig. 6.5(a) Monostable at Q+ (xi j = 1); very sensitive
wi j = −(1− a00) < 0 Fig. 6.5(b) Monostable at Q− (xi j = −1); very sensitive

Table 6.6. Parameter range: a00 < 0.

Region Dynamic route Qualitative behavior

wi j > 1− a00 Fig. 6.6(a) Monostable at Q+
wi j < −(1− a00) < −1 Fig. 6.6(b) Monostable at Q−
0 < wi j < 1− a00 Fig. 6.6(c) Monostable and gray-scale: 0 < xi j < 1
−(1− a00) < wi j Fig. 6.6(d) Monostable and gray-scale: −1 < xi j < 0
wi j = 1− a00 > 1 Fig. 6.7(a) Monostable at Q+ (xi j = 1); very sensitive
wi j = −(1− a00) < −1 Fig. 6.7(b) Monostable at Q− (xi j = −1); very sensitive

146 Uncoupled CNNs

xij

xij

xij

xij

+Q

+Q
0Q

0Q

–Q

–Q

–Q

+Q

xij

xij

xij

xij

slope = –1

slope = –1

slope = a00 – 1 > 0

slope = a00 – 1 > 0

slope = a00 – 1 > 0

slope = a00 – 1 > 0

slope = –1

slope = –1

slope = –1

slope = –1

slope = –1

slope = –1

wij < –(a00 – 1) < 0

wij > a00 – 1 > 0

wij + (a00 – 1)

wij + (a00 – 1)

 (a) 0 < wij < a00 – 1 (bistable)

(d) wij < –(a00 – 1) < 0 (monostable)

a00 – 1

a00 – 1

a00 – 1

a00 – 1

a00 – 1

a00 – 1

a00 – 1 > 0

a00 – 1 > 0

wij < 0

wij > 0

–1 10

–1 10

–1 10

–1 10

 (c) wij > a00 – 1 > 0 (monostable)

 (b) –(a00 – 1) < wij < 0 (bistable)

Fig. 6.1. Four generic dynamic routes for case 1: a00 > 1.

dynamic routes in Figs 6.1–6.7. Moreover, in view of our standing assumption that
|xi j (0)| ≤ 1, all initial states are located on the central linear region−1 ≤ xi j ≤ 1 and

147 6.3 Proof of completely stable CNN theorem

xij

xij

+Q

+Q

–Q

–

xij

xij

slope = a00 – 1 > 0

slope = a00 – 1 > 0

slope = –1

slope = –1

slope = –1

slope = –1

semi-stable
equilibrium point

semi-stable
equilibrium point

wij = –(a00 – 1)

wij = a00 – 1

a00 – 1

a00 – 1

a00 – 1

a00 – 1

–1 10

–1 10

 (b) wij = –(a00 – 1)

 (b) wij = a00 – 1

Q

Fig. 6.2. Dynamic routes for two degenerate situations from case 1: a00 > 1.

hence we only need to examine the dynamics of a trajectory starting from any point on
the middle segment of each shifted DP plot in Figs 6.1–6.7. This corresponds to Region
3 whose associated linear differential equation can be obtained from Eq. (6.21)

ẋi j = wi j − xi j + a00xi j (6.24)

Case 1: Strong positive self-feedback case: a00 > 1
It follows from Eq. (6.24) and the dynamic routes shown in Figs 6.1(a)–6.1(d) and in
Fig. 6.2 that

(a00 − 1)xi j (0)+ wi j > 0 ⇒ yi j (t) → Q+
(a00 − 1)xi j (0)+ wi j < 0 ⇒ yi j (t) → Q− (6.25)

provided |xi j (0)| ≤ 1 in Fig. 6.1 and |xi j (0)| < 1 in Fig. 6.2. Since xi j (Q+) ≥ 1 and
xi j (Q−) ≤ 1 in Figs 6.1 and 6.2, it follows from Eq. (6.25) that

(a00 − 1)xi j (0)+ wi j > 0 ⇒ yi j (t) → 1

148 Uncoupled CNNs

xij

–Q

+Q

xij

slope = –1

slope = –1

(c) wij = 0

–1 0 1

xij

xij

(b) wij < 0

(a) wij > 0

–1 0 1

slope = 0
wij < 0

slope = –1

slope = –1

xij

xij

–1 0 1

slope = 0wij > 0

Fig. 6.3. Two generic (wi j �= 0) dynamic routes and a degenerate (wi j = 0) dynamic route from
case 2: a00 = 1.

(a00 − 1)xi j (0)+ wi j < 0 ⇒ yi j (t) →−1 (6.26)

Equation (6.26) can be recast into the explicit formula in Eq. (6.2), which holds not
only for Figs 6.1(a)–6.1(d) when |xi j (0)| ≤ 1, but also for Figs 6.2(a) and 6.2(b) when
|xi j (0)| < 1.

149 6.3 Proof of completely stable CNN theorem

xij

xij

xij

xij

–Q

+Q

+Q

slope = –1 < a00 – 1 < 0

slope = –1

slope = –1

slope = –1

slope = –1

slope = –1

slope = –1 < a00 – 1 < 0

1 – a00

1 – a00

1 – a00 > 0

1 – a00 > 0

1 – a00 > 0

1 – a00

1 – a00

1 – a00

–1

–1

–1

1

1

1

1

0

0

0

0 1–1

0

 (d) a00 – 1 < wij < 0

 (c) 0 < wij < 1 – a00

 (b) wij < –(1 – a00)

 (a) wij > 1 – a00

slope = –1

slope = –1

slope = –1

a00 – 1 < wij < 0

wij < –(1 – a00)

wij > 1 – a00 > 0

xij

xij

xij

xij

slope = –1 < a00 – 1 < 0

0 < wij < 1 – a00

slope = –1 < a00 – 1 < 0

Fig. 6.4. Four generic dynamic routes from case 3: 0 < a00 < 1.

150 Uncoupled CNNs

xij

xij

–Q

+

xij

xij

slope = –1

slope = a00 – 1 < 0

sensitive but
locally stable
equilibrium point

slope = –1

sensitive but
locally stable
equilibrium point

slope = –1

wij = –(a00 – 1) < 0

wij = 1 – a00 > 0

1 – a00

1 – a00

1 – a00

1 – a00

1

–1

0

10–1

 (b) wij = –(1 – a00) < 0

 (a) wij = 1 – a00 > 0

slope = –1

Q

Fig. 6.5. Dynamic routes for two sensitive situations from case 3: 0 < a00 < 1.

Observe that when xi j (0) = −1 and wi j = a00 − 1 > 0, or when xi j (0) = 1
and wi j = −(a00 − 1) < 0, Eq. (6.2) is indeterminate since its argument is zero.
A separate formula, however, can be easily derived directly from Fig. 6.2, and listed
under the semi-stable (degenerate) case.

Finally, under Case 1, it follows immediately from Fig. 6.1 that an uncoupled CNN
is bistable if and only if a00 > 1 and |wi j | < a00 − 1. This corresponds to the right-
angle wedge in Fig. 6.8, anchored at a00 = 1 and bounded by two half lines having
slopes of ±1. Similarly, an uncoupled CNN under Case 1 is monostable if (a00, wi j)

lies in either one of the two wedges adjacent to the bistable region.

151 6.3 Proof of completely stable CNN theorem

xij

–

xij

slope = a00 – 1< –1

slope = –1

slope = –1

–(1 – a00) < wij < 0

1 – a00

1 – a00

 (c) 0 < wij < 1 – a00

 (d) –(1 – a00) < wij < 0

 (a) wij > 1 – a00 > 1

 (b) wij < –(1 – a00) < –1

–1 10

xij

+Q

–Q

+Q

xij

slope = a00 – 1 < –1

slope = a00 – 1 < –1

slope = a00 – 1 < –1

slope = –1

slope = –1

slope = –1

slope = –1

slope = –1

xij

xij

xij

xij

0 < wij < 1 – a00

wij < –(1 – a00) < –1

wij > 1 – a00 > –1

1 – a00

1 – a00

1 – a00

1 – a00

1 – a00

1 – a00

slope = –1

–1

–1
–1 0 1

–1 0 1
1

10

Q

Fig. 6.6. Four generic dynamic routes for case 4: a00 < 0.

152 Uncoupled CNNs

–Q

+Q

slope = –1

slope = –1

sensitive but
locally stable
equilibrium point

slope = a00 – 1 < –1

wij = –(1 – a00) < –1

wij = 1 – a00 > 1

1 – a00

1 – a00

1 – a00

1 – a00

xij

xij

xij

xij

0

1–1

0

1

1
–1

–1

 (b) wij = –(1 – a00) < –1

 (a) wij = 1 – a00 > –1

slope = –1

slope = –1

Fig. 6.7. Dynamic routes for two sensitive situations for case 4.

Case 2: Unity-gain self-feedback case: a00 = 1
The dynamic routes in Fig. 6.3 show that an uncoupled CNN with a00 = 1 is globally
asymptotically stable for all inputs such that wi j �= 0. In particular

xi j (t) → xi j (Q+) > 1, if wi j > 0
xi j (t) → xi j (Q−) < −1, if wi j < 0

(6.27)

153 6.3 Proof of completely stable CNN theorem

–1

0

1

1

a00 = 1

w ij
= a 00

– 1

w
ij = 1 – a

00

a00

wij

Fig. 1(c)

Fig.
 2(

a) Fig. 1(a)Fig. 3(c)

Fi
g.

 1
(b

)
Fig. 1(d)Fig. 4(b)

Fig. 6(b)

Fig.
 7(

b)

Fig.
 5(

b)

Fig. 4(d)

Fig. 6(d)

Fig. 6(c)

Fi
g.

 4
(c

)

Fig. 5(a)

Fi
g.

 3
(a

)

Fig. 5(a) Fig. 4(a)

Fig. 6
(a)

Fi
g.

 3
(b

)

Fig. 2(b)

Fig
. 5

(b
)

Fig. 7(a)

Fig. 6.8. (a) The primary CNN mosaic consists of a partitioning of the wi j –a00 parameter plane into
21 distinct subclasses of qualitatively similar uncoupled CNNs.

independent of the initial state xi j (0). Eq. (6.3) then follows directly from Eq. (6.27).
For the degenerate case wi j = 0, the dynamic route in Fig. 6.3(c) shows that every

point xi j ∈ [−1, 1] is an equilibrium point. In this case, any initial state xi j (0) ∈
[−1, 1] gives rise to a stationary output

yi j (∞) = xi j (0)

Such a CNN is still completely stable by definition. Observe that this degenerate
uncoupled CNN corresponds to exactly one point, namely, (a00, wi j) = (1, 0) in
Fig. 6.8. This makes a lot of sense since this point is where all “wedges” of distinct
dynamic behaviors intersect, a clearly singular situation!

Case 3: Weak positive self-feedback cases: 0 < a00 < 1
Consider first the dynamic routes in Figs 6.4(a) and 6.4(b) corresponding to the cases
wi j > 1− a00 and wi j < −(1− a00), respectively. Observe that

xi j (t) → xi j (Q+) > 1, if wi j > 1− a00

xi j (t) → xi j (Q−) < −1, if wi j < −(1− a00)
(6.28)

154 Uncoupled CNNs

yij(∞) = sgn[wij – (a00 – 1)]

y i
j(

∞
)

=
 s

gn
[w

ij
]

y ij
(∞

) =
 sg

n[
w ij

– (
a 00

– 1
)],

 x ij
(0

) ≠
–1

yij(∞) = sgn[(a00 – 1)xij(0)] + wij]

yij(∞) = sgn[wij – (a00 – 1)]

y i
j(

∞
)

=
 s

gn
[w

ij
]

y ij
(∞

) =
 sg

n[
w ij

]

y
ij (∞) = sgn[w

ij]

yij(∞) = sgn[(a00 – 1)xij(0)] + wij]

y
ij (∞) = sgn[w

ij], x
ij (0)] ≠ 1

a00 = 1: yij(∞) = xij(0)

wij

a00

Monostable

Monostable

Bistable

Bistable
Gray
Scale

Gray
Scale

0

yij(∞) =
wij

1 – a00

yij(∞) =
wij

1 – a00

Fig. 6.8. (b) Primary CNN mosaic (with output formulas).

independent of the initial state xi j (0). Equation (6.5) then follows directly from
Eq. (6.28).

Consider next the dynamic routes in Figs 6.4(c) and 6.4(d) corresponding to the
cases 0 < wi j < 1 − a00 and a00 − 1 < wi j < 0, respectively. Observe that, in this
case, the equilibrium point lies inside the middle segment, so that

xi j (t) → xi j (Q+) < 1, if 0 < wi j < 1− a00

xi j (t) → xi j (Q−) > −1, if 1− a00 < wi j < 0
(6.29)

where the coordinate of xi j at Q+ or Q− is given by Eq. (6.22); namely

wi j

1− a00
=

{
xi j (Q+), if 0 < wi j < 1− a00

xi j (Q−), if a00 − 1 < wi j < 0
(6.30)

Since yi j = xi j when |xi j | ≤ 1, Eq. (6.6) follows from Eq. (6.30). Observe that the
output in this case is in gray scale, and not binary.

Finally, consider the dynamic routes shown in Fig. 6.5 corresponding to the limiting
cases wi j = 1−a00 > 0 and wi j = −(1−a00) < 0, respectively. In this limiting case,
the gray-scale output tends to a binary output, as specified explicitly by Eq. (6.7).

155 6.4 The primary CNN mosaic

Case 4: Negative self-feedback case: a00 < 0
Consider first the dynamic routes shown in Figs 6.6(a) and 6.6(b) corresponding to
the cases wi j > 1 − a00 > 1 and wi j < −(1 − a00) < −1. In this case we have
binary outputs as specified by Eq. (6.8) as in case 3. When 0 < wi j < (1 − a00),
or −(1 − a00) < wi j < 0, the dynamic routes shown in Figs 6.6(c) and 6.6(d) show
that the output is in gray scale and is given explicitly by Eq. (6.9). Finally, in the
limiting cases where wi j > 1 − a00 > 1, or wi j < −(1 − a00) < −1, the gray-scale
output tends to a binary output specified by Eq. (6.10). This completes our proof of
Theorem 1.

6.4 The primary CNN mosaic

Theorem 1 is truly fundamental not only because it yields explicit algebraic formulas
for determining the output yi j (∞) of any uncoupled CNN without solving the
associated nonlinear differential equation, but also because it gives us a bonus in the
form of a mosaic-like panel, where every wedge in the panel corresponds to a particular
dynamic route, or qualitative behavior. In order to call attention to the fundamental
significance of Fig. 6.8, as well as for ease of future reference, we will henceforth
call this partitioned wi j –a00 parameter plane the primary CNN mosaic. Each of the 21
regions in this mosaic will be called a CNN mosaic wedge, or simply a CNN “wedge.”
Each one-dimensional line segment which forms the boundary of two adjacent CNN
wedges is called a CNN mosaic spine.

Observe that only wedges separated by bold radial spines in Fig. 6.8(a) differ sig-
nificantly in their qualitative behaviors. For example, the two wedges corresponding to
Figs 6.1(a) and 6.1(b) are separated by a thin spine because they both represent bistable
CNNs. Observe that the primary CNN mosaic is made up of “12” two-dimensional
“wedges” and “9” one-dimensional bold “radial spines.”

It is sometimes instructive to lump together two or more adjacent wedges in the
primary CNN mosaic which are not separated by a bold radial spine into a single
CNN sector because all CNNs located on the wedges in the sector exhibit the same
“functional,” though not “dynamic,” behaviors. For example, it is logical to combine
the two bistable wedges into one bistable sector. Similarly, the four gray-scale wedges
can be combined into one large gray-scale sector. Observe that the bistable sector and
the gray-scale sector in the primary CNN mosaic are mirror images of each other.
Observe also that two “bilateral” wedges which are mirror images of each other in
the primary CNN mosaic tend to share some common features. For example, the
wedges corresponding to Figs 6.1(d) and 6.4(a) both represent a monostable binary
CNN having Q+ as their global asymptotically stable equilibrium point. Similarly,
the two bilateral wedges corresponding to Figs 6.1(c) and 6.3(b) both represent a

156 Uncoupled CNNs

monostable binary CNN, having Q− as their global asymptotically stable equilibrium
point.

A closer examination of each of the 21 regions in the primary CNN mosaic and the
associated formulas reveals the following general properties:

1 With the exception of the semi-stable case corresponding to the two dynamic routes
shown in Figs 6.2(a) and 6.2(b), there are only four distinct output formulas for
uncoupled CNNs:

Bistable output formula
yi j (∞) = sgn[(a00 − 1)xi j (0)+ wi j]

Monostable output formula
yi j (∞) = sgn[wi j − (a00 − 1)]

Gray-scale output formula
yi j (∞) = wi j

1−a00

Co-dimension 1 output formula
yi j (∞) = sgn[wi j]

(6.31)

The last formula pertains to all uncoupled CNNs having parameters lying on the
six bold straight lines through the point (1, 0) in the primary CNN mosaic. The
term “co-dimension 1” is taken from “Bifurcation theory,” and means the number
of “constraints,” or equations needed to specify a particular region. In our case, we
have only one equation, either wi j = |a00 − 1| (corresponding to Figs 6.2(a), 6.2(b),
6.5(a), 6.5(b), 6.7(a), and 6.7(b)) or a00 = 1 (corresponding to Figs 6.3(a) and 6.3(b)).
For future reference, we have redrawn the following primary CNN mosaic which
emphasizes only these output formulas (Figures 6.8(a) and 6.8(b)).

2 The output formula for the semi-stable case (Figs 6.2(a) and 6.2(b)) reduces to
yi j (∞) = sgn[wi j], provided |xi j (0)| �= 1.

3 The most degenerate case occurs at the point (a00, wi j) = (1, 0) (Fig. 6.3(c)). This
is a co-dimension 2 bifurcation point because it is identified by two equations a00 =
1 and wi j = 0. The output formula for this case is simply yi j (∞) = xi j (0).

6.5 Explicit formula for transient waveform and settling time

An inspection of the 21 cases shown in Figs 6.1–6.7 shows that, except for the
degenerate cases shown in Figs 6.3(c), 6.5 and 6.7, all dynamic routes from any initial
state xi j (0) starting from the central region contain two linear segments. Hence, except
for the unity gain (a00 = 1) case, where the central region s0 is horizontal, the state
equation within each linear segment has the form

ẋi j = mQxi j + xQ (6.32)

157 6.5 Transient waveform and settling time

where mQ = m(s−), m(s0), m(s+) denotes the slope of the left, central, or right
segment, henceforth denoted by s−, s0, and s+, respectively; namely

m(s−) = −1
m(s0) = a00 − 1
m(s+) = −1

 (6.33)

and xQ denotes the coordinate of the three equilibrium points Q−, Q0, and Q+ given
in Table 6.1, namely

xQ(s−) = x(Q−) = wi j − a00

xQ(s0) = x(Q0) = −wi j

a00 − 1
xQ(s+) = x(Q+) = wi j + a00

 (6.34)

The solution of Eq. (6.32) is given by

xi j (t) = xQ + [x(tj)− xQ]emQ(t−tj), t ≥ tj (6.35)

where xQ is given by Eq. (6.34). This formula holds for each of the three segments s−,
s0, and s+, regardless of whether any of these segments intersect the horizontal axis.
In other words, one or two equilibrium points may be virtual in the sense that they
do not intersect the horizontal axis, as in Figs 6.1(c), 6.1(d), etc. Nevertheless, their
linear extension will always intersect the horizontal axis at the coordinates given by
Eq. (6.34). The time “tj ” in Eq. (6.35) denotes either the initial time t0 = 0, or the time
t = t+ (resp., t = t−) when the solution converges to the breakpoint at xi j = 1 (resp.,
xi j = −1), respectively. We can solve for t+ and t− from Eq. (6.35) upon substituting
tj = 0, x(tj) = x(0) and xi j (t) = 1 or xi j (t) = −1; namely

t+ = 1

a00 − 1
ln

[
1− x(Q+)

xi j (0)− x(Q+)

]
(6.36a)

t− = 1

a00 − 1
ln

[
1− x(Q−)

xi j (0)− x(Q−)

]
(6.36b)

Substituting Eqs (6.36a)–(6.36b) and (6.34) into Eq. (6.35), we obtain the following
explicit formulas depending on whether the dynamic route moves to the right (i.e.,
ẋi j (0) > 0) or to the left (i.e., ẋi j (0) < 0).

Case 1: xi j (0) → x(Q+) (i.e., ẋi j (0) > 0)

xi j (t) = x(Q0)+
[
xi j (0)− x(Q0)

]
e(a00−1)t 0 ≤ t ≤ t+ (6.37a)

xi j (t) = x(Q+)+ [
xi j (0)− x(Q+)

]
e−(t−t+) t+ ≤ t < ∞ (6.37b)

The solution waveform corresponding to the dynamic route of Fig. 6.1(a) is shown in
Fig. 6.9(a).

158 Uncoupled CNNs

t

t

normalized settling time

normalized settling time

dives exponentially towards
–∞ with exponent a00 – 1 > 0

Breakpoint

Breakpoint

x(Q–)

x(Q0) < 1

x(Q0) > –1

x(Q+)

initial state

initial state

normailzed time constant = –1xij(t)

xij(t)

xij(0)

xij(0)

t– 1 + t– 2 + t– 3 + t–

t+ 1 + t+ 2 + t+ 3 + t+

0

0

1

–1

0.63[–1 – x(Q–)]

0.63[x(Q–) – 1]

(b)

(a)

grows exponentially towards ∞
with exponent equal to a00 –1 > 0

normalized time constant = 1

Fig. 6.9. Solution waveforms for a00 > 1 corresponding to the dynamic routes in Figs 6.1(a) and
6.1(b). Observe that over a time period equal to “one” normalized time constant, an exponential
waveform rises by 63% of the distance between the breakpoint and the equilibrium value.

Case 2: xi j (0) → x(Q−) (i.e., ẋi j (0) < 0)

xi j (t) = x(Q0)+
[
xi j (0)− x(Q0)

]
e(a00−1)t 0 ≤ t ≤ t− (6.38a)

xi j (t) = x(Q+)+ [
xi j (0)− x(Q+)

]
e−(t−t+) t− ≤ t < ∞ (6.38b)

159 6.5 Transient waveform and settling time

The solution waveform corresponding to the dynamic route of Fig. 6.1(b) is shown in
Fig. 6.9(b).

Equations (6.37)–(6.38) hold for all cases except for the dynamic routes in Figs 6.3,
6.5, and 6.7, which are given separately as follows:

(a) Unity-gain case: a00 = 1

Case 1: xi j (0) → x(Q+) (i.e., ẋi j (0) > 0)
In this case, define

t ′+ =
1− xi j (0)

wi j
, |xi j (0)| ≤ 1 (6.39)

xi j (t) = xi j (0)+ wi j t, 0 ≤ t ≤ t ′+ (6.40a)

xi j (t) = xi j (Q+)+ [1− x(Q+)] e−(t−t+), t+ ≤ t < ∞ (6.40b)

The solution waveform corresponding to the dynamic route of Fig. 6.3(a) is shown
in Fig. 6.10(a).

Case 2: xi j (0) → x(Q−) (i.e., ẋi j (0) < 0)
In this case, define

t ′− =
−1− xi j (0)

wi j
, |xi j (0)| ≤ 1

xi j (t) = xi j (0)+ wi j t, 0 ≤ t ≤ t ′− (6.41a)

xi j (t) = x(Q−)+ [−1− x(Q−)
]

e−(t−t−) t− ≤ t < ∞ (6.41b)

The solution waveform corresponding to the dynamic route of Fig. 6.3(b) is shown in
Fig. 6.10(b).

(b) For the dynamic routes of Figs 6.5(a) and 6.7(a), the solution waveform consists of
the single exponential

xi j (t) = x(Q0)+
[
xi j (0)− x(Q+)

]
e(a00−1)t t ≥ 0 (6.42)

(c) For the dynamic routes of Figs 6.5(b) and 6.7(b), the solution waveform consists
of the single exponential

xi j (t) = x(Q0)+
[
xi j (0)− x(Q−)

]
e(a00−1)t t ≥ 0 (6.43)

Observe from Fig 6.10 that the “exponential” waveform starting from the breakpoint
xi j = 1, or xi j = −1, tends to the equilibrium point x(Q+), or x(Q−), in
approximately three “time constants,” which in this case is equal to 3 since the

160 Uncoupled CNNs

t

t

Breakpoint

Breakpoint

xij(0)

xij(0)

xij(t)

xij(t)

initial state

t–' 1 + t–' 2 + t–' 3 + t–'

t+' 1 + t+' 2 + t+'

0

0

1

x(xQ+
)

x(xQ–
)

–1

initial state

slope = wij < 0

slope = wij > 0

0.63[–1 – x(Q–)]

normalized settling time

normalized settling time

(b)

(a)

normalized time constant = 1

3 + t+'

normalized time constant = 1

0.63[x(Q–) – 1]

Fig. 6.10. Solution waveforms for a00 = 1 corresponding to the dynamic routes in Figs 6.3(a) and
6.3(b).

“normalized” time constant is assumed to be equal to unity throughout this book.
Consequently, we can calculate the normalized settling time τs of an uncoupled CNN
explicitly

τs = 3+ t1 (6.44)

where t1 = t+, t−, t ′+, or t ′− corresponding to Eqs (6.37), (6.38), (6.40), and (6.41),
respectively. Hence, given the initial condition xi j (0), the normalized settling time can

161 6.6 Boolean functions realizable by uncoupled CNNs

be calculated directly from Eq. (6.44). The actual settling time is then simply obtained
by multiplying the circuit time constant τCNN with the normalized settling time. We
will see in Chapter 7 that the actual settling time is a crucial piece of information
essential in the operation of a CNN universal chip.

6.6 Which local Boolean functions are realizable by uncoupled CNNs?

We have seen in the preceding chapter that there are 229 = 2512 distinct Boolean
functions of nine variables and that 2512 is an enormous number, larger than the volume
of the universe. Since the class C(A0, B, z) of uncoupled CNNs represented only a very
small, albeit very powerful subclass of all CNNs, it is important to identify exactly
the subset of these local Boolean functions5 which can be realized by an uncoupled
CNN. Since all input and output Boolean variables are binary (i.e., {−1, 1} or its
corresponding Boolean code {0, 1}), we can exclude the gray-scale sector made up of
the four wedges in the primary CNN mosaic which correspond to Figs 6.4(c), 6.4(d),
6.6(c), and 6.6(d), and are represented by Eqs (6.6) and (6.9). Moreover, since the
term (a00 − 1)xi j (0) in Eq. (6.2), or the term (1 − a00) in Eqs (6.5) and (6.8), are
constants, parameterized by a00 and/or xi j (0), they play the same role as the threshold
z in Eq. (6.1). Hence, without loss of generality, for the purpose of this section, we can
assume these constant terms to be zero. This assumption is automatically satisfied if
we choose a00 = 1, which corresponds to the unity-gain self-feedback case. We have
therefore just proved the following important result:

Theorem 2: Local Boolean function realization theorem
A local Boolean function β(x1, x2, . . . , x9) of nine variables is realizable by every cell
of an uncoupled CNN if and only if β(·) can be expressed explicitly by the formula

β = sgn[〈a, x〉 − b] (6.45)

where 〈a, x〉 denotes the dot product between the vectors6

a = [a1, a2, . . . , a9] (6.46)

and

x = [x1, x2, . . . , x9] (6.47)

where ai ∈ R is any real number, b ∈ R and xi ∈ {−1, 1} is the i th Boolean variable,
i = 1, 2, . . . , 9.

162 Uncoupled CNNs

Proof of Theorem 2:
Without loss of generality, let us choose a00 = 1 so that the output of the CNN is given
by Eq. (6.31) and which we rewrite as follows

yi j (∞) = sgn

[∑
kl∈S1(i j)

bklukl + z

]
(6.48)

Observe that Eq. (6.48) is identical to Eq. (6.45) if we identify a by a vector whose
components are bkl , x by a vector whose components are ukl , and b = −z. �

Remarks:
We add the adjective local to Theorem 2 in order to emphasize that our uncoupled
CNN realizes not only one Boolean function, which could easily be done by standard
logic circuits. Rather every cell of our uncoupled CNN will simultaneously implement
the same Boolean function. For example, a 100 × 100 CNN array for implementing
a local Boolean function would simultaneously implement 10,000 identical Boolean
functions, each one taking its input only from its “local” neighbors located within its
sphere of influence Sr (i j), where r = 1 (3× 3 neighborhood) in most cases.

Definition 2: Linearly separable class
The class of all Boolean functions which can be expressed by Eq. (6.45) is called the
linearly separable class.

Corollary
The class C(A0, B, z) of all uncoupled CNNs with binary inputs and binary outputs is
identical (with respect to Boolean input–output maps) to the linearly separable class
of Boolean functions.

6.7 Geometrical interpretations

It is instructive to interpret the geometrical meaning of Eq. (6.45). For two Boolean
variables, Eq. (6.45) can be rewritten in terms of the CNN input variables u1 and u2

and output variable y as follows

y = 1, if a1u1 + a2u2 > b
y = −1, if a1u1 + a2u2 < b

}
(6.49)

Since u1, u2 ∈ {−1, 1}, we can represent any one of the 16 truth tables associated
with Eq. (6.49) by identifying the four “input combinations” (−1,−1), (−1, 1),
(1,−1), and (1, 1) as the four “corners” of a unit square, and by coding the output
β = 1 by a black pixel, and the output β = −1 by a white pixel, respectively.

163 6.7 Geometrical interpretations

u1 u2 y1

1 1 1
1 1 1
1 1 1
1 1 1

(a) CNN truth table for y1

u1 u2 y2

1 1 1
1 1 1
1 1 1
1 1 1

(b) CNN truth table for y2

(c) a = 1.5, a = 1, b = –1.31

2

2 (d) a = 1.5, a = 1, b = –1.31 2

(–1, 1)

(1, 1)

(1, –1)
(0, –1.3)(–1, –1)

(–1, 0.2)

–1

–1

0 1

1

L : u = –1.5u – 1.31 2 1 L : u = 2u + 21 2 1

u

1u

2

(–1, 1)

(1, 1)

(1, –1)(–1, –1)

(–1, 0) (–0.5, 1)

–1 0

1

u

1u

Fig. 6.11. Geometrical interpretation of two linearly separable Boolean functions of two variables.

For example, using this “corner coordinate” coding scheme, the two CNN truth
tables shown in Figs 6.11(a) and 6.11(b) are coded in Figs 6.11(c) and 6.11(d),
respectively.

Now observe that the Boolean function defined by the truth table in Fig. 6.11(a)
belongs to the linearly separable class because we can choose, among infinitely many
others, a1 = 1.5, a2 = 1, and b = −1.3 in Eq. (6.45) so that this Boolean function is
expressed explicitly in the form of Eq. (6.45), namely

β1 = sgn[1.5x1 + x2 + 1.3] (6.50)

Similarly, by choosing a1 = −2, a2 = 1, and b = −2, the CNN truth table of
Fig. 6.11(b) can be expressed by

β2 = sgn[2x1 + x2 + 2] (6.51)

Consequently, β2 is also a linearly separable Boolean function.
Observe that the “separating” straight line L1 defined by

a1x1 + a2x2 − b = 0 (6.52)

164 Uncoupled CNNs

represents the loci of all points (x1, x2) ∈ R2 where the argument of the signum
function sgn(·) is zero. Observe also that in Figs 6.11(c) and 6.11(d) all “black” pixels
lie on one side of the separating straight line L1, and all “white” pixels lie on the other
side of L1.

Consider next a Boolean function of three variables defined by the CNN truth table
shown in Fig. 6.12(a). By identifying each corner of the unit cube in Fig. 6.12(b) as
one of the eight combinations of (u1, u2, u3), we can use the same corner coordinate
coding scheme as in Fig. 6.11 to code this truth table in R3, as shown in Fig. 6.12.
The truth table of Fig. 6.12(a) represents also a linearly separable Boolean function
because we can choose, among infinitely many others, a1 = 0.5, a2 = 0.125, a3 =
−0.3, and b = −0.125 in Eq. (45), namely

β3 = sgn[0.5u1 + 0.125u2 − 0.3u3 + 0.125] (6.53)

Observe that the separation plane L2 defined by

a1u1 + a2u2 + a3u3 − b = 0 (6.54)

represents the loci of all points (u1, u2, u3) ∈ R3 where the argument of sgn(·) is
zero. Observe once again that all “black” pixels in Fig. 6.12(b) lie on one side of the
separating plane L2 and all “white” pixels lie on the other side.

It should now be obvious that any Boolean function of “n” variables can be coded by
placing “black” or “white” pixels at each corner of an n-dimensional unit hypercube,
where each corner is identified by n coordinates (u1, u2, . . . , un), ui ∈ {−1, 1}. Using
this corner coordinate coding scheme, a Boolean function of n variables is linearly
separable if and only if there exists an (n − 1)-dimensional hyperplane

a1u1 + a2u2 + · · · + anun − b = 0 (6.55)

which separates all “black” corner pixels from the “white” corner pixels.
We close this section by showing a simple example of a Boolean function of

two variables which is not linearly separable, and hence can not be realized by an
uncoupled CNN. This example is the XOR (Exclusive OR) function whose CNN truth
table is given in Fig. 6.13(a). The corresponding unit square representation is shown
in Fig. 6.13(b). Observe that it is impossible to draw any straight line L1 in the u1–u2

plane which would separate the “black” corner pixels from the “white” corner pixels.
This is equivalent to saying that the CNN truth table of Fig. 6.13(a) cannot be

expressed by the explicit formula of Eq. (6.45). It follows from Theorem 2 that it is
impossible to find an uncoupled CNN which implements the XOR Boolean function.2

Fortunately, our next chapter will show that any one of the 2512 Boolean functions of
nine variables can be realized by programming a CNN universal chip.

165 6.7 Geometrical interpretations

u1 u2 u3 y3

u1

u2

u3

L

(–1, –1, 1)

(–1, 1, 1)

(–1, –1, 1)

(–1, 0.8, –1) (–0.6, –1, –1)

(1, 1, –1)

(1, –1, –1)

(0.6, –1, –1)
(1, –1, 1)

(0.1, 1, 1)

2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

(a)

(b)

Separating plane L2 : 0 5u1 0 125u2 0 3u3 0 125

Fig. 6.12. Geometrical interpretation of a linearly separable Boolean function of three variables.

166 Uncoupled CNNs

u1 u2 y

0 0 0
0 1 1
1 0 1
1 1 0

(a) CNN truth table for β4 (b) unit square representation

(–1, 1) (1, 1)

(1, –1)(–1, –1)

–1

–1

1

1

1u

2u

Fig. 6.13. Geometrical interpretation of a Boolean function (XOR) which is not linearly separable.

6.8 How to design uncoupled CNNs with prescribed Boolean functions

Given any Boolean function y(u1, u2, . . . , u9) of nine binary variables, there exist
algorithms for determining whether y(·) is linearly separable. If it is not, Theorem 2
asserts that no uncoupled CNN can be found which has y(·) as its truth table. If y(·) is
found to be linearly separable, then there exist some vectors a ∈ R9 and some b ∈ R
such that the eight-dimensional hyperplane

a1u1 + a2u2 + a3u3 + a4u4 + a5u5 + a6u6 + a7u7 + a8u8 + a9u9 − b = 0 (6.56)

separates all “black” corner pixels of a nine-dimensional unit hypercube from the
“white” corner pixels. In fact, in general, there are infinitely many (a, b) that qualify.
Using standard optimization procedures, an optimum choice (a∗, b∗) can be chosen
according to some optimization criterion. For example, for maximum robustness to
parameter variations, it would be desirable to choose (a∗, b∗) such that Ln−1 is
positioned approximately half way between those “black” corner pixels and those
“white” corner pixels which are “nearest” to the separating hyperplane Ln−1. The
optimum CNN template in this case having the prescribed Boolean function is given
by

A =
0 0 0
0 1 0
0 0 0

B =
a∗1 a∗2 a∗3
a∗4 a∗5 a∗6
a∗7 a∗8 a∗9

z = −b∗

167 6.8 Uncoupled CNNs with prescribed Boolean functions

Observe that the above design procedure is based on a unity-gain self-feedback
CNN (a00 = 1). From the perspective of robustness with respect to parameter
variations, our choice of a00 = 1 is actually an optimum choice, as is clear from
an inspection of the two dynamic routes in Figs 6.3(a) and 6.3(b) corresponding to
wi j > 0 and wi j < 0, respectively. However, for other design criteria, say a minimum
“transient settling time” criterion, a higher value of a00 should be chosen, as we will
show in the next section. In fact, we will see that a00 = 1 is the “worst” choice if
“speed” is our design criterion.

If we pick a00 �= 1, then Eq. (6.2) must be used in our design; namely

yi j (∞) = sgn[(a00 − 1)xi j (0)+ wi j] (6.57)

In this case, the CNN must be parameterized by a prescribed value of xi j (0). We will
usually choose xi j (0) = 0 unless there are reasons to choose a non-zero value. The
advantage for choosing xi j (0) = 0 is that Eq. (6.57) then reduces to Eq. (6.48) and
hence the same template given by Eq. (6.56) holds without modification. In this case, it
is important to remember that, whereas an arbitrary initial state may be chosen for the
a00 = 1 case, the prescribed initial state xi j (0) used in deriving the (a, b) vector must
be used in actual operations in order to guarantee that the correct Boolean function is
implemented.

One situation where it would be necessary to choose a non-zero value for xi j (0) is
when the CNN is designed to implement a Boolean function of “10” variables or when
each cell C(i j) has two external self-inputs ui j and u′i j . This generalization is possible
if we choose xi j (0) ∈ {−1, 1} to be the 10th Boolean variable. In this case, Eq. (6.56)
becomes

9∑
i=1

ai xi + a10x10 − b = 0 (6.58)

where x10
�= xi j (0) and a10 = a00 − 1. Hence, we must choose

a00 = a10 + 1 (6.59)

as the self-feedback synaptic weight for the A template in Eq. (6.56), instead of a00 =
1, assuming that a10 ≥ 1 for the hyperplane equation. If a10 < 1, then one must
verify that the resulting CNN will not operate in the gray-scale sector in the primary
CNN mosaic; namely, for all inputs ui ∈ {−1, 1}, i = 1, 2, . . . , 9, we must ensure
that Eq. (6.6) of case 3 and Eq. (6.9) of case 4 cannot occur.8 In particular the correct
Boolean function will be implemented only if∣∣xi j

∣∣ = ∑
kl∈S1(i j)

bklukl + z > −a10 (6.60)

is satisfied for all ui ∈ {−1, 1}, i = 1, 2, . . . , 9.
Let us now illustrate the above ideas by some actual design examples.

168 Uncoupled CNNs

Design Example 1: Two self-input AND gate

x1 x2 β

0 0 0
0 1 0
1 0 0
1 1 1

(a) Boolean truth table for
Logic AND function

u1 u2 y

–1 –1 –1
–1 1 –1
1 –1 –1
1 1 1

(b) CNN truth table for
Logic AND function

(d) unit square representation

(–1, 1)

(–1, 1)

(1, 1)

(1, 1)

(1, –1)

(1, –1)

(–1, –1)

(–1, –1)

(0, 1.6)

(3.2, 0)

–1

–1

0–1 1 2 3 4–2–3–4

1

2

u2

u2

u1

u10–1 1 2 3 4–2–3–4

–1

1

2

(c)

L1: u2 = – u1 + 11
3

optimal L1': u2 = –u1 + 1 L1': u2 = –0.5u1 + 1.6

Fig. 6.14. Truth table and unit-square representation of Boolean AND function and acceptable
candidate for separating lines.

Recall the LOGAND template presented in Chapter 5 for implementing the Boolean
AND function of two variables. We will now apply the above systematic procedure to
design an optimized CNN for performing the same task. Let us begin as always with
our most basic representation; namely, the CNN truth table9 (where YES = 1, NO =
−1) corresponding to the Boolean truth table (where YES = 1, NO = 0), as shown
in Figs 6.14(b) and 6.14(a), respectively. Using the corner coordinate coding scheme,

169 6.8 Uncoupled CNNs with prescribed Boolean functions

the first three rows of the CNN truth table are coded by a “white” pixel at (−1,−1),
(−1, 1), and (1,−1), respectively. The 4th row is coded by a “black” pixel at (1, 1).

To determine whether an uncoupled CNN can be designed to implement the logic
AND function, one must find a straight line L1 which separates the black pixels from
the white pixels. Since we have already studied an earlier template (LOGAND) which
realizes this function, we know such a straight line must exist (Theorem 2).

The equation of the separating straight line L1 can be derived from the synaptic
coefficients of the template LOGAND, which we reproduce below for convenience

A =
0 0 0
0 1.5 0
0 0 0

B =
0 0 0
0 1.5 0
0 0 0

z = −1.5 (6.61)

From Eq. (6.61), we identify a00 = 1.5, b00 = 1.5, and z = −1.5, from which we
obtain

a00 − 1 = 0.5, wi j = z + b00ui j = −1.5+ 1.5ui j

and

yi j (∞) = sgn[0.5xi j (0)+ 1.5ui j − 1.5] (6.62)

Let us choose (arbitrarily) u1 = xi j (0) and u2 = ui j as the two self-inputs to cell
C(i j). The equation of the separating line L1 associated with Eq. (6.62) is therefore
given by

0.5u1 + 1.5u2 − 1.5 = 0

or

u2 = −1

3
u1 + 1 (6.63)

This line passes through the points (3.2, 0) and (0, 1.6), as shown in Fig. 6.14(c).
Note that L1 indeed separates the black pixel from the white pixels, as expected.
Observe, however, that L1 is quite close to the black pixel so that a small perturbation
of the slope and/or intercept of L1 could fail to separate the points. For example, a
34% increase in the nominal designed values of a00 = 1.5 and b00 = 1.5 plus a 7%
increase in the nominal designed value of z = −1.5 would result in the following
perturbed template

A′ =
0 0 0
0 2 0
0 0 0

A′ =
0 0 0
0 2 0
0 0 0

z′ = −1.6 (6.64)

The corresponding output equation and straight line L ′1 are given by

yi j (∞) = sgn[xi (0)+ 2ui j − 1.6] (6.65)

170 Uncoupled CNNs

and

u2 = −1

2
u1 + 1.6 (6.66)

The straight line corresponding to Eq. (6.66) is shown by the dashed line L ′1 in
Fig. 6.14(c). Observe that L ′1 has moved above the black pixel and hence this CNN
fails to operate correctly!

Since no template parameters can be realized exactly in practice, it is important that
the CNN template be designed to be as robust as possible. Clearly, there are many other
straight lines that are acceptable. Observe that the straight line in L ′1 Fig. 6.14(c) does
not have this “separation” property because part of L ′1 overlaps with the nonshaded
area above and to the right of the black pixel at (1, 1). An analysis of the shape of
the shaded area in Fig. 6.14(d) shows that for maximum robustness with respect to
perturbations in the “slope” and “intercept” of the separation line L1, we should choose
L1 to lie approximately half way between the nearest “black” and “white” pixels. The
optimal line satisfying this “robustness” criterion in this case is the bold line L∗1 shown
in Fig. 6.14(c), which is described by

u2 = −u1 + 1 (6.67)

To implement the CNN truth table for the logic AND function, we must have

xi j (0)+ ui j − 1 > 0 ⇒ yi j (∞) = 1
xi j (0)+ ui j − 1 < 0 ⇒ yi j (∞) = −1

}
(6.68)

Equation (6.68) is equivalent to the single CNN output equation

yi j (∞) = sgn[xi j (0)+ ui j − 1] (6.69)

Comparing Eq. (6.69) with Eq. (6.57), we identify

a00 − 1 = 1 ⇒ a00 = 2 (6.70a)

and

wi j = z + b00ui j +
∑

kl �=(0,0)

bklukl

⇒
z = −1
a00 = 2
b00 = 1
bkl = 0 kl �= (0, 0)

 (6.70b)

It follows from Eqs (6.70a) and (6.70b) that the optimum CNN template for
implementing a Boolean AND operation on two self-inputs xi j (0) and ui j is given by

A∗ =
0 0 0
0 2 0
0 0 0

B∗ =
0 0 0
0 1 0
0 0 0

z∗ = −1 (6.71)

This completes our Design Example 1.

171 6.8 Uncoupled CNNs with prescribed Boolean functions

Design Example 2: Two-neighbor input AND gate
Consider next the case where each cell C(i j) has only one input ui j and a logic AND
operation is to be applied to the respective inputs either between cell C(i j) and one
neighbor C(kl), or between two neighbors C(kl) and C(k′l ′). There are two cases to
consider, each one involving several subclasses:

Case 1: (u1, u2) = (ui+k, j+l , ui+k′, j+l ′), kl and k′l ′ ∈ {−1, 1} (6.72a)

Case 2: (u1, u2) = (ui j , ui+k, j+l), kl ∈ {−1, 1} (6.72b)

Our optimal design follows directly from the preceding example upon choosing
the corresponding input variables from Eq. (6.72a) or (6.72b) for u1 and u2. Since
the initial state xi j (0) is not considered to be an input in this case, unlike that of the
Example 1, we can set xi j (0) = 0 and choose the same optimal template A∗ and
threshold z∗ as in Eq. (6.71). The output equation corresponding to Eq. (69) is then
given as follows

Case 1: yi j (∞) = sgn[ui+k, j+l + ui+k′, j+l ′ − 1], kl and k′l ′ ∈ {−1, 1} (6.73a)

Case 2: yi j (∞) = sgn[ui j + ukl − 1], kl ∈ {−1, 1} (6.73b)

The optimal B∗ templates corresponding to Eqs (6.73a) and (6.73b) are collected in
Tables 6.7 and 6.8, respectively. In each table, the positions of the two non-zero entries
in the B∗ templates correspond to the two cells where the logic AND operation is to
be applied to their inputs.

Table 6.7. Optimal B∗ template for case 1 (not an exhaustive list).

B∗1 =
0 0 0
1 0 1
0 0 0

B∗2 =
0 1 0
0 0 0
0 1 0

B∗3 =
1 0 0
0 0 0
0 0 1

B∗4 =
0 0 1
0 0 0
1 0 0

Table 6.8. Optimal B∗ template for case 2.

B∗5 =
0 0 0
1 1 0
0 0 0

B∗6 =
0 0 0
0 1 1
0 0 0

B∗7 =
0 1 0
0 1 0
0 0 0

B∗8 =
0 0 0
0 1 0
0 1 0

B∗9 =
1 0 0
0 1 0
0 0 0

B∗10 =
0 0 0
0 1 0
0 0 1

B∗11 =
0 0 1
0 1 0
0 0 0

B∗12 =
0 0 0
0 1 0
1 0 0

172 Uncoupled CNNs

Design Example 3

Examples 1 and 2 show that once the optimal separating line L∗ is found which
separates the “black” pixels from the “white” pixels, the optimal CNN template
follows trivially from Theorem 2. Hence, the fundamental problem in the design of
an optimal uncoupled CNN to implement any prescribed linearly separable Boolean
function is simply to find the equation of the optimal separating line L∗1.

In the above examples, this equation is derived geometrically by placing the line
L1 into an optimal position which separates those “black” pixels nearest to L1 by
approximately equal distances to L1. Unfortunately, when there are more than two
inputs, the above geometric approach is no longer applicable and it would be necessary
to develop a strictly computational approach based on methods for solving systems
of linear inequalities. This is the classic linear programming problem in operation
research where several effective computation algorithms for solving the problem are
available.

In order to obtain some insights on how this can be done, let us return to the above
examples and analyze the computational nature of the problem.

Suppose we wish to find the coefficients a1, a2, and b such that the CNN output

yi j (∞) = sgn[a1u1 + a2u2 + b] (6.74)

would implement the CNN truth table for the Logic AND Boolean function given
earlier in Fig. 6.14(b). Substituting the values of (u1, u2, y) from each row of this
truth table, we obtain the following system of four linear inequalities

−a1 − a2 + b < 0 (6.75a)

−a1 + a2 + b < 0 (6.75b)

a1 − a2 + b < 0 (6.75c)

a1 + a2 + b > 0 (6.75d)

Our first goal is to find three numbers (a1, a2, b) which simultaneously satisfy the
above four inequalities. If no such numbers are found to exist, the Boolean function
is not linearly separable and we can conclude that no uncoupled CNN can solve the
problem in view of Theorem 2. If a solution is found, however, there are in general
infinitely many possible solutions. This brings up then the second problem on how
to pick one solution which is optimal with respect to some prescribed criterion. If
our criterion is to optimize the “robustness to parameter variations,” then the optimal
solution already derived above is (a∗1 , a∗2 , b∗) = (1, 1,−1). For more than two inputs,
however, a systematic algorithm must be developed. This would constitute a very good
and useful project.

173 6.9 Non-separable local Boolean functions

Without loss of generality, let us assume that either a00 = 1 or xi j (0) = 0, so that
the initial condition does not contribute anything to the outcome of the CNN output
equation for a 3× 3 neighborhood (r = 1):

yi j (∞) = sgn

[
(a00 − 1)xi j (0)+

∑
|k−i |≤1
|l− j ||≤1

bklukl + b

]
(6.76)

In this case, our problem is simply to solve and to possibly optimize the following
set of ten coefficients

a = (a1, a2, . . . , a9)
�= (b−1,−1, b−1,0, b−1,1, b0,−1, b0,0, b0,1, b1,−1, b1,0, b1,1)

b = z (6.77)

Since a Boolean truth table with ten variables contains 1024 distinct Boolean
expressions (i.e., local rules), in the worst case,10 we need to solve the following
system of 1024 linear inequalities involving only “1,” “−1,” or “0” as coefficients

α11a1 + α12a2 + · · · + α19a9 + z > 0
α21a1 + α22a2 + · · · + α29a9 + z > 0
...

αN1a1 + αN2a2 + · · · + αN9a9 + z > 0

(6.78)

where N = 210 = 1024, αi j ∈ {−1, 0, 1}.
We will henceforth refer to Eq. (6.78) as the fundamental CNN inequalities. There

are several well-known algorithms and software packages for solving Eq. (6.78), the
most widely used being the simplex algorithm. Typically, such software packages
are designed for solving linear programming problems which frequently arise in
economics and operation research problems where a very large number (greater than
100) of variables are to be solved. Fortunately, in our case, we have at most ten
variables to solve. Consequently, it is relatively straightforward to solve Eq. (6.78)
with a computer. Moreover, since the coefficients αi j of Eq. (6.78) can only assume the
value 1, −1, or 0, it is possible to develop special dedicated computer programs that
are extremely efficient. It is therefore possible to derive templates for all uncoupled
CNNs. Optimizing them remains an important yet untackled problem whose solution
is also within reach, because of the low dimensional nature of the problem.

6.9 How to realize non-separable local Boolean functions?

We have already seen an example of a Boolean function which is not linearly separable;
namely, the XOR function. It follows from Theorem 2 that it is impossible to imple-
ment this function using an uncoupled CNN. Although numerous non-separable local

174 Uncoupled CNNs

x1 x2 β

0 0 0
0 1 1
1 0 1
1 1 0

(0, 1) (1, 1)

(1, 0)(0, 0)

2x

1x0

Fig. 6.15. Boolean truth table for the XOR function.

Boolean functions have been realized by CNNs having non-zero feedback synaptic
coefficients, i.e., ai j �= 0 for at least one i �= j , presently no theory exists which
allows one to determine whether an arbitrary Boolean function is realizable by a CNN.
However, if we are allowed to “hard wire” two or more CNNs so that the output of
each cell C(i j) of an uncoupled CNN Ca can be connected in parallel or in series to a
corresponding cell C(i j) of another uncoupled CNN Cb, then any one of the 229 = 2512

local Boolean functions can be realized. Before we prove this general assertion, we will
present first a “constructive proof” which shows that the non-separable Exclusive OR
(XOR) Boolean function presented earlier in Fig. 6.13, can be realized by applying
first the input simultaneously (i.e., in parallel) to two elementary uncoupled CNNs
Ca and Cb called minterm CNNs or maxterm CNNs, and then feeding their respective
outputs simultaneously into a LOGOR CNN analyzed earlier in Chapter 5.

Consider the CNN truth table and its unit square representation for the XOR
function presented earlier in Fig. 6.13 which we recast in Fig. 6.15 in terms of
the Boolean variables x1, x2 ∈ {0, 1}. We revert to the Boolean variables x1, x2 ∈
{0, 1} here because the proofs to be given in this section are based on some classic
theorems from Boolean algebra which were invariably couched in Boolean variables
(xi = 1 (TRUE) or xi = 0 (FALSE)) having no numerical significance. The reader
should note that all “operations” in this section are Boolean operations involving
the complementation (LOGNOT) operation x̄i of xi , the conjunctive (intersection,
LOGAND) operation x1∧ x2 between x1 and x2, and the disjunctive (union, LOGOR)
operation x1 ∨ x2 between x1 and x2, respectively. In particular, no arithmetic or
algebraic operations are involved.

We will show that the Boolean truth table of XOR in Fig. 6.15 can be realized as
shown in Fig. 6.16 using only two elementary Boolean functions β1 and β2 and an OR
operator; namely

β(x1, x2) = β1(x1, x2) ∨ β2(x1, x2) (6.79)

175 6.9 Non-separable local Boolean functions

x1 x2 2β

0 0 0
0 1 0
1 0 1
1 1 0

x1

x1

x1

x2

x2

x2

1β

1β

2β

β

0 0 0
0 1 1
1 0 0
1 1 0

OR

x1 x2 β

β0 0 0
0 1 1
1 0 1
1 1 0

Fig. 6.16. Minterm realization of the XOR function.

Using the truth tables for β1 and β2 defined in Fig. 6.16, we obtain

β(0, 0) = β1(0, 0) ∨ β2(0, 0) = 0 ∨ 0 = 0

β(0, 1) = β1(0, 1) ∨ β2(0, 1) = 1 ∨ 0 = 1

β(1, 0) = β1(1, 0) ∨ β2(1, 0) = 0 ∨ 1 = 1

β(1, 1) = β1(1, 1) ∨ β2(1, 1) = 0 ∨ 0 = 0

(6.80)

which is precisely the truth table for XOR.
Observe that the two truth tables β1 and β2 in Fig. 6.16 have only one TRUE

statement, i.e., their outputs are “0” except for one combination of x1 and x2. Such
Boolean functions are examples of an elementary class defined as follows:

Definition 1: Minterm Boolean function
A Boolean function β(x1, x2, . . . , xn) of n variables is said to be a minterm if its output
column in the truth table consists of all “0”s except for one entry having a “1.”

Definition 2: Minterm CNN
A CNN which implements a minterm Boolean function in each cell is called a minterm
CNN.

Since there are 2n rows in a truth table of “n” Boolean variables, there are 29 = 512
distinct minterm Boolean functions of nine variables. For n = 2, there are only four
minterm Boolean functions, two of which are defined by β1 and β2 in Fig. 6.16. In
the context of information theory, a minterm Boolean function contains the minimum
amount of information; namely, 1 “bit,” hence the name “minterm.”

Now consider an arbitrary Boolean function β(x1, x2, . . . , x9) of nine variables
where the output column in its truth table has exactly N ≤ 512 non-zero entries (i.e.,
“1”). To each row of β having an output β(x1, x2, . . . , x9) = 1 we can define an

176 Uncoupled CNNs

x9

x 2

x1

x9

x2

x1

x9

x2

x1

x9

x2

x1

Nβ

2β
β

1β

OR

x1 x2 9x

0 0 …
…

0
0 0 1

Nβ

0
0

0

1

0

0

x1 x2 9x

0 0 …
…

0
0 0 1

2β

0
0

1

0

0

x1 x2 9x

0 0 …
…

0
0 0 1

1β

0
0

0
1

0

0

Fig. 6.17. Minterm realization of an arbitrary Boolean function of nine variables. Each of the
N ≤ 512 rows, nine inputs and one output. The OR operator has N inputs and one output.

associated minterm truth table. Hence, we can define uniquely N minterm Boolean
functions β1, β2, . . . , βN .11 ORing these N minterms, as shown in Fig. 6.17, we obtain

β(x1, x2, . . . , x9) = β1 ∨ β2 ∨ β3 ∨ · · · ∨ βN (6.81)

177 6.9 Non-separable local Boolean functions

Observe that by construction, we have

β(x1, x2, . . . , x9) = 1, if (x1, x2, . . . , x9) belongs to one
and only one, of the 512 rows of
βi , i = 1, 2, . . . , N , whose output is “1”

= 0, otherwise

which gives the prescribed truth table of β.
We are now ready to prove the following theorem:

Theorem 3: CNN minterm realization theorem
Every local Boolean function of nine variables can be realized by ORing at most 512
uncoupled CNNs.

Proof of Theorem 3:
It suffices for us to prove that every minterm Boolean function βi (x1, x2, . . . , x9), i =
1, 2, . . . , N ≤ 512, in Eq. (6.81) is linearly separable. To avoid clutter, let us first show
that this is true for the two minterm Boolean functions associated with the XOR truth
table in Fig. 6.16, since the generalization for any n > 2 will be obvious. In particular,
we will show that each of the two minterms in Fig. 6.16 has an explicit “Boolean”
output equation; namely

β1(x1, x2) = x̄1 ∧ x2 (6.82)

β2(x1, x2) = x1 ∧ x̄2 (6.83)

Substituting the n2 = 4 combinations of {0, 1}, namely, (0, 0), (0, 1), (1, 0), and
(1, 1), into Eqs (6.82) and (6.83), we obtain the corresponding truth tables shown in
Tables 6.9 and 6.10, respectively, which are precisely the truth tables of β1 and β2 in
Fig. 6.16. Substituting next Eqs (6.82) and (6.83) for β1 and β2 in Eq. (6.81) for n = 2,
we obtain the following explicit Boolean output equation for the XOR truth table:

β = (x̄1 ∧ x2) ∨ (x1 ∧ x̄2) (6.84)

Table 6.9. Truth table of β1 = x̄1 ∧ x2.

x1 x2 x̄1 ∧ x2 β1

0 0 0̄ ∧ 0 = 1 ∧ 0 = 0 0
0 1 0̄ ∧ 1 = 1 ∧ 1 = 1 1
1 0 1̄ ∧ 0 = 0 ∧ 0 = 0 0
1 1 1̄ ∧ 1 = 0 ∧ 1 = 0 0

178 Uncoupled CNNs

Table 6.10. Truth table of β2 = x1 ∧ x̄2.

x1 x2 x1 ∧ x̄2 β2

0 0 0 ∧ 0̄ = 0 ∧ 0 = 0 0
0 1 0 ∧ 1̄ = 0 ∧ 0 = 1 0
1 0 1 ∧ 0̄ = 1 ∧ 1 = 0 1
1 1 1 ∧ 1̄ = 1 ∧ 0 = 0 0

x1

x1

x2

x2

x2

β

x1 x1 x2∧

x1 x2∧

LOGNOT

LOGNOT

LOGAND

LOGAND

LOGOR

Fig. 6.18. Schematic diagram showing that the non-separable Boolean function XOR of two
variables can be realized by hard-wiring two LOGNOT CNNs, two LOGAND CNNs, and one
LOGOR CNN, all of them are linearly separable. The “interface circuitry” is not shown to avoid
clutter.

Since Eq. (6.84) involves only the NOT, AND, and OR operations, it follows that
we can realize Eq. (6.84) in hardware, as shown in Fig. 6.18, using only two LOGNOT
CNNs, two LOGAND CNNs, and one LOGOR CNN.12

A careful analysis of Tables 6.9 and 6.10 shows that Eqs. (6.82) and (6.83) can be
easily derived from each row “k” of the truth table of the Boolean function XOR having
a non-zero output: simply apply the complement of the input variable associated with
a “0” in row “k.” Hence, since the values of input variables in row 2 of Fig. 6.15(a)
are (x1, x2) = (0, 1), we must choose x̄1 since the first variable is “0.” Similarly, since
the values of input variables in row 3 of Fig. 6.15(a) are (x1, x2) = (1, 0), we must
choose x̄2 since this time it is the second variable that is “0.” Observe that this scheme
will always result in an output term equal to 1∧1 = 1 because the “0” in each relevant
row has been changed to a “1.”

By an obvious generalization of the above minterm decomposition method, it
follows that every Boolean function of nine variables has the following explicit CNN
minterm output equation.13

y(u1, u2, . . . , u9) = (uα11
1 ∧ uα12

2 ∧ · · · ∧ uα19
9) ∨ (uα21

1 ∧ uα22
2 ∧ · · · ∧ uα29

9)

∨(uαN1
1 ∧ uαN2

2 ∧ · · · ∧ uαN9
9) (6.85)

179 6.9 Non-separable local Boolean functions

where N ≤ 512, and

uαkl
l = ūl , if xl in the minterm input = 0
= ul , otherwise.

(6.86)

Finally, observe that Eqs (6.85)–(6.86) can be realized by N ≤ 512 LOGAND
CNNs with nine inputs, one LOGOR CNN with N inputs, and one LOGNOT CNN
for each input variable xi in (x1, x2, . . . , x9) with value xi = 0 in each row of the truth
table having an output equal to “1.” This completes the proof of Theorem 3. �

Definition 3: Maxterm Boolean function
A Boolean function β(x1, x2, . . . , xn) of n variables is said to be a maxterm iff its
output column in the truth table consists of all “1”s except for one entry having a “0.”

Definition 4: Maxterm CNN
A CNN which implements a maxterm Boolean function in each cell is called a
maxterm CNN.

Since there are 2n rows in a truth table of “n” Boolean variables, there are 29 = 512
distinct maxterm Boolean functions of nine variables. For n = 2, there are only four
maxterm Boolean functions, two of which are defined by β1 and β2 in Fig. 6.19. In
the context of information theory, a maxterm Boolean function contains the maximum
amount of information; namely, 2n − 1 “bits,” hence the name “maxterm.”

Now consider an arbitrary Boolean function β(x1, x2, . . . , x9) of nine variables
where the output column in its truth table has exactly N ≤ 512 zero entries (i.e., “0”).
To each row of β having an output β(x1, x2, . . . , x9) = 0 we can define an associated
maxterm truth table. Hence, we can define uniquely N maxterm Boolean functions
β1, β2, . . . , βN .14 ANDing these N maxterms, we obtain

β(x1, x2, . . . , x9) = β1 ∧ β2 ∧ β3 ∧ · · · ∧ βN (6.87)

Observe that by construction, we have

β(x1, x2, . . . , x9) = 0, if (x1, x2, . . . , x9) belongs to one
and only one, of the 512 rows of
βi , i = 1, 2, . . . , N , whose output is “0”

= 1, otherwise

which gives the prescribed truth table of β.
We are now ready to prove the following theorem:

Theorem 4: CNN maxterm realization theorem
Every local Boolean function of nine variables can be realized by ANDing at most 512
uncoupled CNNs.

180 Uncoupled CNNs

x1 x2 2β

0 0 1
0 1 1
1 0 1
1 1 0

x1

x1

x1

x2

x2

x2

1β

1β

2β

β

0 0 0
0 1 1
1 0 1
1 1 1

AND

x1 x2 β

β0 0 0
0 1 1
1 0 1
1 1 0

Fig. 6.19. Maxterm realization of the XOR function.

Proof of Theorem 4:
It suffices for us to prove that every maxterm Boolean function βi (x1, x2, . . . , x9),
i = 1, 2, . . . , N ≤ 512, in Eq. (6.87) is linearly separable. To avoid clutter, let us
first show that this is true for the two maxterm Boolean functions associated with the
XOR truth table in Fig. 6.19, since the generalization for any n > 2 will be obvious.
In particular, we will show that each of the two maxterms in Fig. 6.19 has an explicit
“Boolean” output equation; namely

β1(x1, x2) = x1 ∨ x2 (6.88)

β2(x1, x2) = x̄1 ∨ x̄2 (6.89)

Substituting the n2 = 4 combinations of {0, 1}, namely, (0, 0), (0, 1), (1, 0), and
(1, 1), into Eqs (6.88) and (6.89), we obtain the corresponding truth tables shown in
Tables 6.11 and 6.12, respectively, which are precisely the truth tables of β1 and β2 in
Fig. 6.19. Substituting next Eqs (6.88) and (6.89) for β1 and β2 in Eq. (6.87) for n = 2,
we obtain the following explicit Boolean output equation for the XOR truth table:

β = (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) (6.90)

Table 6.11. Truth table of β1 = x1 ∨ x2.

x1 x2 x1 ∨ x2 β1

0 0 0 ∨ 0 = 0 0
0 1 0 ∨ 1 = 1 1
1 0 1 ∨ 0 = 1 1
1 1 1 ∨ 1 = 1 1

181 6.9 Non-separable local Boolean functions

Table 6.12. Truth table of β2 = x̄1 ∨ x̄2.

x1 x2 x̄1 ∨ x̄2 β2

0 0 0̄ ∨ 0̄ = 1 ∨ 1 = 1 1
0 1 0̄ ∨ 1̄ = 1 ∨ 0 = 1 1
1 0 1̄ ∨ 0̄ = 0 ∨ 1 = 1 1
1 1 1̄ ∨ 1̄ = 0 ∨ 0 = 0 0

x1

x1

x1
x2

x2

β

x2

LOGNOT

LOGNOT

LOGOR

LOGOR

LOGAND

x1 x2
∧

x1 x2
∧

Fig. 6.20. Schematic diagram showing that the non-separable Boolean function XOR of two
variables can be realized by hard-wiring two LOGNOT CNNs, two LOGOR CNNs, and one
LOGAND CNN.

Since Eq. (6.90) involves only the NOT, AND, and OR operations, it follows that
we can realize Eq. (6.90) in hardware, as shown in Fig. 6.20, using only two LOGNOT
CNNs, two LOGOR CNNs, and one LOGAND CNN.

A careful analysis of Tables 6.3 and 6.4 shows that Eqs (6.88) and (6.89) can be
easily derived from each row “k” of the truth table of the Boolean function XOR,
having a zero output: simply apply the complement of the input variable associated
with a “1” in row “k.” Hence, since the values of input variables in row 1 of Fig. 6.15(a)
are (x1, x2) = (0, 0), we can choose x1 and x2. Similarly, since the values of input
variables in row 4 of Fig. 6.15(a) are (x1, x2) = (1, 1), we must choose x̄1 and x̄2

since this time both of the variables are “1.” Observe that this scheme will always
result in an output term equal to 0 ∨ 0 = 0 because the “1” in each relevant row has
been changed to a “0.”

By an obvious generalization of the above maxterm decomposition method, it
follows that every Boolean function of nine variables has the following explicit CNN
maxterm output equation

y(u1, u2, . . . , u9) = (uα11
1 ∨ uα12

2 ∨ · · · ∨ uα19
9)

∧ (uα21
1 ∨ uα22

2 ∨ · · · ∨ uα29
9) ∧ · · ·

∧ (uαN1
1 ∨ uαN2

2 ∨ · · · ∨ uαN9
9) (6.91)

182 Uncoupled CNNs

where N ≤ 512, and

uαkl
l = ūl , if xl in the maxterm input = 1
= ul , otherwise

(6.92)

Finally, observe that Eqs (6.91)–(6.92) can be realized by N ≤ 512 LOGOR CNNs
with nine inputs, one LOGAND CNN with N inputs, and one LOGNOT CNN for each
input variable xi in (x1, x2, . . . , x9) with value xi = 1 in each row of the truth table
having an output equal to “0.” This completes the proof of Theorem 4. �

We close this chapter by pointing out that if a given Boolean truth table has N > 256
nonzero entries (i.e., “1”s) in the output column, then applying Theorem 4 would
require less than 256 uncoupled CNNs. Conversely, if N < 256, then applying
Theorem 3 would require less than 256 uncoupled CNNs. Hence, we have just proved
the following:

Theorem 5: Uncoupled CNN realization theorem
Every Boolean function of nine variables can be realized by using at most N = 256
uncoupled CNNs having nine inputs and either one LOGOR CNN, or one LOGAND
CNN, with N inputs, in addition to one LOGNOT CNN for each input variable xi in
(x1, x2, . . . , x9) with value xi = 0 in each row of the truth table having an output equal
to “1,” or with value xi = 1 in each row having an output equal to “0.”

Remarks:
Theorems 3–5 are mainly of theoretical interest. They prove that every local Boolean
function of nine variables can be realized using uncoupled CNNs as building blocks.
For each prescribed local Boolean function, we can usually derive much simpler real-
izations. No systematic procedure, however, is currently available for such realizations.

7 Introduction to the CNN Universal Machine

We have seen in Chapter 6 that not all tasks can be implemented by a single CNN
template; the XOR function is a typical example.

There are many tasks which are solved by applying several templates, or by applying
one template several times. If we consider a template as an instruction with well-
defined input and output, we can define a CNN subroutine or function (as in C-like
languages) when applying several templates. We can build up processes and complete
programs from functions and other instructions.

We define a subroutine by specifying the following items:

• the input/output parameters,

• the global task,

• the informal description of the algorithm,

• the CNN implementation.

In this chapter the CNN implementation is given by three equivalent ways:

the hardware schematics, supposing each CNN template (placed in the CNN Soft-
ware Library) is implemented by a separate device containing discrete hard-wired
cells and additional local (cell by cell) and global devices.

a flow diagram of the CNN algorithm, and

a list of consecutive instructions, henceforth called a program, written in a simple
vocabulary involving the CNN analog and logic operations, henceforth called an
analogic CNN language, or simply “α” language.

An Alpha Compiler is supposed to exist to translate the code into executable
programs on CNN chips. We will describe this process later in Chapter 9.

Indeed, we follow the theory and practice of digital computers. According to the
classic Turing–Church thesis, each algorithm defined on integers or on a finite set of
symbols (e.g., “yes” or “no”) can be equivalently expressed by

• a Turing machine,

• a recursive function (an algorithmic description using a finite set of elementary
operators), and

• a program defined on a computer using a language.

183

184 Introduction to the CNN Universal Machine

As to the α language, the key instruction is the CNN template operation defined as

TemplateName(InputImage, InitialStateImage, OutputImage, TimeInterval,

BoundaryCond)

For example

EDGE(LLM1, LLM2, LLM3, 10,−1)

means that an edge detector template called EDGE is applied with input, initial state,
and output images denoted by/stored in LLM1, LLM2, LLM3 images, the output is
taken at time t = 10 (measured in the time constant of the CNN cell, τNN), and the
fixed boundary value is −1.

7.1 Global clock and global wire

Definition
A component is called global if its output depends on all cells of the array or its output
affects all cells of the array.

Like in any programmable system we need a clock. To emphasize that within one
CNN template operation there is no clock, we will call our clock a global clock (GCL).
This means that during one clock cycle an entire array of cells implements the same
template instruction.

The global clock is used to control a set of switches (enabling, disabling, latching
functions) which provide that at a given clock cycle only the prescribed signal route is
open.

In many cases we have to decide whether any black pixels remain in the processed
image, i.e. whether it is completely white or not. We call the operation GW(.) which
tests this property (it is called “global white,” “global wire,” or “global line” in the
literature).

GW(·) is defined as follows:
Given a binary image P containing M × N pixels

GW(P) =
{

1(Yes) if all the pixels of P are white (−1)

−1(No) if at least one pixel in P is black (1)

In some implementations “NO” is represented by 0.

7.2 Set inclusion

We want to detect whether

S1 ⊂ S2

185 7.2 Set inclusion

S1 and S2 are represented by pictures P1 and P2, respectively. A pixel is black if the
corresponding element is included in the given set. P1 ⊂ P2 if and only if all black
pixels defining P1 are elements of the black pixels representing P2.

Now we define the subroutine or function SUBSET 1(·, ·, ·).
SUBSET 1(P1, P2, Y)

P1, P2: binary images of size M × N , the black pixels represent the relevant sets.

Y: logical value, Yes or No, represented by 1 and −1, respectively.

Global task
Determine whether a set S2 defined on a Euclidean plane is a subset of another set S1.

Algorithm
Given P1 and P2. The algorithm consists of three steps:

P3 := NOT(P1)

P1 := P3 AND P2

IF P1 contains only white pixels THEN

Y := 1 (Yes) ELSE Y := −1 (No)

Remark:
The NOT and AND operations are acting pixel by pixel.

EXAMPLE 7.1:

set P2 set P1 P1 ∪ P2

NOT P1 (NOT P1) AND P2

186 Introduction to the CNN Universal Machine

EXAMPLE 7.2:

set P2 set

NOT P1 (NOT P1) AND P2

P1 P1 ∪ P2 = P1

CNN implementation
1: Hardwired components
To implement this algorithm via CNN we need some additional components in each
cell and two global components. Suppose that we hard-wire the components. An
extended cell (type 1) is shown in Fig. 7.1(a), containing a (local) logic memory LLM
with three storage places, the GW, and a clock. The latter two are global elements
operating on the whole cell array.

We suppose that we have two different CNN arrays (cells and interconnections), one
for implementing the NOT operation (LOGNOT CNN) and one for the AND operation
(LOGAND CNN). These templates are shown in Chapter 3. The hard-wired solutions
are shown in Fig. 7.1(b).

2: Flow diagram and program
If we place the extended cell in an M × N array, the following flow diagram will
implement the function SUBSET 1(·, ·, ·). In addition, in Fig. 7.2, we show the α

program as well.
As in a digital programming language, our α language uses a few elementary

instructions. Here, in addition to the template activation instruction, we use an

187 7.2 Set inclusion

(a)

(b)

LLM

GCL

TEM1

TEM1

GW

GW

P1
a00 b00 zl1

l2

l3

LLM

TEM2

l1

l2

l3

P1

P1

P1

u y

x(0)

u y

x(0)

u y

x

Fig. 7.1. (a) The extended cell 1. In addition to the CNN cell we have three new components: a local
logic memory (LLM), a global white tester (GW) and a global clock (GCL); (b) the hard wired
solution for SUBSET 1(·).

instruction for the GW(·) test and memory copying instructions. We declare the
templates to be used in the function by listing them between the brackets of the USE
declaration.

188 Introduction to the CNN Universal Machine

FUNCTION SUBSET 1;

USE(LOGNOT,LOGAND);

LLM1:= P1;
LLM2:= P2;

LOGNOT(LLM1,LLM1,LLM3,5,-1);

LOGAND(LLM2,LLM3,LLM1, 5,-1);

Y:=GW(LLM1);

ENDFUNCT;

l1:=P1 l2:=P2

TEM 1
13:= NOT l1

TEM 2
l3:=l2 AND l3

GW(l3)

YN

P1 P2

Fig. 7.2. The SUBSET subroutine as a function. TEM1 is LOGNOT, TEM2 is LOGAND.

7.3 Translation of sets and binary images

We want to translate two-dimensional sets and binary images by a prescribed vector.
This vector is given by its horizontal and vertical coordinates, m and n, respectively.
The set S is represented by the black pixels of an image P. The translated image PT is
given by its black pixels as well. Subroutine TRANSLATE(·, ·, ·, ·) performs this task

TRANSLATE(P, PT, m, n)

P, PT: binary images of size M × N ; m, n: integers.

Global task

Translate image P by vector (m, n) (we suppose m, n > 0; if not, simple modifications
can be applied).

189 7.3 Translation of sets and binary images

Algorithm

Given P, m, and n. The algorithm is performed in an iteration (a program loop):

PT:=P

FOR i=1 STEP 1 TO m

PT:=SHIFT(PT, EAST)

FOR j=1 STEP 1 TO n

PT:=SHIFT(PT, NORTH)

Here, SHIFT(PT, EAST) and SHIFT(PT, NORTH) are the translating operators with
one unit length to the directions EAST and NORTH, respectively.

EXAMPLE 7.3:

input SHIFT(4, 5) SHIFT(4,–5)

CNN implementation

1: hardware components

For the implementation of this algorithm we do not need more components than we
used in the preceding subroutine (SUBSET 1). The controlling mechanism, however,
is more sophisticated. We have to check when to stop the iteration after m and n steps.
This means we need a global control unit which controls the switches and stops/starts
the iteration.

Again, we suppose that we have two different CNN cells (and arrays), one for the
SHIFT to north, one for the SHIFT to east. However, now we need m and n samples of
each CNN component, or we use these two components with a sophisticated control
unit.

190 Introduction to the CNN Universal Machine

2: Flow diagram and program

PT:=P

l1:=PT

M > 0

I:=1

TEM1
l1:=SHIFT E(l1)

I:=I+1

I>M

N > 0 STOP

J:=I

TEM2
l1:=SHIFT N(l1)

J:=J+1

J > N

STOP

Y

N
Y

Y

N

FUNCTION TRANSLATE;
USE(SHIFTE,SHIFTN);

LLM1:=PT;

IF M > 0 THEN DO

REPEAT I:=1 TO M BY1

SHIFTE(LLM1,LLM1,LLM1,10,–1);

ENDREPEAT;

IF N > 0 THEN DO

REPEAT J:=1 TO N BY 1

SHIFTN(LLM1,LLM1,LLM1,10,–1);

ENDREPEAT;

ENDFUNCT;

NO

Fig. 7.3. The function TRANSLATE.

7.4 Opening and closing and implementing any morphological operator

Two frequently used morphological operators are the opening and closing.

Opening is defined as: first erosion then dilation.

Closing is defined as: first dilation then erosion.

The difference is in the sequence of the two elementary templates.
We will show here the subroutine CLOSE(P, S, PC) where P is the original image,

S is the structuring element, and PC is the result.

191 7.4 Implementing any morphological operator

CLOSE(P, B, PC)

P, PC: binary images of size M × N

S: 3 × 3 structuring element represented in a B template for erosion, the 3 × 3
feedforward template B defined by the structuring element with 1 (black) and 0
(white) for dilation, reflect B (centrally) to get B1 as the feedforward template.

Global task
Given P, first apply a dilation, then an erosion with structuring element represented by
B, defined above.

Algorithm
Given P and S(B). The algorithm has four steps:

P1 := P

P2 := DILATION(P1,B1)

P3 := EROSION(P2,B)

PC := P3

EXAMPLE 7.4:

input output of DILATION operation

EXAMPLE 7.5:

input = output of DILATION operation output of EROSION operation

192 Introduction to the CNN Universal Machine

TEM1

TEM2

u

u00 b00 z

u00 b00 z

y

x

u y

x

LLM

l1

l2

l3

P

PC

Fig. 7.4.

CNN implementation

1: hardwired components

The hardwired schematic is very simple. Figure 7.4 shows it: we have two CNN
components.

FUNCTION CLOSE;
USE(EROSIONB,DILATIONB1);
LLM1:=P;
xFill(0,ISTATE);

DILATIONB1(LLM1,ISTATE,
LLM2,10,-1);
EROSIONB(LLM2,ISTATE,LLM3,
10,-1);

PC::= LLM3;
ENDFUNCT;

I1 := P

I2 := DILATION (I1, B1)

L3 := EROSION (I2, B)

PC := I3

Fig. 7.5. The flow diagram and program of CLOSE.

193 7.4 Implementing any morphological operator

2: Flow diagram and program
Mathematical morphology has a calculus. Its deep mathematical foundations are well
documented in textbooks.1

Opening of an image A by structuring element B is denoted by

A ◦ B = (A © B)⊕ B

where erosion is denoted by © and dilation by ⊕, respectively.
Closing, denoted by ◦, is defined by

A ◦ B = (A⊕ B) © B

opening and closing are dual operators.

A ◦ B = (Ac ◦ B)c

where c means complement. Hence, replacing A by Ac and complementing the result
we get

A ◦ B = (Ac © B)c

We can implement this calculus by using a sequence of templates. Next we show a few
examples. An image P is modified by a structuring element S .

EXAMPLE 7.6: Erosion

P P

=

A fundamental theorem of mathematical morphology, the so-called Matheron
representation, asserts that a very large class of morphological operators can be
decomposed into a union of erosions with a basis set of structuring elements. The
art is to find the basis.

194 Introduction to the CNN Universal Machine

EXAMPLE 7.7: Dilation

P

=

P

EXAMPLE 7.8: Open

P P

=

EXAMPLE 7.9: Close

P

=

P

195 7.5 Implementing any prescribed Boolean transition

7.5 Implementing any prescribed Boolean transition function by not more
than 256 templates

We have seen in Section 6.6 that the XOR Boolean function cannot be realized by a
simple CNN template: it is not linearly separable. On the other hand, we can realize it
by applying several templates. The truth table is shown in Table 7.1.

Table 7.1.

Input Output
Term u1 u2 y

1 −1 −1 −1
2 1 1 −1
3 1 −1 1
4 −1 1 1

Note: −1: false; 1: true

Using the minterm/maxterm notion, we can group the last two rows for generating
the minterms by selecting those input combinations which yield outputs of logic 1

m(u): u1ū2 + u2ū1

i.e., if one of the (now two) minterms is true, the output y = F(u1, u2) will be true.
Similarly, for the terms with output of logic 0, the maxterms (M(u)) are given by the
first two rows

M(u): (u1 + u2)(ū1 + ū2)

i.e., if one of the maxterms is false, the output y = F(u1,u2) will be false.
Hence, we can generate the XOR truth table by the sequential applications of two

minterms, combining them with an OR function. Since the minterms contain AND and
NOT functions, what we need, altogether, are the building blocks for AND, OR, and
NOT functions. We have shown already the CNN templates for these three Boolean
functions. Therefore, applying CNN operations, with different templates, iteratively,
we can generate the XOR function.

There is a systematic general procedure for implementing any local Boolean
function by the iterative application of different templates. For the CNN logic
representation, we will use the convention: TRUE = 1, FALSE = −1.

Having nine inputs (u1, u2, . . . , u9) and one output we have 29 = 512 output
values (1,−1) for all the 512 input combinations. This means that we can generate
any local Boolean function of nine input/one output variables, i.e. a binary truth table
by at most 512 applications of different minterms, each one implemented by a CNN

196 Introduction to the CNN Universal Machine

∈

∈

Fig. 7.6.

template. Next, we show a simple, extended CNN cell which can be used to implement
this procedure. Before, however, let us describe this procedure in an elementary flow
diagram.

Suppose we want to calculate the output yi j of nine input Boolean function
Y = F(u1, u2, . . . , u9), u1, u2, . . . , u9 are the nine binary values of the cells in the
neighborhood of cell C(i j).

F is given by the minterms, b0, b1, . . . , bM (M ≤ 512). In our simple XOR
example: M = 2, b0 and b1 are the terms, u1ū2 and ū1u2, respectively. These minterms
can be coded as [1,−1] and [−1, 1] and the procedure is shown in Fig. 7.6.

In words, it means that we calculate the results of all the minterms at the given u
(phase α) and make the ORing (phase β). To implement this flow diagram using our
CNN templates we need the following building blocks:

• a logical storage for the given cell’s input ui j ,

• the CNN templates (A, B, z) for the minterms,

• an OR logic unit, and

197 7.5 Implementing any prescribed Boolean transition

• another two-place logical storage (memory) with a shift (shift register).

This means that we need an extended CNN cell with the above units, in addition to
the core CNN cell.

The extended CNN cell i j with its neighbors is shown in Fig. 7.7.

w(0, 0)

w(–1,–1) w(–1,0) w(–1,1)

w(0,1)

w(1,1)w(1,0)w(1, –1)

w(0, –1)

uij
l1

l2 sR
l3

ui, j–1

ui+1, j–1 ui+1, j+1

ui–1, j+1ui–1, j–1 ui–1, j

ui, j+1

ui+1, j

y

x

OR

LLM

TEMW

Fig. 7.7.

In the CNN cell we have an additional local logic unit (LLU): the OR gate. Suppose
the nine Boolean variables (u1, u2, . . . , u9) are placed on the inputs of all cells in the
sphere of influence Sr (i j). We have to find the template (A, B, z) for a given minterm,
then we can solve the problem. Next we will show this process.

A minterm is a linearly separable Boolean function. Referring to our earlier
analysis, it can be shown (as an exercise) that the value of a minterm bm at a given
(u1, u2, . . . , u9) combination, ui ∈ {−1, 1} can be calculated by the following CNN
template.

A =
0 0 0
0 1 0
0 0 0

Bm =
w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1

z = −8

 u9 u8 u7

u6 u5 u4

u3 u2 u1

where the B template is coded using the minterm bm in the following way. If in
minterm bm a variable is presented with its TRUE value, then the corresponding term is
Bm(k, l) = 1, if it is FALSE, Bm(k, l) = −1, if a variable does not exist, Bm(k, l) = 0.

198 Introduction to the CNN Universal Machine

This unit can be called the restricted-weight threshold unit since the weights can
take values from a finite limited set of values.

For example, minterm u1ū2u3ū4ū5 is coded by a template

Bm =

 0 0 0

0 −1 −1
1 −1 1

Observe that one extended CNN cell can generate not only any minterm but, using the
local logic unit and local logic memory, the final result of a given Boolean function of
nine variables as well. It is supposed that all input variables have their buffers.

If the number of zero outputs in the nine input one output Boolean truth table are
less than 256, then there are less maxterms than minterms. Hence it is practical to code
the maxterms. This can be done using the same extended CNN cell except the local
cell logic contains a NOT and an AND gate.

There are more efficient ways, of course, of implementing the given binary Boolean
function using CNN. The above procedure, however, is simple and works in case of any
local Boolean function. Hence, the extended CNN cell is universal for implementing
any cellular automaton specified by any local Boolean transition rules.

A more complex, more efficient procedure is shown next.

7.6 Minimizing the number of templates when implementing any possible
Boolean transition function

The next procedure shows a more efficient, slightly more complex procedure. The
number of templates to be used are generally much smaller than the brute force method
described in the previous section.

We use again a restricted-weight threshold unit, however, with more possible weight
variables2 in the bias/threshold term z (indeed z = −8,−7, . . . ,−1, 0, 1, 2, . . . , 8)
and use any specified two-input logic function �, instead of a single one (OR or AND).

Suppose again the state transition rule to be implemented is the neighborhood
Boolean function Y

Y = F(u1, u2, u3, . . . , u9)

i.e., F is a Boolean function of nine variables: it can be defined by the 512 bits (as we
have shown).

We are looking for the solution as a sequence of “ballterms” b(k), k =
0, 1, 2, . . . , M , implemented with restricted-weight threshold logic (i.e., equivalent
templates) and corresponding two-input logic operations �k which will generate F in
M steps. All the Boolean functions can be defined by a 2N -tuple as a response (TRUE
or FALSE) to all possible N -tuple inputs. In our case N = 9. Hence, F is defined as a

199 7.6 Minimizing the number of templates

512-tuple (there are 2512 ≈ 10154 such 512-tuples, hence, different Boolean functions
F).

F is generated as follows

f (0) := b(0)

f (1) := f (0)�(1)b(1)

f (2) := f (1)�(2)b(2)

...

f (M) := f (M−1)�(M)b(M)

where �(k) ∈ L (one of the 16 two-input, one-output logic functions).
To calculate the consecutive terms b(k)�(k) (and here f (k)) we need a distance

calculation unit of two N -tuples (u and v) where the distance is calculated as follows

dist(u, v) =
N−1∑
i=0

ui ⊕ vi

where ⊕ denotes the XOR operation.
Clearly, using an XOR local logical unit and a few local logic memory units in a

cell, this distance (dist(u, v)) calculation can be computed in about N steps.
The distance of two Boolean functions, f and g, of N variables can be calculated

similarly

distF (f, g) =
2N−1∑
u=0

f (u)⊕ g(u); f, g ∈ F

where 2N XOR operations (N = 9 → 2N = 512) are needed.
The greedy algorithm defined by the flow chart in Fig. 7.8 calculates the consecutive

b(k)�(k) functions. b(k) are chosen from the set B. Set B contains all the Boolean
functions which can be implemented with the restricted weight values. If N = 9, there
are 118 098 = 39 × 6 elements of B (we choose six z values between −8 and +8).

A ballterm b is represented by the nine feedforward template element values and
the z value, denoted by

b(b1b2b3b4b5b6b7b8b9), z

where the last value is the bias value and the order is the same as shown before (the A
template has a central nonzero element of 1).

The reasoning behind the algorithm is as follows (search algorithms are denoted by
� in Fig. 7.8).

• In the first search algorithm, we find b(0) of minimum distance from the prescribed
F .

200 Introduction to the CNN Universal Machine

k:= 0

b
(o)

 = f
(o)

 = arg min dist (b, F)
for all b ∈ B

k:= k+1

Θ(k) , b(k) + arg min dist (f(k – 1) Θ , b, F)
for all Θ ∈ L , b ∈ B

f
(k)

 = f
(k–1) Θ(k)

b
(k)

f
(k)

 = F
NO

YES

F desired function

bo, Θ (k)
b (k)

z

Fig. 7.8.

• In the next iterative search algorithm, we test all the possible combinations of the
restricted weight functions (∈ B) and the two-input one-output logic function (∈
L) to find the best combination: it will modify the previously composed function
f (k−1) to f (k) which will be of minimal distance to F .

It is possible to prove that this algorithm converges and, in the worst case, will not
result in more terms than the minterm (or maxterm) algorithm shown in the previous
section.3

Example: game of life
This famous problem, with a single Boolean output value, is a linearly non-separable
problem. Hence, it cannot be implemented by a single template. The algorithm in
Fig. 7.8 results in just two terms

b(0) = b(−1,−1,−1,−1, 0,−1,−1,−1,−1),+1

b(1) = b(+1,+1,+1,+1,+1,+1,+1,+1,+1),−4

�(1) = AND

Hence, we can implement the game of life with a cell of Fig. 7.7 containing an AND
local logical unit, and the two templates which implement the “ballterms” b(0) and b(1)

201 7.7 Analog-to-digital array converter

are

A =

 0 0 0

0 1 0
0 0 0

 ; B(0) =

 −1 −1 −1
−1 0 −1
−1 −1 −1

 ; z = +1

and

A =

 0 0 0

0 1 0
0 0 0

 ; B(1) =

 +1 +1 +1
+1 +1 +1
+1 +1 +1

 ; z = −4

respectively.

7.7 Analog-to-digital array converter

SUBROUTINE ADARRAY(·, ·, ·)
ADARRAY(P, n, B[0, n − 1])

P: positive image 0 ≤ pi j ≤ 1

n: integer, number of bits

B[0, n − 1] : Bi j [k]: The value of the kth bit ∈ {0, 1},
k = 0, 1, 2, . . . , n − 1

Global task: array-type analog to digital converter
Given a signal array P at a given time instant t0, i.e., P = P(t)|t=t0 .

P = [pi j], i = 1, 2, . . . , M; j = 1, 2, . . . , N , 0 ≤ pi j ≤ 1.

Compute the representation of the real (analog) values

pi j : Bi j [k], k = 0, 1, 2, . . . , n − 1

The algorithm
The algorithm (a well-known method) is given for a single cell, all cells are computing
fully parallel, without interaction.

Given: p, 0 ≤ pi j ≤ 1 real and n, integer, r : real, b: binary,

let: r(−1) := p and b(−1) := 1

FOR i := 0 step 1 until i < n DO

begin

r(i) := 2r(i − 1)− b(i − 1)

202 Introduction to the CNN Universal Machine

b(i) := sgn(r(i))

B(i) := bconvert(b(i))

end

where “bconvert” (binary converter) is a function with input {−1,+1} and output
{0, 1} which represent logic LOW and HIGH. B(i) are the sequence of the output
bits.

Example
Convert the value p = 0.6875 = 1

2 + 1
4 + 1

8 + 1
16 (i.e., the code B() is: 1011). The

consecutive steps of the algorithm are as follows

r(−1) = 0.6875; b(−1) = 1

i = 0

begin r(0) = 2× 0.6875− 1 = 0.375

b(0) = sgn(0.375) = 1

B(0) = bconvert(1) = 1

end

i = 1

begin r(1) = 2× 0.375− 1 = −0.25

b(1) = sgn(−0.25) = −1

B(1) = bconvert(−1) = 0

end

i = 2

begin r(2) = 2× (−0.25)+ 1 = 0.5

b(2) = sgn(0.5) = 1

B(2) = bconvert(1) = 1

end

i = 3

begin r(3) = 2× 0.5− 1 = 0

b(3) = sgn(0) = 1

B(3) = bconvert(1) = 1

end

203 7.7 Analog-to-digital array converter

CNN implementation
1: hardwired components
To implement this algorithm via CNN we need some additional components in each
cell. For the time being, we suppose that each template is implemented by a single
CNN standard cell, as a component, and the whole array is hardwired from the
components. An extended cell (type 2) is shown in Fig. 7.9.

LAM

CL

B/U

TEM

a1

a2

a3

1

P

a00 b00 z

yu

x

SW1

Fig. 7.9. The extended cell 2. In addition to the CNN cell which may have a switch, we have two
new components: an analog storage device, a local analog memory (LAM) and a bipolar to unipolar
converter (B/U).

The new components in the extended cell 2 are:

• in some CNN standard cells (type 2), for the time being we consider them as
separate components, there is a switch SW1 which, if it is OFF, sets the value of
the standard nonlinearity of the cell to zero, i.e., if SW1: OFF then f (·) = 0; we
suppose that if SW1 = OFF then the input and output of the cell can be specified
and the value at the state will be the outcome,

• an analog memory unit LAM (local analog memory), in this case with three storage
places,

• a binary converter B/U (denoted by bconvert(·)), converting a bipolar {−1, 1}
analog signal into a unipolar {0, 1} − {LOW, HIGH} logic bit.

Suppose we place the extended cell 2 in a CNN array, then we can design the
flow diagram of the A/D algorithm. This flow diagram is shown in Fig. 7.10. On
the same figure we show, in parallel, the program of the algorithm implementing our
A/DARRAY(·) subroutine, for a single cell.

204 Introduction to the CNN Universal Machine

n

a3:=p

a1:=1

n:=4

i:=0

i:=i+1
u:=a1;y:=a3

f(.):=0

TEM1 z:=0
a00:=2; b00:=–1

a3:=x

x (= r(i))

a2:=x

x(0):=a2

f(.):=f(.)

TEM2 z:=0;
a00:=2; b00:=–1

a1:=y

y (=b(i))

i < n STOP

B/U converter
Y

N

FUNCTION ADARRAY;

USE(TEM0);

 N=4;

LAM3:= p ;

LAM1:= 1 ;

REPEAT i:= 0 TO n BY 1

 SW1:=OFF;

TEM0(LAM1,LAM2,LAM3, 5, –1);

LAM3:=LAM2;

 SW1 := ON;

TEM0(LAM1,LAM2,LAM1, 5, –1);

 B[i] :=

bconvert (LAM1);

END REPEAT;

END

p

Fig. 7.10.

Here we suppose that this program is hardwired, i.e., the clock signals activate the
subsequent units according to a predefined sequence.

8 Back to basics: Nonlinear dynamics and
complete stability

8.1 A glimpse of things to come

All CNN templates we have investigated so far share the common property that
regardless of the inputs, initial states, and boundary conditions, all transient dynamics
eventually converge to some dc equilibrium state after some settling time kτCNN, where
τCNN is the time constant of a single cell, and k ≈ 5–10. Such CNNs are said to
be completely stable and represent the workhorse of most current CNN applications.
Indeed, almost all current CNN analogic programs are developed under the assumption
that all CNN templates (instructions) called for in the program are completely stable.
However, we will see in the following sections that not all CNNs are completely stable.
Indeed, some CNN templates will give rise to an oscillatory periodic steady state
behavior. Others can even exhibit an eternally transient (not periodic) phenomenon
called chaos.

While the majority of current CNN applications require constant dc (gray-scale)
outputs, future applications will no doubt exploit the immense potentials of the
relatively unexplored terrains of oscillatory and chaotic operating regions. In this
chapter, we will derive several general mathematical criteria for complete stability.
To appreciate the need for such criteria, we will present first a simple example of an
oscillatory CNN in Section 8.2, and a chaotic CNN in Section 8.3.

8.2 An oscillatory CNN with only two cells

Consider a two-cell CNN characterized by zero boundary conditions and the following
templates:

A =
0 0 0
β α −β

0 0 0
B =

0 0 0
0 0 0
0 0 0

z = 0

205

206 Back to basics

(1, 1) (1, 2)

(a) (b)

αα

–β

β
x1 x2

Fig. 8.1. (a) A 1× 2 CNN whose virtual boundary cells (shown blank) are clamped to a zero
potential: y0,0 = y0,1 = y0,2 = y0,3 = y1,0 = y1,3 = y2,0 = y2,1 = y2,2 = y2,3 = 0. (b)
Corresponding signal flow graph.

xi

yi

1

–1

–1

10

Fig. 8.2. The standard CNN piecewise-linear output characteristic.

Using our earlier notations from Section 2.2.6, this M×N = 1×2 CNN with feedback
synaptic weights a0,−1 = β, a0,0 = α, and a0,1 = β can be represented by the signal
flow graph shown in Fig. 8.1.

The state equation for this CNN is given by

ẋ1 = −x1 + αy1 − βy2

ẋ2 = −x2 + αy2 + βy1
(8.1)

where we neglect the row index for simplicity. Here, the output yi is related to the state
xi by the standard nonlinearity

yi = f (xi) = 0.5|xi + 1| − 0.5|xi − 1| (8.2)

which is shown graphically in Fig. 8.2 for convenience.
The solution waveforms of Eq. (8.1) corresponding to α = 2, β = 2, and initial

condition x1(0) = 0.1 and x2(0) = 0.1 are shown in Examples 8.1(a) and 8.1(b).
Observe that instead of converging to a dc equilibrium point as in all of our previous
examples, the state variables x1 and x2 converge to a periodic waveform, which is
more clearly seen by plotting the associated trajectory on the x1–x2 plane, as shown
in Example 8.1(c). Each point along the trajectory, which starts from (x1, x2) =

207 8.2 Oscillatory CNN with only two cells

(0.1, 0.1) at t = 0 in Example 8.1(c), is parameterized by time but is not shown in the
figure because here we are interested only in the relationship between x1(t) and x2(t)
as t → ∞, namely a closed contour called a limit cycle. Since the trajectory from
(0.1, 0.1) does not converge to an equilibrium (x1Q , x2Q), this CNN is not completely
stable.

EXAMPLE 8.1: Periodic solution waveforms of x1(t) and x2(t) and the corresponding
trajectory for α = 2, β = 2, x1(0) = 0.1 and x2(0) = 0.1.

 (a) (b)

 (c)

For this simple example, we can prove that all trajectories starting from any initial
state except the origin will converge to a limit cycle. We will present the details of
this proof in order to introduce the uninitiated reader to some elementary aspects
of nonlinear qualitative analysis. The first step in analyzing the dynamics of an
autonomous CNN (i.e., where the time variable t does not appear on the right-hand
side of the state equation) is to find the location of all equilibrium points Qi , i =

208 Back to basics

Fig. 8.3. The dynamics of the two-cell CNN in Fig. 8.1 is linear in each region R(i, j).

1, 2, . . . , q, such that ẋ1(Qi) = 0 and ẋ2(Qi) = 0, where ẋ j (Qi) denotes ẋ j (t)
evaluated at xi = xQi . Hence, upon setting Eq. (8.1) to 0, the equilibrium points
of this two-cell CNN are the solutions of

−x1 + 2 f (x1)− 2 f (x2) = 0 (8.3a)

−x2 + 2 f (x2)+ 2 f (x1) = 0 (8.3b)

Since the piecewise-linear function f (xi) in Example 8.1 has three segments, the x1–
x2 state space can be partitioned into nine rectangular regions R(i, j), i, j = 1, 2, 3,
as shown in Fig. 8.3, where the state equation (8.1) reduces to a linear equation in each
region. In particular, the equilibrium equation (8.3) reduces to two linear algebraic
equations in each region R(i, j) and the equilibrium point Q(i, j) can be trivially
calculated. If Q(i, j) falls within region R(i, j), then it is a valid equilibrium point.
If Q(i, j) falls outside of R(i, j), it is a “virtual” equilibrium point and is simply
discarded. The above “brute-force” procedure can be easily programmed to find all
equilibrium points of any M × N CNN. However, the computation time would grow
exponentially with M N so that it becomes impractical when M N is large.

In view of the simplicity of Eq. (8.3), the following algebraic analysis can be made
to determine first those regions in Fig. 8.3 which have valid equilibrium points:

209 8.2 Oscillatory CNN with only two cells

Step 1: Central strip |x1| < 1 (regions R(1, 2), R(2, 2), and R(3, 2) in Fig. 8.3)
In the strip |x1| < 1, we can write f (x1) = x1 so that Eq. (8.3a) becomes−x1+2x1−
2 f (x2) = 0. Consequently, | f (x2)| = |x1|/2 < 0.5 and hence f (x2) = x2. Equation
(8.3) reduces in this case to

−x1 + 2x1 − 2x2 = 0

−x2 + 2x2 + 2x1 = 0 (8.4)

Since (x1, x2) = (0, 0) is the unique solution of Eq. (8.4), only region R(2, 2) in the
central strip has an equilibrium point; namely, the origin.

Step 2: Left strip x1 < −1 (regions R(1, 1), R(2, 1), and R(3, 1) in Fig. 8.3)
In the strip x1 < −1, we can write f (x1) = −1 so that Eq. (8.3b) becomes −x2 +
2 f (x2)− 2 = 0. Solving this equation for x2, we find x2 = −4 for region R(1, 1) the
only solution of Eq. (8.3b) (the other two solutions x2 = 2 for region R(2, 1) and x2 =
0 for region R(3, 1) are both virtual solutions). But x2 = −4 implies f (x2) = −1 so
that Eq. (8.3a) in the left strip gives −x1 − 2 + 2 = 0, or x1 = 0, which is outside of
the left strip. Hence x2 = −4 is a virtual solution for Eq. (8.3). It follows that there
are no equilibrium points in the left strip x1 < −1.

Step 3: Right strip x1 > 1 (regions R(1, 3), R(2, 3), and R(3, 3) in Fig. 8.3)
In the strip x1 > 1, we can write f (x1) = 1 so that Eq. (8.3b) becomes −x2 +
2 f (x2)+ 2 = 0. Solving this equation for x2, we find x2 = 4 for region R(3, 3) is the
only solution of Eq. (8.3b) (the other two solutions x2 = −2 for region R(2, 3) and
x2 = 0 for region R(1, 3) are both virtual solutions). But x2 = 4 implies f (x2) = 1
so that Eq. (8.3a) in the right strip gives −x1 + 2− 2 = 0, or x1 = 0, which is outside
of the right strip. Hence x2 = 4 is a virtual solution for Eq. (8.3). It follows that there
are no equilibrium points in the right strip x1 > 1.

Steps 1–3 show that Eq. (8.1) has only one equilibrium point; namely, the origin.
To determine the dynamical behavior near the origin, we examine the associated linear
equation

ẋ1 = x1 − 2x2

ẋ2 = 2x1 + x2 (8.5)

obtained by setting f (x1) = x1 and f (x2) = x2 in Eq. (8.1). Since the eigenvalues of
the above matrix are given by λ1 = 1+ j2 and λ2 = 1− j2, the solution of Eq. (8.5)
has the form

x1(t) = ket cos(2t + θ)

x2(t) = ket sin(2t + θ) (8.6)

210 Back to basics

where the constants k and θ depend on the initial condition x1(0) and x2(0).
Since the trajectory associated with Eq. (8.6) is an “expanding” spiral, as shown
in Example 8.1(b), and since all solutions of Eq. (8.1) are bounded (in view of
Theorem 2 of Chapter 2), this expanding spiral must necessarily converge to some
limiting closed contour, for otherwise the trajectory would intersect itself since there
is no room for maneuvering on the x1–x2 plane. But no trajectory of an autonomous
system of differential equations can intersect itself in view of the uniqueness property
(Theorem 1 of Chapter 2) – otherwise we can choose the self-intersection point as
our initial condition and obtain two different trajectories originating from this point.
The above reasoning can be given a formal rigorous proof and the result is called the
Poincaré–Bendixon theorem, which is a classic result from the theory of differential
equations.1

8.3 A chaotic CNN with only two cells and one sinusoidal input

Suppose we apply a sinusoidal input u11(t) = 4.04 sin(π
2 t) to cell C(1, 1) of the

two-cell CNN shown in Fig. 8.1 and choose α = 2 and β = 1.2 as its parameters.
In this case, under the same “zero” boundary conditions as before, the state equation
(8.1) generalizes to the following non-autonomous system of two nonlinear differential
equations

ẋ1 = −x1 + 2y1 − 1.2y2 + 4.04 sin

(
π

2
t

)
ẋ2 = −x2 + 1.2y1 + 2y2 (8.7)

where yi = f (xi) is defined by Eq. (8.2). Equation (8.7) is the state equation of a 1×2
CNN with templates

A =
0 0 0

1.2 2 −1.2
0 0 0

B =
0 0 0
0 1 0
0 0 0

z = 0

zero boundary conditions, a sinusoidal input u11(t) to cell C(1, 1), and a zero input
u12 = 0 to cell C(1, 2). The solution waveforms x1(t) and x2(t) corresponding to
the initial condition x1(0) = 0.1 and x2(0) = 0.1 are shown in Figs 8.2(a) and
8.2(b), respectively. Observe that, unlike the periodic waveforms shown earlier in
Example 8.1, these two waveforms do not converge to a periodic waveform as t →∞.
The non-periodic nature of x1(t) and x2(t) is more clearly seen by examining the
associated trajectory shown in Example 8.2(c). Observe that the trajectory looks like a
never-ending tangle of yarn. To emphasize the non-periodic nature of x1(t) and x2(t),
Examples 8.3(a) and 8.3(b) show the numerically calculated power spectra X1(ω)

of x1(t) and X2(ω) of x2(t) have a broadband, continuous, noise-like character,

211 8.3 A chaotic CNN

which is quite different from that of a periodic signal, which consists of discrete
lines corresponding to the harmonic components of its Fourier series expansion. From
the theory of the nonlinear dynamics, the noise-like waveforms in Examples 8.2(a)
and 8.2(b) are said to be chaotic, and the associated trajectory is called a strange
attractor because other solutions corresponding to nearby initial conditions will all
be “attracted” and converge to the same trajectory.

EXAMPLE 8.2: Chaotic solution waveforms of x1(t) and x2(t) and the corresponding
trajectory for α = 2, β = 1.2, x1(0) = 0.1 and x2(0) = 0.1.

 (a) (b)

(c)

Even though the strange attractor in Example 8.2(c) looks extremely messy, it does
possess some orderly geometrical structure, which, in the case of a periodic input,
is best seen by sampling only the points on the trajectory once every period of the
input waveform. The resulting set of points is called a Poincaré cross section, or by
an abuse of language, simply a Poincaré map because it was first introduced by the
famous French physicist and mathematician Poincaré. In this example, the period of
the sinusoidal input is T = 4. Consequently, if we plot (x1(t), x2(t)) on the x1–x2

212 Back to basics

EXAMPLE 8.3: Frequency power spectra calculated numerically from the chaotic waveforms
x1(t) and x2(t) in Example 8.2.

 (a)

(b)

input,

plane only at t = 0, 4, 8, 12, 16, . . ., etc., we would obtain the “sampled” strange
attractor in Example 8.4, which is often referred to as a Lady’s shoe attractor.2

A discrete op-amp circuit3 for simulating Eq. (8.7) is shown in Figure 8.4. The
experimentally observed strange attractor corresponding to Example 8.2(c) is shown
in Example 8.5(a). The corresponding Poincaré map obtained experimentally by
“blanking” out the oscilloscope beam except at regular intervals of T is shown
in Example 8.5(b). It is sometimes instructive to interpret such Poincaré maps as
“strobing” the strange attractor by a stroboscope.

213 8.3 A chaotic CNN

EXAMPLE 8.4: The Poincaré map extracted from the strange attractor in Example 8.2(c) is
called the “Lady’s shoe attractor” in view of its striking resemblance to a high-heel
lady’s pump.

Fig. 8.4. A two-cell CNN circuit driven by a sinusoidal signal.

214 Back to basics

EXAMPLE 8.5: (a) Strange attractor obtained experimentally from the circuit in Fig 8.4. (b)
The “Lady’s shoe” Poincaré map extracted experimentally from the attractor in (a).

(a)

(b)

8.4 Symmetric A template implies complete stability

The preceding examples show that even CNNs with only two cells may not be
completely stable. Fortunately, the following theorem guarantees the complete stability
of an important subclass of CNNs. To simplify the proof of this theorem, we will
assume that the nonlinear function yi j = f (xi j) is bounded, differentiable, and has
positive slope everywhere. There is little loss of generality in this assumption since
our original piecewise-linear function can be approximated arbitrarily closely by such
a smooth function. In fact, any physical realization of f (xi j) will be “smooth” rather
than piece-wise linear so that this assumption is actually more consistent with reality.

215 8.4 Symmetric A template

Complete Stability Theorem 1
Any M × N space-invariant CNN of arbitrary neighborhood size with constant inputs
and constant threshold is completely stable if the following three hypotheses are
satisfied:

1 The A template is symmetric

A(i, j; k, l) = A(k, l; i, j) (8.8)

2 The nonlinear function yi j = f (xi j) is differentiable, bounded, and

f ′(xi j) > 0, for all −∞ < xi j < ∞ (8.9)

3 All equilibrium points are isolated.4

Proof:
Consider the CNN state equation (2.8) from Chapter 2 for constant input u and
threshold z:

ẋ = −x+ Ây+ B̂u+ z (8.10)

yi = f (xi), i = 1, 2, . . . , n = M N (8.11)

Here, Â and B̂ are n × n matrices whose nonzero entries are the synaptic weights
A(i, j; k, l) and B(i, j; k, l), respectively. Observe that hypothesis (8.8) and space
invariance imply that

Â = ÂT (8.12)

independent of the packing scheme.
Now, hypothesis (8.9) implies that f (·) is a one-to-one (injective) function and

therefore has an inverse function

xi = f −1(yi) (8.13)

defined for all yi over the range of f (xi), xi ∈ (−∞,∞). Define the scalar function

V (x) = −1

2
yT Ây+

n∑
i=1

[∫ yi

θ

f −1(v)dv

]
− yT B̂u− yT z (8.14)

where θ is any number such that f (−∞) < θ < f (∞).5

A scalar function V (x) is called a Lyapunov function if its time derivative along any
trajectory is non-positive, i.e.,

V̇ (x)
�= dV (x)

dt
=

n∑
i=1

∂V (x)

∂xi
ẋi ≤ 0.

Our first goal is to prove that Eq. (8.14) defines a Lyapunov function.

216 Back to basics

Observe that the right-hand side of Eq. (8.14) is a scalar function of x =
[x1, x2, . . . , xn]T since yi = f (xi) via Eq. (8.11). Taking the time derivative of both
sides of Eq. (8.14) we obtain

V̇ (x) = −1

2
(ẏT Ây+ yT Âẏ)+

(n∑
i=1

f −1(yi) · ẏi

)
− ẏT B̂u− ẏT z (8.15)

Now since yT Âẏ is a scalar and Â = ÂT in view of Eq. (8.12), we can write

yT Âẏ = (yT Âẏ)T = ẏT ÂT y = ẏT Ây (8.16)

Substituting Eqs (8.13) and (8.16) into Eq. (8.15) and making use of Eq. (8.10), we
obtain

V̇ (x) = −ẏT Ây+
n∑

i=1

xi ẏi − ẏT B̂u− ẏT z

= −ẏT (Ây+ B̂u− x+ z)

= −ẏT ẋ (8.17)

Observe next that

ẏ =

dy1

dt

dy2

dt
...

dyn

dt

=

f ′(x1)

f ′(x2)

. . .

f ′(xn)

︸ ︷︷ ︸
Df(x)

ẋ1

ẋ2
...

ẋn

 = Df(x)ẋ (8.18)

Substituting Eq. (8.18) into Eq. (8.17) and noting that Df(x) is symmetric, we obtain

V̇ (x) = −[Df(x)ẋ]T ẋ

= −(ẋT Df(x)ẋ)

= −
n∑

i=1

f ′(xi)ẋ2
i ≤ 0 (8.19)

Hence, V (x) in Eq. (8.14) is a Lyapunov function. Let M denote the set of all points
x ∈ Rn where V̇ (x) = 0, i.e.,

M = {x : V̇ (x) = 0} (8.20)

Since f ′(xi) > 0 (hypothesis 2), Eq. (8.19) implies V̇ (x) = 0 if, and only if, ẋi = 0,
i = 1, 2, . . . , n. It follows that M in Eq. (8.20) consists of the set of all equilibrium
points of Eq. (8.10). Hence

V̇ (x) < 0 for all x ∈ Rn except at equilibrium points (8.21)

217 8.4 Symmetric A template

Now since x(t) is bounded in view of Theorem 2 from Chapter 2, we can apply
the LaSalle invariant principle6 to conclude that all trajectories of Eq. (8.10) must
converge to the invariant set7 M of equilibrium points.

Now since all equilibrium points of Eq. (8.10) are isolated (hypothesis 3), it follows
that all trajectories of Eq. (8.10) must converge to an equilibrium point.

Remarks
1 If the equilibrium points in M are not isolated,8 then our theorem can be relaxed
to assert only that all trajectories must converge to the set M of equilibrium points.
Strictly speaking, this assertion does not imply that every trajectory will converge to an
equilibrium point since there exist (admittedly highly pathological and rare) situations
where every trajectory will approach M at an arbitrarily small rate so that ẋi → 0 and
yet the trajectory never converges to any particular equilibrium point.

2 To visualize the geometrical ideas behind the above proof, consider the hypothetical
surface V (x1, x2) shown in Fig. 8.5. Notice that this surface has five local minima
{Q1, Q3, Q5, Q7, Q9}. Imagine the inside of the surface V as the surface of a rugged
narrow mountain crevice and a small ball is coasting down the surface. One such
hypothetical trajectory � representing the “track” made by the ball is shown in Fig. 8.5.
Notice that, due to gravity, a ball originating from any point other than an extremum
point must keep falling down along the steep slope until it settles down at a local
minimum; i.e.

V̇ (x1, x2) = d

dt
V (x1(t), x2(t)) < 0 (8.22)

for all (x1, x2) �= (x1(Qi), x2(Qi)).
An n-dimensional scalar function

V (x1, x2, . . . , xn) : Rn→R1 (8.23)

is called a Lyapunov function associated with an autonomous system of differential
equations

ẋi = fi (x1, x2, . . . , xn), i = 1, 2, . . . , n (8.24)

if and only if, corresponding to any trajectory

(x1, x2, . . . , xn) = (γ1(t), γ2(t), . . . , γn(t)) (8.25)

of Eq. (8.24), the corresponding scalar function of time

V (t)
�= V (γ1(t), γ2(t), . . . , γn(t)) (8.26)

decreases monotonically with time, i.e., V̇ (t) ≤ 0. In particular, if V̇ (t) = 0 only
at equilibrium points, then it follows that all trajectories must land at an equilibrium

218 Back to basics

x1

Q1

Q3

Q2

Γ

(x1(0), x2(0))

V(x1, x1)

Q4

0

Q5

Q7

Q6

Q8

Q9

x2

Fig. 8.5. A hypothetical Lyapunov function V (x1, x2) with five local extrema Q1, Q3, Q5, Q7, Q9,
and a hypothetical trajectory � converging toward the local minimum Q3.

point Qi and the set B(Qi) of all initial conditions such that corresponding trajectories
converge to Qi is the basin of attraction of Qi . It follows from the above geometrical
insights that one method to prove Eq. (8.24) is completely stable is to find a scalar
function V (x1, x2, . . . , xn) which possesses the above properties.9 Unfortunately,
no systematic procedure is presently available for finding such a scalar function,
partly because solutions of most nonlinear systems of differential equations, such as
Eq. (8.24), cannot be found by analytical methods.

Now that the degree of difficulty for proving complete stability of Eq. (8.24) is
understood, the reader would no doubt appreciate how lucky we are in being able to
invent the scalar function V (x) in Eq. (8.14) and prove that it qualifies as a Lyapunov
function.

219 8.5 Positive and sign-symmetric A template

8.5 Positive and sign-symmetric A template implies complete stability

In this section we will present another complete stability criterion which depends only
on the “sign,” and not the “value,” of the elements of the A template.

Definition 1: Sign symmetric A template
Let A180◦ denote the template obtained by rotating an A template by 180◦ with respect
to the center of the template. Let ai j and a′i j denote the corresponding i j th elements
of A and A180◦ . We say a (2r + 1)× (2r + 1) A template, where r is the radius of the
sphere of influence Sr (i j), is sign symmetric if and only if ai j and a′i j are both positive,
both negative, or both zero, for all i, j = 1, 2, . . . , 2r + 1.

The above definition is equivalent to the condition that ai j and a−i,− j are both
positive, or both negative, or both zero, for all (i, j) �= (0, 0), where the double
subscripts correspond to a Cartesian coordinate system the origin of which is located
at the center of the template. As an illustrative example, consider the 5× 5 A template
shown in Fig. 8.6(a). To determine whether this template is sign symmetric, we first
rotate “A” by 180◦ (always with respect to the center of the template) to obtain the
associated A180◦ template shown in Fig. 8.6(b). We then construct the corresponding
“sign” templates, denoted by sgn[A] and sgn[A180◦], respectively, by assigning the
symbol +, −, or 0 to each entry ai j , where ai j > 0, ai j < 0 and ai j = 0 in A and
A180◦ , respectively.

A =

−2 0 7 −5 0
1 6 0 −2 −6
0 2 4 3 0

−4 −3 0 6 2
0 −6 8 0 −3

A180◦ =

−3 0 8 −6 0
2 6 0 −3 −4
0 3 4 2 0

−6 −2 0 6 1
0 −5 7 0 −2

(a) (b)

sgn[A] = sgn[A180◦] =

− 0 + − 0
+ + 0 − −
0 + + + 0
− − 0 + +
0 − + 0 −

(c)

Fig. 8.6. (a) A non-symmetric 5× 5 A template (A �= AT). (b) A180◦ obtained by rotating the A
template 180◦ with respect to the center of the template. (c) The “sign” of corresponding
coefficients of A and A180◦ are identical as depicted in this “sign” template sgn[A] whose entries
consist of +, −, and 0’s.

220 Back to basics

Then the A template is sign symmetric if and only if

sgn[A] = sgn[A180◦] (8.27)

Since Eq. (8.27) is satisfied as shown in Fig. 8.6(c), we conclude that the A template
in Fig. 8.6 is sign symmetric. Observe that this template is not symmetric with respect
to the center, i.e., a sign-symmetric A template is, in general, not symmetric, but a
symmetric A template is always sign symmetric.

Each of the following conditions concerning the relative signs of the synaptic
weights ai j of a (2r + 1)× (2r + 1) A template

A =

a−r,−r . . . a−r,−1 a−r,0 a−r,1 . . . a−r,r

a−r+1,−r . . . a−r+1,−1 a−r+1,0 a−r+1,1 . . . a−r+1,r
...

a0,−r . . . a0,−1 a0,0 a0,1 . . . a0,r

...

ar−1,−r . . . ar−1,−1 ar−1,0 ar−1,1 . . . ar−1,r

ar,−r . . . ar,−1 ar,0 ar,1 . . . ar,r

is called a synaptic weight condition:

Definition 2: Synaptic weight conditions
Synaptic weight condition 1:

akl ≥ 0 for all (k, l) �= (0, 0) (8.28)

Synaptic weight condition 2:

akl ≥ 0 for all (k, l) �= (0, 0) and “even” k

akl ≤ 0 for all “odd” k (8.29)

Synaptic weight condition 3:

akl ≥ 0 for all (k, l) �= (0, 0) and “even” l (8.30)

akl ≤ 0 for all “odd” l

Synaptic weight condition 4:

akl ≥ 0 for all (k, l) �= (0, 0) and “even” (k + l)

akl ≤ 0 for all “odd” (k + l) (8.31)

We are now ready to state our next theorem.

221 8.5 Positive and sign-symmetric A template

Complete Stability Theorem 210

An M×N CNN with a (2r+1)×(2r+1) A template is completely stable, for arbitrary
B template and arbitrary threshold z, if the following three conditions are satisfied:

1 The A template is sign symmetric.

2 The template satisfies any one of the four synaptic weight conditions.

3 All the equilibrium points are isolated.

The proof of a special case of this theorem will be given in the next section.

Remark
Note that the synaptic weight condition 1 corresponds to an A template with non-
negative coefficients (except possibly the center). Hence the title of this section is a
Corollary of the above theorem.

Corollary to Complete Stability Theorem 2
An M × N CNN with a 3 × 3 A template, for arbitrary B template and arbitrary
threshold z, is completely stable if the following three conditions are satisfied:

1 The A template is sign symmetric.

2 The A template possesses any one of the six synaptic weight patterns shown in
Fig. 8.7

where

0 denotes a “zero” synaptic weight,

⊕ denotes a “positive” or “zero” synaptic weight,

% denotes a “negative” or “zero” synaptic weight,

× may assume any value.

3 All the equilibrium points are isolated.

⊕ % ⊕
% × %
⊕ % ⊕

synaptic weight

pattern 1

% ⊕ %
% × %
% ⊕ %

synaptic weight

pattern 2

% % %
⊕ × ⊕
% % %

synaptic weight

pattern 3

% 0 ⊕
0 × 0
⊕ 0 %

synaptic weight

pattern 4

⊕ 0 %
0 × 0
% 0 ⊕

synaptic weight
pattern 5

⊕ ⊕ ⊕
⊕ × ⊕
⊕ ⊕ ⊕

synaptic weight

pattern 6

Fig. 8.7. Six synaptic weight patterns which satisfy condition 2 of the Complete Stability Theorem 2.

222 Back to basics

Proof:

This corollary follows directly from the above theorem since each of the synaptic
weight patterns 1–3 and 6 satisfies one of the four synaptic weight conditions in (8.28)–
(8.31).

Synaptic patterns 4 and 5 are trickier and we give the following sketch of the
argument. If we rotate synaptic pattern 4 by 45◦, counterclockwise, we obtain the
pattern

Fig. 8.8.

Looking at the nonzero entries, the center element is connected only to the top,
down, left, and right neighbors. It can be shown that this is similar to the template

0 ⊕ 0
% × %
0 ⊕ 0

Fig. 8.9.

which belongs to the class of synaptic pattern 2. The same can be said by rotating
synaptic pattern 5 by 45◦ clockwise.

Thus the stability of synaptic patterns 4 and 5 can be deduced from the stability of
synaptic pattern 2.

223 8.5 Positive and sign-symmetric A template

To illustrate the properties of the synaptic weight patterns in Fig. 8.7, consider the
following set of 12 hypothetical templates:

A1 =
0 −2 0
2 7 4
0 0 0

, A2 =
0 −2 7
−4 7 −3
7 −1 0

, A3 =
0 0 0
−2 9 −1
0 0 0

A4 =
7 0 −1
0 8 0
0 0 0

, A5 =
−7 0 0
0 2 0
2 0 −6

, A6 =
0 1 2
−3 4 −5
0 0 0

A7 =
0 0 1
2 3 4
5 6 0

, A8 =
0 0 0
−1 −2 −3
0 −5 0

, A9 =
−1 −2 −3
4 5 0
0 −7 0

A10 =
−1 0 −2
0 7 0
−3 0 0

, A11 =
1 −4 5
7 0 8
6 2 0

, A12 =
−2 −1 4
2 3 1
1 −5 −7

Table 8.2 summarizes the properties of these templates.

Table 8.1.

Template Is template Ai Synaptic weight pattern
sign-symmetric? possessed by template AI

A1 no 3
A2 yes 1
A3 yes 1, 2
A4 no 5
A5 no 4
A6 no none
A7 no 6
A8 no 1
A9 no 3
A10 no 2
A11 no none
A12 yes none

Observe that since none of the above 12 templates are symmetric, we cannot make
use of the Complete Stability Theorem 1. However, applying the Corollary to Complete
Stability Theorem 2, we can assert that templates A2 and A3 are completely stable.

224 Back to basics

8.6 Positive and cell-linking A template implies complete stability

In this section we will present yet another complete stability criterion, which substi-
tutes the “sign symmetry” condition from Theorem 2 by a certain condition on the
signal flow graph GA(M × N) associated with an M × N CNN, where GA(M × N)

denotes a directed graph obtained by associating each cell C(i, j) of the CNN with a
node (i, j) and where each node is connected to its neighbors via the signal flow graph
GA associated with the A template defined in Fig. 2.17.

Definition 3: CNN signal flow graph GA(M × N)

For each M × N CNN, we construct a directed graph GA(M × N) corresponding to
an A template as follows:

1 Draw the signal flow graph GA associated with the A template. For each non-zero
and non-central synaptic weight akl �= 0 (k �= i, l �= j) in A, draw a directed branch
from node (k, l) to the center node (i, j), and a similarly directed branch from the
center node (i, j) to the reflected node (k̄, l̄); i.e., node (k̄, l̄) is related to node (k, l)
by a 180◦ rotation with respect to the center node (i, j).11

See Figs 8.10(a) and 8.10(b) for an example.

2 To each cell C(k, l) in an M × N CNN, draw a corresponding node (k, l), k =
1, 2 . . . , M , l = 1, 2, . . . , N (see Figs 8.10(c) and 8.10(d) for a 4× 4 CNN).

3 Duplicate the signal flow graph GA (delete the coefficients akl and the self-loop)
from step 1 at each node (k, l) from step 2. All branches connected to “virtual”
boundary nodes are deleted. The resulting directed graph is called the reduced CNN
signal flow graph GA(M × N). For the 4× 4 CNN shown in Fig. 8.10(c), we obtain
the 16-node directed graph GA(4× 4) shown in Fig. 8.10(d).

Definition 4: Cell-linking CNN
Let GA(M × N) be the signal flow graph of an M × N CNN associated with an A
template. Then the CNN is said to be cell-linking if and only if for every two distinct
nodes (k1, l1) and (k2, l2) in GA(M×N), there is a similarly directed path12 in GA(M×
N) from node (k1, l1) to node (k2, l2), and a similarly directed return path from node
(k2, l2) to node (k1, l1).

For example, the 4× 4 CNN shown in Fig. 8.10(c) is not cell-linking because there
is at least one pair of nodes (e.g., from node (2, 1) to node (1, 1)) where no similarly
directed path exists. On the other hand, the 4×5 CNN shown in Fig. 8.11 is cell-linking
as the reader can verify that there is a similarly directed path from any node (k1, l1)
in the signal flow graph GA(4 × 5) to any other node (k2, l2). For example, to go
from node (2, 2) to node (3, 4), we would travel along the similarly directed path
(2, 2) → (3, 2) → (2, 3) → (3, 3) → (4, 3) → (3, 4).

225 8.6 Positive and cell-linking A template

–2.6 1.5 0

0 4.7 0

0 0 3.2

A =

(i – i, j – 1)

(i + 1, j + 1)

(i – 1, j + 1)(i – 1, j)

(i, j + 1)

(i + i, j – 1)

(i, j – 1)

(i + 1, j)

–2.6
1.5

4,7
3.2

–2.6

1.5

3.2

(a)

(c) (d)

(b)

1,1 1,2 1,3 1,4
(1,1) (1,2) (1,3) (1,4)

(4,1) (4,2) (4,3) (4,4)

(2,1)
(2,2) (2,3)

(2,4)

(3,1) (3,2) (3,3) (3,4)

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Fig. 8.10. Steps for constructing the signal flow graph GA(M × N) of an M × N CNN: (a) specify
the A template; (b) draw the signal flow graph GA associated with the A template. Note that for
each non-zero synaptic weight akl �= 0, k �= l, there correspond two branches in GA. (c) A 4× 4
(M = N = 4) CNN. (d) The reduced signal flow graph GA(4× 4) associated with the A template.

Observe that before one can certify that a particular CNN is cell-linking, Definition
4 requires that one must examine all possible combinations of initial and terminal node
pairs and in each case produce a similarly directed path. This would be a tedious task
unless a computer program is written to do the checking. Fortunately, the following
three cell-linking tests can be used to certify quickly, often by inspection, a large class
of N × N CNNs to be cell-linking.

Cell-linking test 1
An N × N CNN, where N is an odd integer, is cell-linking if and only if there is
a similarly directed path from the center node13 of the associated signal flow graph
GA(N × N) to every other node of GA(N × N).

Example 1
Consider the 3×3 CNN obtained by deleting row 4 and column 4 from the 4×4 CNN
in Fig. 8.10(c). The corresponding signal flow graph GA(3×3) is obtained by deleting

226 Back to basics

0 –2 0

0 1.5 0

3 0 –4

A =

(a)

(c) (d)

(b)

1,1 1,2 1,3 1,5
(1,1) (1,2) (1,3) (1,4)

(4,1) (4,2) (4,3) (4,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

2,1 2,2 2,3 2,5

3,1 3,2 3,3 3,5

4,1 4,2 4,3 4,5

1,4

2,4

3,4

4,4

(1,5)

(4,5)

(2,5)

(3,5)

Fig. 8.11. Example of a 4× 5 cell-linking CNN.

all nodes, and the branches attached to them, from the last row and the last column in
Fig. 8.10(d). In this case, node (2, 2) is the center node of the associated signal flow
graph GA(3 × 3). Since there is no similarly directed path going from node (2, 2) to
node (1, 3) in GA(3× 3), we conclude that this 3× 3 CNN is not cell-linking.

Example 2
Consider the 3× 3 CNN obtained by deleting row 4 and columns 4, 5 from the 4× 5
CNN in Fig. 8.11(c). The corresponding signal flow graph GA(3 × 3) is obtained by
deleting all the nodes, and the branches attached to them, from the last row and the
last two columns in Fig. 8.11(d). In this case, node (2, 2) is the center node of the
associated signal flow graph GA(3× 3). Observe that there is a similarly directed path
from node (2, 2) to every other node of GA(3× 3):

(2, 2) → (1, 1),

(2, 2) → (1, 3) → (2, 3) → (1, 2),

(2, 2) → (1, 3),

(2, 2) → (3, 2) → (2, 1),

(2, 2) → (1, 3) → (2, 3),

(2, 2) → (3, 2) → (2, 1) → (3, 1),

227 8.6 Positive and cell-linking A template

(2, 2) → (3, 2),

(2, 2) → (3, 2) → (2, 3) → (3, 3).

It follows from the cell-linking test 1 that this 3× 3 CNN is cell-linking.

Proof of cell-linking test 1:
The proof of this test follows from the proof of the following cell-linking test 2, since
the center cell is rotationally symmetric with respect to itself. �

Definition 5: Symmetric node-pair
If “a” is a node of the signal flow graph GA(M × N) let a∗ denote the corresponding
node which is 180◦ rotationally symmetric (about the center) with respect to a.

Lemma 1
There is a similarly directed path from node a to node b in GA if, and only if, there is
a similarly directed path from node b∗ to node a∗.

Proof:
We will prove this Lemma by mathematical induction on the length n of the path as
follows:

n = 1: if there is a branch from node a to b then there is a branch from b∗ to a∗ in
view of the space-invariance of the templates, as shown in Fig. 8.12.

center

b

a

b*

a*

Fig. 8.12. A branch from a to b implies that a branch exists from b∗ to a∗, and vice versa.

A directed path of length n = k + 1 from a to b contains a path of length k from a
to c and a branch from c to b. By the induction hypothesis, there is a path of length k
from c∗ to a∗ and a branch from b∗ to c∗. So there is a path of length k + 1 from b∗ to
a∗. See Fig. 8.13. �

Cell-linking test 2
An M × N CNN is cell-linking if and only if there is a pair of rotationally symmetric
nodes14 (k, l) and (k̄, l̄) such that there is a similarly directed path from node (k, l)

228 Back to basics

center

bc

a b* c*

a*

Fig. 8.13. A directed path from a to b implies that a directed path exists from b∗ to a∗, and vice
versa.

to every other node of GA(M × N), and a similarly directed path from node (k̄, l̄) to
every other node of GA(M × N).

Example 3
Consider the 4 × 4 CNN shown in Fig. 8.10(c) and its associated signal flow graph
GA(4× 4) in Fig. 8.10(d). Observe that for every pair of rotationally symmetric nodes
(k, l) and (k̄, l̄), of which there are many (e.g., (1, 1) and (4, 4), (3, 2) and (2, 3), (2, 1)

and (3, 4), etc.), in GA(4 × 4), we cannot find a pair (k, l) and (k̄, l̄) such that there
exists a similarly directed path from node (k, l) (resp., (k̄, l̄)) to every other node of
GA(4 × 4). It follows from cell-linking test 2 that the 4 × 4 CNN of Fig. 8.10 is not
cell-linking.

Example 4
Consider the 4 × 4 CNN obtained by deleting column 5 from the 4 × 5 CNN in
Fig. 8.11(c). The corresponding signal flow graph GA(4 × 4) is obtained by deleting
all nodes, and the branches attached to them, from the last column in Fig. 8.11(d).
Consider the rotationally symmetric pairs of nodes (1, 1) and (4, 4). Observe that there
is a similarly directed path from node (1, 1) to every other node of GA(4× 4):

(1, 1) → (2, 1),

(1, 1) → (2, 1) → (3, 1),

(1, 1) → (2, 1) → (3, 1) → (4, 1),

(1, 1) → (2, 1) → (1, 2),

(1, 1) → (2, 1) → (1, 2) → (2, 2),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (3, 2),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (3, 2) → (4, 2),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3),

229 8.6 Positive and cell-linking A template

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3) → (2, 3),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3) → (2, 3) → (3, 3),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3) → (2, 3) → (3, 3) → (4, 3),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3) → (2, 3) → (1, 4),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3) → (2, 3) → (1, 4) → (2, 4),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3) → (2, 3) → (1, 4) → (2, 4) → (3, 4),

(1, 1) → (2, 1) → (1, 2) → (2, 2) → (1, 3) → (2, 3)

→ (1, 4) → (2, 4) → (3, 4) → (4, 4).

A similarly directed path can also be found from node (4, 4) to every other node of
GA(4× 4). It follows from cell-linking test 2 that this 4× 4 CNN is cell-linking.

Proof of cell-linking test 2:
If the template is cell-linking, then by definition a and a∗ have similarly directed paths
to every other cell. Suppose both a and a∗ have similarly directed paths to every other
cell. Consider cell c different from a. Then cell c∗ is different from a∗. So there is a
path from a∗ to c∗. By Lemma 1, there is a path from c to a. Since there is a path from
a to everywhere else, c has a path to everywhere else too. �

Cell-linking test 3
Let C(M1 × N1) denote any CNN subset of an M × N CNN, where M1 < M and
N1 < N . Suppose N1 > 1 and M1 > 1. If C(M1 × N1) is cell-linking, then so is its
associated M × N CNN.

Example 5
Consider the 4 × 5 CNN shown in Fig. 8.11. Since Example 4 shows that the 4 × 4
CNN subset is cell-linking, it follows from the cell-linking test 3 that the associated
4× 5 CNN is also cell-linking.

Proof of cell-linking test 3:
The proof is trivial by noting that the signal flow graph of an M1 × N1 CNN can be
obtained from the signal flow graph of an M × N CNN (M ≥ M1, N ≥ N1) by
deleting some nodes and the branches connected to them. Thus a path in the smaller
graph is also a valid path in the bigger graph. �

We are now ready to state our next complete stability criterion.

Complete Stability Theorem 3
An M × N CNN with a (2r + 1) × (2r + 1) A template is completely stable, for
arbitrary B templates and arbitrary threshold z, if the following three conditions are

230 Back to basics

satisfied:

1 The CNN is cell-linking.

2 Any one of the four synaptic weight conditions given by Eqs (8.28)–(8.31) is met.

3 All the equilibrium points are isolated.

Corollary to Complete Stability Theorem 3
An N × N CNN with a 3 × 3 A template, an arbitrary B template, and an arbitrary
threshold z, is completely stable if the following three conditions are satisfied:

1 The CNN is cell-linking.

2 The A template possesses any one of the six synaptic weight patterns given in
Fig. 8.7.

3 All the equilibrium points are isolated.

Proof:
We will only sketch the proof of this corollary.15

Let us first prove the above corollary for the synaptic weight pattern 6. The state
equation is

ẋ = −x+ Â f (x)+ B̂u+ z

The Jacobian matrix of the system is

(−I + ÂJ)

where I is the identity matrix and

J =

f ′(x1)

. . .

f ′(xn)

The off-diagonal elements of Â are the off-center elements of the A template which
are nonnegative. Cell-linking implies the irreducibility16 of the matrix Â and hence
−I + ÂJ is also irreducible. Since the trajectories are bounded and the equilibrium
points are isolated, the conclusion follows from Theorem A.1 in the Appendix of this
chapter.

By using Theorem A.2 in the Appendix, the synaptic weight patterns 1–3 can
be transformed into the synaptic pattern 6. Since “stability” and “irreducibility” are
preserved under these transformations, the corollary is proved. �

Remarks
1 Complete Stability Theorem 3 can be used to prove Complete Stability Theorem 2

since for sign-symmetric templates the signal flow graph can be decomposed into
cell-linking components.

231 8.7 Stability of some sign-antisymmetric CNNs

2 The “connected component detector (CCD)” template

A = 1 2 −1

to be presented in Chapter 12 does not belong to any of the above classes.

To understand the elusiveness of this template, observe that the preceding stability
criteria only make use of the “sign” of the template entries, not the actual values.
In the following section, we will show that by changing the template entries of the
CCD CNN by an arbitrarily small amount we can make it unstable. Consequently, any
stability criterion capable of predicting the stability of the CCD template must include
conditions involving the synaptic weights of the A template.

8.7 Stability of some sign-antisymmetric CNNs

We have already given an intuitive reason on why the stability of the CCD CNN is very
difficult to prove. Numerical simulations have shown that the trajectories associated
with the CCD template always converge to an equilibrium point. But, if we change the
template values slightly, the system will oscillate.

In fact, computer simulations show that the parameters of the CCD template

A = 1 2 −1

lie on a stability boundary in the parameter space. In particular, the slightly perturbed
A template

A = 1.01 2 −1.01

is found to be unstable. This is illustrated in Examples 8.6(a) and 8.6(b).
These templates belong to the class of templates

A = a∗ 2 a , B = 0 0 0 , z = 0

When the parameters a and a∗ are varied, the corresponding CNN exhibit different be-
haviors. The a–a∗ parameter plane can be partitioned into eight pairs of symmetrically
spread regions which exhibit the same qualitative behavior.

We have shown earlier that if a and a∗ are both positive, or both negative, then the
CNN is stable (almost everywhere).

The following theorems can be proved:

Theorem 4
The CNNs in region 1 of the parameter plane in Fig. 8.14 do not possess any stable
equilibrium point and are therefore not stable.

232 Back to basics

EXAMPLE 8.6: (a) Stable output waveforms corresponding to template

A = 0.99 2 −0.99

in Region 4 with x1(0) = x2(0) = 0.1.
(b) Oscillating output waveforms corresponding to template

A = 1.01 2 −1.01

in Region 1 with x1(0) = x2(0) = 0.1.

CNN’s

(a)

(b)

233 8.7 Stability of some sign-antisymmetric CNNs

Fig. 8.14. Partitioning of the a–a∗ parameter plane into 16 regions. See text for the behaviors of the
CNNs in each region. The CNN at the point “*” is related to the CCD template A = 1 2 −1
by a 180◦ rotation and shares the same functionality as the CCD template except that all pixels
move in the other direction (see Chapter 12).

Theorem 5
The CNNs in regions 2 and 3 of the parameter plane in Fig. 8.14 are completely
stable and any binary one-dimensional pattern corresponds to the output of a stable
equilibrium point.

Theorem 6
The CNNs in regions 5 and 7 of the parameter plane in Fig. 8.14 are completely stable
and all trajectories converge to an equilibrium point with a homogeneous “white”
output for all cells

W W W W W W W W W W

where “W” denotes a “white” output, or a homogeneous “black” output for all cells

B B B B B B B B B B

where “B” denotes a “black” output.

234 Back to basics

Theorem 7
The CNNs in regions 6 and 8 of the parameter plane in Fig. 8.14 are completely stable
and all trajectories converge to an equilibrium point with an alternating “white and
black” output

W B W B W B W B W B

or an alternating “black and white” output

B W B W B W B W B W

Computer simulations show that all CNNs in region 4 behave like a CCD CNN.
Observe that the CCD template

A = 1 2 −1

lies at the common corner boundary point of unstable region 1, stable regions 5 and
6 (everything converges to one of two possible patterns), and stable region 4 (CCD
behavior).

Let us examine next the trajectories of the following two CNNs which lie in two
different regions in the parameter space in Fig. 8.14, but which are very close to each
other:

Observe that the CNN in Example 8.6(a) is stable while the other in Example 8.6(b)
is unstable.

Proof of Theorem 4:
Without loss of generality, let us assume a < −1 and a∗ > 1. Suppose there is an
equilibrium point such that |xi | ≥ 1 for all i . Assume x1 ≥ 1, then

ẋ1 = −x1 + 2y1 + ay2 = −x1 + 2+ ay2 = 0

Since 2− x1 ≤ 1, we have ay2 = −(2− x1) ≥ −1. If y2 = 1 then ay2 < −1, which
leads to a contradiction. Hence, y2 = −1, i.e., x2 ≤ −1

Similarly

ẋ2 = −x2 + 2y2 + a∗y1 + ay3 = −x2 − 2+ a∗ + ay3 = 0

−x2 − 2+ a∗ ≥ 1− 2+ 1 = 0 ⇒ ay3 ≤ 0

If y3 = −1 then ay3 > 1, which yields a contradiction. So, y3 = 1 and x3 ≥ 1.
Similarly, we find x4 ≤ −1, x5 ≥ 1, etc.

So, we have two possibilities:

xn−2 ≤ −1, xn−1 ≥ 1, xn ≤ −1

or

xn−2 ≥ 1, xn−1 ≤ −1, xn ≥ 1

235 8.7 Stability of some sign-antisymmetric CNNs

In the first case

ẋn = −xn + 2yn + a∗yn−1 = −xn − 2+ a∗ = 0

xn = a∗ − 2 > −1, which leads to a contradiction.

A similar proof applies for the second case.
So, the equilibrium point for this system with |xi | ≥ 1 for all i does not exist. Hence,

an equilibrium point for this system must satisfy |xi | < 1 for some i . It can be shown
that such an equilibrium point is unstable. �

Sketch of proof of Theorem 5
We will only show that any binary pattern is the output of some stable equilibrium
point. Consider a binary output {b1, b2, . . . , bn} where bi ∈ {−1, 1}. We need to show
that there exists an equilibrium point (x1, . . . , xn) such that f (xi) = bi . Stability
follows from the fact that the Jacobian matrix at this equilibrium point is

−1

· 0
·

0 ·
−1

Since bi ∈ {−1, 1}, this means that |xi | ≥ 1. In this case the state equation can be
written as

ẋ1 = −x1 + 2y1 + ay2 = −x1 + 2b1 + ab2 = 0

x1 = 2b1 + ab2

ẋi = −xi + 2yi + a∗yi−1 + ayi+1

= −xi + 2bi + a∗bi−1 + abi+1 = 0

xi = 2bi + a∗bi−1 + abi+1, for 2 ≤ i ≤ n − 1.

ẋn = −xn + 2yn + a∗yn−1

= −xn + 2bn + a∗bn−1 = 0

xn = 2bn + a∗bn−1

Now we need to show that f (xi) = bi .

If b1 = 1 then x1 = 2+ ab2. Since |a| < 1 ⇒ |ab2| < 1, it follows that x1 ≥ 1.

If b1 = −1 then x1 = −2+ ab2 ≤ −1. Hence, f (x1) = b1.

Consider next 2 ≤ i ≤ n − 1. If bi = 1 then xi = 2 + a∗bi−1 + abi+1. Since
|a| + |a∗| ≤ 1, we have |a∗bi−1 + abi+1| ≤ |a| + |a∗| ≤ 1, and hence xi ≥ 1.

236 Back to basics

Similarly, if bi = −1 then xi ≤ −1. Consequently f (xi) = bi . We can also show
f (xn) = bn so we have found such an equilibrium point which outputs the binary
pattern bi .

Proof of Theorem 6:
We will only prove the case in region 7 where a > 1. Suppose a > 1 and a∗ > 0.
Since the template is sign symmetric, we can apply the Complete Stability Theorem 2
to show that it is stable. It remains to show that there are only two stable equilibrium
points, whose output is either

W W W W W W W W W W

or

B B B B B B B B B B

We know that a stable equilibrium point must satisfy |xi | ≥ 1 for all i .

ẋ1 = −x1 + 2y1 + ay2 = 0

Since a > 1 it is easy to show that if y2 = 1 then x1 > 1. If y2 = −1 then x2 < −1,
so y1 = y2.

ẋ2 = −x2 + 2y2 + a∗y1 + ay3

= −x2 + (2+ a∗)y2 + ay3 = 0

Again it is easy to show that y2 = y3, so we must have y1 = y2 = y3 = y4 = · · · = yn .
It follows that

W W W W W W W W W W

and

B B B B B B B B B B

are the output of the only two stable equilibrium points. �

The proof of Theorem 7 is similar to that of Theorem 6.
The Venn diagram in Fig. 8.15 illustrates the relationship between the various

classes of templates we have discussed so far.

A Appendix to Chapter 8

The theorems in this section rely on the convergence results of Hirsch and the
equivalent transformation results of Chua and Roska17 and Chua and Wu.18

237 A Appendix

Fig. 8.15. Venn diagram illustrating the relationship between classes of templates. The number
corresponds to the regions in Fig. 8.14.

Theorem A.1:[1]19

Consider the system

ẋ = F(x)

Assume that for each x the Jacobian matrix DF is irreducible20 and its off-diagonal
elements are nonnegative. Suppose all trajectories remain bounded. Then, for all initial
conditions in a full measure set, the corresponding trajectories approach the set of
equilibrium points.

Theorem A.2:[2]18

Consider a CNN with time-invariant input and bias

ẋ = −x+ Â f (x)+ B̂u+ z (A8.1)

Let

A =

 a b c

d e f
g h i

Then there exist B̂1, B̂2, B̂3 and z1, z2, z3 such that each of the following three systems

ẋ = −x+ Â1 f (x)+ B̂1u+ z1

ẋ = −x+ Â2 f (x)+ B̂2u+ z2

ẋ = −x+ Â3 f (x)+ B̂3u+ z3

238 Back to basics

is topological conjugate to system (A8.1), where Â1, Â2, and Â3 are given by:

A1 =

 −a b −c
−d e − f
−g h −i

 A2 =

 −a −b −c

d e f
−g −h −i

 A3 =

 a −b c
−d e − f
g −h i

Roughly speaking, topological conjugacy means that the dynamics are qualitatively
the same. In particular, stability properties are preserved under topological conjugacy.

LaSalle’s invariance principle
Consider the autonomous system

ẋ = f(x), x ∈ Rn

Let V (x) be a continuously differentiable function from Rn into R. Let S be an
arbitrary set in Rn . Suppose V̇ = ∇V · f(x) does not change sign in S. Define

E = {x : V̇ (x) = 0, x ∈ S̄}
where S̄ denotes the closure of S. Let M be the largest invariant set in E . Then M is
a closed set, and for all solutions remaining in S for all t ≥ 0, x(t) approaches the
closed invariant set M , or “∞,” i.e., M∪{∞}, where “∪” denotes “set union” and {∞}
denotes the point at ∞.

9 The CNN Universal Machine (CNN-UM)

In Chapter 7, we have shown a couple of generic examples which can be solved by
a sequence of CNN templates. The hardwired CNN implementation using different
CNN components or different templates is, however, totally impractical. In this chapter
we show the architecture of the first spatio-temporal analogic array computer, the CNN
Universal Machine (CNN-UM).

In the examples mentioned above, and in many other examples including physio-
logically faithful models of various parts of the nervous system, especially vision, the
following two completely different types of operations are used to solve a complex
task:

• continuous-time, continuous valued spatio-temporal nonlinear array dynamics (2D
and 3D arrays);

• local and global logic.

Hence, analog (continuous) and logic operations are mixed and embedded in the
array computer. Therefore we call this type of array computing: analogic.

The CNN-UM architecture, shown subsequently:

• contains a minimum number of component types,

• provides stored programmable spatio-temporal array computing, and

• is universal in two senses:

as spatial logic, it is equivalent to a Turing Machine and as a local logic it may
implement any local Boolean function;

as a nonlinear dynamic operator, it can realize any local operator of fading
memory,1 i.e., practically all reasonable operators. Indeed, the CNN-UM is
a common computational paradigm for as diverse fields of spatio-temporal
computing as, for example, retinal models, reaction diffusion equations, math-
ematical morphology, etc.

Remarks:
1 The stored program, as a sequence of templates, could be considered as a genetic

code for the CNN-UM. The elementary genes are the templates; in case of r = 1 it

239

240 The CNN Universal Machine

is a 19 real-number code. This, in a way is a minimal representation of a complex
spatio-temporal dynamics.

2 In the nervous system, the consecutive templates are placed in space as subsequent
layers.

9.1 The architecture

9.1.1 The extended standard CNN universal cell

Actually, in Chapter 7, we have shown almost all of the various components we need
in the extended standard universal cell, shown schematically in Fig. 9.1.

We have two elements not yet introduced in Chapter 7.
The local analog output unit (LAOU) is a multiple-input single output analog

device. It has the same function for continuous signal values as the local logic unit
(LLU) for logic values – namely, it combines local (stored) analog values into a single
output. We may have used it for analog addition in Section 7.6, instead of using the
CNN cell for addition.

The local communication and control unit (LCCU) receives the programming
instructions, in each cell, from the global analogic programming unit (GAPU),
namely:

• the analog template values (A, B, and z),

• the logic function codes for the local logic unit, and

• the switch configuration of the cell specifying the signal paths and some settings in
the functional units (e.g., f (·), LAOU, GW(·)).
This means, at the same time, that we need registers (storage elements) in the GAPU

for these three types of information, namely:

• an analog program register (APR) for the CNN templates,

• a logic program register (LPR) for the LLU functions, and

• a switch configuration register (SCR).

In Fig. 9.1(b) the analog part of a circuit schematic of the cell is shown. We
are keeping in mind an electronic or a physiological model, although, except for a
capacitor, no implementation-dependent elements are shown. An electronic integrated
circuit (VLSI) implementation of these elements will be discussed in Chapter 15.

We assigned separate local analog memory places for the input (u), initial state
(x(0)), threshold (z), and a sequence of outputs (y(n)), however a single local analog
memory with a few places can also be used for all of these signals/data.

In Fig. 9.1(c) we show the logic part. We have introduced the elements already in
Chapter 7. The “global wire” (GW(·)) operator receives inputs from all cells, their cell
logic outputs are Yi j := Y (k)

i j , k: specified.

241 9.1 The architecture

LAOU:
local analog
output unit

LLU:
local logic

unit

LLM:
local
logic
memory

LCCU:
local communication

and control unit

LAM:
local
analog
memory

CNN
nucleus

with switches

Extended cell

(a) The main components in the extended cell

Sr(ij)

B f(.) A …..

LAM4-k

yij

AB

z = I

xij(0)

LAM3LAM2LAM1

uij

f (.)

standard
nonlinearity

programable template
controlled sources
(A or B) to Sr(ij)

Sr(ij)

AB

convergent sum of
template controlled
sources from Sr(ij)

possible signal
paths controlled

by switches

local analog
memory

program (e.g. template
values) from GAPU

(b) The analog part of a circuit schematic

LAOU
y*

ij

ana1 a2

Fig. 9.1. The extended standard CNN universal cell.

Remarks:

There are other, very useful possibilities related to a “global wire.” For example,
weighted analog outputs of each row may be calculated and added for the whole array.

242 The CNN Universal Machine

analog
part B/U

B/U

yij
*

l1 l2 lp

YLij

Yij

(1)
YLij

(2)
YLij

(p)…
LLM: local logic memory
(e.g. shift memory)

LLU: local logic unit

LLU

binary converter
(Bipolar analog to
Unipolar logic)

programmed local logic
unit program from GAPU
(global analogic
programming unit)

local logic memory

(c) logic part

Fig. 9.1. Continued.

9.1.2 The global analogic programming unit (GAPU)

This unit is the “conductor” of the whole analogic CNN universal machine it directs
all the extended standard CNN universal cells.

Fig. 9.2 shows that, in addition to the three registers we already discussed in Section
9.1.1 (i.e., the APR, LPR, SCR), the global analogic programming unit (GAPU) hosts
the main control of the array which is placed in the global analogic control unit
(GACU). Indeed, this is the (digital) machine code of the sequence of instructions
of the given analogic CNN program.

Why stored programmability is possible?
In digital computers, we tacitly assume and take for granted that, for any sequence of
instructions:

(i) all the transients decay within a specified clock cycle, and

(ii) all the signals remain within a prescribed range of dynamics (including dissipa-
tion, slope, etc.).

These conditions are not trivial in digital implementations either. Think about what
would happen if a 75 MHz Pentium processor had a clock speed of 100 MHz. Clearly

243 9.1 The architecture

GAPU
GCL

GW

GCL: global clock

GW: global wire

extended standard CNN
Universal cell

GAPU

APR: analog programming
instruction register

LPR: logic program
instruction register

SCR: switch configuration
register

GACU: global analogic
control unit

Fig. 9.2. The structure of the CNN universal machine.

it would not work because of violating the first condition above. It may even destroy it
due to violating the second condition.

A unique feature of the CNN dynamics and the CNN-UM architecture is that we
can assure conditions (i) and (ii) as well. It is much less trivial here than in the digital
case. Our main elementary instructions are the CNN templates and the local logic
operations. But the CNN templates may induce the most exotic dynamics. The global
clock (GCL) has a faster clock cycle for the logic part than for the analog part.

The global analogic control unit stores, in digital form, the sequence of instructions.
Each instruction contains the operation code (template or logic), the selection code for
the parameters of the operation (the code for the 19 values: A, B, z; or the code of the
local logic function), and the switch configuration. The parameters are stored in the
registers (APR, LPR, SCR).

244 The CNN Universal Machine

Fig. 9.3 shows the arrangement of the GAPU from this point of view.

TO ALL CELLS

APR LPR
1 0

GACU

SCR
1 0

Fig. 9.3. The organization of the GAPU.

9.2 A simple example in more detail

In this example we show a complete sequence of various forms of an analogic CNN
program as it is executed on a CNN Universal Machine. The outline and description
of such a program contains the following information.

• Global task.

• The flow diagram of the algorithm.

• The description of the algorithm in high level α language (analogic CNN language)
or in an assembler (the analogic machine code, AMC).

• The result of an α compiler in the form of an analogic machine code (AMC) as a
sequence of macro instructions and its binary form (optional).

The physical code generated by the CNN operating system and the controlling CNN
chip “platform” is not shown here.

This example, called Bars-Up, is interesting in itself. The global task is shown
in Fig. 9.4. We have to detect all objects which have bars pointing upwards, and a
continuous (to this bar) middle segment (many animals are responding to these objects
by firing some neurons in their infero-temporal cortex).

245 9.2 A simple example in more detail

The flow diagram of the analogic CNN algorithm is shown in Fig. 9.5 with the
intermediate results. The α language description (version 2.1) is shown in Table 9.1.
We will show later the other codes generated by the α compiler.

The global task is: detect those objects which have bars pointing upwards. A typical
input → output image pair is shown below. The original image is called BarsUpTest,
the output is RESULT.

Fig. 9.4. The global task.

Remarks:

Here, we have a 5 × 5 template. Its actual physical implementation is not considered
here. There are several ways to realize this “large neighborhood” CNN template, for
example, to decompose it into several 3× 3 templates.

Table 9.1. Visual feature detection (α-language, version 2.1).

FUNCTION BARS-UP;
xLoad (LLM1, BarsUpTest);

LLM3:= LLM1;
HOLLOW(LLM1,LLM1,LLM2,10,−1);
LOGXOR(LLM2,LLM3,LLM1,10,−1);
HORDIST(LLM1,LLM1,LLM2,10,−1);
RECALL(LLM2,LLM3,LLM1,10,−1);

xSAVE(RESULT,LLM1);
ENDFUNCT;

Here, in this function description, we have used two new α instructions:

xLOAD(local memory, file name) and

xSAVE(file name, local memory)

These are the input and output instructions from and to the digital environment.

246 The CNN Universal Machine

Original input image
 BarsUpTest

Result of HOLLOW template:

Logic XOR applied to the previous
two images

Result of HORDIST template:

Result of RECALL template:

input: original image;
initial state: previous image

0.5 –0.5 0.5

0.5 2 0.5

0.5 0.5 0.5

A =

A =

A = B =

B =

z =

z =

3

–1.5

2.1

2

z =

0 0 0 0 0
0 0 0 0 0
0.25 –0.25 0 0 0
0 0 0 0 0
0 0 0 0 0

0.5 0.5 0.5

0.5 4 0.5

0.5 0.5 0.5

0 0 0

0 4 0

0 0 0

B =

0 0 0

0 2 0

0 0 0

Fig. 9.5.

9.3 A very simple example on the circuit level

In the following example, we will explain the functional details of the CNN-UM
operation on the functional circuit level. Even though the example is very simple, it

247 9.3 A very simple example on the circuit level

contains the micro steps. At the same time, it is not a transistor level description. Some
transistor level implementation details will be described in Chapter 15.

The task
Detect the horizontal intensity changes on a black and white image (Fig. 9.6 shows an
example).

The steps of the solution
• detect those white pixels which have a black pixel on their direct right-hand side

(detection means to put the detected pixel to the black value, i.e. +1),

• detect those black pixels which have a white pixel on their direct right-hand side,

• apply a pixel by pixel logic OR function.

The flow diagram of the algorithm and the templates
The first step is performed by a template TEM1 and the second step by TEM2. The
two results are combined with a local logic OR operation.

The flow diagram with image fragments representing input, output, and intermediate
results is shown in Fig. 9.6.

Fig. 9.6. The flow diagram of the analogic CNN algorithm. Operation is illustrated on a simple test
image fragment.

The templates used in the CNN algorithm are as follows:

TEM1 (white to black): A =

 0 0 0

0 2 0
0 0 0

, B =

 0 0 0
−2 2 0
0 0 0

, I = −1.5

248 The CNN Universal Machine

TEM2 (black to white): A =

 0 0 0

0 2 0
0 0 0

, B =

 0 0 0

0 2 −2
0 0 0

, I = −1.5

The macro code of the algorithm
As an example of the analogic macro code (AMC) description, we show the description
of our very simple algorithm:

LOADTEM >FF80, APR1 ; loading template (TEM1)
LOADTEM >FF60, APR2 ; loading template (TEM2)
COPY A M2C, >FF40, LAM1 ; copy Analog image from

; Memory to Chip

RUNTEM APR1, LAM1, LAM1, LLM1 ; run TEM1 template operation
RUNTEM APR2, LAM1, LAM1, LLM2 ; run TEM2 template operation
RUNLOG OR, LLM1, LLM2, LLM3 ; run local logic operation OR

COPY L C2M, LLM3, >FF00 ; copy binary (Logic) image
; from Chip to Memory

END

The syntax of the AMC instructions are simple:

LOADTEM [source], [target];
COPY [type], [source], [target];
RUNTEM [template], [input], [init. state], [output];
RUNLOG [type], [op1], [op2], [result].

The memory address is hexadecimal, and the type of the image has a mnemonic
name.

The core of the algorithm, in addition to the image and template downloading and
the output image uploading, is represented by the three consecutive AMC instructions
denoted by italic comments. That is:

• run TEM1 (stored in APR1) with input and initial state defined by the original input
image (stored in LAM1) and place the result (after converting from bipolar analog
representation to unipolar binary one) in local logic memory LLM1

• run TEM2 (stored in APR2) with input and initial state defined by the original input
image (stored in LAM1) and place the result (after converting from bipolar analog
representation to unipolar binary one) in local logic memory LLM2

• apply the local logic unit (LLU) with a logic OR operation on the two intermediate
results stored in local logic memories LLM1 and LLM2 and place the result in
LLM3

These three macro instructions will be converted into a series of elementary machine
micro instructions, as shown later.

249 9.3 A very simple example on the circuit level

Fig. 9.7. A very simple extended cell with the six switches, sw0, sw1, sw2, sw3, sw4, sw5 and the
logic output (at the output of LLM3). It is supposed that the input image has been downloaded to
LAM1.

We will not go into the details of how the CNN operating system (COS) generates
the machine micro code to be put into the GACU of the CNN Universal Chip (and
how to fill the registers of the GAPU); however we want to show the functional
circuit-level operation of an extended CNN cell. We will show the operations gen-
erated by the machine-level micro instructions in detail. First, we show an extended
cell.

The functional circuit level schematics of an extended cell
An extended cell is shown in Fig. 9.7.

The local analog memory (LAM) has two places, LAM1 and LAM2. The analog
cell contains two auxiliary storage capacitors at the input and at the state, respectively.
The iinput and ioutput values represent the weighted sums (as currents) from the inputs
(B template) and from the outputs (A template) of the neighbor cells.

The local logic memory has three places, LLM1, LLM2, and LLM3. LLM1 and
LLM2 is implemented as a shift register, the input is stored on LLM1 and every new
input shifts the content by one place to the right (from LLM1 to LLM2, etc.). If we
want to store a LAM value in (LLM1, LLM2), an automatic bipolar analog to unipolar

250 The CNN Universal Machine

Table 9.2.

Switch configuration; sw0 sw1 sw2 sw3 sw4 sw5
and corresponding action

sconf0; load input and initial state from LAM1 off on on off off off
sconf1; start transient on off off off off off
sconf2; store the result in LAM2 on off off on off off
sconf3; store LAM2 in LLM off off off off on off
sconf4; activate the logic operation off off off off off on

and put the result in LLM3

binary converter is applied, shown after sw4. The local logic unit (LLU) in this cell is
an OR function. It has a direct LLM3 output buffer.

In this extended cell we have six switches: sw0, sw1, sw2, sw3, sw4, and sw5.
Depending on their positions, ON or OFF, they code different switch configurations.
The sequence of switch configurations is stored in the switch configuration register
(SCR). In Table 9.2, we show five switch configurations (sconf0, sconf1, sconf2,
sconf3, sconf4) which define five actions in each and all cells (fully parallel).

The content of the global analogic programming unit (GAPU)

First we specify the registers. Part of the content of the switch configuration register
(SCR) has already been defined. This will be enough for running the three consecutive
core macro instructions defined above.

The analog program instruction register (APR) contains two templates, i.e. the two
sets of the 19 numbers defined by TEM1 and TEM2, coded some appropriate way in
APR1 and APR2. The logic program instruction register (LPR) contains the codes for
the logic operations of the local logic unit (LLU). Here we need only the OR operation.
It is stored, and coded in an appropriate way, in LPR.

The sequence of the actions in the CNN Universal Machine with our simple
extended cell, and the registers defined right now, is coded in the Global Analogic
Control Unit (GACU). In our example, for the three macro instructions defined above,
for implementing the core of our algorithms (running the two consecutive templates
and the logic OR operation with the appropriate storage of the intermediate results),
the sequence of macro instructions of the GACU are as follows.

Here, we suppose that the templates, the local logic operator, and the input image
are loaded (TEM1 and TEM2 in APR1 and APR2, respectively, the OR operation in
LPR1, and the input image, pixel by pixel, in the LAM1 place of each extended cell).
Then the next sequence is applied:

251 9.3 A very simple example on the circuit level

Fig. 9.8. Sconf0; load input and initial state from LAM1.

Action code Comment

sconf0; load input and initial state from LAM1
select APR1; tune the template element values defined by TEM1
sconf1; start the analog spatio-temporal transient
sconf2; store the result in LAM2
sconf3; store LAM2 in LLM1

sconf0; load input and initial state from LAM1
select APR2; tune the template element values defined by TEM2
sconf1; start the analog spatio-temporal transient
sconf2; store the result in LAM2
sconf3; store LAM2 in LLM1 (the former LLM1 value will be

automatically shifted to LLM2)

select LPR1; tune to the local logic operation OR
sconf4; calculate the OR operation and store the result in LLM3

In the first two action groups, the first two actions are also parallel.
The five extended cell configurations corresponding to sconf0, sconf1, sconf2,

sconf3, and sconf4 are shown on Figs 9.8, 9.9, 9.10, 9.11, and 9.12, respectively. The
comments are referring to the last two action groups (activating TEM2 and OR). The
closed switches are shown in bold. Hence, it is easy to detect the active parts of the
circuit.

252 The CNN Universal Machine

Fig. 9.9. Sconf1; start transient.

Fig. 9.10. Sconf2; store the result in LAM2.

253 9.3 A very simple example on the circuit level

Fig. 9.11. Sconf3; store LAM2 in LLM.

Fig. 9.12. Sconf4; activate the logic operation and put the result in LLM3.

254 The CNN Universal Machine

9.4 Language, compiler, operating system

In the preceding chapters we have learned a few languages of different levels to
describe the analogic CNN algorithms. In Fig.9.13 we summarize the various steps
on how our high-level α instructions code will be translated into a running program on
a physical chip. It shows the main software levels of this process.

Algorithm: flow-diagram,
templates and subroutines

Alpha source code

Alpha Compiler

Script
macrocode
(AMC-like)

AMC (analogic macro code)
followed by interpreters

Simulator
running on a
Pentium chip

in a PC

CNN-UM chip

in CCPS

CNN-UM chip in

 Engine Board

Emulated
digital

CNN-UM

Fig. 9.13. The levels of the software and the core engines.

At the lowest level, the chips are embedded in their physical environment. The AMC
code will be translated into firmware and electrical signals. At the highest level, the α

compiler generates a macro (assembly) level code called analogic macro code, AMC.
The input of the α compiler is the description of the flow diagram of the algorithm
using the α language.

The AMC-like CNN Script Description (CSD) code is used for the software
simulations to control the different parameters of the simulation as well as to specify
the graphical demonstration of the results, as we have shown in Chapter 4. Here, the

255 9.4 Language, compiler, operating system

Table 9.3. Analogic macro code (AMC) description of BARS-UP.

COPY B2C L2L, >FFC0, 1 * board to chip copy (to LAM1)
LOADT >FFA0, 1 * load template1
LOADT >FF80, 2 * load template2
LOADT >FF60, 3 * load template3
RUNA 1, 1, 1, 2 * run template1
RUNTL CXOR, 2, 2, 2 * logic XOR
RUNA 2, 2, 2, 2 * run template2
RUNA 3, 2, 1, 2 * run template3
COPY C2C L2L, 2, >FFC0 * chip to board copy (from LAM2)

syntax:
COPY [type], [source], [destination]
LOADT [source], [destination]
RUNA [template], [input], [init. state], [output]
RUNL [type], [op1], [op2], [output]

All the parameters are chip or board memory addresses, except the [type] parameters.

physical processor is the Pentium microprocessor, controlled by the physical code
running under an operating system (like WINDOWS or UNIX). The simulator can
also be used directly from the α source code via the compiler and the AMC (with
default operating and graphical parameters).

As an example, for an AMC code in assembly format and in hexadecimal format,
these codes for the program example BARS-UP, described in Section 9.2, are shown
in Tables 9.3 and 9.4, respectively.

Consider now the CNN Universal Machine Chip, called CNN-UM chip. We need
the appropriate software levels and a hardware-software environment. This is the CNN
Chip Prototyping System (CCPS). In the CCPS we may also use the AMC code as the
input. In Fig. 9.14 we show the flow diagram of the whole process down to the physical
chip.

In this chip prototyping system the CNN-UM chip is hosted in a separate platform,
connected to a PC. A special purpose add-in board, the Chip Prototyping System Board
(CPS board) is serving as the hardware environment for the CNN Operating System
(COS).

To make the whole CNN computer self-contained we need a CNN Universal Chip
set2 and to implement it on an Engine Board.

In single-board or single-chip solutions the CPS board and its software are inte-
grated into the CNN-UM chip or board.

We stop here, not to explain more details. Our aim is to show that when writing
analogic CNN programs in high-level languages (like the α language), the rest of
the familiar computing infrastructure is ready to execute these programs in different

256 The CNN Universal Machine

Table 9.4. Compiled analogic macro code (in hexadecimal format).

hexa binary code

12h 0000 0000 0001 0010 COPY
8h 0000 0000 0000 1000 B2C L2L
FFC0h 1111 1111 1100 0000 >FFC0
1h 0000 0000 0000 0001 1

62h 0000 0000 0001 0010 LOADT
FFA0h 1111 1111 1010 0000 >FFA0
1h 0000 0000 0000 0001 1

62h 0000 0000 0001 0010 LOADT
FF80h 1111 1111 1010 0000 >FF80
2h 0000 0000 0000 0010 2

62h 0000 0000 0001 0010 LOADT
FF60h 1111 1111 1010 0000 >FF60
3h 0000 0000 0000 0011 3

61h 0000 0000 0001 0001 RUNA
1h 0000 0000 0000 0001 1
1h 0000 0000 0000 0001 1
1h 0000 0000 0000 0001 1
2h 0000 0000 0000 0010 2

61h 0000 0000 0001 0001 RUNL
5h 0000 0000 0000 0101 5
5h 0000 0000 0000 0101 5
5h 0000 0000 0000 0101 5
2h 0000 0000 0000 0010 2

formats and physical implementations. As to the latter, Chapter 15 will describe the
main types and parameters of the physical implementations.

257 9.4 Language, compiler, operating system

display

template library

electrical
output data

signals

electrical control,
template, and data

signals

ISA bus
or PCI

 CNN
 Prototyping
 System board
 (CPS)

CNN Platform bus

CNN
Platform

optical input

 PC

ALPHA description
of an algorithm

ALPHA
compiler

interfaces and
executable

 program code for PC

image library
video

External
CNN “Operating System”

(COS) running on the
TMS320C25

TMS3206X

level shifters, sample/hold, multiplexers, ...etc.

CNN chip

{ input of the
CPS board}output of the

CPS board

Image data and
Decision code

Analogic macro
code, image and
template data

Fig. 9.14. The architecture of the CNN Chip Prototyping System (CCPS).

10 Template design tools

During the first years after the introduction of the CNN paradigm, many templates
were designed by cut-and-try techniques, playing with a few nonzero template
elements, and using a simulator to calculate the CNN dynamics. After a while, some
systematic design methodologies emerged. Today several methods are available for
generating CNN templates or algorithms, even for complex tasks.

10.1 Various design techniques

The main classes of design techniques are as follows:

• systematic methods for binary I/O function via Boolean description and decompo-
sition techniques using uncoupled CNN (see Chapters 5, 6, 7)

• systematic methods for binary I/O function using coupled CNN (see also Chapter
12)

• global optimization techniques as parameter optimization

• genetic algorithms for designing the template elements/synaptic weights1

• matching with the spatially discrete representations of partial differential equations
(PDEs)

• matching with some neuromorphic models of a living organism, typically the
nervous system, in particular the visual pathway of vertebrates (see Chapter 16)

• fuzzy design techniques2

• neural network techniques3

• matching with existing 2D or 3D algorithms, including techniques in signal process-
ing, telecommunications, adaptive control, nonlinear spatio-temporal dynamical
systems, etc.

We have to emphasize, however, that, in spite of the many design techniques, new
methods are emerging day by day based on the intuition and skill of the designers. A
good example for this is a recent method4 using active waves applied for a while and
combining/colliding with other waves, as well as a method in which a wave metric is
used5 for complex pattern recognition tasks.

258

259 10.1 Various design techniques

Interactive editing and generating
binary I/O and template data

Displaying
truth table

Template
a00 ≥ 1

Logic function

Linear separability
checkWindow

(code book)

Minterm/maxterm
template
sequence

Determining
quasi minimal

template sequence

binary data

template data

Full

Minimal

?
No

Yes

uncoupled?

separable non-separable

optimal uncoupled
templates

Calculating
optimal uncoupled

template

Fig. 10.1. The outline of the binary I/O CNN template or template sequence design.

In this chapter, referring to the results of Chapters 5, 6, and 7, we will demonstrate
a systematic method for binary I/O functions. The outline of this design process is as
follows (Fig. 10.1). This process is supported by the template design and optimization
program TEMMASTER (Appendix C).

Logic truth tables are given by a {0, 1} code (white and black), however, we can
code binary data as TRUE(1), FALSE(−1) and DON’T CARE(0) as well.

When designing CNN templates to implement a given logic function Fk(·), we are
typically using uncoupled templates with the following description and coding:

A =
0 0 0
0 a00 ≥ 1 0
0 0 0

Bk =
w−1−1 w−10 w−11

w0−1 w00 w01

w1−1 w10 w11

z (10.1)

260 Template design tools

In the design process we start with logic Boolean functions of nine variables
Fk(u1, u2, . . . , u9), supposing a zero valued initial state, keeping in mind the con-
vention
 u9 u8 u7

u6 u5 u4

u3 u2 u1

or with the cloning template (A, B, z) or the truth table, especially in its window (code
book) form. The outcome of the design is an uncoupled cloning template with the
parameters

a00, b1, b2, b3, . . . , b9, z

keeping in mind the convention

Bk =
b9 b8 b7

b6 b5 b4

b3 b2 b1

or the sequence of templates combined via some local logic functions implemented as
a program on the CNN Universal Machine.

10.2 Binary representation, linear separability, and simple decomposition

The Boolean representation of a local logic function of nine variables can be given in
terms of the nine Boolean input variables F(u1, u2, . . . , u9).

Given this function as a sum of products, we can directly apply a check to determine
whether this function is linearly separable or not. If not, we have to decompose it into
a sequence of linearly separable templates (see Section 10.3). The simplest method
to generate this sequence, though it does not lead generally to the shortest sequence
of templates, is via the window truth table. In this case, each window represents
a minterm (or maxterm) related directly to an uncoupled template with the coding
convention introduced in Chapter 5. For example, window #3 in Example 10.1 means
a minterm u2u4ū5u6u8 (x means DON’T CARE).

This term is implemented by a CNN with x(0) = 0 and the template parameters
are: a00 = 1, z = −4 and b1, b2, . . . , b9 are directly coded by window #3.

Hence, window #3

u2 u4 ū5 u6 u8

261 10.2 Binary representation

generates the input values

b1 = 0, b2 = 1, b3 = 0, b4 = 1, b5 = −1, b6 = 1, b7 = 0, b8 = 1, b9 = 0

that is, the variables not appearing in the minterm (the DON’T CAREs) will get a value
of 0 at the corresponding places.

Cascading the minterm Boolean functions Fk(·) represented by the appropriate
templates by AND-ing the consecutive results, the Boolean function F(·) will be
calculated.

EXAMPLE 10.1:

x x

x x

3

Suppose we have a binary image with one-pixel-wide lines. Detect those pixels
where the line crossings are of 45◦ or 90◦. Two examples are shown in Example 10.2
with few inputs and detected points. Indeed, we started with a blank Window Truth
Table (all-white output) and “clicked” those windows black which contain the desired
configurations to be detected. These are the following six places (simplest cases):

: 124, 186, 214, 313, 341, 403

The selected windows are shown in Examples 10.3–10.6.

To each configuration, we code a cloning template. For example, for the last one
(#403)

a00 = 1 B =
1 1 −1
−1 1 −1
−1 1 1

z = −8

By AND-ing the six templates all the desired crossings will be detected.

262 Template design tools

EXAMPLE 10.2: Input images (a) and the corresponding detected crossing places (b).

output) and "clicked" those windows black which

(a) (b)

EXAMPLE 10.3:

263 10.2 Binary representation

EXAMPLE 10.4:

EXAMPLE 10.5:

264 Template design tools

EXAMPLE 10.6:

10.3 Template optimization

Once we get a template like the one just determined we can optimize it for robustness.
Using the method described in Section 6.7, we can optimize a separable binary
template to get a separating hyperplane, which is distanced from the two values
of output (black and white) equally. The template design and optimization program
TEMMASTER (Appendix C) contains this function as well.

In the next two cases, TEMPLATE1 and TEMPLATE2, we show the starting values
and the optimized values. In the case of TEMPLATE1, which was designed by a cut-
and-try method, indeed, it turned out that the robustness of the original template was
zero (the hyperplane just hit one output vertex).

TEMPLATE 1: EdgeDetector
Initial template

a00 = 1 B =
−0.25 −0.25 −0.25
−0.25 2 −0.25
−0.25 −0.25 −0.25

z = −1.5

265 10.4 Template decomposition techniques

Optimized template

a00 = 1 B =
−1 −1 −1
−1 8 −1
−1 −1 −1

z = −1

TEMPLATE 2: LocalConcavePlaceDetector
Initial template

a00 = 1 B =
0 0 0
1 2 1

0.5 −1 0.5
z = −5.5

Optimized template

a00 = 1 B =
0 0 0
2 2 2
1 −2 −1

z = −7

This template optimization is perfect if the CNN implementation is ideal. In a real
situation with a given VLSI implementation, more complex optimization procedures
are to be applied.

10.4 Template decomposition techniques

If the local Boolean function is not linearly separable then we can apply different
decomposition techniques. Many of these techniques are based on some assumptions
on the template values and the logic functions used for combining the consecutive
templates. A method described in Section 7.6 and another “compact” decomposition
method6 are used in the TEMMASTER program (Appendix C). The determination
of the minimal number of templates for any given F(·) is a computationally hard
problem. For the example given in Section 10.2, the six templates of the minterm
decomposition could not be reduced. At the same time, for the game-of-life problem
both methods yielded a decomposition of two templates only. The sequences of the six
templates of our example in Section 10.2 are as follows.
0.0

TEMPLATE 1

A =
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0

B =
−1.0 −1.0 1.0
1.0 1.0 1.0
1.0 −1.0 −1.0

z = −8

266 Template design tools

XOR: TEMPLATE 2

A =
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0

B =
−1.0 1.0 −1.0
1.0 1.0 1.0
1.0 −1.0 −1.0

z = −8

XOR: TEMPLATE 3

A =
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0

B =
−1.0 1.0 1.0
−1.0 1.0 −1.0
1.0 1.0 −1.0

z = −8

XOR: TEMPLATE 4

A =
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0

B =
1.0 −1.0 −1.0
1.0 1.0 1.0
−1.0 −1.0 1.0

z = −8

XOR: TEMPLATE 5

A =
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0

B =
1.0 −1.0 1.0
−1.0 1.0 −1.0
1.0 −1.0 1.0

z = −8

XOR: TEMPLATE 6

A =
0.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 0.0

B =
1.0 1.0 −1.0
−1.0 1.0 −1.0
−1.0 −1.0 −1.0

z = −8

11 CNNs for linear image processing

11.1 Linear image processing with B templates is equivalent to spatial
convolution with FIR kernels

Consider the class of feed-forward (zero-feedback) CNNs C(0, B, z) shown in Fig. 2.22
with zero threshold (z = 0).

The state equation of the CNN corresponding to a (2σ + 1)× (2σ + 1) B template
is given by

ẋi j = −xi j +
σ∑

k=−σ

σ∑
l=−σ

bklui+k, j+l

= −xi j +
−σ∑

k=σ

−σ∑
l=σ

b−k,−lui−k, j−l

= −xi j +
−σ∑

k=σ

−σ∑
l=σ

hk,lui−k, j−l

= −xi j +
−σ∑

k=σ

−σ∑
l=σ

hk,lui−k, j−l (11.1)

where

hkl
�= b−k,−l

k, l = −σ,−(σ − 1), . . . ,−1, 0, 1, . . . , (σ − 1), σ (11.2)

If we let H denote a template whose entries are hkl , then the H template is simply
related to the B template by a 180◦ rotation about the central element b00. For example,
the 3× 3 (σ = 1) B and H templates are as follows

B =
b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

H =
b1,1 b1,0 b1,−1

b0,1 b0,0 b0,−1

b−1,1 b−1,0 b−1,−1

Observe that

B = H ⇔ B is symmetric

267

268 CNNs for linear image processing

The double summation series on the right-hand side of Eq. (11.1) is a standard
numerical operation in signal processing called the convolution operation between the
impulse response kernel hkl , or the impulse response matrix H, and the input image
Ui j , and denoted by an asterisk “�”; namely:

H � Ui j
�=

σ∑
k=−σ

σ∑
l=−σ

hk,lui−k, j−l (11.3)

Observe that for a given B template, H is fixed but Ui j in general changes since it
corresponds to the part of the input image exposed by a σ × σ “mask” whose “center”
coincides with the pixel location C(i j). Note that H � Ui j is a scalar even though
both H and Ui j are σ × σ matrices. Observe also that we can replace “σ” by “∞”
in Eq. (11.3), which we will occasionally do to simplify our discussion, by redefining
H to be an infinite-dimensional matrix with zero entries except those associated with
the B template. In terms of the convolution notation (11.3), Eq. (11.1) assumes the
compact form:

ẋi j = −xi j +H � Ui j (11.4)

Theorem 1: Feedforward CNN convolution property
Every feedforward CNN C(0, B, z) is completely stable. In particular, for any initial
condition xi j (0), the state xi j (t) of state equation (11.4) converges to a constant equal
to the convolution between H and the static input image Ui j .

Proof:
Since Eq. (11.4) is a first-order linear differential equation, its solution is given by

xi j (t) = xi j (0)e−t + (H � Ui j)(1− e−t), t ≥ 0 (11.5)

As t →∞, we have

xi j (∞)
�= lim

t→∞ xi j (t) = H � Ui j (11.6)

�

Corollary:
The state xi j (∞) of every feedforward (A = 0) CNN with a symmetric B template
and zero threshold is simply the convolution of the B template with any static input
image.

The preceding theorem and corollary pertain to the state xi j (t) and not the output
yi j (t) = f (xi j (t)), where f (·) is the standard nonlinear function shown in Fig. 2.4.
In applications where “convolution” is the desired output, there are two options. For

269 11.2 Spatial frequency characterization

CNN chips, where only the output yi j (t) is accessible, one can scale the B template so
that

σ∑
k=−σ

σ∑
l=−σ

|bk,l | < 1 (11.7)

Since by our standing assumption, |ui j | ≤ 1, it follows from Eqs (11.1) and (11.7)
that |xi j (∞)| < 1. Consequently,

yi j (∞) = xi j (∞) = H � Ui j

The second option is to add one extra output pin in the CNN chips so that, by an
internal multiplexing circuitry, the state xi j (t) of every cell is also accessible to the
outside world.

It is important to observe that in feedforward CNNs, the dynamics is completely
linear, regardless of the magnitude of the state xi j (t). The nonlinearity comes into
play only in the readout map yi j = f (xi j) given by the standard piecewise-linear
function f (·).

Finally, observe that a feedforward CNN C(0, B, z) is a degenerate special case of
the uncoupled class, which we have completely characterized in Fig. 6.8. In particular,
this class corresponds to the origin in the Primary CNN Mosaic (Fig. 6.8) of Chapter 6
where a00 = 0. Observe that the output of such CNNs is given by

yi j (∞) = wi j

1− a00
= wi j

where |wi j | = |∑σ
k=−σ

∑σ
l=−σ bk,luk,l | ≤ 1 in view of Eq. (11.7).

11.2 Spatial frequency characterization

Since spatial convolution is a linear equation, much insight and many analytical ad-
vantages can be gained by examining its corresponding frequency domain properties.
Since the observable physical variables xi j (t), yi j (t), and ui j (t) as well as the synaptic
weights ai j and bi j , i = 1, 2, . . . , M and j = 1, 2, . . . , N , in a CNN are defined only
at discrete points in space, at each instant “t” in time, we will use the notation

fn1,n2(t) ↔ ft (n1, n2)

xn1,n2(t) ↔ xt (n1, n2)

yn1,n2(t) ↔ yt (n1, n2)

un1,n2(t) ↔ ut (n1, n2)

an1 ,n2 ↔ a(n1, n2)

bn1,n2 ↔ b(n1, n2) (11.8)

270 CNNs for linear image processing

to denote discrete spatial variables or parameters, where “t” has been relegated to
the subsidiary role of a subscript in order to emphasize the independent “discrete
spatial domain” variables n1 and n2. Observe that “t” is deleted from the subscript
of a(n1, n2) and b(n1, n2) in Eq. (11.8) because they vary only with space, but not
with time. Corresponding to each “discrete” spatial dependent variable or parameter
ft (n1, n2), let ω1 and ω2 denote the independent “continuous” frequency domain vari-
ables and choose the corresponding capital letter with a tilde superscript F̃t (ω1, ω2) to
denote the Fourier transform of ft (n1, n2); namely

discrete-spatial domain continuous frequency domain
ft (n1, n2) ↔ F̃t (ω1, ω2)

(11.9)

Let us define the relationship between these variables at any fixed time t in the two
domains as follows

F̃(ω1, ω2) =
∞∑

n1=−∞

∞∑
n2=−∞

ft (n1, n1)e
− jω1n1 · e− jω2n2 (11.10)

ft (n1, n2) = 1

(2π)2

∫ π

−π

∫ π

−π

F̃t (ω1, ω2)e
jω1n1 · e jω2n2dω1dω2 (11.11)

We will henceforth refer to Eqs (11.10)–(11.11) as the two-dimensional discrete
Spatial Fourier Transform (DSFT) between ft (n1, n2) and F̃t (ω1, ω2).

To verify that the above definitions are consistent, let us substitute Eq. (11.10) for
F̃t (ω1, ω2) in Eq. (11.11):1

1

(2π)2

∫ π

−π

∫ π

−π

∞∑
n1=−∞

∞∑
n2=−∞

ft (n1, n2)e
− jω1n1 · e− jω2n2 · e jω1n1 · e jω1n2dω1dω2

= ft (n1, n2)

[
1

(2π)2

∫ π

−π

∫ π

−π

dω1dω2

]
= ft (n1, n2) (11.12)

which is identical to the left-hand side of Eq. (11.11).
Observe that the independent spatial variables “n1” and “n2” in the double summa-

tion series in Eq. (11.1) range from −∞ to ∞ which corresponds to the limiting case
of an infinite CNN array where M →∞ and N →∞. To avoid clutter, the following
derivations will be based on an infinite CNN array. In most cases of practical interest,
the results to be derived in this section are also applicable to the practical situation
where the CNN array has only a finite number of cells, namely M × N . In such cases,
we simply set ft (n1, n2) = 0 for all |n1| > M and |n2| > N .

Observe next that the integration limits in Eq. (11.11) range only from −π to π

because F̃t (ω1, ω2) is a 2π -periodic function of ω1 and ω2; namely

F̃t (ω1 + 2πp, ω2 + 2πq)

=
∞∑

n1=−∞

∞∑
n2=−∞

f1(n1, n2)e
− j (ω1+2πp)n1 · e− j (ω2+2πq)n2

271 11.2 Spatial frequency characterization

=
∞∑

n1=−∞

∞∑
n2=−∞

f1(n1, n2)e
− jω1n1 · e− jω2n2 · e j (2πpn1+2πqn2)

= F̃t (ω1, ω2), for any integers p and q.

Observe also that if ft (n1, n2) is a symmetric function of n1 and n2,, i.e.,

ft (n1, n2) = ft (−n1,−n2) (11.13)

then its Fourier transform F̃t (ω1, ω2) is a real function of ω1 and ω2. Indeed,
Eqs (11.11) and (11.12) imply

F̃t (ω1, ω2)
∗ = F̃t (ω1, ω2) (11.14)

where the superscript “∗” denotes complex conjugation. Equation (11.14) is usually
referred to as the zero phase shift property of the Fourier transform even though a
180◦ phase shift occurs whenever F̃t (ω1, ω2) < 0.

Observe next that Eqs (11.10) and (11.11) imply the following two useful properties:
dc (average) value property

F̃t (0, 0) =
∞∑

n1=−∞

∞∑
n2=−∞

ft (n1, n2) (11.15)

offset level property

ft (0, 0) = 1

(2π)2

∫ π

−π

∫ π

−π

F̃t (ω1, ω2)dω1dω2 (11.16)

Finally, we state without proof the following standard result

ft (n1, n2) � gt (n1, n2) ↔ F̃t (ω1, ω2)G̃t (ω1, ω2) (11.17)

Stated in words, Eq. (11.17) asserts

Convolution in discrete spatial ↔ Multiplication in continuous
domain frequency domain

Applying the DSFT to both sides of Eq. (11.4) and making use of Eq. (11.17), we
obtain

dx̃t (ω1, ω2)

dt
= −X̃t (ω1, ω2)+ H̃(ω1, ω2)Ũ(ω1, ω2) (11.18)

Eq. (11.18) is a scalar first-order linear ordinary differential equation in the
transformed state variable X̃t (ω1, ω2), and has the solution

X̃t (ω1, ω2) = X̃0(ω1, ω2)e
−t + H̃(ω1, ω2)Ũ(ω1, ω2)[1− e−t], t ≥ 0 (11.19)

As t →∞, we have

X̃∞(ω1, ω2)
�= lim

t→∞ X̃t (ω1, ω2) = H̃(ω1, ω2)Ũ(ω1, ω2) (11.20)

272 CNNs for linear image processing

where

H̃(ω1, ω2) = B̃(ω1, ω2) (11.21)

is the DSFT of the space-varying (but time-invariant) B template of the feedforward
CNN, which we assume henceforth to be symmetric.

It is important to remember that unlike in digital signal processing (DSP) where
the DSFT is calculated using a digital processor, the DSFT X̃∞(ω1, ω2) in a CNN
evolves from the initial DSFT X̃0(ω1, ω2) at t = 0 until it converges to X̃∞(ω1, ω2)

after the settling time of the CNN, which is typically less than 100 nanosecond in a
CNN chip. However, it must be remembered that in a CNN, the output is a spatial
pattern X̃∞(n1, n2), and not its DSFT X̃∞(ω1, ω2). Hence, the results in this section
are mainly for conceptual purposes to help the reader understand the image processing
capabilities of a CNN, and to allow the CNN image-processing designers to exploit the
large body of design tools and techniques from the digital signal processing arsenal.
Indeed, we will see in the next section that every “convolution” or “spatial filtering”
DSP operation can be implemented in a CNN at a much higher speed which depends
only on the settling time of the CNN, and does not depend on the array size.

In general, a speed advantage of 1000 times over conventional DSP image pro-
cessing techniques can be realized by CNN chips using current one-micron CMOS
technology. The extreme high speed, low power, and small size of the CNN makes it
an attractive if not indispensable tool in many real-time signal and video-processing
applications.

11.3 A primer on properties and applications of discrete-space Fourier
transform (DSFT)

For ease of reference, the following table lists some of the properties of the discrete-
space Fourier transform derived in the preceding section, as well as others whose
proofs can be easily derived from Eqs (11.10)–(11.11). Reader already familiar with
two-dimensional digital signal processing techniques and principles may skip this
section.

11.4 Linear image processing with A and B templates is equivalent to
spatial convolution with IIR kernels

It is a well-known fact in digital image processing that the more stringent a filter
specification (e.g., very steep filter characteristics) is, the larger must be the size of
the impulse response kernel, or, in the case of a feedforward CNN implementation,
the larger must be the size of the B template. In particular, many complex filter

273 11.4 Linear image processing with A and B templates

specifications can only be realized by infinite impulse response (IIR) kernels. A
corresponding feedforward CNN realization in this case would require a B template of
infinite extent, i.e., M →∞, N →∞. Our objective in this section is to show that if
we use the general CNN (with non-zero A and B templates) shown in Fig. 2.21, when
z = 0, then even very stringent filter characteristics can be realized with relatively
“small” A and B templates. Since all cells in the CNNs considered in this chapter
for linear image processing are assumed to operate in the central linear region of the
piecewise-linear characteristic yi j = f (xi j), we can substitute yi j = xi j in Eq. (2.36)
of Chapter 2 and write the state equation associated with the CNN C(A, B, 0) with a
σ × σ (σ = 2r + 1) A and B templates, and a zero threshold (z = 0), as follows

Ẋi j = −xi j +
σ∑

k=−σ

σ∑
l=−σ

akl xi+k j+l +
σ∑

k=−σ

σ∑
l=−σ

bklui+k j+l (11.22)

Using the discrete-space notation of Eq. (11.8), we can recast Eq. (11.22) into the
following standard convolution form
d

dt
xt (n1, n2) = α(n1, n2) � xt (n1, n2)+ β(n1, n2) � ut (n1, n2) (11.23)

where

α(n1, n2) = A00 − 1, if (n1, n2) = (0, 0)

= A−n1,−n2, if |n1| ≤ σ, |n2| ≤ σ

= 0, otherwise

β(n1, n2) = B−n1,−n2, if |n1| ≤ σ, |n2| ≤ σ

= 0, otherwise

(11.24)

Observe that we have deleted the subscript “t” from α(n1, n2) and β(n1, n2) because
they do not depend on time.

Under the standing assumption throughout this chapter that both the A and B
templates are symmetric, the parameter α(n1, n2) in Eq. (11.23) is identical to the
element An1,n2 of the A template for all (n1, n2) except the central element A00 where
we must subtract “1” from it in order to account for the first term −xi j in Eq. (11.22).
Similarly, the parameter β(n1, n2) in Eq. (11.23) is identical to the element Bn1,n2 of
the B template for all (n1, n2), including n1 = n2 = 0.

Observe that unlike the state equation (11.1) in the feedforward case, which consists
of a system of M × N uncoupled linear ordinary differential equations, Eq. (11.22)
consists of a system of M×N coupled linear ordinary differential equations. Although
the solutions of Eq. (11.22) can be written explicitly, it is virtually impossible to
analyze the effect of the neighboring cells on the dynamics of any particular cell. This
difficulty fortunately can be overcome by taking the discrete-space Fourier transform
(DSFT) of Eq. (11.23) to obtain the following equivalent system of uncoupled
first-order linear ordinary differential equations in the frequency domain
d

dt
X̃t (ω1, ω2) = Ã(ω1, ω2)X̃t (ω1, ω2)+ B̃(ω1, ω2)Ũt (ω1, ω2) (11.25)

274 CNNs for linear image processing

Since Eq. (11.25) applies for each ω1 ∈ (−∞,∞) and ω2 ∈ (−∞,∞), we have in
principle an infinite number of linear ordinary differential equations to solve. However,
unlike the spatial domain differential Eq. (11.22), the frequency domain differential
equations in Eq. (11.25) are not coupled to each other! Moreover, X̃t (ω1, ω2),
Ã(ω1, ω2), B̃(ω1, ω2), and Ũt (ω1, ω2) are doubly periodic in ω1 and ω2 with a period
equal to 2π . Consequently, we need only analyze the solution of X̃t (ω1, ω2) over the
region −π ≤ ω1 ≤ π and −π ≤ ω2 ≤ π .

Assuming a static input image so that Ũt (ω1, ω2) = Ũ(ω1, ω2) does not depend on
time, the solution of the scalar linear differential Eq. (11.25) in the frequency domain
is given simply by

When Ã(ω1, ω2) �= 0

X̃t (ω1, ω2) = eÃ(ω1,ω2)t X̃0(ω1, ω2)

+ 1

Ã(ω1, ω2)

[
eÃ(ω1,ω2)t − 1

]
· B̃(ω1, ω2)Ũ(ω1, ω2) (11.26)

When Ã(ω1, ω2) = 0

X̃t (ω1, ω2) = X̃0(ω1, ω2)+ tB̃(ω1, ω2)Ũ(ω1, ω2) (11.27)

where X̃0(ω1, ω2) is the initial state in the frequency domain at t = 0.
Consider now the important special case where

Ã(ω1, ω2) < 0 (11.28)

Under this condition,

eÃ(ω1,ω2)t → 0

after a small settling time (less than 100 nanoseconds when implemented in one-
micron CMOS technology), so that

X̃∞(ω1, ω2)
�= lim

t→∞ X̃t (ω1, ω2) = −
[

B̃(ω1, ω2)

Ã(ω1, ω2)

]
Ũ(ω1, ω2) (11.29)

Defining the transfer function

H̃(ω1, ω2) = − B̃(ω1, ω2)

Ã(ω1, ω2)
(11.30)

we obtain

X̃∞(ω1, ω2) = H̃(ω1, ω2)Ũ(ω1, ω2) (11.31)

Observe that even though Eq. (11.31) is identical to Eq. (11.20) in the feedfor-
ward case, the transfer function H̃(ω1, ω2) in Eq. (11.30) is different from that of
Eq. (11.21). Here, H̃(ω1, ω2) is a ratio of two frequency domain functions. This

275 11.4 Linear image processing with A and B templates

gives us much more flexibility to “shape” the characteristics of H̃(ω1, ω2) using only
relatively “small” A and B templates. In contrast, the inverse transform of H̃(ω1, ω2),
namely, the two-dimensional impulse response kernel

h(n1, n2) ↔ H̃(ω1, ω2) (11.32)

is in general not zero for large n1 and n2. In other words, the two-dimensional spatial
domain kernel h(n1, n2) associated with the two-dimensional frequency domain
transfer function H̃(ω1, ω2) is in general infinite in extent and corresponds to that
of an infinite impulse response (IIR) two-dimensional filter.

12 Coupled CNN with linear synaptic weights

In this chapter we will consider single layer standard CNNs with linear synaptic
weights. The feedback templates, however, could contain off-center nonzero elements
as well. This class of standard CNN may result in more complex or even exotic
dynamics. Two of the typical types of coupled CNN dynamics, a local non-equilibrium
and a propagating wave-like, will be introduced first.

The standard CNN template shown below results in an oscillatory CNN1 if there are
three-pixel-wide vertical black stripes on the input and the white separation is at least
three pixels wide (Fig. 12.1).

A =
0 0 0

−1.5 2 1.5
0 0 0

B =
0 0 0
3 0 3
0 0 0

z = −1.5

The so-called horizontal connected component detector template (cited in Chapter 15)
is shown below

A =
0 0 0
1 2 −1
0 0 0

B =
0 0 0
0 0 0
0 0 0

z = 0

This template results in a propagating and then settling wave propagating from left to
right. The process in each row is independent from the other rows. If the initial state is
black and white, the output will result in a few distinct black pixels on the right-hand
side, their number is equal to the number of connected black regions in the given row.
A few initial state and output pairs of a row are shown in Fig. 12.2.

In general, it is very difficult to design coupled CNN templates, partly because of
the enormous variety of the waveforms generated by these templates.

In what follows, to make our systems tractable for simpler design methods, we will
restrict ourselves to the case when a00 > 1. This means that the cell cannot be at a
STABLE equilibrium point in the linear region. That is the settled cell states are in
one of the saturation regions, hence the output is +1 or −1. Moreover, we suppose
that the dynamics of a cell is restricted to a switch type operation, i.e. if a cell leaves a
saturation region (Q+ or Q−) then the cell flips to the other equilibrium point.

276

277 Coupled CNN with linear synaptic weights

Coupled CNN with linear synaptic weights

(a) (b)

(c)

Fig. 12.1. Edge detection via oscillation. (a) 20× 20 binary input image (u = x(0)), (b) the position
of cell C(6, 8) is marked, it is immediately to the left and right of a left sided edge, (c) state
transient of the cell C(6, 8) – non-edge cells will settle in +1 or −1.

initial states corresponding outputs

Fig. 12.2. A few initial state and output pairs.

278 Coupled CNN with linear synaptic weights

Under the above conditions a powerful design method2 is available based on the
binary activation pattern.

12.1 Active and inactive cells, dynamic local rules

Recalling the results from Chapters 2 and 3, the governing equation of a cell in a
standard CNN is

dxi j

dt
= −xi j +

∑
Sr (i j)

akl ykl + wi j (t) (12.1)

wi j = z +
∑

Sr (i j)

bklukl

Here we will use the following form

dxi j

dt
= hi j = −xi j + wdi j

wdi j =
∑

Sr (i j)

akl ykl(t)+
∑

Sr (i j)

bklukl(t)+ z

Recall from our earlier results (Chapter 6, Case I, and Fig. 6.1) that since a00 > 1, the
strong positive self-feedback case, if the CNN is uncoupled then

yi j (∞) = sgn
[
(a00 − 1)xi j (0)+ wi j

]
(12.2)

Hence, the CNN cells settle in the stable equilibrium points (except the pathological
case when it is semi-stable). They are:

bistable if |wi j | < a00 − 1

monostable if |wi j | > a00 − 1

(and semi-stable if |wi j | is exactly a00 − 1)

However, now we have the effects of the feedback from the neighborhood cells and,
hence, various propagation phenomena could occur.

If we examine Eq. (12.1) we can state that a cell is stable in the positive saturation
region, Q+, if

wdi j =
∑

kl⊂Sr (i j)

aklukl + wi j > +1 (12.3)

hence, yi j = 1 and xi j > 1, or in the negative saturation region, Q−, if

wdi j =
∑

kl⊂Sr (i j)

aklukl + wi j < −1 (12.4)

hence, yi j = −1 and xi j < −1. This is clear when we take dxi j/dt = 0 in Eq. (12.1),
since xi j (∞) = wdi j , in case of non-oscillatory CNN.

279 12.1 Active and inactive cells

From the above discussions it is also clear that, if a00 > 1, a cell can remain stable
only in the saturation region and cannot remain stable in the linear (or active) region.

If all the neighborhood cells of a given cell are stable, then conditions (12.3) and
(12.4) give the conditions for the regions of the stable outputs of the given cell. If,
however, one of the neighborhood cells changes and therefore the changed new value
of wdi j denoted by w+

di j goes to the linear region, then for yi j = 1 and w+
di j < 1 or for

yi j = −1 and w+
di j > −1, the cell states will not remain in the saturation region.

Let us examine the case yi j = 1 and xi j (t) > 1 and w+
di j < 1. This means that

w+
di j < 1 would be the new equilibrium point. But this point is not in the saturation

region, hence, leaving now the Q+ region, xi j (t) and yi j (t) start decreasing. Since
a00 is positive (indeed it is greater than +1), wdi j starts decreasing (the DP plot starts
shifting down) and the cell goes into the negative saturation region. Moreover, we can
prove3 that under practically important conditions, ensuring monotonic state transient
property, the cell will really go to the negative saturation region (see Proposition 1).
Hence, once the state of a cell leaves a saturation region it goes into the opposite
saturation region.

A cell is called inactive in a time instant if it is in the saturation region, and its state
is not changing, otherwise it is called active.

Definition 1:
A CNN array has the mono-activation property if cells in Q+ only (respectively cells
in Q− only) can enter the linear region. Conditions for mono-activation property:

1 if cells can enter the linear region from Q+ only, then for those cells that are in Q−
condition wd(t) < −1 should be satisfied. This condition guarantees that cells in
Q− never enter the linear region;

2 if cells can enter the linear region from Q− only, then for those cells that are in Q+
condition wd(t) > 1 should be satisfied. This condition guarantees that cells in Q+
never enter the linear region.

Proposition 1: Monotonic state transient property
Let a CNN be described by a linear template and consider that the following conditions
are satisfied:

1 the CNN array has mono-activation property, i.e. only cells belonging to Q− (Q+)

can enter the linear region;

2 the A template is non-negative and a00 > 1;

3 the initial state values correspond to binary output values.

Under these conditions then, the state of each cell in the linear region is a non-
decreasing (non-increasing) function of time; moreover, all the cells that enter the
linear region change monotonically their state from −1 to +1 (from +1 to −1).

280 Coupled CNN with linear synaptic weights

Proof:
We assume that, due to the mono-activation property, only cells belonging to Q− can
enter the linear region, whereas cells belonging to Q+ are not allowed to leave the
positive saturation region (the opposite case can be dealt with in a dual way).

The proof is based on a fundamental result due to Kamke, on monotone flows. For
the sake of completeness, we report here a corollary of Kamke’s result that is more
suitable for our purposes. �

Kamke’s theorem:
Let F : Rn → Rn be a continuous map such that Fi (x) = Fi (x1, . . . , xn) is
non-decreasing in xk for all k �= i . Let �t (x(0)) be the solution of the autonomous
differential equation dx/dt = F(x) for a generic initial condition x(0), such that
�0(x(0)) = x(0). If xa ≤ xb then for all t > 0 we have �t (xa) ≤ �t (xb).

Proof:
See W. A. Coppel, “Stability and asymptotic behavior of differential equations,” D.C.
Heath, Boston, 1965.

The proof of Proposition 1 proceeds as follows:

1 By assumption, for t = 0 all the cells are in a saturation region, that is, they belong
to Q+ ∪ Q−. Due to the mono-activation property, all the active cells must belong
to Q−; we denote the set of the active cells by Qa . The inactive cells may belong
both to Q+ and to Q−: their set, for t = 0, is denoted by Qi .

2 Let us denote by xa and xi the vectors containing the state-values of the active (Qa)

and inactive (Qi) cells, respectively. There exists t1 > 0 such that in the interval
[0, t1] the output voltages yi corresponding to the inactive cells are constants. Hence
the time-evolution of the active cells can be described by the following equation

dxa

dt
= −xa + Aa ya + Bu + ua + z (12.5)

where matrix Aa is obtained through the feedback template A by ordering the cells
in some way and by considering only the active cells; matrix B is obtained by the
input template B, ua represents the constant contribution due to the inactive cells,
and z is a vector containing the bias terms. Since for the active cells dxa/dt (t = 0)

is positive, there exists t2 ∈ [0 t1] such that xa(t2) > xa(0); due to the fact that
all the non-diagonal elements of Aa are non-negative, the dynamical system (12.5)
satisfies the assumptions of Kamke’s theorem; therefore for all 0 < t < t1 the
solution xa(t) is a non-decreasing function of t .

3 Due to the mono-activity property, it is not possible that cells belonging to Q+ enter
the linear region. However it may occur that some inactive cells, belonging to Q−
(and not to Qa) become active. In such a case there exists a time instant t = t3 > t1

281 12.1 Active and inactive cells

for which the state voltages of one or more originally inactive cells cross the value
−1 (the set of these cells is denoted by Qc, whereas their state voltages are denoted
by xc). This means that Eq. (12.5) is valid in the whole interval [0 t3] and that there
exists ε > 0 such that

xc(t3 − 2ε) ≥ xc(t3 − ε) (12.6)

Now let us denote with xac the vector xac = [(xa)t (xc)t]t and with yac the
corresponding outputs. The time evolution of xac in the interval [0 t4] (t4 > t3)
is described by the equation:

dxac

dt
= −xac + Aac yac + Bu + uac + I (12.7)

where matrix Aac is obtained through the feedback template A by considering only
the cells whose state voltages belong to xac; uac represents the constant contribution
due to the other cells. Now, since equation (12.5) is valid till t = t3 the following
relationship holds

xa(t3 − 2ε) ≥ xa(t3 − ε) (12.8)

From (12.6) and (12.8) we have

xac(t3 − 2ε) ≥ xac(t3 − ε) (12.9)

By applying Kamke’s theorem two facts are readily proved: (a) the state voltages
of the originally active cells (Qa) continue to be a non-decreasing function of time;
(b) the state voltages of the cells (Qc) that cross −1 at t = t3 are a non-decreasing
function of time for t ≥ t3.

4 By increasing t , it is confirmed that no cell can leave the set Q+; if some cells of
Q− cross the value−1, then the same arguments used at point 3, can be applied. We
can therefore conclude that: (a) the state voltages of the originally active cells (Qa)
continue to be non-decreasing functions of time for all t > 0; (b) the state voltages
of the cells that cross −1 at a certain instant ti are a non-decreasing function of
time for t ≥ ti . It turns out that in the linear region the cell state voltages are a
non-decreasing function of time. Since a00 > 1, the linear region exhibits at least
one eigenvalue with positive real part and therefore it is unstable; hence with the
exception of a set of initial conditions of measure zero, all the cells that enter the
linear region change monotonically their state voltage from −1 to +1 (from +1 to
−1, if the mono-activation property holds for cells in Q+). This proves the thesis of
the proposition.

�
Here we show an example in which one of the conditions of the monotonic state
transient is not satisfied, and the transient will not be monotonic.

282 Coupled CNN with linear synaptic weights

Example 1
Templates A and B of (12.10) satisfy conditions (i) and (iii), but do not satisfy
condition (ii) of the proposition. They activate only pixels in Q+, but never activate
pixels in Q−. If a cell output is white, then −2 ≥ wd ≥ −8, hence it is stable in the
negative saturation region independently of its neighborhood configuration. Hence,
template (12.10) is of mono-activation type

A =

 0 −1 0

1 3 0
0 −1 0

, B =

 0 0 0

0 0 0
0 0 0

, z = −2 (12.10)

However, the templates (12.10) have some negative values in the A template. We will
show that the state of some cells in the linear region is not monotone increasing.

Fig. 12.3. Simulation results of Example 1. The initial state and the final output of the array are
shown. The output signal transients of some cells are also given.

Fig. 12.3 shows an example. At t = 0 all the black cells are activated in the third
column. As the time diagram shows, at the bottom the output signals of the cells
in this column start to go toward the white saturation region (their rate of change
differs from cell to cell). After a while, however, some of them turn back to the black
saturation region (cells (3, 3) and (3, 7)). Hence, this CNN array does not have the
mono-activation property.

283 12.2 Binary activation pattern and template format

After this example we introduce some formal methods to decide which cell is (or
becomes) active, and which is not.

Dynamic local rules (DLC)
In a standard CNN with a monotone state transient property the following four local
dynamic rules govern the change of activity:

(i) xi j (t) > 1 ⇒ yi j (t) = 1 and w+
di j > 1

an inactive cell remains in the positive stable equilibrium (Q+) at xi j = w+
di j ,

hence the cell remains inactive and its output yi j does not change

(ii) xi j (t) > 1 ⇒ yi j (t) = 1 and w+
di j < 1

an inactive cell in the positive stable equilibrium changes from region Q+ to
region Q−, meanwhile it will be active and settles in Q−

(iii) xi j (t) < −1 ⇒ yi j (t) = −1 and w+
di j < −1

an inactive cell remains in the negative stable saturation region (Q−) at xi j =
w+

di j , hence the cell remains inactive and its output Q+ does not change

(iv) xi j (t) < −1 ⇒ yi j (t) = −1 and w+
di j > −1

an inactive cell in the negative stable equilibrium changes from Q− to Q+ region,
meanwhile it will be active and settles in Q+.

12.2 Binary activation pattern and template format

Now, we are in a position to define the binary activation pattern, which will trigger
unidirectional changes in a propagating wave.

Consider now a standard CNN with a00 0 1, fixed boundary (−1), and a given
initial state and input. At the beginning and all along the possibly propagating transient
process, the inactive and active cells define an activity pattern of the whole cell space.
Suppose the whole propagation process will meet the following conditions:

• At the end, all cells belong to the inactive cell set.

• At the beginning, there exist at least one active cell in the active cell set. (Otherwise,
there would not be any change, all the cells would remain in their stable inactive
state.)

• During the transient process, an inactive cell becomes active if at least one of its
neighborhood cells becomes active and the activity pattern of the neighborhood,
called activity configuration, satisfies some conditions (then this configuration is
called activator configuration).

284 Coupled CNN with linear synaptic weights

Definition 2:
The binary activation pattern is defined within an Sr (i j) neighborhood. It consists
of two template-sized patterns, having a black, or white, or don’t care value in each
position. In addition to these two, input related and current output related, local
activation patterns called activator configurations, a limit number (L) is also given.
A cell ci j will be activated (go to active state from an inactive state) if the actual local
activity pattern is an activator configuration, i.e. in Sr (i j) it matches at most or at least
L black-and-white positions of the binary activation pattern (the don’t cares do not
count!). Hence, the local dynamic rule is given by the activator configurations and L .

Definition 3:
If the activation pattern is input independent, that is the input related part contains
don’t cares only, we call this situation unconstrained propagation and the B template
is zero (otherwise it is called constrained propagation).

Definition 4:
The propagation rule, i.e. the activator configuration, is called B/W (black and white)
symmetric if the rule is symmetric to the color (black/white). This means that the role
of black pixels and the role of white pixels are interchangeable. In this case the bias
term of the template, (z), equals zero.

12.3 A simple propagating type example with B/W symmetrical rule

In the next example we generate the left to right horizontal shadow of a black object
on a binary image.

12.3.1 Global task

The task can be defined in each row, independently. In a black and white image, in
each row, all the pixels right from the left-most black pixel should become black. An
example is shown in Fig. 12.4.

12.3.2 Local rules and binary activation pattern

In this task, we have to find the left-most black pixel in each row, and change all white
pixels black which are right of it. This can be done by starting a black propagation
front moving right from each black pixel. Hence, the local rules are: (i) a white pixel
where the direct left neighbor is black, change to black; (ii) the rest of the pixels should
be unchanged.

The activation pattern and the local rule are shown in Fig. 12.5.

285 12.3 A simple propagating type example

initial state final output

Fig. 12.4. Example for the left to right shadow generation.

Input Current output Limit number Rule
dependency dependency

− − −
− − −
− − −

− − −
� � −
− − −

2
In the case of two matches the central
white pixel in the output should change to
black

Fig. 12.5. Binary activation pattern and local rule (shadow template).

12.3.3 Template type and template form

The propagation is unconstrained, because it is not effected by the input. (It starts from
the left-most black pixel and goes along to the boundary.) It is asymmetric, because
the black objects get shadows, the white ones (here the background) do not.

The template form can be derived from the activation pattern and the classifications.
The center element of the A template (a00) is the first free parameter. There is only one
non-zero off-center in the activation pattern, which is the second free parameter. The B
template is zero, because the propagation is unconstrained. The current (z) is the third
free parameter, because the propagation is asymmetric. The template is sought in the
following form:

A =

 0 0 0

b a 0
0 0 0

, B =

 0 0 0

0 0 0
0 0 0

, z = i (12.11)

12.3.4 System of inequalities and optimal solution

The relation system generation is based on Dynamic Local Rules (DLC). Since two
pixels affect the propagation, we have to examine four cases only. These cases are
shown in Fig. 12.6.

286 Coupled CNN with linear synaptic weights

Local pixel Desired next Cell Relation ref wd
configuration in output remains/becomes case in DLC
the current output active or inactive

− − −
� � −
− − −

white inactive −a − b + i < −1 (iii)

− − −
� � −
− − −

black inactive a − b + i > 1 (i)

− − −
� � −
− − −

black inactive a + b + i > 1 (i)

− − −
� � −
− − −

black active −a + b + i > −1 (iv)

Fig. 12.6. Binary activation pattern and local rule (shadow template).

We do not deal here with the solving of the system of inequalities and the template
optimization for robustness. The optimized final template is the following:

A =

 0 0 0

1 2 0
0 0 0

, B =

 0 0 0

0 0 0
0 0 0

, z = 1 (12.12)

12.4 The connectivity problem

The goal here is to delete all pixels which are part of a connected object defined by
black pixels on a white background. Consider Fig. 12.7.

Two binary images are given. The first contains some black objects against a white
background. The second is derived from the first one by changing some black pixels
to white. Those objects are considered to be marked which have some deleted pixels.
Design a template which deletes the marked objects and does not affect the rest of the
image. If we delete a single pixel of a black object and apply this template, all the
black pixels consisting of the object will change to white.

287 12.4 The connectivity problem

12.4.1 Global task

This is a 2D problem. All connected black pixels of the marked objects should change
to white, and the rest of the pixels should remain unchanged. An example can be seen
in Fig. 12.7.

first image second image final output

Fig. 12.7. Example for the connectivity template.

12.4.2 Local rules and binary activation pattern

In this task, first, we have to find those pixels which are black in the first image and
white in the second image. From these points we have to start propagation wave-fronts
to all directions. The front should propagate on the black pixels only and change them
to white. Since the wave-front moves on the second image it will be the initial state and
the first image will be the input. Hence, the local rules are the following: (i) change
those black pixels white which have at least one neighboring cell with white output
and black input, and (ii) do not change the rest of the pixels. At the same time, it is
clear from the task specification that if a pixel is black in the second image (current
output), it must be black in the first image (input) also. From this it follows that here
the difference of the output and the input counts instead of simply the output value of
the neighboring cells.

We introduce a new sign in the activation pattern. The delta sign (�) means that the
particular neighbor activates the cell if and only if its output and its input are different.
Note that the definition of the task excludes those situations when the output are black
and the input is white. So, here the delta sign (the match) means that the current output
is white and the input is black in a particular position. A cell becomes active if both
its central input and central current output are black, and if it has at least one matching
neighbor. For simplicity we used four neighborhoods. The activation pattern is shown
in Fig. 12.8.

288 Coupled CNN with linear synaptic weights

Input Current output Limit number Rule
dependency dependency

− 1 −
1 � 1
− 1 −

− 1 −
1 � 1
− 1 −

1

If the central input and central current
output are black, and there are one or
more matches, the central black pixel
in the output should change to white

Fig. 12.8. Binary activation pattern and local rule (connectivity template).

Table 12.1.

Output Input # of Becomes/ Desired Relation
matching remains active output

pixels or inactive

Black (+1) Black (+1) 0 Inactive Black (+1) a + c + I > 1
Black (+1) Black (+1) 1 Active White (−1) a − 2b + c + i < 1
Black (+1) Black (+1) 2 Active White (−1) a − 4b + c + i < 1
Black (+1) Black (+1) 3 Active White (−1) a − 6b + c + i < 1
Black (+1) Black (+1) 4 Active White (−1) a − 8b + c + i < 1
White (−1) Black (+1) 0 Inactive White (−1) −a + c + I < −1
White (−1) Black (+1) 1 Inactive White (−1) −a − 2b + c + i < −1
White (−1) Black (+1) 2 Inactive White (−1) −a − 4b + c + i < −1
White (−1) Black (+1) 3 Inactive White (−1) −a − 6b + c + i < −1
White (−1) Black (+1) 4 Inactive White (−1) −a − 8b + c + i < −1
White (−1) White (−1) 0 Inactive White (−1) −a − c + i < −1
White (−1) White (−1) 1 Inactive White (−1) −a − 2b − c − i < −1
White (−1) White (−1) 2 Inactive White (−1) −a − 4b − c + i < −1
White (−1) White (−1) 3 Inactive White (−1) −a − 6b − c + i < −1
White (−1) White (−1) 4 Inactive White (−1) −a − 8b − c + i < −1

12.4.3 Template type and template form

The propagation is constrained, because it can go over the black areas only. It is
asymmetric, because it deals with the black objects, the originally white pixels are
unchanged.

As usual the template form can be derived from the activation pattern and the
classifications. The center element of the A template (a00) is the first free parameter.
The delta operators in the neighborhood affect both the A template and the B template.
A neighbor which has the same input and output (both can be black or white) does not
affect the cell. But if it has black input and white output it activates the cell. Hence, the
second free parameter appears in the neighborhood in both the A and the B template,
but with opposite sign. The center element of the B template is the third free parameter.
Since the propagation is asymmetric, the bias (z) is the fourth free parameter. The

289 12.4 The connectivity problem

template is sought in the following form:

A =

 0 b 0

b a b
0 b 0

, B =

 0 −b 0
−b c −b
0 −b 0

, z = i (12.13)

12.4.4 System of inequalities and optimal solution

The relation system generation is based on Dynamic Local Rules. Since there are only
three valid binary input–output combinations here, and five matching possibilities,
there are 15 different cases. All cases yield a relation. The relation set is shown in
Table 12.1.

We do not detail the solution of the relation system and the optimization here. The
optimized final template is the following

A =

 0 1 0

1 3 1
0 1 0

, B =

 0 −1 0
−1 3 −1
0 −1 0

, z = −4 (12.14)

Fig. 12.9 shows an example for the operation of the connectivity template.

input initial state

snapshot 1 snapshot 2

snapshot 3 final output

Fig. 12.9. Consecutive snapshots of the propagation of the connectivity template.

13 Uncoupled standard CNNs with nonlinear
synaptic weights

So far, we have studied CNNs with linear synaptic weights (linear templates) described
by the class 1 standard CNN dynamic equations (Eq. (2.2)). This means that the
characteristics of a simple synapse or template element are linear. In many practical
cases, these elements are voltage controlled (gated) current sources (conductances
or transconductances). Indeed, in practice, they are never completely linear. We are
approximating them on a well-defined domain, around an operating region (point).
CNNs with nonlinear templates were introduced in the early years.1 Two typical
characteristics are shown in Fig. 13.1. The slopes of the linear approximation (dotted
line) are the template elements (e.g. akl or bkl). In the second case, an offset value (i0)
is also present. These curves are called sigmoid characteristics.

io

v

i = g(v)i = g(v)

v

Fig. 13.1. Two typical synapse/template element characteristics and their linear approximation.

Based on these typical characteristics, some other nonlinear curves, useful in
modeling, are shown in Fig. 13.2. They are a simple linear combination of the original
curves in Fig. 13.1.

Once we use nonlinear templates, the analysis of the dynamics of the CNN becomes
more complex. To keep the study tractable, and to make the modeling or the physical
implementation simpler (e.g. in CMOS or BiCMOS VLSI circuits), the uncoupled
CNN class with nonlinear space invariant synaptic weights is a good compromise. A
simple framework with a00, z, and a nonlinear B template are studied next. In this case,
the DP plot technique described in Chapter 3 can still be used.

290

291 13.1 Dynamic equations and DP plot

i = g(v)

v v

i = g(v)

v

i = g(v)

(c)(b)(a)

Fig. 13.2. Inverse sigmoid (a), bell-shape (Gaussian) (b), and inverse bell-shape characteristics (c).

13.1 Dynamic equations and DP plot

Restricting the class of nonlinear templates, consider the following cloning template:

A =
0 0 0
0 a00 0
0 0 0

B =
b9 b8 b7

b6 b5 b4

b3 b2 b1

z b5 = b00

The B template is, in general, nonlinear. This means that the template elements
(b1, . . . , b9) are nonlinear functions of either the inputs or the input differences
(ukl − ui j). Hence, the dynamics is described by the following state equation

ẋi j = −xi j + a00 f (xi j)+ z +
∑

C(kl)∈Sr (i j)

B(i j; kl) · ukl (13.1)

where B(i j; kl) ·ukl has two types of forms: difference controlled,2 i.e. the controlling
variable of a template element is ukl − ui j , or value controlled, i.e. the controlling
variable is ukl . Note that in our case the nonlinearity is in the B template only, hence
the state dynamic route �x and the shifted DP plot �x (wi j) technique can still be
applied (see Section 3.2). Following this technique, the standard forms of the state and
output equations will be

ẋi j = g(xi j)+ wi j = −xi j + a00 f (xi j)+ wi j

wi j = z +
∑

C(kl)∈Sr (i j)

B(i j; kl) · ukl (13.2)

yi j = f (xi j)

When drawing the shifted DP plot, we can determine the values and ranges of the shift
wi j . The basic structure of the DP plot remains the same as in Section 3.2.

292 Uncoupled standard CNNs

Gray-scale contour detector

A =
0 0 0
0 2 0
0 0 0

B =
a a a
a 0 a
a a a

z = 0.7

where a is defined by the following nonlinear function (piece-wise linear inverse
bellshape)

–0.5

ukl – uij0.18

a(ukl – uij)

–0.18

0.5

Fig. 13.3.

I Global task
Given: static gray-scale image P
Input: U(t) = P
Initial state: X(0) = P
Boundary conditions: Fixed type, ui j = 0 for all virtual cells, denoted by [U] = 03

Output: Y(t) ⇒ Y(∞) = Binary image where black pixels represent the contours of
the objects in P.

II Local rules
ukl − ui j → Yi j (∞)

1 White local area (all nearest neighbors) → White

2 Black local area (all nearest neighbors) → White

3 White or black central pixel in a black or white neighborhood, respectively→Black

4 Straight white line with three neighbors against six blacks → Black

5 Straight black line with three neighbors against six whites → White

6 Substantial change in gray level between a central line and neighboring pixels →
Black

Remark:
Substantial change may seem a loose term. However, it is far from trivial, mathemat-
ically. Unlike sophisticated PDE templates and algorithms, this simple template, by

293 13.1 Dynamic equations and DP plot

controlling the height and width of the inverse bell-shape (Gaussian-type) nonlinearity,
can give a good estimate for our visual perception of a contour.

III Example:
Image name: madonna.bmp, image size: 59× 59; template name: contour.tem.

input output

IV Mathematical analysis
Suppose

wi j = z + wi j B

Then, in view of a00 = 2, the DP plot with wi j B will be as shown in Fig. 13.4.

1.0

xij

xij

1.7

0.7 + wij B

–1

–0.3

–1

1

Fig. 13.4. The DP plot with wi j B = 0.

Consider now the six local rules. The values of wi j B to the six cases will be denoted
by w1, w2, . . . , w6, respectively.

The DP plots for these cases are shown in Fig. 13.5.

294 Uncoupled standard CNNs

–3

4.7

–0.3
Q3

xij

1

2

3

4

–1

–2

–3.3

–4

Q4

–1–2 2 3

w4 = w5 = w6 = –1

1

Q1= Q2

w1 = w2 = –4

4 5 6–3–4

–5

w3 = 4

ijx

Fig. 13.5. The DP plots for the six local rules.

Local rule 1
Since all the pixel values of P in the local neighborhood are the same, ukl − ui j = 0
for ∀C(kl) ∈ Sr (i j), that is b(ukl − ui j) = b(0) = −0.5. Hence, following equation
(13.2)

wi j B = w1 =
∑

B(i j; kl) · ukl = 8b(ukl − ui j) = 8b(·) = −4

that is, Q1: white (independent of the initial state).

Local rule 2
Again, all the pixel values of P in the local neighborhood are the same (now black),
hence ukl − ui j = 0, and, as before, w2 = −4 = w1. Hence Q2 is white.

Local rule 3
(a) If a white central pixel is in a black surround, then ukl − ui j = 2, hence b(ukl −

ui j) = 0.5, therefore w3a = 8× 0.5 = 4.

(b) If a black pixel is in a white surround, then ukl − ui j = −2, hence b(ukl − ui j) =
0.5, therefore w3b = 8× 0.5 = 4.

In both cases, w3 = w3a = w3b = 4. Following the DP plot for w3 = 4, the
equilibrium point Q3 is black (independent of the initial state).

Local rule 4
An example of a typical configuration referring to Local rule 4 is shown in Fig. 13.6.

295 13.1 Dynamic equations and DP plot

Fig. 13.6.

The straight white line with three neighbors against six blacks could be placed in other
directions as well. In all cases, since b00 = 0

w4 =
∑

B(i j; kl) · ukl = 5 · b(0)+ 3 · b(−2) = 5(−0.5)+ 3(0.5) = −1.0

The DP plot for w4 = −1.0 settles in Q4 since the initial state is black (+1). Q4 is
black (>+1).

Local rule 5
In this case, a typical configuration related to Local rule 5 is shown in Fig. 13.7.

Fig. 13.7.

Hence, the reasoning follows as in Local rule 4,

w5 = 5b(0)+ 5b(2) = 5(−0.5)+ 3 · 0.5 = −1.0

However, since the initial state is white (−1) the stable state Q5 will be white.

Local rule 6
In this case the local rule is given in a fuzzy way: substantial changes occur in the gray
level between the central line and neighboring pixels.

Indeed, this means that basically the DP plot will follow the plots for Local rules
4 and 5. The reason is that the inverse bell-shaped function has the same value if
|ukl − ui j | > 0.18.

14 Standard CNNs with delayed synaptic
weights and motion analysis

Modeling living neural networks, a typical construct is a so-called interneuron. This
means a time-delayed action, sometimes a delayed excitation, sometimes a delayed
inhibition. The introduction of ideal delaying template elements in cellular neural
networks1 was motivated by this fact. Later, the synapse delay in general neural
networks became widely used. Although, in the VLSI implementation, the ideal
delay in not easily implemented, and physiologically faithful models of living neural
networks did not contain ideal time delay either, conceptually and logically the delay
template is useful in explaining complex wave-like actions in a simpler way. Moreover,
delayed synapse functions can be and are approximated by both VLSI and living neural
implementations, respectively.

Motion analysis is one typical application. We will show some useful examples as
well.

14.1 Dynamic equations

Following the original paper,1 and referring to the notations used in Chapter 2, a class 1
standard CNN with space invariant templates with and without time delays is described
by the following state and output equations

ẋi j = −xi j + z +
1∑

k=−1

1∑
l=−1

akl yi+k, j+l(t) +
1∑

k=−1

1∑
l=−1

bklui+k, j+l(t)

+
1∑

k=−1

1∑
l=−1

aτ
kl yi+k, j+l(t−τ) +

1∑
k=−1

1∑
l=−1

bτ
klui+k, j+l(t−τ)

A : akl;Aτ : aτ
kl;B : bkl;Bτ : bτ

kl (14.1)

The delayed template values aτ
kl , bτ

kl are given in the same way as the A and B
templates (3× 3, 5× 5, 7× 7, etc. matrices).

There are a few theoretical challenges when introducing delayed templates.2 One
can be formulated as follows.

296

297 14.2 Motion analysis

Suppose, we have two different templates. We are combining them as a non-delayed
and as a delayed template. What would be the function of the combined template?

An example is shown below.
Given a connected component detector and a vertical line detector template, suppose

we are combining them as follows

TEMCCD : Ac =
0 0 0
1 2 −1
0 0 0

Bc = 0 zc = 0

TEMVEDGE : Av =
0 1 0
0 −1 0
0 1 0

Bv = 0 zv = 0

The combined template:

A = Ac; Aτ = Av; B = Bc = 0; Bτ = Bv = 0; z = zc + zv = 0

An original image, the output using the CCD template and the output using the
combined template are shown in Examples 14.1(a), 14.1(b), and 14.1(c), respectively.
It is instructive how the two different functions are combined: a CCD-like wave is
vertically stopped at the various vertical edges of the input image.

EXAMPLE 14.1: An original picture (a), the output using CCD template (b), and the result
when the combined template is applied (c).

(a) (b) (c)

14.2 Motion analysis – discrete time and continuous time image
acquisition

Motion detection and estimation is an evergreen problem. In this section we will
consider a special problem and some related aspects. In a famous discovery by Hubel
and Wiesel,3 it was shown that if a bar was moving across a particular region of a cat’s

298 Standard CNNs with delayed synaptic weights

visual field in a certain direction and if the speed was around a given value, then some
cortical neurons would fire (detecting this event). How can we imitate this detection
task using a CNN template or a sequence of a few templates? In what follows, a simple
solution will be shown. First, using a standard CNN with conventional templates acting
on a sequence of snapshots; second, using also delay type templates in a continuous
time mode of the image acquisition.4

Problem 1
Given a moving bar with a constant speed in a given direction (horizontal, to right),
detect the object if it moves with a given speed.

Solving Problem 1, suppose that the given velocity is v = �x/�t . Adjust the
sampling rate of this image sequence in such a way that at this velocity the movement
of an object will be one pixel per sample. Now, to solve our problem, first we take the
difference image between two consecutive snapshots and then examine whether the
difference is one pixel wide.

To take the difference picture Pd of two consecutive snapshots P0 and P1, the truth
table of Table 14.1 is to be realized. Pd = P1 \ P0.

Table 14.1. Truth table for the subtraction Pd = P1 \ P0.

P0 P1 Pd

ui j xi j (0) yi j (∞)

−1 −1 −1
−1 1 1

1 −1 −1
1 1 −1

A simple template, LOGDIF of Chapter 3, implements the logical difference if ui j =
P0, X(0) = P1, and Pd = Y(∞)

A =
0 0 0
0 1 0
0 0 0

B =
0 0 0
0 −1 0
0 0 0

z = −1

The speed detection means that the difference picture has a one-pixel wide object with
a left neighbor in P0. This means that we have to delete every black pixel in Pd which
has no left neighbor in P0. This is the basic idea of direct neighbor detection. The next
template is completing this task

A = 0 2.1 0 B = 2 0 0 z = −2

U = P0; X(0) = Pd , and Y(∞) = Ps

where Ps is the output.

299 14.2 Motion analysis

This can be proved, as an exercise, using the DP plot technique.
Suppose that P0 and P1, shown is Example 14.2(a) and (b), are the two consecutive

samples of a moving object (taken at t0 and t1). v = �x/�t , �t = t1− t0, �x is equal
to the pixel size. All the pixels of the difference image Pd , shown in Example 14.2(c),
have a left neighbor in P0. If we delete all the black pixels in Pd having a left black
neighbor in P0 implemented with template DWLB (delete with left black) shown
below, then the resulting screen Ps will be empty (full white). This detects the event
we are looking for.

EXAMPLE 14.2: The two consecutive snapshots P0 (a), P1 (b), and the difference image Pd

(c).

(a) (b) (c)

The template DWLB is as follows:

A = 0 2 0 B = 2 0 0 z = −2

U = P0; X(0) = Pd , and Y(∞) = Ps

This can be proved, as an exercise, using the DP plot technique.
In some cases, if the object is larger, some pixels might remain in Ps , even if

the displacement of the whole image is one pixel. Then, another template, which is,
however, coupled, solves the problem. This template is

A = 1 2.1 −2 B = 2 0 0 z = −4

Generating the difference picture in continuous time mode
If the image flow is continuous we cannot use the initial state as an independent input
port (in the LOGDIF template). In order to take the difference of the actual sample and
some proceeding sample of the motion picture, without receiving consecutive samples,
we can use a delay-type template.

The simplest possible solution is a combination of a B and a Bt template with only
central elements b00, and bτ

00, respectively. The output, in the linear domain, is

y(t) = b00ui j + bτ
00ui j (t − τ) (14.2)

300 Standard CNNs with delayed synaptic weights

If b00 = −bτ
00 = b0 then

y(t) = b0(ui j − ui j (t − τ))

If we include a self-coupling (a00) and bias term z, the template calculating the logic
difference will be

A = [a00], B = [b0], Aτ = [0], Bτ = [−b0], z (14.3)

It is supposed that the rate of change of P(t) is significantly slower than the time
constant of the CNN (τCNN). Likewise, the delay time is also bigger than τCNN. For
example, τ ≥ 5τCNN.

In most practical cases the extracted difference picture is corrupted by noise, due
to light reflections and slight changes in the environment during motion. Therefore, it
would be useful to combine the difference calculation with noise filtering. We have
learned in Chapter 3 that an averaging type noise filtering can be achieved by a
circularly symmetric template. Hence, we would combine the template in (14.3) with
such an averaging type template as follows

A =
0 0 0
0 1 0
0 0 0

B =
a a a
a b a
a a a

z

(14.4)

Aτ =
0 0 0
0 0 0
0 0 0

Bτ =
c c c
c d c
c c c

As before, we propose that b = −d.
Then, a, b, c, and z are the constants we want to determine. Under this conditions

the transients are monotone in time2 (prove it as an exercise). This means that each
state variable is strictly increasing or strictly decreasing.

Since A is uncoupled with a00 ≥ 1 and Aτ = [0], the CNN is completely stable.
The truth table of the logical subtraction is shown in Table 14.1. In our case now,

however, the first column belongs to the delayed input image, the second column
represents the actual input image, while the third column represents the output (the
difference image).

The first row of Table 14.1 states that if a certain pixel is white, in both the
actual and the delayed input pictures, then the steady state of the corresponding state
variable should be smaller than−1, independently of the neighboring cells. Due to the
monotonicity property, just mentioned, a negative sign of the slope (ẋi j) is enough to
fulfill the latter condition.

Since u = u2 = 1, using the template (14.4), this condition means

ẋi j (t) = −xi j (t)+ yi j (t)+ z − b ± 8a − d ± 8c < 0

301 14.2 Motion analysis

The terms ±8a and ±8c mean that any combinations of the neighbors are allowed. At
t = 0, xi j (0) = yi j (0), hence

z − b ± 8a − d ± 8c < 0 (14.5)

Due to monotonicity, this condition will ensure the negative slope during the transient.
With similar reasoning, using the third and fourth row in Table 14.1 we get

z − b ± 8a + d ± 8c < 0 (14.6)

z + b ± 8a + d ± 8c < 0 (14.7)

The second row of the truth table requires additional investigation. It states that if a
specific pixel is black in the actual input picture and white in the delayed input picture,
then the pixel should be black at the end of the transient. This is the normal operation
for generating the logical difference (subtraction). However, we want to make also
noise filtering. This means that if a pixel in the delayed input has less than two black
neighbors, then it is considered to be noise and the output will tend to be white (even
if all the pixels in the actual neighbors are black). These two cases, that is a zero black
neighbor and one black neighbor in the delayed input, are represented by the following
two inequalities, respectively

z + b + 8a − d + 8c < 0 (14.8)

z + b + 8a − d + 6c < 0 (14.9)

Finally, if there are two black neighbors then the state and output turns black and then
the condition will be

z + b + 8a − d + 4c > 0 (14.10)

If c < 0, then in case of more than two black neighbors the inequality (14.10)
automatically ensures the condition for turning black.

Now, we have six inequalities (14.5)–(14.10) for four independent parameters
(a, b, c, z). A suitable choice, inside the polyhedron, is

a = 0.25, b = 2, c = −0.25, d = −2, z = −4.75

This means that our template for taking the difference and, at the same time, making
noise filtering, is

A =
0 0 0
0 1 0
0 0 0

B =
0.25 0.25 0.25
0.25 2 0.25
0.25 0.25 0.25

z = −4.75

(14.11)

Aτ =
0 0 0
0 0 0
0 0 0

Bτ =
−0.25 −0.25 −0.25
−0.25 −2 −0.25
−0.25 −0.25 −0.25

τ ≥ 5τcnn

302 Standard CNNs with delayed synaptic weights

The performance of the template on an image flow showing a running clock with a
rotating hand is shown in Example 14.3. Observe that in the center (kernel) part of the
hand there is no change.

EXAMPLE 14.3: Snapshots in processing the image flow of a running clock with rotating
hand. One snapshot of the input flow (a), a calculated difference image without noise
filtering using template (14.3) (b), and the result using template (14.11) with noise
filtering (c).

(a) (b) (c)

15 Visual microprocessors – analog and digital
VLSI implementation of the CNN Universal
Machine

Digital technology has the key advantage that if a few building blocks are implemented
then any complex system can be built from these by

• wiring and

• programming.

Moreover, most of the digital building blocks are placed in a regular arrangement: a
simple block is repeated many times in a matrix arrangement (e.g. memories, PLAs,
etc.).

The CNN core and the CNN Universal Machine architecture, containing also analog
building blocks, possess the very same properties. Due to their special nature, however,
they have orders of magnitude advantages in speed, power, and area (SPA) in some
standard physical implementations. In many applications, like image flow computing,
this advantage might be mission critical.

As a revolutionary feature, stored programmability can be introduced in the analog
domain as well. This makes it possible to fabricate visual microprocessors.

In what follows, first, we show the building blocks and their simple CMOS
implementation examples, without going into the details of their design issues.1 The
emulated digital implementation will be only briefly reviewed. As to this and the
optical implementation, we refer to the literature.2

As a summary: using only six simple circuit building blocks, namely:

• resistor,

• capacitor,

• switch,

• VCCS (Voltage Controlled Current Source),

• logic register, and

• logic gate,

the most complex CNN array computer chip can be built in a VLSI friendly, regular
structure.

303

304 Visual microprocessors

Next, the visual microprocessor and its computational infrastructure is described.
At first, it seems unusual to combine analog spatio-temporal dynamics with logic,
programmability, and software. Indeed, in the CNN-UM and in the visual micropro-
cessor, when the sensor array is integrated with the CNN-UM array processor, the most
difficult digital task (solving a nonlinear wave equation) is selected as an elementary
instruction. But this is exactly the task a CNN array can solve most easily.

Finally, some realistic measures are shown to compare the computing power of dif-
ferent architectures for array signal processing, especially for image flow processing.

15.1 The analog CNN core

There are only three building blocks in the core cell: a capacitor and a VCCS
(voltage controlled current source) the latter may have a linear and a saturation region
(Fig. 15.1), and a resistor.

i=kv

–

Capacitor:

C

Voltage controlled current source:

Resistor:

k

i

v

+ v

Fig. 15.1. The three building blocks of the CNN core.

The CMOS implementation of a capacitor is straightforward, though its smallest value
is limited by the stray capacitors (sometimes this is exactly the capacitor of a CNN
cell). The resistor is implemented by a transistor. The VCCS is implemented in many
ways, the Operational Transconductance Amplifiers (OTAs) are the usual solutions
with their many different circuit designs. One possible circuit, the recently invented
“one transistor synapse,”3 is shown, in its transistor level description, in Fig. 15.2.
Indeed these OTAs, sometimes called synapse circuits, are the protagonists of the CNN
CMOS implementations. The CNN core, is composed of a capacitor, a resistor, and a
VCCS. The cell interactions between the cells are also implemented by VCCS blocks.
The circuit model of such an interacting core cell is shown in Fig. 15.3.

The cell model in Fig. 15.3 is the so-called Chua–Yang model. In some cases, from
an implementation point of view, the so-called full-range model is more convenient.4

In the full-range model, the state and input are connected and the circuit in the
dashed line area is composed of a capacitor, a nonlinear resistor and a current source.
In the CNN universal cell model in Fig. 15.6, the full range cell model is shown.

305 15.1 The analog CNN core

V A

V G

I N

V L

nullator

IN = β(VA − VL)VG − β

(
VT + VA + VL

2

)
(VA − VL)

Fig. 15.2. A transistor level description of a “one transistor synapse” implementing a VCCS.

yij

Af (xij)

xijuij

B
C

R

(t)yl)k,j;(i,A kl∑(t)ul)k,j;B(i, kl∑

+_ z

Fig. 15.3. A circuit model of a standard CNN cell.

The circuit model of a very simple CNN array, a one-dimensional CNN array with
three inner cells and two border cells, having the simplest interconnections, just one to
each neighbor, and self-feedback, is shown in Fig. 15.4.

This circuit has been used sometimes to test the circuit robustness as well as for
implementing the simplest propagating template. In addition to its own useful function,
the CCD template became an ubiquitous CNN test circuit.

It is instructive to show the transient signals in the consecutive cells. Indeed, the
time constant of the cell can be determined, approximately, from the measured delay
time of the propagation along the whole line.

As an exercise, after reviewing the cell transient, we will determine the method of
how to measure the cell time constant of a five-cell CNN (three cells plus the two
border cells).

306 Visual microprocessors

Five-cell (three cells plus border cells) CNN with a connected component detector (CCD) template:

A =
0 0 0
1 2 −1
0 0 0

B = 0 z = 0

z

c
R y2 y3 y4 y5 y5y1 y1

x3(0)x2(0) x4(0)

1 2 3 4 5

border
 cell

border
 cell

1
2

1 2

1 2

–1
–1

–1

k
i

u v

i = kv

Fig. 15.4. The circuit model of a one-dimensional standard CNN with five cells (incl. two border
cells).

The B template is zero, hence the input is omitted, the initial state is the only
independent input information, the bias term is zero as well, and the feedback template
is very simple: only a part of a border cell is shown, normally the border cell is the
same as the intermediate cell.

The number of rows is 1, m = 1, the number of cells is five; we are not
distinguishing here between border and inner cells, hence n = 1, 2, 3, 4, 5.

We show the signal transient of the circuit model for all the five cells (m = 1, n =
1;m = 1, n = 2;m = 1, n = 3;m = 1, n = 4; and m = 1, n = 5) in Fig. 15.5
(first five parts). There is a wave from left to right. An axonometric view of the signal
transients for all the five cells is shown in the last part of Fig. 15.5.

Observing the cell signals, the fourth cell output reaches the positive saturation value
about 1.6 (in terms of the time constant). Hence, if t+4 is the measured value of this
time instant in an actual circuit, then the time constant is t+4 /1.6.

307 15.1 The analog CNN core

Initial state: Output:
>

Standard one row view (m = 1, n = 1)

Legend

Output: y

State: x
ij

ij

t

x, y

2.00 4.00 6.00 8.00

4.00

3.00

2.00

1.00

0.00

–1.00

–2.00

–3.00

–4.00

Standard one row view (m = 1, n = 2)

Legend

Output: y

State: x
ij

ij

t

x, y

2.00 4.00 6.00 8.00

4.00

3.00

2.00

1.00

0.00

–1.00

–2.00

–3.00

–4.00

Fig. 15.5. Signal transient of the five cells (first two parts, see the consecutive parts on the next two
pages).

308 Visual microprocessors

Initial state: Output:
>

Standard one row view (m = 1, n = 3)

Legend

Output: y

State: x
ij

ij

t

x, y

2.00 4.00 6.00 8.00

4.00

3.00

2.00

1.00

0.00

–1.00

–2.00

–3.00

–4.00

Standard one row view (m = 1, n = 4)

Legend

Output: y

State: x
ij

ij

t

x, y

2.00 4.00 6.00 8.00

4.00

3.00

2.00

1.00

0.00

–1.00

–2.00

–3.00

–4.00

Fig. 15.5. Continued.

309 15.1 The analog CNN core

Initial state: Output:
>

Standard one row view (m = 1, n = 5)

Legend

Output: y

State: x
ij

ij

t

n

x, y

x, y

2.00 4.00 6.00 8.00

4.00

3.00

2.00

1.00

0.00

–1.00

–2.00

–3.00

–4.00

Standard one row view (m = 1)

Legend

Output: y

State: x
ij

ij
2.50

2.00

1.50

1.00

0.50
0

5
4

2
3

t
8.00 6.40 4.80 3.20 1.60

Fig. 15.5. Continued.

310 Visual microprocessors

15.2 Analogic CNN-UM cell

If we add a switch, a logic register, and a logic gate to the three building blocks of
the CNN interacting core cell, we can implement the extended CNN cell of the CNN
Universal Machine (CNN-UM). Hence, the following six building blocks, plus wiring,
are enough to build the CNN Universal Machine:

• resistor

• capacitor

• switch

• VCCS

• logic register

• logic gate

Since the CMOS implementation of the controlled switch, the logic register and the
logic gate is well known and straightforward, we are not discussing them. The circuit
model of the CNN-UM cell is shown in Figs 15.6 and 15.7 (we have copied them here
from Fig. 9.1, except the full range model of the CNN cell is used). It is not difficult
to implement. The art is in the actual design to make the smallest, speediest, least
dissipative solution. This real art is discussed in the new book referred to earlier in this
chapter.

Most of the elements of the circuit model in Fig. 15.6 can be implemented by CMOS
elements as described above. The new elements here are the Local Analog Memory
cells (LAM cells) and the Local Analog Output Unit (LAOU). The implementation of
the former is made by capacitors, however the switching circuitry around it may be
quite sophisticated due to the leakage effects. These points are discussed in detail in a
paper devoted to the design of an Analog RAM (ARAM).5

The LAOU design is application specific. In the simplest case, it could contain an
adder, a multiplier, or some other simple circuit functions.

Fig. 15.7 shows the logic part with the comparator. This part can be implemented
with standard CMOS design using the simplest gates and signal comparator. It is clear
that with a slight additional silicon real estate a major functionality extension can be
made, fully parallel, for the whole array.

An up-to-date implementation6 of such an extended cell in a 4096 processor cell
CNN Universal Machine chip in a 64 × 64 configuration with optical input has the
following main parameters:

Number of LAMs: 4

Number of LLMs: 4

Time constant in the linear domain: 200 nsec

Sphere of Influence, r = 1

311 15.2 Analogic CNN-UM cell

B A

LAM1

uij xij (0) xij

B A

Sr(ij)

Sr(ij)

LAM4 k = 1, 2, ...

LAOU

LAM2

LAM3

Nr(ij)
z

Possible signal paths

controlled by switches

(their configurations

are coded in LCCU)

f Sr (ij)

Cell nucleus

including state

capacitor, etc.

Programmed template

controlled sources

(A or B)

(e.g. OTA)

Sr (ij)

B A

From template

controlled sources

Program from

GAPU

Local analog

memory

yij*

k
yij

yij

Fig. 15.6. The analog part of the analogic CNN universal cell.

analog part
B/U

conv.

yij
* 1

LijY

local logic unit
 LLU

YLij

2
LijY p

LijY

B/U conv - bipolar/unipolar converter

Fig. 15.7. The logic part of the CNN-UM cell with comparator.

Accuracy of the template elements: <1%

Range of the absolute value of the template elements: 4

Signal dynamics: 200 mV

Details of a former design are described in another paper.7 The more sophisticated
design with 64 × 64 extended cells cited above has a special calibration circuit and
other tools to make it accurate and flexible enough. A new design, using 0.25 micron

312 Visual microprocessors

technology, can host 256× 256 processing extended cells with optical input. A design
with 128× 128 processors with complex optical sensors has recently been completed
(0.35 micron technology).

15.3 Emulated digital implementation

In Section 4.4 we have already studied the emulated digital implementation of the
CNN dynamics, in particular when using standard DSPs. We have mentioned that later,
in this chapter, we will introduce architecture, called CASTLE,8 as a very efficient
design.

Indeed, in the CASTLE architecture, we

• digitally emulate the analog and logic values by various word lengths (1, 6, 12, . . .

bits),

• digitally emulate the numerical integration of the CNN spatio-temporal dynamics,
using the absolutely necessary operators only,

• digitally emulate the local analog storage,

• digitally emulate some nonlinear operators, and

• implement the stored programmable processing.

Processor
unit

Processor
unit

Processor
unit

Global
control

unit

N

M

Processor
unit

Processor
unit

global command bus

the 2nd vertical
stripe

the 1st vertical
stripe

Processor
unit

Processor
unit

Processor
unit

Processor
unit

Image flow

Fig. 15.8. M pieces of physical processors are processing a vertical stripe of the image.

313 15.4 The visual microprocessor

Unlike in the DSP emulator discussed in Section 4.4 and shown in Fig. 4.10, here
many (e.g. M) elementary emulated analogic processors process one vertical stripe of
the image. The building block level schematic is shown in Fig. 15.8.

We suppose that the image flow is from top to bottom and after three horizontal
lines are already read in, the next line of state variables is being read in a sequence
following the move of the convolution window, one at a time (Fig. 15.9).

Since the number of parameters in the template is small, they can be stored in each
processor. The state variables of the convolution terms in the sum related to the A
template are read line by line and step by step as the convolution window is moving
(see Fig. 15.9).

part of a
horizontal
stripe

image flow
of a vertical
stripe

Fig. 15.9. One horizontal stripe of 4 lines (in case of a 3× 3 window) is stored on the CASTLE chip
at a time. The downloading of the new state variable of an image is following the move of the
convolution window. Updated values are shown in dark.

As to the division of labor among the M processors in a vertical stripe, many
strategies can be organized. One possibility is the assignment of one processor per
time step or one processor per stored row in the stripe.

Due to the fully custom-made design, as well as the scalable design, both in technol-
ogy and in cascading many chips, the parameters are quite remarkable. One application
area where this design is unique is the solution of 3D nonlinear spatio-temporal
problems with propagating effects. This is the area where analogic chips, even if they
are packed up on each other in a moderate number of layers in the third dimension,
could not solve big and sophisticated problems, at present.

15.4 The visual microprocessor and its computational infrastructure

When the first microprocessor was designed and fabricated at Intel Corporation at the
beginning of the 1970s, the goal was to make a calculator chip. The epoch-making
microprocessor, however, proved to be a universal device. The key feature was:

314 Visual microprocessors

stored programmability. For visual computing, especially when integrated with optical
sensors, a single chip stored programmable device is the CNN-UM chip. The many
types of “smart sensors” are, indeed, optical input CNN chips with fixed templates (or
in some cases the templates are controllable). The qualitative breakthrough comes with
stored programmability, resulting in the CNN-UM chips as visual microprocessors.
The first, fully functional, optical input, analog I/O, fully stored programmable, visual
microprocessor, with 64 × 64 processing cells, developed in Seville (cited earlier), is
shown in Example 15.1.

EXAMPLE 15.1: One of the first fully functional visual microprocessors, code named
cP 4000-O.

Similar to the classical microprocessors, however, stored programmability needs a
complex computational infrastructure – high-level language, compiler, macro code,
interpreter, operating system, physical code – to estimate the physical result and
to interpret it for the human observer. The microprocessor development systems
(sometimes called application development systems or chip prototyping systems) are
doing just these jobs. For the visual microprocessors, the CNN Chip Prototyping
System9 (CCPS) has been developed.

The functional overview of the complete system is shown in Fig. 15.10. The CCPS
consists of three parts:

• the compiler and interpreter,

• the CNN Operating System (COS) and standard CNN Physical Interface (CPI)
hosted on a PC add-on board, called CPS board (CNN Prototyping System board),
and

• the Platform, the only CNN-UM chip-dependent part, hosting the actual visual
microprocessor.

315 15.4 The visual microprocessor

P
C

C
P
S

B
O
A
R
D

PLATFORM

ALPHA
description

of an
algorithm

ALPHA
compiler

AMC code
interpreter, and

interfacesDesign tools
for SW

engineers

display

framegrabber

image and video library

software library

Video,
Camera,
CD, etc.
source

ISA bus/PC/bus

image data,
binary decision code

fields
(output of the CPS board)

interpreted macro code,
image data,

template data
(input of the CPS board)

CNN “Operating System”
(COS) running

on the TMS320C25

electrical output
data signals

electrical control, template,
and data signals (CPI code)

Level shifters, sample/hold, multiplexers, ... etc.

CNN-UM chip
optical input

CNN-UM
Chip

CNN Platform interface bus
CPI bus

CNN
Prototyping
System board

Fig. 15.10. The functional block diagram of the CNN Chip Prototyping System (CCPS).

Using this computational infrastructure, the visual microprocessors can be pro-
grammed: the programs can be downloaded on to the chips, as in the case of classical
digital microprocessors. Hence, analogic CNN computer software can be developed
without knowing how to make and embed the chips into the systems.

The functional block diagram of the software part (the first part of the CNN Chip
Prototyping System) is shown in Fig. 15.11. Writing a program for an analogic CNN
algorithm is as easy as writing a Basic program. We have used already parts of
the Alpha language code in Chapter 9. When writing a complete source code for
the closing operation (see Chapter 9 for details), the parameters of the actual visual
microprocessor are stored in the Library (like the templates and subroutines). The

316 Visual microprocessors

actual source code for the cP 4000 microprocessor with measured input and output is
shown in Example 15.2.

A new, available system is called ALADDIN.10

block

Algorithm: flow-diagram,
templates and subroutines

Alpha source code

Alpha compiler

Script
macrocode
(AMC-like)

AMC (analogic machine code)
followed by interpreters

Simulator
running on a
Pentium chip

in a PC

CNN-UM chip

in CCPS

CNN-UM chip in

 Engine Board

Emulated
digital

CNN-UM

Fig. 15.11. The functional block diagram of the software part of the CCPS.

EXAMPLE 15.2: Result of simulations obtained by using the simulator SimCNN.

INPUT (image size: 20 x 22) Result of the CLOSING operation

317 15.4 The visual microprocessor

Table 15.1. The Alpha source code and a measured input–output pair for the CLOSE operation.

Alpha code Description

/* CLOSING.ALF */ Performs the closing operation on a black and white
image; developed for using on simulator;

PROGRAM closing (in; out); two logic names of parameters of the program are
specified;

CONSTANT

ONE = 1; Definition of constants;
TWO = 2;

WHITE = -1.0;

TIME = 5;

TIMESTEP = 0.5;

ENDCONST;

CHIP SET simulator.eng; Chip set definition section: the simulator.eng file
serves as a system file for the compiler. It specifies the
workspace;

A CHIP chip section starts here;
SCALARS scalar variable definition section (chip);
IMAGES image definition section (chip);
im1: BINARY;

im2: BINARY;

im3: BINARY;

ENDCHIP; end of chip section;

E BOARD board section starts here;
SCALARS scalar variable definition section (board);

IMAGES image definition section (board);
input: BINARY;

output: BINARY; ENDBOARD; end of board section;

OPERATIONS FROM closing.tms; definition of analog operation symbol table; the
closing.tms file contains the template names of
templates that will be used in the algorithm;
the core of the algorithm starts here;
the specified templates will be used;

PROCESS closing; time step specification;
USE (erosion, dilation); loading the input image;
SwSetTimeStep (TIMESTEP); displaying the input image;
HostLoadPic (in, input);

HostDisplay (input, ONE); loading the image from board to chip;
executing the dilation template;

318 Visual microprocessors

Table 15.1. Continued.

Alpha code Description

im1:= input;

dilation (im1, im1, im2, TIME,

WHITE);

erosion (im2, im2, im3, TIME,

WHITE); executing the erosion template using
the result of “dilation”;

output:=im3; the result is copied from chip to board;
HostDisplay (output, TWO); displaying the output image;
ENDPROCESS; the core of the algorithm ends here;
ENDPROG; the end of the Alpha code;

15.5 Computing power comparison

There are many different types and measures for computing power comparison.
A simple type of comparison for the elementary template types (3 × 3) one-step
convolution or B template, erosion–dilation or a00 and B template, and the Laplace
operator or A and B templates). Clearly, the simple B template is the easiest one for a
digital emulation and the last one is the most difficult.

In real life algorithms, several templates are to be computed to solve a complex
problem. In Table 15.2 we show a type of comparison which considers two types
of algorithms defined by a mix of different template types. Algorithm A has only one
difficult template while Algorithm B has the same amount of simpler and more difficult
templates. Clearly, in case of complex algorithms the computing power improvement
is dramatic (about three orders of magnitude or more) in using similar technologies.

The task is to process an image of 128 × 128 pixels, including data transfer. If the
task is complex, the data transfer time in the analogic CNN-UM chip is negligible. If
the chip has an optical input with a capability of processing during image acquisition,
the input data transfer time is even zero. This means, if the data downloading rate from
a sensor is higher than the frame rate of the image flow, the problem is uncomputable
with digital technologies using the standard method of downloading a snapshot and
processing after it.

Table 15.2 shows that CNN computers offer an orders-of-magnitude speed advan-
tage over conventional technology when the task is complex. There are also advantages
in size, complexity, and power consumption. Very recent measurements on a 64× 64
processor Visual Microprocessor show an 8000 fold speed increase over a 400 MHz
Pentium when a B type algorithm with less erosions is used.

319 15.5 Computing power comparison

Table 15.2. Comparison of digital and analogic image processing technology. Computing time in µs

(data transfer included). Image size: 128× 128.

Pentium II TMS3206x CASTLE CNN-UM chip CNN-UM chip
0.25 µm, 0.25 µm, Emulated 0.8 µm, 0.5 µm
400 MHz 200 MHz digital CNN τCNN: 250 ns τCNN: 200 ns

8 processors 0.5 µm,
66 MHz

12 processors

3× 3 convolution
B templates 1,000 427 32 8/14.5b 5.6/10.6b

6τCNN or 1 iteration 2.34 31 125/69 89/47

Erosion/dilation
a00 + B templates 500 300 2.7/32a 8/14.5b 5.6/10.6b

6τCNN or 1 iteration 1.7 185/16a 63/35 89/47

Laplace
A+ B templates 15,000 6,414 480 10.3/16.8b 6.5/11.5b

15τCNN or 2.3 31 1456/892 2308/1304
15 iterations

Algorithm A
10 convolutions + 30,000 13,648 1,200 40.3/46.8b 18.5/23.5b

10 Erosions + 2.2 31 744/641 1622/1277
1 Laplace

Algorithm B
10 convolutions + 165,000 77,788 5,440 74/80.5b 32/37b

10 Erosions + 2.12 31 2230/2050 5156/4459
10 Laplace

Notes: abinary/gray-scale.
boptical input and electrical output/electrical input and output.
Figures in italic indicate the speed advantage compared to the Pentium II processor in the first column.

When an optical CNN computer is applied,11 B templates can be computed with the
speed of light. Then, the output data transfer is the only limiting factor in calculating
the computing power.

16 CNN models in the visual pathway and
the ‘‘Bionic Eye”

There is an on-going quest by engineers and specialists: compete with and imitate
nature, especially some “smart” animals. Vision is one particular area computer
engineers are interested in. Terms like “machine vision” and “computer vision”
demonstrate this interest. Recently, modeling the living visual system has become a
focus in science and technology. As the anatomy and physiology of the eye and other
elements of the visual pathway are becoming more and more known, especially in the
retinatopic part (Retina, Lateral Geniculate Nucleus (LGN), and the Visual Cortex),
engineers have been trying to imitate these models. These studies have led to a better
understanding of vision, overcoming the clear deficiencies of earlier, though useful,
principles of computer vision before the mid 1980s.

Based on the ground-breaking studies of Barlow, Dowling, and Werblin on verte-
brate retinas,1,2,3 a very simple model4 of the retina, a resistive grid, was implemented
on silicon and demonstrated by simulation studies. In spite of the many “silicon
retinas” built on this simple resistive grid model, it became clear that these models
are too simple to explain even some practical qualitative effects related to higher-order
spatio-temporal interactions in the retina. Attempts to address the more sophisticated
retinal models led to descriptive5 and network type6 models. In the latter case, not
only the retina, but a lot of other parts in the visual pathway had been first modeled
by using a single paradigm: cellular neural networks. Soon after these results, the
“Bionic Eye” architecture principle was invented,7 which defines a formal framework
of vision models and models of other spatio-temporal sensory modalities combined
and implemented on the CNN Universal Machine. A tutorial description can be found
in Werblin et al.8 Recently, new discoveries9,10,23 in retinal research have provided a
deeper insight into spatio-temporal functions.

In this chapter, first, key notions, representations, and principles are introduced,
which define the relation between studies of living visual organs and CNN models.
Next, we show a couple of prototype CNN models for elementary functions in the
visual pathway. In the third section, a simple qualitative CNN model of a “typical
vertebrate retina” is introduced stressing the fact that, in general, this is an open
field for research, and this mode is an “engineering understanding” of some facts

320

321 16.1 Receptive field organization

.
 .
 .
.

.

.

.

(a)

a0

a2

a4

a3

a1

 (b)

0 a2 0

A= a1 a0 a3

0 a4 0

b2
b0b1

B= b1 b0 b2

…Layer 1

…Layer 2

…

…

(c)

Fig. 16.1. A neuron with one axonal output and several dendritic synaptic inputs (a). A neuron
network fragment with recurrent synapses and its A template (b). A one-dimensional two-layer
neuron network with dendritic inputs from the preceding layer and its B template (c).

and measured results. A brief description of the “Bionic Eye” concept closes this
chapter.

16.1 Receptive field organization, synaptic weights, and cloning template

A typical anatomical structure of the retina and the visual pathway is the receptive field
organization. A schematic view of a receptive field organization is shown in Fig. 16.1.
Fig. 16.1(a) shows a neuron with one axonal output, which may branch to several other
neurons, and it has several dendritic inputs. The small gaps −〈◦ denote the synapses.

322 CNN models in the visual pathway

We will represent them by, possibly nonlinear and dynamic, template elements. The
small arrows show the direction of signal propagation.

In Fig. 16.1(b) a neuron in the center is receiving recurrent inputs from its neighbors,
placed on the same two-dimensional layer of neurons. Here, a square grid with
4-connectedness is presumed. Triagonal, hexagonal, and other grids can be treated
similarly. In this example the direct receptive field of the central neuron is defined by
the radius of one neighborhood of the affecting neurons. The accompanying feedback
A template is also shown in the figure. Hence, the direct 3 × 3 receptive field is the
sphere of influence Sr . In Fig. 16.1(c) a part of a two-layer neuron network is shown
schematically and each layer is shown as a one-dimensional layer (it may represent a
cross section of a 2D layer). The selected neuron, in the center on Layer 2, receives
dendritic inputs from the neighborhood in the input layer (Layer 1). The accompanying
feedforward B template is shown, as well. The direct receptive field is again the sphere
of influence Sr (i j) in the input layer. The cloning template represents the receptive
field organization. The elements of the cloning templates are the models of the
synapses. The neuron models are reflecting the biochemical and electrical properties.
In the simplest case, the axonal output voltage is given in terms of the synaptic currents.
These currents are functions of the controlling voltages of the synapses (voltage gated
transconductions). Hence, a CNN type equation is suitable.

For modeling the simplest qualitative interactions of receptive fields we suppose that
the standard CNN cell is appropriate as a neuron model and the synapses are linear.
Slightly more complex cell and synapse models will be introduced in Section 16.3.

16.2 Some prototype elementary functions and CNN models of the visual
pathway

In Table 16.1, we list corresponding notions of neurobiology and the artificial CNN
models related to spatio-temporal sensory information processing. This correspon-
dence helps us in “translating” models of neuroanatomy and neurophysiology to CNN
cloning templates.

For a one-dimensional (1D) model, the following cloning template is represented in
Fig. 16.2

A =
x x x

3.1 2 −2.5
x x x

B =
x x x

−0.7 0.5 1.5
x x x

z = 1

It is clear from the figure that the elements of matrix A represent the feedback paths
and the elements of B represent the feedforward path. The offset z is a local bias.

323 16.2 Some prototype elementary functions

Table 16.1.

Neuroanatomy CNN model Notations/comments

neuron/cell analog processor/cell

.

. +

+
-

artificial

living

+

+
-

signal signal
: afferent : input
: efferent : output

synapse connection weight
(template element)

: inhibitory : < 0
− −

: excitatory : > 0
+ +

: electrical : without delay

: chemical : with delay
D

signal path connection direction
: feedforward/dendritic : feedforward
: feedback/recurrent : feedback

stratum of neurons layer a 2D sheet of neurons/
lamina/layer processing elements

neural net grid (regular geometrical
grid); each node has the
same local connectivity

pattern

receptive field with neighborhood of size r each cell is locally connected
a given radius r within the neighborhood

receptive field organization cloning template the local weight pattern
(synapse strength pattern) (CNNgene)

isotropy all the off-center elements are
the same in the cloning

template

isomorphism space/plane invariance of the local weight pattern is
the cloning template the same everywhere

324 CNN models in the visual pathway

Table 16.1. Continued.

Neuroanatomy CNN model Notations/comments

center–surround antagonism cloning template sign dichotomy

ON-center OFF-surround e.g.

 − − −
− + −
− − −

 r = 1

OFF-center ON-surround e.g.

+ + + + +
+ − − − +
+ − − − +
+ − − − +
+ + + + +

 r = 2

tonic or phasic processing sensitive to intensity values responsive to slow or fast
or intensity value changes input changes/low-pass or

high-pass filtering

orientation line or object position
direction on a still image

direction direction of motion of
an object in a moving scene

orientation selectivity map orientation selectivity map

directional sensitivity map directional sensitivity map

“synapse on” “effect to”

The triad synapse action
The arrangement of the triad synapse is well known in neurobiology.11 Its function is to
sense changes in time. The arrangement is shown in Fig. 16.3. In the simplest model,
the inhibitory interneuron, in the indirect path of signal transmission, introduces a
delayed signal with sign reversal. The template realizing this action, with a unit time
delay, is as follows.

A = [0] Aτ = [0] τ = 1.0

B =
0 0 0
0 b0 b
0 0 0

B =
0 0 0
0 −b0 0
0 0 0

z = 0

On the right-hand side of Fig. 16.3 an input signal and a corresponding output signal
are shown. It shows clearly how changes in time are detected.

If the delay is not ideal but smooth, due to a first-order capacitive delay with a finite
time constant, qualitatively the same task is solved.

325 16.2 Some prototype elementary functions

u

0.50.50.5

222

1 1 1

3.1 –2.5 3.1 –2.5

1.5–0.7–0.7 1.5

x

y

Fig. 16.2. Structure of a CNN model.

τ tt

z1 z2
out out

t tτ

z2
inz1

in

+

-

+

+

τ

Fig. 16.3. (a) The triad synapse with living neurons. (b) The triad synapse model and its responses
to two different input signals.

Directional selectivity
Directional selectivity is not a single-cell feature in the nervous system. Following its
neuronal organization,12 we have translated this architecture into a CNN architecture

326 CNN models in the visual pathway

t
0

~

t

t

t

1

0

1

~

~

~

τ ττ

-
+

+
-

+

+

+

+

+

+

- -

t
0

t

t

t

1

0

1

Fig. 16.4. (a) Direction-selective neuronal connection scheme. (b) Artificial neural representation of
(a).

shown in Fig. 16.4. Putting reasonable parameters into the nonzero template elements,
the template below was able to demonstrate the directional selectivity. The two input
sequences (to right and left directions, respectively) are shown at the bottom of
Fig. 16.4(b) while the output sequences are drawn on the top. Clearly the left direction
is detected, the right direction is not.

A = [0] Aτ = [0] B =
0 0 0
0 a b
0 0 0

Bτ =
0 0 0
−c 0 0
0 0 0

z = 0; τ = 1; a, b, c > 0

Example: a = c = 1.5, b = 1

Length tuning
It is known that certain neurons in the Lateral Geniculate Nucleus (LGN) and the
visual cortex give a maximal response to an optimally oriented bar of a certain length.
The response decreases or vanishes when increasing the length of the bar stimulus. A
general “length tuning” mechanism was described12 with the following concept. In a
bigger (5×5, 7×7, etc.) receptive field or radius of sphere of influence, a cell receives
a moderate (say unity) excitatory (positive) stimulus from the near neighbor cell and a
bigger inhibitory (negative) stimulus from a distant neighborhood. In addition, if there
is a white spot in the center, the detection should also be prohibited. In this way all
bars will be detected which are smaller than or equal to a length of 2r+ + 1, where r+

327 16.2 Some prototype elementary functions

is the neighborhood radius in a given direction with positive synapse weights. We also
suppose that the negative weights are properly tuned to prohibit detection of longer
bars. In the case of detecting bars in the basic directions (vertical, horizontal, and the
two diagonals), the template shown in Fig. 16.5 performs the job.

A = [0]; B =

−3 0 −3 0 −3
0 1 1 1 0

−3 1 h 1 −3
0 1 1 1 0

−3 0 −3 0 −3

z = −1; xi j = 0

h(ukl)

unl0.2 1–1

1

–3

Fig. 16.5.

An input and output picture is shown on Example 16.1.

EXAMPLE 16.1: Length tuning. Detecting horizontal, vertical and diagonal bars with length
not longer than three pixels.

input picture output picture

328 CNN models in the visual pathway

Orientation selectivity
Orientation selectivity is a well-known function in the visual cortex.13 This means that
light or dark bars with a given orientation will be detected. The uncoupled cloning
template below detects bars with a −45◦ slope. The geometry of the positive terms in
the B template determines the enhancement of the derivative of the state variable and
the positive feedback brings the values to black and white. The values of the template
elements are determined based on the DP Plot. As a default, the initial state is zero.

A =
0 0 0
0 2 0
0 0 0

B =
0.25 0 0

0 0 0
0 0 0.25

z = −1

An input–output picture pair is shown in Example 16.2. It is clear how easily we can
hide information read out quickly by a CNN template (or, in a more sophisticated case,
by analogic CNN algorithms).

EXAMPLE 16.2: Orientation selectivity. Bars with −45◦ slope are detected.

input picture output picture

A simple visual illusion
Many, even complex, visual illusions can be reproduced via CNN models.14,15 One of
the simplest is the arrowhead illusion shown in Example 16.3. The effect is simple. On
the input image we see two arrowhead pairs, one is converging (upper row) and the
other is diverging (lower row). The distances between the arrowheads are the same.
Still, we perceive the distance between the arrowheads in the upper row bigger than
in the lower row. Keeping in mind the antagonistic center-surround receptive field
organization, an on-center off-surround B template will eliminate pixels with more
dense positive pixels nearby. Hence, it is not surprising that, if we put this type of B

329 16.3 Simple qualitative ‘‘engineering” model

template in an uncoupled cloning template, the arrowhead illusion will be manifested,
as shown on the output picture of Example 16.3.

A =
0 0 0
0 1.3 0
0 0 0

B =

−0.1 −0.1 −0.1 −0.1 −0.1
−0.1 −0.1 −0.1 −0.1 −0.1
−0.1 −0.1 1.3 −0.1 −0.1
−0.1 −0.1 −0.1 −0.1 −0.1
−0.1 −0.1 −0.1 −0.1 −0.1

z = 0

Needless to say, many other on-center off-surround-cloning templates can produce the
same effect.

Using separate layers for the three colors, red, green, and blue (RGB), the basic
single-opponent and double-opponent effects of color vision can be modeled16 as well
as some more complex phenomena.17

EXAMPLE 16.3: The arrowhead illusion. Input picture (a) and the simulated perceived illusion
as an output (b).

(a) input (b) input

16.3 A simple qualitative ‘‘engineering” model of a vertebrate retina

In what follows, using a multi-layer CNN model, we present a qualitative model of a
vertebrate retina. This is an “engineering” model compared to a neurobiology model.
Still, it reflects many of the earlier and recent findings related to morphologically and
physiologically faithful retinal models.2,3,8,9,10,18,19,20,21,23 The aim and scope of this
section is to make simpler CNN models with the same qualitative effects as measured
in some vertebrate retinas.

First, we will introduce cell, synapse, and receptive field organization (template)
prototypes as “Lego” elements for retina models.

330 CNN models in the visual pathway

The cell prototype
We usually use a simplified model which is able to take into account the most important
physiology parameters. This is a first-order model of a CNN layer (Fig. 16.6):

Cẋi j = − 1

R
xi j +

∑
Bi j,klukl +

∑
Di j,kl g(xi j , xkl , ykl , ukl , Erevkl)+ zi j

τ = RC; zi j = IL + Er

R
(16.1)

B

x

y

τ, Er

u

(a)

•

•

Er

 IL

R C g(xij,ykl,Erevkl)Dij,kl

… yij

xij

(b)

Fig. 16.6. (a) A single cell layer. denotes a spatial interaction within the receptive field (B is a
matrix with off-center elements as well), u is the input potential (typically from photoreceptors),
x(xi j) is the cell membrane potential, y is the output. (b) A simple core cell electrical equivalent
circuit.

In this simplest case, we suppose an input receptive field (Sr (i j)) represented by a
B template. All the other interactions are included in the last term (D). τ is the time
constant, the product of the membrane capacitor (C) and the membrane resistance (R),
IL is the leakage current, Er is the resting potential, Erev is the reverse potential, and
xi j is the membrane potential. The last term contains a sum of voltage controlled/gated
transconductances (VCCS: voltage controlled current sources). In this term, we take
into account the voltage controlled interactions coming from the same and other layers.
In the output equation, in its simpler form

yi j = f (xi j) (16.2)

331 16.3 Simple qualitative ‘‘engineering” model

f (·) may be a simple linear term (e.g. yi j = xi j) or it may also be the various forms
of the ubiquitous sigmoid functions. The unity gain threshold characteristics is:

yi j = 1
2 (|xi j + 1| − |xi j − 1|) (16.3)

By playing with a constant coefficient and changing the saturating signal levels, many
different operation modes can be tuned in. In what follows we will use yi j = xi j .

As default, we use the following relative units: mV, msec, pA, G�, micron, pF.

Some synapse types (S)
The synapse conductance functions in the term g(·) are functions of the synapse
voltage v; i = g(v) or i = g(v)(Erev − v). The form of g(·) could be linear or
nonlinear. A few of these are shown in Fig. 16.7.

S1A linear bipolar: v

g(v)

g(v) = v

S1B saturated bipolar: v

g(v)

1
1

–1

–1
g(v) = (|v+ 1| – |v – 1|)

S2A simple rectifier: v

g(v)

≥
<

=
vv

v
vg

:0

0:0
)(

1
2

Fig. 16.7.

The S2A type rectifier curve can be shifted into the g or v direction (S2B).
To get the total synapse contribution, we have to multiply the synapse conductance

function g(·) with the constant synapse weight. This synapse weight is defined as a
template element, or a synaptic receptive field organization.

Receptive field organization types (RF)
The simplest receptive field organization, used mainly for a feedforward transfer to a
layer either from an input (photoreceptor) or from a preceding layer output, is a central

332 CNN models in the visual pathway

gain type with a gain value G0.

RF0:
0 0 0
0 G0 0
0 0 0

· g

A receptive field organization with Gaussian weight distribution of the weights in
space is given as

RF1:
G(
√

2) G(1) G(
√

2)

G(1) G(0) G(1)

G(
√

2) G(1) G(
√

2)

· g where G(p) = He−(p/σ)2

p is the distance of the given cell from the center cell. RF1 is mainly used in interlayer
feedforward interactions; σ is a parameter, its default value is 1.

Diffusion-type receptive field organization has spatial weighting defined below.
This is mainly used in intra-layer interactions defining diffusion, by an antagonistic,
OFF-center ON-surround receptive field. We use the following notation for a layer
with diffusion-type receptive field of λ diffusion parameter.

λ
τ, Er

Fig. 16.8.

RF2A:
λ2/3 λ2/3 λ2/2
λ2/3 −8λ2/3 λ2/2
λ2/3 λ2/3 λ2/2

· g or RF2B:
λ/2 λ λ/2
λ −6λ λ

λ/2 λ λ/2
· g

If the sign of the central element in RF2B is positive, (RF2C) we can generate trigger
waves. As a default, we use RF2A.

General types of ON-center OFF-surround or OFF-center ON-surround receptive
field organizations, even with larger radius (5×5, 7×7, etc.) or with other sign values
can also be defined term by term.

In general, a receptive field organization is used in defining the templates.

Multilayer CNN for receptive field interactions
Modeling a retina, we need more layers. A transfer operator Tpq represents an
interaction from the pth layer output to the qth layer state. This means we have a

333 16.3 Simple qualitative ‘‘engineering” model

state equation for the qth layer in the same form as in (16.1), however, taking into
account the interactions from other layers as well

Cq ẋq
i j = − 1

Rq
xq

i j +
∑

p=p1,p2,...
p �=q

Tpq ∗ yp +
∑

k=1,2,...

T k
qq ∗ yq + zq (16.4)

where the interlayer transfer template operator Tpq could come from several other
layers (p = p1, p2, . . .) and there may be several different intra-layer template
operators, T k

qq (k = 1, 2, . . .), e.g. diffusion operators. The term z in the simple case
is z = IL + Er/R.

If Tpq is an inter-layer transfer from one layer to another, then Tpq is typically a B
template

T pq
p �=q

∗ yp =
∑

kl∈S p
r (i j)

B pq
i j,kl y p

kl (16.5)

where S p
r (i j) is the sphere of influence in the pth layer. If the pth layer is the generic

input layer, then we get

T pq
p �=q

∗ u =
∑

kl∈Su
r (i j)

Bu
i j,klukl (16.6)

where Su
r (i j) is the sphere of influence in the generic input layer (u).

If T k
pq is an intra-layer transfer, then T k

qq is an A template

T k
qq ∗ yq =

∑
kl∈Skq

r (i j)
k=1,2,...

Akq
i j,kl yq

kl (16.7)

where Akq is the kth A template in the qth layer and Skq
r (i j) is the sphere of influence

in the qth layer for the kth A template.
Hence, as an example, a simple multilayer receptive field interaction prototype

could be as follows (Fig. 16.9).
Suppose that RF0 is defined by linear synapses with G0 = 2, RF1 is defined by

linear synapses with H = 1 and σ = 1. RF0 and RF1 are B templates, representing
inter-layer interactions. RF2B is an intra-layer interaction, a diffusion-type A template
with λ = 1.5.

The following templates define these receptive field organizations:

RF0: B = B0 =
0 0 0
0 2 0
0 0 0

RF1: B = B1 =
0.13 0.37 0.13
0.37 1 0.37
0.13 0.37 0.13

334 CNN models in the visual pathway

λ = 1.5RF1

RF0
input

output

τ = 80
IL = 0

R = 5

Er = 0

τ = 160
IL = 0

R = 5

Er = –0.5

RF2B

Layer 1

Layer 2

Fig. 16.9. A receptive field interaction prototype.

RF1: A = A1 =
0.75 1.5 0.75
1.5 −9 1.5
0.75 1.5 0.75

Hence, for the two layers the cloning templates are:

Layer 1:

A = [0], B = B0, z = IL + Er/R = 0

Note that in the state equation τ = 80.

Layer 2:

A = A1, B = B1, z = IL + Er/R = −0.1

In this state equation τ = 160.
Let us now turn to some retinal models.

The structure of a prototype retinal model
Following the on-going and recent research results on retinal
modeling3,8,9,10,18,19,20,21,23, we condense the structure of the model into a
one-dimensional cross section of the two-dimensional (2D) layers in Fig. 16.10 (also
showing, in the middle, the branching of signal flow and later their converging).

The upper part of the model represents the so-called outer plexiform layer (OPL),
the lower part the inner plexiform layer (IPL).

A more structured morphological model of the ON path using two types of amacrine
cells is shown in Fig. 16.11.

A multilayer CNN model is shown in Fig. 16.12.
In this case, Er = 0, and τ is controlled holding R = 1. Based on the values of the

335 16.3 Simple qualitative ‘‘engineering” model

ON OFF

photoreceptors
(cones and rods)

horizontal cell layer

bipolar cell layer

amacrine cell layer:

narrow and wide field cell nets

ganglion cell layer

output to the optic nerve

Fig. 16.10. A global structure of a retina model.

+ +
-

–

–– ––

–

+ + + +

–

–

–

ON ON ONAM I

–
AM II

HORIZONTAL

BIPOLAR

AMACRIN

GANGLION

–

CONE

Fig. 16.11. An approximate interaction mechanism of the ON-path from a cone to a ganglion cell.

336 CNN models in the visual pathway

Cτ

τ

τ

τ

τ

τ

H

B

A

A2

G

λ

–1.2

1.2
–1.4 3

–0.5

–1
1

2
–1 2

–1

1

1 1

1

–1
–1

4.5

= 0.5

–1

λ = 2.5

λ= 1.5

λ= 0.5

λ= 1.5

λ= 2.5

λ= 0.5

λ= 6

Fig. 16.12. A retinal model showing simple interactions. Bold arrows are positive excitatory
interactions, thinner arrows are negative inhibitory ones. Dotted lines represent nonlinear (rectifier
type) synapses. The last layer converts the analog output into a spike train coding.

receptive fields, the CNN state equation of all layers can be specified in the way we
have described earlier. For example, for the horizontal layer we get

A =
0 0 0
0 3 0
0 0 0

B =
3 6 3
6 −36 6
3 6 3

z = 0

Simulating a simple action, the calculated and measured responses were close in their
qualitative behavior, shown as follows.

The input image was a square flash in a gray background illumination (Fig. 16.13).
Measurements have been made in a cross section, that is, in a one-dimensional line of
neurons. The neuron activity is measured in time. For example, in Fig. 16.14 we show
a typical analog 1D output in time.21

Using the model of Fig. 16.12, two typical outputs, a two-tagged parameter setting,

337 16.3 Simple qualitative ‘‘engineering” model

X neuron positions in a horizontal line

u
u

t

1

0

u
u

1 2t t

1

0

Fig. 16.13. The input is a square flash.

X

Fig. 16.14. 1D dynamics map: intensity is proportional to the darkness.

are shown in Fig. 16.15. Fig. 16.15(a) shows a derivative in space, and Fig. 16.15(b)
shows a derivate in time. These results were in good agreement with the measurements.

338 CNN models in the visual pathway

are shown in Figure 15. Figure

(a) (b)

X

Fig. 16.15. Measured responses (a): derivative in space (b): derivative in time.

16.4 The ‘‘Bionic Eye” implemented on a CNN Universal Machine

The CNN Universal Machine (CNN-UM) architecture is ideal in implementing many
spatio-temporal neuromorphic models. In a way, we can program, even stored program
a CNN-UM to mimic different retinas. Program A could mimic a frog retina, Program
B could mimic a tiger salamander retina, Program C a rabbit retina, and Program
D an eagle retina. We can write Program XR, an extended retina program which
could combine these retinas. What is more, we can combine biologically faithful,
neuromorphic models, biologically inspired models, and analogic artificial image
processing algorithms. Implementing all these on the CNN-UM, we are constructing
a “Bionic Eye”.22

Moreover we can combine different spatio-temporal modalities: the multispectral
visual scene, the auditory scene, the somatosensory scene, etc.

Indeed the Bionic Eye concept implemented on the CNN-UM is an algorith-
mic combination of biological and artificial models and algorithms for sensing–
computing–recognizing task in a multimodal, spatio-temporal scene.

Notes

1 Introduction

1 P. Saffo, “Sensors: the next wave of Infotech revolution,” Institute for the Future, Menlo Park,
1999.

2 L.O. Chua and L. Yang, “Cellular Neural Networks: Theory and Applications,” IEEE Transactions
on Circuits and Systems, vol. 35, pp. 1257–1290, 1988.

3 T. Roska and L.O. Chua, “The CNN Universal Machine: An analogic array computer,” IEEE
Transactions on Circuits and Systems, Series II: Analog and Digital Signal Processing, vol. 40,
pp. 163–173, 1993.

4 S. Espejo, R. Domı́nguez-Castro, G. Liñán, and A. Rodrı́guez-Vázquez, “A 64×64 CNN universal
chip with analog and digital I/O,” Proc. 5th Int. Conf. on Electronics, Circuits and Systems
(ICECS-98), Lisbon, Portugal, pp. 203–206, 1998.

5 Á. Csurgay, W. Porod, and C. Lent, “Signal processing with near-neighbor-coupled time-varying
quantum dot arrays,” IEEE Transactions on Circuits and Systems, Series I, vol. 47, August 2000.

6 L.O. Chua, “Molecular devices, systems and computers,” Proc. IEEE International Symposium
on Circuits and Systems, ISCAS 2000, Geneva, 2000.

7 T. Roska, Á. Zarándy, S. Zöld, P. Földesy, and P. Szolgay, “The Computational Infrastructure of
Analogic CNN Computing – Part I: The CNN-UM Chip Prototyping System,” IEEE Transactions
on Circuits and Systems, Series I, Special Issue on Bio-Inspired Processors and Cellular Neural
Networks for Vision, vol. 46, pp. 261–268, 1999.

8 T. Roska, “Computer-sensors: spatial-temporal computers for analog array signals, dynamically
integrated with sensors,” J. VLSI Signal Processing Systems, vol. 23, pp. 221–237, 1999.

2 Notations, definitions, and mathematical foundation

1 There will be, in further chapters, more general nonlinearities.

2 P. Hartman, ODE, Birkhauser, 1982, p. 8.

3 The signal flow graph is a classical signal representation tool which is used in a slightly different
context but with similar objectives. In Fig. 2.27, the bold edges coincide exactly with the classical
definition of a signal flow graph. However, the light edges should not be interpreted as a part of
the classical signal flow graph, but rather as a mnemonic aid for showing the degree of influence
of the output of the center cell on its neighbors.

3 Characteristics and analysis of simple CNN templates

1 In the following, unless otherwise stated, we use this type of boundary condition.

339

340 Notes

2 Some common sources of noise include camera reflections and counting statistics in sensors, such
as image detectors, due to a small number of incident photons, electrons, etc.

3 The finiteness property follows from the piecewise linearity of the shifted DP plot.

4 Courtesy of Professor Angel Rodrı́guez-Vázguez, from the University of Seville, Spain.

5 For simplicity so far, no boundary conditions have been specified in the previous examples since
the features of interest (e.g., edges, corners, thresholds, etc.) are local and static (do not move) in
nature, and hence are independent (except for the boundary cells) of the boundary conditions. The
SHIFT template is our first example where it is essential to specify the boundary conditions.

6 The word “morphology” is of Greek origin meaning “form” or “structure.” It is a branch of biology
concerned with the study of the “shapes” and “structures” of living organisms and systems. It
is used in image processing applications to denote any transformation or operation concerned
with the “geometrical” shape and structure of patterns. The mathematical foundation is called
mathematical morphology.

4 Simulation of the CNN dynamics

1 To run a simulation on the CANDY system, we use the graphical user interface called VisMouse
Platform and the SimCNN multilayer CNN simulator.

2 Generally, f (·) may be any continuous function. In the literature, the most frequently used
DTCNNs are using the two types of f (·) just introduced (being either a hard limiter or a unity
gain piecewise linear saturation function).

5 Binary CNN characterization via Boolean functions

1 We have chosen here {0, 1} instead of {−1, 1} as our binary codes in order to exploit directly the
immense literature and theory on Boolean functions, which are almost always couched in terms
of “zeros” and “ones.”

2 In order to appreciate how large the number � is, compare it to the following universal
benchmarks:

Age of the universe = 1030 picoseconds

Mass of the universe (calculated in units of mass of a hydrogen atom) = 1080

Volume of the universe (calculated as a sphere with a diameter of 10 thousand million light-
years) = 1084 cm3

3 Note that C(A0, B, z) may generate non-Boolean maps as well.

4 This reclassification task is a subjective exercise since not everyone may agree on whether a
particular pixel in fuzzy cases is a corner, or not a corner.

6 Uncoupled CNNs: unified theory and applications

1 Indeed, we will see later that even simple third-order circuits (containing two capacitors and
an inductor) having only three equilibria can exhibit extremely complex oscillatory and non-
periodic behaviors, called chaos.

2 This theorem can be easily extended to space-dependent CNNs as well.

341 Notes

3 The signum function is defined by:

sgn(x) = 1, if x > 0
= −1, if x < 0

4 Although Eq. (6.2) holds for both the bistable and the monostable cases, in the monostable case

Eq. (6.2) can be replaced by the simpler formula

yi j (∞) = sgn[wi j − (a00 − 1)]

which is independent of the initial state xi j (0).

5 We use the term local Boolean function to emphasize that each one of the 2512 Boolean functions
constitutes a complete set of local rules.

6 The symbols a, x, and b in Eq. (6.45) are not related to the CNN templates. They are chosen here
in order to conform to the common usage in the Boolean algebra literature.

7 To construct another example of a Boolean function of two variables which is not linearly
separable, simply take the logic complement of β, i.e., change the pixels in Fig. 6.13(b) from
“black” to “white,” and vice versa. It is easy to verify that the XOR Boolean function β4 and its
complement β5 = β̄4 are the only two Boolean functions of two variables which are not linearly
separable.

8 To avoid clutter, we will often revert to a single-index notation ui , instead of ukl , whenever the
context is obvious.

9 It is essential to use the CNN truth table here, not the Boolean truth table. A very common
mistake, which the authors themselves have occasionally committed, is to apply the Boolean
truth table directly to equations or numerics.

10 An inspection of the CNN template catalog will reveal that most B templates are sparse, usually
less than five, in which case Eq. (78) consists only 32 linear inequalities.

11 Observe that the minimal truth table of each minterm CNN contains exactly one black pixel
surrounded by a sea of white pixels. Since the minimal truth table for nine Boolean variables has
512 pixels, there are 512 distinct minterm CNNs, each one characterized by the location of its
one and only black pixel.

12 In actual realization, it would be necessary to sandwich an interface circuitry for storing the
output of each CNN over a time interval equal to at least the settling time of each CNN before
applying it to the next CNN in the “chain.” While this hard-wired CNN XOR can be mass
produced as an ASIC (Application Specific Integrated Circuit) and sold as a CNN logic array
building block, it would be more practical to “program” a CNN universal chip (to be presented
in Chapter 7) if the application calls for only a small quantity of this component.

13 We have deleted the AND operators ∧ in the input product terms u
αk1
1 ∧ u

αk2
2 ∧ · · · ∧ u

αkkl
l ∧

· · · ∧ u
αkN9
9 in Eq. (6.85) to avoid clutter.

14 The minimal truth table for each maxterm CNN contains exactly one white pixel surrounded by
a sea of black pixels. Clearly, for nine Boolean variables, there are 512 distinct maxterm CNNs,
each one characterized by the location of the one and only “white” pixel in the minimal truth
table.

7 Introduction to the CNN universal machine

1 E.R. Daugherty, Introduction to morphological image processing, SPIE, 1992.

2 A function b defined by weights w1, w2, . . . , w9 and is denoted by b(w1, w2, . . . , w9), z.

342 Notes

3 K.R. Crounse, E.L. Fung, and L.O. Chua, “Efficient implementation of neighborhood logic for
cellular automata via the cellular neural network universal machine,” IEEE Trans., CAS-I, Vol.
44, 1997, pp. 355–361.

8 Back to basics: Nonlinear dynamics and complete stability

1 For a rigorous statement and proof of the Poincaré–Bendixon theorem, see P. Hartman, Ordinary
Differential Equations, p. 151.

2 F. Zou and J.A. Nossek, “A chaotic attractor with cellular neural network,” IEEE Trans. on
Circuits and Systems, Vol. 38, no. 7, 1991, pp. 811–812.

3 F. Zou, G. Seiler, A.J. Schuler, B. Eppinger and J.A. Nossek, “Experimental confirmation of the
lady’s shoe attractor,” IEEE Trans. on Circuits and Systems, Vol. 39, no. 10, 1992, pp. 844–846.

4 An equilibrium point xQ of ẋ = f (x) is said to be isolated if and only if there are no other
equilibrium points in a sufficiently small neighborhood of xQ .

5 In the nonlinearity f we have been using, we can choose θ = 0, since f (−∞) = −1, f (∞) = 1.
For the sake of generality, the hypothesis on f does not require that the values of f lie between
−1 and 1.

6 J.P. LaSalle, “An invariant principle in the theory of stability,” in J.K. Hale and J.P. Salle, Editors,
Differential Equations and Dynamical Systems, Academic Press, 1967.

7 A set M ⊂ Rn is called an invariant set of Eq. (8.10) if any trajectory starting from a point
x0 ∈ M at t = 0 remains in M for all t > 0. Since M in this case contains only equilibrium
points, it is clearly an invariant set.

8 We have already encountered such a situation in Example 8.1(c) of Chapter 6.

9 This is, in fact, the only general tool currently available to prove complete stability of Eq. (24).

10 To be more precise, for theorems 2–4 (and the corollaries to these theorems) in this section,
we should add that the complete stability property, unlike in theorem 1, applies to all initial
conditions except for a set of measure zero. For example, there may exist (possibly rare) such
completely stable CNNs where there is an unstable limit cycle.

11 In this section, it is useful to think of each directed branch as a one-way street and a node as an
intersection between two or more one-way streets. Hence for each nonzero entry in A (akl �= 0),
there are two connecting one-way streets in the same direction which allows one to travel from
node (k, l) to node (k̄, l̄). Two or more such branches in a directed graph are said to be similarly
directed.

As an example, the signal flow graph GA associated with the A template in Fig. 8.10(a) is shown
in Fig. 8.10(b). Observe that GA has six directed branches (not counting the self-loop) since
there are only three non-zero non-central entries in the A template; namely, a−1,−1 = −2.6,
a−1,0 = 1.5, and a1,1 = 3.2. Observe that for each zero entry (ak,l = 0, k �= l) in the A
template, the corresponding node (k, l) in GA has no branches attached to it. Observe also that
the “sign” of akl �= 0 is irrelevant in so far as the direction of the associated branch is concerned,
which always goes from node (k, l) to the center node (i, j), and its reflected “twin” branch
always goes from the center node (i, j) to node (k̄, l̄).

In the signal flow graph GA shown in Fig. 8.10(b), we also write the synaptic weight akl next
to the pair of directed branches associated with each entry of the A template where akl �= 0.
For completeness, we also draw a self-loop at node (i, j) with the self-feedback synaptic weight
ai j = 4.7 written next to it. For the purpose of this section, however, both the synaptic weights

343 Notes

and the self-loop are irrelevant to the following complete stability theorem and will therefore be
deleted from GA.

12 A similarly directed path from node (k1, l1) to node (k2, l2) is defined as a sequence of directed
branches (one-way streets) which allows one to travel from an initial node (k1, l1) to a destination
node (k2, l2).

13 Since N is an odd integer, the geometric center of GA(N × N) is a node of GA(N × N).

14 Two nodes (k, l) and (k̄, l̄) are said to be rotationally symmetric if and only if the position of
(k, l) coincides with that of (k̄, l̄) upon rotating the CNN by 180◦ about its center position.

15 For the proof of the complete stability Theorem 3, see L.O. Chua and C.W. Wu, “On the Universe
of Stable Cellular Neural Networks,” International Journal of Circuit Theory and Applications,
Vol. 20, 1992, pp. 497–517.

16 M.W. Hirsch, “System of differential equations that are competitive or cooperative II: Conver-
gence almost everywhere,” SIAM Math. Anal., Vol. 16, no 3, May 1985, pp. 423–439.

17 L.O. Chua and T. Roska, “Stability of a class of nonreciprocal Cellular Neural Networks,” IEEE
Trans. on Circuits and Systems, Vol. 37, 1990, pp. 1520–1527.

18 L.O. Chua and C.W. Wu, “On the universe of stable Cellular Neural Networks,” International
Journal of Circuit Theory and Applications, Vol. 20, 1992, pp. 497–512.

19 M.W. Hirsch, “System of differential equations that are competitive or cooperative, II: Conver-
gence almost everywhere,” SIAM Math. Anal., Vol. 16, no 3, May 1985, pp. 423–439.

20 A permutation matrix P is a matrix whose entries consists of 0 or 1 such that each row or column

contains only one “1.” A matrix D is irreducible if there exists a permutation matrix P such that

PDPT is of the form

× ◦
⊗ ×

where “◦” denotes a matrix with all zero entries, “×” denotes a nonzero matrix, and “⊗” denotes
any matrix.

9 The CNN universal machine (CNN-UM)

1 An operator y(t) = ŷ(u1(t), u2(t), . . . , un(t)) is of fading memory if �y(t)|t=t0 → 0 as
�ui (t − τ) is bounded and τ →∞.

2 T. Roska, “The CNN chip set, engine board and the visual mouse,” Proc. IEEE, CNNA-96, pp.
487–492, Seville, 1996.

10 Template design tools

1 E.g. T. Kozek, T. Roska, and L.O. Chua, “Genetic algorithm for CNN template learning,” IEEE
Trans. on Circuits and Systems, I: Fundamental Theory and Applications (CAS-I), Vol. 40, No. 6,
1993, pp. 392–402.

2 E.g. Cs. Rekeczky, A. Tahy, Z. Végh, and T. Roska, “CNN based spatio-temporal nonlinear
filtering and endocardial boundary detection in echocardiography,” Int. J. Circuit Theory and
Applications: Special Issue: Theory, Design and Applications of Cellular Neural Networks, II:
Design and Applications, Vol. 27, No. 1, 1999, pp. 171–207.

344 Notes

3 E.g. P. Földesy, L. Kék, Á. Zarándy, T. Roska, and G. Bártfai, “Fault tolerant design of analogic
CNN templates and algorithms, part I: The binary output case,” IEEE Trans. on Circuits and
Systems I: Special Issue on Bio-Inspired Processors and Cellular Neural Networks for Vision,
Vol. 46, No. 2, 1999, pp. 312–322.

4 Cs. Rekeczky and L.O. Chua, “Computing with front propagation: Active contour and skeleton
models in continuous-time CNN,” Journal of VLSI Signal Processing, Special Issue: Spatiotem-
poral Signal Processing with Analogic CNN Visual Microprocessors, Vol. 23, No. 2/3, 1999,
pp. 373–402, Kluwer.

5 I. Szatmári, Cs. Rekeczky and T. Roska, “A nonlinear wave metric and its CNN implementation
for object classification,” Journal of VLSI Signal Processing, Special Issue: Spatiotemporal Signal
Processing with Analogic CNN Visual Microprocessors, Vol. 23, No. 2/3, 1999, pp. 437–448,
Kluwer.

6 L. Nemes, L.O. Chua, and T. Roska, “Implementation of Arbitrary Boolean Functions on a CNN
Universal Machine,” International Journal of Circuit Theory and Applications, Vol. 26, 1998,
pp. 593–610.

11 CNNs for linear image processing

1 It follows from Eq. (11.12) that an alternate definition of Eqs (11.10)–(11.11) can be made by
choosing a common scaling factor equal to 1

2π
in both equations.

12 Coupled CNN with linear synaptic weights

1 C.-W. Wu, T. Roska, and L.O. Chua, “Cellular Neural Networks operating in oscillatory modes,”
Memorandum No. UCB/ERL M94/5, Electronics Research Laboratory, University of California
at Berkeley, 1994.

2 Á. Zarándy, “The art of template design,” International Journal of Circuit Theory and Applica-
tions, Vol. 26, Nov.–Dec. 1998.

3 Á. Zarándy, “On conditions a propagation is of unidirectional change in coupled CNN,” Technical
Report DNS-11-1998, Computer and Automation Institute, Budapest, 1998.

13 Uncoupled standard CNNs with nonlinear synaptic weights

1 T. Roska and L.O. Chua, “Cellular Neural Networks, with non-linear and delay-type template
elements and non-uniform grids,” International Journal of Circuit Theory and Applications,
Vol. 20, 1992, pp. 469–481.

2 Cs. Rekeczky, T. Roska, and A. Ushida, “CNN based difference-controlled adaptive nonlinear
image filters,” International Journal of Circuit Theory and Applications, Vol. 26, 1998, pp. 375–
423.

3 Zero-flux would be better since this will generate non-existing edges at the boundary.

14 Standard CNNs with delayed synaptic weights and motion analysis

1 T. Roska, and L.O. Chua, “Cellular Neural Networks, with non-linear and delay-type template
elements and non-uniform grids,” International Journal of Circuit Theory and Applications,
Vol. 20, 1992, pp. 469–481.

345 Notes

2 T. Roska, C.W. Wu, M. Balsi, and L.O. Chua, “Stablity and dynamics of delay-type general and
Cellular Neural Networks,” IEEE Transactions on Circuits and Systems-I, Vol. 39, 1992, pp. 487–
490.

3 D.H. Hubel, and T.N. Wiesel, “Receptive fields, binocular, interaction and functional architecture
in the cat’s visual cortex,” J. Physiology, Vol. 160, 1962, pp. 106–154.

4 T. Roska, T. Boros, and A. Radványi, “Detecting moving and standing objects using Cellular
Neural Networks,” CTA, Vol. 20, 1992, pp. 613–628.

15 Visual microprocessors – analog and digital VLSI implementation of the CNN universal machine

1 The interested reader can consult the many papers on this subject or the new book devoted to
the design of CNN-UM visual microprocessors [T. Roska, and A. Rodrı́guez-Vázquez (eds),
J. Wiley, 2000, in press].

2 N. Frühauf, E. Lüder, and G. Bader, “Fourier optical realization of Cellular Neural Networks,”
IEEE Transactions on Circuits and Systems, Series II, Vol. 40, 1993, pp. 156–162.

3 R. Domı́nguez-Castro, A. Rodrı́guez-Vázquez, S. Espejo, and R. Carmona, “Four-quadrant
one transistor-synapse for high-density CNN implementations,” Proc. IEEE CNNA-98, 1998,
pp. 243–248.

4 A. Rodrı́guez-Vázquez et al., “Current mode techniques for the implementation of continuous-
and discrete-time cellular neural networks,” IEEE Transactions on Circuits and Systems, II,
Vol. 40, No 3, 1993, pp. 132–146.

5 R. Carmona-Galán, A. Rodrı́guez-Vázquez, S. Espejo-Meana, R. Domı́nguez-Castro, T. Roska,
T. Kozek, and L.O. Chua, “An 0.5-µm CMOS analog random access memory chip for TeraOPS
speed multimedia video processing,” IEEE Transactions on Multimedia, Vol. 1, No 2, 1999,
pp. 121–135.

6 G. Linán, S. Espejo, R. Domı́nguez-Castro, E. Roca, and A. Rodrı́guez-Vázquez, “CNNUC3: A
mixed-signal 64×64 CNN universal chip,” Proceedings of Seventh Int. Conf. on Microelectron-
ics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro’99), 1999, pp. 61–68, Granada.

7 R. Dominguez-Castro et al., “A 0.8 µm CMOS 2-D programmable mixed-signal focal-plane
array processor with on-chip binary imaging and instructions storage, IEEE Solid State Circuits
Journal, Vol. 32, 1997, pp. 1013–1026.

8 P. Keresztes, Á. Zarándy, T. Roska, P. Szolgay, T. Bezák, T. Hı́dvégi, P. Jónás, and A. Katona,
“An emulated digital CNN implementation,” Journal of VLSI Signal Processing, Special Issue:
Spatiotemporal Signal Processing with Analogic CNN Visual Microprocessors, Vol. 23, No 2/3,
1999, pp. 291–304.

9 T. Roska, Á. Zarándy, S. Zöld, P. Földesy, and P. Szolgay, “The computational infrastructure
of analogic CNN computing, Part I: The CNN-UM chip prototyping system,” IEEE Trans. on
Circuits and Systems, I, Vol. 46, No 2, 1999, pp. 261–268.

10 ALADDIN, http://lab.analogic.sztaki.hu

11 Sz. Tőkés, L. Orzó, Cs. Rekeczky, T. Roska, and Á. Zarándy, “An optical CNN implementation
with stored programmability,” Proc. IEEE ISCAS-2000, Vol. 2, 2000, pp. 136–139.

16 CNN models in the visual pathway and the ‘‘Bionic Eye”

1 H.B. Barlow, “Sumation and inhibition in the frog’s retina,” J. Physiology, Vol. 119, 1953,
pp. 69–88.

346 Notes

2 J.E. Dowling, The Retina: An Approachable Part of the Brain, Harvard University Press,
Cambridge, MA, 1987.

3 F.S. Werblin, “Synaptic connections, receptive fields, and pattern of activity in the tiger
salamander retina,” Investigative Ophthalmology and Visual Science, Vol. 32, 1991, pp. 459–483.

4 C. Mead, Analog VLSI and Neural Systems, Addison Wesley, Reading, MA, 1989.

5 J. Teeters, and F.S. Werblin, “Real-time simulation of the retina allowing visualization of each
processing stage,” SPIE, Vol. 1472, Image Understanding and the Man–Machine Interface III,
1991.

6 T. Roska, J. Hámori, E. Lábos, K. Lotz, L. Orzó, J. Takács, P. Venetianer, Z. Vidnyánszky, and
Á. Zarándy, “The use of CNN models in the subcortical visual pathway,” IEEE Trans. Circuits
and Systems, I, Vol. 40, 1993, pp. 182–195 (Report DNS-10-1991, MTA SZTAKI, Budapest,
1991).

7 F.S. Werblin, T. Roska, and L.O. Chua, “The analogic Cellular Neural Network as a bionic eye,”
International Journal of Circuit Theory and Applications, Vol. 23, 1995, pp. 541–569.

8 F.S. Werblin, A. Jacobs, and J. Teeters, “The computational Eye,” IEEE Spectrum, Vol. 33, May
1996, pp. 30–37.

9 B. Roska, E. Nemeth, and F.S. Werblin, “Response to change is facilitated by a 3-neuron
disinhibitory path-way in the Tiger Salamander Retina,” J. Neuroscience, Vol. 18, 1998,
pp. 3451–3459.

10 B. Roska, E. Nemeth, L. Orzó, and F.S. Werblin, “Analysis of retinal space-time patterns reveals
image sharpening,” J. Neuroscience, Vol. 20, 2000, pp. 1941–1951.

11 J. Hámori, T. Pasik, P. Pasik, and J. Szentágothai, “Triadic synaptic arrangements and their
possible significance in the lateral geniculate nucleus of the monkey,” Brain Research, Vol. 80,
1974, pp. 379–393.

12 A.M. Sillito, and P.C. Murphy, “GABAergic processes in the central visual system,” Neurotrans-
mitters and Cortical Functions, R.W. Dykes and P. Gloor, Plenum Press, 1988.

13 E.R. Kandel, J.H. Schwartz, and T.M. Jessel, Principles of Neural Science, 3rd edition, Elsevier,
New York, 1991.

14 T. Roska, J. Hámori, E. Lábos, K. Lotz, L. Orzó, J. Takács, P. Venetianer, Z. Vidnyánszky, and
Á. Zarándy, “The use of CNN models in the subcortical visual pathway,” IEEE Trans. Circuits
and Systems, I, Vol. 40, 1993, pp. 182–195 (Report DNS-10-1991, MTA SZTAKI, Budapest,
1991).

15 Á. Zarándy, L. Orzó, E. Grawes, and F. Werblin, “CNN based early vision models for color vision
and visual illusions,” IEEE Trans. on Circuits and Systems, I: Special Issue on Bio-Inspired
Processors and Cellular Neural Networks for Vision (CAS-I Special Issue), Vol. 46, No 2, 1999,
pp. 229–238.

16 L.O. Chua, and T. Roska, “The CNN paradigm,” IEEE Trans. on Circuits and Systems, I:
Fundamental Theory and Applications, Vol. 40, No 3, 1993, pp. 147–156.

17 T. Roska, Á. Zarándy, and L.O. Chua, “Color image processing by CNN,” Proceedings of 11
European Conference on Circuit Theory and Design (ECCTD’93), 1993, pp. 57–62, Davos.

18 A. Jacobs, T. Roska, and F.S. Werblin, “Methods for constructing physiologically motivated
neuromorphic models in CNNs,” International Journal of Circuit Theory and Applications,
Vol. 24, 1996, pp. 315–339.

19 K. Lotz, A. Jacobs, J. Vandewalle, F. Werblin, T. Roska, L. Vidnyánszky, and J. Hámori, “Cellular
Neural Network realizations of neuron models with diverse spiking patterns,” International
Journal of Circuit Theory and Applications, Vol. 24, 1996, pp. 301–314.

347 Notes

20 Cs. Rekeczky, B. Roska, E. Nemeth, and F. Werblin “Neuromorphic CNN models for spatio-
temporal effects measured in the inner and outer retina of Tiger Salamander, Proc. IEEE CNNA-
2000, pp. 165–170.

21 D. Bálya, B. Roska, T. Roska, and F. Werblin, “A qualitative model-framework for spatio-
temporal effects in vertebrate retinas,” Proc. IEEE CNNA-2000, pp. 165–170.

22 F.S. Werblin, T. Roska, and L.O. Chua, “The analogic cellular neural network as a bionic eye,”
Memorandum No UCB/ERL M94/70, U.C. at Berkeley (1994), International Journal of Circuit
Theory and Applications, Vol. 23, No 6, 1995, pp. 541–569.

23 B. Roska, and F.S. Werblin, “Vertical interactions across ten parallel, stacked representations in
the mammalian retina,” Nature, Vol. 410, 2001, pp. 583–587.

Bibliography

1988–1990

Chua, L.O. and T. Roska (1990), Stability of a class of nonreciprocal Cellular Neural Networks,
IEEE Transactions on Circuits and Systems, 37, 1520–7.

Chua, L.O. and L. Yang (1988a), Cellular Neural Networks: Theory, IEEE Transactions on Circuits
and Systems, 35, 1257–72.

Chua, L.O. and L. Yang (1988b), Cellular Neural Networks: Applications, IEEE Transactions on
Circuits and Systems, 35, 1273–90.

Frühauf, N. and E. Lüder (1990), Realization of CNNs by optical parallel processing with spatial
light valves, Proceedings of IEEE International Workshop on Cellular Neural Networks and
Their Applications (CNNA’90), pp. 281–90, Budapest.

Konishi, M. et al. (1988), Neurophysiological and anatomical substrates of sound localization in the
owl, in G.M. Edelman, W.E. Gall, and W.M. Cowan (eds.), Auditory Function, Wiley, New
York, pp. 721–45.

Matsumoto, T., L.O. Chua, and R. Furukawa (1990), CNN cloning template: Hole filler, IEEE
Transactions on Circuits and Systems, 37, 635–8.

Matsumoto, T., L.O. Chua, and H. Suzuki (1990a), CNN cloning template: Connected component
detector, IEEE Transactions on Circuits and Systems, 37, 633–5.

Matsumoto, T., L.O. Chua, and H. Suzuki (1990b), CNN cloning template: Shadow detector, IEEE
Transactions on Circuits and Systems, 37, 1070–3.

Mead, C. (1989) Analog VLSI implementation of neural systems, in C. Mead and M. Ismail (eds.),
Analog VLSI Implementation of Neural Systems, Kluwer, Boston.

Rodriguez-Vázquez, Á., R. Domı́nguez-Castro, and J.L. Huertas (1990), Accurate design of analog
CNN in CMOS digital technologies, Proceedings of IEEE International Workshop on Cellular
Neural Networks and Their Applications (CNNA’90), pp. 273–80, Budapest.

Roska, T. (1988), Analog events and a dual computing structure using analog and digital circuits
and operators, in P. Varaiya and A.B. Kurzhanski (eds.), Discrete Event Systems: Models and
Applications, Springer Verlag, New York, pp. 225–38.

Roska, T., G. Bártfay, P. Szolgay, T. Szirányi, A. Radványi, T. Kozek, and Zs. Ugray (1990), A
hardware accelerator board for Cellular Neural Networks: CNN-HAC, Proceedings of IEEE
International Workshop on Cellular Neural Networks and Their Applications (CNNA’90), pp.
160–8, Budapest.

Varrientos, J.E., J. Ramı́rez-Angulo, and Sánchez-Sinencio (1990), Cellular Neural Networks
implementation: A current-mode approach, Proceedings of IEEE International Workshop on
Cellular Neural Networks and Their Applications (CNNA’90), pp. 216–25, Budapest.

348

349 Bibliography

1991–1992

Chua, L.A. and P. Thiran (1991), An analytic method for designing simple Cellular Neural
Networks, IEEE Transactions on Circuits and Systems, 38, 1332–41.

Chua, L.A. and T. Roska (1992), A two-layer radon transform Cellular Neural Network, IEEE
Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 39, 488–9.

Chua, L.A. and C.W. Wu (1992), On the universe of stable Cellular Neural Networks, International
Journal of Circuit Theory and Applications, 20, 497–518.

Cruz, J.M. and L.O. Chua (1991), A CNN chip for connected component detection, IEEE
Transactions on Circuits and Systems, 38, 812–17.

Cruz, J.M. and L.O. Chua (1992), Design of high-speed, high-density CNNs in CMOS technology,
International Journal of Circuit Theory and Applications, 20, 555–72.

Halonen, K., V. Porra, T. Roska, and L.O. Chua (1992), Programmable analogue VLSI CNN chip
with local digital logic, International Journal of Circuit Theory and Applications, 20, 573–82.

Harrer, H. and J.A. Nossek (1992), Discrete-time Cellular Neural Networks, International Journal
of Circuit Theory and Applications, 20, 453–67.

Harrer, H., J.A. Nossek, and R. Stelzl (1992), An analog implementation of discrete-time Cellular
Neural Networks, IEEE Transactions on Neural Networks, 3, 466–77.

Henseler, J. and P.J. Braspenning (1992), Membrain: A Cellular Neural Network model based on a
vibrating membrane, International Journal of Circuit Theory and Applications, 20, 483–96.

Huertas, J.L. and Á. Rodriguez-Vásquez (1992), Invited lecture: VLSI-implementation of CNN,
Proceedings of IEEE International Workshop on Cellular Neural Networks and Their
Applications (CNNA’92), pp. 141–50, Munich.

Kandel, E.R., J.H. Schwarz, and T.M. Jessel (1991), Principles of Neural Science, Elsevier,
Amsterdam.

Krinsky, V.I., V.N. Biktashev, and I.R. Efimov (1991), Autowave principles for parallel image
processing, Physica D, 49, 247–53.

Mahowald, M. and C. Mead (1991), The silicon retina, Scientific American, 264, 76–82.
Nossek, J.A., G. Seiler, T. Roska, and L.O. Chua (1992), Cellular Neural Networks: Theory and

circuit design, International Journal of Circuit Theory and Applications, 20, 533–53.
Roska, T., G. Bártfay, P. Szolgay, T. Szirányi, A. Radványi, T. Kozek, Zs. Ugray, and Á. Zarándy

(1992), A digital multiprocessor hardware accelerator board for Cellular Neural Networks:
CNN-HAC, International Journal of Circuit Theory and Applications, 20, 589–99.

Roska, T., T. Boros, A. Radványi, P. Thiran, and L.O. Chua (1992), Detecting simple motion using
Cellular Neural Networks, International Journal of Circuit Theory and Applications, 20,
613–28.

Roska, T. and L.O. Chua (1992), Cellular Neural Networks with nonlinear and delay-type template
elements and non-uniform grids, International Journal of Circuit Theory and Applications, 20,
469–81.

Roska, T., K. Lotz, J. Hámori, E. Lábos, and J. Takács (1991), The CNN model in the visual system,
Part 1: The CNN-retina and some direction and length-selective mechanisms, Research Report
of the Analogic (Dual) and Neural Computing Systems Laboratory (DNS-8-1991), Budapest,
MTA SZTAKI.

Roska, T. and J. Vandewalle (eds.) (1992), Guest editorial, International Journal of Circuit Theory
and Applications, 20(5), 449–51.

Roska, T., C.W. Wu, M. Balsi, and L.O. Chua (1992), Stability and dynamics of delay-type general
and Cellular Neural Networks, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 39, 487–90.

350 Bibliography

Rueda, A. and J.L. Huertas (1992), Testability in analogue Cellular Neural Networks, International
Journal of Circuit Theory and Applications, 20, 583–7.

Slot, K. (1992), Cellular Neural Network design for solving specific image-processing problems,
International Journal of Circuit Theory and Applications, 20, 629–637.

Slot, K., T. Roska, and L.O. Chua (1992), Optically realized feedforward-only Cellular Neural
Networks, Archiv für Elektronik und Übertragungstechnik (AEÜ), 46, 158–67.

Teeters, J.L. and F.S. Werblin (1991), Real-time simulation of the retina allowing visualization of
each processing stage, SPIE, 1472.

Vandenberghe, L. and J. Vandewalle (1992), A path-following method for finding multiple
equilibrium points in Cellular Neural Networks, International Journal of Circuit Theory and
Applications, 20, 519–31.

Werblin, F.S. (1991), Synaptic connections, receptive fields, and pattern of activity in the tiger
salamander retina, Investigative Ophthalmology and Visual Science, 32, 459–83.

Wu, C.W., L.O. Chua, and T. Roska (1992), A two-layer radon transform Cellular Neural Network,
IEEE Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 39,
488–9.

Zou, F. and J.A. Nossek (1991), A chaotic attractor with cellular neural networks, IEEE
Transactions on Circuits and Systems, 38, 811–12.

1993–1994

Anguita, M., F.J. Pelayo, A. Prieto, and J. Ortega (1993), Analog CMOS implementation of a
discrete time CNN with programmable cloning templates, IEEE Transactions on Circuits and
Systems, II: Analog and Digital Signal Processing, 41(3), 215–18.

Balsi, M. (1993), Stability of Cellular Neural Networks with one-dimensional templates,
International Journal of Circuit Theory and Applications, 21(4), 293–7.

Bouzerdoum, A. and R.B. Pinter (1993), Shunting inhibitory Cellular Neural Networks: Derivation
and stability analysis, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 40(3), 215–21.

Chua, L.A. and T. Roska (1993), The CNN paradigm, IEEE Transactions on Circuits and Systems,
I: Fundamental Theory and Applications, 40(3), 147–56.

Chua, L.A., T. Roska, T. Kozek, and Á. Zarándy (1993), The CNN paradigm – a short tutorial, in T.
Roska and J. Vandewalle (eds.), Cellular Neural Networks, Wiley & Sons, Chichester, pp.
1–14.

Chua, L.A., T. Roska, and P.L. Venetianer (1993), The CNN is universal as the Turing machine,
IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(4),
289–91.

Cimagalli, V., M. Bobbi, and M. Balsi (1993), MODA: Moving object detecting architecture, IEEE
Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 40(3),
174–83.

Civalleri, P. and M. Gilli (1993), On dynamic behaviour of CNN with delay, Proceedings of 11
European Conference on Circuit Theory and Design, (ECCTD’93), Davos, pp. 687–91.

Civalleri, P.P. and M. Gilli (1994), Some dynamic phenomena in delayed Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 22, 77–105.

Civalleri, P.P., M. Gilli, and L. Pandolfi (1993), On stability of Cellular Neural Networks with delay,
IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(3),
157–65.

351 Bibliography

Crounse, K.R., T. Roska, and L.O. Chua (1993), Image halftoning with Cellular Neural Networks,
IEEE Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 40(4),
267–83.

Dalla Betta, G.F., S. Graffi, Zs.M. Kovács, and G. Masetti (1993), CMOS Implementation of an
analogically programmable Cellular Neural Network, IEEE Transactions on Circuits and
Systems, II: Analog and Digital Signal Processing, 40(3), 206–14.

Forti, M., S. Manetti, and M. Marini, Necessary and sufficient condition for absolute stability of
neural networks, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 41, 241–4.

Fruehauf, N., E. Lueder, and G. Bader (1993), Fourier optical realization of Cellular Neural
Networks, IEEE Transactions on Circuits and Systems, II: Analog and Digital Signal
Processing, 40(3), 156–62.

Galias, Z. (1993), Designing Cellular Neural Networks for the evaluation of local Boolean
functions, IEEE Transactions on Circuits and Systems, II: Analog and Digital Signal
Processing, 40(3), 219–22.

Gilli, M. (1994), Stability of Cellular Neural Networks and delayed Cellular Neural Networks with
nonpositive templates and nonmonotonic output functions, IEEE Transactions on Circuits and
Systems, I: Fundamental Theory and Applications, 41(8), 518–28.

Guzelis, C. and L.O. Chua (1993), Stability analysis of generalized Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 21, 1–33.

Halonen, K., V. Porra, T. Roska, and L.O. Chua (1993), Programmable analogue VLSI CNN chip
with local digital logic, in T. Roska and J. Vandewalle (eds.), Cellular Neural Networks, Wiley
& Sons, Chichester.

Harrer, H. (1993), Multiple-layer discrete-time Cellular Neural Networks using time-variant
templates, IEEE Transactions on Circuits and Systems, II: Analog and Digital Signal
Processing, 40(3), 191–9.

Harrer, H., Z. Galias, and J.A. Nossek (1993), On the convergence of discrete-time neural networks,
International Journal of Circuit Theory and Applications, 21(2), 191–5.

Heiligenberg, W. and T. Roska (1993), On biological sensory information processing principles
relevant to Cellular Neural Networks, in T. Roska and J. Vandewalle (eds.), Cellular Neural
Networks, Special issue of the International Journal of Circuit Theory and Applications, Wiley
& Sons, Chichester, pp. 201–11.

Jankowski, St, C. Mazur, and R. Wanczuk (1993), Some problems of molecular physics solved by
CNN, Proceedings of International Symposium on Nonlinear Theory and Applications
(NOLTA’93), 1, Honolulu, pp. 17–22.

Joy, M.P. and V. Tavsanoglu (1993), A new parameter range for stability of opposite-sign Cellular
Neural Networks, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 40(3), 204–6.

Kaszkurewicz, E. and A. Bhaya (1994), On a class of globally stable neural circuits, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 41(2), 171–4.

Kozek, T., T. Roska, and L.O. Chua (1993), Genetic algorithm for CNN template learning, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(6),
392–402.

Martinelli, G. and R. Prefetti (1994), Generalized Cellular Neural Network for novelty detection,
IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 41(2),
187–90.

352 Bibliography

Nossek, J.A. and T. Roska (eds.) (1993), Special Issue on Cellular Neural Networks, IEEE
Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 40(3).

Osuna, J.O., G.S. Moschytz, and T. Roska (1993), A framework for the classification of auditory
signals with Cellular Neural Networks, Proceedings of 11 European Conference on Circuit
Theory and Design (ECCTD’93), Davos, pp. 51–6.

Paul, S., K. Hüper, J.A. Nossek, and L.O. Chua (1993), Mapping nonlinear lattice equations on to
Cellular Neural Networks, IEEE Transactions on Circuits and Systems, I: Fundamental Theory
and Applications, 40(3), 196–203.

Pérez-Munuzuri, V., V. Pérez-Villar, and L.O. Chua (1993), Autowaves for image processing on a
two-dimensional CNN array of Chua’s circuits: flat and wrinkled labyrinths, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(3),
174–81.

Prefetti, R. (1993), CNN for fast adaptive equalization, International Journal of Circuit Theory and
Applications, 21(2), 165–75.

Rodriguez-Vázquez, Á., S. Espejo, R. Domı́nguez-Castro, J.L. Huertas, and E. Sánchez-Sinencio
(1993), Current-mode techniques for the implementation of continuous- and discrete-time
Cellular Neural Networks, IEEE Transactions on Circuits and Systems, II: Analog and Digital
Signal Processing, 40(3), 132–46.

Roska, T. and L.O. Chua (1993), The CNN universal machine: An analogic array computer, IEEE
Transactions on Circuits and Systems, II: Analog and Digital Signal Processing, 40(3),
163–73.

Roska, T., J. Hámori, E. Lábos, K. Lotz, L. Orzo, J. Takács, P. Venetianer, Z. Vidnyánszky, and A.
Zarándy (1993), The use of CNN models in the subcortical visual pathway, IEEE Transactions
on Circuits and Systems, I: Fundamental Theory Applications, 40(3), 182–95.

Roska, T., C.W. Wu, and L.O. Chua (1993), Stability of Cellular Neural Networks with dominant
nonlinear and delay-type templates, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 40(4), 270–2.

Savaci, F.A. and J. Vandewalle (1993), On the stability analysis of Cellular Neural Networks, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(3),
213–14.

Seiler, G. and J.A. Nossek (1993), Winner-take-all Cellular Neural Networks, IEEE Transactions on
Circuits and Systems, II: Analog and Digital Signal Processing, 40(3), 184–90.

Shi, B.E., T. Roska, and L.O. Chua (1993), Design of linear Cellular Neural Networks for motion
sensitive filtering, IEEE Transactions on Circuits and Systems, II: Analog and Digital Signal
Processing, 40, 320–31.

Szirányi, T. and J. Csicsvári (1993), High-speed character recognition using a dual Cellular Neural
Network architecture (CNND), IEEE Transactions on Circuits and Systems, II: Analog and
Digital Signal Processing, 40(3), 223–31.

Szolgay, P., G. Vörös, and G. Erõss (1993), On the applications of the Cellular Neural Network
paradigm in mechanical vibrating systems, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 40(3), 222–7.

Tanaka, M., C. Crounse, and T. Roska (1994), Parallel analog image coding and decoding by using
Cellular Neural Networks, IEICE (Japan) Transactions on Fundamentals of Electronics,
Communications and Computer Sciences (IEICE), E77-A, No. 8, 1387–95.

Thiran, P. (1993), Influence of boundary conditions on the behavior of Cellular Neural Networks,
IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(3),
207–12.

353 Bibliography

Varrientos, J.E., E. Sánchez-Sinencio, and J. Ramirez-Angulo (1993), A current-mode cellular
network implementation, IEEE Transactions on Circuits and Systems, II: Analog and Digital
Signal Processing, 40(3), 147–55.

Willis, J. and J. Pineda de Gyvez (1993), Functional testing for Cellular Neural Networks, IEE
Electronics Letters (IEE EL), 29(25), 2206–8.

Yang, T. (1994), Blind signal separation using Cellular Neural Networks, International Journal of
Circuit Theory and Applications, 22(5), 399–408.

Zou, F. and J.A. Nossek (1993a), Hopf-like bifurcation in Cellular Neural Networks, Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS’93), 4, Chicago, pp.
2391–2394.

Zou, F. and J.A. Nossek (1993b), Bifurcation and chaos in Cellular Neural Networks, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 40(3),
166–73.

1995–1996

Arena, P., S. Baglio, L. Fortuna, and G. Manganaro (1995), Chua’s circuit can be generated by CNN
cells, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications,
42(2), 123–5.

Arena, P., S. Baglio, L. Fortuna, and G. Manganaro (1996), Generation of n-double scrolls via
Cellular Neural Networks, International Journal of Circuit Theory and Applications, 24(3),
241–52.

Arik, S. and V. Tavsanoglu (1996), Equilibrium analysis of non-symmetric CNNs, International
Journal of Circuit Theory and Applications, 24(3), 269–74.

Balsi, M., V. Cimagalli, and F. Galluzzi (1996), A proposal to implement optoelectronic CNN
systems by amorphous silicon thin film technology, International Journal of Circuit Theory
and Applications, 24(1), 121–6.

Chua, L.A., M. Hasler, G.S. Moschytz, and J. Neirynck, Autonomous Cellular Neural Networks: A
unified paradigm for pattern formation and active wave propagation, IEEE Transactions on
Circuits and Systems, I: Fundamental Theory and Applications, 42(10), 559–77.

Chua, L.A., T. Roska, T. Kozek, and Á. Zarándy (1996), CNN universal chips crank up the
computing power, IEEE Circuits and Devices (IEEE C&D), 12(4), 18–28.

Civalleri, P.P. and M. Gilli (1996), A spectral approach to the study of propagation phenomena in
CNNs, International Journal of Circuit Theory and Applications, 24(1), 37–48.

Crounse, K.R. and L.O. Chua (1995), Methods for image processing and pattern formation in
Cellular Neural Networks: A tutorial, IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 42(10), 583–601.

Cruz, J.M. and L.O. Chua (1995), Application of Cellular Neural Networks to model population
dynamics, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 42(10), 715–20.

Csapody, M. and T. Roska (1996), Dynamic analogic CNN algorithms for a complex recognition
task – a first step towards a bionic eyeglass, International Journal of Circuit Theory and
Applications, 24(1), 127–44.

Espejo, S., R. Carmona, R. Domı́nguez-Castro, and Á. Rogriguez-Vázquez (1996a), A CNN
universal chip in CMOS technology, International Journal of Circuit Theory and Applications,
24(1), 93–110.

354 Bibliography

Espejo, S., R. Carmona, R. Domı́nguez-Castro, and Á. Rodriguez-Vázquez (1996b), A
VLSI-oriented continuous-time CNN model, International Journal of Circuit Theory and
Applications, 24(3), 341–56.

Forti, M. and A. Tesi (1995), New conditions for global stability of neural networks with
application to linear and quadratic programming problems, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 42(7), 354–66.

Jacobs, A., T. Roska, and F. Werblin (1996), Methods for constructing physiologically motivated
neuromorphic models in CNNs, International Journal of Circuit Theory and Applications, 24,
315–39.

Joy, M.P. and V. Tavsanoglu (1996), Circulant matrices and the stability of a class of CNNs,
International Journal of Circuit Theory and Applications, 24(1), 7–14.

Kinget, P. and M. Steyaert (1995), A programmable analog Cellular Neural Network (CMOS) chip
for high speed image processing, IEEE Journal of Solid State Circuits (JSC), 30, 235–43.

Kozek, T., L.O. Chua, T. Roska, D. Wolf, R. Tetzlaff, F. Puffer, and K. Lotz, Simulating nonlinear
waves and partial differential equations via CNN – Part II. Typical Examples, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 42(10),
816–20.

Kozek, T. and T. Roska (1996), A double time-scale CNN for solving two-dimensional
Navier–Stokes equations, International Journal of Circuit Theory and Applications, 24, 49–56.

Liszka, G., T. Roska, Á. Zarándy, J. Hegyesi, L. Kék, and Cs. Rekeczky (1995), Mammogram
analysis using CNN algorithms, Proceedings SPIE Medical Imaging (SPIE Medical Imaging),
2434, pp. 461–470, San Diego.

Lotz, K., A. Jacobs, J. Vandewalle, F. Werblin, T. Roska, L. Vidnyánszky, and J. Hámori (1996),
Cellular Neural Network realizations of neuron models with diverse spiking patterns,
International Journal of Circuit Theory and Applications, 24, 301–14.

Nemes, L. and T. Roska (1995), A CNN model of oscillation and chaos in ant colonies: A case
study, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications,
42(10), 741–5.

Nemes, L., G. Tóth, T. Roska, and A. Radványi (1996), Analogic CNN algorithms for 3D
interpolation-approximation and object rotation using controlled switched templates,
International Journal of Circuit Theory and Applications, 24, 409–24.

Nossek, J.A. (1996), Design and learning with Cellular Neural Networks, International Journal of
Circuit Theory and Applications, 24(1), 15–24.

Ogorzalek, M.J., Z. Galias, W. Dabrowski, and A .Dabrowski (1996), Spatio-temporal co-operative
phenomena in CNN arrays composed of chaotic circuits – simulation experiments,
International Journal of Circuit Theory and Applications, 24(3), 261–8.

Osuna, J.A. and G.S. Moschytz (1996), On the separating capability of Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 24(3), 253–60.

Radványi, A.G. (1996), Spatial depth extraction using random stereograms in analogic CNN
framework, International Journal of Circuit Theory and Applications, 24, 69–92.

Rekeczky, C., A. Ushida, and T. Roska (1995), Rotation invariant detection of moving and standing
objects using analogic Cellular Neural Network algorithms based on ring codes, IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E-78,
1316–30.

Roska, T., L.O. Chua, D. Wolf, T. Kozek, R. Tetzlaff, and F. Puffer (1995), Simulating nonlinear
waves and partial differential equations via CNN – Part I. Basic Techniques, IEEE

355 Bibliography

Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 42(10),
807–15.

Sargeni, F. and V. Bonaiuto (1996), A 3× 3 digitally programmable CNN chip, International
Journal of Circuit Theory and Applications, 24(3), 369–80.

Stoffels, A., T. Roska, and L.O. Chua (1996), On object-oriented video coding using the CNN
universal machine, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 43, 948–52.

Suykens, J.A. and J. Vandewalle (1996), Discrete time interconnected Cellular Neural Networks
within NLq theory, International Journal of Circuit Theory and Applications, 24(1), 25–36.

Szirányi, S. (1996), Robustness of Cellular Neural Networks in image deblurring and texture
segmentation, International Journal of Circuit Theory and Applications, 24, 381–96.

Thiran, P., K.R. Crounse, L.O. Chua, and M. Hasler (1995), Pattern formation properties of
autonomous Cellular Neural Networks, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 42(10), 757–74.

Thiran, P. and M. Hasler (1996), Information storage using stable and unstable oscillations: An
overview, International Journal of Circuit Theory and Applications, 24(1), 57–68.

Vandewalle, J. and T. Roska (eds.) (1996), CTA Special Issue: Cellular Neural Networks II: Part 1,
International Journal of Circuit Theory and Applications, 24(1).

Venetianer, P.L., P. Szolgay, K.R. Crounse, T. Roska, and L.O. Chua (1996), Analogue
combinatorics and cellular automata – key algorithms and layout design, International Journal
of Circuit Theory and Applications, 24, 145–64.

Venetianer, P.L., F. Werblin, T. Roska, and L.O. Chua (1996), Analogic CNN algorithms for some
image compression and restoration tasks, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 42(5), 278–84.

Werblin, F., T. Roska, and L.O. Chua (1995), The analogic Cellular Neural Network as a bionic eye,
International Journal of Circuit Theory and Applications, 23(6), 541–69.

Zarándy, I., F. Werblin, T. Roska, and L.O. Chua (1996), Spatial logic algorithm using basic
morphological analogic CNN operations, International Journal of Circuit Theory and
Applications, 24, 283–300.

1997–1998

Anguita, M., F.J. Pelayo, F.J. Fernandez, and A. Prieto (1997), A low-power CMOS implementation
of programmable CNNs with embedded photosensors, IEEE Transactions on Circuits and
Systems, I: Fundamental Theory and Applications, 44(2), 149–53.

Anguita, M., F.J. Pelayo, I. Rojas, and A. Prieto (1998), Area efficient implementations of
fixed-template CNNs, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 45(9), 968–73.

Arena, P., S. Baglio, L. Fortuna, and G. Manganaro (1998), Self-organization in a two-layer CNN,
IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 45(2),
157–62.

Arena, P., M. Branciforte, and L. Fortuna (1998), A CNN based experimental frame for patterns and
autowaves, International Journal of Circuit Theory and Applications, 26(6), 635–50.

Arik, S. and V. Tavsanoglu (1998), Equilibrium analysis of delayed CNNs, IEEE Transactions on
Circuits and Systems, I: Fundamental Theory and Applications, 45(2), 168–71.

Brucoli, M., L. Carnimeo, and G. Grassi (1998), Heteroassociative memories via Cellular Neural
Networks, International Journal of Circuit Theory and Applications, 26(3), 231–41.

356 Bibliography

Brugge, M.H. ter, J.A.G. Nijhuis, and L. Spaanenburg (1998), Transformational DT-CNN design
from morphological specifications, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 45(9), 879–88.

Chua, L.O. (1997), A vision of complexity, International Journal of Bifurcation and Chaos, 7, No.
10, 2219–2425, World Scientific Publishing Company.

Csapodi, M., J. Vandewalle, and T. Roska (1998), Invertible operations on a Cellular Neural
Network universal machine – based on the implementation of two-dimensional cellular
automata, International Journal of Circuit Theory and Applications, 26(6), 611–34.

Dogaru, R. and L.O. Chua (1998a), Edge of chaos and local activity domain of FitzHugh–Nagumo
equation, International Journal of Bifurcation and Chaos, 8(2), 211–57.

Dogaru, R. and L.O. Chua (1998b), Edge of chaos and local activity domain of the brusselator
CNN, International Journal of Bifurcation and Chaos, 8(6), 1107–30.

Dogaru, R. and L.O. Chua (1998c), CNN genes for one-dimensional cellular automata: A
multi-nested piecewise-linear approach, International Journal of Bifurcation and Chaos, 8(10),
1987–2001.

Dogaru, R., L.O. Chua, and K. Crounse (1998a), An extended class of synaptic operators with
application for efficient VLSI implementation of cellular neural networks, IEEE Transactions
on Circuits and Systems, I: Fundamental Theory and Applications, 45(7), 745–53.

Dogaru, R., L.O. Chua, and K. Crounse (1998b), Piramidal cells: A novel class of adaptive coupling
cells and their applications for cellular neural networks, IEEE Transactions on Circuits and
Systems, I: Fundamental Theory and Applications, 45(10), 1077–90.

Espejo, J., Á. Rodriguez-Vázquez, R.A. Carmona, P. Földesy, Á. Zarándy, P. Szolgay, T. Szirányi,
and T. Roska (1997), 0.8 µm CMOS two dimensional programmable mixed-signal
social-plane array processor with on-chip binary imaging and instruction storage, IEEE
Journal of Solid State Circuits (JSC), 32(7), 1013–26.

Fajfar, I., F. Bratkovic, T. Tuma, and J. Puhan (1998), A rigorous design method for binary Cellular
Neural Networks, International Journal of Circuit Theory and Applications, 26(4), 365–73.

Finger, L. and V. Tavsanoglu (1997), Mapping of one-dimensional Josephon function arrays onto
Cellular Neural Networks and their dynamics, International Journal of Circuit Theory and
Applications, 44(5), 438–45.

Gilli, M., P.P. Civalleri, T. Roska, and L.O. Chua (1998), Analysis of time-varying Cellular Neural
Networks for quadratic global optimatization, International Journal of Circuit Theory and
Applications, 26(2), 109–26.

Grimaila, M.R., J. Pineda de Gyvez, and G. Han (1997), Robust functional testing for VLSI
Cellular Neural Network implementation, IEEE Transactions on Circuits and Systems, I:
Fundamental Theory and Applications, 44(2), 161–6.

Hirakawa, S., Cs. Rekeczky, Y. Nishio, A. Ushida, T. Roska, J. Endo, I. Kasem, and H. Nishitani
(1997), Detecting lung cancer symptoms with analogic CNN algorithms based on a
constrained diffusion template, IEICE (Japan) Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E80-A. No. 7, 1340–1344.

Ikegana, T. and T. Ogura (1998), A DTCNN universal machine based on highly parallel 2-D cellular
automata CAM2, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 45(5), 538–46.

Joy, M.P. and V. Tavsanoglu (1998), An equilibrium analysis of CNNs, IEEE Transactions on
Circuits and Systems, I: Fundamental Theory and Applications, 45(1), 94–8.

357 Bibliography

Kék, L. and Á. Zarándy (1998), Implementation of large neighborhood nonlinear templates on the
CNN universal machine, International Journal of Circuit Theory and Applications, 26(6),
551–66.

Kinget, P. and M. Steyaert (1998), Analog VLSI design constraints of programmable Cellular
Neural Networks, Analog Integrated Circuits and Signal Processing, 15(3), 251–62.

Kozek, T., C.W. Wu, Á. Zarándy, Hua Chen, and T. Roska (1997), New results and measurements
related to some tasks in object-oriented dynamic image coding using CNN universal chips,
IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 606–14.

Liu, D. (1997), Cloning template design of Cellular Neural Networks for associative memories,
IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 44(7),
646–50.

Majorana, S. and L.O. Chua (1998), A unified framework for multilayer high order CNN,
International Journal of Circuit Theory and Applications, 26(6), 567–92.

Mirzai, B. and G.S. Moschytz (1998), The influence of the boundary conditions on the robustness of
a CNN, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and Applications,
45(4), 511–15.

Mladenov, V.M., D.M.W. Leenaerts, and F.H. Uhlmann (1998), Estimation of the basin of
attractions in CNNs, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 45(5), 571–4.

Nemes, L., L.O. Chua, and T. Roska (1998), Implementation of arbitrary Boolean functions on the
CNN universal machine, International Journal of Circuit Theory and Applications, 26(6),
593–610.

Paasio, A., A. Dawidziuk, K. Halonen, and V. Porra (1997), Fast and compact 16 by 16 CNN
implementation, Analog Integrated Circuits and Signal Processing (AICASP), 12, 59–70.

Parodi, M., M. Storace, and C. Regazzoni (1998), Circuit realization of Markov random fields for
analog image processing, International Journal of Circuit Theory and Applications, 26(5),
477–98.

Rekeczky, Cs., T. Roska, and A. Ushida (1998), CNN-based difference-controlled adaptive
nonlinear image filters, International Journal of Circuit Theory and Applications, 26, 375–423.

Salerno, M., F. Sargeni, and V. Bonaiuto (1998), A 6× 6 cells interconnection-oriented
programmable chip for CNN, Analog Integrated Circuits and Signal Processing, 15(3),
239–50.

Shi, Bertram E. (1998), Gabor-type filtering in space and time with cellular neural networks, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 45(2),
121–32.

Shi, B.E., T. Roska, and L.O. Chua (1998), Estimating optical flow with Cellular Neural Networks,
International Journal of Circuit Theory and Applications, 26(4), 343–64.

Slavova, A. (1998), Dynamic properties of Cellular Neural Networks with nonlinear output
function, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 45(5), 587–90.

Szirányi, T. (1997), Texture recognition using superfast Cellular Neural Network VLSI chip in real
experimental environment, Proceedings of Pattern Recognition in Practice, in Pattern
Recognition Letters Vol. 18, pp. 1329–1334, Vlieland.

Szirányi, T. and M. Csapodi (1998), Texture classification and segmentation by cellular Neural
network using genetic learning, Computer Vision and Image Understanding, 71(3), 255–70.

358 Bibliography

Szolgay, P., I. Szatmári, and K. László (1997), A fast fixed point learning method to implement
associative memory on CNNs, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 44, 362–6.

Venetianer, P.L. and T. Roska (1998), Image compression by cellular neural networks, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 45(3),
205–15.

Yang, T., C-M. Yang, and L-B. Yang (1998), The differences between Cellular Neural Network
based and fuzzy Cellular Neural Network based mathematical morphological operations,
International Journal of Circuit Theory and Applications, 26(1), 13–25.

Zarándy, I., A. Stoffels, T. Roska, and L.O. Chua (1998), Implementation of binary and grey-scale
mathematical morphology on the CNN universal machine, IEEE Transactions on Circuits and
Systems, I: Fundamental Theory and Applications, 45(2), 163–8.

1999

Arena, P., L. Fortuna, and M. Branciforte (1999), Reaction-diffusion CNN algorithms to generate
and control artificial locomotion, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 46(2), 253–60.

Arena, P., L. Fortuna, and M. Branciforte (1999), Realization of a reaction–diffusion CNN
algorithm for locomotion control in an hexapode robot, Journal of VLSI Signal Processing, 23,
267–80.

Carmona-Galán, R., Á. Rodriguez-Vázquez, S. Espejo-Meana, R. Domı́nguez-Castro, T. Roska, T.
Kozek , and L.O. Chua (1999), An 0.5 µm CMOS analog random access memory chip for
teraOPS speed multimedia video processing, 1(2), 121–35.

Carmona, R., G. Linan, R. Domı́nguez-Castro, S. Espejo, and Á. Rodriguez-Vázquez (1999),
SIRENA: a CAD environment for behavioural modelling and simulation of VLSI Cellular
Neural Network chips, International Journal of Circuit Theory and Applications, 27(1), 43–76.

Cauwenberghs, G. and J. Waskiewicz (1999), Focal-plane analog VLSI cellular implementation of
the boundary contour system, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 46(2), 327–34.

Chandler, B., Cs. Rekeczky, Y. Nishio, and A. Ushida (1999), Adaptive simulated annealing in
CNN template learning, IEICE (Japan) Transactions on Fundamentals of Electronics,
Communications and Computer Sciences (IEICE), E82-A, No. 2, 398–402.

Földesy, P., L. Kék, T. Roska, Á. Zarándy, T. Roska, and G. Bártfai (1999), Fault tolerant design of
analogic CNN templates and algorithms, part I: The binary output case, IEEE Transactions on
Circuits and Systems, I: Fundamental Theory and Applications, 46(2), 312–22.

Hanggi, M. and G.S. Moschytz (1999), An exact and direct analytical method for the design of
optimally robust CNN templates, IEEE Transactions on Circuits and Systems, I: Fundamental
Theory and Applications, 46(2), 304–11.

Hiratsuka, M., T. Aoki, and T. Higuchi (1999), Enzyme transistor circuits for reaction–diffusion
computing, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 46(2), 294–303.

Keresztes, P., Á. Zarándy, T. Roska, P. Szolgay, T. Bezák, T. Hı́dvégi, P. Jónás, and A. Katona
(1999), An emulated digital CNN implementation, Journal of VLSI Signal Processing, 23,
291–303.

Kozek, T. and D.L. Vilarino (1999), An active contour algorithm for continuous-time Cellular
Neural Networks, Journal of VLSI Signal Processing, 23, 403–14.

359 Bibliography

Lotz, K., L. Bölöni, T. Roska, and J. Hámori (1999), Hiperacuity in time: a CNN model of a
time-coding pathway of sound localization, IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 46(8), 994–1002.

Luthon, F. and D. Dragomirescu (1999), A cellular analog network for MRF-based video motion
detection, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 46(2), 281–93.

Moreira-Tamayo, O. and J. Pineda de Gyvez (1999), Subband coding and image compression using
CNN, International Journal of Circuit Theory and Applications 27(1), 135–52.

Paasio A. and D. Dawidziuk (1999), CNN template robustness with different output nonlinearities,
International Journal of Circuit Theory and Applications, 27(1), 87–102.

Paasio, A., A. Kananen, K. Halonen, and V. Porra (1999), A QCIF resolution binary I/O CNN-UM
chip, Journal of VLSI Signal Processing, 23, 281–90.

Radványi, A.G. (1999), Structural analysis of sterograms for CNN depth detection, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 46(2),
239–52.

Radványi, A.G., L. Gáspár, and G. Tóth (1999), CNNUM stereo architecture and 3D template
design techniques, International Journal of Circuit Theory and Applications, 27(1), 25–42.

Rekeczky, Cs. and L.O. Chua (1999), Computing with front propagation: Active contour and
skeleton models in continuous-time CNN, Journal of VLSI Signal Processing, 23, 373–402.

Rekeczky, Cs., A. Tahy, Z. Végh, and T. Roska (1999), CNN based spatio-temporal nonlinear
filtering and endocardial boundary detection in echocardiography, International Journal of
Circuit Theory and Applications, 27(1), 171–207.

Roca, E., S. Espejo, R. Domı́nguez-Castro, G. Linan, and Á. Rodriguez-Vázquez (1999), A
programmable imager for very high speed cellular signal processing, Journal of VLSI Signal
Processing, 23, 305–18.

Rodriguez-Vázquez, A., E. Roca, M. Delgado-Restituto, S. Espejo, and R. Domı́nguez-Castro
(1999), MOST-based design and scaling of synaptic interconnections in VLSI analog array
processing CNN chips, Journal of VLSI Signal Processing, 23, 239–66.

Roska, T. (1999), Computer-sensors: Spatial-temporal computers for analog array signals,
dynamically integrated with sensors, Journal of VLSI Signal Processing, 23, 221–37.

Roska, T., Á. Zarándy, S. Zöld, P. Földesy, and P. Szolgay (1999), The computational infrastructure
of analogic CNN computing – part I: The CNN-UM chip prototyping system, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 46(2), 261–8.

Serrano-Gotarredona, T. and Á. Rodriguez-Vázquez (1999), On the design of second order
dynamics reaction–diffusion CNNs, Journal of VLSI Signal Processing, 23, 351–371.

Shi, B.E. (1999), Focal plane implementation of 2D steerable and scalable gabor-type filters,
Journal of VLSI Signal Processing, 23, pp. 319–334.

Shi, B.E. (1999), A one-dimensional CMOS focal plane array for gabor-type image filtering, IEEE
Transactions on Circuits and Systems, I: Fundamental Theory and Applications, 46(2),
323–326.

Slot, K., L.O. Chua, and T. Roska (1999), Very low bit-rate video coding using Cellular Neural
Network universal machine, International Journal of Circuit Theory and Applications, 27(1),
153–170.

Szirányi, T. and L. Czúni (1999), Image compression by orthogonal decomposition using Cellular
Neural Network chips, International Journal of Circuit Theory and Applications, No. 1,
117–134.

360 Bibliography

Szolgay, P. and K. Tömördi (1999), Analogic algorithms for optical detection of breaks and short
circuits on the layouts of printed circuits boards using CNN, International Journal of Circuit
Theory and Applications, 27(1), 103–116.

Tetzlaff, R., R. Kunz, and D. Wolf (1999), Minimizing the effects of parameter deviations on
Cellular Neural Networks, International Journal of Circuit Theory and Applications, 27(1),
77–86.

Torralba, A.B. and J. Hérault (1999), An efficient neuromorphic analog network for motion
estimation, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 46(2), 269–80.

Wang, J-S., Q. Gan, Y. Wei, and L. Xie (1999), Cellular Neural Networks with opposite-sign
templates for image thinning, International Journal of Circuit Theory and Applications, 27(2),
229–40.

Zarándy, I. (1999), The art of CNN template design, International Journal of Circuit Theory and
Applications, 17(1), 5–24.

Zarándy, I., L. Orzó, E. Grawes, and F. Werblin (1999), CNN based models for color vision and
visual illusions, IEEE Transactions on Circuits and Systems, I: Fundamental Theory and
Applications, 46(2), 229–38.

Additional references can be found at
http://www.ieee-cas.org/∼cnnactc
and
http://lab.analogic.sztaki.hu

Exercises

Chapter 2

Exercise 2.1 (Simple morph)

Given: two gray-scale images: P1 and P2

Input: U(t) = P1

Initial state: X(0) = P2

Boundary conditions: white frame

Output: Y(t) = a transition from P2 to P1.

Task

Design a single template, which implements this transition.

Example

Exercise 2.2 (Hexagonal neighborhood)

The standard CNN definition specifies that the cells form a rectangular grid. Anther feasible form
could be a hexagonal grid.

Task

Give a formula for the side length and the area of a hexagon (measured in cells) in the case of a
hexagonal cell grid, when the sphere of influence equals r .

361

362 Exercises

r = 0

r = 2

r = 1

Exercise 2.3 (Triangular neighborhood)

The standard CNN definition specifies that the cells form a rectangular grid. There are only three
possibilities to cover the plane. These are rectangular, hexagonal, and triangular.

Task
Give a formula for the area of a triangle in the case of a triangular cell grid, when the sphere of
influence equals r .

Chapter 3

Exercise 3.1 (Separate connected objects)

The problem to be solved is to separate connected objects. The example shows a test image where
objects are all similar in size. All objects should be separated but their sizes must be preserved.

Task
Design an algorithm which will separate objects, preserving their original properties, such as width,
height, size, etc.

Example

 Desired output

Hint
• The combination of an EROSION followed by a DILATION is called an opening, referring to the

ability of this combination to open up spaces between just-touching objects.

363 Exercises

• The quasi-inverse operation of CLOSE is OPEN. The templates used for erosion and dilation are
sufficient to solve this problem.

• It is necessary to use a mask image which prohibits dilation at boundaries of touching objects.
This mask image is constructed from a skeleton of an inverse binary image of objects.

Exercise 3.2 (EDGE–CORNERDETECTION comparison)

There are two similar templates, the EDGE and the CornerDetection templates. The first one detects

edges on binary images, and the second one detects corners. The templates are of the following form:

A =
0 0 0

0 1 0

0 0 0

B =
−1 −1 −1

−1 8 −1

−1 −1 −1

z

where z = −1 in the EDGE template and z = −8.5 in the CornerDetection template. The

mathematical analysis shows that the final output of a pixel is the sign of wi j , where

wi j = z + 8ui j −
∑

(k,l)∈S(i, j)∧(k,l)�=(i, j)

ukl

Let pb and pw denote the total number of black and white surround pixels respectively. Let us
consider the case where ui j = 1.

Question

What is the criterion of wi j > 0? What is the role of z?

Example

Input z = –1 (pb < 7.5)

364 Exercises

z = –7 (pb < 4.5) z = –9 (pb < 3.5)

z = –3 (pb < 6.5) z = –5 (pb < 5.5)

Exercise 3.3 (Main group of points)

Task
Given an image similar to the one below, locate the main groups of points.

Example

Point set segmentation: input and result

Hint
To solve this problem non-local information is needed. We have to use the propagating property of
the A template. Where the average pixel number is large enough there is a group. Apply blurring,
then some kind of thresholding method.

365 Exercises

Chapter 5

Exercise 5.1 (Truth table)

Question

What is the difference between the Minimal Truth Table and the Optimized Minimal Truth Table,
and what is the reason for having these two distinct truth tables?

Exercise 5.2 (Boolean function)

Question

Which class of Boolean functions can be implemented by the uncoupled binary CNN?

Chapter 6

Exercise 6.1 (Crossword puzzle endings)

Crossword puzzle is a table, in which white squares represent empty places for the letters, while
black squares denote invalid positions. A word must be written in the white squares vertically and/or
horizontally. There are specifications for the vertical and horizontal words as well. Closed squares
are those squares which are members of one word only. The boundary cells count as black squares.

Task

Design a template which detects the closed squares.

Given: static binary image P

Input: U(t) = P

Initial state: X(0) = 0

Boundary conditions: 1

Output: Y(t) → Y(∞) = a binary image, which represents the closed squares.

Example

Input Output

366 Exercises

Chapter 8

Exercise 8.1 (Dynamic construction of a grid)

Task
Construct dynamically a grid.

Given: nothing

Input: U(t) = 0

Initial state: X(0) = 0

Boundary conditions: 1

Output: Y(t) → Y(∞) = a binary image, with a 3× 3 grid

Example

Hint

The grid grows from the upper left corner to the lower right corner. Use a similarly structured

template.

A =
−a −a 0

−a 0 0

0 0 0

, B =
0 0 0

0 0 0

0 0 0

, z

Exercise 8.2 (Reaction–diffusion equations)

Task

Design the templates of a double-layer, one-dimensional CNN realizing the following reaction–

diffusion equations

d A

dt
= c1 A + c2 I + c3 + DA

d2 A

dx
− gA A and

d I

dt
= c4 A + c5 + DI

d2 I

dx2
− gI I

367 Exercises

where x is the coordinate for the one-dimensional space, A and I are the concentrations of the two
so-called morphogens, the Activator and Inhibitor molecules. Parameters ci , gi , and Di are constants.
The equations describe the generation of the so-called Turing patterns.

Start with a random initial state, and, after a periodic pattern appears, increase the size of the cell
array by one and wait for the steady state pattern. Continue increasing the size and look at the steady
state solution several times. How does the periodicity of the pattern change?

Input: U(t) = not used

Initial state: random

Boundary conditions: periodic

Output: Y(t) → Y(∞) = sine waves with L = 10 periodicity

Example

n

x(n) x(n) x(n)

n n

(a) (b) (c)

Fig. 1. Three snapshots of generating Turing patterns in an increasing cell array. The vertical axis
shows the output of the cells. (a) The array of 51 cells has already reached its settled state. (b–c)
After increasing the array size to 52, a new peak appears.

Hint

The first layer corresponds to the quantity A, the second one to I . The second-order derivatives with

respect to x must be discretized. The CNN cell equations are

d Ai

dt
= a Ai + bIi + c + µ(Ai−1 − 2Ai + Ai+1),

d Ii

dt
= d Ai + eIi + f + ν(Ii−1 − 2Ii + Ii+1)

368 Exercises

where parameters a, b, c, d, e, f , µ, and ν can be easily expressed in terms of ci , gi , and Di . The

templates describing the two-layer circuits are

A1 to 1 = [µ (a − 2µ+ 1) µ], A2 to 1 = [0 b 0], I1 = c;
A1 to 2 = [0 d 0], A2 to 2 = [ν (e − 2ν + 1) ν], and I2 = f.

Determine suitable values.

Exercise 8.3 (Surface interpolation)

Task

Design a CNN for surface interpolation. The altitude of the surface is given at some of the grid points;

however, it is unknown in most of the grid points. The v(x, y) interpolated surface must satisfy

∇4v = ∂4v

∂x4
+ 2

∂4v

∂x2∂y2
+ ∂4v

∂y4
= 0

Input: U(t) = not used

Initial state: X(0) = 0, if the altitude of the point is not known; h, if the altitude h of the point is
known

Mask: The cells corresponding to points where the altitude is known, are fixed.

Boundary conditions: Zero fourth-order derivative (practically, other boundary conditions can be
used as well; however, at the edges the result will differ slightly from what we expect).

Output: Y(t) → Y(∞) = the interpolated surface

Example

Initial state with three An intermediate state Final state

369 Exercises

Hint

Loading the altitude of
the known points into
the initial state.

Loading the mask.

Running the template.

Save the state of the
CNN. It describes the
fitted surface.

STOP

Flow diagram
of surface fitting

START

Exercise 8.4 (Black pixel count)

Task

In some more complicated tasks it is necessary to count the number of all black pixels in a result, or
the number relative to the full area. This can easily be done through a serial algorithm, but this is not
the most effective CNN application. In such a serial algorithm the principle of full CNN solution is
necessary for implementing this interesting task. Give a simpler, parallel solution.

Given: static binary image P

Input: U(t) = arbitrary

Initial state: X(0) = P

Boundary conditions: Periodic or 0 (periodic is supposed to be faster)

Output: Y(t) → Y(∞) = uniform gray-scale image, which is equal in value to the rate of the
total number of black pixels relative to the total area.

Hint

It can be carried out through a diffusion, which retains the sum of the state values.

370 Exercises

Example

Input

Output

Exercise 8.5 (Second-order oscillator)

Task
Design a simple oscillator, which can be implemented in CNN.

Hint

The simplest differential equation, which can exhibit oscillation must be at least of second order

ẋ1 = a11x1 + a12x1

ẋ2 = a21x1 + a22x2

This can be mapped to the CNN. Apply two layers.

Example

Input Initial state

Chapter 9

Exercise 9.1 (Roughness measurement)

Task
Design a simple algorithm which measures the roughness of an object.

371 Exercises

Hint
The basic idea here is to find the concave parts of objects. First the gray-scale image is converted
into a binary image via the threshold operation. Next, pixels which are located at concave places
are driven to black, using the “ConcaveLocationFiller” template. This template turns black all those
white pixels which have at least four black direct neighbors. Next we extract concavities of objects
using the logical XOR operation between the threshold image and the filled image.

Example
The following example shows the detected concave parts of an object.

INPUT PICTURE OUTPUT_PICTURE

Hint – block diagram of the algorithm

Concavities

INPUT

Threshold
5τ

Hollow
50τ

XOR
5τ

Erosion
10τ

OUTPUT

372 Exercises

Templates can be found in the CNN Software Library v7.1 [1] as Threshold, ConcaveLocationFiller,
and Erosion respectively.

Exercise 9.2 (Local concavity)

Task
Find the local concavities of an image.

Example

Transient of CONCAVELOCATIONFILLER template

Result of XOR

Hint
Using the ConcaveLocationFiller template the object gets a convex shape. Taking the logical
difference of the original and the resulting image, one can get the local concave points. The result
can be improved by Erosion. The ConcaveLocationFiller and Erosion templates are available in the
template library.

Exercise 9.3 (Concavity orientation)

Task
Find the local concavities in one certain direction.

Example

Input image ConcaveArcFill
er65 template

LogicDifference1
template

373 Exercises

Input image ConcaveArcFill
er125 template

LogicDifference1
template

Hint
Use the ConcaveArcFiller templates, which are similar to the ConcaveLocationFiller template but,
due to symmetry distortion, the wave propagation is direction selective. These templates result in
directed shadows originating from concave locations.

To enhance the results the SmallObjectRemover template can be applied:

Example

Input image
SmallObjectRemover

template

Exercise 9.4 (Improved concavity orientation)

Task
Improve the selectivity of the direction-selective local concavity templates. Local concavity finder
templates result in many patches over a wide range of angles. In some applications this range should
probably be more precisely defined.

374 Exercises

Hint
Use logical AND operation after applying three or four local concavity finder templates.

Example

Input image 3 templates
Logical AND of three

image

Exercise 9.5 (Curvature)

Task
Given an image, detect the locations where the curvature is big.

Example

Curvature detection

Original image

After diffusion

After the
Smoothing
template

375 Exercises

Hint
This property needs non-local information. Use the diffusion template. The image is brighter where
the average pixel count is less.

Exercise 9.6 (Absolute value)

Task
Write an algorithm which implements the absolute value function of an image.

Hint

The absolute value can be computed using the nonlinearity of the CNN:

abs(Ii j) = f (f (ii j − 1)+ 1)− f (f (Ii j + 1)− 1)

where f (·) denotes the piecewise linear function:

1

–1
x

f (x)

Example

Absolute value function

Original image

f (I+1), f (I–1)

f (f (I+1)– 1),
f (f (I –1)+1)

–f (f (I – 1)+1)

Two image
subtracted

f (f (I +1)–1)
–f (f (I –1)+1)

376 Exercises

Exercise 9.7 (X and O segmentation)

Task
Given a black and white image with two types of textons, segment the image.

Hint
First detect some characteristic points of one of the textons. Then segment based on the resulting
points. To solve this problem non-local information is needed. We have to use the propagating
property of the A template. Use blur, then some kind of thresholding method. In this case the point
set is rather sparse. To enhance the effect of blur, use a fixed state map.

Example

Input image Segmented image

Algorithm frame

Texture segmentation

Original
image

Result of the
Junction
Extractor

template

Skeletonized
image

Result of the
Junction
Extractor

template

Its inverse
created for
fixed state

mask

377 Exercises

Blurred
image

created with
fixed state

mask

Result of
Smoothing

template

Result
masked with

original

Exercise 9.8 (QCA simulation)

Task

Design a one-dimensional three-layer CNN simulating the behavior of a Quantum-dot Cellular

Automata (QCA) cell line of 30 cells. The equation giving the dynamics of a QCA cell is

h̄
d

dt

 ui j

vi j

wi j

 =

Ek

0

w�i j

0

−Ekw�i j

0

−2γ

0

2γ

0

 ·

 ui j

vi j

wi j

where

w�i j = Ek(wi, j−1 + wi, j+1 + wi−1, j + wi+1, j

−1

4
(wi−1, j−1 + wi+1, j+1 + wi−1, j+1 + wi+1, j−1))

Here γ and Ek are constants, characterizing the cell, and “hbar” is the Planck constant divided by
2π . For simplicity, take γ = 0.3, Ek = 1, and “hbar” = 1. The three-element vector (ui j , vi j , wi j)

gives the state of the i th cell.

As initial values for the columns of three layers use:

u: −0.0156, 0, 0.0234, 0.703, 0.0234, 0, 0, . . . , 0

v: −0.8047, 0.8047,−0.9063,−1.0,−0.8984,−0.8281,−0.8047, . . . ,−0.8047

w: −0.6094,−0.6016,−0.4375, 0.0234, 0.4453, 0.5703, 0.5938, . . . , 0.5938

Input: U(t) = not used

Initial state: a wave front starting to propagate

Boundary conditions: doubling; the first and the last column are fixed

Output: Y(t): state of the cell line after state t

Example

The propagation of a wave front from the left to the right in an array of QCA cells. All the cells
contain the same value in a column, thus only a 1D section is shown. (a) The initial state and (b) an
intermediate state.

378 Exercises

0 10 20 30
–1

–0.5

0

0.5

1

0 10 20 30
–1

–0.5

0

0.5

1

w w

v

u

v

u

n n

(a) (b)

Chapter 10

Exercise 10.1 (Template design)

Task
Design a template which can detect one-pixel-wide line endings! Use the TEMMASTER application!

Hint
We restrict the solution to a 3 × 3 neighborhood and a one-pixel-wide line. Possible cases (eight
neighbors):

This problem is linearly not separable, therefore it must be decomposed into a sequence of templates.
These templates must apply to the initial image, then the results must be XOR-ed to get the final
result.

Example

Original image
Line endings

(arrows show the location)

379 Exercises

Chapter 12

Exercise 12.1 (Distance classification)

Task
Design an algorithm which can select those points whose distance from each other is less than a
certain value along a given direction.

Example

Input image
Result of

DirectedGrowing
Shadow0

Result of Peel0
masked with original

Input image
Result of

DirectedGrowing
Shadow45

Result of Peel45
masked with original

Hint

Create growing shadows and then remove the starting points. The remaining points are those which

are inside the shadow. The length of the shadow is proportional to the iteration number. Use the

following templates:

DirectedGrowingShadow0

A =
0.4 0.3 0

1 2 −1

0.4 0.3 0

, B =
0 0 0

0 1.4 0

0 0 0

, z = 2.5

DirectedGrowingShadow

A =
0 0 −1

1 2 0

1 1 0

, B =
0 0 0

0 1.4 0

0 0 0

, z = 2.5

380 Exercises

LeftPeeler

A =
0 0 0

2 2 0

0 0 0

, B =
0 0 0

0 0 0

0 0 0

, z = −2

Other directions can be gained by appropriate rotation. The effect of templates can be seen above.

Exercise 12.2 (Arc detection)

Task

Design an algorithm that selects those arcs for the input image of which concave sides are positioned
face to face horizontally in relation to each other. See the Example for a visual explanation.

Hint

Use the ConcaveArcFiller and DirectedGrowingShadow templates:

DirectedGrowingShadow0

A =
0.4 0.3 0

1 2 −1

0.4 0.3 0

, B =
0 0 0

0 1.4 0

0 0 0

, z = 2.5

DirectedGrowingShadow180

A =
0 0.3 0.4

1 2 −1

0 0.3 0.4

, B =
0 0 0

0 1.4 0

0 0 0

, z = 2.5

ConcaveArcFiller35

A =
1 0 1

0 2 0

1 1 0

, B =
0 0 0

0 1 0

0 0 0

, z = 2

ConcaveArcFiller−155

A =
0 1 1

0 2 0

1 0 1

, B =
0 0 0

0 1 0

0 0 0

, z = 2

To get the desired result, use the logical AND, XOR operation (or LogicDifference1 template) and
the SmallObjectRemover template to remove small objects. The LogicDifference1 and SmallObject-
Remover templates are available in the template library. The ConcaveArcFiller∗ templates result in
directed shadows originating from concave locations.

381 Exercises

Example

Arc detection result images

Input image

ConcaveArc
Filler-155

 and
ConcaveArc
Filler35

After XOR operation
and

SmallObject
Remover template

Masked result of
DirectedGrowingS

hadow0 and
DirectedGrowingS

hadow180

templates

The locations

Exercise 12.3 (Detect forks)

Task
Given the following picture, detect the fork.

Hint
We have to find characteristic features of the object and then try to extract them. Such features are arcs
or endings and the position of them in relation to each other. Some post- and intermediate processing
is needed; for example, small object removing.

382 Exercises

Object detection result images

Input image

ConcaveArc
Filler65

and
ConcaveArc
Filler-65

After XOR operation
and SmallObject
Remover template

After
DirectedGrowing

Shadow315 and
DirectedGrowing
Shadow225

The result of logic
AND of the previous 4
image and the result
of PatchMaker

The result of the
SelectedObjects

Extraction template
with the previous and
the original image

Use the ConcaveArcFiller and DirectedGrowingShadow templates:

ConcaveArcFiller65

A =
1 0 0

1 2 0

0 0 2

, B =
0 2 0

0 0 0

0 0 0

, z = 3

383 Exercises

ConcaveArcFiller−65

A =
1 0 1

1 2 0

0 0 1

, B =
0 0 0

0 1 0

0 0 0

, z = 2

DirectedGrowingShadow315

A =
1 1 0

1 2 0

0 0 −1

, B =
0 0 0

0 1.4 0

0 0 0

, z = 2.5

DirectedGrowingShadow225

A =
0 1 1

0 2 1

−1 0 0

, B =
0 0 0

0 1.4 0

0 0 0

, z = 2.5

The SelectedObjectsExtraction template reconstructs the image starting from one point. The Small-
ObjectRemover template removes the small objects. The SelectedObjectsExtraction, SmallObject-
Remover and the PatchMaker templates are available in the template library. The ConcaveArcFiller∗
templates result in directed shadows originating from concave locations.

Exercise 12.4 (Locate small ellipses)

Task

Design an algorithm which can locate small circles and small ellipses.

Hint

Use the filling property of the local concavity detector template (ConcaveArcFiller∗). Fill the objects
on image from two opposite directions. The small objects are filled in both cases. The next step is
to find those objects which are not filled completely in both images and then remove them from the
original image.

384 Exercises

Example

Algorithm for detecting small circles and ellipses

Input image

ConcaveArc
Filler-155

and
ConcaveArc
Filler35

After logic AND of the
previous images and the
ConcaveLocation
Filler template

After local hole filling

The logic difference of the
two previous image, and

applying the
PatchMaker template

Result of
SelectedObjects
Extraction template

applied to the original and
the previous image and its

inverse

The logic difference of the
original and the previous

(inverted) image

Use the following ConcaveArcFiller templates:

ConcaveArcFiller35

A =
1 0 1

0 2 0

1 1 0

, B =
0 0 0

0 1 0

0 0 0

, z = 2

385 Exercises

ConcaveArcFiller−155

A =
0 1 1

0 2 0

1 0 1

, B =
0 0 0

0 1 0

0 0 0

, z = 2

The SelectedObjectsExtraction, ConcaveLocationFiller, HoleFilling, and PatchMaker templates are
available in the template library. The ConcaveArcFiller∗ templates result in directed shadows
originating from concave locations.

Chapter 13

Exercise 13.1 (Linear morph)

Given: two gray-scale images P1 and P2

Input: U(t) = P1

Initial state: X(0) = P2

Boundary conditions: −1

Output: Y(t) = a transition from P2 to P1. The transition has to be linear:

Y(t) = λ(t)P1+ (1− λ(t))P2

Task
Design a D type template which accomplishes a linear transition from image P2 to P1.

Hint
The solution is basically a three-layer model, where the first two layers compute λ and 1 − λ and
on the third layer the output image is computed. Try to solve the exercise without looking at the
following solution.

%MORPH
NRLAYERS 3
LAYER 1
Neighborhood: 0
FEEDBACK FROM 1
1
CURRENT –0.1
LAYER 2
Neighborhood: 0
FEEDBACK FROM 2
1
CURRENT 0.1
LAYER 3
nonlin_d
u#y
1#1
1
nonlin_d
u#y
2#2
1

386 Exercises

Example

Exercise 13.2 (Parity check)
Parity check is an important task of computing; it is well known that it is used in error detection of
memories. A nonlinear solution already exists in the CNN Software library. Now solve it using a D
type template.

Task
A binary input picture is given. The task is to produce an output picture which represents the parity
of the input picture defined as follows. A particular pixel in the output is black, if an even number of
black pixels can be found at the left of that particular pixel (including the position of the pixel itself).

Given: static binary image P

Input: U(t) = P

Initial state: X(0) = P

Boundary conditions: −1

Output: Y(t) → Y(∞) = a binary image, which represents the row parity calculated from the
left side of the image

Example

Input Output

387 Exercises

Hint

The applied template realizes the following network equations:

ẋi j = −xi j + y(i−1) j ∗ ui j

yi j = f (xi j)

where f is the usual sigmoid function.

Exercise 13.3 (Limit set)

Task
In mathematical set theory the limit point is a well-known notion. Can we define a discrete notion
and detect the limit point of a discrete binary set?

Given: static binary image P

Input: U(t) = P

Initial state: X(0) = arbitrary (0)

Boundary conditions: 0

Output: Y(t) → Y(∞) = binary image, the limit points of the set defined as those white points,
which has at least one black point neighborhood

Example

Input

Output

Pictures are taken from the picture library. The last case shows how the template behaves in the
gray-scale case.

Question
This exercise is very similar to the Edge template. Why? What is the difference?

Exercise 13.4 (Chaotic cell)

A chaotic function with one cell and D template.

388 Exercises

Task
Design a template which implements the following so-called “logistic equation” in the range [−1, 1]
as a DT-CNN.

The logistic map is known as f (x) = λx(1 − x). It is known that the iteration of this function

becomes chaotic if λ is greater than ∼ 3.56. The discrete iteration is

x(n + 1) = λx(n)(1− x(n))

Example
The following picture shows a transient with starting value x(1) = 0.7.

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

x(n)

Appendices

Appendix A: TEMLIB, a CNN Template Library

Under the name TEMLIB, within the Software Library for analogic cellular (CNN) computers, a set
of fairly standard types of CNN template data are contained. The template names in TEMLIB can be
used in the template and algorithm simulators defined in Appendix B.

Appendix B: TEMPO, template optimization tools

Under the name TEMMASTER, a student version of a program for template optimization and design
is available. It is used mainly for Boolean CNN and for robust template design.

Appendix C: CANDY, a simulator for CNN templates and analogic CNN algorithms

Under the name CANDY (CNN Analogic Dynamics), a student version of a software simulator
system is available. Multi-layer CNN templates as well as analogic CNN algorithms (defined on the
CNN Universal Machine having a one layer, first-order dynamics CNN core) can be simulated. An
easy to use Template Runner program as well as a high-level language compiler (Alpha) help the
user to analyze complex spatial-temporal dynamics easily and with expressive visualization tools.

389

Index

A template 278–81
sign-symmetric 225
symmetric 219–37

absolute value 383
ACE4K analogic Visual Microprocessor Chip 6
activator 375

configuration 289, 290
active cells 284–9
activity configuration 289
actual settling time 166
algebraic analysis 215
alpha compiler 188
alpha language 191
alpha program 190
alpha source code 322
amacrine cells 340
analog CNN core 310–12
analog CNN implementations 115–16
analog computing industry 1
analog program register (APR) 246, 256
analog-to-digital array converter 206–10
analogic cellular computer 1
analogic CNN algorithm 253
analogic CNN computing 2
analogic CNN language 188, 250
analogic CNN-UM cell 316–17
analogic machine code (AMC) 250, 254, 261
arc detection 390–1
array-type analog to digital converter 206–10
arrowhead illusion 335
autonomous CNN 16, 28, 29, 213
autonomous system 223, 244

B template 273–5, 278–81
symmetric 274

ballterms 203–4, 206
Bars-Up 250, 251, 261
basin of attraction 49, 224
bifurcation theory 161
bilateral wedges 160
binary activation pattern 284, 289–94
binary CNN characterization via Boolean functions

120–43
binary CNN truth table 120–6
binary edge detection template 35
binary images 40
binary input 126, 167, 265
binary output 127, 167, 265

binary representation 266–7
bionic eye 326, 344
bipolar to unipolar converter (B/U) 208
bistable case 144, 155
bistable CNN 49
bistable output formula 161
bistable sector 160
bistable wedges 160
black corner pixels 169, 171
black pixel count 377–8
black pixels 167, 169, 174, 189
Boolean AND operation 175
Boolean functions 178–87, 373

binary CNN characterization via 120–43
realizable by uncoupled CNNs 166–7
XOR, truth table 186

Boolean input variables 266
Boolean local rules 126–9
Boolean output equation 185
Boolean transition function, implementation 199–206
Boolean truth table 173, 178, 179
boundary cell 8
boundary conditions 9, 14, 15, 113

zero 216
bounded solutions 216
boundedness of solutions 23–5
B/W (black and white) symmetric rule 290

CASTLE 318, 319
cell-linking CNN 230–2
cell-linking tests 231–5
cellular nonlinear/neural (CNN) networks see CNN
center component template 26
center feedforward template 26
central gain type receptive field organization 338
chaos 211
chaotic cell 398
chaotic CNN with only two cells and one sinusoidal

input 216–19
chaotic solution waveforms 217
chip prototyping system board (CPS board) 261, 320
Chua–Yang model 310
circuit time constant 166
class 1 M × N standard CNN 8–13
class K (Kilo real-time [K r/t] frame rate) class 5–6
class T (TeraOPS equivalent computing power) class 6
cloning templates 27, 327–8, 340

feedback 25

390

391 Index

feedforward 26
input 26
representation 25

CLOSE operation 198, 322
closed contour 213, 216
closed invariant set 244
closed set 244
CMOS implementation 310, 316
CNN

architecture 7, 14
classes 27–9
fundamental inequalities 178
implementation 188, 190, 194, 196, 208
networks 1
with time-invariant input and bias 243
see also specific types and applications

CNN analog chip 115
CNN array 276, 288, 309–11
CNN chip prototyping system (CCPS) 261, 263, 320,

321, 323
CNN circuit 25

driven by sinusoidal signal 220
CNN core 309
CNN dynamics

simulation 105–19
standard class 1 105

CNN equations 106
CNN instruction (macro) 13
CNN layer 336
CNN operating system (COS) 255, 261, 320
CNN physical interface (CPI) 320
CNN Script Description (CSD) code 110, 260
CNN standard cell 208
CNN subroutine or function 188
CNN technology, new developments 5
CNN templates 51–104, 188, 189, 199–203, 211

characteristics and analysis 35–104
examples 51
global task 51
local rules 51
mathematical analysis 51–2
prescribed 121
robustness 175
see also specific templates

CNN test circuit 311
CNN Universal Chip 2, 3, 116, 169, 255
CNN Universal Machine (CNN-UM) 1, 2, 5, 245–63

architecture 245–9, 309
chip 261
compiler 260–2
example 250–1
functional circuit level 252–9
introduction 188–210
language 260–2
operating system 260–2
structure 249

co-dimension 1 output formula 161
co-dimension 2 bifurcation point 161
compiled analogic macro code 262
complementation (LOGNOT) operation 179
complete stability 144, 211–44

theorems 145, 147–60, 220, 227, 229, 235–7
compressed local rules 126–9

computer vision 326
computing power comparison 323–5
concavity orientation 381–2
conjunctive (intersection, LOGAND) operation 179
connected component detector (CCD) template 237,

312
connectivity problem 292–5
consecutive snapshots 304, 305
constant inputs 220
constant threshold 220
constrained propagation 290
continuous time image

acquisition 303–8
discrete 303–8

CONTOUR-1: contour detection template 79–86
examples 81–3
global task 79
local rules 80
mathematical analysis 83–6

convolution 274–5, 279
convolution window 319
CORNER: convex corner detection template 52–6,

129–30
binary code 142
corrected minimal truth table 141
decimal code 142
examples 52–4
global task 52
input–output patterns 133–40
local rules 52
optimized minimal truth table 141
see also optimized CORNER template

corner coordinate coding scheme 173
CornerDetection template 371
coupled CNN with linear synaptic weights 282–95
coupled linear ordinary differential equations 279
CPS board (CNN prototyping system board) 261, 320
crossword puzzle endings 374
CSD (Script) language 111
curvature 382

data compression 125
dc (average) value property 277
degenerate case 146, 149, 158
delta sign 293
design techniques 264–6, 388–9
difference picture in continuous time mode 305–8
diffusion-type receptive field organization 338, 339
digital hardware accelerators 114–15
digital signal processing (DSP) 114–15, 118, 278, 318
digital technology 1
dilation 195–7, 199
DILATION: grow-until-it-fits template 93–104

examples 97–104
global task 93–6
local rules 96
mathematical analysis 96–104

directional selectivity 331–2
discrete op-amp circuit 219
Discrete Spatial Fourier Transform (DSFT) 276–9
discrete spatial variables 276
discrete-time CNN (DTCNN) 119
distance classification 389

392 Index

driving-point (DP) characteristics 38
driving-point (DP) component 27
driving-point (DP) plot 46

see also shifted DP plot
DWLB template 305
dynamic equations 297–304
dynamic local rules (DLC) 284–9, 291–2, 295
dynamic routes 70, 80, 81, 95, 103, 144, 149, 151–9,

162–5

economics 178
edge cells 8
Edge CNN template 35–40, 86, 108, 110, 111, 117,

189, 371
examples 36–7
global task 35
local rules 35, 39–40
mathematical analysis 37–40

EDGE detection 283
EdgeDetector 270
Edgegray CNN template 40–50, 86

basins of attraction 49–50
examples 42–5
global task 41
local rules 41–2, 46–9
mathematical analysis 45–9

emulated digital implementation 318–19
end point detector test 399–400
equilibrium points 39, 49–50, 63, 144, 148, 158, 162,

212, 214, 215, 220, 223, 227, 241, 242
robustness 149
virtual 162, 214

erosion 195–8
EROSION: peel-if-it-doesn’t-fit template 12, 87–92

examples 89
global task 87–8
local rules 88
mathematical analysis 89–92

excitatory synaptic weights 27
exclusive OR (XOR) function see XOR function
extended cell 202, 208, 246–7, 316

configurations 257
functional circuit level schematics 255–6

EXTREME TEMPLATE 12

feedback 9
feedback cloning template 25
feedback synaptic operator 25
feedback synaptic signal flow graph 33
feedback synaptic weights 145, 212
feedback template 145
feedforward cloning template 26
feedforward CNN 27, 29, 273, 278

convolution property 274–5
FILBLACK: gray-scale to black CNN template 60

global task 60
local rules 60

FILWHITE: gray-scale to white CNN template
examples 61
global task 60
local rules 61

FIR kernels, spatial convolution with 273–5
fixed (Dirichlet) boundary conditions 15

flow diagram 188, 190, 195, 196, 198, 251, 253
fork dectection 392
forward Euler formula 106, 372–3
Fourier series expansion 217
Fourier transform 276, 277
frequency domain differential equations 280
frequency domain transfer function 281
frequency power spectra 218

game of life 205–7, 271
ganglion cell 341
Gaussian weight distribution 338
global analogic control unit (GACU) 256
global analogic programming unit (GAPU) 246,

248–50, 255
content 256–7

global clock (GCL) 189, 192, 249
global existence 20–2
global point attractor 49
global task 190, 193–4, 196, 250–1
global white test (GW) 189, 192
GlobalMaximumFinder template 11
gray-scale159

contour detector 298
edge detection template 41
images 40–1
output formula 161
sector 160, 172
wedges 160

GrayscaleLineDetector template 11
grid, dynamic construction 374–5

H templates 273–5
hardware accelerator board (HAB) 114, 118
hardware components 194
hardware schematics 188
hardwired components 190, 196, 208
hexagonal neighborhood 369
HOLLOW template 252
HORDIST template 252
horizontal connected component detector template

282
hypercube 169, 171
hyperplane 169, 171
hyperplane equation 172

image flow 308
image input 106–7
ImageDifferenceComputation template 13
impulse response kernel 274, 278, 281
impulse response matrix 274
inactive cells 284–9
inequalities 291–2, 295
infinite impulse response (IIR) filter 281
infinite impulse response (IIR) kernels 279

spatial convolution with 278–81
inhibitor 375
inhibitory synaptic weights 27
initial conditions 112–13, 165
initial state 10, 38
inner plexiform layer (IPL) 340
input 9
input cloning template 26

393 Index

input (feedforward) template 145
input images 110–12, 268, 274
input scale 116
input synaptic operator 9, 26
input synaptic signal flow graph 34
integration formula test 371
inverse function 221
inverse transform 281
irreducibility 236, 243
isotropic CNN 13

Jacobian matrix 243

Kamke’s theorem 286–7

Lady’s shoe attractor 218–19
Lady’s shoe Poincaré map 221
language 189
Laplace operator 323
Laplacian template 41
LaSalle invariance principle 223, 244
lateral geniculate nucleus (LGN) 332
length tuning 332–3
LGTHTUNE template 11
limit cycle 213
limit set 397–8
linear image processing 273–81

with A and B templates 278–81
with B templates 273–5

linear inequalities 177
linear morph 395–6
linear programming problem 177
linear separability 266–7
linear synaptic weights 282–95
linearly separable Boolean functions 169, 177

geometrical interpretation 168–71
linearly separable case 167, 171
Lipschitz continuous nonlinearity 21–2
local analog memory cells (LAM cells) 208, 255, 316
local analog output unit (LAOU) 246, 316
local Boolean function 203, 245

non-separable 178–87
realization theorem 166–7

local communication and control unit (LCCU) 246
local concavity 382
local logic memory (LLM) 192
local logic unit (LLU) 202, 254
local rules 127

computer-aided method for proving 128–9
LocalConcavePlaceDetector 271
locally stable equilibrium points 49
LOGAND: logic AND and set intersection

(conjuction) template 66–70, 173–4, 179, 183,
187

examples 67
global task 67
local rules 67
mathematical analysis 68–70

LOGDIF: logic difference and relative set
complement template 70–2

examples 71
global task 70
local rules 71

mathematical analysis 71–2
logic AND function 173, 177
logic gate 316
logic program register (LPR) 246
logic register 316
logic XOR 252
LOGNOT: logic NOT and set complementation

template 61–3, 179, 183, 187
examples 62
global task 61–2
local rules 62
mathematical analysis 62–3

LOGOR: logic OR and set union (disjunction)
template 63–6, 179, 183, 187

examples 64–5
global task 64
local rules 64
mathematical analysis 64–6

Lyapunov function 222, 223, 224

machine vision 326
main group points 371
MajorityVoteTaker template 11
mathematical foundations 14–34
mathematical induction 233
mathematical morphology 196, 198
Matheron representation 198
matrix differential equation 14
maxterm Boolean function 184
maxterm CNNs 179, 184
maxterm output equation 186
maxterm realization theorem 184–7
memory copying instructions 192
MEMS (micro-electro-mechanical system) arrays 1
minimal representation 125
minimal truth table 125–6, 130
minimum power supply voltage 25
minterm Boolean functions 180–2, 267
minterm CNNs 179, 180
minterm output equation 183
minterm realization theorem 182–4
minterm truth table 181
mono-activation property 285, 288
monostable binary CNN 160
monostable case 144, 155
monostable output formula 161
monotonic state transient property 285–6
morphogens 375
morphological image-processing applications 89
morphological operators, opening and closing and

implementing 195–8
Mosaic spine 160
Mosaic wedge 160
motion analysis 303–8
multilayer CNN for receptive field interactions

339–40, 342

negative self-feedback case 146, 160
neighborhood Boolean function 203
neighborhood cells 285, 289
noise 40, 50, 70, 85, 217, 307
non-linear differential equations 216
non-linear dynamic operator 245

394 Index

non-linear dynamics 144, 211–44
non-linear qualitative analysis 213
non-linear synaptic weights 296–301
non-separable Boolean function XOR 183

schematic diagram 186
non-separable local Boolean function 178–87
non-zero feedback synaptic coefficients 179
normalized settling time 165
normalized time constant 165

offset level 27, 147, 277
on-chip concavity filler test 401–2
on-chip edge test 402
on-chip hole filling test 402
one transistor synapse 311
open 199
operation research 178
operational transconductance amplifiers (OTAs) 310
optimal solution 291–2, 295
optimal uncoupled CNN 177
optimized CORNER template 130–42

binary code 142
decimal code 142

optimum CNN template 171
ordinary differential equations (ODE) 14, 17
orientation selectivity 334
oscillatory CNN 282

with only two cells 211–16
oscillatory periodic steady state behavior 211
outer plexiform layer (OPL) 340
output 9
output dynamic route 39
output equation 9, 176, 178, 337
output formulas 161
output image 26, 110
output scale 116

parity check 397
partial differential equations (PDEs) 5, 264
periodic solution waveforms 213
periodic (toroidal) boundary conditions 16–17
periodic waveform 212
PetaOPS 2
Picard–Lindelof theorem 22
piecewise-linear function 214
piecewise-linear output characteristic 212
piecewise-linear solution method 147
pixel illumination level 107
pixels, detection 267xxx
Poincaré–Bendixon theorem 216
Poincaré cross section 218
Poincaré map 218, 219
prescribed CNN templates 121
Primary CNN Mosaic 158–61, 166, 172, 275
propagation rule 290

quantum-dot cellular automata (QCA) 384–8
simulation 384–8

radial spines 160
rate function 27, 147
reaction–diffusion equations 375
readout map 275

RECALL template 252
receptive field interactions 339–40
receptive field organization 327–8, 338
recursive function 188
reduced instruction set (RISC) processor 114–15
regular cell 8
retina 326

engineering model 335–43
prototype model 340–3

right-angle wedge 155
robot 130
robustness

criterion 175
to parameter variations 177

rotationally symmetric nodes 233–4
roughness measurement 379–81

scalar function 222–5
scalar nonlinear ODE 28
scaling the signals 116–18
sconf0 257
sconf1 257, 258
sconf2 257, 258
sconf3 257, 259
sconf4 257, 259
second-order oscillator 378–9
segmentation 384
self-feedback 145

synaptic weight 172
self-inputs 174
semi-stable case 145, 146, 155
sensor revolution 1
separate connected objects 370
separation plane 169
set inclusion 189–92
settling time 211, 278, 280

explicit formula 161–6
SHIFT: translation (by 1 pixel-unit) template 73–9

examples 75–6
global task 73–4
local rules 74–5
mathematical analysis 76–9

shifted DP plot 50, 59, 62, 79, 85, 87, 144, 147, 152,
297–301

sigmoid functions 337
sign-antisymmetric CNNs, stability 237–42
sign-symmetric A template 225
signal flow graph 230
SimCNN software simulator program 107, 324
similarly directed paths 235
simple decomposition 266–7
simple morph 369
simplex algorithm 178
single binary input 121
single cell layer 336
singular cases 49
small circles location 392–5
small ellipses location 392–5
software simulation 107
solution waveforms 162–5, 212, 216
solutions

boundedness of 23–5
existence and uniqueness of 18–22

395 Index

SPA (speed, power, area) measures 2
space constant 338
space-invariant binary CNN 120
space-invariant CNN 13, 25–8, 145
space-invariant template matrices 105
space-invariant templates 105
spatial convolution 26, 275

with FIR kernels 273–5
with IIR kernels 278–81

spatial domain kernel 281
spatial frequency characterization 275–8
spatial logic 245
spatio-temporal sensory information processing 328
speed detection 304
SpeedDetection template 13
sphere of influence of cell C(i, j) 7–8
stability 63, 144

sign-antisymmetric CNNs 237–42
see also complete stability

stability boundary 237
standard CNN 13, 21

architecture 7
cell C(i, j) 7–8, 31
with delayed synaptic weights and motion analysis

302–8
standard nonlinearity 9
standard numerical operation 274
state 9
state dynamic route 39
state equation 8–9, 13, 212, 214, 220, 273, 297, 339,

340
trajectory of 38

state image 110
state scale 116
stationary output 158
stored programmability 2, 248–9, 319, 320
strange attractor 221
strong positive self-feedback case 145, 152–5
structuring element 89, 93, 104
surface interpolation 377
surround component template 26
surround feedforward template 26
switch 316
switch configuration register (SCR) 246, 256
symmetric A template 219–37
symmetric B template 274
symmetric node-pair 233
synapse

conductance functions 337
types 337

synaptic circuits 8
synaptic operators 21
synaptic signal flow graph representation 30–4
synaptic weights 30, 225–9, 236, 275, 327–8

see also specific synaptic weights

template decomposition techniques 271
template design 264–6, 388–9

tools 264–72
template dot product 25
template form 291, 294
template optimization 267–71
template sequence design 265

template type 291, 294
TEMPO program 129, 265, 267, 271
TeraOPS 2
threshold 9, 14, 50, 166, 220
THRESHOLD: gray-scale to binary threshold

template 56–60
examples 57–9
global task 56
local rules 57
mathematical analysis 59–60

time constants 164
time delays 10, 12–13
time step 111
topological conjugacy 244
trajectory 49, 212, 213

of state equation 38
transfer function 280
transient waveform, explicit formula 161–6
TRANSLATE function 195
translation of sets and binary images 193–4
triad synapse action 330
triangular inequality 24
triangular neighborhood 369
truth table 120–6, 167–9, 173, 174, 177, 179, 373

optimization 129–43
see also specific truth tables

Turing–Church thesis 188
Turing machine 188, 245
Turing patterns 375
two-neighbor input AND gate 176
two-self-input AND gate 173

unconstrained propagation 290
uncoupled class 129
uncoupled CNNs 28, 30, 50

example 299
geometrical interpretations 167–9
global task 298
local rules 298–301
mathematical analysis 299–301
optimal 177
realization theorem 187
unified theory and applications 144–87
with nonlinear synaptic weights 296–301
with prescribed Boolean functions, design 171–8

uncoupled first-order linear ordinary differential
equations 279

uncoupled linear ordinary differential equations 279
uncoupled (scalar) class C (ASos, B, z) 28
unique equilibrium point 49
uniqueness property 216
uniqueness theorem 20–2
unit square 167
unity-gain self-feedback CNN 146, 157–8, 166, 172
unity-gain threshold characteristics 337
universal CNN truth table 120–6
unstable quilibrium point 49
USE declaration 192

VCCS (voltage controlled current source) 309, 310,
336

vector differential equation 17–18
virtual cells 14

396 Index

virtual equilibrium point 148
virtual input 14
virtual output 14
virtual state 14
virtual threshold 14
VisMouse 108
visual cortex 332, 334
visual feature detection 251
visual illusion 334–5
visual microprocessors 5, 309–25

computational infrastructure 319
Visual Mouse Software Platform 108
visual pathway 326–44

CNN models 328–35
VLSI implementation 309–25
voltage controlled current source (VCCS) 309, 310,

336

voltage controlled/gated transconductances 336

weak positive self-feedback case 146, 158–9
white corner pixels 169, 171
white pixels 167, 169, 174
Window Truth Table 267–70

XOR function 169, 178, 179, 199
maxterm realization 185
minterm realization 180

XOR operations 204
XOR truth table 182, 185, 200

zero-feedback (feedforward) CNN 27, 29, 273
zero-flux (Neumann) boundary conditions 15
zero-input 16
zero-input (autonomous) CNN 28, 29

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Acknowledgements
	1 Introduction
	Scenario
	The textbook
	New developments

	2 Notation, definitions, and mathematical foundation
	2.1 Basic notation and definitions
	2.2 Mathematical foundations
	2.2.1 Vector and matrix representation and boundary conditions
	Boundary conditions
	Vector differential equation

	2.2.2 Existence and uniqueness of solutions
	2.2.3 Boundedness of solutions
	2.2.4 Space-invariant CNN
	Cloning template representation

	2.2.5 Three simple CNN classes
	2.2.6 Synaptic signal flow graph representation

	3 Characteristics and analysis of simple CNN templates
	3.1 Two case studies: the EDGE and EDGEGRAY templates
	3.1.1 The EDGE CNN
	EDGE: binary edge detection template

	3.1.2 The EDGEGRAY CNN
	EDGEGRAY: gray-scale edge detection template

	3.2 Three quick steps for sketching the shifted DP plot
	3.3 Some other useful templates
	3.3.1 CORNER: convex corner detection template
	3.3.2 THRESHOLD: gray-scale to binary threshold template
	3.3.3 FILBLACK and FILWHITE templates
	FILBLACK: Gray-scale to black CNN
	FILWHITE: Gray-scale to white CNN

	3.3.4 LOGNOT: Logic NOT and set complementation…
	3.3.5 LOGOR: Logic OR and set union (disjunction) template
	3.3.6 LOGAND: Logic AND and set intersection (conjunction) template
	3.3.7 LOGDIF: Logic difference and relative set complement (P \ P = P – P) template
	3.3.8 SHIFT: Translation (by 1 pixel-unit) template
	3.3.9 CONTOUR-1: Contour detection template
	3.3.10 EROSION: Peel-if-it-doesn’t-fit Template
	3.3.11 DILATION: Grow-until-it-fits template

	4 Simulation of the CNN dynamics
	Introduction
	4.1 Integration of the standard CNN differential equation
	4.2 Image input
	4.3 Software simulation
	4.4 Digital hardware accelerators
	4.5 Analog CNN implementations
	4.6 Scaling the signals
	4.7 Discrete-time CNN (DTCNN)

	5 Binary CNN characterization via Boolean functions
	5.1 Binary and universal CNN truth table
	5.2 Boolean and compressed local rules
	Computer-aided method for proving local rules

	5.3 Optimizing the truth table

	6 Uncoupled CNNs: unified theoryand applications
	6.1 The complete stability phenomenon
	6.2 Explicit CNN output formula
	6.3 Proof of completely stable CNN theorem
	6.4 The primary CNN mosaic
	6.5 Explicit formula for transient waveform and settling time
	6.6 Which local Boolean functions are realizable by uncoupled CNNs?
	6.7 Geometrical interpretations
	6.8 How to design uncoupled CNNs with prescribed Boolean functions
	6.9 How to realize non-separable local Boolean functions?

	7 Introduction to the CNN Universal Machine
	7.1 Global clock and global wire
	7.2 Set inclusion
	7.3 Translation of sets and binary images
	7.4 Opening and closing and implementing anymorphological operator
	7.5 Implementing any prescribed Boolean transition function by not more than 256 templates
	7.6 Minimizing the number of templates when implementing any possible Boolean transition function
	7.7 Analog-to-digital array converter

	8 Back to basics: Nonlinear dynamics and complete stability
	8.1 A glimpse of things to come
	8.2 An oscillatory CNN with only two cells
	8.3 A chaotic CNN with only two cells and one sinusoidal input
	8.4 Symmetric A template implies complete stability
	8.5 Positive and sign-symmetric A template implies complete stability
	8.6 Positive and cell-linking A template implies complete stability
	8.7 Stability of some sign-antisymmetric CNNs
	A Appendix to Chapter 8
	LaSalle’s invariance principle

	9 The CNN Universal Machine (CNN-UM)
	9.1 The architecture
	9.1.1 The extended standard CNN universal cell
	9.1.2 The global analogic programming unit (GAPU)
	Why stored programmability is possible?

	9.2 A simple example in more detail
	9.3 A very simple example on the circuit level
	The task
	The steps of the solution
	The flow diagram of the algorithm and the templates
	The macro code of the algorithm
	The functional circuit level schematics of an extended cell
	The content of the global analogic programming unit (GAPU)

	9.4 Language, compiler, operating system

	10 Template design tools
	10.1 Various design techniques
	10.2 Binary representation, linear separability, and simple decomposition
	10.3 Template optimization
	10.4 Template decomposition techniques

	11 CNNs for linear image processing
	11.1 Linear image processing with B templates is equivalent to spatial convolution with FIR kernels
	11.2 Spatial frequency characterization
	11.3 A primer on properties and applications of discrete-space Fourier transform (DSFT)
	11.4 Linear image processing with A and B templates is equivalent to spatial convolution with IIR kernels

	12 Coupled CNN with linear synaptic weights
	12.1 Active and inactive cells, dynamic local rules
	Dynamic local rules (DLC)

	12.2 Binary activation pattern and template format
	12.3 A simple propagating type example with B/W symmetrical rule
	12.3.1 Global task
	12.3.2 Local rules and binary activation pattern
	12.3.3 Template type and template form
	12.3.4 System of inequalities and optimal solution

	12.4 The connectivity problem
	12.4.1 Global task
	12.4.2 Local rules and binary activation pattern
	12.4.3 Template type and template form
	12.4.4 System of inequalities and optimal solution

	13 Uncoupled standard CNNs with nonlinear synaptic weights
	13.1 Dynamic equations and DP plot
	Gray-scale contour detector

	14 Standard CNNs with delayed synaptic weights and motion analysis
	14.1 Dynamic equations
	14.2 Motion analysis – discrete time and continuous time image acquisition
	Generating the difference picture in continuous time mode

	15 Visual microprocessors – analog and digital VLSI implementation of the CNN Universal Machine
	15.1 The analog CNN core
	15.2 Analogic CNN-UM cell
	15.3 Emulated digital implementation
	15.4 The visual microprocessor and its computational infrastructure
	15.5 Computing power comparison

	16 CNN models in the visual pathwayand the ‘‘Bionic Eye”
	16.1 Receptive field organization, synaptic weights, and cloning template
	16.2 Some prototype elementary functions and CNN models of the visual pathway
	The triad synapse action
	Directional selectivity
	Length tuning
	Orientation selectivity
	A simple visual illusion

	16.3 A simple qualitative ‘‘engineering” model of a vertebrate retina
	The cell prototype
	Some synapse types (S)
	Receptive field organization types (RF)
	Multilayer CNN for receptive field interactions
	The structure of a prototype retinal model

	16.4 The ‘‘Bionic Eye” implemented on a CNN Universal Machine

	Notes
	1 Introduction
	2 Notations, definitions, and mathematical foundation
	3 Characteristics and analysis of simple CNN templates
	4 Simulation of the CNN dynamics
	5 Binary CNN characterization via Boolean functions
	6 Uncoupled CNNs: unified theory and applications
	7 Introduction to the CNN universal machine
	8 Back to basics: Nonlinear dynamics and complete stability
	9 The CNN universal machine (CNN-UM)
	10 Template design tools
	11 CNNs for linear image processing
	12 Coupled CNN with linear synaptic weights
	13 Uncoupled standard CNNs with nonlinear synaptic weights
	14 Standard CNNs with delayed synaptic weights and motion analysis
	15 Visual microprocessors – analog and digital VLSI implementation of the CNN universal machine
	16 CNN models in the visual pathway and the ‘‘Bionic Eye”

	Bibliography
	1988–1990
	1991–1992
	1993–1994
	1995–1996
	1997–1998
	1999

	Exercises
	Chapter 2
	Exercise 2.1 (Simple morph)
	Exercise 2.2 (Hexagonal neighborhood)
	Exercise 2.3 (Triangular neighborhood)

	Chapter 3
	Exercise 3.1 (Separate connected objects)
	Exercise 3.2 (EDGE–CORNERDETECTION comparison)
	Exercise 3.3 (Main group of points)

	Chapter 5
	Exercise 5.1 (Truth table)
	Exercise 5.2 (Boolean function)

	Chapter 6
	Exercise 6.1 (Crossword puzzle endings)

	Chapter 8
	Exercise 8.1 (Dynamic construction of a grid)
	Exercise 8.2 (Reaction–diffusion equations)
	Exercise 8.3 (Surface interpolation)
	Exercise 8.4 (Black pixel count)
	Exercise 8.5 (Second-order oscillator)

	Chapter 9
	Exercise 9.1 (Roughness measurement)
	Exercise 9.2 (Local concavity)
	Exercise 9.3 (Concavity orientation)
	Exercise 9.4 (Improved concavity orientation)
	Exercise 9.5 (Curvature)
	Exercise 9.6 (Absolute value)
	Exercise 9.7 (X and O segmentation)
	Exercise 9.8 (QCA simulation)

	Chapter 10
	Exercise 10.1 (Template design)

	Chapter 12
	Exercise 12.1 (Distance classification)
	Exercise 12.2 (Arc detection)
	Exercise 12.3 (Detect forks)
	Exercise 12.4 (Locate small ellipses)

	Chapter 13
	Exercise 13.1 (Linear morph)
	Exercise 13.3 (Limit set)
	Exercise 13.4 (Chaotic cell)

	Appendices
	Appendix A: TEMLIB, a CNN Template Library
	Appendix B: TEMPO, template optimization tools
	Appendix C: CANDY, a simulator for CNN templates and analogic CNN algorithms

	Index

