
Cellular Sensory and Wave Computing Laboratory of the Computer and 
Automation Research Inst., Hungarian Academy of Sciences and the  

Jedlik Laboratories of the Pázmány P. Catholic University 
 

 

 

 

 

 

 

Software Library for 

Cellular Wave Computing Engines 

in an era of kilo-processor chips 
 

 

 

 

 

Version 3.1 

 

 

 

 

 

 

 

 

 

Budapest, 2010 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 2010 by the CELLULAR SENSORY WAVE COMPUTERS LABORATORY, HUNGARIAN ACADEMY OF SCIENCES 

 (MTA SZTAKI),  and the JEDLIK LABORATORIES OF THE PAZMANY UNIVERSITY, BUDAPEST 

EDITED BY, K. KARACS , GY, CSEREY, Á. ZARÁNDY, P. SZOLGAY, CS. REKECZKY, L- KÉK, V. SZABÓ, G. PAZIENZA 

AND T. ROSKA  

BUDAPEST, HUNGARY 



 
 

TABLE OF CONTENTS 

INTRODUCTION .............................................................................................................................. 1 

1. TEMPLATES/INSTRUCTIONS............................................................................................... 3 

1.1. BASIC IMAGE PROCESSING ............................................................................................. 4 

GradientIntensityEstimation ........................................................................................... 4 
Estimation of the gradient intensity in a local neighborhood 

Smoothing ....................................................................................................................... 5 
Smoothing with binary output 

DiagonalHoleDetection .................................................................................................. 7 
Detects the number of diagonal holes from each diagonal line 

HorizontalHoleDetection ................................................................................................ 8 
Horizontal connected component detector 

VerticalHoleDetection .................................................................................................... 9 
Detects the number of vertical holes from each vertical column 

MaskedCCD .................................................................................................................. 10 
Masked connected component detector 

CenterPointDetector ..................................................................................................... 11 
Center point detection 

ConcentricContourDetector ......................................................................................... 13 
Concentric contour detection (DTCNN) 

GlobalConnectivityDetection ....................................................................................... 14 
Deletes marked objects 

GlobalConncetivityDetection1 ..................................................................................... 16 
Detects the one-pixel thick closed curves and deletes the open curves from a 
binary image 

ContourExtraction ........................................................................................................ 17 
Grayscale contour detector 

CornerDetection ........................................................................................................... 18 
Convex corner detector 

DiagonalLineRemover .................................................................................................. 20 
Deletes one pixel wide diagonal lines 

VerticalLineRemover .................................................................................................... 21 
Deletes vertical lines 

ThinLineRemover .......................................................................................................... 22 
Removes thin (one-pixel thick) lines from a binary image 

ApproxDiagonalLineDetector ...................................................................................... 23 
Detects approximately diagonal lines 

DiagonalLineDetector .................................................................................................. 24 
Diagonal-line-detector template 

GrayscaleDiagonalLineDetector .................................................................................. 25 
Grayscale diagonal line detector 



ii Table of Contents 

 
RotationDetector .......................................................................................................... 26 

Detects the rotation of compact objects in a binary image, having only 
horizontal and vertical edges; removes all inclined objects or objects having 
at least one inclined edge 

HeatDiffusion ............................................................................................................... 27 
Heat-diffusion 

EdgeDetection .............................................................................................................. 28 
Binary edge detection template 

OptimalEdgeDetector ................................................................................................... 30 
Optimal edge detector template 

MaskedObjectExtractor ................................................................................................ 31 
Masked erase 

GradientDetection ........................................................................................................ 32 
Locations where the gradient of the field is smaller than a given threshold 
value 

PointExtraction ............................................................................................................ 33 
Extracts isolated black pixels 

PointRemoval ............................................................................................................... 34 
Deletes isolated black pixels 

SelectedObjectsExtraction ............................................................................................ 35 
Extracts marked objects 

FilledContourExtraction .............................................................................................. 36 
Finds solid black framed areas 

ThresholdedGradient.................................................................................................... 37 
Finds the locations where the gradient of the field is higher than a given 
threshold value 

3x3Halftoning ............................................................................................................... 38 
3x3 image halftoning 

5x5Halftoning1 ............................................................................................................. 40 
5x5 image halftoning 

5x5Halftoning2 ............................................................................................................. 42 
5x5 image halftoning 

Hole-Filling .................................................................................................................. 44 
Hole-Filling 

ObjectIncreasing .......................................................................................................... 45 
Increases the object by one pixel (DTCNN) 

3x3InverseHalftoning ................................................................................................... 46 
Inverts the halftoned image by a 3x3 template 

5x5InverseHalftoning ................................................................................................... 48 
Inverts the halftoned image by a 5x5 template 

LocalSouthernElementDetector ................................................................................... 50 
Local southern element detector 

PatternMatchingFinder ................................................................................................ 51 
Finds matching patterns 

LocalMaximaDetector .................................................................................................. 52 
Local maxima detector template 



 iii 

MedianFilter ................................................................................................................. 53 
Removes impulse noise from a grayscale image 

LeftPeeler ...................................................................................................................... 55 
Peels one pixel from the left 

RightEdgeDetection ...................................................................................................... 56 
Extracts right edges of objects 

MaskedShadow ............................................................................................................. 57 
Masked shadow 

ShadowProjection ......................................................................................................... 58 
Projects onto the left the shadow of all objects illuminated from the right 

VerticalShadow ............................................................................................................. 59 
Vertical shadow template 

DirectedGrowingShadow ............................................................................................. 60 
Generate growing shadows starting from black points 

Threshold ...................................................................................................................... 61 
Grayscale to binary threshold template 

1.2. MATHEMATICAL MORPHOLOGY ................................................................................ 62 

BINARY MATHEMATICAL MORPHOLOGY.............................................................. 62 
GRAYSCALE MATHEMATICAL MORPHOLOGY ..................................................... 63 

1.3. SPATIAL LOGIC ................................................................................................................ 65 

BlackFiller .................................................................................................................... 65 
Drives the hole network into black 

WhiteFiller .................................................................................................................... 66 
Drives the hole network into white 

BlackPropagation ......................................................................................................... 67 
Starts omni-directional black propagation from black pixels 

WhitePropagation ......................................................................................................... 68 
Starts omni-directional white propagation from white pixels 

ConcaveLocationFiller ................................................................................................. 69 
Fills the concave locations of objects 

ConcaveArcFiller ......................................................................................................... 70 
Fills the concave arcs of objects to prescribed direction 

SurfaceInterpolation ..................................................................................................... 71 
Interpolates a smooth surface through given points 

JunctionExtractor ......................................................................................................... 73 
Extracts the junctions of a skeleton 

JunctionExtractor1 ....................................................................................................... 74 
Finding the intersection points of thin (one-pixel thick)  lines from two 
binary images 

LocalConcavePlaceDetector ........................................................................................ 75 
Local concave place detector 

LE7pixelVerticalLineRemover ...................................................................................... 76 
Deletes vertical lines not longer than 7 pixels 

GrayscaleLineDetector ................................................................................................. 77 
Grayscale line detector template 



iv Table of Contents 

 
LE3pixelLineDetector .................................................................................................. 79 

Lines-not-longer-than-3-pixels-detector template 

PixelSearch ................................................................................................................... 80 
Pixel search in a given range 

LogicANDOperation .................................................................................................... 81 
Logic "AND" operation 

LogicDifference1 .......................................................................................................... 82 
Logic Difference and Relative Set Complement (P2 \ P1 = P2 - P1) Template 

LogicNOTOperation ..................................................................................................... 83 
Logic "NOT" and Set Complementation (P→ P =Pc) template 

LogicOROperation ....................................................................................................... 84 
Logic "OR" and Set Union ∪ (Disjunction ∨ ) template 

LogicORwithNOT ......................................................................................................... 85 
Logic "OR" function of the initial state and the logic "NOT" of the input 

PatchMaker .................................................................................................................. 86 
Patch maker template 

SmallObjectRemover .................................................................................................... 87 
Deletes small objects 

BipolarWave ................................................................................................................. 88 
Generates black and white waves 

1.4. TEXTURE SEGMENTATION AND DETECTION .......................................................... 89 

5x5TextureSegmentation1 ............................................................................................ 89 
Segmentation of four textures by a 5*5 template 

3x3TextureSegmentation .............................................................................................. 90 
Segmentation of four textures by a 3*3 template 

5x5TextureSegmentation2 ............................................................................................ 91 
Segmentation of four textures by a 5*5 template 

TextureDetector1 .......................................................................................................... 92 
TextureDetector2 .......................................................................................................... 92 
TextureDetector3 .......................................................................................................... 92 
TextureDetector4 .......................................................................................................... 92 

1.5. MOTION.............................................................................................................................. 94 

ImageDifferenceComputation ...................................................................................... 94 
Logic difference of the initial state and the input pictures with noise filtering 

MotionDetection ........................................................................................................... 95 
Direction and speed dependent motion detection 

SpeedDetection ............................................................................................................. 96 
Direction independent motion detection 

SPEED CLASSIFICATION .......................................................................................... 97 
PathTracing .................................................................................................................. 99 

Traces the path of moving objects on black-and-white images 



 v 

1.6. COLOR .............................................................................................................................. 100 

CNN MODELS OF SOME COLOR VISION PHENOMENA: SINGLE AND 

DOUBLE OPPONENCIES ......................................................................................... 100 

1.7. DEPTH ............................................................................................................................... 101 

DEPTH CLASSIFICATION ........................................................................................ 101 

1.8. OPTIMIZATION ............................................................................................................... 103 

GlobalMaximumFinder .............................................................................................. 103 
Finds the global maximum 

1.9. GAME OF LIFE AND COMBINATORICS ..................................................................... 104 

HistogramGeneration ................................................................................................. 104 
Generates the one-dimensional histogram of a black-and-white image 

GameofLife1Step ........................................................................................................ 105 
Simulates one step of the game of life 

GameofLifeDTCNN1 .................................................................................................. 106 
Simulates the game of life on a single-layer DTCNN with piecewise-linear 
thresholding 

GameofLifeDTCNN2 .................................................................................................. 107 
Simulates the game of life on a 3-layer DTCNN 

MajorityVoteTaker ...................................................................................................... 108 
Majority vote-taker 

ParityCounting1 ......................................................................................................... 109 
Determines the parity of a row of the input image 

ParityCounting2 ......................................................................................................... 110 
Computes the parity of rows in a black-and-white image 

1-DArraySorting ......................................................................................................... 111 
Sorts a one dimensional array 

1.10. PATTERN FORMATION ................................................................................................. 112 

SPATIO-TEMPORAL PATTERN FORMATION IN TWO-LAYER 

OSCILLATORY CNN .................................................................................................. 112 
SPATIO-TEMPORAL PATTERNS OF AN ASYMMETRIC TEMPLATE CLASS ...... 114 

1.11. NEUROMORPHIC ILLUSIONS AND SPIKE GENERATORS ..................................... 116 

HerringGridIllusion .................................................................................................... 116 
Herring-grid illusion 

MüllerLyerIllusion ...................................................................................................... 117 
Simulates the Müller-Lyer illusion 

SpikeGeneration1 ....................................................................................................... 118 
Rhythmic burst-like spike generation 

SpikeGeneration2 ....................................................................................................... 119 
Action potential generation in a neuromorphic way without delay using 2 ion 
channels 

SpikeGeneration3 ....................................................................................................... 120 
Action potential generation in a neuromorphic way using 2 ion channels, one 
is delayed 



vi Table of Contents 

 
SpikeGeneration4 ....................................................................................................... 121 

Action potential (spike) generation in a phenomenological way 

Note:  many other templates are summarized in [26]. 

1.12. CELLULAR AUTOMATA ............................................................................................... 122 

CELLULAR AUTOMATA .......................................................................................... 122 
GENERALIZED CELLULAR AUTOMATA ............................................................... 126 

1.11. OTHERS ............................................................................................................................ 128 

PathFinder.................................................................................................................. 128 
Finding all paths between two selected points through a labyrinth 

ImageInpainting ......................................................................................................... 129 
Interpolation-based image restoration 

ImageDenoising .......................................................................................................... 131 
Image denoising based on the total variational (TV) model of Rudin-Osher-
Fatemi 

Orientation-SelectiveLinearFilter .............................................................................. 133 
IIR linear filter with orientation-selective low-pass (LP) frequency response, 

oriented at an angle ϕ  with respect to an axis of the frequency plane 

Complex-Gabor .......................................................................................................... 134 
Filtering with a complex-valued Gabor-type filter 

Two-Layer Gabor ....................................................................................................... 135 
Two-layer template implementing even and odd Gabor-type filters 

LinearTemplateInverse ............................................................................................... 136 
Inverse of a linear template operation using dense support of input pixels 

Translation(dx,dy) ...................................................................................................... 138 
Translation by a fraction of pixel (dx,dy) with -1 ≤≤≤≤ dx≤≤≤≤ 1 and  -1 ≤≤≤≤ dy ≤≤≤≤ 1 

Rotation ...................................................................................................................... 139 
Image rotation by angle φ around (Ox, Oy ) 

2. SUBROUTINES AND SIMPLER PROGRAMS ................................................................. 141 
BLACK AND WHITE SKELETONIZATION .............................................................. 142 
GRAYSCALE SKELETONIZATION .......................................................................... 144 
GRADIENT CONTROLLED DIFFUSION ................................................................ 146 
SHORTEST PATH ...................................................................................................... 147 
J-FUNCTION OF SHORTEST PATH ........................................................................ 149 
NONLINEAR WAVE METRIC COMPUTATION ...................................................... 152 
MULTIPLE TARGET TRACKING ............................................................................. 158 
MAXIMUM ROW(S) SELECTION ............................................................................. 160 
SUDDEN ABRUPT CHANGE DETECTION............................................................. 162 
HISTOGRAM MODIFICATION WITH EMBEDDED MORPHOLOGICAL 

PROCESSING OF THE LEVEL-SETS....................................................................... 164 
OBJECT COUNTER .................................................................................................. 166 
HOLE DETECTION IN HANDWRITTEN WORD IMAGES ..................................... 168 
AXIS OF SYMMETRY DETECTION ON FACE IMAGES ........................................ 170 
ISOTROPIC SPATIO-TEMPORAL PREDICTION CALCULATION BASED ON 

PREVIOUS DETECTION RESULTS ......................................................................... 172 
MULTI SCALE OPTICAL FLOW .............................................................................. 174 



 vii 

BROKEN LINE CONNECTOR .................................................................................. 176 
COMMON AM ............................................................................................................ 178 
FIND OF COMMON FM GROUP ............................................................................. 180 
FIND COMMON ONSET/OFFSET GROUPS ........................................................... 182 
CONTINUITY ............................................................................................................. 184 
PARALLEL CURVE SEARCH .................................................................................... 186 
PEAK-AND-PLATEAU DETECTOR ......................................................................... 188 
GLOBAL DISPLACEMENT DETECTOR .................................................................. 190 
ADAPTIVE BACKGROUND AND FOREGROUND ESTIMATION ......................... 192 
BANK-NOTE RECOGNITION ................................................................................... 195 
CALCULATION OF A CRYPTOGRAPHIC HASH FUNCTION ............................... 197 
DETECTION OF MAIN CHARACTERS .................................................................... 199 
FAULT TOLERANT TEMPLATE DECOMPOSITION .............................................. 202 
GAME OF LIFE ......................................................................................................... 206 
HAMMING DISTANCE COMPUTATION ................................................................. 208 
OBJECT COUNTING ................................................................................................. 209 
OPTICAL DETECTION OF BREAKS ON THE LAYOUTS OF PRINTED 

CIRCUIT BOARDS ..................................................................................................... 210 
ROUGHNESS MEASUREMENT VIA FINDING CONCAVITIES ............................. 213 
SCRATCH REMOVAL ................................................................................................ 217 
TEXTILE PATTERN ERROR DETECTION............................................................... 219 
TEXTURE SEGMENTATION I .................................................................................. 220 
TEXTURE SEGMENTATION II ................................................................................. 223 
VERTICAL WING ENDINGS DETECTION OF AIRPLANE-LIKE OBJECTS ......... 226 
PEDESTRIAN CROSSWALK DETECTION............................................................... 233 

3. IMPLEMENTATION ON PHYSICAL CELLULAR MACHINE .................................... 235 

3.1. ARCHITECTURE DEFINITIONS .................................................................................... 236 

Classic DSP-memory architecture .............................................................................. 236 
Pass-through architectures .......................................................................................... 238 
Coarse-grain cellular parallel architectures ................................................................ 239 
Fine-grain fully parallel cellular architectures with discrete time processing ............ 240 
Fine-grain fully parallel cellular architecture with continuous time processing ......... 241 
Multi-core heterogeneous processors array with high-performance kernels 
(CELL) ........................................................................................................................ 242 
Many-core hierarchical graphic processor unit (GPU) ............................................... 243 

3.2. IMPLEMENTATION AND EFFICIENCY ANALYSIS OF VARIOUS OPERATORS . 244 

Categorization of 2D operators ................................................................................... 244 
Processor utilization efficiency of the various operation classes................................ 248 

3.3. COMPARISON OF THE ARCHITECTURES ................................................................. 252 

3.4. EFFICEINT ARCHITECTURE SELECTION .................................................................. 257 

4. PDE SOLVERS ....................................................................................................................... 261 
LaplacePDESolver ..................................................................................................... 263 

Solves the Laplace PDE: ∇∇∇∇  2x = 0 

PoissonPDESolver ...................................................................................................... 264 
Solves the Poisson PDE: ∇∇∇∇  2x = f(x) 



viii Table of Contents 

 
4.1. TACTILE SENSOR MODELING BY USING EMULATED DIGITAL CNN-UM ........ 265 

4.2. ARRAY COMPUTING BASED IMPLEMENTATION OF WATER REINJECTION 
IN GEOTHERMAL STRUCTURE ................................................................................................. 268 

4..3. EMULATED DIGITAL CNN-UM BASED OCEAN MODEL ....................................... 272 

4.4. 2D COMPRESSIBLE FLOW SIMULATION ON EMULATED DIGITAL CNN-UM .. 278 

5. SIMULATORS ........................................................................................................................ 285 

5.1. MATCNN SIMULATOR .................................................................................................. 287 

Linear templates specification.................................................................................... 287 
Nonlinear function specification in ............................................................................ 288 
Running a CNN Simulation ........................................................................................ 290 
Sample CNN Simulation with a Linear Template ...................................................... 292 
Sample CNN Simulation with a Nonlinear ................................................................. 292 
Sample CNN Simulation with a Nonlinear ................................................................. 294 
Sample Analogic CNN Algorithm .............................................................................. 295 
MATCNN simulator references .................................................................................. 297 

5.2. 1D CELLULAR AUTOMATA SIMULATOR ................................................................. 299 

Brief notes about 1D binary Cellular Automata ........................................................ 299 
1D CA Simulator ........................................................................................................ 300 

APPENDIX 1 UMF ALGORITHM DESCRIPTION ................................................................ 305 

APPENDIX 2: VIRTUAL AND PHYSICAL CELLULAR MACHINES ................................ 309 

TEMPLATE ROBUSTNESS ........................................................................................................ 316 

REFERENCES ............................................................................................................................... 317 

INDEX ............................................................................................................................................. 323 

INDEX (OLD NAMES) .................................................................................................................. 327 
   



 

INTRODUCTION 

We are witnessing a proliferation of cellular topographic processor arrays: the Blue-Gene 

and the CELL based IBM supercomputer, the “heart” of the Playstation 3, the CELL Multiprocessor 

(Sony-IBM-Toshiba), as well as the kilo-processor FPGA chips and the new  48-core chip of Intel,  

ets. In addition, the Eye-RIS system of AnaFocus, and the Xenon chip of Eutecus (in collaboration 

with MTA SZTAKI and the Pazmany University), as well as “the proliferation of GPU” graphics 

chips. 

Indeed, a new scenario is emerging: Cellular Wave Computing
*
, cellular means the 

procedure of geometrical locality in a see of processor and memory arrays
†
. 

This new edition of the old CNN SOFTWARE LIBRARY contains some new elements and some 

editing. The style of the description follows the first textbook
+
.  

What is brand new: the introduction of the Virtual and Physical Cellular Machine framework 

(Appendix 2.) and the first steps of its use (Chapter3.) 

As for the templates/instructions, they are classified according to their functions: basic image 

processing, mathematical morphology, spatial logic, texture segmentation and detection, motion, 

color, depth, optimization, game of life and combinatorics. Some useful template sequences are 

defined as subroutines, and a few complete programs are shown as well. Some templates for 

neuromorphic modeling and solving partial differential equations (PDE) are also included. 

Unless otherwise noted, the normalized first order CNN equation with linear delay-less templates is 

∑∑∑∑ +++++−= ),,(ˆ
 ;* ;* ; * ; klklklklijklklijklklijklklijijij yxuDxCuByAzxx�  

Without the last two terms we call it “standard” CNN dynamics. 

Time is scaled in τ = τCNN, the time constant of the first order CNN cell. As a default, 

τCNN=1. Observe that local template operators might have different forms (e.g. the D operator) 

This library is result of a continuous development. It contains results published by dozens of 

researchers all over the world.  

The library is not complete. New templates, operators  and subroutines can be added. 

Moreover, the emergence of a new world of algorithms is foreseen. Completey new algorithms are 

evolving for a given task if it is implemented in a virtual cellular machine on kilo-processor chips. 

We encourage designers all over the world to send their templates, subroutines, programs to be 

included in this library, with proper reference to the original publication. Initiating this action, you 

can e-mail to zarandy@sztaki.hu or roska@ppke.hu. 

                                                             
*
 T. Roska, Cellular wave computers for nano-tera-scale technology − beyond Boolean, spatial-temporal logic in 

million processor devices, Electronics Letters, Vol. 43., No.8., April 2007. †

 C. Baatar, W.  Porod, T. Roska, (Eds.), Cellular Nanoscale Sensory Wave Computing, Springer, 2009, ISBN 978-1-

4419-1010-3 
+
 L. O. Chua and T. Roska, Cellular Neural Networks and visual computing: Foundations and applications, Cambridge 

University Press, 2002 (paperback: 2005) 





 

Chapter 1. Templates/Instructions  



4 1.  Templates/Instructions  

1.1. BASIC IMAGE PROCESSING  

GradientIntensityEstimation:   Estimation of the gradient intensity in a local neighborhood 

Old names: AVERGRAD  

 

0 0 0   b b b    

A =  0 0 0  B =  b 0 b  z = 0 

0 0 0   b b b    

 

where b = |vuij 
- vukl

 | / 8. 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing the estimated average 

gradient intensity in a local neighborhood in P. 

II. Examples 

Example 1: image name: avergra1.bmp, image size: 64x64; template name: avergrad.tem . 

   

 input output 

Example 2: image name: avergra2.bmp, image size: 64x64; template name: avergrad.tem. 

   

 input output 



1.1.  Basic Image Processing 5 

Smoothing:   Smoothing with binary output [1] 

Old names: AVERTRSH, AVERAGE   
 

0 1 0   0 0 0    

A =  1 2 1  B =  0 0 0  z = 0 

0 1 0   0 0 0    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black (white) pixels correspond to the 

locations in P where the average of pixel intensities over the r=1 

feedback convolution window is positive (negative). 

II. Example: image name: madonna.bmp, image size: 59x59; template name: avertrsh.tem . 

    

 input output 

 
The transient of the cell C(38,10) has been examined in 3 cases: 

1. applying the original A template shown before; 

2. applying the following A1 template (template name: avertrs1.tem); 

3. applying the following A2 template(template name: avertrs2.tem).  

 

0 1.2 0   0 0.9 0 

A1 =  1.2 1.8 1.2  A2 =  0.9 1.8 0.9 

0 1.2 0   0 0.9 0 

 

 

The transients of the examined cell are presented in the following figure corresponding to the 

templates A, A1 and A2. 



6 1.  Templates/Instructions  

 



1.1.  Basic Image Processing 7 

DiagonalHoleDetection:    Detects the number of diagonal holes from each diagonal line [6] 

Old names: CCD_DIAG  

 

1 0 0   0 0 0    

A =  0 2 0  B =  0 0 0  z = 0 

0 0 -1   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image that shows the number of diagonal holes in 

each diagonal line of image P.  

II. Example: image name: a_letter.bmp, image size: 117x121; template name: ccd_diag.tem . 

    

 input output 



8 1.  Templates/Instructions  

HorizontalHoleDetection:     Detects the number of horizontal holes from each horizontal row 

[6] 

Old names: HorizontalCCD ,CCD_HOR   
 

0 0 0   0 0 0    

A =  1 2 -1  B =  0 0 0  z = 0 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image that shows the number of horizontal holes in 

each horizontal row of image P.  

II. Example: image name: a_letter.bmp, image size: 117x121; template name: ccd_hor.tem . 

    

 input output 



1.1.  Basic Image Processing 9 

VerticalHoleDetection:     Detects the number of vertical holes from each vertical column [6] 

Old names: VerticalCCD, CCD_VERT   
 

0 1 0   0 0 0    

A =  0 2 0  B =  0 0 0  z = 0 

0 -1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image that shows the number of vertical holes in 

each vertical column of image P.  

II. Example: image name: a_letter.bmp, image size: 117x121; template name: ccd_vert.tem . 

    

 input output 

 



10 1.  Templates/Instructions  

MaskedCCD:  Masked connected component detector [24] 

Old names: CCDMASK  

 

Left-to-right 

0 0 0   0 0 0    

A =  1 2 -1  B =  0 -3 0  z = -3 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary images P1 (mask) and P2 

Input: U(t) = P1 

Initial State: X(0) = P2 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image that is the result of CCD type shifting P2 

from left to right. Shifting is controlled by the mask P1.  

Remark: 

 This is a CCD operation, but the black trains stop in front of a black wall of the mask (P1) 

instead of the boundary of the image. The direction of shift is from the positive to the negative non-

zero off-center feedback template entry. By rotating A the template can be sensitized to other 

directions as well. 

II. Example: Right-to-left shifting. Image names: ccdmsk1.bmp, ccdmsk2.bmp; image size: 

40x20; template name: ccdmaskr.tem . 

    

 input initial state output 



1.1.  Basic Image Processing 11 

CenterPointDetector:    Center point detection [21] 

Old names: CENTER  

 

1 0 0   0 0 0    

A1 =  1 4 -1  B1 =  0 0 0  z1 = -1 

1 0 0   0 0 0    

 

1 1 1   0 0 0    

A2 =  1 6 0  B2 =  0 0 0  z2 = -1 

1 0 -1   0 0 0    

 

1 1 1   0 0 0    

A3 =  0 4 0  B3 =  0 0 0  z3 = -1 

0 -1 0   0 0 0    

 

1 1 1   0 0 0    

A4 =  0 6 1  B4 =  0 0 0  z4 = -1 

-1 0 1   0 0 0    

. . . 
 

1 0 -1   0 0 0    

A8 =  1 6 0  B8 =  0 0 0  z8 = -1 

1 1 1   0 0 0    

 

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where a black pixel indicates the center 

point of the object in P. 

Remark: 

 The algorithm identifies the center point of the black-and-white input object. This is always a 

point of the object, halfway between the furthermost points of it. Here a DTCNN template sequence 

is given, each element of it should be used for a single step. It can easily be transformed to a 

continuous-time network: 



12 1.  Templates/Instructions  

CENTER1: 

0 0 0   1 0 0    

A1 =  0 1 0  B1 =  1 4 -1  z1 = -1 

0 0 0   1 0 0    

CENTER2: 

0 0 0   1 1 1    

A2 =  0 1 0  B2 =  1 6 0  z2 = -1 

0 0 0   1 0 -1    

 

CENTER3: 

0 0 0   1 1 1    

A3 =  0 1 0  B3 =  0 4 0  z3 = -1 

0 0 0   0 -1 0    

 

CENTER4: 

0 0 0   1 1 1    

A4 =  0 1 0  B4 =  0 6 1  z4 = -1 

0 0 0   -1 0 1    

. . . 
 

CENTER8: 

0 0 0   1 0 -1    

A8 =  0 1 0  B8 =  1 6 0  z8 = -1 

0 0 0   1 1 1    

 

The robustness of templates CENTER1 and CENTER2 are ρ(CENTER1) = 0.22 and ρ(CENTER2) 

= 0.15, respectively. Other templates are the rotated versions of CENTER1 and CENTER2, thus 

their robustness values are equal to the mentioned ones. 

II. Example: image name: chineese.bmp, image size: 16x16; template name: center.tem . 

    

 input output 



1.1.  Basic Image Processing 13 

ConcentricContourDetector:    Concentric contour detection (DTCNN) [16] 

Old names: CONCCONT  

 

0 -1 0   0 0 0    

A =  -1 3.5 -1  B =  0 4 0  z = -4 

0 -1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the concentric black and white 

rings obtained from P. 

Examples 

Example 1: image name: conc1.bmp, image size: 16x16; template name: concont.tem . 

    

 input output 

Example 2: image name: conc2.bmp, image size: 100x100; template name: concont.tem . 

    

 input output, 3. step output, 9. step output, t = ∞∞∞∞ 



14 1.  Templates/Instructions  

GlobalConnectivityDetection:   Deletes marked objects [36] 

Old names: Connectivity  

 

0 0.5 0   0 -0.5 0    

A =  0.5 3 0.5  B =  -0.5 3 -0.5  z = -4.5 

0 0.5 0   0 -0.5 0    

I. Global Task 

Given:  two static binary images P1 (mask) and P2 (marker). The mask contains 

some black objects against the white background. The marker contains 

the same objects, except for some objects being marked. An object is 

considered to be marked, if some of its black pixels are changed into 

white. 

Input: U(t) = P1 

Initial State: X(0) = P2 

Boundary Conditions: Fixed type, uij = -1, yij = -1 for all virtual cells, denoted by  

[U]=[Y]=[-1] 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image containing the unmarked objects only.  

Remark: 

The template determines whether a given geometric pattern is "globally" connected in one 

contiguous piece, or is it composed of two or more disconnected components.  

II. Example: image names: connect1.bmp, connect2.bmp; image size: 500x200; template name: 

connecti.tem . 

  
 INPUT INITIAL STATE 

 

  
t=125τ     t=250τ 

 

  
t=375τ     t=500τ 

 



1.1.  Basic Image Processing 15 

  
t=625τ     t=750τ 

 

  
t=875τ     t=1000τ 

 

  
t=1125τ    t=1250τ 



16 1.  Templates/Instructions  

GlobalConncetivityDetection1:  Detects the one-pixel thick closed curves and deletes the open 

curves from a binary image [61] 

 

6 6 6   -3 -3 -3    

A =  6 9 6  B =  -3 9 -3  z = -4.5 

6 6 6   -3 -3 -3    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image which contains all closed curves present in 

the initial image P   

II. Example: image size: 36x36. 

Remarks: The binary image P containing closed and open curves (one-pixel thick) is applied both at 

the input and loaded as initial state. If one pixel is removed from a closed curve, it becomes an open 

curve and is deleted, as shown in the second image. The compact (solid) objects from the image are 

not modified.  

 

   

 Input Intermediate result Output 

 



1.1.  Basic Image Processing 17 

ContourExtraction:  Grayscale contour detector [8] 

Old names: ContourDetector, CONTOUR   
 

0 0 0   a a a    

A =  0 2 0  B =  a 0 a  z = 0.7 

0 0 0   a a a    

 

where a is defined by the following nonlinear function: 

 

 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels represent the contours of 

the objects in P. 

Remark: 

The template extracts contours which resemble edges (resulting from big changes in gray 

level intensities) from grayscale images. 

II. Example: image name: madonna.bmp, image size: 59x59; template name: contour.tem . 

   

 input output 

vuij
-vukl

 0.18 

a 

-0.18 

0.5 



18 1.  Templates/Instructions  

CornerDetection:   Convex corner detection template [1] 

Old names: CornerDetector, CORNER   
 

0 0 0   -1 -1 -1    

A =  0 1 0  B =  -1 4 -1  z = -5 

0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels represent the convex 

corners of objects in P. 

Template robustness: ρ = 0.2 . 

Remark: 

Black pixels having at least 5 white neighbors are considered to be convex corners of the 

objects. 

II. Example: image name: chineese.bmp, image size: 16x16; template name: corner.tem . 

    

 input output 

 
The transient of the cell C(6,3) has been examined in 3 cases: 

1. applying the original CornerDetector template shown before; 

2. applying the following CORNCH_1 template; 

3. applying the following CORNCH_2 template.  

 

CORNCH_1 

 

0 0 0   -1 -1 -1    

A =  0 1 0  B =  -1 3.9 -1  z = -5 

0 0 0   -1 -1 -1    

 



1.1.  Basic Image Processing 19 

CORNCH_2 

 

0 0 0   -1 -1 -1    

A =  0 0.5 0  B =  -1 3.6 -1  z = -5 

0 0 0   -1 -1 -1    

 

The transients of the examined cell are presented in the following figure corresponding to the 

templates CornerDetector, CORNCH_1 and CORNCH_2.  

 

 
 



20 1.  Templates/Instructions  

DiagonalLineRemover:   Deletes one pixel wide diagonal lines [8] 

Old names: DELDIAG1  

 

0 0 0   -1 0 -1    

A =  0 1 0  B =  0 1 0  z = -4 

0 0 0   -1 0 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = -1, for all virtual cells, denoted by [U] = -1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels have no black neighbors 

in diagonal directions in P. 

Template robustness: ρ = 0.45 . 

Remark: 

The template may be used for deleting one pixel wide diagonal lines. 

II. Example: image name: deldiag1.bmp, image size: 21x21; template name: deldiag1.tem . 

   

 input output 



1.1.  Basic Image Processing 21 

VerticalLineRemover:   Deletes vertical lines [8] 

Old names: DELVERT1  

 

0 0 0   0 -1 0    

A =  0 1 0  B =  0 1 0  z = -2 

0 0 0   0 -1 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = -1, for all virtual cells, denoted by [U] = -1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing P without vertical lines. Those 

parts of the objects that could be interpreted as vertical lines will also be 

deleted. 

Template robustness: ρ = 0.58 . 

Remark: 

The template deletes every black pixel having either a northern or southern black neighbor. 

The HorizontalLineRemover template, that deletes one pixel wide horizontal lines, can be 

obtained by rotating the VerticalLineRemover by 90°. The functionality of the WIREHOR and 

WIREVER templates that were published in earlier versions of this library, is identical to the 

functionality of the HorizontalLineRemover and VerticalLineRemover templates. 

II. Example: image name: delvert1.bmp, image size: 21x21; template name: delvert1.tem . 

   

 input output 



22 1.  Templates/Instructions  

ThinLineRemover:   Removes thin (one-pixel thick) lines from a binary image 

 

2 2 2   0 0 0    

A =  2 8 2  B =  0 0 0  z = -2 

2 2 2   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image containing compact black objects (without 

any thin lines) against a white background  

II. Example: image size: 36x36. 

    

 Initial state Intermediate state Output 



1.1.  Basic Image Processing 23 

ApproxDiagonalLineDetector:   Detects approximately diagonal lines 

Old names: DIAG  

 

 0 0 0 0 0   -1 -1 -1 0.5 1    

 0 0 0 0 0   -1 -1 1 1 0.5    

A = 0 0 2 0 0  B = -1 1 5 1 -1  z = -13 

  0 0 0 0 0   0.5 1 1 -1 -1    

 0 0 0 0 0   1 0.5 -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the locations of approximately 

diagonal lines in P. 

Remark: 

 Detects approximately diagonal lines being in the SW-NE direction. By modifying the 

positions of the elements of the B template, namely rotating B, the template can be sensitized to 

other directions as well (vertical, horizontal or NW-SE diagonal). 

II. Example: image name: diag.bmp, image size: 246x191; template name: diag.tem . 

   

 input output 



24 1.  Templates/Instructions  

DiagonalLineDetector:   Diagonal-line-detector template 

Old names: DIAG1LIU  

 

0 0 0   -1 0 1    

A =  0 1 0  B =  0 1 0  z = -4 

0 0 0   1 0 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the locations of diagonal lines 

in P. 

Template robustness: ρ = 0.45 . 

Remark: 

 Detects every black pixel having black north-eastern, black south-western, white north-

western, and white south-eastern neighbors. It may be used for detecting diagonal lines being in the 

SW-NE direction (like /). By modifying the position of the ±1 values of the B template, the template 

can be sensitized to other directions as well (vertical, horizontal or NW-SE diagonal). 

II. Example: image name: diag1liu.bmp, image size: 21x21; template name: diag1liu.tem . 

  

 input output 



1.1.  Basic Image Processing 25 

GrayscaleDiagonalLineDetector:   Grayscale diagonal line detector 

Old names: DIAGGRAY  

 

 0 0 0 0 0   b b a a a    

 0 0 0 0 0   b b b a a    

A = 0 0 1 0 0  B = a b 0 b a  z = -1.8 

  0 0 0 0 0   a a b b b    

 0 0 0 0 0   a a a b b    

 

where a and b are defined by the following nonlinear functions: 

                 

a

0.5

-0.5

0.18 vuij -vukl

b

0.5

-0.5

0.18
vuij -vukl

 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels identify the diagonal 

lines of north-west, south-eastern direction in P.  

Remark: 

 If the nonlinear B template is rotated by 90°, the grayscale line detector of the north-east, 

south-west direction will be obtained. 

II. Example: image name: diaggray.bmp, image size: 61x61; template name: diaggray.tem . 

   

 input output 



26 1.  Templates/Instructions  

RotationDetector:   Detects the rotation of compact objects in a binary image, having only 

horizontal and vertical edges; removes all inclined objects or objects having 

at least one inclined edge [61] 

-0.8 5 -0.8   -0.4 -2.5 -0.4    

A =  5 5 5  B =  -2.5 5 -2.5  z = -11.2 

-0.8 5 -0.8   -0.4 -2.5 -0.4    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image which retains from the initial state P only 

the compact objects with horizontal or vertical edges  

Remark: 

 The binary image is loaded as initial state and also applied at the input. 

These templates can be used as a rotation detector, but only for a specific class of objects, namely 

with horizontal and vertical edges. Its robustness depends on the resolution of the CNN (number of 

cells) related to the object size. For larger objects, or a CNN with larger resolution, smaller rotation 

angles can be detected. 

Every object having at least an inclined edge will be gradually deleted, as seen in the second image. 

Also the one pixel thick lines or curves will be removed. Binary noise can affect the operation. If a 

black or white parasitic pixel representing noise appears on the edge of an object, the object will be 

deleted, even if it has no inclined edge.  

II. Example: image name: binary image; image size: 36x36 

 

    

 Initial state Intermediate state Output 

 



1.1.  Basic Image Processing 27 

HeatDiffusion:   Heat-diffusion 

Old names: DIFFUS  

 

0.1 0.15 0.1   0 0 0    

A =  0.15 0 0.15  B =  0 0 0  z = 0 

0.1 0.15 0.1   0 0 0    

I. Global Task 

Given:  static noisy grayscale image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Grayscale image representing the result of the heat 

diffusion operation. 

II. Example: image name: diffus.bmp, image size: 106x106; template name: diffus.tem . 

   

 input output 



28 1.  Templates/Instructions  

EdgeDetection:    Binary edge detection template 

Old names: EdgeDetector, EDGE   
 

0 0 0   -1 -1 -1    

A =  0 1 0  B =  -1 8 -1  z = -1 

0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image showing all edges of P in black 

Template robustness: ρ = 0.12 . 

Remark: 

 Black pixels having at least one white neighbor compose the edge of the object. 

II. Examples 

Example 1: image name: logic05.bmp, image size: 44x44; template name: edge.tem . 

   

 input output 



1.1.  Basic Image Processing 29 

Example 2: image name: michelan.bmp, image size: 627x253; template name: edge.tem . 

 

input 

 

output 



30 1.  Templates/Instructions  

OptimalEdgeDetector:   Optimal edge detector [43] 

0 0 0   -0.11 0 0.11    

A =  0 0 0  B =  -0.28 0 0.28  z = 0 

0 0 0   -0.11 0 0.11    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing edges calculated in 

horizontal direction. 

Remark: 

 The B template represents the optimal edge detector operator. 

II. Example: image name: bird.bmp, image size: 256x256; template name: optimedge.tem . 

  

 input output 



1.1.  Basic Image Processing 31 

MaskedObjectExtractor:   Masked erase [24] 

Old names: ERASMASK  

Left-to-right 

0 0 0   0 0 0    

A =  1.5 3 0  B =  0 1.5 0  z = -1.5 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary images P1 (mask) and P2 

Input: U(t) = P1 

Initial State: X(0) = P2 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image that is the result of erasing P2 from left to 

right. Erasure is stopped by the black walls on the mask (P1) image. 

Remark: 

 By rotating A the template can be sensitized to other directions as well. 

II. Example: Left-to-right erase. Image names: ccdmsk3.bmp, ccdmsk2.bmp; image size: 40x20; 

template name: erasmask.tem . 

    

 input initial state output 



32 1.  Templates/Instructions  

GradientDetection:   Finds the locations where the gradient of the field is smaller than a given 

threshold value [9] 

Old names: EXTREME  

 

0 0 0   a a a    

A =  0 1 0  B =  a 0 a  z = z
*
 

0 0 0   a a a    

 

where z
*
 is a given threshold value, and a is defined by the following nonlinear function: 

                                           

a

1

-2

-1

-0.2 0.2

vuij -vukl

 
 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the example we choose X(0) = P) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels represent the locations in 

P where the gradient of the field is smaller than a given threshold value. 

II. Example: image name: circles.bmp, image size: 60x60; template name: extreme.tem . 

Threshold value  z
*
 = 3.9 . 

   

 input output 



1.1.  Basic Image Processing 33 

PointExtraction:   Extracts isolated black pixels  

Old names: FigureRemover, FIGDEL  

 

0 0 0   -1 -1 -1    

A =  0 1 0  B =  -1 1 -1  z = -8 

0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing all isolated black pixels in P. 

Template robustness: ρ = 0.33 . 

II. Example: image name: figdel.bmp, image size: 20x20; template name: figdel.tem . 

    

 input output 



34 1.  Templates/Instructions  

PointRemoval:   Deletes isolated black pixels 

Old names: FigureExtractor, FIGEXTR  

 

0 0 0   1 1 1    

A =  0 1 0  B =  1 8 1  z = -1 

0 0 0   1 1 1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image showing all connected components in P.  

Remark: 

 Black pixels having no black neighbors are deleted. This template is the opposite of 

FigureRemover. 

II. Example: image name: figdel.bmp, image size: 20x20; template name: figextr.tem . 

    

 input output 



1.1.  Basic Image Processing 35 

SelectedObjectsExtraction:   Extracts marked objects 

Old names: FigureReconstructor, FIGREC, RECALL  

 

0.5 0.5 0.5   0 0 0    

A =  0.5 4 0.5  B =  0 4 0  z = 3 

0.5 0.5 0.5   0 0 0    

I. Global Task 

Given:  two static binary images P1 (mask) and P2 (marker). P2 contains just a 

part of P1 (P2 ⊂⊂⊂⊂ P1).  

Input: U(t) = P1 

Initial State: X(0) = P2 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing those objects of P1 which are 

marked by P2. 

Template robustness: ρ = 0.12 . 

II. Example: image names: figdel.bmp, figrec.bmp; image size: 20x20; template name: figrec.tem  

    

 input initial state output 



36 1.  Templates/Instructions  

FilledContourExtraction:   Finds solid black framed areas 

Old names: FramedAreasFinder, FINDAREA  

 

0 1 0   0 0 0    

A =  1 5 1  B =  0 2 0  z = -5.25 

0 1 0   0 0 0    

I. Global Task 

Given:  two static binary images P1 and P2  

Input: U(t) = P1 

Initial State: X(0) = P2 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing objects of P2 which totally 

fit/fill in closed curves of P1. 

II. Example: image names: findare1.bmp, findare2.bmp; image size: 270x246; template name: 

findarea.tem . 

      

 input initial state output 
 



1.1.  Basic Image Processing 37 

ThresholdedGradient:  Finds the locations where the gradient of the field is higher than a given 

threshold value [9] 

Old names: GRADIENT  

 

0 0 0   b b b    

A =  0 1 0  B =  b 0 b  z = z
*
 

0 0 0   b b b    

 

where z
*
 is a given threshold value, and b is defined by the following nonlinear function: 

 

 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the example we choose X(0) = P) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels represent the locations in 

P where the gradient of the field is higher than a given threshold value. 

II. Example: image name: circles.bmp, image size: 60x60; template name: gradient.tem . 

Threshold value z
* 
= -4.8 . 

   

 input output 

vuij
-vukl

 

b 

2 

-2 2 



38 1.  Templates/Instructions  

3x3Halftoning:   3x3 image halftoning 

Old names: HLF3, HLF33  

 

-0.07 -0.1 -0.07   0.07 0.1 0.07    

A =  -0.1 1+ε -0.1  B =  0.1 0.32 0.1  z = 0 

-0.07 -0.1 -0.07   0.07 0.1 0.07    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image preserving the main features of P. 

Remark: 

 The speed of convergence is controlled by ε≈[0.1...1]. The greater the ε is, the faster the 

process and the rougher the result will be. The inverse of the template is 3x3InverseHalftoning. The 

result is acceptable in the Square Error measure [17,35]. 

This template is called "Half-Toning" in [44].  

II. Examples 

Example 1: image name: baboon.bmp, image size: 512x512; template name: hlf3.tem . 

   

 input output 



1.1.  Basic Image Processing 39 

Example 2: image name: peppers.bmp, image size: 512x512; template name: hlf3.tem . 

   

 input output 

 



40 1.  Templates/Instructions  

5x5Halftoning1:   5x5 image halftoning [15] 

Old names: HLF5KC, HLF55_KC  

 

 -0.03 -0.09 -0.13 -0.09 -0.03   0 0 0.07 0 0    

 -0.09 -0.36 -0.60 -0.36 -0.09   0 0.36 0.76 0.36 0    

A = -0.13 -0.60 1.05 -0.60 -0.13  B = 0.07 0.76 2.12 0.76 0.07  z = 0 

  -0.09 -0.36 -0.60 -0.36 -0.09   0 0.36 0.76 0.36 0    

 -0.03 -0.09 -0.13 -0.09 -0.03   0 0 0.07 0 0    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image preserving the main features of P. 

Remark: 

 The output image quality is optimized by considering human visualization. When simulating 

the behavior of the CNN by using the forward Euler integration form, the time step should be less 

than 0.4. 

II. Examples 

Example 1: image name: baboon.bmp, image size: 512x512; template name: hlf5kc.tem . 

   

 input output 



1.1.  Basic Image Processing 41 

Example 2: image name: peppers.bmp, image size: 512x512; template name: hlf5kc.tem . 

   

 input output 

 



42 1.  Templates/Instructions  

5x5Halftoning2:   5x5 image halftoning 

Old names: HLF5, HLF55  

 

 -0.02 -0.07 -0.10 -0.07 -0.02   0.02 0.07 0.10 0.07 0.02    

 -0.07 -0.32 -0.46 -0.32 -0.07   0.07 0.32 0.46 0.32 0.07    

A = -0.10 -0.46 1.05 -0.46 -0.10  B = 0.10 0.46 0.81 0.46 0.10  z = 0 

  -0.07 -0.32 -0.46 -0.32 -0.07   0.07 0.32 0.46 0.32 0.07    

 -0.02 -0.07 -0.10 -0.07 -0.02   0.02 0.07 0.10 0.07 0.02    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image preserving the main features of P. 

Remark: 

 The inverse of the template is 5x5InverseHalftoning. The result is optimal in the Square 

Error measure [17,35]. 

II. Examples 

Example 1: image name: baboon.bmp, image size: 512x512; template name: hlf5.tem . 

   

 input output 



1.1.  Basic Image Processing 43 

Example 2: image name: peppers.bmp, image size: 512x512; template name: hlf5.tem . 

   

 input output 



44 1.  Templates/Instructions  

Hole-Filling:   Fills the interior of all closed contours [6] 

Old names: HoleFiller, HOLE  

 

0 1 0   0 0 0    

A =  1 3 1  B =  0 4 0  z = -1 

0 1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = 1 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing P with holes filled. 

Remark: 

(i)  this is a propagating template, the computing time is proportional to the length of the 

image 

(ii)  a more powerful template is the ConcaveLocationFiller template in this library. 

II. Example: image name: a_letter.bmp, image size: 117x121; template name: hole.tem . 

   

 input output 



1.1.  Basic Image Processing 45 

ObjectIncreasing:    Increases the object by one pixel (DTCNN) [16] 

Old names: INCREASE  

 

0.5 0.5 0.5   0 0 0    

A =  0.5 0.5 0.5  B =  0 0 0  z = 4 

0.5 0.5 0.5   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(1) = Binary image representing the objects of P increased by 1 pixel in 

all direction. 

Remark: 

 Increasing the size of an object by N pixels in all directions can be achieved by N iteration 

steps of a DTCNN. 

II. Example: image name: a_letter.bmp, image size: 117x121; template name: increase.tem . One 

iteration step of a DTCNN is performed. 

   

 input output 
 



46 1.  Templates/Instructions  

3x3InverseHalftoning:   Inverts the halftoned image by a 3x3 template 

Old names: INVHLF3, INVHLF33  

 

0 0 0   0.07 0.1 0.07    

A =  0 0 0  B =  0.1 0.32 0.1  z = 0 

0 0 0   0.07 0.1 0.07    

I. Global Task 

Given:  static binary image P obtained by using the 3x3Halftoning template 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing P.  

Remark: 

 Inverts the 3*3 halftoned image created by the 3x3Halftoning template. The result lacks fine 

edges as the control of 3x3Halftoning smoothes the input [17,35]. 

This template is called "Inverse Half-Toning" in [44].  

II. Examples 

Example 1: image name: invhlf3_1.bmp, image size: 512x512; template name: invhlf3.tem . 

   

 input output 



1.1.  Basic Image Processing 47 

Example 2: image name: invhlf3_2.bmp, image size: 512x512; template name: invhlf3.tem . 

   

 input output 



48 1.  Templates/Instructions  

5x5InverseHalftoning:   Inverts the halftoned image by a 5x5 template 

Old names: INVHLF5, INVHLF55  

 

 0 0 0 0 0   0 0.01 0.02 0.01 0    

 0 0 0 0 0   0.01 0.06 0.09 0.06 0.01    

A = 0 0 0 0 0  B = 0.02 0.09 0.16 0.09 0.02  z = 0 

  0 0 0 0 0   0.01 0.06 0.09 0.06 0.01    

 0 0 0 0 0   0 0.01 0.02 0.01 0    

I. Global Task 

Given:  static binary image P obtained by using the 5x5Halftoning2 template 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing P.  

Remark: 

 Inverts the 5*5 halftoned image created by the 5x5Halftoning2 template. The result lacks 

fine edges as the control of 5x5Halftoning2 smoothes the input. 

II. Examples 

Example 1: image name: invhlf5_1.bmp, image size: 512x512; template name: invhlf5.tem . 

   

 input output 



1.1.  Basic Image Processing 49 

Example 2: image name: invhlf5_2.bmp, image size: 512x512; template name: invhlf5.tem . 

   

 input output 



50 1.  Templates/Instructions  

LocalSouthernElementDetector:   Local southern element detector [11] 

Old names: LSE  

 

0 0 0   0 0 0    

A =  0 1 0  B =  0 1 0  z = -3 

0 0 0   -1 -1 -1    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing local southern elements of 

objects in P.  

Remark: 

 Local southern elements are pixels having neither south-western, nor southern or south-

eastern neighbors. 

II. Example: image name: lcp_lse.bmp, image size: 17x17; template name: lse.tem . 

    

 input output 



1.1.  Basic Image Processing 51 

PatternMatchingFinder:   Finds matching patterns 

Old names: MATCH  

 

0 0 0   b b b    

A =  0 1 0  B =  b b b  z = -N+0.5 

0 0 0   b b b    

where  

 b =









−  whitebe  torequired is pixel ingcorrespond if1,

              carenot  do is pixel ingcorrespond if0,  

black be  torequired is pixel ingcorrespond if1,  

 

 N = number of pixels required to be either black or white, i.e. the number of non-zero values 

in the B template 

I. Global Task 

Given:  static binary image P possessing the 3x3 pattern prescribed by the 

template 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the locations of the 3x3 pattern 

prescribed by the template. The pattern having a black/white pixel where 

the template value is +1/-1, respectively, is detected. 

II. Example:  image name: match.bmp, image size: 16x16; template name: match.tem . 

0 0 0   1 -1 1    

A =  0 1 0  B =  0 1 0  z = -6.5 

0 0 0   1 -1 1    

 

 

   

 input output 



52 1.  Templates/Instructions  

LocalMaximaDetector:   Local maxima detector template [33] 

Old names: MAXLOC  

 

0 0 0   b b b    

A =  0 3 0  B =  b 0 b  z = -3.5 

0 0 0   b b b    

where  

b = 



 
0.5     if   vuij

 - vukl
 ≥ 0 

0        otherwise 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = 0 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the locations of all local 

maxima in the specified local neighborhood. 

Remark: 

 All local minima can also be detected if the input image is inverted. 

II. Example:  image name: avergra1.bmp, image size: 64x64; template name: maxloc.tem . 

   

 input output 



1.1.  Basic Image Processing 53 

MedianFilter:   Removes impulse noise from a grayscale image [34] 

Old names: MEDIAN  

 

CNN base model of the median filter (linear region of f ): 

∑
∈

− −++−=
r

klijijijij

Nkl

uxklij
M

xxx tvtvDvAftvRtv
dt

d
C ))()((ˆ)()()( ,

1
 

The corresponding CNN template (TM) ( 1,1,1 === QCR ): 

 

0 0 0   d d d    

A =  0 1 0  MD̂  =  d 0 d  z = 0 

0 0 0   d d d    

 

where  d = -Q sign(vxij
 - vukl

). 

Special types derived from the base model: 

 (i) Rank Order Class - simply varying the bias value 

    /  e.g. Min filter : I=+8Q, Max filter :I=-8Q / 

 (ii) Weighted Median - locally space variant weighting 

   /  e.g. Plus-shape Median Filter (Q=0 in the corners) / 

 (iii) Cascade Median - consecutive steps with TM, 

   intermediate result is stored in LAMs of the CNNUM 

 (iv) Selective Median - filtering is made only at the locations  

   of the local extremities with TM - fixed-state CNN model 

 (v) MinMax, MaxMin, Pseudo Median - combining (i)-(iv) 

I. Global Task 

Given:  static grayscale image P with impulse noise 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing P filtered from impulse 

noise. 

Remark: 

 Impulse noise is removed only if the impulses are placed further from each other than half of 

the window width (r+1). 



54 1.  Templates/Instructions  

II. Example:  image name: median.bmp, image size: 256x256; template name: median.tem . 

   
 input output 



1.1.  Basic Image Processing 55 

LeftPeeler:    Peels one pixel from the left [14] 

Old names: PEELHOR  

 

0 0 0   0 0 0    

A =  0 1 0  B =  1 1 0  z = -1 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = -1 for all virtual cells, denoted by [U]= -1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the objects of P peeled with 

one pixel from the left. 

Template robustness: ρ = 0.71 . 

II. Example:  image name: peelhor.bmp, image size: 12x12; template name: peelhor.tem . 

    

 input output 



56 1.  Templates/Instructions  

RightEdgeDetection:   Extracts right edges of objects 

Old names: RightContourDetector, RIGHTCON  

 

0 0 0   0 0 0    

A =  0 1 0  B =  1 1 -1  z = -2 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the right edges of objects in P.  

Template robustness: ρ = 0.58 . 

Remark: 

 By rotating B the template can be sensitized to other directions as well. 

II. Example:  image name: chineese.bmp, image size: 16x16; template name: rightcon.tem . 

    

 input output 



1.1.  Basic Image Processing 57 

MaskedShadow:   Masked shadow [24] 

Old names: SHADMASK, MASKSHAD  

 

Left-to-right 

0 0 0   0 0 0    

A =  1.5 1.8 0  B =  0 -1.2 0  z = 0 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary images P1 (mask) and P2 

Input: U(t) = P1 

Initial State: X(0) = P2 

Boundary Conditions: Fixed type, yij = -1 for all virtual cells, denoted by [Y]= -1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the result of pattern 

propagation of P2 in a particular direction. The propagation goes from 

the direction of the non-zero off-center feedback template entry Aij and is 

halted by the mask P1. 

Remark: 

 By rotating A the template can be sensitized to other directions as well. 

II. Example:  Right-to-left horizontal shadow. Image names: shdmsk1.bmp, shdmsk2.bmp; image 

size: 270x246; template name: shadmask.tem . 

     

 input initial state output 



58 1.  Templates/Instructions  

ShadowProjection:   Projects onto the left the shadow of all objects illuminated from the right [6] 

Old names: LeftShadow, SHADOW  

 

0 0 0   0 0 0    

A =  0 2 2  B =  0 2 0  z = 0 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = 1 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the left shadow of the objects in 

P. 

Remark: 

 By modifying the position of the off-center A template element the template can be 

sensitized to other directions as well.  

II. Examples 

Example 1:  Left shadow. Image name: a_letter.bmp, image size: 117x121; template name: 

shadow.tem . 

    

 input output 

Example 2:  Shadow in the east-western direction. Image name: a_letter.bmp, image size: 

117x121. 

0 0 0   0 0 0    

A =  0 2 0  B =  0 2 0  z = 0 

0 0 2   0 0 0    

    

 input output 



1.1.  Basic Image Processing 59 

VerticalShadow:   Vertical shadow template 

Old names: SHADSIM, SUPSHAD  

 

0 1 0   0 0 0    

A =  0 2 0  B =  0 0 0  z = 2 

0 1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the vertical shadow of the 

objects in P taken upward and downward simultaneously. 

II. Example:  image name: chineese.bmp, image size: 16x16; template name: shadsim.tem . 

    

 input output 

 



60 1.  Templates/Instructions  

DirectedGrowingShadow:   Generate growing shadows starting from black points 

SHADOW0: 

0.4 0.3 0   0 0 0    

A =  1 2 -1  B =  0 1.4 0  z = 2.5 

0.4 0.3 0   0 0 0    

 

SHADOW45:  

0 0 -1   0 0 0    

A =  1 2 0  B =  0 1.4 0  z = 2.5 

1 1 0   0 0 0    

 

I. Global Task 

Given: static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = -1 for all virtual cells, denoted by [Y]=-1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image in which shadows are generated starting 

from black pixels. During the transient shadows become wider and 

wider. 

Remark: 

Other directions can be gained by appropriate rotation and flipping of the templates. 

II. Example:  image name: points.bmp; image size: 100x100; template names: shadow0.tem, 

shadow45.tem. 

   
  

 input output of shadow0  output of shadow45 

  template template 

  (t=35τCNN) (t=45τCNN) 



1.1.  Basic Image Processing 61 

Threshold:   Grayscale to binary threshold template 

Old names: TRESHOLD  

 

0 0 0   0 0 0     

A =  0 2 0  B =  0 0 0  z = -z
*
 , -1< z

* 
<1 

0 0 0   0 0 0     

I. Global Task 

Given:  static grayscale image P and threshold z
*
 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels correspond to pixels in P 

with grayscale intensity pij > z
*
. 

II. Example:  Threshold value z
*
 = 0.4 . Image name: madonna.bmp, image size: 59x59; template 

name: treshold.tem . 

   

 input output 

 



 

1.2. MATHEMATICAL MORPHOLOGY  

BINARY MATHEMATICAL MORPHOLOGY 

The basic operations of binary mathematical morphology [32] are erosion and dilation. These 

operations are defined by two binary images, one being the operand, the other the structuring 

element. In the CNN implementation, the former image is the input, while the function (the 

templates) itself depends on the latter image. If the structuring element set does not exceed the size 

of the CNN template the dilation and erosion operators can be implemented with a single CNN 

template. The implementation method is the following: The A template matrix is zero in every 

position. The structuring element set should be directly mapped to the B template (See Figure). If it 

is an erosion operator, the z value is equal to (1-n), where n is the number of 1s in the B template 

matrix. If it is a dilation operator, the B template must be reflected to the center element, and the z 

value is equal to (n-1), where n is the number of 1s in the B template matrix. When calculating the 

operator, the image should be put to the input of the CNN, and the initial condition is zero 

everywhere. The next Figure shows an example for template syntetization. 

structuring

element set

direct

mapping

0 1 0

0 1 1

0 0 0

















0 0 0

1 1 0

0 1 0

















reflecting to the

center element
 

Erosion template: 2      

000

110

010

      

000

000

000

 −=

















=

















= zBA  

Dilation template: 2      

010

011

000

      

000

000

000

 =

















=

















= zBA  

Template robustness of both templates is equal to ρ = 0.58 . 

Example:  Erosion and dilation with the given structuring element set. Image name: 

binmorph.bmp; image size: 40x40; template names: eros_bin.tem, dilat_bin.tem . 

    
 INPUT EROSION DILATION 
 



1.2.  Mathematical Morphology 63 

 

GRAYSCALE MATHEMATICAL MORPHOLOGY 

The basic operations of grayscale mathematical morphology [32] are erosion and dilation. These 

operations are defined by two grayscale images, one being the operand, the other the structuring 

element set (S). In the CNN implementation, the former image is the input, while the function (the 

templates) itself depends on the latter image. If the structuring element set does not exceed the size 

of the CNN template the dilation and erosion operators can be implemented with a single CNN 

template. The implementation method is the following: single template grayscale mathematical 

morphology is implemented on a slightly modified CNN. The state equation of the modified CNN is 

the following: 

 ztvtvDtvtvtv yijukl

ijNkl

klijyijxijxij

r

+−++−= ∑
∈

∧•

))()(()()()(
)(

;

  

 

It means that A=[1], and the inputs of the nonlinear functions of the D template are the difference 

between the input values and the appropriate neighborhood positions, and the center output value. 

The morphological operation can be implemented with a single template on this CNN structure.  

The erosion template is the following: 

1   ,   ,

000

010

000

1,11,01,1

0,10,00,1

1,11,01,1

=

















=

















=

−−−−

−

−

z

ddd

ddd

ddd

DA     

1

vukl-vyij

dij;kl(vukl-vyij)

S(η)

-1

 

where: S(η) is the real value of the structuring element set (S) at point η=(k,l). If it is not defined 

dij;kl ≡0. 

Example for grayscale erosion with a 3x3 square shaped zero value structuring element set. The 

black areas have shrunk. Image name: grmorph.bmp; image size: 288x272. 

    



64 1.  Templates/Instructions  

 

The dilation template is the following:  

1   ,   ,

000

010

000

1,11,01,1

0,10,00,1

1,11,01,1

−=

















=

















=

−−−−

−

−

z

ddd

ddd

ddd

DA     

1

vukl-vyij

dij;kl(vukl-vyij)

-1

S(η)
∧

 

where: 
∧

S (η) is the real value of the inverted and reflected structuring element set ( )( xSS −−=
∧

) at 

point η=(k,l). If it is not defined dij;kl ≡0. 

Example for grayscale dilation with a 3x3 square shaped zero value structuring element set. The 

black areas have dilated. Image name: grmorph.bmp; image size: 288x272. 

  



 

1.3. SPATIAL LOGIC  

BlackFiller:   Drives the whole network into black 

Old names: FILBLACK, BLACK  

 

0 0 0   0 0 0    

A =  0 2 0  B =  0 0 0  z = 4 

0 0 0   0 0 0    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = black image (all pixels are black) 

II. Example:  image name: madonna.bmp, image size: 59x59; template name: filblack.tem . 

   

 initial state output 

 



66 1.  Templates/Instructions  

 

WhiteFiller:   Drives the whole network into white 

Old names: FILWHITE, WHITE  

 

0 0 0   0 0 0    

A =  0 2 0  B =  0 0 0  z = -4 

0 0 0   0 0 0    

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = white image (all pixels are white) 

II. Example:  image name: madonna.bmp, image size: 59x59; template name: filwhite.tem . 

   

 initial state output 
 



1.3.  Spatial Logic 67 

 

BlackPropagation:   Starts omni-directional black propagation from black pixels [54] 

 

0.25 0.25 0.25   0 0 0    

A =  0.25 3 0.25  B =  0 0 0  z = 3.75 

0.25 0.25 0.25   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t) = Binary image showing black objects in P with increasing black 

neighborhood (white objects decreasing in size). 

II. Example: image name: points.bmp, image size: 50x50; template name: bprop.tem . 

   

 input output 
 



68 1.  Templates/Instructions  

 

WhitePropagation:   Starts omni-directional white propagation from white pixels [54] 

 

0.25 0.25 0.25   0 0 0    

A =  0.25 3 0.25  B =  0 0 0  z = -3.75 

0.25 0.25 0.25   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t) = Binary image showing white objects in P with increasing white 

neighborhood (black objects decreasing in size). 

II. Example: image name: patches.bmp, image size: 50x50; template name: wprop.tem . 

   

 input output 



1.3.  Spatial Logic 69 

 

ConcaveLocationFiller:   Fills the concave locations of objects [22] 

Old names: HOLLOW  

 

0.5 0.5 0.5   0 0 0    

A =  0.5 2 0.5  B =  0 2 0  z = 3.25 

0.5 0.5 0.5   0 0 0    

I. Global Task 

Given: static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image in which the concave locations of objects 

are black. 

Remark: 

 In general, the objects of P that are not filled should have at least a 2-pixel-wide contour. 

Otherwise the template may not work properly.  

The template transforms all the objects to solid black concave polygons with vertical, horizontal and 

diagonal edges only. 

II. Example:  image name: hollow.bmp, image size: 180x160; template name: hollow.tem . 

    

 input output (t=20τCNN) output (t=∞) 



70 1.  Templates/Instructions  

 

ConcaveArcFiller:   Fills the concave arcs of objects to prescribed direction  

FILL35: 

1 0 1   0 0 0    

A =  0 2 0  B =  0 1 0  z = 2 

1 1 0   0 0 0    

FILL65: 

1 0 0   0 2 0    

A =  1 2 0  B =  0 0 0  z = 3 

0 0 2   0 0 0    

 

I. Global Task 

Given: static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = -1 for all virtual cells, denoted by [Y]=-1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image in which those arcs of objects are filled 

which have a prescribed orientation. 

Remark: 

 In general, the objects of P that are not filled should have at least 2 pixel wide contour. 

Otherwise the template may not work correctly.  

II. Example:  image name: arcs.bmp, image size: 100x100; template name: arc_fill.tem . 

   

 input output (t=20τCNN) 



1.3.  Spatial Logic 71 

 

SurfaceInterpolation:  Interpolates a smooth surface through given points 

Old names: INTERP, INTERPOL  

 

 0 0 -2 0 0   0 0 0 0 0    

 0 -4 16 -4 0   0 0 0 0 0    

A = -2 16 -39 16 -2  B = 0 0 0 0 0  z = 0 

  0 -4 16 -4 0   0 0 0 0 0    

 0 0 -2 0 0   0 0 0 0 0    

I. Global Task 

Given:  a static grayscale image P1 and a static binary image P2 

Input: U(t) = Arbitrary or as a default U(t)=0 

Initial State: X(0) = P1 

Fixed State Mask: Xfix = P2 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing an interpolated surface that 

fits the given points and is as smooth as possible.  

Remark: 

 Images P1 and P2 are to be constructed as follows: if the altitude of the surface to be 

interpolated is known at point (i,j), it is preset in P1 (state) at the position (i,j), and the state is kept 

fixed (P2(i,j) = -1) during the transient. If the altitude is not known, then zero is filled into the state 

(P1(i,j) = 0) and changing of the state is allowed (P2(i,j) = 1). For exact solution the feedback 

template must be space variant at the borders. An approximate result can be obtained by using space 

invariant network. Further information about the space variant network is available in [27] and [29]. 

II. Examples 

Example 1: Ball surface reconstruction (10% of the points is known). Image names: interp1.bmp, 

interp2.bmp; image size: 80x80; template name: interp.tem . 

   

 initial state fixed state mask output 

 



72 1.  Templates/Instructions  

 

Example 2: Fitting a surface on three given points. Image size: 80x80. 

   

 initial state intermediate step output 
 



1.3.  Spatial Logic 73 

 

JunctionExtractor:   Extracts the junctions of a skeleton [22] 

Old names: JUNCTION  

 

0 0 0   1 1 1    

A =  0 1 0  B =  1 6 1  z = -3 

0 0 0   1 1 1    

I. Global Task 

Given: static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = -1 for all virtual cells, denoted by [U] = -1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image showing the junctions of a skeleton. 

Template robustness: ρ = 0.15 . 

Remark: 

 A black pixel is considered to be a junction if it has at least 3 black neighbors. 

II. Example:  image name: junction.bmp, image size: 140x120; template name: junction.tem . 

   
 input output 
 



74 1.  Templates/Instructions  

 

JunctionExtractor1:   Finding the intersection points of thin (one-pixel thick) lines from two 

binary images  

 

-0.5 -0.5 -0.5   -0.5 -0.5 -0.5    

A =  -0.5 3 -0.5  B =  -0.5 3 -0.5  z = -8.5 

-0.5 -0.5 -0.5   -0.5 -0.5 -0.5    

I. Global Task 

Given:  two static binary images P1 and P2 containing thin (one-pixel thick) lines 

or curves, among other (compact) objects 

Input: U(t) =  P1 

Initial State: X(0) = P2 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image containing all the intersection points 

between the thin lines contained in the binary images P1 and P2 

 

Remarks: The two binary images can be interchanged, i.e. we can apply P2 at the input and load P1 

as initial state. The feedback and control templates are identical. Even if other (compact) objects are 

present in the two images, their overlapping is not detected, except intersection points of thin lines. 

 

II. Example: image size: 36x36. 

    

 Initial state Intermediate state Output 



1.3.  Spatial Logic 75 

 

LocalConcavePlaceDetector:   Local concave place detector [11] 

Old names: LCP  

 

0 0 0   0 0 0    

A =  0 1 0  B =  2 2 2  z = -7 

0 0 0   1 -2 1    

Given: static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image showing the local concave places of P. 

Template robustness: ρ = 0.24 . 

Remark: 

 Local concave places of the image are pixels having no southern neighbor, but both eastern, 

western and either a south-western or (permissive) a south-eastern one. 

II. Example:  image name: lcp_lse.bmp, image size: 17x17; template name: lcp.tem . 

   

 input output 



76 1.  Templates/Instructions  

 

LE7pixelVerticalLineRemover:   Deletes vertical lines not longer than 7 pixels [10] 

Old names: LINCUT7V, CUT7V  

 

 0 0 1 0 0   0 0 1 0 0    

 0 0 0.5 0 0   0 0 1 0 0    

A = 0 0 2 0 0  B = 0 0 1 0 0  z = -5.5 

  0 0 0.5 0 0   0 0 1 0 0    

 0 0 1 0 0   0 0 1 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = -1, yij = -1 for all virtual cells, denoted by [U]=[Y]= -1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels identify the vertical lines 

with  a length of 8 or more pixels in P.  

Remark: 

 The template deletes even those parts of the objects that could be interpreted as vertical lines 

not longer than 7 pixels. 

II. Example:  image name: lincut7v.bmp, image size: 20x20; template name: lincut7v.tem  

  

 input output 



1.3.  Spatial Logic 77 

 

GrayscaleLineDetector:    Grayscale line detector template 

Old names: LINE3060  

 

0 0 0   b a a    

A =  0 1.5 0  B =  b 0 a  z = -4.5 

0 0 0   a b b    

 

where a and b are defined by the following nonlinear functions: 

 

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = 0 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where black pixels correspond to the 

grayscale lines within a slope range of approximately 30° (30°-60°) in P.  

Remark: 

 It is supposed that the difference between values of a grayscale line and those of the 

background is not less than 0.25 (see function b). Analogously, the difference between values 

representing a grayscale line is supposed to be in the interval [-0.15, 0.15] (see function a). The 

template can easily be tuned for other input assumptions by changing functions a and b. 

The functionality of this template is similar to that of the rotated version of the 

GrayscaleDiagonalLineDetector template. 

II. Examples 

Example 1 (simple):  image name: line3060.bmp, image size: 41x42; template name: 

line3060.tem . 

   

 input output 

a 

-0.15 0.15 vuij
-vukl

 

1 

0.25 vuij
-vukl

 

1 

b 



78 1.  Templates/Instructions  

 

Example 2 (complex):  image name: michelan.bmp, image size: 625x400; template name: 

line3060.tem . 

 

input 

 

output 



1.3.  Spatial Logic 79 

 

LE3pixelLineDetector:   Lines-not-longer-than-3-pixels-detector template [13] 

Old names: LINEXTR3, LGTHTUNE  

 

 0 0 0 0 0   -1 0 -1 0 -1    

 0 0.3 0.3 0.3 0   0 -1 -1 -1 0    

A = 0 0.3 3 0.3 0  B = -1 -1 4 -1 -1  z = -2 

  0 0.3 0.3 0.3 0   0 -1 -1 -1 0    

 0 0 0 0 0   -1 0 -1 0 -1    

I. Global Task 

Given:  static binary image P where the background is set to 0 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing only lines not longer than 3 

pixels in P. 

Remark: 

 The image P should contain only 1 pixel wide non-crossing lines. Otherwise the template 

may not work properly. 

II. Example:  image name: linextr3.bmp, image size: 25x25; template name: linextr3.tem . 

   
 input output 



80 1.  Templates/Instructions  

 

PixelSearch:    Pixel search in a given range [72] 

 

     0 0 0 0 0 0 0    

     0 0 0 0 0 0 0    

0 0 0   0 0 0 0 0 0 0    

A =  0 2 0  B= 0 0 0 0 0 0 0  z = -1 

0 0 0   0 0 0 0 0 0 0    

     0 0 0 0 0 0 0    

     0 0 0 1 0 0 0    

I. Global Task 

Given:  static binary image P, Q 

Input: U(t) = P the reference image 

Initial State: X(0) = Q pixel whose distance is measured to the reference 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the pixels being at the 

specified distance from the reference. 

 

Remark: 

 This operation keeps those pixels of the initial state where there is a black pixel on the 

input at the place of the nonzero element of B. Based on the above example arbitrary pixel search 

operations can be implemented by extending the applied template to NxN. Although the 

operation requires NxN templates (7x7 in the example), members of this template class can be 

decomposed into a sequence of 3x3 linear templates (see [73]). 

II. Example:  image names: input_reference.bmp, initial_available.bmp; image size: 30x30; 

template name: pixelsearch.tem . 

    
 input initial state output 



1.3.  Spatial Logic 81 

 

LogicANDOperation:   Logic AND and Set Intersection ∩∩∩∩ (Conjunction ∧∧∧∧) template 

Old names: LogicAND, LOGAND, AND  

 

0 0 0   0 0 0    

A =  0 2 0  B =  0 1 0  z = -1 

0 0 0   0 0 0    

I. Global Task 

Given: two static binary images P1 and P2 

Input: U(t) = P1 

Initial State: X(0) = P2 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = binary output of the logic operation “AND”  between P1 

and  P2. In logic notation, Y(∞)=P1∧∧∧∧P2, where ∧∧∧∧ denotes the 

“conjunction” operator. In set-theoretic notation, Y(∞)=P1∩∩∩∩P2, where ∩∩∩∩ 

denotes the  “intersection” operator. 

II. Example:  image names: logic01.bmp, logic02.bmp; image size: 44x44; template name: 

logand.tem . 

     
 input initial state output 

 



82 1.  Templates/Instructions  

 

LogicDifference1:   Logic Difference and Relative Set Complement (P2 \ P1 = P2 - P1) template 

[7] 

Old names: LOGDIF, PA-PB  

 

0 0 0   0 0 0    

A =  0 2 0  B =  0 -1 0  z = -1 

0 0 0   0 0 0    

I. Global Task 

Given:  two static binary images P1 and P2 

Input: U(t) = P1 

Initial State: X(0) = P2 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the set-theoretic, or logic 

complement of P2 relative to P1. In set-theoretic or logic notation, 

Y(∞)=P2 \ P1, or Y(∞)=P2 -P1, i.e., P2 minus P1. 

II. Example:  image names: logic05.bmp, logic01.bmp; image size: 44x44; template name: 

logdif.tem . 

     

 input initial state output 
 



1.3.  Spatial Logic 83 

 

LogicNOTOperation:   Logic NOT and Set Complementation (P→→→→ P =P
c
) template 

Old names: LogicNOT, LOGNOT, INV  

 

0 0 0   0 0 0    

A =  0 1 0  B =  0 -2 0  z = 0 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary or as a default X(0)=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where each black pixel in P becomes white, 

and vice versa. In set-theoretic  or logic notation: Y(∞)=P
c
= P , where the 

bar denotes the “Complement” or “Negation” operator. 

II. Example:  image name: chineese.bmp; image size: 16x16; template name: lognot.tem . 

   

 input output 



84 1.  Templates/Instructions  

 

LogicOROperation:  Logic OR and Set Union ∪∪∪∪ (Disjunction ∨∨∨∨ ) template 

Old names: LogicOR, LOGOR, OR  

 

0 0 0   0 0 0    

A =  0 2 0  B =  0 1 0  z = 1 

0 0 0   0 0 0    

I. Global Task 

Given:  two static binary images P1 and P2 

Input: U(t) = P1 

Initial State: X(0) = P2 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = binary output of the logic operation OR between P1 and 

P2. In logic notation, Y(∞)=P1∨∨∨∨P2, where ∨∨∨∨ denotes the “disjunction” 

operator. In set-theoretic notation, Y(∞)=P1∪∪∪∪P2  where ∪∪∪∪ denotes the 

“set union” operator. 

II. Example:  image names: logic01.bmp, logic02.bmp; image size: 44x44; template name: 

logor.tem . 

      

 input initial state output 



1.3.  Spatial Logic 85 

 

LogicORwithNOT:   Logic "OR" function of the initial state and logic "NOT" function of the 

input [24] 

Old names: LOGORN, INV-OR  

 

0 0 0   0 0 0    

A =  0 2 0  B =  0 -1 0  z = 1 

0 0 0   0 0 0    

I. Global Task 

Given:  two static binary images P1 and P2 

Input: U(t) = P1 

Initial State: X(0) = P2 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = binary output of the logic operation OR between 1P  and 

P2. In logic notation, Y(∞)= 1P ∨∨∨∨ P2, where ∨∨∨∨ denotes the “disjunction” 

operator. 

II. Example:  image names: logic06.bmp, logic02.bmp; image size: 44x44; template name: 

logorn.tem . 

      

 input initial state output 



86 1.  Templates/Instructions  

 

PatchMaker:   Patch maker template [22] 

Old names: PATCHMAK  

 

0 1 0   0 0 0    

A =  1 2 1  B =  0 1 0  z = 4.5 

0 1 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒⇒⇒⇒Y(T) = Binary image with enlarged objects of the input obtained 

after a certain time t = T. The size of the objects depends on time T. 

When T →→→→ ∞∞∞∞ all pixels will be driven to black. 

II. Example:  image name: patchmak.bmp; image size: 245x140; template name: patchmak.tem . 

  

 input output 



1.3.  Spatial Logic 87 

 

SmallObjectRemover:   Deletes small objects [22] 

Old names: SMKILLER  

 

1 1 1   0 0 0    

A =  1 2 1  B =  0 0 0  z = 0 

1 1 1   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing P without small objects.  

Remark: 

 This template drives dynamically white all those black pixels that have more than four white 

neighbors, and drives black all white pixels having more than four black neighbors. 

II. Example:  image name: smkiller.bmp; image size: 115x95; template name: smkiller.tem . 

   

 input output 



88 1.  Templates/Instructions  

 

BipolarWave:   Generates black and white waves [52] 

0.3 0.3 0.3   0 0 0    

A =  0.3 0.8 0.3  B =  0 1 0  z = 0 

0.3 0.3 0.3   0 0 0    

I. Global Task 

Given: image P containing three gray levels: +1, 0, -1 (black, gray, white) 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) =  Black and white areas, the boundary of which is located at 

positions where the waves collided. 

Remark: 

The wave starts from black and white pixels and propagates on cells which have zero state 

(gray color). The final image will contain black and white areas. 

II. Example:  image size: 64x64; template name: bipolar.tem . 

                 

       input                  output                           input output 

 



 

1.4. TEXTURE SEGMENTATION AND DETECTION  

5x5TextureSegmentation1:   Segmentation of four textures by a 5*5 template [17] 

Old names: TX_HCLC  

 

 -3.44 0.86 -1.64 -0.16 -1.02   -2.19 -0.23 0.16 -0.63 -0.78    

 -1.09 0.16 -2.19 -3.2 3.51   1.64 2.27 -3.2 1.09 2.03    

A = 2.50 1.56 3.91 2.66 2.42  B = 0.08 0.55 0.86 3.52 0.08  z = 3.28 

  0.55 2.89 -0.62 0.47 3.67   0.39 -3.83 -3.12 -2.34 -2.11    

 -1.80 -0.55 2.50 -0.23 2.34   0.78 -2.66 -1.17 -1.41 1.02    

I. Global Task 

Given:  static grayscale image P representing four textures (herringbone clothes, 

cloth, lizard skin, cloth) having the same flat grayscale histograms with 

the same gray average value 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Nearly binary image representing four patterns that differ 

in average gray-levels. 

II. Example:  image name: tx_hclc.bmp, image size: 296x222; template name: tx_hclc.tem . 

    

 input output 



90 1.  Templates/Instructions  

 

3x3TextureSegmentation:   Segmentation of four textures by a 3*3 template [17] 

Old names: TX_RACC3  

 

 0.86 0.94 3.75   0.16 -1.56 1.25    

A = 2.11 -2.81 3.75  B = -2.89 1.09 -3.2  z = 1.8 

  -1.33 -2.58 -1.02   4.06 4.69 3.75    

I. Global Task 

Given:  static grayscale image P representing four textures (raffia, aluminum 

mesh, 2 clothes) having the same flat grayscale histograms 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Nearly binary image representing four patterns that differ 

in average gray-levels. 

Remark: 

This template is called "Texture Discrimination" in [44].  

II. Example:  image name: tx_racc.bmp, image size: 296x222; template name: tx_racc3.tem . 

    

 input output 



1.4.  Texture Segmentation and Detection 91 

 

5x5TextureSegmentation2:   Segmentation of four textures by a 5*5 template [17] 

Old names: TX_RACC5  

 

 4.21 -1.56 1.56 3.36 0.62   4.06 -5 0.39 2.11 -1.87    

 -2.89 4.53 -0.23 3.12 -2.89   3.90 0.31 -1.95 4.84 -0.31    

A = 2.65 2.18 -4.68 -3.43 -2.81  B = 0 -4.06 0.93 -0.31 0.46  z = -5 

  3.98 1.56 -1.17 -3.12 -3.20   -0.62 -5 2.34 0.62 -1.87    

 -3.75 -2.18 3.28 2.19 -0.62   3.59 -0.93 0.15 2.81 -1.87    

I. Global Task 

Given:  static grayscale image P representing four textures (raffia, aluminum 

mesh, 2 clothes) having the same flat grayscale histograms 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Nearly binary image representing four patterns that differ 

in average gray-levels. 

II. Example:  image name: tx_racc.bmp, image size: 296x222; template name: tx_racc5.tem . 

    

 input output 



92 1.  Templates/Instructions  

 

TEXTURE DETECTION         

TextureDetector1 (T1_RACC3) 

 2.27 1.80 3.36   -3.91 1.25 3.05    

A = -0.70 -4.45 1.41  B = 0.86 -3.05 3.36  z = -1.64 

 3.20 3.98 -0.31   1.72 -0.63 -4.61    

TextureDetector2 (T2_RACC3) 

 1.56 4.38 2.42   -2.81 2.42 -3.75    

A = 4.69 -3.13 1.41  B = -5 -0.39 -5  z = -3.20 

  2.19 -5 0.86   3.67 4.22 3.13    

TextureDetector3 (T3_RACC3) 

 1.64 -1.02 1.33   -3.91 -2.66 -3.13    

A = 1.88 -4.61 2.89  B = 0.94 1.48 -3.13  z = -2.42 

  3.28 2.03 3.75   1.33 0.55 2.34    

TextureDetector4 (T4_RACC3) 

 3.13 4.30 2.19   -3.52 4.38 -5    

A = -2.81 3.13 0.16  B = -0.94 -3.05 -3.67  z = -2.42 

  1.88 4.92 4.53   1.41 -0.63 -4.38    

Textures being detected by these templates 

     
 TextureDetector1 TextureDetector2 TextureDetector3 TextureDetector4 

I. Global Task 

Given:  static grayscale image P representing textures having the same flat 

grayscale histograms. One of them is identical to a texture shown above. 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Nearly binary image where the detected texture becomes 

darker than the others. 

These templates can be used in a classification problem when the number of different examined 

textures is, for instance, more than 10 and the input textures have the same flat grayscale histograms. 



1.4.  Texture Segmentation and Detection 93 

 

II. Examples image name: tx_racc.bmp; image size: 296x222. 

Example 1:  Texture detection with the TextureDetector1 (t1_racc3.tem) template. 

    

 input output 

Example 2:  Texture detection with the TextureDetector2 (t2_racc3.tem) template. 

    

 input output 

Example 3:  Texture detection with the TextureDetector3 (t3_racc3.tem) template. 

    

 input output 

Example 4:  Texture detection with the TextureDetector4 (t4_racc3.tem) template. 

    

 input output 



 

1.5. MOTION  

ImageDifferenceComputation:    Logic difference between the initial state and the input 

pictures with noise filtering [7] 

Old names: LogicDifference2, LOGDIFNF, PA-PB_F1  

 

0 0 0   0.25 0.25 0.25    

A =  0 1 0  B =  0.25 2 0.25  z = -4.75 

0 0 0   0.25 0.25 0.25    

 

0 0 0   -0.25 -0.25 -0.25    

A
τ
 =  0 0 0  B

τ
 =  -0.25 -2 -0.25  τ = 10 τCNN 

0 0 0   -0.25 -0.25 -0.25    

 

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Binary image where black pixels identify the moving parts 

of P. 

Remark: 

 Takes the logic difference of the delayed and actual input in continuous mode together with 

noise filtering. Moving parts of an image can be extracted. 

II. Example:  image names: logdnfi0.bmp, logdnfi1.bmp; image size: 44x44; template name: 

logdifnf.tem . 

     

 two consecutive steps of the input stream output 



1.5.  Motion  95 

 

MotionDetection:    Direction and speed dependent motion detection [12] 

Old names: MotionDetection1, MOTDEPEN, MOVEHOR  

 

-0.1 -0.1 -0.1   0 0 0    

A =  -0.1 0 -0.1  B =  0 1.5 0  z = -2 

-0.1 -0.1 -0.1   0 0 0    

 

0 0 0   0 0 0    

A
τ
 =  0 0 0  B

τ
 =  1.5 0 0  τ = 10 τCNN 

0 0 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0, yij = 0 for all virtual cells, denoted by [U]=[Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Binary image representing only objects of P moving 

horizontally to the right with a speed of 1 pixel/delay time. 

II. Example:  image names: motdep1.bmp, motdep2.bmp; image size: 20x20; template name: 

motdepen.tem . 

     

 two consecutive steps of the input stream corresponding outputs 



96 1.  Templates/Instructions  

 

SpeedDetection:   Direction independent motion detection [7] 

Old names: MotionDetection2, MOTINDEP, MD_CONT  

 

0 0 0   0 0 0    

A =  0 1 0  B =  0 6 0  z = -2 

0 0 0   0 0 0    

 

0.68 0.68 0.68   0 0 0    

A
τ
 =  0.68 0.68 0.68  B

τ
 =  0 0 0  τ = 10 τCNN 

0.68 0.68 0.68   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(T) = Binary image representing only objects of P moving 

slower than 1 pixel/delay time in arbitrary directions. 

II. Example:  image names: motind1.bmp, motind2.bmp, motind3.bmp, motind4.bmp; image size: 

16x16; template name: motindep.tem . 

   

   

   

   

 4 consecutive steps of the input stream corresponding outputs 



1.5.  Motion  97 

 

SPEED CLASSIFICATION  

The algorithm is capable of classifying the speed of black-and-white objects moving parallel to the 

image plane. It extracts objects moving faster than a given speed determined by the current of the 

threshold template. Grayscale image sequences can be converted to black-and-white using the 

Smoothing template. 

The flow-chart of the algorithm: 

 

Smoothing:  

   0.06 0.13 0.06    

   Bsmoothing = 0.13 0.24 0.13    

   0.06 0.13 0.06    

Temporal differentiation: 

0 0 0   0 0 0   0 0 0 

Adiff =  0 1 0  Bdiff = 0 0.4 0  =  0 -0.4 0 

0 0 0   0 0 0   0 0 0 

Classifying speed: 

0 0 0   0 0 0      

Aclass =  0 2 0  Bclass =  0 0 0  zclass =   -threshold  

0 0 0   0 0 0      

Recalling objects: 

BLACK-AND-WHITE IMAGE SEQUENCE

image (t-τ)

SmoothingSmoothing

SMOOTHED IMAGE SMOOTHED IMAGE

Temporal differentiation

DIFFERENCE IMAGE

Classifying

OBJECTS FASTER THAN

A GIVEN SPEED

image (t)



98 1.  Templates/Instructions  

 

0.3 0.3 0.3   0 0 0      

Arecall =  0.3 4 0.3  Brecall =  0 5.1 0      

0.3 0.3 0.3   0 0 0      

Example: Input and output pictures. Image names: speed1.bmp, speed2.bmp; image size: 

163x105. 

   



1.5.  Motion  99 

 

PathTracing:   Traces the path of moving objects on black-and-white images 

Old names: TRACE  

 

0.3 0.3 0.3   0 0 0    

A11 = 0.3 4 0.3  B11 =  0 5.1 0  z1 = 0 

0.3 0.3 0.3   0 0 0    

 

0 0 0   0 0 0    

A22 = 0 2 0  A21 = 0 3 0  z2 = 2 

0 0 0   0 0 0    

I. Global Task 

Given:  a binary image sequence P1 and a binary image P2. P1 represents the 

objects to be traced, P2 consists of black pixels marking the objects to be 

traced. 

Input: U1(t) = P1 

Initial State: X1(0) = P2 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y1(t)⇒⇒⇒⇒Y(T) = Binary image representing the actual position of the 

marked objects 

 Y2(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image showing the whole path of the marked 

objects 

II. Example:  image names: trace1.bmp, trace2.bmp; image size: 140x80; template name: trace.tem 

    

 starting snapshot of the initial state output of the 2. layer 

 input sequence 

 



 

1.6. COLOR  

CNN MODELS OF SOME COLOR VISION PHENOMENA: SINGLE AND DOUBLE 

OPPONENCIES  

In the retina, and the visual cortex, there are single and double color opponent cells [23]. Their 

receptive fields are as follows: 

R
+ G

-

R G
+ -

-
G R

+

(a)
(b)  

where (a) belongs to the single and (b) belongs to the double opponent cell. The template simulating 

the single opponent cell has two layers. The input of the first layer is the monochromatic red map, 

while the second layer gets the green map. The result appears on the second layer. The template is 

the following: 

0 0 0   -0.25 -0.25 -0.25    

B12 =  0 2 0  B22 =  -0.25 0 -0.25    

0 0 0   -0.25 -0.25 -0.25    

By swapping the layers we get the template generating the G+R- single opponents. The output of the 

R+G- and G+R- layers provide the input for the first and second layer of the double opponent 

structure, respectively. The output appears on the second layer. The template is as follows: 

 0 0 0 0 0 0 0   0.02 0.02 0.02 0.02 0.02 0.02 0.02 

 0 0 0 0 0 0 0   0.02 0 0 0 0 0 0.02 

 0 0 0 0 0 0 0   0.02 0 0 0 0 0 0.02 

B12 = 0 0 0 2 0 0 0  B22 = 0.02 0 0 0 0 0 0.02 

 0 0 0 0 0 0 0   0.02 0 0 0 0 0 0.02 

 0 0 0 0 0 0 0   0.02 0 0 0 0 0 0.02 

 0 0 0 0 0 0 0   0.02 0.02 0.02 0.02 0.02 0.02 0.02 



 

1.7. DEPTH  

DEPTH CLASSIFICATION  

The algorithm determines the depth of black-and-white objects based on a pair of stereo images. It 

determines whether an object is closer than a given distance or not. The first step of the algorithm is 

to reduce the objects in both input images to a single pixel; then the distance between corresponding 

points is calculated. The distance can be thresholded to determine whether the object is too close or 

not. As a first preprocessing step, grey-scale images can be converted into black-and-white using the 

Smoothing template. 

The flow-chart of the algorithm: 

 

center point detectioncenter point detection

elongate object

calculate distance

read out depth information

classify depth

recall

LEFT STEREO IMAGE RIGHT STEREO IMAGE

CENTER-POINT OF OBJECTS TOO CLOSE

OBJECTS TOO CLOSE
 

Templates: 

Elongate objects: add pixels to the top and bottom of each object (use the left image as input) 

0 0 0   0 3 0    

Aelongate =  0 1 0  Belongate =  0 3 0  zelongate = 4.5 

0 0 0   0 3 0    

Calculate depth: (use the elongated left image as initial state) 

0 0 0         

Adistance =  b 1 b         

0 0 0         

 



102 1.  Templates/Instructions  

 

 

 

 

 

where b is defined by the following nonlinear function: 

b

vyij -vykl

0.5

-1.05 -0.05

 

Read out depth: (use the right center points as a fixed state map) 

0 0 0     

Aread =  0 1 0   zread = -2 

0 0 0     

Classify depth: 

0 0 0     

Aclass =  0 2 0   zclass = -threshold 

0 0 0     

Example: image name: depth0.bmp; image size: 120x80. 

 

 

 
 

 



 

1.8. OPTIMIZATION  

GlobalMaximumFinder:   Finds the global maximum [33] 

Old names: GLOBMAX  

 

a a a   0 0 0    

A =  a 1 a  B =  0 0 0  z = 0 

a a a   0 0 0    

where a is defined by the following nonlinear function: 

-1

0.125

-2

a

vyij -vykl

0.25

 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = Arbitrary 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = An image where intensities of the pixels are identical and 

equal to the maximum intensity of pixels in P. In other words, the output 

is filled up with the global maximum of P. 

II. Example:  image name: globmax.bmp, image size: 51x51; template name: globmax.tem . 

  

 

 

 input output 



 

1.9. GAME OF LIFE AND COMBINATORICS  

HistogramGeneration: Generates the one-dimensional histogram of a black-and-white 

image [20] 

Old names: HistogramComputation, HISTOGR  

 

0 0 0   0 0 0    

A =  a 1 b  B =  0 0 0  z = 0 

0 0 0   0 0 0    

where a and b are defined by the following nonlinear functions: 

 

a

vyij - vykl

1.5

-3
 

b

vyij -vykl

-1.5

3

 

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image where all black pixels are shifted to the left. 

II. Example:  image name: histogr.bmp, image size: 7x5; template name: histogr.tem . 

INPUT OUTPUT

 



1.9.  Game of Life and Combinatorics  105 

 

GameofLife1Step:   Simulates one step of the game of life [11] 

Old names: LIFE_1  

 

0 0 0   -1 -1 -1    

A11 = 0 1 0  B11 =  -1 0 -1  z = -1 

0 0 0   -1 -1 -1    

 

0 0 0   -1 -1 -1    

A22 = 0 1 0  B21 =  -1 -1 -1  z = -4 

0 0 0   -1 -1 -1    

 

I. Global Task 

Given:  static binary image P 

Inputs: U1(t) = P, U2(t) = Arbitrary 

Initial States: X1(0) = X2(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = -1 for all virtual cells, denoted by [U]= -1 

Outputs: Y1(t), Y2(t) ⇒⇒⇒⇒Y1(∞∞∞∞),Y2(∞∞∞∞) = Binary images representing partial results. 

The desired output is Y1(∞∞∞∞) XOR Y2(∞∞∞∞). For the simulation of the 

following steps of game of life this image should be fed to the input of 

the first layer. 

II. Example:  image name: life_1.bmp, image size: 16x16; template name: life_1.tem . 

    

 input output 



106 1.  Templates/Instructions  

 

GameofLifeDTCNN1:   Simulates the game of life on a single-layer DTCNN with piecewise-

linear thresholding [11] 

Old names: LIFE_1L  

 

a a a   0 0 0    

A =  a b a  B =  0 0 0  z = 0 

a a a   0 0 0    

 

where a and b are defined by the following nonlinear functions: 

a

0.1

1 vykl

 

b

1

0.9

vyij

-0.9

-1

-0.27

-0.5

-0.13

-0.45

 

I. Global Task 

Given:  static binary image P 

Input: U(t) = Arbitrary 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Outputs: Y(t) ⇒⇒⇒⇒Y(2*t1), t1= 1,2,… Binary images representing the game of life. 

The new state appears after every second iteration. 

Remark: 

 The DTCNN with piecewise-linear thresholding is a CNN approximated by the forward 

Euler integration form using time step 1. 

II. Example 

See the example of the GameofLife1Step template (template name: life_1l.tem). 



1.9.  Game of Life and Combinatorics  107 

 

GameofLifeDTCNN2:   Simulates the game of life on a 3-layer DTCNN [11] 

Old names: LIFE_DT  

 

0 0 0   0.3 0.3 0.3    

A31 = 0 1 0  A13 = 0.3 0.3 0.3  z1 = 1 

0 0 0   0.3 0.3 0.3    

 

0 0 0   -0.6 -0.6 -0.6    

A32 = 0 1 0  A23 = -0.6 0 -0.6  z2 = -0.8 

0 0 0   -0.6 -0.6 -0.6  z3 = -1.5 

I. Global Task 

Given:  static binary image P 

Inputs: U1(t) =U2(t) = U3(t) = Arbitrary 

Initial States: X1(0) = X2(0) = X3(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Outputs: Y(t) ⇒⇒⇒⇒Y3(3,5,7,9,…) = Binary images representing the game of life. 

II. Example 

See the example of the GameofLife1Step template (template name: life_dt.tem). 



108 1.  Templates/Instructions  

 

MajorityVoteTaker:   Majority vote-taker [20] 

Old names: MAJVOT  

 

The goal of the one dimensional majority vote-taker template is to decide whether a row of an input 

image contains more black or white pixels, or their number is equal. The effect is realized in two 

phases. The first template (setting the initial state to 0) gives rise to an image, where the sign of the 

rightmost pixel corresponds to the dominant color. Namely, it is positive, if there are more black 

pixels than white ones; it is negative in the opposite case, and is 0 in the case of equality. By using 

the second template this information can be extracted, which drives the whole network into black or 

white, depending on the dominant color, or leaves the rightmost pixel unchanged otherwise. The 

method can easily be extended to two or even three dimensions. 

First template 

0 0 0   0 0 0    

A =  1 0 0  B =  0 0.05 0  z = 0 

0 0 0   0 0 0    

Second template 

0 0 0   0 0 0    

A =  0 a 2  B =  0 0 0  z = 0 

0 0 0   0 0 0    

 

where a is defined by the following nonlinear function: 

                                              

a

1

-1

-0.025 0.025 vyij

 

Example: image name: histogr.bmp, image size: 7x5; template names: majvot1.tem, 

majvot2.tem. 

INPUT OUTPUT

 



1.9.  Game of Life and Combinatorics  109 

 

ParityCounting1:  Determines the parity of a row of the input image [20] 

Old names: PARITY  

 

The template determines whether the number of black pixels in a row is even or odd. As a result, the 

leftmost pixel in the output image corresponds to the parity of the row, namely, black represents odd, 

while white means even parity. It is also true that each pixel codes the parity of the pixels right to it, 

together with the pixel itself. Naturally, the parity of a column or a diagonal can be counted in the 

same manner. The parity of an array can also be determined if columnwise parity is counted on the 

result of the rowwise parity operation. The initial state should be set to -0.5. 

 

0 0 0   0 0 0    

A =  0 a b  B =  0 c 0  z = 0 

0 0 0   0 0 0    

 

where a, b, and c are defined by the following nonlinear functions: 

a

vyij

-2

0.7

0.3

0.1

0.2

-0.1-0.7

2

b

vykl

0.70.3

0.1

0.1

-0.1-0.7

-0.7
                

c

vuij
0.1

0.1

-0.1

 
 

   

Example: image name: histogr.bmp, image size: 7x5; template name: parity1.tem . 

INPUT OUTPUT

 



110 1.  Templates/Instructions  

 

ParityCounting2:   Computes the parity of rows in a black-and-white image  

0 0 0   0 0 0    

A =  0 1 0  D =  d 0 0  z = 0 

0 0 0   0 0 0    

   

where d = - vuij 
vykl

 . 

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = -1 for all virtual cells, denoted by [Y]=-1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image representing the parity of rows in P 

 

Remark: 

 A particular pixel in the output is black if an odd number of black pixels can be found at the 

left of the particular pixel in the input (including the position of the pixel itself). 

 

II. Example:  image name: parity2.bmp, image size: 7x5; template name: parity2.tem . 

INPUT OUTPUT

 
 



1.9.  Game of Life and Combinatorics  111 

 

1-DArraySorting:   Sorts a one dimensional array [20] 

Old names: SORTING  

 

A one-dimensional array of n values in the [-1,+1] interval can be sorted in descending order in n 

steps with the following time- and space-varying template. In each odd step, the templates should be 

applied in the ARALARALARAL ... pattern, while in each even step in the ALARALARALAR ... pattern. 

To suppress side effects, the left and right boundaries should be set to +1 and -1, respectively. 

 

0 0 0   0 0 0  

AL =  a 1 0  AR =  0 1 b  

0 0 0   0 0 0  

 

where a and b are defined by the following nonlinear functions: 

a

2

-2

vyij -vykl

b

2

-2 vyij -vykl

 
 

Example: image name: sorting.bmp; image size: 12x1. 

Input 
 

  

Output 
 

 

 



 

1.10. PATTERN FORMATION  

SPATIO-TEMPORAL PATTERN FORMATION IN TWO-LAYER OSCILLATORY CNN   

Spatio-temporal pattern formation in two-layer oscillatory CNN is studied in [56] and showed e.g. that some 

exotic types of spiral waves exist on this type of network. As an example, spiral waves might consist of not 

only two types of motif (black and white patches) but also, for instance, checkerboard patterns. These three 

types of motifs propagate like spiral waves and transform continuously into each other. 

I. Global Task 

Task: Generate oscillatory Turing patterns 

Given:   

Initial States: X1(0), X2(0) = small signal random pattern, otherwise arbitrary 

Boundary Conditions: Zero-flux boundary condition 

Outputs: Y1(t), Y2(t) spatio-temporal oscillatory Turing patterns. 

 

II. CNN architecture  

Consider the dynamics of a two-layer autonomous CNN: 

1,

1, 1,1 1 1 2,

2,

2, 2,2 2 2 1,

,

A y

A y

ij

ij ij

ij

ij ij

dx
x y

dt

dx
x y

dt

β

β


= − + ∗ + 


= − + ∗ +


 where β1 and β2 are the coupling parameters between the two 

layers. 

III. Templates  

Turing pattern generating templates extended with coupling parameter (β1 and β2). As an example, 

template A11 generates cow patches while template A22 generates checker board pattern.  

1 0.1 1   0 0 0       

A11 = 0.1 -2 0.1  B11 =  0 0 0  z = 0  β1= 2 

1 0.1 1   0 0 0       

 

1 -0.1 1   0 0 0       

A22 = -0.1 -2 -0.1  B21 =  0 0 0  z = 0  β2= 2 

1 -0.1 1   0 0 0       

 



1.10.  Pattern formation   113 

 

IV. Example  

Output of the 1
st
 layer (2

nd
 layer behaves in a very similar way):  

  

t=t0+1 [τCNN] t= t0+2 t= t0+3 t= t0+4 

t= t0+5 t= t0+6 t= t0+7 t= t0+8 

 



114 1.  Templates/Instructions  

 

SPATIO-TEMPORAL PATTERNS OF AN ASYMMETRIC TEMPLATE CLASS   

The template class analyzed in [57] produces novel spatio-temporal patterns that exhibit complex dynamics. 

The character of these propagating patterns depends on the self-feedback and on the sign of the coupling 

below the self-feedback template element.  
 

0 0 0   0 0 0    

A =  s p q  B =  0 b 0  z = z 

0 r 0   0 0 0    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Generated spatio-temporal pattern the structure of which depends on the 

sign of the extra template element r.  

Remark: 

The full range CNN model is used. 

II. Examples  

Examples are generated for the sign-antisymmetric case having sq<0 (s = -q).  

Patterns generated depend on the sign of the extra template element r: 

• if r>0 a pattern is formed which is solid inside, however its right border is oscillating. 

• if r<0 a texture-like oscillating pattern is formed. 

 

Coupling sign  Propagating pattern Snapshots Time evolution 

positive: r > 0 
solid inner part, 

oscillating border cells  
 

negative:  r < 0 
texture like oscillating 

pattern  
 

 



1.10.  Pattern formation   115 

 

The effect of the central template element 

If self-feedback is increased the generated pattern becomes more and more irregular and it can 

become chaotic. The r-p plane can be divided into stable-periodic-chaotic sub-regions as shown 

below.  

 
 

The input & initial state is shown in the upper left corner. It is a three-pixel wide bar. The pictures in 

the different regions show few typical snapshots of outputs belonging to that region. The 

arrangement and size of the different regions gives only qualitative information. 

 



 

1.11. NEUROMORPHIC ILLUSIONS AND SPIKE GENERATORS  

HerringGridIllusion:   Herring-grid illusion [13] 

Old names: HERRING 

 

 -0.16 -0.16 -0.16 -0.16 -0.16    

 -0.16 -0.40 -0.40 -0.40 -0.16    

B = -0.16 -0.40 4 -0.40 -0.16  z = 0 

  -0.16 -0.40 -0.40 -0.40 -0.16    

 -0.16 -0.16 -0.16 -0.16 -0.16    

 

 -0.1 -0.1 -0.1 -0.1 -0.1    

 -0.1 -0.3 -0.3 -0.3 -0.1    

A
τ
 = -0.1 -0.3 0 -0.3 -0.1  τ = 3 τCNN 

  -0.1 -0.3 -0.3 -0.3 -0.1    

 -0.1 -0.1 -0.1 -0.1 -0.1    

 

I. Global Task 

Given:  static binary image P with a grid of black squares 

Input: U(t) = P 

Initial State: X(0) = Arbitrary 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing P with gray patches at the 

intersections of the grid of black squares. 

II. Example:  image name: herring.bmp, image size: 256x256; template name: herring.tem . 

    

 input output 



1. 11.  Neuromorphic Illusions And Spike Generators  117 

 

MüllerLyerIllusion:   Simulates the Müller-Lyer illusion [13] 

Old names: MULLER 

 

 0 0 0 0 0   -0.1 -0.1 -0.1 -0.1 -0.1    

 0 0 0 0 0   -0.1 -0.1 -0.1 -0.1 -0.1    

A = 0 0 1.3 0 0  B = -0.1 -0.1 1.3 -0.1 -0.1  z = -2.8 

  0 0 0 0 0   -0.1 -0.1 -0.1 -0.1 -0.1    

 0 0 0 0 0   -0.1 -0.1 -0.1 -0.1 -0.1    

I. Global Task 

Given:  static binary image P representing two horizontal lines between 

arrows. The arrows are dark-gray, the background is white 

Input: U(t) = P 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image showing that the horizontal line on the 

top in P seems to be longer than the other one. 

II. Example:  image name: muller.bmp, image size: 44x44; template name: muller.tem . 

    

 input output 



118 1.  Templates/Instructions  

 

SpikeGeneration1:   Rhythmic burst-like spike generation using 4 ion channels, 2 of them 

are delayed 

Old names: SPIKE_BU 

 

 0 0 0   0 0 0    

A = 0 0 0  B = 0 1 0  z = 0 

 0 0 0   0 0 0    

 

3

4

v

g1(v)

-1 1

3

4

v

g2(v)

-1 1

10 10

v

g3(v)

0.2 v

g4(v)

-1 10.2 0.6-1

10

4

3

0.6 1

10

4

3

Example: Input and output waveforms 

 

 



1. 11.  Neuromorphic Illusions And Spike Generators  119 

 

SpikeGeneration2:   Action potential generation in a neuromorphic way without delay 

using 2 ion channels 

Old names: SPIKE_N 

 

 0 0 0   0 0 0    

A = 0 0 0  B = 0 1 0  z = 0 

 0 0 0   0 0 0    

+

-

+

-

g1 g2

1.8 -2.3

Vxij

 

v

g1(v)

-1 1 v

g2(v)

-1 1

10 10

0.8
 

Example: Input and output waveforms 

 
 

 



120 1.  Templates/Instructions  

 

SpikeGeneration3:   Action potential generation in a neuromorphic way, using 2 ion 

channels where one is delayed. Ion channels are modeled with voltage-

controlled conductance (VCC) templates 

Old names: SPIKE_ND 

 

 0 0 0   0 0 0    

A = 0 0 0  B = 0 1 0  z = 0 

 0 0 0   0 0 0    

+

-

+

-

g1 g2

2.5 -1.0

VxijVxij

τ = 3

 

v

g1(v)

-1 1 v

g2(v)

-1 1

10 10

4

 

Example: Input and output waveform at each cell 

 
 

 



1. 11.  Neuromorphic Illusions And Spike Generators  121 

 

SpikeGeneration4:    Action potential (spike) generation in a phenomenological way (with a 

nonlinear multivibrator-like template) 

Old names: SPIKE_PH 

 

 0 0 0   0 0 0    

A = 0 a 0  B = 0 1 0  z = 0 

 0 0 0   0 0 0    

 

where a is defined by the following nonlinear function: 

                                               

a

vyij

-10

5

0.05 0.4
1

 
 

Example: Input and output waveform at each cell 

 
 

 
 



 

1.12. CELLULAR AUTOMATA  

CELLULAR AUTOMATA   [44] 

Short Description 

The following simple algorithm simulates the functioning of a cellular automaton. Input and 

output pictures are binary. The input of the nth iteration is replaced by the output of the (n-1)th 

iteration. 

Typical Example 

The following example shows a few consecutive states of the simulated cellular automata. 

 

 

   
 INPUT Output of the 1. iteration Output of the 2. iteration 

 

 

   

 Output of the 3. iteration Output of the 4. iteration Output of the 5. iteration 
 

 

   
 Output of the 6. iteration Output of the 7. iteration Output of the 8. iteration 

 



1. 12.  Cellular Automata   123 

 

Block Diagram of the Algorithm 

SHIFT-NW SHIFT-NE

OUTPUT 1 OUTPUT 2

XOR

(i+1) th iteration

i = i + 1 Loading (replacing) INPUT

SHIFT-E SHIFT-SE

OUTPUT 3 OUTPUT 4

SHIFT-S SHIFT-SW

OUTPUT 5 OUTPUT 6

XOR

XOR

XOR

XOR

i = 1

 

Templates used in the algorithm 

 Templates used in the algorithm are direction-dependent SHIFT templates, which are as 

follows: 

SHIFT_NW: 

0 0 0   1 0 0    

A =  0 0 0  B =  0 0 0  z = 0 

0 0 0   0 0 0    

 

SHIFT_NE: 

0 0 0   0 0 1    

A =  0 0 0  B =  0 0 0  z = 0 

0 0 0   0 0 0    

 

SHIFT_E: 

0 0 0   0 0 0    

A =  0 0 0  B =  0 0 1  z = 0 

0 0 0   0 0 0    

 



124 1.  Templates/Instructions  

 

SHIFT_SE: 

0 0 0   0 0 0    

A =  0 0 0  B =  0 0 0  z = 0 

0 0 0   0 0 1    

 

SHIFT_S: 

0 0 0   0 0 0    

A =  0 0 0  B =  0 0 0  z = 0 

0 0 0   0 1 0    

 

SHIFT_SW: 

0 0 0   0 0 0    

A =  0 0 0  B =  0 0 0  z = 0 

0 0 0   1 0 0    

 

 

ALPHA source 

/* CELLAUT.ALF */ 

/* Performs a function of the cellular automata; */ 

 

PROGRAM cellaut(in); 

CONSTANT 

ONE = 1; 

TIME = 5; 

TIMESTEP = 1.0; 

ENDCONST; 

 

CHIP_SET simulator.eng; 

/* Chip definition section */ 

A_CHIP 

SCALARS 

 

IMAGES 

 im1: BINARY;             

 im2: BINARY;   

 im3: BINARY;   

ENDCHIP; 

 

/* Chip set definition section */ 

E_BOARD  

SCALARS 

cycle: INTEGER; 

IMAGES 

 input:  BINARY;   

ENDBOARD; 



1. 12.  Cellular Automata   125 

 

 

/* Definition of analog operation symbol table */ 

OPERATIONS FROM cellaut.tms; 

 

PROCESS cellaut; 

 USE (shift_nw, shift_ne, shift_e, shift_se, shift_s, shift_sw); 

 

 SwSetTimeStep (TIMESTEP); 

 HostLoadPic(in, input); 

 im1:= input; 

 cycle:=1; 

 

 REPEAT UNTIL (cycle > 30) ;  

 input:=im1; 

 HostDisplay(input, ONE); 

     shift_nw (im1, im1, im2, TIME, PERIODIC); 

     im2 := im1 XOR im2;  

 

    shift_ne(im1, im1, im3, TIME, PERIODIC); 

     im2 := im3 XOR im2;  

 

    shift_e(im1, im1, im3, TIME, PERIODIC); 

     im2 := im3 XOR im2; 

 

    shift_se(im1, im1, im3, TIME, PERIODIC); 

     im2 := im3 XOR im2; 

 

    shift_s(im1, im1, im3, TIME, PERIODIC); 

     im2 := im3 XOR im2; 

 

    shift_sw(im1, im1, im3, TIME, PERIODIC); 

     im2 := im3 XOR im2; 

 

  im1:=im2; 

 cycle := cycle + 1; 

 ENDREPEAT; 

ENDPROCESS; 

ENDPROG; 



126 1.  Templates/Instructions  

 

GENERALIZED CELLULAR AUTOMATA  [44] 

Definition: A Generalized Cellular Automaton (GCA) is a CNN with a single binary 

input/output template. The output is fed back to the input (the initial state is the same and is 

prescribed). If B = 0 then the output is fed back to the initial state. 

Short Description 

The following simple algorithm simulates the functioning of a general cellular automaton. Input 

and output pictures are binary. In each consecutive step the initial state is equal to zero. The input 

of the nth iteration is replaced by the output of the (n-1)th iteration. 

 

Typical Example 

The following example shows a few consecutive steps of the simulated general cellular 

automaton. 

 

 

    
 INPUT t = 1 t = 5 

 

 

    
 t = 10 t = 15 t = 20 

 

 

    
 t = 25 t = 45 t = 99 

 



1. 12.  Cellular Automata   127 

 

Block Diagram of the Algorithm 

 (i+1) th iteration

i = i + 1

Template

OUTPUT

i = 1

Loading (replacing) INPUT

 

Templates used in the algorithm 

 

0 0.5 0   0 0.5 0    

A =  0.5 2 -1  B =  0.5 -0.5 0.5  z = 0.5 

0 -1 0   0 0.5 0    

 

 

 



 

1.13. OTHERS  

PathFinder:   Finding all paths between two selected points through a labyrinth [61] 

 

0.5 4 0.5   0 0 0    

A =  4 12 4  B =  0 8 0  z = 8 

0.5 4 0.5   0 0 0    

I. Global Task 

Given:  static binary image P representing a labyrinth made of one-pixel thick 

white curves on a black background 

Input: U(t) =  0, except for two white pixels which mark the desired points in 

the labyrinth 

Initial State: X(0) = P 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image containing all the paths connecting the 

marked points (made of white curves against a black background) 

II. Example: image size: 25x25. 

   

 Initial state Input 

 

   

 Intermediate result Output 



1.13.  Others  129 

 

ImageInpainting:   Interpolation-based image restoration [58] 

Old names: NEL_AINTPOL3  

 

-0.05 0.3 -0.05   0 d 0 

A =  0.3 0 0.3  D =  d 0 d 

-0.05 0.3 -0.05   0 d 0 

 

where  ( ) [ ]0,1; −∈−= λλ klij xysignd , with (B=0, z=0). 

I. Global Task 

Given:  static grayscale image P (image to be restored = missing or damaged 

image) and static binary image M 

Input: U(t) = Arbitrary (in the examples we choose U(t)= P) 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Fixed State Mask: Xfix=M. It is necessary to use a mask image that does not change the 

elements of the image that are known at the beginning, but allow the 

computing of unknown elements. The existence of a mask image 

presumes that the user knows the positions of the elements that need to 

be computed. 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing the restored missing or 

damaged image. 

Remark: 

 Image inpainting is an interpolation problem where an image with missing or damaged parts 

is restored. 

 

II. Examples 

Example 1: image name: inphole.bmp, image size: 64x64; template name: nel_aintpol3.tem . 

     

 input mask output 



130 1.  Templates/Instructions  

 

Example 2: image name: inpeye.bmp, image size: 64x64; template name: nel_aintpol3.tem . 

     

 input mask output 

Example 3: image name: inpaintig.bmp, template name: nel_aintpol3.tem . 

     

 input mask output 

 



1.13.  Others  131 

 

ImageDenoising:  Image denoising based on the total variational (TV) model of Rudin-Osher-

Fatemi [59, 60] 

 

0 a 0   0 0 0 

A =  a 1 a  D =  0 d 0 

0 a 0   0 0 0 

 

where  ( ) [ ]0,1−∈−= λλ klij xxsigna  and ( ) [ ]1,02 ∈−= αα ijij uxd , with (B=0, z=0). 

I. Global Task 

Given:  static grayscale image P (image to be denoising) 

Input: U(t) = Arbitrary (in the examples we choose U(t)= P) 

Initial State: X(0) = P 

Boundary Conditions: Zero-flux boundary condition (duplicate) 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image representing the denoising image. 

Remark: 

 The noise is white Gaussian and additive. 

II. Examples 

Example 1: image name: osrufa5.bmp, image size: 214x216; templates name: osrufa2.tem. 

   
 input output 



132 1.  Templates/Instructions  

 

Example 2: image name: cameraman10.bmp, image size: 256x256; templates name: osrufa.tem. 

   
 input output 



1.13.  Others  133 

 

Orientation-SelectiveLinearFilter:   IIR linear filter with orientation-selective low-pass (LP) 

frequency response, oriented at an angle ϕ  with respect to an axis of the 

frequency plane [62] 

Given the orientation angle ϕ , first the 3 3×  orientation matrix ϕO  is obtained: 

0 1 1 0 1 0 0 1 0
1

sin 2 1 2 1 cos 2 1 0 1 1 4 1
2

1 1 0 0 1 0 0 1 0

Oϕ ϕ ϕ

 −      
      

= − ⋅ − + ⋅ − − + −      
      −      

 

then another two templates depending only on ϕ are obtained: 

ϕϕϕϕ OOOOB ∗⋅+⋅−= 0194.04532.0
'

0  

ϕϕϕϕ OOOOA ∗⋅+⋅+= 0012.00468.0
'

0  

where " ∗ " =  matrix convolution; 0O  is a 55×  zero matrix with the central element of value 1; the 

55×  matrix '
ϕO  is the 33×  matrix ϕO  bordered with zeros in order to be summed with 0O  and 

ϕϕ OO ∗ . In the two templates ϕA , ϕB  ( 55× ), the marginal elements are generally negligible and can 

be discarded, so ϕA , ϕB  can be reduced to size 33×  with a minimum error. 

An LP oriented filter with the general spatial transfer function 1 2
1 2

1 2

( , )
( , )

( , )

B
H

A
ϕ

ω ω
ω ω

ω ω
=  can be 

designed using the templates, with parameter 0p <  specifying selectivity: 

1 2 1 2( , ) ( , )B Aϕω ω ω ω=  

1 2 1 2 1 2( , ) ( 1) ( , ) ( , )A p A p Bϕ ϕω ω ω ω ω ω= − + ⋅ + ⋅  

 

Example: An LP oriented filter with 6.37−=ap  and 8πϕ =  is realized with: 

0.1413 8.4406 5.8977

3.2964 23.6541 3.2964

5.8977 8.4406 0.1413

A

− 
 

= − − − 
 − 

;   

0.0005 0.0464 0.0331

0.0199 1.9623 0.0199

0.0331 0.0464 0.0005

B

 
 

= − − − 
  

 

 

 

 

 

 

 

 

 

-
 

-
 

-
 

0 1 2 3 
-
 

-
 

-
 

0 

1 

2 

3 

Frequency response of a selective oriented LP filter ( 6.37−=ap  and 8πϕ = ) viewed from 

two angles and constant level contours 



134 1.  Templates/Instructions  

 

Complex-Gabor:   Filtering with a complex-valued Gabor-type filter [53] 

 

0 yj
e

Ω−
 0   0 0 0    

A =  xj
e

Ω
 ( )23 λ+−  xj

e
Ω−

  B =  0 2λ  0  z = 0 

0 yj
e

Ω
 0   0 0 0    

 

where xΩ  and yΩ  control the spatial frequency tuning of the filter and λ  controls the bandwidth. 

Note that the off-center elements are complex valued ( )1−=j . The state is also assumed to be 

complex valued. Note that the center element of the template presented here differs from that 

presented in [53] by 1 because we assume the standard CNN equation here, whereas [53] used an 

equation without the resistive loss term. 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P  

Initial State: X(0) = Arbitrary or as a default X(t)=0.  Note that the state is assumed to 

be complex valued. 

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = grayscale image representing the output of the Gabor-type 

filter.  The real part of the output is the output of an even-symmetric 

Gabor-type filter.  The imaginary part of the output is the output of an 

odd symmetric Gabor type filter. 

II. Example: image name: annulus.bmp, image size: 64x64; template name: cgabor.tem . 

    

 P (input) Real(Y) Imag(Y) 
 

where 2.0=λ , 8/2π=Ωx , 0=Ω y . 

 
 



1.13.  Others  135 

 

Two-Layer Gabor:   Two-layer template implementing even and odd Gabor-type filters 

 

0 ( )
yΩcos  0   0 0 0    

A11 = ( )xΩcos  ( )23 λ+−  ( )xΩcos   B1 =  0 2λ  0  z1 = 0 

0 ( )
yΩcos  0   0 0 0    

 

0 ( )
yΩcos  0   0 0 0    

A22 = ( )xΩcos  ( )23 λ+−  ( )xΩcos   B2 =  0 0 0  z2 = 0 

0 ( )
yΩcos  0   0 0 0    

 

0 ( )
yΩsin  0   0 ( )

yΩ− sin  0 

A12 = ( )xΩ− sin  0 ( )xΩsin   A21 = ( )xΩsin  0 ( )xΩ− sin  

0 ( )
yΩ− sin  0   0 ( )

yΩsin  0 

 

where xΩ  and yΩ  control the spatial frequency tuning of the filter and λ  controls the bandwidth. 

This template is equivalent to the Complex-Gabor template, where we have separated the real and 

imaginary parts to two layers. 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P  

Initial State: X1(0) = X2(0) = Arbitrary or as a default X1(t)= X2(t)=0.  

Boundary Conditions: Fixed type, yij = 0 for all virtual cells, denoted by [Y]=0 

Output: Y1(t)⇒⇒⇒⇒Y1(∞∞∞∞) = grayscale image representing the output of the even-

symmetric Gabor-type filter.   

 Y2(t)⇒⇒⇒⇒Y2(∞∞∞∞) = grayscale image representing the output of the odd-

symmetric Gabor-type filter.   

 

II. Example: image name: annulus.bmp, image size: 64x64; template name: cgabor.tem . 

    

 P (input) Y1 Y2 
 

where 2.0=λ , 8/2π=Ωx , 0=Ω y . 



136 1.  Templates/Instructions  

 

LinearTemplateInverse:   Inverse of a linear template operation using dense support of input 

pixels [55] 

A Linear Template to be inverted 

 

0 0 0   -0.03 -0.10 -0.02    

A =  0 0 0  B =  0 0.50 -0.20  z = 0 

0 0 0   -0.03 -0.10 -0.02    

 

Example: image names: LenaS.bmp; image size: 128x128; template name: CS2.tem. 

   

 TEST INPUT TEST OUTPUT 

 

Old names: Linear Template Inverse (Ai=1-B; Bi=1-A; A and B see above) 

 

0.03 0.10 0.02   0 0 0    

Ai =  0 0.50 0.20  Bi =  0 1 0  z = 0 

0.03 0.10 0.02   0 0 0    

I. Global Task 

Given:  a linear template as well as two static gray scale images P1 (result of the 

linear template operation (see the test template above and its output) and 

P2. (masked version of the original image). P3 is a binary version of P2 

providing the fixed state mask for CNN operation. P3 indicates the 

positions of supporting pixels where the interpolation is fixed.. The result 

of the inverse of a linear template operation is computed rapidly using 

masked diffusion even if the template cannot be inverted (linear template 

– convolution kernel - have zero Eigen values). 

Input: U(t) = P1 

Initial State: X(0) = P2 

Fixed State Mask: Xfix = P3 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]= [Y]=0 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Gray scale image containing the inverse of the B template 

operation (B=1-A).  

Remark: 



1.13.  Others  137 

 

The inverse operation of a linear template can be easily performed by using a dense support 

even if the theoretical inverse converges too slowly or if theoretically the template operation cannot 

be inverted. 

II. Example: image names: LenaSCs.bmp, LenaSMask.bmp, MaskS.bmp; image size: 128x128; 

template name: DiffM2.tem . 

   

 INPUT (P1) INITIAL STATE (P2) 

 

   

 MASK (P3) OUTPUT 

 

 



138 1.  Templates/Instructions  

 

Translation(dx,dy):  Translation by a fraction of pixel (dx,dy) with -1 ≤ dx≤ 1 and  -1 ≤ dy ≤ 1 

0 0 0   V H  ba  H  )  1( ba-  V)-(1 H  ba     

A = 0 0 0  B =  V )  1( b-a  )  1( )  1( b-a-  V)  1( )  1( -b-a   z = 0 

0 0 0   V H)  1(  -ba  H)  1(  )  1( -ba-  V)-(1 H)-(1  ba     

 

where  

• H = 1,   if dy > 0;  H = 0, otherwise 

• V = 1,   if dx > 0;  V = 0, otherwise 

• a = |dx| b = |dy| 

 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 1 for all virtual cells, denoted by [U]=1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image P shifted horizontally by dx and 

vertically by dy. 

 

Remark:  

Translations by a value greater than one pixel can be achieved by applying the same 

template many times. For example, if dx > dy > 1: 

ny = trunc(dy);  fy = dy – ny; 

nx = trunc(dx);  fx = dx – nx; 

- Apply template Translation(fx,fy) 

- repeat nx-ny times Translation (1,1) 

- repeat nx times Translation (1,0) 

II. Example  image name: lenna.bmp, image size: 256x256; dx = -10.5; dy = 4.7 

   

 INPUT OUTPUT 



1.13.  Others  139 

 

Rotation:   Image rotation by angle φφφφ around (Ox, Oy ) 

The Rotation algorithm is based on a space-variant version of the Translation(dx,dy) template: 

0 0 0   V H  ba  H  )  1( ba-  V)-(1 H  ba     

A = 0 0 0  B =  V )  1( b-a  )  1( )  1( b-a-  V)  1( )  1( -b-a   z = 0 

0 0 0   V H)  1(  -ba  H)  1(  )  1( -ba-  V)-(1 H)-(1  ba     

 

where  

• ( ) ( ) ( ) jOiOjOjidx yxx −−−−+= ϕϕ sincos,  

• ( ) ( ) ( ) iOiOjOjidy yxy −−+−+= ϕϕ cossin,  

• H = 1,  if dy(i,j)  > 0;  H = 0,  otherwise 

• V = 1,   if dx(i,j)  > 0;  V = 0,   otherwise 

• a = |dx(i,j) | b = |dy(i,j)|  

If |dx|>1 or |dy|>1 for some i,j, an exact rotation is not possible with a neighborhood order 1. 

We can perform an approximation with an error depending on φ, by applying the Translation 

template many times with the following algorithm: 

 

- Compute the integer and fractional parts: 

  nx(i,j) = trunc(dx(i,j)); fx(i,j) = dx(i,j) – nx(i,j) 

  ny(i,j) = trunc(dy(i,j)); fy(i,j) = dy(i,j) – ny(i,j) 

  m=max((nx(i,j),ny(i,j)) 

 

- Apply space-variant template Translation(fx,fy) 

-  for k = 1 to  m: 

  if |nx(i,j)| -k>0 then kx(i,j) = sign(nx(i,j)) else kx(i,j) = 0 

if |nx(i,j)| -k>0 then ky(i,j) = sign(ny(i,j)) else ky(i,j) = 0 

Apply the space-variant template Translation(kx, kx) 

 

- Apply the low-pass template: 

 

0 0 0   0.11 0.11 0.11    

A =  0 0 0  B =  0.11 0.11 0.11  z = 0 

0 0 0   0.11 0.11 0.11    

 

- Apply the hi-pass template: 

 

0 0 0   -0.04 -0.12 -0.04    

A =  0 0 0  B =  -0.12 1.57 -0.12  z = 0 

0 0 0   -0.04 -0.12 -0.04    

 

 



140 1.  Templates/Instructions  

 

I. Global Task 

Given:  static grayscale image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 1 for all virtual cells, denoted by [U]=1 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Grayscale image P rotated by φ around (Ox, Oy ). 

 

II. Example: image name: lenna.bmp, image size: 256x256; φ = -10°; Ox = 0; Oy = 0 

   

 INPUT OUTPUT 

 



Chapter 2. Subroutines and Simpler Programs  
 



142 2.  Subroutines and simpler programs 

BLACK AND WHITE SKELETONIZATION 

Old names: SKELBW  

Task description and algorithm 

The algorithm finds the skeleton of a black-and-white object. The 8 templates should be applied 

circularly, always feeding the output back to the input before using the next template [19]. 

The templates of the algorithm: 

SKELBW1: 

0 0 0   1 1 0    

A1 =  0 1 0  B1 =  1 5 -1  z1 = -1 

0 0 0   0 -1 0    

SKELBW2: 

0 0 0   2 2 2    

A2 =  0 1 0  B2 =  0 9 0  z2 = -2 

0 0 0   -1 -2 -1    

SKELBW3: 

0 0 0   0 1 1    

A3 =  0 1 0  B3 =  -1 5 1  z3 = -1 

0 0 0   0 -1 0    

SKELBW4: 

0 0 0   -1 0 2    

A4 =  0 1 0  B4 =  -2 9 2  z4 = -2 

0 0 0   -1 0 2    

SKELBW5: 

0 0 0   0 -1 0    

A5 =  0 1 0  B5 =  -1 5 1  z5 = -1 

0 0 0   0 1 1    

SKELBW6: 

0 0 0   -1 -2 -1    

A6 =  0 1 0  B6 =  0 9 0  z6 = -2 

0 0 0   2 2 2    

SKELBW7: 

0 0 0   0 -1 0    

A7 =  0 1 0  B7 =  1 5 -1  z7 = -1 

0 0 0   1 1 0    

SKELBW8: 

0 0 0   2 0 -1    

A8 =  0 1 0  B8 =  2 9 -2  z8 = -2 

0 0 0   2 0 -1    



 143 

The robustness of templates SKELBW1 and SKELBW2 are ρ(SKELBW1) = 0.18 and 

ρ(SKELBW2) = 0.1, respectively. Other templates are the rotated versions of SKELBW1 and 

SKELBW2, thus their robustness values are equal to the mentioned ones. 

Example:  image name: skelbwi.bmp, image size: 100x100; template names: skelbw1.tem, 

skelbw2.tem, …, skelbw8.tem. 

    

 input output 
 

UMF diagram 

 

 Y 

U

SKELBW1 

SKELBW2 

SKELBW3 

SKELBW4 

SKELBW5 

SKELBW6 

SKELBW7 

SKELBW8 



144 2.  Subroutines and simpler programs 

GRAYSCALE SKELETONIZATION  

Old names: SKELGS   

Task description and algorithm 

The algorithm finds the skeleton of grayscale objects. The algorithm uses 8 sets of templates, 

skeletonizing the objects circularly. Each step contains two templates. First, appropriate pixels 

are selected by the selection templates; afterwards these are used as fixed state masks for the 

replacement. The result of the replacement is fed back to the input. Only 4 of the 8 required 

templates are shown, the others can easily be generated by rotating functions a and b, as 

indicated in the first 3 steps [19]. 

The templates of the algorithm: 

 Selection templates: Replacement: 

0 0 0   a a 0      c c 0 

A1 =  0 1 0  B1 =  a 0 b  z1 = -4.5  A1 = c 1 0 

0 0 0   0 b 0      0 0 0 

 

0 0 0   a a a      c c c 

A2 =  0 1 0  B2 =  0 0 0  z2 = -4.5  A2 = 0 1 0 

0 0 0   b b 0      0 0 0 

 

0 0 0   0 a a      0 c c 

A3 =  0 1 0  B3 =  b 0 a  z3 = -4.5  A3 = 0 1 c 

0 0 0   0 b 0      0 0 0 

 . . . . . . 

0 0 0   a 0 0      c 0 0 

A8 =  0 1 0  B8 =  a 0 b  z8 = -4.5  A8 = c 1 0 

0 0 0   a 0 b      c 0 0 

 

where a, b and c are defined by the following nonlinear functions: 

 

a

1

vuij -vukl

  

b

1

vuij -vukl

                     

c

0.33

vyij -vykl-1

 
 



 145 

Example 1: image name: skelg2i.bmp; image size: 44x44. 

     

 input output 

Example 2: image name: skelg1.bmp; image size: 70x60. 

   
 input output 



146 2.  Subroutines and simpler programs 

GRADIENT CONTROLLED DIFFUSION   

Task description and algorithm 

Performs edge-enhancement during noise-elimination [17,25,30]. The equation used for filtering 

is as follows: 

( ) ( ) ( )( )( )[ ]∂

∂

  

  

I

t
I x y t k grad G s I x y t= ⋅ − ⋅ ∗∆ , , , ,1  

Here ( )I x y t, ,  is the image changing in time, ( )G s  is the Gaussian filter with aperture s , k  is a 

constant value between 1 and 3. Both the Gaussian filtering and the Laplace operator (∆) is done 

by the HeatDiffusion (diffusion) template with different diffusion coefficients. The 

ThresholdedGradient (gradient) template can also be found in this library. This equation can be 

used for noise filtering without decreasing the sharpness of edges. 

The flow-chart of the algorithm: 

                            

diffusion template (s1)

gradient template

diffusion template (s)

subject

multiply

add

diffusion template

t = THIGH-PASSED IMAGEEDGE MAP

UNSHARP MASKED IMAGE

GREY-SCALE IMAGE

 

Example: image name: laplace.bmp; image size: 100x100. 

   

 input output 



 147 

SHORTEST PATH  

Task description and algorithm 

Two points given, the subroutine finds the shortest path connecting them. A labyrinth can also be 

defined, where the walls (black pixels) denote forbidden cells. The algorithm runs in a time 

proportional to the length of the shortest path. The algorithm can further be generalized to 

connect several points. It was also used to design the layout of printed circuit boards. 

The subroutine contains two phases. In the first phase, the black-and-white labyrinth should be 

applied to the input, and one of the two points to the initial state (a white point against a black 

background). In the second step, when the shortest route has been selected, the output of the first 

step serves as input, and the other point to be connected is the initial state (black point on a white 

background). In this step four templates are to be applied cyclically. 

The templates of the algorithm: 

Explore: 

0 a 0   0 0 0    

Aexplore=  a 1 a  Bexplore =  0 3 0  zexplore = 3 

0 a 0   0 0 0    

 

 

 

 

where a is defined by the following nonlinear function: 

a

0.005 1.005

-0.25

vyij -vykl

 

Select: 

0 0 0   0 1 0   0 0 0   0 0 0 

Aright= 1 3 0  Adown= 0 3 0  Aleft = 0 3 1  Aup = 0 3 0 

0 0 0   0 0 0   0 0 0   0 1 0 

 

0 0 0   0 b 0   0 0 0   0 0 0 

Bright= b 0 0  Bdown= 0 0 0  Bleft = 0 0 b  Bup = 0 0 0 

0 0 0   0 0 0   0 0 0   0 b 0 

 

zright= 1    zdown= 1    zleft = 1    zup = 1   

 



148 2.  Subroutines and simpler programs 

 

 

 

 

where b is defined by the following nonlinear function: 

b

-0.002

1

-1

vuij -vukl

 

Example : image names: shpath1.bmp, shpath2.bmp, shpath3.bmp; image size: 44x44. 

   

 initial state of the 1. step initial state of the 2. step 

   

 labyrinth shortest paths 



 149 

J-FUNCTION OF SHORTEST PATH  

Task description and algorithm 

A labyrinth is defined as a binary picture, where the white points (-1) represent the free cells, and 

black pixels (+1) represent the obstacles. 

 

 

 
 

The task is to find the shortest path from a given startpoint to a given endpoint. The task can be 

solved through a so-called J-function, which gives for every point the length of the shortest path 

from the startpoint to the given point in some appropriate measure (the length of the path is 

scaled down into the interval [-1,+1] in the CNN solution). 

The minimum in a given neighborhood can be computed through a difference-controlled 

template. Thus the computation can be carried out through a two layer nonlinear CNN. The first 

layer represents the J-function, and on the second layer the actual value of the J-function 

increased by the unit length is computed. The startpoint is given by a binary image, where a 

white pixel represents the startpoint and the other points are black. The J-function is obtained as 

an output picture, which values are related to the value of J. Obstacles have J=1, i.e. they are 

black.  

 

The templates of the algorithm: 

Layer1 : Minimum selection: 

0 0 0   d d d   0 0 0   

A11=  0 1 0  D12 =  d 0 d  B11 = 0 a 0 z = -0.8 

0 0 0   d d d   0 0 0   

 

 

 

 

where a is defined by the following nonlinear function: 

a

2

vxi,j

 

 



150 2.  Subroutines and simpler programs 

 

 

 

 

and d is defined by the following function:  

a

0.1

y
1

i,j-y
2

kl
-0.1

0.001

 

Layer2: Increased J-function: 

0 0 0    

A21=  0 1 0  z = c 

0 0 0    

where c=2/maximal path length 

Example: image names: init.bmp, mask.bmp; image sizes: 20x20. 

   

 initial state labirinth 



 151 

  
  

  
  

Transient sampled at different time values 

 



152 2.  Subroutines and simpler programs 

NONLINEAR WAVE METRIC COMPUTATION  

Task description and algorithm 

This algorithm implements a wave metric for object comparison based on nonlinear 

spatio-temporal wave process. The method uses nonlinear wave propagation to explore the 

properties of objects. From the intersections of object-pairs wave fronts propagate through the 

unions of objects and the time evolution of the process is recorded on a special wave map. This 

wave map contains aggregated information about the dynamics of the wave process; and several 

different measures can be extracted from this map focusing on the desired aspect of the 

comparison. The key steps of metric computations are wave based transformation of objects, 

wave map generation where the associated gray-scale values are related to the time required for 

the wave to reach a given position, and distance calculation from the wave map. The detailed 

description of the method can be found in [46]. Two types of implementation are presented, 

namely, a dynamic solution where wave map is generated on a two-layer CNN architecture in a 

single transient, using nonlinear template interactions (two-layer UMF machine), and an iterative 

type of method which was implemented on the 64x64 I/O CNN-UM chip [47]. The main 

advantage of the method is that several object pairs can be compared to each other at the same 

time.  
 

Input images  Output image (WAVE_MAP, 3D view) 

 

 

  
 

Input Parameters 

U1, U2 Input binary images (object set A and set B) 

B_WAVE Binary wave propagation 

WAVE_MAPPING Depending on the machine it can be a nonlinear template or a simple 

linear 

WAVE_MAP Spatial map encoding dynamics of wave propagation 

DIFFUS and 

THRESHOLD 

Approximation of Integrated Hausdorff metric [1] 

 

Output Parameters 

MARKERS Result of comparison: marker points of selected objects. These are to be 

used for further processing. Application example can be found in [2]. 

 

 
 



 153 

Dynamic implementation 
 

 

 

A v er a ge  &  T h r esh o ld

(W e ig h te d  H am m ing )

C e ll v a lu e  =  a* (In p u t-O u tp u t)* T im e

O b je c ts

(P1)

O b je c ts

(P2)

M =  P 1  O R  P 2

X [0 ]= P 1  A N D  P 2
S ta te

M a sk

X [0]= 0
S ta te

* (+ a )

* (-a )

R ec a ll

M a sk e d  T r ig g er  w a ve

O b jec ts

(P 1)

|tr ig g er w av e

- =  2

=  0

=  0
-
-

1 -s t la y e r 2 -n d  la y e r

W a v e  M a p
In p u t M =  P 1  O R  P 2

Template for trigger wave generation 

 

0.41 0.59 0.41   0 0 0    

A1,1 = 0.59 2 0.59  B =  0 0 0  z = 4.5 

0.41 0.59 0.41   0 0 0    

 

Template for current filling  

 

0 0 0   0 0 0    

A1,2 = 0 a 0  B =  0 0 0  z = 0 

0 0 0   0 0 0    

 

 

 

 

 

 1

 0.1

a

Vuij –Vykl



154 2.  Subroutines and simpler programs 

Objects 

(P1) 

Objects 

(P2) 

OR AND 

XOR 

RECALL 

DILATION 

AND 

FILLING 

Wave Map Average & Threshold 

(Weighted Hamming) 

RECALL 

Objects 

Iterative part 

Iterative type implementation 
 

 

The dilation template 
 

0 0 0   1 1 1    

A =  0 2 0  B =  1 1 1  z = 8.5 

0 0 0   1 1 1    

 

The other cited templates can be found in this template library. 

 



 155 

Example – 1 

 

 

Wave Map generation. a) Outlines of two partially overlapping point sets, b) Trigger wave 

spreads from the intersection through the union of contiguous parts of point sets until all the 

points become triggered, c) Wave map generated by increasing intensities of pixels until trigger 

wave reaches them, simulation result d) Consecutive steps of generating Wave Map on the 64x64 

I/O CNN-UM chip. 

 

a) b) 

c) 

d) 



156 2.  Subroutines and simpler programs 

Example – 2 

A possible application of the nonlinear wave metric was presented in [48]. The study addressed 

the problem of conditional basement maintenance of engines, concerning the on-line monitoring 

system that should forecast engine malfunction. Optical sensing of the oil flow of the engine was 

applied and debris particles were detected by using model-based object recognition. The 

comparison of object-model pairs was performed via nonlinear wave metric. 

 

 

 

 

 

 

 

 

 

(a)             (b)   (c)     

 

     

 

 

 

 

 

 

 

       (d)           (e)  

 

 

Bubble-debris classification algorithm (a) original gray-scale image, (b) adaptive threshold, (c) 

bubble models, (d) wave map, (e) detected debris particles  

 



 157 

UMF diagram 

 

 
 



158 2.  Subroutines and simpler programs 

MULTIPLE TARGET TRACKING  

Task description and algorithm 

A simple thresholded-difference method is required to maintain both hardware and processing 

time complexity low. The history of detected targets is used to assure the quality of tracking until 

target is disappeared from the scene [63]. 
 

 

Input image sequence (last frame) Output image sequence (last frame) 

 
 

 

 

Input Parameters 
 

cf Current frame (input image) 

 

 

Output Parameters 
 

Y1 Detected targets in the present frame (output image) 

 



 159 

UMF diagram 
 

 



160 2.  Subroutines and simpler programs 

MAXIMUM ROW(S) SELECTION  

Task description and algorithm 

This algorithm detects rows where the number of black pixels is the greatest [64]. Two different 

implementations are presented: a longer one with simple linear templates and binary storage (A), 

and a shorter one with non-linear templates (B). 
 

Input image Output image 

  

 

Input Parameters: – 
 

Remarks: 

• The hardware complexity (chip area) of the (A) solution is much lower than the (B) solution 

• The theoretical scalability in space (increasing the array size) is better in the (B) solution 

• The practical scalability in space (tiling the input) is better in the (A) solution 

• The computational time (speed and power consumption) depends on the available boundary 

conditions 
 



 161 

UMF diagram 

X0

U

z

Pr1

z

Pr2

z

AND

X0

z

z

z Shadow_ver

z

AND

U0

U0

Shadow_hor

Y

ERO_hor

 

 

 

U0

U

z

Diffusion_hor

U0

z

GlobMax

U0

Threshold

Y
 

A B 

 



162 2.  Subroutines and simpler programs 

SUDDEN ABRUPT CHANGE DETECTION  

Task description and algorithm 

This algorithm detects the places and time instances in a video flow where a sudden abrupt 

change is happened based on neurobiological measurements [65]. The generated map can be 

used to re-initialize the history-based processing in a general image flow processing application 

[66]. 
 

Input images (t-1, t) Output image (t) 

   
 

 

Input Parameters 
 

U Input grayscale image flow 

Thres Threshold level 

N Number of the erosion steps 

Trigger wave Expansion size ~ trigger wave running time 
 

 



 163 

UMF diagram 
 

 

U

Diffusion

SUB

NOTOR

Erosion A

Erosion B

Trigger wave

OR

Y

Thres1

Thres2

< N

= 0

++

i

NY

 
 



164 2.  Subroutines and simpler programs 

HISTOGRAM MODIFICATION WITH EMBEDDED MORPHOLOGICAL PROCESSING 

OF THE LEVEL-SETS  

Task description and algorithm 

This algorithm is designed for simultaneous contrast enhancement, noise suppression and shape 

enhancement [67]. An adaptive multi-thresholded output with shape enhancement can be 

obtained if a morphological processing is embedded at each gray-scale level considered. This 

could be implemented either through a multi-step erosion and dilation operations or using 

trigger-waves that approximate a continuous-scale binary morphology with flat structuring 

elements 
 

Input image Output image 

  
 

 

Input Parameters 
 

U Input image 

I,J Indexes 

K Number of morphological steps 

M (Def = 1) Heuristic value 

T(LEVEL) Number of levels 
 

 

Output Parameters 
 

Y Output image 
 

 



 165 

UMF diagram 

 



166 2.  Subroutines and simpler programs 

OBJECT COUNTER  

Task description and algorithm 

This algorithm counts the distinct objects in a binary image. The routine is a member of the 

iterative structure family. The algorithm iteratively selects and removes one single object at a 

time from a set of objects in a picture until no black pixel is present. One counts the number of 

the necessary iterations can tell the number of the objects in the original input picture. 
 

Input image Output (scalar) 

 

5 objects 

 

Input Parameters 
 

U Input image 
 

Output Parameters 
 

I Number of detected objects  
 

UMF diagram 
 

GW

i

=0 ++ Object Remover
i

Y N

U

i
 



 167 

 

Subroutine Object Remover 
 

 
 



168 2.  Subroutines and simpler programs 

HOLE DETECTION IN HANDWRITTEN WORD IMAGES  

Task description and algorithm 

This algorithm [68] detects the holes in a handwritten word image and classifies them into four 

classes that are used as features in handwriting recognition: 

- holes (holes like the one in letter ‘o’) 

- small holes (holes like the one in letter ‘e’) 

- upper holes (holes in the ascender region) 

- lower holes (holes in the descender region) 
 

Input image Output image 

  
 

 

Input Parameters 
 

U Input image 

uline / dline Upper / lower baselines 
 

 

Output Parameters 
 

Y1 Holes detected 

Y2 Small holes 

Y3 / Y4 Upper / lower holes 
 

 



 169 

UMF diagram 
 

 
 

 

 

 
 



170 2.  Subroutines and simpler programs 

 AXIS OF SYMMETRY DETECTION ON FACE IMAGES  

Task description and algorithm 

This algorithm detects axis of symmetry on face images [69]. For estimating the axis of 

symmetry we take an assumption that the region of nose on a face is the most vertically detailed 

region of face 
 

Input image Output image 

 

 

 

 
 

 

Input Parameters 
 

U Face image 
 

 

Output Parameters 
 

Y Axis of symmetry detected 
 

 



 171 

UMF diagram 
 

 
 



172 2.  Subroutines and simpler programs 

ISOTROPIC SPATIO-TEMPORAL PREDICTION CALCULATION BASED ON 

PREVIOUS DETECTION RESULTS  

Task description and algorithm 

This algorithm calculates the likely position of moving targets based on their current detected 

position [70]. 
 

Input image Output image 

  
 

 

Input Parameters 
 

U Input image 

U1 Previous prediction image 
 

 

Output Parameters 
 

Y Current prediction 
 

 



 173 

UMF diagram 
 

RECALL

U1

U1

U

U

Y

Y

GW

Yes

No

Y

GW

Yes

No

XOR

OR

AND

U1

U

 
 



174 2.  Subroutines and simpler programs 

MULTI SCALE OPTICAL FLOW  

Task description and algorithm 

This algorithm selects the most likely motion vectors in each pixel based upon two subsequent 

frames of a video sequence [71]. 

The algorithm consists of three recursively embedded steps operating on the current and previous 

frames of the sequence. The outer step is responsible for cycling on scales, which factorizes the 

“scale” from “Iscale_low” up to the limit in each cycle. This scalar value is provided for the 

Probability Distribution Function (PDF) generator (PDFFull(scale)) which in turn creates 

2Nx2N images where N is the maximal displacement of frames to be detected, measured in 

pixels. The schema depicts the case in which N=1. Finally, the most embedded subroutine 

(PDF(scale)) is responsible for generating a single PDF in a single direction. In the operation, it 

realizes L1 norm between its two inputs, diffuses the result and finally puts in a exp(-x) function 

pixel-wise. 
 

Input images Output image 
 

 

 
Ucurr 

 

 
Uprev 

 

 

 
Y composed of Y_PDFFull_x and Y_PDFFull_x 

 

Input Parameters 
 

U Input image 

Ucurr The second frame of the pair 

Uprev The first frame of the pair 

Output Parameters 
 

Y Output image 

Y_PDFFull_x X coordinate of the most likely motion vectors 

Y_PDFFull_y Y coordinate of the most likely motion vectors 



 175 

UMF diagram 
 

Shift W Shift EShift N Shift S

PDF(scale)

Substr

PDF(scale)

Thres(0)

Mul(-2)

Add

Diffusion(scale)

PDF(scale) PDF(scale) PDF(scale)

Prev Current

exp(-x.)

*2

PDFFull(scale)

Scale

PDFFull(scale)

Y

Stop

N

<limit

*

1

Uprev UcurrIscale_low

Select MAP

 



176 2.  Subroutines and simpler programs 

BROKEN LINE CONNECTOR  

Task description and algorithm 

This algorithm fill gaps between neighboring object which onsets or offsets is closer than a given 

threshold [72]. The size of filled gaps can be controlled through the iteration of dilation template 

operation. 
 

Input image Output image 

  
 

 

Input Parameters 
 

noisy peak layer Input image  
 

 

Output Parameters 
 

Connected peak layer Connected objects 
 

 

Remarks 
 

 



 177 

UMF diagram 

 

edge_w1 -1 edge_w2 

noisy peak layer 

-1 -1 

OR 

Initial points 

edge_w3 

Subroutine 
find initial points 

Subroutine 
find terminating points 

dilation 
-1 

OR 

Subroutine 
skeletonization 

AND 

peak & plateau 
 layer 

connected noisy 
peak layer 

Subroutine 
small object removal 



178 2.  Subroutines and simpler programs 

COMMON AM  

Task description and algorithm 

The algorithm extracts frequency bands to a distinct layer which onsets and offsets are 

synchronized [72]. This algorithm produces similar groups like the common amplitude-

modulation group that was observed by psychoacoustic experiments of the human hearing. 
 

 

Input image Y1 Y20 Y 87 

 

 

Input Parameters 
 

peak layer Layer containing the representative frequency bands (peak layer) 
 

Output Parameters 
 

common AM layer Bands with synchronized onset and offset from  
 

Remarks 

The time tolerance of offsets can be controlled through the iteration number of the vertical wave 

propagation step producing the propagating waves layer. 
 

 



 179 

UMF diagram 

Subroutine
find common onset groups

peak layer

Subroutine

find terminating points

synchronized onset object

Subroutine
find synchronized offsets

offset object layer

-1
recall

synchronized onset object

common AM group

 

Subroutine
Find terminating points

synchronized onset objects

-1
vertical_dilation

propagating waves

XOR

pre

propagating wavefronts

propagating waves

Waves reached

the boundary?

-1 match template 
Two black pixel in a 3x3 region

GW

collision layer

OR

collision layer

collision layer

N

Subroutine

fill nonempty columns

Y

terminating points

-1
recall

terminating points

synchronized offsets
 

 



180 2.  Subroutines and simpler programs 

FIND OF COMMON FM GROUP  

Task description and algorithm 

Psychoacoustic experiments shows that human hearing system handles object with common 

frequency modulation as coming from the same source. This algorithm finds objects that is 

modulated by the same frequency i.e. their vertical distance is constant [72]. 
 

 

Original image  Representative frequency bands (input image) 

  

Reference curve Common FM group 

  

 

Input Parameters 
 

peak layer Input image with lines in which some of them vertical 

distance is constant. (parallel curve) 
 

 

Output Parameters 
 

common FM group Curves parallel to a given reference 
 

 

Remarks 

The registration of curves is processed by a digital computer. The digital computer selects the 

reference curves which initials are still in the maintained pixel list. 
 



 181 

UMF diagram 

Initial 

curve set

peak layer

Find initial

points
Extract

pixel list and

form a pixel set

Has the pixel 

list more than 

one element?

Recall curve indicated by 

the selected point, forming

selected object layer

Parallel curve search

forming a new 

common FM group

Find initial

points

XOR

Initials that were not included

in any common FM group

Y

STOP
N

 



182 2.  Subroutines and simpler programs 

FIND COMMON ONSET/OFFSET GROUPS  

Task description and algorithm 

This algorithm produces series of layers containing objects with synchronized onset [72]. 
  

Input image Output image 

  
 

 

Input Parameters 
 

peak layer Input image 
 

 

Output Parameters 
 

common onset group Object with synchronized onset 
 

Remarks 

Tolerance of time asynchrony is set by the width of vertical line shifted on the selector layer. 
 



 183 

UMF diagram 

Subroutine

find initial points

peak layer

AND

common onset group

selector layer

shift_e

Rightmost 
column 

selected?

N

End

Y

-1
recall

peak layer

 



184 2.  Subroutines and simpler programs 

CONTINUITY  

Task description and algorithm 

This algorithm connects object whose ending and initial is closer than a given threshold [72].  
 

Input image Connected curves 

  
 

Input Parameters 
 

peak layer Input image 
 

 

Output Parameters 
 

continuity layer Connected curves 
 

 

Remarks 

The spanned distance depends on the iteration of dilation_right template. 
 



 185 

UMF diagram 

Subroutine

find terminating points

Subroutine

find initial points

peak layer

-1
dilation_right

eastward layer

eastward layer

2nd iteration?

Y

Y

eastward wave

Subroutine
westward wave

N

eastward layer westward layer

OR AND

union layer intersect layer

recall

-1

Subroutine

skeletonization

OR

peak layer

Subroutine

skeletonization
(three times)

continuity layer

 



186 2.  Subroutines and simpler programs 

PARALLEL CURVE SEARCH  

Task description and algorithm 

This algorithm finds parallel curves to a selected one from an initial curve set [72]. 
 

Reference curve Initial curve set 
Output of the pixel-

search step to a given 

distance 

Output of the keep 

almost complete 

curves algorithm 

    
 

Input Parameters 
 

peak layer Peak layer 

selected object layer Reference curve 
 

 

Output Parameters 
 

parallel curves layer Curves parallel to the reference 
 

 

Remarks 

The search region is controlled through the black pixel search template class. 
 

 



 187 

UMF diagram 
 

 

peak layer

Subroutine

black pixel search
in N1-N2 distance

selected object layer

(ppl)

parallel pixel layer

parallel curves layer

(pcl)

pcl

OR

selected object layer

End of 

template 

set?

Get the next

distance range

(N1-N2)

parallel 

curves layer

= common FM 

group

N

Y
-1

recall

peak layer

XOR

ppl

Subroutine

small object removal

-1
recall

peak layer

missing parts of curves

XOR

col

(complete object layer)

col

acc
(almost complete curves)

k
e
e
p
 a

lm
o
s
t 
c
o
m

p
le

te
 c

u
rv

e
s

 



188 2.  Subroutines and simpler programs 

PEAK-AND-PLATEAU DETECTOR  

Task description and algorithm 

This algorithm detects horizontal the peaks and plateaus on a grayscale image [72]. 
 

Input image Output image 

  
 

 

Input Parameters 
 

magnitude image Input image 
 

 

Output Parameters 
 

noise peak layer Peaks and plateaus 
 

Remarks 

There could be a few pixel wide gaps in the detected peaks and plateaus while vertical 

interconnecting pixels do not cause black pixels to emerge. This gaps can be filled by the broken 

line connector algorithm. 
 

 



 189 

UMF diagram 

threshold

Magnitude Image

-1

South-North

slope detector

-1

North-South

slope detector

-1

Shift_S

-1

Masked_Shadow

to South

-1

Masked_Shadow

to North

-1

AND

noisy peak layer
 



190 2.  Subroutines and simpler programs 

GLOBAL DISPLACEMENT DETECTOR  

Task description and algorithm 

This algorithm calculates the most probable global displacement vector of the input scene. The 

diagram shows the calculation steps for the vertical coordinate of the displacement vector. The 

horizontal coordinate can be calculated in an analogous way by exchanging vertical and 

horizontal directions. 
 

Frame n Frame n+1 

 
 

 

Input Parameters 
 

U Input image 
 

 

Output Parameters 
 

Yh Horizontal displacement 

Yv Vertical displacement 
 

 



 191 

UMF diagram 
 

 

MIN 

U

LEFT SHIFT 
 5x 

RIGHT SHIFT 
 5x 

ABS. DIFFERENCE 

AVERAGE 

Yv 

5 5 

10 

Ht 

Ht-1 

VERT. DIFFUSION 



192 2.  Subroutines and simpler programs 

ADAPTIVE BACKGROUND AND FOREGROUND ESTIMATION  

Task description and algorithm 

This algorithm continuously estimates the background and foreground of a video flow. 
 

Input image Background Foreground 

 

 

 

 

Input Parameters 
 

Ut Input frame at time t 

Bt-1 Background estimation after previous frame 
 

 

Output Parameters 
 

Bt Updated background estimation 

Ft Current foreground estimation 
 

 

 



 193 

UMF diagram 
 

 

U

THRESHOLD 
(high) 

THRESHOLD 
(low) 

Bt 

Bt 

MULT (ε) 

Bt-1 

SUB 

MULT (ε) 

ADD 

Bt-1 

SUB 

ABS. DIFFERENCE 

U

THRESHOLD 

MORPHOLOGIC FILTERING 

Ft 



194 2.  Subroutines and simpler programs 



 195 

BANK-NOTE RECOGNITION 

This algorithm identifies American bank-notes on color images. The bank-notes can be in the 

image with arbitrary offset and rotation. The positioned algorithm finds the green and black 

circles common to all US bank-notes. It analyses color, shape and size. The algorithm can be 

separated into three parts. These parts are indicated in the flow-chart. The detailed description 

can be found in [22]. The templates can be found in this template library. 

Example: A grayscale version of a color input image, and the extracted black circle. 

 

 

The flow-chart of the algorithm: 

This chart contains only half of the algorithm, and finds only one circle. The other circle can be 

found with a similar method, but with different parameters in the color filtering. 



196 2.  Subroutines and simpler programs 

 

 

 
ORIGINAL COLOR IMAGE 

Color scanning 

RED COMPONENT GREEN COMPONENT BLUE COMPONENT 

Color filtering  Color filtering Color filtering 

Logic and 

OBJECTS WITH RIGHT COLOR 

Detecting concave objects 

CONCAVE OBJECTS 

Logic xor 

CONVEX OBJECTS 

Recall Recall 

Peel off 2 layers Peel off 5 layers 

LARGER OBJECTS RIGHT SIZED OR LARGER OBJECTS 

Logic xor 

RIGHT SIZED OBJECTS 

C

O

L

O

R   

      

F

I

L

T

E

R

I

N

G 

S

I

Z

E 

  

C

L

A

S

S

I

F

I

C

A

T

I

O

N 

C

O

N

C

A

V

E  

 

O

B

J

E

C

T

S 



 197 

CALCULATION OF A CRYPTOGRAPHIC HASH FUNCTION [37] 

Short Description 

The CNN analogic program described here performs the basic operations needed to calculate a 

hash value, when a set of binary images and a key vector are given. The current version of the 

Alpha compiler cannot interpret sequences of key bits or image sequences, therefore the Alpha 

source code listed below contains only two images and two key bits. 

The first image is loaded to the chip, and its columns (as binary vectors) are multiplied by the 

key vector. This multiplication is performed as a sequence of shift-add operations. Then, the next 

binary image is added to modulo 2, and the multiplication is performed once more. 

Typical Example 

Gray-scale images (or video sequences) must be quantized and cut into pieces according to the 

chip size. The following pictures show an input sequence and a typical hash result; the latter, of 

course, heavily depends on the key bits. 

 
INPUT SEQUENCE (12x256x256x8 bits) 

 

 
HASH RESULT (21x20 bits) 

 

Flow-diagram of the algorithm 

The following diagram shows the CNN implementation of the vector multiplication needed in 

the hashing process: 

 



198 2.  Subroutines and simpler programs 

input

layer

∗µn

...

local

memory

......

circ.

shift

down
...

circ.

shift

down

∗µ2∗µ1

... ... ... ...

 
 

Templates used in the algorithm 

 The algorithm uses only a vertical shift operation and local logic. The shift operation is 

performed via the following template: 
 

SHIFTSOU template: 

 

0 0 0   0 2 0    

A =  0 0 0  B =  0 0 0  z = 0 

0 0 0   0 0 0    

 



 199 

DETECTION OF MAIN CHARACTERS  

Short Description 

The algorithm has three major steps. In the first step, only a part of the noise is discarded, but the 

main features are coming out fine. In the second step a more aggressive filter were applied. After 

this step, only some parts of the largest objects remained on the image. In the last step, the main 

characters are reconstructed from the previous two results. 

Typical Example 

The speciality of this example is that the input image was stored in an extremely high-density 

optical memory [40]. It is corrupted with noise heavily.  

In this example, the image size is 318x93. This image was automatically cut to about 300 

20x22 image tiles and processed one after the other on the chip. The algorithm was executed on 

the 20x22 CNN chip [41]. Experimental results of the main feature extractor algorithm are as 

follows. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Block Diagram of the Algorithm 

The flowchart of the main feature extractor algorithm is as follows. 



200 2.  Subroutines and simpler programs 

Input image

Result

dilation

smallkiller_ch2smallkiller_ch1

dilation

erosion

erosion

reconstruction_ch1

slicing

slicing

merging

merging

reconstruction_ch1

 

 

Templates used in the algorithm 

SMALLKILLER_CH1: 

1 1 1   0 0 0    

A =  1 2 1  B =  0 0 0  z = -1.7 

1 1 1   0 0 0    

SMALLKILLER_CH2: 

1 1 1   0 0 0    

A =  1 2 1  B =  0 0 0  z = -2 

1 1 1   0 0 0    

 

DILATION: 

0 0 0   0 1 0    

A =  0 0 0  B =  1 1 1  z = 4.5 

0 0 0   0 1 0    



 201 

EROSION: 

0 0 0   0 1 0    

A =  0 0 0  B =  1 1 1  z = -5.5 

0 0 0   0 1 0    

RECONSTRUCTION_CH: 

0 1 0   0 0 0    

A =  1 3 1  B =  0 3 0  z = -1.25 

0 1 0   0 0 0    

 



202 2.  Subroutines and simpler programs 

FAULT TOLERANT TEMPLATE DECOMPOSITION  [49, 50] 

Short Description 

An idea of fault tolerant template decomposition in the case of local boolean operators (binary 

input/output templates) will be outlined here. Due to parameter deviations of current analog 

VLSI implementations, templates generated theoretically do not work properly. A solution to this 

problem is applying a sequence of so called fault tolerant templates, that “make no faults”. Here 

two examples of such a decomposition will be presented: the Local Concave Place (LCP) 

detector template and the JUNCTION template from this template library will be decomposed 

into a sequence of two fault tolerant templates. 

Typical Examples 

Example 1:  LocalConcavePlaceDetector (LCP) template decomposition 

LCP: 

0 0 0   0 0 0    

A =  0 1 0  B =  2 2 2  z = -5 

0 0 0   1 -2 1    

 

Minimized form of the function: F(u) u u u u (u u6 5 4 2 1 3= + )  

Sub-functions chosen: F (u) u u u u1 6 5 4 2=  F (u) u u2 1 3= +  

Fault tolerant template sequence: 

LCP1: 

0 0 0   0 0 0    

A =  0 1 0  B =  1 1 1  z = -3 

0 0 0   0 -1 0    

LCP2: 

0 0 0   0 0 0    

A =  0 1 0  B =  0 0 0  z = 1 

0 0 0   1 0 1    

Result:  LCP ⇔ LCP1 AND LCP2,  

 where ρ(LCP) = 0.24, while ρ(LCP1) = 0.5 and ρ(LCP2) = 0.71 . 

Example 2:  Decomposition of the JunctionExtractor template 

JunctionExtractor: 

0 0 0   1 1 1    

A =  0 1 0  B =  1 6 1  z = -3 

0 0 0   1 1 1    

 

Minimized form of the function: F(u) u (u u u u u u u u u u u u u u u5 1 2 3 1 2 4 1 2 5 6 8 9 7 8 9= + + + + +... )  

Sub-functions chosen: F (u) u1 5=  

   F (u) u u u u u u u u u u u u u u u2 1 2 3 1 2 4 1 2 5 6 8 9 7 8 9= + + + + +...  



 203 

Fault tolerant template sequence: 

JUNC1: 

0 0 0   1 1 1    

A =  0 1 0  B =  1 0 1  z = 3 

0 0 0   1 1 1    

Result:  JunctionExtractor ⇔ INPUT AND JUNC1 

 where ρ(JunctionExtractor) = 0.15, and ρ(JUNC1) = 0.35 . 

Block Diagram of the Algorithm 

Minimization of the Boolean function

corresponding to the original template

Choosing such boolean sub-functions

from the minimized form that will

correspond to fault tolerant templates

Generation of fault tolerant templates
 

 

Templates used in the algorithm 

 Templates used in examples are shown in the “Typical Examples” session. 

ALPHA source 

Alpha source of Example1 

PROGRAM LCP (input; output); 

/* DECOMPOSITION OF THE LOCAL CONCAVE PLACE DETECTOR TEMPLATE */ 

/* BY USING TWO FAULT TOLERANT TEMPLATES */ 

CONSTANT 

  White = -1.0; 

  ONE = 1; 

  TWO = 2;  

  TIME = 5; 

ENDCONST; 

/* Chip set definition section */ 

CHIP_SET simulator.eng;  

A_CHIP 

SCALARS 

IMAGES 

 LLM1: BINARY; 

 LLM2: BINARY; 

 LLM3: BINARY; 

ENDCHIP; 

E_BOARD  

SCALARS 

 

IMAGES 

 P: BINARY; 



204 2.  Subroutines and simpler programs 

ENDBOARD; 

 

OPERATIONS FROM LCP.tms; 

PROCESS LCP_DECOMP; 

  USE (lcp1, lcp2); 

  HostLoadPic(input, P); 

  HostDisplay(P, ONE); 

  LLM1 := P; 

  lcp1 (LLM1, LLM1, LLM2, TIME, White); 

  lcp2 (LLM1, LLM1, LLM3, TIME, White); 

  LLM1 := LLM3;  

  LLM1 := LLM1 AND LLM2; 

  P := LLM1; 

  HostDisplay(P, TWO); 

  HostSavePic(output, P); 

ENDPROCESS; 

ENDPROG; 

 

Alpha source of Example2 

PROGRAM JUNCTION (input; output); 

/* DECOMPOSITION OF THE JUNCTION TEMPLATE */ 

/* BY USING ONE FAULT TOLERANT TEMPLATE AND A LOGIC OPERATION */ 

CONSTANT 

  White = -1.0; 

  ONE = 1; 

  TWO = 2;  

  TIME = 5; 

ENDCONST; 

/* Chip set definition section */ 

CHIP_SET simulator.eng;  

A_CHIP 

SCALARS 

IMAGES 

 LLM1: BINARY; 

 LLM2: BINARY; 

 LLM3: BINARY; 

ENDCHIP; 

E_BOARD  

SCALARS 

IMAGES 

 P: BINARY; 

ENDBOARD; 

OPERATIONS FROM junction.tms; 

PROCESS JUNCTION_DECOMP; 

  USE (junc1); 

 

  HostLoadPic(input, P); 

  HostDisplay(P, ONE); 

  LLM1 := P; 

  junc1 (LLM1, LLM1, LLM2, TIME, White); 



 205 

  LLM1 := LLM1 AND LLM2; 

  P := LLM1; 

  HostDisplay(P, TWO); 

  HostSavePic(output, P); 

ENDPROCESS; 

ENDPROG; 

 

Comments 

Fault tolerant template generation results in a sequence of “reliable” templates. 



206 2.  Subroutines and simpler programs 

GAME OF LIFE   

Short Description 

The following simple algorithm simulates the Game of Life. Both input and output pictures are 

binary. Rules of the game: 

• a black pixel turns white if it has more than three or less than two black neighbors. 

• a white pixel turns black if it has exactly three black neighbors. 

Typical Example 

The following example shows two consecutive generations of the Game of Life simulated by 

CNN. 

 

    
 

Block Diagram of the Algorithm 

GLIFE1.TEM GLIFE2.TEM

OUTPUT 1 OUTPUT 2

XOR

(i+1)th Generation

i = i + 1

initial Generation

i = 0

 

Templates used in the algorithm 

 The corresponding templates can be found in this template library as LIFE_1. 

ALPHA source 

 

PROGRAM GAMEOFLIFE (inputFC); 

/* THIS PROGRAM SIMULATES TEN CYCLES OF THE GAME OF LIFE  */ 

 

CONSTANT                               /* constant declaration */ 



 207 

   NULL = 0; 

   NUM_GEN = 9;    /* Number of generations */ 

   ONE = 1; 

   WHITE = -1.0; 

   TIME = 5; 

   TIMESTEP = 0.5; 

ENDCONST; 

CHIP_SET simulator.eng; 

A_CHIP 

SCALARS 

IMAGES 

  L1: BINARY;            /* LLM1 */ 

  L2: BINARY;   /* LLM2 */ 

  L3: BINARY;   /* LLM3 */ 

  L4: BINARY;   /* LLM4 */ 

ENDCHIP; 

E_BOARD 

SCALARS 

 var: INTEGER;  

IMAGES 

 LargeInp: BINARY; 

 LargeOut: BINARY; 

ENDBOARD; 

OPERATIONS FROM gameoflife.tms; 

FUNCTION game_of_life; 

 USE (glife1, glife2); 

   L4 := NULL;     /* Zero state */ 

   glife1 (L3, L4, L1, TIME, WHITE);   /* Template1 execution */ 

   glife2 (L3, L4, L2, TIME, WHITE);  /* Template2 execution */ 

   L4 := L1 XOR L2;     /* XOR operation */ 

ENDFUNCT; 

PROCESS freichen;                   /* here starts the main routine */ 

 USE (); 

  SwSetTimeStep (TIMESTEP); 

  HostLoadPic(inputFC, LargeInp); 

  L4 := LargeInp; 

  REPEAT var := 1 TO NUM_GEN BY 1; 

   L3 := L4;     /* Reload i-th genaration to input */ 

   game_of_life;    /* Simulating one generation of the Game of Life */ 

   LargeOut := L4;    /* copying the image from chip to board */ 

   HostDisplay(LargeOut, ONE); 

  ENDREPEAT; 

 ENDPROCESS; 

ENDPROG; 

Comments 

The templates can be found by using the TemMaster [38] template design software package. 



208 2.  Subroutines and simpler programs 

HAMMING DISTANCE COMPUTATION 

In the theory of information processes it is a common problem that, given a code received in a 

noisy channel and the set of legal code words, we have to determine the code word nearest in 

some metric to the received one. In the case of binary codes the Hamming distance is the most 

common choice to measure the distance. Here a 4-step method is given presented, which selects 

the legal code closest to the input. 

The first step compares the input to all legal code words. In order for this to happen, the m legal 

code words should be put in a single image, each code being a separate row, while the input 

should be written in another image m times. This step can be performed by the logic XOR 

template. In the second step the number of differences is calculated, after feeding the output of 

the previous step back to the input and setting the initial state to 0. In the third step the minimum 

distance is determined, and finally, the best matching code word is selected. For this to be 

realized, the output of the previous step should be used as initial state, and that of step 2 as input 

[20]. 

Templates: 

 Differences: Min. distance: Best matching 

 0 0 0    0 b 0    0 0 0 

A2 =  0 0 1   A3 =  0 1 0   A4 = 0 2 0 

 0 0 0    0 b 0    0 0 0 

 

 0 0 0          0 0 0 

B2 =  0 a 0         B4 = 0 -1 0 

 0 0 0          0 0 0 

 

            z4 = 0.02   

 

where a and b are defined by the following nonlinear functions: 

            

a

0.05

vuij

                  

b

-0.5
vukl

1

 
 

 Example:  

legal codes input code best match

4

1

2

3

Hamming

distances

 



 209 

OBJECT COUNTING 

This algorithm counts the connected objects on a grayscale image. The algorithm is detailed in 

[11]. The cited templates can be found in this template library. 

The flow-chart of the algorithm: 

GREY-SCALE IMAGE

Average template

BLACK-AND-WHITE IMAGE

Hole-filler template

PREPROCESSED IMAGE

Lse template Concave template

CONCAVE PLACESSOUTHERN ELEMENTS

Digital counting

Horizontal ccd Horizontal ccd

Digital counting

Ns Nc

Horizontal ccd

No  

Example: The algorithm is demonstrated on a grayscale image containing 3 objects. Image 

name: objcount.bmp; image size: 91x83. 

 



210 2.  Subroutines and simpler programs 

OPTICAL DETECTION OF BREAKS ON THE LAYOUTS OF PRINTED CIRCUIT 

BOARDS [39]  

Short Description 

The input images of a printed circuit board or an artwork film are scanned in by using a scanner. 

For detecting breaks, the basic idea of the algorithm is that a wire has to be terminated in a pad, 

in a via hole or in another wire. 

Typical Example 

This example was run on the CNN Hardware Accelerator Board (CNN-HAB). 

 

      
 

The input and result of the wire break detection analogic CNN algorithm 



 211 

Flow-diagram of the algorithm 

averaging

(5 iterations)

OR

to unify the errors

improper ending

detection

(3 iterations)

improper ending

detection

(3 iterations)

Image with detected

error points

input image

(grey scale)

one pixel

object removal

(8 iterations)

one pixel

object removal

(8 iterations)

Horizontal

skeletonization

(4*w iterations)

Vertical

skeletonization

(4*w iterations)

 

Templates used in the algorithm 

The one-pixel-object removal and the OR templates can be found in this template library as 

SmallObjectRemover and LogicOR, respectively. 

HorSkelL:  horizontal skeleton from left 

0 0 0   0.5 0 0.125    

A =  0 3 0  B =  0.5 0.5 -0.5  z = -1 

0 0 0   0.5 0 0.125    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 



212 2.  Subroutines and simpler programs 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 0, for all virtual cells, denoted by [U]=[0] 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image, peeling the black pixels from left of a 

wire 
 

Remark:  

The template HorSkelR (horizontal skeleton from right) can be obtained by rotating 

HorSkelL by 180°). The VerSkelT and VerSkelB templates (rotating the HorSkelR and HorSkelL 

templates by 90°) are used for horizontal line skeletonization. 

DeadEndV:  finds the endings of vertical wires  

0 0 0   -0.25 -0.25 -0.25    

A =  0 3 0  B =  -0.25 0.5 -0.25  z = -5.8 

0 0 0   -0.25 -0.25 -0.25    

I. Global Task 

Given:  static binary image P 

Input: U(t) = P 

Initial State: X(0) = Arbitrary (in the examples we choose xij(0)=0) 

Boundary Conditions: Fixed type, uij = 0 for all virtual cells, denoted by [U]=[0] 

Output: Y(t)⇒⇒⇒⇒Y(∞∞∞∞) = Binary image of the endings of the vertical wires 
 

Remark:  

The DeadEndH templates (rotating the DeadEndV template by 90°) are used to detect the 

endings of horizontal wires. 



 213 

ROUGHNESS MEASUREMENT VIA FINDING CONCAVITIES [18] 

Short Description 

This simple CNN analogic program detects concavities of objects. This can be used for surface 

roughness measurement.  

The basic idea here is to find the concave parts of objects. First, the gray-scale image is 

converted into a binary image via a thresholding operation. Next, pixels being located at concave 

places are driven into black by using the "hollow" template. This template turns black all those 

white pixels which have at least four black direct neighbors. Next, we extract concavities of 

objects by using the logical XOR operation between the thresholded image and filled image. 

Typical Example 

The following example shows the detected concave parts of an object. 
 

   
 INPUT OUTPUT 



214 2.  Subroutines and simpler programs 

Flow-diagram of the algorithm 

INPUT

Threshold

5 τ

Hollow

50 τ

XOR

5 τ

Erosion

10 τ

OUTPUT

Σ = 70τ
if τ = 250 ns

Running time = 17.5 µs

Concavities

 

Templates used in the algorithm 

Templates can be found in this template library as Threshold, ConcaveLocationFiller 

(HOLLOW), and Erosion, respectively. The exact template values are presented below. 

Threshold:  converting gray-scale image to binary image 
0 0 0   0 0 0    

A =  0 2 0  B =  0 0 0  z = 0 

0 0 0   0 0 0    

ConcaveLocationFiller:  fills the concave locations of objects 

This template turns black all those white pixels which have at least four black direct neighbors. 

We call concave those white pixels which are surrounded by black pixels from at least four of the 

eight possible directions. The network transient must be stopped after a given amount of time, 

depending on the size of the largest holes to be filled in. 



 215 

 

0.5 0.5 0.5   0 0 0    

A =  0.5 2 0.5  B =  0 2 0  z = 3.5 

0.5 0.5 0.5   0 0 0    

 

Erosion:  eroding picture with a given structuring element 

Erosion represents the probing of an image to see where some primitive shapes fit inside the 

image. The primitive is called structuring element placed in the B term. 
 

0 0 0   1 1 1    

A =  0 2 0  B =  1 1 1  z = -8.5 

0 0 0   1 1 1    

 

ALPHA source 

/* THE PROGRAM DETECTS CONCAVITIES OF OBJECTS */ 

PROGRAM concave (in; out); 

CONSTANT 

ONE = 1; 

TWO = 2; 

WHITE = -1.0; 

TIME1 = 50; 

TIME2 = 10; 

ENDCONST; 

/* Chip set definition section */ 

CHIP_SET simulator.eng; 

A_CHIP 

SCALARS 

IMAGES 

 c1: BINARY;             

 c2: BINARY;    

 c3: BINARY;    

 c4: BINARY;    

ENDCHIP; 

E_BOARD 

SCALARS 

IMAGES 

 bi1: BINARY;  

 bi2: BINARY;  

ENDBOARD; 

OPERATIONS FROM concave.tms; 

 

PROCESS concave; 

USE (thres, hollow, erosion); 

  HostLoadPic(in, bi1); 

  HostDisplay(bi1, ONE); 

  c1 := bi1; 

  thres (c1, c1, c1, TIME1, WHITE); 

  hollow (c1, c1, c2, TIME1, WHITE);  



216 2.  Subroutines and simpler programs 

  c3 := c1 XOR c2; 

  erosion(c3, c3, c1, TIME2, WHITE); 

  bi2 := c3; 

  HostDisplay(bi2, TWO); 

ENDPROCESS; 

ENDPROG; 



 217 

SCRATCH REMOVAL  

On photocopier machines, the glass panel often gets scratched, which scratch is then copied 

together with the material, resulting in a visually annoying copy. The following algorithm is 

capable of removing such scratches assuming that the location of the scratch is known in 

advance. This is a valid assumption, since the scratches can automatically be detected e.g. by 

copying a blank sheet of paper. The algorithm removes the scratches gradually, peeling off pixels 

circularly [19].  

The flow-chart of the algorithm: 

Scratched image Scratch

Peel off 1 layer of pixels

Peeled pixels

Fill in pixels

corresponding to the

peeles ones by

averaging their known

neighbors

Logic XOR

Remaining (unfilled)

scratch

Enhanced image

Anything left

from the

scratch?

Restored image

no

yes

  



218 2.  Subroutines and simpler programs 

Smoothing: 

 Selection templates: Fill templates: 

0 0 0   -0.5 0 0      0.33 0 0 

A1 =  0 1 0  B1 =  -0.5 0.5 0  z1 = -1.5  B1 = 0.34 0 0 

0 0 0   -0.5 0 0      0.33 0 0 

 

0 0 0   -0.5 -0.5 0      0.34 0.33 0 

A2 =  0 1 0  B2 =  -0.5 0.5 0  z2 = -1.5  B2 = 0.33 0 0 

0 0 0   0 0 0      0 0 0 

 

0 0 0   -0.5 -0.5 -0.5      0.33 0.34 0.33 

A3 =  0 1 0  B3 =  0 0.5 0  z3 = -1.5  B3 = 0 0 0 

0 0 0   0 0 0      0 0 0 

 . . . . . . 

0 0 0   0 0 0      0 0 0 

A8 =  0 1 0  B8 =  -0.5 0.5 0  z8 = -1.5  B8 = 0.33 0 0 

0 0 0   -0.5 -0.5 0      0.34 0.33 0 

 

Example: image names: peppers.bmp, scratch.bmp; image size: 256x256. 

   

 Original image Scratched image Restored image 



 219 

TEXTILE PATTERN ERROR DETECTION  

This algorithm finds the knots and fiber breakings in a loose-waved textile. The algorithm is 

detailed in [10]. The cited templates can be found in this template library. (The lincut7h is the 

rotated version of lincut7v (LE7pixelVerticalLineRemover)) 

The flow-chart of the algorithm: 

ORIGINAL GRAYSCALE IMAGE

BLACK AND WHITE IMAGE

AVERTRSH TEMPLATE

LINCUT7V TEMPLATE

VERTICAL FIBERS

LSE TEMPLATE LINCUT7H TEMPLATE

FIBER ENDS KNOT

 

Example: The algorithm is demonstrated on a piece of table cloth. (a): the original image, (b) the 

southern ends of the fibers (the inside one indicates the fault), (c): the knot. Image 

name: textpatt.bmp; image size: 170x145. 

 



220 2.  Subroutines and simpler programs 

TEXTURE SEGMENTATION I [17] 

Short Description 

This simple CNN analogic program is able to separate two predefined types of binary textures 

mixed up in images.  

The first step is a template execution, which separates the textures by local ratio of the black-

and-white pixels (ROB). In the next step, a small killer template increases the separation. Then 

an erosion and small killer templates are used for improving the segmentation. 

Typical Example 

   

 INPUT OUTPUT 

Flow-diagram of the algorithm 

BINARY IMAGE

texture segmentation template

small killer template

small killer template

to be applyied 4

times in a row

BINARY OUTPUT IMAGE

erosion template

 

Templates used in the algorithm 

The small killer template can be found in this template library as SmallObjectRemover. 

The rest of templates used in this algorithm are described as follows: 

 



 221 

Texture segmentation template (tx_hclc1.tem): 

 -3.44 0.86 -1.64 -0.16 -1.02   -2.19 -0.23 0.16 -0.63 -0.78    

 -1.09 0.16 -2.19 -3.2 3.51   1.64 2.27 -3.2 1.09 2.03    

A = 2.50 1.56 3.91 2.66 2.42  B = 0.08 0.55 0.86 3.52 0.08  z = 4.8 

  0.55 2.89 -0.62 0.47 3.67   0.39 -3.83 -3.12 -2.34 -2.11    

 -1.80 -0.55 2.50 -0.23 2.34   0.78 -2.66 -1.17 -1.41 1.02    

 

Erosion template (erosion1.tem):  

 

0 0 0   0.5 1 0.5    

A =  0 1 0  B =  1 1 1  z = -6 

0 0 0   0.5 1 0.5    

 

ALPHA source 

/* TEXTURE_1.ALF */ 

/* Separates two predefined  types of binary textures */ 

PROGRAM texture_1(in; out); 

CONSTANT 

ONE = 1; 

TWO = 2; 

THREE = 3; 

FOUR = 4; 

FIVE = 5; 

SIX = 6; 

BLACK = 1; 

TimeStep005 = 0.05; 

TimeStep01 = 0.1; 

TimeStep03 = 0.3; 

TimeStep1 = 1; 

TimeStep2 = 2; 

TIME1 = 1; 

TIME2 = 2; 

TIME4 = 4; 

TIME03 = 0.3; 

ENDCONST; 

/* Chip set definition section */ 

CHIP_SET simulator.eng; 

A_CHIP 

SCALARS 

IMAGES 

 im1: BINARY;             

 im2: BINARY;   

 im3: BINARY;   

 im4: BINARY;             

ENDCHIP; 

 

E_BOARD  



222 2.  Subroutines and simpler programs 

SCALARS 

Loop: INTEGER; 

IMAGES 

 input:  BINARY;   

 output: BINARY;   

ENDBOARD; 

/* Definition of analog operation symbol table */ 

OPERATIONS FROM texture_1.tms; 

PROCESS texture_1; 

 USE (tx_hclc1, smkiller, erosion1); 

 HostLoadPic(in, input); 

 HostDisplay(input, ONE); 

 im1:= input; 

    SwSetTimeStep (TimeStep005); 

     tx_hclc1(im1, im1, im2, TIME1, ZEROFLUX); 

     output:=im2;  

     HostDisplay(output, TWO);  

    SwSetTimeStep (TimeStep01);  

    smkiller (im2, im2, im3, TIME03, BLACK);       

    output:=im3;  

    HostDisplay(output, THREE);  

    SwSetTimeStep (TimeStep01);  

    REPEAT Loop:= 1 to 4 BY 1; 

      erosion1(im3, im3, im3, TIME2,  BLACK);     

    ENDREPEAT; 

    output:=im3;  

    HostDisplay(output, FOUR);    

   SwSetTimeStep (TimeStep01);  

    smkiller(im3, im3, im4, TIME4, ZEROFLUX); 

    output:=im4; 

    HostDisplay(output, FIVE); 

ENDPROCESS; 

ENDPROG; 

Comments 

Using the genetic template learning algorithm, a wide range of texture types can be segmented 

with high accuracy. In order to achieve flat segments propagating-type filter template(s) could be 

used. 



 223 

TEXTURE SEGMENTATION II [17] 

Short Description 

This simple CNN analogic program is able to separate 4 (maybe more) types of textures mixed 

up in images.  

We run 4 or 5 templates consecutively. The first step in an iteration is a template execution 

which separates the textures by local ratio of the black-and-white pixels (ROB). The chip may 

physically scan the textured surface or the texture-segments of the whole image are executed 

separately by reading in from the A-RAM. 

Typical Example 

The following example can be evaluated by the CNN Engine Board using the next-generation 

CNN chip. 

   

 INPUT OUTPUT 



224 2.  Subroutines and simpler programs 

Flow-diagram of the algorithm 

INPUT IMAGE

Texture segmentation template

Next filter template

Running the filter template

Smoothing template

Storing the resulted image

Read-out and decision by DSP or by

CNN local logic & comparison

 

Templates used in the algorithm 

Texture segmentation templates can be found in this library as 3x3TextureSegmentation, 

5x5TextureSegmentation#, Smoothing. 

 

The Alpha language description of the core of the texture segmentation algorithm is as follows: 

ALPHA source 

/* TEXTURE_2.ALF */ 

/* Classifies 4 different textured images */ 

PROGRAM texture_2(in); 

CONSTANT 

  ONE = 1; 

  TWO = 2; 

  THREE = 3; 

  FOUR = 4; 

  WHITE = -1.0; 

  RUNTIME_3 = 3; 

  TIMESTEP = 0.2; 

ENDCONST; 

/* Chip description file */ 

CHIP_SET simulator.eng; 

/* Chip variables */ 

A_CHIP 

SCALARS 

IMAGES 

  ci1: ANALOG; 



 225 

  ci2: BINARY; 

ENDCHIP; 

/* Board variables */ 

E_BOARD 

SCALARS 

  GLOB_COUNT: REAL; 

IMAGES 

  input: BYTE; 

  display: BINARY; 

ENDBOARD; 

/* Template list */ 

OPERATIONS FROM texture_2.tms; 

PROCESS texture_2; 

USE (tx_hclc1); 

  HostLoadPic(in, input); 

  SwSetTimeStep (TIMESTEP); 

  ci1:=input;     

  tx_hclc1 (ci1, ci1, ci2, RUNTIME_3, ZEROFLUX); 

  display:=ci2;  

  HostDisplay(display, ONE); 

ENDPROCESS; 

ENDPROG; 

 



226 2.  Subroutines and simpler programs 

VERTICAL WING ENDINGS DETECTION OF AIRPLANE-LIKE OBJECTS  [51] 

Short Description 

One of the characteristic features of objects, which the human recognition is based on, is 

the local curvature. This algorithm detects property, namely, the locations of a binary image 

where the local edges are convex from north. By this method, for example, the wing endings of 

an airplane can be detected. 

In the first part of the algorithm local shadows are created with appropriate templates in 

the image into the 35°, 65°, 125°, 155°, -155°, -115°, -65° and -25° directions. The generation of 

shadows depends on the local curvature of edges. As a result we get eight images. Then four by 

four, groups of images get selected from the eight images and the logic AND operation of four 

images (within each group) is performed. With this step we can enhance the direction selectivity 

of the fill operation. In the next step we take the logic difference of each of these images and the 

original image. Then the undesired arc locations (the orientations of these locations are 

orthogonal to the preferred one) are subtracted from the resulting images. This way we get two 

images containing patches which denote the possible wing endings. In the last phase shadows are 

created, starting from these patches into appropriate directions according to the direction 

represented by the patch. The logic AND of the two shadow images and the arc location images 

one by one yields two images whose union gives the final result. 

Some incorrectly detected points can be seen on the resulting image. More sophisticated 

subtracting and shadowing methods are able to remove these points. The algorithm is invariant to 

small rate rotation and distortion. 

 

Templates used in the algorithm 

 

FILL35: 

1 0 1   0 0 0    

A =  0 2 0  B =  0 1 0  z = 2 

1 1 0   0 0 0    

 

FILL65: 

1 0 0   0 2 0    

A =  1 2 0  B =  0 0 0  z = 3 

0 0 2   0 0 0    

 

FILL125: 

1 0 0   0 0 0    

A =  0 2 1  B =  0 1 0  z = 2 

1 

 

0 1   0 0 0    

 

FILL155: 

0 0 2   0 0 0    

A =  0 2 0  B =  2 0 0  z = 3 

1 1 0   0 0 0    

 

 



 227 

FILL-155: 

0 1 1   0 0 0    

A =  0 2 0  B =  0 1 0  z = 2 

1 0 1   0 0 0    

 

FILL-115: 

2 0 0   0 0 0    

A =  0 2 1  B =  0 0 0  z = 3 

0 0 1   0 2 0    

 

FILL-65: 

1 0 1   0 0 0    

A =  1 2 0  B =  0 1 0  z = 2 

0 0 1   0 0 0    

 

FILL-25: 

0 1 1   0 0 0    

A =  0 2 0  B =  0 0 0  z = 3 

2 0 0   0 2 0    

 

SHADOW90: 

0 -1 0   0 0 0    

A =  0.3 2 0.3  B =  0 1.4 0  z = 2.5 

0.4 1 0.4   0 0 0    

 

SHADOW270: 

0.4 1 0.4   0 0 0    

A =  0.3 2 0.3  B =  0 1.4 0  z = 2.5 

0 -1 0   0 0 0    

 

LOGANDN: 

0 0 0   0 0 0    

A =  0 2 0  B =  0 -1 0  z = -1 

0 0 0   0 0 0    

 

The other templates used in the algorithm are available in this library. 



228 2.  Subroutines and simpler programs 

Typical Example 

Airplane wing endings detection 

 

 

Input image 

 

                           

 

Concavities into all eight 

directions 

(only the first 4 are displayed) 

    

Make logic AND of 4 

subsequent images (only the 

first 4 are displayed). Logic 

difference to the original 

image 
  

 

The result of SMKILLER 

template containing the 

desired concave locations 

  

 

The result of SMKILLER 

template containing the 

locations which are 

orthogonal to the desired 

concave locations 

 
  

 

After subtracting  

(logic AND) the orthogonal 

directions 

  

 

The result 

(masked with the original) 

 

 

 



 229 

Flow-diagram of the algorithm 

 

fill35

template

fill-25

template

logic

AND

logic

AND

logic

AND

logic

AND

A AND

NOT B1
NOT B2

INPUT

IMAGE

A

B1
B2

A AND

NOT B1
NOT B2

A

B1

A AND

NOT B

SMKILLER

template

A AND

NOT B

SMKILLER

template

A AND

NOT B

SMKILLER

template

A AND

NOT B

SMKILLER

template

SHADOW90

template

SHADOW270

template

logic

AND

RESULT

IMAGE

B2

A

logic

AND

logic

AND

logic

OR

 



230 2.  Subroutines and simpler programs 

ALPHA source 

/* airplane.ALF                                                           */ 

/* Performs airplane wing ending detection */ 

 

PROGRAM airplane(in; out); 

CONSTANT 

ONE = 1; 

TWO = 2; 

THREE = 3; 

FOUR = 4; 

FIVE = 5; 

SIX = 6; 

SEVEN = 7; 

EIGHT = 8; 

NINE = 9; 

SIXTY = 60; 

WHITE = -1.0; 

TIME = 25; 

TEN =10; 

TS =0.9; 

ENDCONST; 

 

/* Chip definiton section                                             */ 

CHIP_SET simulator.eng; 

A_CHIP 

SCALARS 

 

IMAGES 

input: BINARY;            /* input */ 

arc35: BINARY;   /* arc */ 

arc65: BINARY;   /* arc */ 

arc125: BINARY;   /* arc */ 

arc155: BINARY;   /* arc */ 

arc_35: BINARY;   /* arc */ 

arc_65: BINARY;   /* arc */ 

arc_125: BINARY;   /* arc */ 

arc_155: BINARY;   /* arc */ 

wing_up: BINARY; 

wing_left: BINARY; 

wing_down: BINARY; 

wing_right: BINARY; 

shadow_up: BINARY; 

shadow_down: BINARY; 

shadow_intrsct: BINARY; 

output: BINARY; 

ENDCHIP; 

 

/* Chip set definition section                                        */ 

E_BOARD 

SCALARS 



 231 

IMAGES 

ENDBOARD; 

 

/* Definition of analog operation symbol table                        */ 

OPERATIONS FROM airplane.tms; 

 

PROCESS airplane; 

USE (fill35, fill65, fill125, fill155, fill_115, fill_65, fill_25, fill_155, logdif, smkiller, shadow0, 

shadow90, shadow180, shadow270); 

SwSetTimeStep(TS); 

HostLoadPic(in, input); 

HostDisplay(input, ONE); 

 

/* Filling into different directions */ 

fill35 ( input , input , arc35 , TIME , WHITE ); 

fill65 (input,input,arc65, TIME, WHITE); 

fill125 (input,input,arc125, TIME, WHITE); 

fill155 (input,input,arc155, TIME, WHITE); 

fill_25 (input,input,arc_35, TIME, WHITE); 

fill_65 (input,input,arc_65, TIME, WHITE); 

fill_115 (input,input,arc_125, TIME, WHITE); 

fill_155 (input,input,arc_155, TIME, WHITE); 

 

/* Enhance direction selectivity to degree 90*/ 

wing_up:=     arc35 AND arc65; 

wing_up:= wing_up AND arc125; 

wing_up:= wing_up AND arc155; 

logdif (input,wing_up,wing_up, TWO, WHITE); 

smkiller (wing_up,wing_up,wing_up, TEN, WHITE); 

HostDisplay(wing_up, THREE); 

 

/* Enhance direction selectivity to degree 180 */ 

wing_left:=    arc125 AND arc155; 

wing_left:= wing_left AND arc_125; 

wing_left:= wing_left AND arc_155; 

logdif (input,wing_left,wing_left, TWO, WHITE); 

smkiller (wing_left,wing_left,wing_left, TEN, WHITE); 

HostDisplay(wing_left, FOUR); 

 

/* Enhance direction selectivity to degree 270*/ 

wing_down:= arc_35 AND arc_65 ; 

wing_down:= wing_down AND arc_125; 

wing_down:= wing_down AND arc_155; 

logdif (input,wing_down,wing_down, TWO, WHITE); 

smkiller (wing_down,wing_down,wing_down,TEN, WHITE); 

HostDisplay(wing_down, FIVE); 

 

/* Enhance direction selectivity to degree 0*/ 

wing_right:=  arc_35 AND arc_65; 

wing_right:= wing_right AND arc35; 

wing_right:= wing_right AND arc65; 



232 2.  Subroutines and simpler programs 

logdif (input,wing_right,wing_right, TWO, WHITE); 

smkiller (wing_right,wing_right,wing_right, TEN, WHITE); 

HostDisplay(wing_right, TWO); 

 

/* Removing of horizontally directed arcs*/ 

wing_up:= wing_up AND1NOT2 wing_right; 

wing_up:= wing_up AND1NOT2 wing_left; 

smkiller (wing_up,wing_up,wing_up, TEN, WHITE); 

/* Shadow generation to degree 90*/ 

shadow90(wing_up, wing_up, shadow_up, SIXTY, WHITE ); 

HostDisplay(shadow_up, SIX); 

 

/* Removing of horizontally directed arcs*/ 

wing_down:= wing_down AND1NOT2 wing_right; 

wing_down:= wing_down AND1NOT2 wing_left; 

smkiller (wing_down,wing_down,wing_down, TEN, WHITE); 

 

/* Shadow generation to degree 270*/ 

shadow270(wing_down,wing_down,shadow_down, SIXTY, WHITE); 

HostDisplay(shadow_down, SEVEN); 

 

/* Distance classification*/ 

shadow_intrsct:=shadow_up AND shadow_down; 

HostDisplay(shadow_intrsct, EIGHT); 

 

/* Resulting wing endings (up and down)*/ 

output:=wing_up OR wing_down; 

output:=output AND shadow_intrsct; 

HostDisplay(output, NINE); 

 

ENDPROCESS; 

ENDPROG; 



 233 

PEDESTRIAN CROSSWALK DETECTION  [75] 

Mihály Radványi 

 

This algorithm detects the possible location of a pedestrian crosswalk in an image, and based estimates the 

confidence value of a crosswalk being present in the image. 

 

 

Input Parameters 
 

U Input image 

RGB filter intervals Possible RGB values of the road surface 

 

 

Output Parameters 
 

Y Crosswalk confidence value 

 



234 2.  Subroutines and simpler programs 

UMF diagram 

 
 

 

 



Chapter 3. IMPLEMENTATION ON PHYSICAL 

CELLULAR MACHINE  

 



236 3.  Implementation on physical cellular machine 

 

3.1. ARCHITECURE DEFINITIONS  
 

Optimal implementation methods of 2D operators are completely different on different 
architectures. On the other hand, the implementation efficiency of the different operator on different 
architectures varies drastically. A large number of different 2D operators and complex algorithms 
have been described in the previous chapters of this book. In this chapter, their implementation 
methods and efficiency will be analyzed on different architectures. We are considering the following 
architectures: 

• DSP-memory architecture (in particular DaVinci processors from TI [93]) as a 
reference; 

• Pass-through architecture (CASTLE [99][98], Falcon [91], C-MVA [96]); 

• Coarse-grain cellular parallel architecture (Xenon [100]); 

• Fine-grain fully parallel cellular architecture with mixed-mode processing (SCAMP 
[90], Q-Eye [94]); 

• Fine-grain fully parallel cellular architecture with continuous time processing (ACE-16k 
[84], ACLA [87][88]). 

• Multi-core inhomogeneous array computing architecture with high-performance kernels 
(CELL [92]); 

• Many-core hierarchical graphic processor unit (GPU [104][105]). 
 

The chapter will be organized as follows. First, seven different basic architectures are briefly 
described. Then, the operators are grouped according to their execution methods on the different 
architectures. It is followed by the analysis of the implementation. Finally, an architecture selection 
guide is shown. 

Classic DSP-memory architecture  

Here we assume 32 bit DSP architecture with cache memory large enough to store the 
required number of images and the program internally. In this way, we have to practically 
estimate/measure the required DSP operations. Most of the modern DSPs have numerous MACs 
and ALUs. To avoid comparing these DSP architectures, which would lead too far from our 
original topic, we use the DaVinci video processing DSP by Texas Instrument, as a reference.  

We use 3×3 convolution as a measure of grayscale performance. The data requirements of 
the calculation are 19 bytes (9 pixels, 9 kernel values, result), however, many of these data can be 
stored in registers, hence, only an average of a four-data accesses (3 inputs, because the 6 other 
ones have already been accessed for the previous pixel position, and one output) is needed for 
each convolution. From a computational point of view, it needs 9 multiple-add (MAC) 
operations. It is very typical that the 32 bit MACs in a DSP can be split into four 8 bit MACs, 
and other auxiliary ALUs help loading the data to the registers in time. Measurement shows that, 
for example, the Texas DaVinci family with the TMS320C64x core needs only about 1.5 clock 
cycles to complete a 3×3 convolution. 

The operands of the binary operations are stored in 1 bit/pixel format, which means that 
each 32bit word represents a 32×1 segment of an image. Since the DSP’s ALU is a 32 bit long 
unit, it can handle 32 binary pixels in a single clock cycle. As an example, we examine how a 
3×3 square shaped erosion operation is executed. In this case erosion is a nine input OR 
operation where the inputs are the binary pixels values within the 3×3 neighborhood. Since the 
ALU of the DSP does not contain 9 input OR gate, it is executed sequentially on 32 an entire 



 237 

 

 237

32×1 segment of the image. The algorithm is simple: the DSP has to prepare the 9 different 
operands, and apply bit-wise OR operations on them.  

Figure 1 shows the generation method of the first three operands. In the figure a 32×3 
segment of a binary image is shown (9 times), as it is represented in the DSP memory. Some 
fractions of horizontal neighboring segments are also shown. The first operand can be calculated 
by shifting the upper line with one bit position to the left and filling in the empty MSB with the 
LSB of the word from its right neighbor. The second operand is the un-shifted upper line. The 
position and the preparation of the remaining operands are also shown in Figure 1a.  

 upper line  
central line 

lower line 
 
 

 

 
 

upper line  
central line 

lower line 
 
 

 

 
 OR 

upper line  
central line 

lower line 
 
 

 

 
 OR 

operand 1 operand 2 operand 3 

upper line  
central line 

lower line 
 
 

 

 
 

upper line  
central line 

lower line 
 
 

 

 
 OR 

upper line  
central line 

lower line 
 
 

 

 
 OR 

operand 4 operand 5 operand 6 

upper line  
central line 

lower line 
 
 

 

 
 

upper line  
central line 

lower line 
 
 

 

 
 OR 

upper line  
central line 

lower line 
 
 

 

 
 OR 

operand 7 operand 8 operand 9 

o3 o2 o1 

o6

 
o5 o4 

o7 o8 o9 

e1=o1 OR o2 OR o3 OR o4 OR o5 OR o6 OR o7 OR o8 OR o9 

(b) 

(a) 

(c) 
 

Figure 1. Illustration of the binary erosion operation on a DSP. (a) shows the 9 pieces of 
32×1 segments of the image (operands), as the DSP uses them. The operands are 
the shaded segments. The arrows indicate shifting of the segments. To make it 
clearer, consider a 3×3 neighborhood as it is shown in (b). For one pixel, the form 
of the erosion calculation is shown in (c). o1, o2, … o9 are the operands. The DSP 
does the same, but on 32 pixels parallel. 

This means that we have to apply 10 memory accesses, 6 shifts, 6 replacements, and 8 OR 
operations to execute a binary morphological operation for 32 pixels. Due to the multiple cores 
and the internal parallelism, the Texas DaVinci spends 0.5 clock cycles with the calculation of 
one pixel.  
In the low power low cost embedded DSP technology the trend is to further increase the clock 
frequency, but most probably, not higher than 1 GHz, otherwise, the power budget cannot be 
kept. Moreover, the drawback of these DSPs is that their cache memory is too small, which 
cannot be increased significantly without significant cost increase. The only way to significantly 
increase the speed is to implement a larger number of processors, however, that requires a new 
way of algorithmic thinking, and software tools. 
The DSP-memory architecture is the most versatile from the point of views of both in 
functionality and programmability. It is easy to program, and there is no limit on the size of the 
processed images, though it is important to mention that in case of an operation is executed on an 
image stored in the external memory, its execution time is increasing roughly with an order of 
magnitude. Though the DSP-memory architecture is considered to be very slow, as it is shown 



238 3.  Implementation on physical cellular machine 

 

later, it outperforms even the processor arrays in some operations. In QVGA frame size, it can 
solve quite complex tasks, such as video analytics in security applications on video rate [95]. Its 
power consumption is in the 1-3W range. Relatively small systems can be built by using this 
architecture. The typical chip count is around 16 (DSP, memory, flash, clock, glue logic, sensor, 
3 near sensor components, 3 communication components, 4 power components), while this can 
be reduced to the half in a very basic system configuration. 

Pass-through architectures  

The basic idea of this pass-through architecture is to process the images line-by-line, and to 
minimize both the internal memory capacity and the external IO requirements. Most of the early 
image processing operations are based on 3×3 neighborhood processing, hence 9 image data are 
needed to calculate each new pixel value. However, these 9 data would require very high data 
throughput from the device. As we will see, this requirement can be significantly reduced by 
applying a smart feeder arrangement. 
Figure 2 shows the basic building blocks of the pass-through architecture. It contains two parts, 
the memory (feeder) and the neighborhood processor. Both the feeder and the neighborhood 
processor can be configured 8 or 1 bit/pixel wide, depending on whether the unit is used for 
grayscale or binary image processing. The feeder contains, typically, two consecutive whole rows 
and a row fraction of the image. Moreover, it optionally contains two more rows of the mask 
image, depending on the input requirements of the implemented neighborhood operator. In each 
pixel clock period, the feeder provides 9 pixel values for the neighborhood processor and the 
mask value optionally if the operation requires it. The neighborhood processor can perform 
convolution, rank order filtering, or other linear or nonlinear spatial filtering on the image 
segment in each pixel clock period. Some of these operators (e.g., hole finder, or a CNN 
emulation with A and B templates) require two input images. The second input image is stored in 
the mask. The outputs of the unit are the resulting and, optionally, the input and the mask images. 
Note that the unit receives and releases synchronized pixels flows sequentially. This enables to 
cascade multiple pieces of the described units. The cascaded units form a chain. In such a chain, 
only the first and the last units require external data communications, the rest of them receives 
data from the previous member of the chain and releases the output towards the next one. 
An advantageous implementation of the row storage is the application of FIFO memories, where 
the first three positions are tapped to be able to provide input data for the neighborhood 
processor. The last positions of rows are connected to the first position of the next row (Figure 
2). In this way, pixels in the upper rows are automatically marching down to the lower rows. 
The neighborhood processor is of special purpose, which can implement one or a few different 
kinds of operators with various attributes and parameter. They can implement convolution, rank-
order filters, grayscale or binary morphological operations, or any local image processing 
functions (e.g. Harris corner detection, Laplace operator, gradient calculation, etc,). In 
architectures CASTLE [99][98] and Falcon [91], e.g., the processors are dedicated to 
convolution processing where the template values are the attributes. The pixel clock is matched 
with that of the applied sensor. In case of a 1 megapixel frame at video rate (30 FPS), the pixel 
clock is about 30 MHz (depending on the readout protocol). This means that all parts of the unit 
should be able to operate at least at this clock frequency. In some cases the neighborhood 
processor operates on an integer multiplication of this frequency, because it might need multiple 
clock cycles to complete a complex calculation, such as a 3×3 convolution. Considering ASIC or 
FPGA implementations, clock frequency between 100-300 MHz is a feasible target for the 
neighborhood processors within tolerable power budget. 
The multi-core pass-through architecture is built up from a sequence of such processors. The 
processor arrangement follows the flow-chart of the algorithm. In case of multiple iterations of 
the same operation, we need to apply as many processor kernels, as many iterations we need. 



 239 

 

 239

This easily ends up requiring a few dozens of kernels. Fortunately, these kernels, especially in the 
black-and-white domain, are relatively inexpensive, either on silicon, or in FPGA.  
Depending on the application, the data-flow may contain either sequential segments or parallel 
branches. It is important to emphasize, however, that the frame scanning direction cannot be 
changed, unless the whole frame is buffered, which can be done in external memory only. This 
introduces a relatively long (dozens of millisecond) additional latency.  

 

3×3  
low latency 

neighborhood 
processor 

9 pixel 
values  

Data in  

Data 
out  

Feeder  

Neighborhood 
Processor  

Two rows of the mask image (optional) 
 (FIFO) 

Two rows of the image to be processed  (FIFO) 

 

Figure 2. One processor and its memory arrangement in the pass-through architecture. 

For capability analysis, here we use the Spartan 3ADSP FPGA (XC3SD3400A) from Xilinx as a 
reference, because this low-cost, medium performance FPGA was designed especially for 
embedded image processing. It is possible to implement roughly 120 grayscale processors within 
this chip, as long as the image row length is below 512, or 60 processors, when the row length is 
between 512 and 1024. 

Coarse-grain cellular parallel architectures  

The coarse-grain architecture is a locally interconnected 2D cellular processor arrangement, as 
opposed to the pass-through one. A specific feature of the coarse-grain parallel architectures is 
that each processor cell is topographically assigned to a number of pixels (e.g., an 8×8 segment 
of the image), rather than to a single pixel only. Each cell contains a processor and some 
memory, which is large enough to store few bytes for each pixel of the allocated image segment. 
Exploiting the advantage of the topographic arrangement, the cells can be equipped with photo 
sensors enabling to implement a single chip sensor-processor device. However, to make this 
sensor sensitive enough, which is the key in high frame-rate applications, and to keep the pixel 
density of the array high, at the same time, certain vertical integration techniques are needed for 
photosensor integration.  
In the coarse-grain architectures, each processor serves a larger number of pixels, hence we have 
to use more powerful processors, than in the one-pixel per processor architectures. Moreover, the 
processors have to switch between serving pixels frequently, hence more flexibility is needed 
that an analog processor can provide. Therefore, it is more advantageous to implement 8 bit 
digital processors, while the analog approach is more natural in the one pixel per processor (fine-
grain) architectures. (See the next subsection.) 
As an example for the coarse-grain architecture, we briefly describe the Xenon chip [100]. As 
can be seen in Figure 3, Xenon chip [100] is constructed of an 8×8, locally interconnected cell 
arrangement. Each cell contains a sub-array of 8×8 photosensors; an analog multiplexer; an 8 bit 



240 3.  Implementation on physical cellular machine 

 

AD converter; an 8 bit processor with 512 bytes of memory; and a communication unit of local 
and global connections. The processor can handle images in 1, 8, and 16 bit/pixel 
representations, however, it is optimized for 1 and 8 bit/pixel operations. Each processor can 
execute addition, subtraction, multiplication, multiply-add operations, comparison, in a single 
clock cycle on 8 bit/pixel data. It can also perform 8 logic operations on 1 bit/pixel data in 
packed-operation mode in a single cycle. Therefore, in binary mode, one line of the 8×8 sub-
array is processed jointly, similarly to the way we have seen in the DSP. However, the Xenon 
chip supports the data shifting and swapping from hardware, which means that the operation 
sequence, what we have seen in Figure 1 takes 9 clock cycles only. (The swapping and the 
accessing the memory of the neighbors do not need extra clock cycles.) Besides, the local 
processor core functions, Xenon can also perform a global OR function. The processors in the 
array are driven in a single instruction multiple data (SIMD) mode. 

XENON chip 

C C C C C 

Cel
l 

Cel
l 

C C 

C C C C 

C C C C 

C C C C 

C C C C C 

Cel
l 

Cel
l 

C C 

C C C C 

C C C C 

C C C C 

C C C C C 

Cel
l 

Cel
l 

C C 

C C C C 

C C C C 

C C C C 

C C C C C 

Cel
l 

Cel
l 

C C 

C C C C 

C C C C 

C C C C 

P P P P P P P P 

P P P P P P P P 

P P P P P P P P 

P P P P P P P P 

P P P P P P P P 

P P P P P P P P 

P P P P P P P P 

P P P P P P P P 

MUX 

to neighbours 

Proc Mem Com 

AD 

Scheduler, 
external I/O, 
address 
generator 

 

Figure 3. Xenon is a 64 core coarse-grain cellular parallel architecture (C stands for 
processor cores, while P represents pixels). 

Xenon is implemented on a 5x5mm silicon die with 0.18 micron technology. The clock cycle can 
go up to 100MHz. The layout is synthesized, hence the resulting 75micron equivalent pitch is far 
from being optimal. It is estimated that through aggressive optimization it could be reduced to 40 
micron (assuming a bump bonded sensor layer), which would almost double the resolution 
achievable on the same silicon area. The power consumption of the existing implementation is 
under 20mW.  

Fine-grain fully parallel cellular architectures with discrete time processing  

The fine-grain, fully parallel architectures are based on rectangular processor grid arrangements 
where the 2D data (images) are topographically assigned to the processors. The key feature here 
is that for the fine-grain arrangement there is a one-to-one correspondence between the pixels 
and the processors. This certainly means that at the same time the composing processors must be 
simpler and less powerful, than in the previous, coarse-grain case. Therefore, fully parallel 
architectures are typically implemented in analog domain, though bit-sliced digital approach is 
also feasible. 
In the discussed cases, the discrete time processing type fully parallel architectures are equipped 
with a general purpose, analog processor, and an optical sensor in each cell. These sensor-



 241 

 

 241

processors can handle two types of data (image) representations: grayscale and binary. The 
instruction set of these processors include addition, subtraction, scaling (with a few discrete 
factors only), comparison, thresholding, and logic operations. Since it is a discrete time 
architecture, the processing is clocked. Each operation takes 1-4 clock cycles. The individual 
cells can be masked. Basic spatial operations, such as convolution, median filtering, or erosion, 
can be put together as sequences of these elementary processor operations. In this way the clock 
cycle counts of a convolution, a rank order filtering, or a morphologic filter are between 20 and 
40 depending on the number of weighting coefficients. 
It is important to note that in case of the discrete time architectures (both coarse- and fine-grain), 
the operation set is more elementary (lower level) than on the continuous time cores (see the next 
section). While in the continuous time case (CNN like processors) the elementary operations are 
templates (convolution, or feedback convolution) [77][78], in the discrete time case, the 
processing elements can be viewed as RISC (reduced instruction set) processor cores with 
addition, subtraction, scaling, shift, comparison, and logic operations. When a full convolution is 
to be executed, the continuous time architectures are more efficient. In the case of operations 
when both architectures apply a sequence of elementary instructions in an iterative manner (e.g., 
rank order filters), the RISC is the superior, because its elementary operators are more versatile 
more accurate, and faster. 
The internal analog data representation has both architectural and functional advantages. From 
architectural point of view, the most important feature is that no AD converter is needed on the 
cell level, because the sensed optical image can be directly saved in the analog memories, leading 
to significant silicon space savings. Moreover, the analog memories require smaller silicon area 
than the equivalent digital counterparts. From the functional point of view, the topographic 
analog and logic data representations make the implementation of efficient diffusion, averaging, 
and global OR networks possible. 
The drawback of the internal analog data representation and processing is the signal degradation 
during operation or over time. According to experience, accuracy degradation was more 
significant in the old ACE16k design [84] than in the recent Q-Eye [94] or SCAMP [90] ones. 
While in the former case 3-5 grayscale operations led to significant degradations, in the latter 
ones even 10-20 grayscale operations can conserve the original image features. This makes it 
possible to implement complex nonlinear image processing functions (e.g., rank order filter) on 
discrete time architectures, while it is practically impossible on the continuous ones (ACE16k). 
The two representatives of discrete time solutions, SCAMP and Q-Eye, are slightly similar in 
design. The SCAMP chip was fabricated by using 0.35 micron technology. The cell array size is 
128×128. The cell size is 50×50 micron, and the maximum power consumption is about 200mW 
at 1.25MHz clock rate. The array of Q-Eye chip has 144×176 cells. It was fabricated on 0.18 
micron technology. The cell size is about 30×30 micron. Its speed and power consumption range 
is similar to that of the SCAMP chip. Both SCAMP and Q-Eye chips are equipped with single-
step mean, diffusion, and global OR calculator circuits. Q-Eye chip also provides hardware 
support for single-step binary 3×3 morphologic operations. 

Fine-grain fully parallel cellular architecture with continuous time processing  

Fully parallel cellular continuous time architectures are based on arrays of spatially 
interconnected dynamic asynchronous processor cells. Naturally, these architectures exhibit fine-
grain parallelism, to be able to perform continuous time spatial waves physically in the 
continuous value electronic domain. Since these are very carefully optimized, special purpose 
circuits, they are super-efficient for computations they were designed to perform. We have to 
emphasize, however, that they are not general purpose image processing devices. Here we mainly 
focus on two designs. Both of them can generate continuous time spatial-temporal propagating 



242 3.  Implementation on physical cellular machine 

 

waves in a programmable way. While the output of the first one (ACE-16k [84]) can be in the 
grayscale domain, the output of the second one (ACLA [87][88]) is always in the binary domain.  
The ACE-16k [84] is a classical CNN Universal Machine type architecture equipped with 
feedback and feed-forward template matrices [78], sigmoid type output characteristics, 
dynamically changing state, optical input, local (cell level) analog and logic memories, local 
logic, diffusion and averaging network. It can perform full-signal range type CNN operations 
[79]. Therefore, it can be used in retina simulations or other spatial-temporal dynamical system 
emulations, as well. Its typical feed-forward convolution execution time is in the 5-8 
microsecond range, while the wave propagation speed from cell-to-cell is up to 1 microsecond. 
Though its internal memories, easily re-programmable convolution matrices, logic operations, 
and conditional execution options make it attractive to use as a general purpose high-
performance sensor-processor chip for the first sight, its limited accuracy, large silicon area 
occupation (~80×80 micron/cell on 0.35 micron 1P5M STM technology), and high power 
consumption (4-5 Watts) prevent the immediate usage in various vision application areas.  
The other architecture in this category is the Asynchronous Cellular Logic Array (ACLA) [87], 
[88]. This architecture is based on spatially interconnected logic gates with some cell level 
asynchronous controlling mechanisms, which allow ultra high-speed spatial binary wave 
propagation only. Typical binary functionalities implemented on this network are: trigger wave, 

reconstruction, hole finder, shadow, etc. Assuming more sophisticated control mechanism on the 
cell level, it can even perform skeletonization or centroid calculations. Their implementation is 
based on a few minimal size logic transistors, which makes them hyper-fast, extremely small, 
and power-efficient. They can reach 500 ps/cell wave propagation speed, with 0.2mW power 
consumption for a 128×128 sized array. Their very small area requirement (16×8 micron/cell on 
0.35 micron 3M1P AMS technology) makes them a good choice to be implemented as a co-
processor in any fine-grain array processor architecture.  

Multi-core heterogeneous processors array with high-performance kernels (CELL) 

The Cell Broadband Engine Architecture (CBEA) [92] is designed to achieve high computing 
performance with better area/performance and power/performance ratios than the conventional 
multi-core architectures. The CBEA defines a heterogeneous multi-processor architecture where 
general purpose processors called Power Processor Elements (PPE) and SIMD processors called 
Synergistic Processor Elements (SPE) are connected via a high speed on-chip coherent bus called 
Element Interconnect Bus (EIB) (Figure 4). The processors run maximum on 3.2GHz.  
The PPE is a conventional dual-threaded 64bit PowerPC processor which can run existing 
operating systems without modification and can control the operation of the SPEs. To simplify 
processor design and achieve higher clock speed instruction reordering is not supported by the 
PPE. The EIB is not a bus as suggested by its name but a ring network which contains 4 
unidirectional rings where two rings run counter to the direction of the other two. The frequency 
of these rings is half of the frequency of the processors. Each of these rings can transfer 
16bits/cycle between two neighboring element on the bus. When farther elements communicate, 
the data is relayed by each element between the communicating ones. This increase latency, 
moreover the relaying elements cannot use that particular bus for their own purposes during the 
transfer. 
The dual-channel Rambus XDR memory interface provides very high 25.6GB/s memory 
bandwidth to external memory. I/O devices can be accessed via two Rambus FlexIO interfaces 
where one of them (the Broadband Interface (BIF)) is coherent and makes it possible to directly 
connect two Cell processors. 
Similarly to the PPE the SPEs are also in-order processors. Data for the instructions is provided 
by the very large 128 element register file where each register is 16byte wide. Therefore SIMD 
instructions of the SPE works on 16byte wide vectors for example: four single precision floating 



 243 

 

 243

point numbers or eight 16bit integers. The SPEs support logic operations also. They can handle 
up to 128 bits in one single step. The SPEs can only address their local 256kB SRAM memory, 
while they can access the main memory of the system by DMA instructions.  

16B/cycle

128B/cycle

16B/cycle

SPU

128

registers

DMA

LS

256kB

SPE

SPU

128

registers

DMA

LS

256kB

SPE

SPU

128

registers

DMA

LS

256kB

SPE

SPU

128

registers

DMA

LS

256kB

SPE

SPU

128

registers

DMA

LS

256kB

SPE

SPU

128

registers

DMA

LS

256kB

SPE

SPU

128

registers

DMA

LS

256kB

SPE

SPU

128

registers

DMA

LS

256kB

SPE

Element Interconnect Bus

128B/cycle

L2

512kB

16B/cycle

32B/cycle

L1

2x32kB

16B/cycle

PowerPC

core

Memory

Controller

16B/cycle

Bus Interface

Controller

2x16B/cyclePPE

Dual Rambus

XDR
IOIF BIF

 

Figure 4. Block diagram of the Cell processor 

Many-core hierarchical graphic processor unit (GPU) 

Figure 5 shows the hardware model of NVIDIA’s GPU architecture. It is constructed of groups of 
scalar-based processors. Eight of these processors are grouped with an Instruction Unit to form a 
single-instruction-multiple-data (SIMD) multiprocessor (MP). The number of MPs are varying from 
1 to 16, which means 8 to 128 parallel processors. As to its external data storage, it uses 1800 MHz 
DDR3 RAM modules; however internal cache memories are also available to feed the large number 
of processors. Three ways for caching were introduced. A 16 KB per MP high-speed universal 
purpose local shared memory is available beside the constant (1D aware) and texture (2D aware) 
caching global memories. Both the constant and the texture memories are read only from the 
processors. I/O instructions accessing the shared memory using cache converges to 1-2 cycle while 
direct access to the global memories cost 100-200 clock cycles.  
The GPU is operated on a way that the programmer defines very large number of simple threads 
(like executing a convolution on 4 consecutive pixels in a row), and these threads are distributed 
among the processors. The distribution (mapping) and the order of execution is not in the hand of the 
programmer, it is done automatically. Hence, we cannot analyze different mapping strategies here. 
Rather than that, we will show the execution speed what we could reach in different 2D operator 
classes. 



244 3.  Implementation on physical cellular machine 

 

 

Figure 5. Block diagram of the GPU processor 

3.2. IMPLEMENTATION AND EFFICIENCY ANALYSIS OF VARIOUS 

OPERATORS  

Based on the implementation methods, in this section, we introduce a new 2D operator 
categorization. Then, the implementation methods on different architectures are described and 
analyzed from the efficiency aspect. 
Here we examine only the 2D single-step neighborhood operators, and the 2D, neighborhood 
based wave type operators. The more complex, but still local operators (such as Canny edge 
detector) can be built up by using these primitives, while other operators (such as Hough or 
Fourier transform) require global processing, which is not supported by these architectures. 

Categorization of 2D operators  

Due to their different spatial-temporal dynamics, different 2D operators require different 
computational approaches. The categorization (Figure 6) was done according to their 
implementation methods on different architectures. It is important to emphasize that we 
categorize operators (functionalities) here, rather than wave types, because the wave types are not 
necessarily inherited by the operator itself, but rather by its implementation method on a 
particular architecture. As we will see, the same operator is implemented with different spatial 
wave dynamic patterns on different architectures. The most important 2D operators, including all 
the CNN operators [97]are considered here.  
The first distinguishing feature is the location of active pixels [97]. If the active pixels are located 
along one or few one-dimensional stationary or propagating curves at a time, we call the operator 
front-active. If the active pixels are everywhere in the array, we call it area-active.  
The common property of the front-active propagations is that the active pixels are located only at 
the propagating wave fronts [80]. This means that at the beginning of the wave dynamics 
(transient) some pixels become active, others remain passive. The initially active pixels may 
initialize wave fronts which start propagating. A propagating wave front can activate some 



 245 

 

 245

further passive pixels. This is the mechanism how the wave proceeds. However, pixels apart 
from a waveform cannot become active [97]. This theoretically enables us to compute only the 
pixels which are along the front lines, and not waste efforts on the others. The question is which 
are the architectures that can take advantage of such a spatially selective computation. 

 
 

2D operators 

front active  area active  

Continuous 
for limited 

time  

content-
independent  

 
1D scan 

 
2D scan 

CCD 

shadow 

profile 

 

global 

maximum 

global 

average 

global OR 

histogram 

 

content-
dependent  

Execution-
sequence-

variant  

Execution–
sequence-
invariant  

skeleton 

trigger wave 

center 

connected 

contour 

directed 

growing 

shadow 

bipolar wave 

hole finder 

connectivity 

recall 

find area 

hollow 

concave arc 

patch maker 

small killer 

wave metric 

peeling 

all the B 

templates 

addition 

subtraction 

scaling 

multiplication 

division 

local max 

local min 

median  

erosion 

dilation 

average 

halftoning 

interpolation 

texture 

segmentation 

all the 

grayscale 

PDEs, such as 

diffusion 

membrane  

 

 

 
Single-step 

 

Figure 6. 2D local operator categorization 

The front active operators such as reconstruction, hole finder, or shadow are typically binary 
waves. In CNN terms, they have binary inputs and outputs, positive self-feedback, and space 
invariant template values. Figure 6 contains three exemptions: global max, global average, and 
global OR. These functions are not wave type operators by nature; however, we will associate a 
wave with them which solves them efficiently. 
The front active propagations can be content-dependent or content-independent. The content-
dependent operator class contains most of the operators where the direction of the propagation 
depends on the local morphological properties of the objects (e.g., shape, number, distance, size, 
connectivity) in the image (e.g., reconstruct). An operator of this class can be further 
distinguished as execution-sequence-variant (skeleton, etc) or execution-sequence-invariant (hole 

finder, recall, connectivity, etc). In the first case the final result may depend on the spatial-
temporal dynamics of the wave, while in the latter it does not. Since the content-dependent 
operator class contains the most interesting operators with the most exciting dynamics, they are 
further investigated in the next subsection. 
We call the operators content-independent when the direction of the propagation and the 
execution time do not depend on the shape of the objects (e.g., shadow). According to 
propagation, these operators can be either one- (e.g., CCD, shadow, profile [102]) or two-
dimensional (global maximum, global OR, global average, histogram). Content-independent 
operators are also called single-scan, for their execution requires a single scanning of the entire 



246 3.  Implementation on physical cellular machine 

 

image. Their common feature is that they reduce the dimension of the input 2D matrices to 
vectors (CCD, shadow, profile, histogram) or scalars (global maximum, global average, global 

OR). It is worth to mention that on the coarse- and fine-grain topographic array processors the 
shadow, profile and CCD are content-dependent operators, and the number of the iterations (or 
analog transient time) depends on the image content only. The operation is completed, when the 
output is ceased to change. Generally, however, , it is less efficient to include a test to detect a 
stabilized output, than to let the operator run in as many cycles as it would run in the worst case.  
The area active operator category contains the operators where all the pixels are to be updated 
continuously (or in each iteration). A typical example is heat diffusion. Some of these operators 
can be solved in a single update of all the pixels (e.g., all the CNN B templates [102]), while 
others need a limited number of updates (halftoning, constrained heat diffusion, etc.).  
The fine-grain architectures update every pixel location in fully parallel in each time instance. 
Therefore, the area active operators are naturally the best fit for these computing architectures.  
 

Frame overwriting 

 

 

 

 

 

 

 

 

 

 
     original          1st update           2nd update             3rd update            4th update 

Pixel overwriting  

(row-wise, left to right top to down sequence) 

 

 

 

 

 

  

                                   original               1st update       2nd update            

Figure 7. Execution-invariant sequence in different overwriting schemes. Given an image 
with grey objects against white background. The propagation rule is that the 
propagation starts from the marked pixel (denoted by X), and it can go on within 
the grey domain, proceeding one pixel in each update. In the figure, we can see the 
results of each update. Update means calculating the new states of all the pixels in 
the frame.  

Execution-sequence-variant versus execution-sequence-invariant operators.  

The crucial difference in fine-grain and pass-through architectures is in their state 
overwriting methods. In the fine-grain architecture the new states of all the pixels are calculated 
in parallel, and then the previous one is overwritten again in parallel, before the next update cycle 
is commenced. In the pass-through architecture, however, the new state is calculated pixel-wise, 
and it is selectable whether to overwrite a pixel state before the next pixel is calculated (pixel 



 247 

 

 247

overwriting), or to wait until the new state value is calculated for all the pixels in the frame 
(frame overwriting). In this context, update means the calculation of the new state for an entire 
frame. Figure 7 and Figure 8 illustrate the difference between the two overwriting schemes. In 
case of an execution-sequence-variant operation, the result depends on the frame overwriting 
schemes. 
Here the calculation is done pixel-wise, left to right and row-wise top to down. As we can see, 
overwriting each pixel before the next pixel’s state is calculated (pixel overwriting) speeds up the 
propagation in the directions which corresponds to the direction the calculation proceeds.  
Based on the above, it is easy to draw the conclusion that the two updating schemes lead to two 
completely different propagation dynamics and final results in execution-variant cases. One is 
slower, but controlled, the other one is faster, but uncontrolled. The first can be used in cases 
when speed maximization is the only criterion, while the second is needed when the shape and 
the dynamics of the propagating wave front count. We called the former case execution-
sequence-invariant operators, the latter one execution-sequence-variant operators (Figure 6). 

Frame overwriting 

 

 

 

 

 

 
original               1st update          2nd update       

Pixel overwriting  

(row-wise, left to right top to down sequence) 

 

 

 

   

                    original            1st update                  

Figure 8. Execution-variant sequence in different overwriting schemes. Given an image 
with grey objects against white background. The propagation rule is that those 
pixels of the object, which has both object and background neighbor should 
became background. In this case, the subsequent peeling leads to find the centroid 
in the frame overwriting method, while it extracts one pixel of the object in the 
pixel overwriting mode.  

In the fine-grain architecture we can use the frame overwriting scheme only. In the coarse-grain 
architecture both pixel overwriting and frame overwriting methods can be selected within the 
individual sub-arrays. In this architecture, we may determine even the calculation sequence, 
which enables speed-ups in different directions in different updates. Later, we will see an 
example to illustrate how the hole finder operation propagates in this architecture. In the pass-
through architecture, we may decide which one to use, however, we cannot change the direction 



248 3.  Implementation on physical cellular machine 

 

of the propagation of the calculation, without paying a significant penalty for it in memory size 
and latency time.  

Processor utilization efficiency of the various operation classes  

In this subsection, we will analyze the implementation efficiency of various 2D operators from 
different aspects. We will study both the execution methods and the efficiency from the 
processor utilization aspect. Efficiency is a key question, because in many cases one or a few 
wave fronts sweep through the image, and one can find active pixels only in the wave fronts, 
which is less than one percent of the pixels, hence, there is nothing to calculate in the rest of 
image. We define a measure of efficiency of processor utilization with the following form: 
 η=Or/Ot (1)  
where: 

Or: the minimum number of required elementary steps to complete an operation, 
assuming that the inactive pixel locations are not updated 

Ot: is the total number of elementary steps performed during the calculation by all the 
processors in the particular processor architecture.  

The efficiency of processor utilization figure will be calculated in the following where it applies, 
because this is a good parameter (among others) to compare the different architectures. 

Execution-sequence-invariant content-dependent front-active operators.    

A special feature of content-dependent operators is that the path and length of the path of the 
propagating wave front drastically depend on the image contents itself. For example, the range of 
the necessary frame overwritings with a hole finder operation varies from zero overwriting to n/2 
in a fine-grain architecture, assuming n×n pixel array size. Hence, neither the propagation time, 
nor the efficiency can be calculated without knowing the actual image. 
Since the gap between the worst and best case is extremely high, it is not meaningful to provide 
these limits. Rather, it makes more sense to provide approximations for certain image types. But 
before that, we examine how to implement these operators on the studied architectures. For this 
purpose, we will use the hole finder operator, as an example. Here we will clearly see how the 
wave propagation follows different paths, as a consequence of  varying propagation speed 
corresponding to different directions. Since this is an execution-sequence-invariant operation, it 
is certain that wave fronts with different trajectories lead to the same good result.  
The hole finder operation, that we will study here, is a “grass fire” operation, in which the fire 
starts from all the boundaries at the beginning of the calculation, and the boundaries of the 
objects behave like firewalls. In this way, at the end of the operation, only the holes inside 
objects remain unfilled. 
The hole finder operation may propagate to any direction. On a fine-grain architecture the wave 
fronts propagate one pixel steps in each update. Since the wave fronts start from all the edges, 
they meet in the middle of the image in typically n/2 updates, unless there are large structured 
objects with long bays which may fold the grass fire into long paths. In case of a text for 
example, where there are relatively small non-overlapping objects (with diameter k) with large 
but not spiral like holes, the wave stops after n/2+k operations. In case of an arbitrary camera 
image with an outdoor scene, in most cases 3*n updates are enough to complete the operation, 
because the image may easily contain large objects blocking the straight paths of the wave front.  
On a pass-through architecture, thanks to the pixel overwrite scheme, the first update fills up 
most of the background (Figure 9). Filling in the remaining background requires typically k 
updates, assuming the largest concavity size with k pixels. This means that on a pass-through 
architecture, roughly k+1 steps are enough, considering small, non-overlapping objects with size 
k. 



 249 

 

 249

                
(a)                                                   (b) 

Figure 9. Hole finder operation calculated with a pass-through architecture. (a): original 
image. (b): result of the first update. (The freshly filled up areas are indicated 
with grey, just to make it more comprehensible. However, they are black on the 
black-and-white image, same as  the objects.) 

 
In the coarse-grain architecture we can also apply the pixel overwriting scheme within the 
N×N sub-arrays (Figure 10). Therefore, within the sub-array, the wave front can propagate in the 
same way, as in the pass-through architecture. However, it cannot propagate beyond the 
boundary of the sub-array, in a single update. In this way, the wave front can propagate N 
positions in the direction which correspond to the calculation directions, and one pixel in the 
other directions, in each update. In this way, in n/N updates, the wave-front can propagate n 
positions in the supported directions. However, the k sized concavities in other directions would 
require k more steps. To avoid these extra steps, without compromising the speed of the wave-
front, we can switch between the top-down and the bottom-up calculation directions after each 
update. The resulting wave-front dynamics is shown in Figure 11. This means that for an image, 
containing only few, non-overlapping small objects with concavities, we need about n/N+k steps 
to complete the operation. 

 

n pixels  

N pixels  

 

Figure 10. Coarse-grain architecture with n×n pixels. Each cell is to process an N×N pixel 
sub-array. 

The DSP-memory architecture offers several choices depending on the internal structure of 
image. The simplest is to apply pixel overwriting scheme, and switch the direction of the 
calculation. In case of binary image representation, only the vertical directions (up or down) can 
be efficiently selected, due to the packed 32 pixel line segment storage and handling. In this way 
the clean vertical segments (columns of background with maximum one object) are filled up after 
the second update, and filling up the horizontal concavities would require k steps.  
The CELL architecture can be considered as the combination of the pass-through architecture 
and the DSP. Each of the SPEs build up 2j+1 consecutive lines of the image, and execute j 
updates in each SPE, and send the lines over to the next SPE. The number of update depends on 
the processor load of the operator. If the operator is simple, than multiple updates will be needed, 
otherwise the data transfer between the processor will cause bottleneck. Since there are bus-rings 



250 3.  Implementation on physical cellular machine 

 

into both directions, two data flows can be started parallel. The upper part of the image can be 
processed and passed from left to right, while the lower part can be processed and passed from 
right to left. In this way, the wave-front starts propagating from both up and down parallel. The 
results will be calculated in (k+1)/8 step similarly to the pass-through. The 8 times speedup is 
coming from the number of the SPEs processing the image parallel. 
 

             

Figure 11. Hole finder operation calculated in a coarse-grain architecture. The first picture 
shows the original image. The rest shows the sequence of updates, one after the 
other. The freshly filled-up areas are indicated with grey (instead of black) to 
make it easier to follow the dynamics of calculation. 

Execution-sequence-variant content-dependent front active operators  

The calculation method of the execution-sequence-variant content-dependent front active 
operators is very similar to that of their execution-sequence-invariant counterparts. The only 
difference is that in each of the architectures the frame overwriting scheme should be used. This 
does not make any difference in fine-grain architectures, however, it slows down all the other 
architectures significantly. In the DSP-memory architectures, it might even make sense to switch 
to one byte/pixel mode, and calculate updates at the wave fronts only. 

1D content-independent front active operators (1D scan).   

 In the 1D content-independent front active category, we use the vertical shadow (north to south) 
operation as an example. In this category, varying the orientation of propagation may cause 
drastic efficiency differences on the non-topographic architectures.  
On a fine-grain discrete time architecture the operator is implemented in a way that in each time 
instance, each processor should check the value of its upper neighbor. If it is +1 (black), it should 
change its state to +1 (black), otherwise the state should not change. This can be implemented in 
one single step in a way, that each cell executes an OR operation with its upper neighbor, and 
overwrites its state with the result. This means that in each time instance the processor array 
executed n2 operations, assuming n×n pixel array size. 
In discrete time architectures, each time instance can be considered as a single iteration. In each 
iteration the shadow wave front moves by one pixel to the south, that is we need n steps for the 
wave front to propagate from the top row to the bottom (assuming boundary condition above the 
top row). In this way, the total number of operations, executed during the calculation is n

3. 
However, the strictly required number of operations is n

2, because it is enough to do these 
calculations at the wave front, only ones in each row, starting from the top row, and going down 
row by row, rolling over the results from the front line to the  next one. In this way, the efficiency 
of the processor utilization in vertical shadow calculation in the case of fine-grain discrete time 
architectures is  
 η=1/n (2) 



 251 

 

 251

Considering computational efficiency, the situation is the same in fine-grain continuous 

architectures. However, from the point of power efficiency the Asynchronous Cellular Logic 
Network [88] is very advantageous, because only the active cells in the wave front consume 
switching power. Moreover, the extraordinary propagation speed (500 ps/cell) compensates for 
the low processor utilization efficiency. 
If we consider a coarse-grain architecture (Figure 10), the vertical shadow operation is 
executed in a way that each cell executes the above OR operation from its top row, and goes on 
from the top downwards in each column. This means that N×N operations are required for a cell 
to process its sub-array. It does not mean, however, that in the first N×N steps the whole array is 
processed correctly, because only the first cell row has all the information for locally finalizing 
the process. For the rest of the rows their upper boundary condition have not “arrived”, hence at 
these locations correct operations cannot be performed. Thus, in the first N×N steps, the first N 
rows were completed only. However, the total number of operation executed by the array during 
this time is 
 ONxN=N*N * n/N * n/N=n*n, (3) 
because there are n/N * n/N processors in the array, and each processor is running all the time. To 
process also the rest of the lines we need to perform  
 Ot=ONxN * n/N=n

3
/N. (4) 

The resulting efficiency is:  
 η=N/n (5) 
It is worth to stop at this result for a while. If we consider a fine-grain architecture (N=1), the 
result is the same as we  obtained in (2). Its optimum is N=n (one processor per column) when 
the efficiency is 100%. It turns out that in case of vertical shadow processing, the efficiency 
increases by increasing the number of the processor columns, because in that case, one processor 
has to deal with less columns. However, the efficiency does not increase when the number of the 
processor rows is increased. (Indeed, one processor/column is the optimal, as it was shown.) 
Thought the unused processor cells can be switched off with minor extra effort to increase power 
efficiency, but it would certainly not increase processor utilization. 
Pass-through architecture as well as DSP-memory architecture can execute vertical shadow 
operation with 100% processor utilization, because there are no multiple processors in a column 
working parallel. 
We have to note, however, that shadows to other three directions are not as simple as the one to 
downwards. In DSP architectures, horizontal shadows cause difficulties, because the operation 
is executed parallel on a 32×1 line segment, hence only one of the positions (where the actual 
wave front is located) performs effectual calculation. If we consider a left to right shadow, this 
means that once in each line (at left-most black pixel), the shadow propagation should be 
calculated precisely for each of the 32 positions. Once the “shadow head” (the 32 bit word, 
which contains the left-most black pixel) is found, and the shadow is calculated within this word, 
the task is easier, because all the rest of the words in the line should be filled with black pixels, 
independently of their original content. Thus the overall resulting  cost of a horizontal shadow 
calculation on a DSP-memory architecture can be even 20 times higher than that of a vertical 

shadow for a 128×128 sized image. Similar situation might happen in coarse-grain 

architectures, if they handle n×1 binary segments. 
While pass-through architectures can execute the left to right and top to bottom shadows in a 
single update at each pixel location, the other directions would require n updates, unless the 
direction of the pixel flow is changed. The reason for such a high inefficiency is that in each 
update, the wave front can propagate only one step in the opposite direction. 
The CELL architecture operates similar to the DSP in this case. However, in case of vertical 
shadow, the operation will be bandwidth limited. This means that even one SPE cannot be fully 



252 3.  Implementation on physical cellular machine 

 

exploited due to the inadequate amount of data transfer. In case of horizontal shadow, the 
processor load enables the usage of multiple SPEs. 

2D content-independent front active operators (2D scan).   

The operators belonging to the 2D content-independent front active category require simple 
scanning of the frame. In global max operation for example, the actual maximum value should be 
passed from one pixel to another one. After we scanned all the pixels, the last pixel carries the 
global maximum pixel value. 
In fine-grain architectures this can be done in two phases. First, in n comparison steps, each 
pixel takes over the value of its upper neighbor, if it is larger than its own value. After n steps, 
each pixel in the bottom row contains the largest value of its column. Then, in the second phase 
after the next n horizontal comparison steps, the global maximum appears at the end of the 
bottom row. Thus, to obtain the final result requires 2n steps. However, as a fine-grain 
architecture executes n×n operations in each step, the total number of the executed operations are 
2n

3. However, the minimum number of requested operation to find the largest value is n2 only. 
Therefore, the efficiency in this case is: 
 η=1/2n (6)  
The most frequently used operation in this category is global OR. To speed up this operation in 
the fine-grain arrays, a global OR net is implemented usually [84][78]. This n×n input OR gate 
requires minimal silicon space, and enables us to calculate global OR in a single step (a few 
microseconds). 
However, in that case, when a fine-grain architecture is equipped with global OR, the global 
maximum can be calculated as a sequence of iterated threshold and global OR operations with 
interval halving (successive approximation) method applied in parallel to the whole array. This 
means that a global threshold is applied first for the whole image at level ½, and if there are 
pixels, which are larger than this, we will do the next global thresholding at ¾, and so on. 
Assuming 8 bit accuracy, this means that in 8 iterations (16 operations), the global maximum can 
be found. The efficiency is much better in this case:  
 η=1/16  
In coarse-grain architectures, each cell calculates the global maximum in its sub-array in N×N 
steps. Then n/N vertical steps come, and finally, n/N horizontal steps to find the largest values in 
the entire array. The total number of steps in this case is N 

2
 + 2n/N, and in each step, (n/N)

2 
operations are executed. The efficiency is:  
 η= n

2
 /(N 

2
 + 2n/N)*(n/N)

2
=1/(1+2n/N 

3
) (7)  

Since the sequence of the execution does not matter in this category, it can be solved with 100% 
efficiency in pass-through and the DSP-memory architectures and on the Cell architecture. 
We have to note that this task is memory bandwidth limited on the CELL architecture. 

Area active operators.  

The area active operators require some computation in each pixel in each update; hence, all the 
architectures work with 100% efficiency. Since the computational load is very high here, it is the 
most advantageous for the many-core architectures, because the speed advantage of the many 
processor can be efficiently utilized. 

3.3. COMPARISON OF THE ARCHITECTURES  

 
As we have stated in the previous section, front active wave operators run well under 100% 
efficiency on topographic architectures, since only the wave fronts need calculation, and the 
processors of the array in non-wave front positions do dummy cycles only or may be switched 



 253 

 

 253

off. On the other hand, the computational capability (GOPs) and the power efficiency (GOPs/W) 
of multi-core arrays are significantly higher than those of DSP-memory architectures. In this 
section, we show the efficiency figures of these architectures in different categories. To make fair 
comparison with relevant industrial devices we have selected three market-leader, video 
processing units, a DaVinci video processing DSP from Texas Instruments (TMS320DM6443) 
[93], and a Spartan 3 DSP FPGA from Xilinx (XC3SD3400A) [103], and the GTX280 from 
NVIDIA [104]. All three of these products’ functionalities, capabilities and prices were 
optimized to efficiently perform embedded video analytics.  
Table I summarizes the basic parameters of the different architectures, and indicates the 
processing time of a 3×3 convolution, and a 3×3 erosion. To make the comparison easier, values 
are calculated for images of 128×128 resolution. For this purpose, we considered 128×128 
Xenon and Q-Eye chips. Some of these data are from catalogues, other ones are from 
measurements, or estimation. As fine-grain architecture examples, we included both the SCAMP 
and Q-Eye architectures.  

We can see from Table I, the DSP was implemented on 90nm, while the FPGA the GPU and the 
CELL on 65 nm technologies. In contrast Xenon, Q-Eye, and SCAMP were implemented on 
more conservative technologies (180nm, 180nm, and 350nm respectively) and their power 
budget is an order of magnitude smaller compared to DSP and FPGA, and two orders of 
magnitude smaller than CELL and GPU. When we compare the computational power figures, we 
also have to take these parameters into consideration.  

Table I shows the speed advantages of the different architectures, compared to DSP-memory 
architecture both in 3×3 neighborhood arithmetic (8 bit/pixel) and morphologic (1 bit/pixel) 
cases. This indicates the speed advantage of the area active single step, and the front active 
content-dependent execution-sequence-variant operators. In Table II, we summarize the speed 
relations of the rest of the wave type operations. The table indicates the computed values, using 
the formulas that we have derived in the previous section. In some cases, however, the coarse- 
and especially the fine-grain arrays contain some special accelerator circuits, which takes the 
advantage of the topographic arrangement and the data representation (e.g., global OR network, 
mean network, diffusion network). These are marked by notes, and the real speed-up with the 
special hardware is shown in parenthesis.  
Among the low-power multi-core processor architectures, the pass-through is the only one that 
can handle both high-resolution and low resolution images too, due to the relatively small 
memory demand. While the coarse- and fine-grain architectures require the storage of 6-8 entire 
frames, the pass-through architecture needs only a few lines for each processor. In case of a 
mega-pixel image, it can be less than one third of the frame. This means that as opposed to the 
coarse- and fine-grain architectures, the pass-through architecture can trade speed for 

resolution. This is very important, because the main criticism of the topographic architectures is 
that they cannot handle large images, and many of the users do not need their 1000+ FPS. The 
price what the pass-through architectures pay for this trade-off is their rigidity. Once the 
architecture is downloaded to an FPGA (or an ASIC is fabricated), it cannot be flexibly 
reprogrammed, only the computational parameters can be varied. It is very difficult to introduce 
conditional branching, unless all the passes of the branching are implemented on silicon (multi-
thread pipeline), or significant delay or latency is introduced. 



254 3.  Implementation on physical cellular machine 

 

Table I Computational parameters of the different architectures for arithmetic (3×3 convolution) 

and logic (3×3 binary erosion) operations. 

 

DSP 

(DaVinci
+
) 

Pass-through 

(FPGA
++

) 

Coarse-grain 

(Xenon) 

Fine-grain 

(SCAMP/Q-Eye) 

Cell 

Architecture  

GPU 

GTX280 

Silicon technology  90nm  65nm 180nm 350/180nm 65nm 65nm 
Silicon area mm

2
   100 100/50  576 

Power consumption 1.25 W 2-3W 0.08 W 0.20 W 
86 W 236 W 

(board) 
Arithmetic proc. 

clock speed 600 MHz 250 MHz 100 MHz 1,2 / 2.5 MHz 
 

3200 MHz 
 

1300 MHz 
Number of arithmetic 

proc. 8 120 256 16384 
 

8x4 
 

240 

Nominal arithmetic 

comp. power 

4.8 GMAC 
(8 bit int) 

30 GMAC 
(8 bit int) 

25.6GMAC 
(8 bit int) 19GOPS**** 

102GMAC 
(32 bit float) 

324GMAC 
(32 bit float) 

Reached arithmetic 

comp. power 

3.5 GMAC 
(8 bit int) 

30 GMAC 
(8 bit int) 

12.2GMAC 
(8 bit int) 6.7GOPS**** 

48GMAC 
(32 bit float) 

14GMAC (32 
bit float) 

Efficiency of 

arithmetic calc. 73% * 100% 48% *** 41% ** 
 

47% 
 

4% 
3×3 convolution time 

(128x128 pixel) 42.3 µs***** 4.9 µs 12.1 µs 22 µs **** 
 

3.1µs 
 

14 µs 
Arithmetic speed-up 1 8.6 3.5 1.9 13.7 4 
Morph. proc. clock 

speed 600 MHz 83 MHz 100 MHz 1,2 / 5 MHz 
 

3200 MHz 
 

1300 MHz 
Number of 

morphologic proc. 64 864 2048 147456 
1024 7680 

Morphologic 

processor kernel type 2  × 32 bit 96  × 9 bit 256 × 8 bit 16384 × 9 bit 
 

8x128 
 

240x32 
Nominal morphologic 

comp. power 38GLOPS# 216GLOPS 205GLOPS 737GLOPS 
 

3280GLOPS 
 

10400GLOPS 
Reached morphologic 

comp. power 10GLOPS 72GLOPS 134GLOPS 737GLOPS 
 

1540GLOPS 
 

Efficiency of 

morphological calc. 28% * 33%  65% *** 100% 
 

47% 
 

3×3 morphologic 

operation time 13.6 µs***** 2.05 µs 1.1 µs 0.2 µs 
 

0.1µs 
 

Morphologic speed-

up 1 6.6 12.4 68.0 
 

142 
 

+ Texas Instrument DaVinci video processor (TMS320DM64x) 
++ Xilinx Spartan 3ADSP FPGA (XC3SD3400A) 

* processors are faster than cache access  

** data access from neighboring cell is an additional clock cycle 
*** due to pass-through stages in the processor kernel, (no effective calculation in each clock cycle) 
**** no multiplication, scaling with few discrete values  
***** these data-intensive operators slow down to 1/3rd or even 1/5th when the image does not fit to the internal memory 

(typically above 128×128 with a DaVinci, which has 64kByte internal memory) 
# LOPS: Logic operation per second (1 bit) 
 

The CELL and the GPU can also handle high-resolution images due to their relatively high 
external memory bandwidth. As it can be seen from the comparison, the efficiency of the GPU is 
very low. It is due to the small size convolution kernel. In convolutions with larger kernels or in 
other local operations, the GPU is much more efficient. 
In our comparison tables, we have represented a typical FPGA as a vehicle to implement the 
pass-through architectures. The only reason is that all the currently available pass-through 
architectures are implemented in FPGAs is mainly attributed to much lower costs and quicker 
time-to-market development cycles. However, they could also be certainly implemented in ASIC, 



 255 

 

 255

which would significantly reduce their power consumption, and decrease their large-volume 
prices making it possible to process even multi-mega pixel images at a video rate.  
 

Table II Speed relations in the different function groups calculated for 128×128 sized images. 

The notes indicate the functionalities by which the topographic arrays are speeded up 

with special purpose devices. 

 

DSP 

(DaVinci
+
)

Pass-

through 

(FPGA
++

) 

Coarse-grain 

(Xenon) 

Fine-grain 

discrete time 

(SCAMP/  

Q-Eye) 

Fine-grain 

continuous time 

 (ACLA) 

1D content-independent front 

active operators e.g. (shadow)      
processor util. Efficiency 100% 100% N/n: 6.25% 1/n: 0.8% 1/n: 0.8% 
speed-up in advantageous 
direction (vertical) 1 6.6 0.77 0.53 188 
speed-up in disadvantageous 
direction (horizontal) 1 1 2 10.6 3750 

2D content-independent front 

active operators       

processor util. Efficiency 100% 100% 
1/(1+2n/N

3
): 

66% 1/2n: 0.4% - 
speed-up (global OR) 1 6.6 8.2 (13*) 0.27 (20*) n/a 
speed-up (global max) 1 8.6 2.3 n/a n/a 
speed-up (average) 1 8.6 2.3 n/a (2.5)** n/a 

Execution-sequence-invariant 

content-dependent front active 

operators       
hole finder with k=10 sized 
small objects 

4 
updates 

k+1 updates 
(11) 

n/N+k 
(26) 

n/2+k updates 
(74) 

n/2+k updates 
(74) 

Speedup 1 2.4 1.9 3.7 1500 
 

Area active      
processor util. Efficiency 100% 100% 100% 100%  
Speedup 1 8.6 3.5 1.9 (210***) n/a 

 

Multi-scale      
1:4 scaling 1 8.6 3.5 0.1 n/a 

+ Texas Instrument DaVinci video processor (TMS320DM64x) 
++ Xilinx Spartan 3ADSP FPGA (XC3SD3400A) 
* Hard wired global OR device speeds up this function (<1 µs concerning the whole array) 

** Hard wired mean calculator device makes this function available (~2 µs concerning the whole array) 
*** Diffusion calculated on resistive network (<2 µs concerning the whole array) 
 
 
 
Table III shows the computational power, the consumed power and the power efficiency of the 
selected architectures. As we can see, the three topographic arrays have over hundred times 
power efficiency advantage compared to DSP-memory architectures. This is due to their local 
data access, and relatively low clock frequency. In case of ASIC implementation, the power 
efficiency of the pass-through architecture would also be increased with a similar factor. 



256 3.  Implementation on physical cellular machine 

 

Table III   Computational power, and the consumed electronic power, and their proportion in 

different architectures for convolution operations. 

 GOPs W GOPs/W Accuracy 
DaVinci 3.6 1.25 2.88 1/8 int 
Pass-through (FPGA) 30 3 10 1/8 int 
Xenon (64x64) 10 0.02 500 1/8 int 
SCAMP (128x128) 20 0.2 100 6-7 analog 
Q-Eye 25 0.2 125 6-7 analog 
Cell multiprocessor 225 85 2.6 32 float 

GPU 324 236 1.37 32 float 

 
 
Figure 12 shows the relation between the frame-rate and the resolution in a video analysis task. 
Each of the processors had to calculate 20 convolutions, 2 diffusions, 3 means, 40 morphologies 
and 10 global ORs. Only the DSP-memory and pass-through architectures support trading 
between resolution and frame-rate. The characteristics of these architectures form lines. The 
chart shows the performance of the three discussed chips too. The chips are represented here with 
their physical sizes. Naturally, this chart belongs to this particular task with the given operations 
“basket”. By using a different one, different chart would come out.  

 

64x64 128x128 QCIF QVGA VGA HD

10

video rate

100

1,000

10,000

resolution

fr
a
m

e
-r

a
te

 

 

DSP

pipe-line

Xenon

SCAMP

Q-Eye

Q-Eye

Xenon

SCAMP

pipe-line

DSP

 

pass-thr. 

pass-through 

 

Figure 12. Frame-rate versus resolution in a typical image analysis task. Both of the axes are 
in logarithmic scale. 

As it can be seen in Figure 12, both SCAMP and Xenon have the same speed as the DSP. In the 
case of Xenon, this is so, because its array size is 64×64 only. In the case of SCAMP, the 
processor was designed for very accurate low power calculation by using a conservative 
technology. In this particular task, the Q-Eye chip was almost as fast as the pass-through 
architectures, thanks to its integrated diffusion circuitry and support of binary morphology. 



 257 

 

 257

3.4. EFFICEINT ARCHITECTURE SELECTION  
 
So far, we have studied how to implement the different wave type operators on different 
architectures, identified constrains and bottlenecks, and analyzed the efficiency of these 
implementations. After having these results in our hand, we can define rules for optimal image 
processing architecture selection for topographic problems. This section considers the low power 
devices, where the embedded operation is a viable option. 
Image processing devices are usually special purpose architectures, optimized for solving 
specific problems or a family of similar algorithms. Figure 13 shows a method of special purpose 
processor architecture selection. It always starts with the understanding of the problem in all 
aspect. Then, different algorithms suitable for solving the problem are derived. The algorithms 
are described with flowchart, with the list of the used operations, and with the specification of 
the most important parameters. In this way, a set of formal data describes the algorithms, which 
are as follows: resolution, frame-rate, pixel clock, latency, computational demand (type and 
number of operators), and flowchart. Other application-specific (secondary) parameters are also 
given: maximal power consumption, maximal volume, economy etc. The algorithm derivation is 
a human activity supported by various simulators for evaluation and verification purposes. 
The next step is the architecture selection. By using the previously compiled data, we can define 
a methodology for the architecture selection step. As we will see, based on the formal 
specifications, we can derive the possible architectures. There might not be any, there might be 
exactly one, or there might be several, according to the demands of the specification of the 
algorithm. 

 

. 

. 

. 

. 

. 

. 

Problem 
(described verbally) 

Algorithm 2 
 

Algorithm k 
 

Algorithm 1 
 

Architecture 1 
 

Architecture k 
 

Architecture 2b 
 

Architecture 2a 
 

 

Figure 13. Methodology of special purpose processor architecture selection 

The first step of the method is the comprehensive analysis of the parameter set. Fortunately, in 
many cases it immediately leads to a single possible architecture. If it does not lead to any 
architecture, in a second step, we have to seek for options, how to fulfill the original specification 
demands. If it leads to multiple architectures, a ranking is needed based on secondary parameters.  
The three most important parameters are the frame-rate, the resolution, and their product, the 
minimal value of the pixel clock.1 In many cases, especially in challenging applications, these 
parameters determine the available solutions. Figure 14 shows frame-rate – resolution matrix. 
                                                           
1 The minimal value of the pixel clock is equivalent to the product of the frame-rate and the number of pixels 
(resolution). If the image source is a sensor, the pixel clock of the processor is defined by the pixel clock of the 
sensor. Since there are short blank periods in the sensor readout protocol for synchronization purposes, the pixel 
clock is slightly higher then the minimal pixel clock even in those cases, when the integration is done parallel with 
the readout (CMOS or CCD rolling shutter mode). However, in low light applications, the integration time is much 
longer than the readout time. In these cases, the sensor pixel clock can be orders of magnitude higher than the 
minimal pixel clock. 



258 3.  Implementation on physical cellular machine 

 

The matrix is divided into 16 segments, and each segment indicates the potential architectures 
that can operate in that particular parameter environment. The matrix shows the minimal pixel 
clock figures (red) in the grid points also.  
In Figure 14, the pass-through and the DSP can be positioned freely between frame-rate and 
resolution without constrains. Thus they appear everywhere, under a certain pixel clock rate. The 
digital coarse-grain sensor-processor arrays appear in the low resolution part (left column), while 
the analog (mixed-signal) fine-grain sensor-processor arrays appear in both the low and medium 
resolution columns.  
The next important parameter is the latency. Latency is critical when the vision device is in a 
control loop, because large delays might make the control loops instable. It is worth to 
distinguish three latency requirement regions: 

• very low latency (latency <2ms; e.g. missile, UAV, high speed robot controlling); 

• low latency (2ms < latency <50ms; e.g. robotic, automotive); 

• high latency (50ms < latency; e.g. security, industrial quality check). 
Latency has two components. The first is the readout time of the sensor, and the second is the 
completion of the processing on the entire frame. The readout time is negligible in the fine-grain 
mixed-signal architectures, since the analog sensor readout should be transferred to an analog 
memory through a fully parallel bus. The readout time is also very small (~100µs) in the coarse-
grain digital processor array, because there is an embedded AD converter array to do conversion 
in parallel. The DSPs and the pass-through processor arrays use external image sensors, in which 
the readout time usually is in the millisecond range. Therefore, in case of very low latency 
requirements, the mixed-signal and the digital focal plane arrays can be used. (There are some 
ultra-high frame-rate sensors with high speed readout, which can be combined with pass-through 
processors. However, these can be applied in very special applications only due to their high 
complexities and costs.) 

 

  
CG_D 
FG_A 

 
FG_A 

 
Multiple PLs 

 
n/a 

 
CG_D 
FG_A 
PT 
DSP 

 
 

FG_A 
PT 

DSP 

 
 

PT 

 
 

Multiple 
PTs 

CG_D 
FG_A 
PT 
DSP 

 

FG_A 
PT 

DSP 

 
PT 

DSP 

 
 

PT 
 

 
CG_D 
FG_A 
PT 
DSP 

 
FG_A 

PT 
DSP 

 
 

PT 
DSP 

 
 

PT 
DSP 

 
1k 

(32×32) 
16k 

(128×128) 

76.8k 

(320×240) 

983k 

(1280×768) 

1 

100 

2000 

1.6  

32  154  

7.6  98  

1970 

CG_D:  coarse-grain 
digital focal 
plane array 
processor 
architecture 

FG_A:  fine-grain 
digital focal 
plane array 
processor 
architecture 

PT:  pass-through 
architecture 

 

Resolution  
[log # pixels] 

Frame-rate 
[log FPS] 

Extremely 
challenging 

Not possible 

Challenging 

Standard 

15 
0.24  1.2  15  

Minimal 

pixel clock  

[MHz]  low res.  medium video megapixel 

ultra-high 

speed 

high  

speed 

video 

speed 

low 

 speed 

 

Figure 14. Feasible architectures in the frame-rate – resolution matrix 



 259 

 

 259

In the low latency category, those architectures can be used only, in which the sensor readout 
time plus the processing time is smaller than the latency requirements. In the high latency region, 
the latency does not mean any bottleneck. 
The next descriptor of the algorithms is the computational demand. It is a list of the applied 
operations. Using the execution time figures that we calculated for different operations on the 
examined architectures, we can simply calculate the total execution time. (In case of the pass-
through architecture the delay of the individual stages should be summed up.) The total 
processing time should satisfy the following two relations: 

ttotal_processing< tlatency - treadout 

ttotal_processing<1/frame_rate 

The last primary parameter is the program flow. The array processors and the DSP are not 
sensitive for branches in program flow. However, the pass-through architectures are challenged 
by the conditional program flow branches, because the branching should happen at the 
calculation of the first pixel of the frame, but at that time, the branching condition is not yet 
calculated. (The condition is calculated during the processing of the entire frame.) Since that, 
before the branching, the application of a frame-buffer is required, which generates significant 
hardware overhead and latency increase. 
There are three secondary design parameters. The first is the power consumption. Generally, the 
ASIC solutions need much less power than the FPGA or DSP solutions. The second is the 
cubature of the circuit. Smaller cubature can be achieved with sensor-processor arrays, because 
the combination of these two functionalities reduces the chip count. The third parameter is the 
economy. In case of low volume, the DSP is the cheapest, because the invested engineering cost 
is the smaller there. In case of medium volume, the FPGA is the most economical, while in case 
of high volume, the ASIC solutions are the cheapest.  
 



260 3.  Implementation on physical cellular machine 

 



Chapter 4. PDE SOLVERS  
 



262 4. PDE solvers  

 
In this chapter after two simple PDE (Laplace and Poison 
Equations) some emulated digital CNN based PDE problems are 
discussed. The models (by partial differential equations) are 
defined in each problem first. Than discretizing in space and in 
time the problems can be mapped to an emulated digital CNN 
model. The final architectures were further optimized, and 
evaluated in terms of time, space, accuracy and dissipated power. 
The considered problems are: 

(i) Tactile sensor model, 

(ii) Geothermal model,  
(iii) Ocean stream model, 
(iv) Fast fluid flow model. 

 



 263 

LaplacePDESolver:   Solves the Laplace PDE: ∇ 2x = 0 

Old names: LAPLACE 
 

0 ν/h2 0   0 0 0    
A =  ν/h2 -4*ν/h2+1/R ν/h2  B = 0 0 0  z = 0 

0 ν/h2 0   0 0 0    

where  ν is the diffusion constant, 
 h is the spatial step 
 R is the value of the resistor of the CNN cell. 
If ν = h = R = 1, our template is as follows: 
 

0 1 0   0 0 0    
A =  1 -3 1  B =  0 0 0  z = 0 

0 1 0   0 0 0    

Example : image name: laplace.bmp, image size: 100x100; template name: laplace.tem . 

    
 initial state output (t=T) 



264 4. PDE solvers  

PoissonPDESolver:   Solves the Poisson PDE: ∇ 2x = f(x)  

Old names: POISSON 
 

0 ν/h2 0   0 0 0    
A =  ν/h2 -4*ν/h2+1/R ν/h2  B = 0 0 0  z = 0 

0 ν/h2 0   0 0 0    

where  -f(x) is filled into the Bias map. 

Example:  ν = h = R = 1. Image names: poisson1.bmp, poisson2.bmp, poisson3.bmp; image 
size: 15x15; template name: poisson.tem. Torus frame style is used. 

     
 initial state fixed state bias map output 

 

 



 265 

4.1. TACTILE SENSOR MODELING BY USING EMULATED DIGITAL CNN-UM  

Model of the tactile sensor 
Tactile sensors are usually composed of a central shuttle plate, which is suspended by four bridges over a pit. In our 
case the bridges are located on the center of each edge as shown on Figure 1. Each bridge contains an embedded 
piezoresistor. The suspension of the whole structure allows deformation of the bridges as normal and shear stress is 
applied to the central plate. 

 

Figure 1. Structure of the tactile sensor 
The transient response of the central plate due to an applied normal pressure can be described by the following 
partial differential equation: 

 ⎟⎟
⎞

⎜⎜
⎛

∂
∂

+
∂∂

∂
+

∂
∂

−=
∂
∂

4

4

22

4

4

4

2

2

2
y
w

yx
w

x
wDp

t
whρ

⎠⎝

)

 (1) 

where w is the displacement of the plate, p is the applied pressure, h is the thickness of the plate and ρ is the density 
of the plate. The flexure rigidity D can be computed by the following expression: 

 ( 2

3

=
EhD
112 ν−

 (2) 

where E is the Young's modulus and ν is the Poisson's ratio. 

The dimensions of the plate is 100μm×100μm and the thickness is 2.85μm. The width of the suspension bridges is 
12.5μm. The tactile sensor is made from silicon so the material constants are the following: E=47GPa, ν=0.278 and 
ρ=2330kg/m3. 

Emulated digital solution 
To solve (1) on a CNN-UM the plate should be spatially discretized and each finite element is assigned to one CNN 
cell. Equation (1) is second order in time so two coupled CNN layers are required where the displacement of the 
plate is computed by the first layer while the velocity is computed by the second. The approximation of the spatial 
derivatives requires the following 5×5 sized template: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎡

−
−−

−

Δ
≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂∂

∂
+

∂
∂

=∇
02820
182081
02820
00100

2 44

4

22

4

4

4
4

x
D

y
w

yx
w

x
wDwD

⎦⎣ 00100

 (3) 

where Δx is the distance between the grid points. Equation (1) can not be solved on the current analog VLSI chips 
because 5×5 sized templates are not supported in these architectures. Using the Falcon configurable emulated digital 
CNN-UM architecture the limitations of the analog VLSI chips can be solved. The Falcon architecture can be 
configured to support two CNN layers and 5×5 sized templates. To achieve better numerical stability the leapfrog 



266 4. PDE solvers  

method is used instead of the forward Euler method during the computation of the new cell value. The leapfrog 
method computes the new cell value using the data from the previous time step according to the following equation: 

( )nnn wtfww Δ+= −+ 11  (4)  

where Δt is the time step value, wn-1, wn, wn+1 are the cell values at the previous, current and the next time step 
respectively. f(.) is the derivative computed by using template (3) at the given point. The implementation of the 
leapfrog method requires additional memory elements and doubles the required bandwidth of the processor but 
these modifications are worthwhile because much larger time step can be used. Additionally the symmetry of the 
required template operator makes it possible to optimize the arithmetic unit of the Falcon architecture. Using the 
original Falcon arithmetic unit the template operation is computed in 5 clock cycles in row-wise order and 5 
multipliers are used. However multiplication with 2, -8 and 20 can be done by shifts in a radix 2 number system. 
Multiplication by 20 can be computed by multiplying the value by 16 and 4 and sum the partial results. After this 
optimization just one clock cycle and only one multiplier is required during the computation. The required resources 
to implement one processor which can compute (1) on a 512×512 sized grid with different precisions are 
summarized on Table I. 

Table I. Resource requirements of one optimized Falcon processor core 

 Required 
resources 

Available resources  Resource utilization 

XC2V1000 XC2VP125 XC2V1000 XC2VP125 

Precision 18 bit 35 bit   18 bit 35 bit 18 bit 35 bit 

Mult18x18* 1 4 40 556 2.5% 10% 0.18% 0.72% 

Slice** 650 1200 5120 55616 12.7% 23.4% 1.17% 2.16% 

BRAM*** 5 10 40 556 12.5% 25% 0.9% 1.8% 
*Mult18x18 is an 18bit by 18bit signed multiplier 
**Each slice contains two 4 input look-up tables, two registers and carry logic for two full adders 
***BRAM is an 18kbit dual-ported SRAM 

Results, performance 
The proposed architecture will be implemented on our RC200 prototyping board from Celoxica Ltd. The Virtex-II 
1000 (XC2V1000) FPGA on this card can host four Falcon processor cores using 35bit precision, which makes it 
possible to compute four iterations in one clock cycle. The performance of the system is limited by the speed of the 
on board memory resulting in a maximum clock frequency of 90MHz. The theoretical performance of the four 
processor cores are 360 million cell update/s. Unfortunately the board has 72bit wide data bus, so 4 clock cycles are 
required to read a new cell value and to store the results this reduces the achievable performance to 90 million cell 
update/s. The size of the memory is also a limiting factor because the state values must fit into the 4Mbyte memory 
of the board. 

By using the new Virtex-II Pro devices with larger and faster memory the performance of the architecture can reach 
230MHz clock rate and can compute a new cell value in each clock cycle. Additionally the huge amount of on-chip 
memory and multipliers on the largest XC2VP125 FPGA makes it possible to implement 45 processor cores 
resulting in 10,350 million cell update/s computing performance. On the other hand the large number of arithmetic 
units makes it possible to implement higher order and more accurate numerical methods. The achievable 
performance and speedup compared to conventional microprocessors are summarized on Table II. The results show 
that even the limited implementation of the modified Falcon processor on our RC200 prototyping board can 
outperform a high performance desktop PC. If adequate memory bandwidth (288 bit wide memory bus running on 
230MHz clock frequency) is provided the performance of the emulated digital solution is 1400 times faster! 



 267 

Table II. Performance comparison 

 RC200 XC2V1000 XC2VP125 Athlon XP Pentium IV 

Clock freq. (MHz) 90 190 230 1833 3000 

Performance (million cell 
iteration/s) 90 760 10,350 3.92 7.42 

Iteration time on 512×512 
array (ms) 2.9127 0.3449 0.0253 66.8734 35.3293 

Speedup 12.12 102.42 1394.87 0.5283 1 

 

Figure 2. Displacement of the plate after 3μs. 
A simple test case was used to determine the accuracy of the fixed-point solution. The input function was a step 
function, which applied to the center of the plate. The transient response was computed using 64bit floating-point 
numbers. This result was compared to the results of the 18 and 32bit fixed-point computations. On Figure 2. the 
displacement of the plate is shown after 3.81μs (131,072 steps).The transient response of the center of the plate 
computed by 64bit floating-point and different fixed-point precisions is shown on Figure 3.  

0

5E-12

1E-11

1.5E-11

2E-11

2.5E-11

0 0.5 1 1.5 2 2.5 3 3.5 4

 64bit floating point 32bit fixed point 18bit fixed point

Figure 3. Transient response of the center of the plate 
The result shows that even the 18bit solution is very similar to the 64bit floating point solution.  

Reference 

Z. Nagy, Zs. Szolgay, P. Szolgay, “Tactile Sensor Modeling by Using Emulated Digital CNN-UM”, Proc. of 
CNNA04, Budapest,2004, pp. 399-404 



268 4. PDE solvers  

4.2. ARRAY COMPUTING BASED IMPLEMENTATION OF WATER REINJECTION IN 
GEOTHERMAL STRUCTURe  

 

The geothermal model 
A mathematical model of filtration and thermal processes of the surveyed region, the “Kazichene-Ravno pole” 

has been developed with a view to producing geothermal energy. The mechanism of thermodynamic processes is 
strictly defined by Darcy’s law of filtration and Fourier’s law of heat transfer [4], so it is expressed by differential 
equations, supplemented with initial and boundary conditions, conformable to the specific problem. 

Boundary value problem of filtration process 

For underground water movement the main differential equation referring to the filtration in the surveyed 
stratum, is 

0H HT T⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ + ⎜ ⎟⎜ ⎟x x y y
=

∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

f

 (1) 

where H is water pressure measured from unspecified reference plane, T is stratum conductivity  which 
is function of co-ordinates x and y, kf is filtration coefficient and m is stratum thickness which is a function of the 
co-ordinates x and y. The filtration rate in each point of the filtration field is: 

T k m=

,x f y f
H HV k V k
x y

∂
∂ ∂
∂

= − = −  (2) 

Boundary value problem of heat transfer 

As the heat transfer takes place in three layers of different hydro-geological and thermo-physical characteristics, 
the model is described by three differential equations. The structure of the layers is shown in Figure 1. 

Figure 1. Model of the examined region 

In conformity with the key prerequisites of the heat transfer model, the main differential equations can be 
expressed in the following way: 

1 1 1
1 1 1 1

t t t c 1
1

t
λ λ λ ρ

x x y y z z τ
⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠  (3) 

2 2 2
2 2 2

2 2
2 2

x

y

t t t
m cV 2t

x x y y z z
t t

m cV m c

x
λ λ λ ρ

ρ ρ
y τ

⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
∂ ∂

− =
∂∂  (4) 

3 3 3
3 3 3 3

t t t
cλ λ λ ρ 3

3
t

x x y y z z τ
∂ ∂ ∂⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟

∂
∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠   (5) 

where the symbols are as follows: 
- t1, t2 and t3 denote temperatures in the 1st, 2nd and 3rd area and are functions of x, y and z. 
- λ1, λ2 and λ3 are the coefficients of conductivity in the same areas and are functions of x, y and z. 
- c1, c2 and c3 mean heat capacities of the rocks. 
- ρ1, ρ2 and ρ3 is the rock thickness in the respective areas. 
- ρ and c are density and heat capacity of water. 
The equation (3) and (5) describe the heat transfer in the upper and lower argillaceous, impermeable layer, while 

the equation (4) denotes the process in the transitional, water saturated calcareous layer. 



 269 

Discretisation of PDEs in time and space  

The process described by the governing equation of filtration is a truly boundary value problem, which does not 
depend from the time and although by our computations the filtration terms are space dependent, but constant 
values in time. 

In implementation of the governing equations of heat transfer on different hardware units, it is necessary to 
discretise the system of equations both in accordance with space and time. The first order forward Euler formulation 

 of explicit, coupled finite-difference equations have 
bed by the following formulas: 

has been used to perform this operation and result wise a set
been derived corresponding to equation (3)-(5) and can be descri

( )( )
( )( ) ( )

, , , , 1, , 1, , 1, , , , , , , , 1, ,

, 1, , 1, , 1, , , , , , , , 1,

1
1 1 1 1 1 1 1 1 12

1 1

1 1 1 1 1 1 12
1 1

1

1 6

x y z x y z x y z x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z x y z

k k k k k

k k k

t t t t t
c x

t t t
c y

, , 1 , , 11 12
1 1

1
x y z x y z

kt
c z

τ λ λ λ λ
ρ

τ λ λ λ λ
ρ

− − − +

− − − +

+ Δ
= + − + +

Δ
Δ

+ − + +
Δ

 

τ λ λ
ρ − −

Δ
+ −

Δ ( )( ), , 1 , , , , , , , , 11 1 1 1 1 ,
x y z x y z x y z x y z x y z

k kt tλ λ
− +
+ +

( )( )
( )( )

, , , , 1, , 1, , 1, , , , , , , , 1, ,

, 1, , 1, , 1, , , , , , , , 1,

, , 1

1
2 2 2 2 2 2 2 2 22

, 2 2

2 2 2 2 2 2 22
, 2 2

22
, 2 2

1

1

1

x y z x y z x y z x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z x y z

x y z

k k k k k

x y

k k k

x y

x y

t t t t t
m c x

t t t
m c y

t
m c z

τ λ λ λ λ
ρ

τ λ λ λ λ
ρ

τ λ
ρ

− − − +

− − − +

−

+ Δ
= + − + +

Δ

Δ
+ − + +

Δ

Δ
+

Δ ( )( ) ( )

( )

( )

, , 1 , , 1 , , , , , , , , 1

, , , 1, ,

2 2 2 2 2 2

2 2
2

2 2
2 2

7
x y z x y z x y z x y z x y z x y z

x y x y z x y z

x y x y z x y z

k k k

k k
x

k k
y

t t

cV t t
c x

cV t t
c y

λ λ λ

τ ρ
ρ
τ ρ

ρ

− − +

+

+

− + +

Δ
− −

Δ

− −
Δ

 

and 

, , , , 1,

2

Δ

( )( )
( )( ) ( )

, , , , 1, , 1, , 1, , , , , , , , 1, ,

, 1, , 1, , 1, , , , , , , , 1,

, , 1 , , 1

1
3 3 3 3 3 3 3 3 32

3 3

3 3 3 3 3 3 32

3 32
3 3

1

1 8

x y z x y z x y z x y z x y z x y z x y z x y z x y z

x y z x y z x y z x y z x y z x y z x y z

x y z x y z

k k k k k

k k k

t t t t t
c x

t t t
c y

c z

τ λ λ λ λ
ρ

τ λ λ λ λ
ρ

ρ

− − − +

− − − +

− −

+ Δ
= + − + +

Δ
Δ

+ − + +
Δ

Δ , , 1 , , , , , , , , 13 3 3 3 3x y z x y z x y z x y z x y z− +

 

w p, Δx, Δy and Δz are the distance of grid points in direction x,y and z respectively. 
 

ngle Blade Center house. These blades are the main building blocks of the world’s fastest 
supercomputer at Los Alamos National Laboratory which first breaks through the "petaflop barrier" of 1,000 trillion 

So

3 3

1 ktτ λ λΔ ( )( )k kt tλ λ+ ++ −

here Δτ is the time ste

Cell Blade Systems 

 
The third generation blade system is the IBM Blade Center QS22 equipped with new generation PowerXCell 8i 

processors manufactured by using 65nm technology. Double precision performance of the SPEs are significantly 
improved providing extraordinary computing density – up to 6.4 TFLOPS single precision and up to 3.0 TFLOPS 
double precision in a si

operations per second. 
 

lution on a CNN Architecture 
 
To model the process of reinjection on emulated digital CNN architecture [8] a space-variant CNN model has 

been developed based on equation (6)-(8), which is operating with 3,5 dimensional templates. The second equation 
which describes the behavior of the water saturated transitional layer contains two additional parts which were 
derived from the time-independent filtration equation and make the connection between the process of filtration and 
heat transfer. 

By the process of filtration only the temperature values have to calculated and updated during the iterations, so it 
can be used zero-input CNN templates using the given initial values as initial state of the template running. To 
design space-variant, non-linear template for the three-dimensional medium we have designed 3 coupled 2D 
templates using an r=1 neighborhood for every three physical layers, so every feedback template-threefold is 
containing 27 elements. 



270 4. PDE solvers  

The structure of the coupled templates for one physical layer can be seen in Figure 3., where n denotes the 
described physical layer. 

An1

An2

An3

 
Figure 2. Structure of coupled template  

for the 3D heat transfer (

The coupled templ h was determin lows: 

r=1) 

ed from equation (7) are as folates of the second layer whic

21 , , 12
, 2 2

0 0

0 0 0

x y z
x y

A
m c z

λ
ρ −= ⎢ ⎥Δ

⎢ ⎥
⎢ ⎥⎣ ⎦

0 0 0
1τ

⎡ ⎤
⎢ ⎥

Δ⎢ ⎥   
23 , ,2

0 0 0
10 0x y zA τ λ

, 2 2

0 0 0
x ym c zρ

⎡ ⎤
⎢ ⎥

Δ⎢ ⎥= ⎢ ⎥Δ
⎢ ⎥
⎢ ⎥⎦

 

⎣

( )

( )

( )

1, ,2
, 2 2

1, , , ,2
, 2 2

, 1, , , , ,2 2
, 2 2 , 2 2

22 , 1,2
, 2 2

, , 1 , ,2
, 2 2 2 2

10 0

11

1 1
1

1

x y z
x y

x y z x y z
x y

x y z x y z x y z
x y x y

x y z
x y

x y z x y z
x y

m c x

m c x

m c m cy y
A

m c y
m c cz

τ λ
ρ

τ λ λ
ρ

τ τλ λ λ
ρ ρτ λ

ρ τ τλ λ
ρ ρ

−

−

−

−

−

Δ
Δ

Δ
− +

Δ

Δ Δ
− +

Δ ΔΔ
=

Δ Δ Δ
− + +

Δ

, ,
2 2 2 2

x y x yx y
c cV V

c x c y
τ ρ τ ρ

ρ ρ
Δ Δ

− −
Δ Δ

,x yy
cV
y
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ
⎢ ⎥

⎥

 

for the first and third physical layers can be determined similarly, there only need to 
be used the appropriate ρ

By using the previously ch is optimized for the 
SPEs of the Cell architecture. 

,, ,2
, 2 2 2 2

0 0
x yx y z x

x y

V
m c c xx

λ
ρ ρ

+⎢ ⎥ΔΔ⎢ ⎥⎣ ⎦

The space-variant templates 

1 cτ τ ρ

⎢ ⎥
⎢ ⎥
⎢ ⎥

Δ Δ⎢

 and c multiplier coefficients. 
 described discretization method a C based solver is developed whi

 
Figure 3. Input map for transitional layer 



 271 

 
Figure 4. Temperature map after simulation 

Reference 
 
[1] S Kocsárdi, Z. Nagy, S Kostianev, P. Szolgay, “FPGA based implementation of water reijection in geothermal structure”, Proc. of 

CNNA2006, pp. 323-327, 2006,Istanbul 
 



272 4. PDE solvers  

4.3. EMULATED DIGITAL CNN-UM BASED OCEAN MODEL  
 

The ocean model 
Building a universal ocean model that can accurately describe the state of the ocean on all spatial and temporal 

scales is very difficult. Thus ocean modeling efforts can be diversified into different classes, some concerned only 
with the turbulent surface boundary layers, some with continental shelves and some with the circulation in the 
whole ocean basin. Fine resolution models can be used to provide real-time weather forecasts for several weeks. 
These forecasts are very important to the fishing industry, ship routing and search and rescue operations. The more 
coarse resolution models are very efficient in long term global climate simulations such as simulating El Nino 
effects of the Pacific Ocean. 

In general, ocean models describe the response of the variable density ocean to atmospheric momentum and heat 
forcing. In the simplest barotropic ocean model a region of the ocean’s water column is vertically integrated to 
obtain one value for the vertically different horizontal currents. The more accurate models use several horizontal 
layers to describe the motion in the deeper regions of the ocean. Though these models are more accurate 
investigation of the barotropic ocean model is not worthless because it is relatively simple, easy to implement and it 
provides a good basis for the more sophisticated 3-D layered models. 

The governing equations of the barotropic ocean model on a rotating Earth can be derived from the Navier-
Stokes equations of incompressible fluids. Using Cartesian coordinates these equations have the following form: 

y
u

H
u

x
u

H
u

itycosvisLateralessurePrCoriolis

uA
x

gHusin2
dt

du

xyxx

x
2

bxwxy
x

∂
∂

−
∂
∂

−

∇+−+
∂
∂

−= ττηθΩ

Advection  a) 

y
uuu

uA
y

gHusin2
dt

du

yyyx

y
2

bywyx
y

∂
∂

−
∂

−

∇+−+
∂
∂

−−= ττηθΩ

u
HxH ∂  b) 

yxdt ∂∂

10dw UC

uud yx ∂
−

∂
−=

η

 c) 
Where η is the height above mean sea level, ux and uy are volume transports in the x and y directions respectively. 

In the Coriolis term Ω is the angular rotation of the Earth and θ is the latitude. The pressure term contains H(x,y), 
the depth of the ocean and the gravitational acceleration g. The wind and bottom stress components in both x and y 
directions are represented by τwx, τwy, τbx and τby respectively. The lateral viscosity is denoted by A. 

The bottom stress components can be linearly approximated by multiplying the ux and uy by a constant value σ’ 
the recommended value of this parameter is in the range 1-5·10-7. The wind stress components can be computed 
from the wind speed above the sea surface by the following approximation: 

2ρτ =  d) 
Where ρ is the density of the air, U10 is the speed of the wind at 10 meters above the surface and Cd is the drag 

coefficient. One possible approximation of the drag coefficient is the following: 

)sm6U3(
UU 102

1010
d

7.71.329.0C1000 ≤≤++=
 e) 

)sm26U6(U071.05.0C1000 1010d ⋅ ≤ ≤+=  f) 
The horizontal friction parameter A can be computed from the mesh-box Reynolds number Rc: 

A
xURc

Δ
=

 g) 
Where Δx is the mesh size and U is the magnitude of the velocity in the mesh-box. By approximating U with 
gH  and setting Rc=4 which is generally considered in nonlinear flow simulations the lateral friction can be 

computed by the following equation: 



 273 

cR
A =

gHxΔ

 h) 
At the edges of the model closed boundary conditions are used e.g. there is no mass transport across the 

boundaries. In this case ux and uy are both zero at the edges of the CNN cell array. 
The circulation in the barotropic ocean is generally the result of the wind stress at the ocean’s surface and the 

source sink mass flows at the basin boundaries. In this paper we use steady wind to force our model. In this case the 
ocean will generally arrive at a steady circulation after an initial transient behavior. 

 

CNN-UM solution 
Solution of equations a)-c) on a CNN-UM architecture requires finite difference approximation on a uniform 

square grid. The spatial derivatives can be approximated by the following well known finite difference schemes and 
CNN templates: 

dxA

000
x2x

⎥
⎥
⎦⎢

⎢
⎣

∂ Δ
101

000
1

=⎥
⎥
⎤

⎢
⎢
⎡

−≈
∂

 i) 

dyA

010
x2y

⎥
⎥
⎦⎢

⎢
⎣ −

∂ Δ
000

010
1

=⎥
⎥
⎤

⎢
⎢
⎡

≈
∂

 j) 

n2
2 A141

010
1

=⎥
⎥
⎤

⎢
⎢
⎡

−≈∇

010
x

⎥
⎥
⎦⎢

⎢
⎣

Δ

 k) 
Using these templates the pressure and lateral viscosity terms can be easily computed on a CNN-UM architecture. 

However the computation of the advection terms requires the following non-linear CNN template which can not be 
implemented on the present analog CNN-UM architectures. 

ij,x,x
ij,x

ij,x A101

000
u

u =⎥
⎥
⎤

⎢
⎢
⎡

−≈
∂

000
x2x

⎥
⎥
⎦⎢

⎢
⎣

∂ Δ

 l) 
Most ocean models arrange the time dependent variables ux, uy and η on a staggered grid called C-grid. In this 

case the pressure p and height H variables are located at the center of the mesh boxes, and mass transports ux and uy 
at the center of the box boundaries facing the x and y directions respectively. In this case the state equation of the 
ocean model can be solved by a one layer CNN but the required template size is 5×5 and space variant templates 
should be used. Another approach to use 3 layers for the 3 time dependent variables. In this case the CNN-UM 
solution can be described by the following equations: 

( )∑∑∑ +−+ yij,y,xxij,x,x
ij

xnij uAuA
H
1uAA

∑ ′−+−= ij,xij,wxdxijij,yij
ij,x uAgHuf

dt
du

στη
 m) 

( )∑

∑

+

′−+−−=

yij,y,yxij,x,y

ij,yij,wydyijij,xij
ij,y

uAuA

uAgHuf
dt

du
στη

∑∑ −+
ij

ynij H
1uAA

 n) 

∑∑ −−= ydyxdx
ij uAuA

dt
dη

 o) 

 



274 4. PDE solvers  

*

fij uy,ij

*

g Hij

*

-

ηi-1,j ηi+1,j

τwx,ij

Aij ux,i-1,j ux,i+1,j ux,i,j-1 ux,i,j+1 ux,ij

+ +

+

+

*

1/x
-

*

-

*

+

*

+ + +

+

+

uy,ij Hij ux,ij ux,i-1,j ux,i+1,j ux,ij ux,i,j-1 ux,i,j+1

 
Fig. 1. The proposed arithmetic unit to compute the derivative of ux. 
(Multiplication with -4 in template An and division with 2Δx and Δx2 is done by shifts. For simplicity these shifts are not 
shown on the figure.) 

The emulated digital solution 
Using equation m)-o) and templates i)-l) an analogic algorithm can be constructed to solve the state equation of 

the barotropic ocean model. However the non-linear advection terms do not allow us to implement our algorithm on 
the present analog CNN-UM chips. The non-linear behavior can be modeled by using software simulation but this 
solution does not differ from the traditional approach and does not provide any performance advantage. 

Some previous results show that configurable emulated digital architectures can be very efficiently used in the 
computation of the CNN dynamics and in the solution of simple PDEs. The Falcon emulated digital CNN-UM 
architecture can be modified to handle the non-linear templates required in the advection terms of the ocean model. 
The required blocks are an additional multiplier to compute the non-linearity and a memory unit to store the 
required ux,ij or uy,ij values. Of course this modification requires the redesign of the whole control unit of the 
processor. 

However this modified Falcon architecture can run the analogic algorithm of the ocean model its performance 
would not be significant because six templates should be run to compute the next step of the ocean model. The 
performance can be greatly improved by designing a specialized arithmetic unit which can compute these templates 
fully parallel. Instead building a general CNN-UM architecture which can handle non-linear templates an array of 
specialized cells is designed which can directly solve the state equation of the discretized ocean model. 

To emulate the behavior of the specialized cells the continuous state equations m)-o) must be discretized in time. 
In the solution the simple forward Euler formula is used but in this case we have an upper limit on the Δt timestep. 
The maximal value of the timestep can be computed by using the Courant-Friedrichs-Levy (CFL) stability 
condition. 

wcxtΔ < Δ  p) 
Where Δt is the timestep, Δx is the distance between the grid points and cw is the speed of the surface gravity 

waves typically gHcw = . 
Computation of the derivatives of ux and uy is the most complicated part of the arithmetic unit. The proposed 

structure to compute the derivative of ux is shown on Fig. 1. Similar circuit is required to compute the derivative of 
uy fortunately the results of the multiplication of g and Hij and the computation of the reciprocal of Hij can be used 
in this part too. This complex arithmetic unit can compute the derivatives and update the cell’s state value in one 
clock cycle but it requires pipelining to achieve high clock speeds. The values of Δx and Δt is restricted to be 
integer powers of two. In this case multiplication and division by these values can be done by shifts. This simple 



 275 

trick makes it possible to eliminate several multipliers from the arithmetic unit and greatly reduces the area 
requirements. 

The arithmetic unit requires 20 input values in each clock cycle to compute a new cell value. It is obvious that 
these values cannot be provided from a separate memory. To solve this I/O bottleneck a belt of the cell array should 
be stored on the chip. In the case of ux, uy and η two lines should be stored because these lines are required in the 
computation of the spatial derivatives. From the remaining values such as f, H, A, τwx and τwy only one line should 
be stored for synchronization purposes. 

Inside the arithmetic unit fixed point number representation is used because fixed point arithmetic requires much 
smaller area than floating point arithmetic. The bit width of the different input values can be configured 
independently before the synthesis. The width of the values are computed using simple rules and heuristics. For 
example the deepest point of the Pacific Ocean is about 11,000 meters deep. So 14 bits is required to represent this 
depth H with one meter accuracy. This is far more accurate than the available data of the ocean bottom so the last or 
the last two bits can be safely removed. In this case we always have to multiply H by 2 or 4 if it is used in the 
computations. Fortunately this multiplication can be implemented by shifts. Similar considerations can be used to 
determine the required bit width and the displacement of the radix point for the remaining constant values such as f, 
A, g, τwx and τwy. Using fixed point numbers with various width and displacement values makes it harder to design 
the arithmetic unit but it is worthwhile because the area can be reduced and clock speed is increased. 

In our recent implementation predefined configurable multipliers from Xilinx are used to simplify circuit design. 
The maximum input width of this IP core is 64 bit thus the bit width of the u and η values can not be larger than 31 
and 34 bits to avoid rounding errors inside the arithmetic unit. In this case 41 dedicated 18 bit by 18 bit signed 
multipliers are required to implement the arithmetic unit. Of course the bit width can be further increased by using 
custom multipliers. The required resources to implement this arithmetic unit on Xilinx Virtex series FPGAs is 
summarized in column General on Table I. 

 

Results 
The proposed architecture will be implemented on our RC200 prototyping board from Celoxica Ltd.. The 

XC2V1000 FPGA on this card can host one arithmetic unit which makes it possible to compute a new cell value in 
one clock cycle. Unfortunately the board has 72 bit wide data bus, so 5 clock cycles are required to read a new cell 
value and to store the results. The performance can be increased by slightly lowering the precision as shown in 
column RC200 on Table I. and implementing three memory units which use the arithmetic unit alternately. In this 
case 4 clock cycles are required to compute 3 new cell values and the utilization of the arithmetic unit is 75%. The 
performance of the system is limited by the speed of the on board memory resulting in a maximum clock frequency 
of 90MHz. In this case the performance of the chip is 67.5 million cell update/s. The size of the memory is also a 
limiting factor because the input and state values must fit into the 4Mbyte memory of the board. The cell array is 
restricted to 512×512 cells by the limited amount of on-board memory however the XC2V1000 FPGA can be used 
to work with 1024 or even 2048 cell wide arrays. 

By using the new Virtex-II Pro devices with larger and faster memory the performance of the architecture can 
reach 200MHz clock rate and can compute a new cell value in each clock cycle. Additionally the huge amount of 
on-chip memory and multipliers on the largest XC2VP125 FPGA makes it possible to implement 14 separate 
arithmetic units. These arithmetic units work in parallel and the cumulative performance is 2800 million cell 
update/s. On the other hand the large number of arithmetic units makes it possible to implement more accurate 
numerical methods. 

The results of the different fixed point computation are compared to the 64 bit floating point results. To evaluate 
our solution a simple model is used. The size of the modeled ocean is 2097km, the boundaries are closed, the grid 
size is 512×512 and the grid resolution is 4096m. The model is forced by a wind blowing from west and its value is 
constant along the x direction. The wind speed in the y direction is described by a reversed parabolic curve where 
the speed is zero at the edges and 8m/s in the center. The results of the 36 bit fixed-point computations after 72 
hours of simulation time using 32s timestep are shown in Figure 3. 



276 4. PDE solvers  

 
(a) 

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

X (km)

Y
 (k

m
)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 
(b) 



 277 

X (km)

Y
 (k

m
)

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

 
(c) 

Fig. 3. Results after 72 hours simulation (a) Bottom topography: seamount, (b) flow direction, (c) elevation 
 

 

TABLE I 
RESOURCE REQUIREMENTS AND DEVICE UTILIZATION OF THE ARITHMETIC 

UNIT 
  Bit width  

Variable General RC200  
f 18 10  
H 17 10  
A 17 10  
τw 18 12  
η 34 30  
u 31 30  

I/O bus width (bit) 184 144  
 Required resources  

 
18x18 bit 
multiplier 41 41  

18kbit Block 
RAM 16 13  

Part number 18x18 bit multiplier 
utilization 

Available 
resources 

XC2V1000 103% 103% 40 
XC2V8000 24% 24% 168 
XC2VP125 7% 7% 556 

Part number 18kbit Block RAM 
utilization 

Available 
resources 

XC2V1000 40% 33% 40 
XC2V8000 10% 8% 168 
XC2VP125 3% 2% 556 

 

 

Reference 

Z. Nagy, Zs. Vörösházi,P. Szolgay, “Emulated Digital CNN-UM Solution of Partial Differential Equations”, Int. J. 
CTA, Vol. 34, No. 4, pp. 445-470 (2006) 



278 4. PDE solvers  

4.4. 2D COMPRESSIBLE FLOW SIMULATION ON EMULATED DIGITAL CNN-UM  
 

For engineering applications in the topic of flow simulation the basic of developments is the well-known Navier-
Stokes system of equations. This system was determined from the fundamental laws of mass conservation, 
momentum conservation and energy conservation. 

In this paper we will concentrate on inviscid, compressible fluids where the dissipative, transport phenomena of 
viscosity, mass diffusion and thermal conductivity can be neglected. Therefore if we simply drop all the terms 
involving friction and thermal conduction from the Navier-Stokes equations, than we have the Euler equations, so 
the governing equations for inviscid flows . 

Euler equations 
The resulting equations according to the above mentioned physical principles for an unsteady, two-dimensional, 
compressible inviscid flow are displayed below without external sources. In order to take the compressibility and 
variations of density in high-speed flows into account, we utilize the conservation form of the governing equations, 
using the density-based formulation. 

Continuity equation 

 ( )V 0
t
ρ ρ∂
+∇⋅ =

∂
 (1) 

Momentum equations 

x component: 
( ) ( )V

u pu
t x
ρ

ρ
∂ ∂

+∇⋅ = −
∂ ∂

( )

 (2) 

y component: ( )V
v pv

ρ
ρ

∂
t y

∂
+∇ ⋅ = −

∂ ∂
 (3) 

where t denotes time, x and y are the space coordinates, furthermore in two-dimensional Cartesian coordinates the 
vector operator ∇ is defined as 

 i j
x y
∂ ∂

∇ ≡ +
∂

 (4) 
∂

The dependent variables are ρ, V(u, v) and p and they denote the density, the velocity vector field and the scalar 
field of pressure, respectively. We can see in the above-mentioned equations that we have three equations in terms 
of four unknown flow-field variables. In aerodynamics, it is generally reasonable to assume that the gas is perfect 
gas so the equation of state can be written in the following form: 

p RTρ=  (5)  

where R is the specific gas constant, and its value in case of air is 286,9 J
kg K⋅

 and T is the absolute temperature 

and the temperature value can be defined as an initial condition because we made isothermal system consideration. 
For this reason the fourth governing equation, the energy equation, can be neglected. 

 Discretization of PDE’s in time and space 
In implementation of Euler equations on different hardware units it is necessary to discretize the system of 
equations both in accordance with space and time and it is advantageous to chose finite difference approximation 
method using explicit integrating formula because of the regular, rectangular arrangement of the processing 
elements in the CNN-UM architecture. So according to this we have tried different explicit approximations such as 
the 

• forward Euler method, 

• Lax method and 

• Lax-Wendroff method . 



 279 

In the next sections we will examine these methods applied to two-dimensional first order hyperbolic Euler 
equations from the point of view of their stability, realizability with CNN templates, usability in different 
engineering applications and their hardware utilization on an emulated digital CNN-UM solution. 

During the discretization of Euler equations we are interested in replacing the different partial derivatives with 
suitable algebraic difference quotients. 

Euler’s forward time central space method 
Euler’s forward time and central space (FTCS) approximation method computes the partial derivative of a given 
two-dimensional function u around a given point approximating the solutions using only the first two terms of the 
Taylor expansion of the function. For the temporal derivatives the FTCS applies (6) the first order accurate forward 
difference formula, while the spatial derivatives are computed using (7) the central difference formula having 
second order accuracy. 

 
1 2

, ,
n n
i j i ju uu t+ −∂ Δ⎛ ⎞

2
, 2i j

u
t t x

∂
= −⎜ ⎟∂ Δ ∂⎝ ⎠

 (6) 

( )
 

2 3
1, ,

32 6

n n
i j i ju u tu u

,i jx x x
+ − Δ∂ ∂⎛ ⎞ = −⎜ ⎟∂ Δ ∂⎝ ⎠

 (7) 

Substituting (6) and (7) into (1)-(3) the following discretized formulas can be derived: 

( ) ( )1
, , 1, 1, 1, 1, , 1 , 1 , 1 , 12 2
n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j

t tu u v v
x y

ρ ρ ρ ρ ρ ρ+
+ + − − + + − −

Δ Δ
= − − − −

Δ Δ
 (8)  

( )
 

( ) ( )1, 1, 1, 1, 1, 1, , 1 , 1 , 1 , 1 , 1 , 1             
2 2

n n n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j i j

t tu u u u u v u v
x y
ρ ρ ρ ρ+ + + − − − + + + − − −

Δ Δ
− − − −

Δ Δ

1 1
, , , , 1, 1,2
n n n n n n
i j i j i j i j i j i j

tu u RT
x

ρ ρ ρ ρ+ +
+ −

Δ
= − −

Δ  (9) 

( )
 

( ) ( )

1 1
, , , , , 1 , 1

1, 1, 1, 1, 1, 1, , 1 , 1 , 1 , 1 , 1 , 1

2

             
2 2

n n n n n n
i j i j i j i j i j i j

n n n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j i j

tv v RT
y

t tu v u v v v v v
x y

ρ ρ ρ ρ

ρ ρ ρ ρ

+ +
+ −

+ + + − − − + + + − − −

Δ
= − −

Δ
Δ Δ

− − − −
Δ Δ

,
n
i j

 (10) 

where Δt is time-step, while Δx and Δy denote differences between grid points in directions x and y. 

The von Neumann stability analysis for hyperbolic equations shows that the solutions applying the FCTS methods 
will be unconditionally unstable. 

Lax and Lax-Wendroff methods 

In the Lax method the FTCS differencing scheme is used but to maintain stability we replace u  by its average so 

the following discretized equations can be determined: 

 
( )

( ) ( )1, 1, 1, 1, , 1 , 1 , 1 , 1       
2 2

n n n n n n n n
i j i j i j i j i j i j i j i j

t tu u v v
x y
ρ ρ ρ ρ+ + − − + + − −

Δ Δ
− − − −

Δ Δ

1
, , 1 , 1 1, 1,

1
4

n n n n n
i j i j i j i j i jρ ρ ρ ρ ρ+

+ − + −= + + +
 (11) 

( ) ( )
 

( )

1 1
, , , 1 , 1 , 1 , 1 1, 1, 1, 1, 1, 1,

1
4 2

n n n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j i j

tu u u u u RT
x

ρ ρ ρ ρ ρ ρ ρ+ +
+ + − − + + − − + −

Δ
= + + + − −

Δ

1, 1, 1, 1, 1, 1, , 1 , 1 , 1 , 1 ,             
2 2

n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j

t tu u u u u v u
x y
ρ ρ ρ ρ+ + + − − − + + + −

Δ Δ
− − − −

Δ Δ
( )1 , 1

n n
i jv− −

 (12) 

( ) ( )
 

( )

1 1
, , , 1 , 1 , 1 , 1 1, 1, 1, 1, , 1 , 1

1, 1, 1, 1, 1, 1, , 1 , 1 , 1 , 1 ,

1
4 2

             
2 2

n n n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j i j

n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j

tv v v v v RT
y

t tu v u v v v v
x y

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

+ +
+ + − − + + − − + −

+ + + − − − + + + −

Δ
= + + + − −

Δ
Δ Δ

− − − −
Δ Δ

( )1 , 1
n n

i jv− −

 (13) 



280 4. PDE solvers  

The Lax-Wendroff method computes new values of dependent variables in two steps. First it evaluates the values at 
half-step time using the Lax method and in second step it applies leapfrog method with half-step. The computation 
formula for (2) can be seen below. 

First step: 

 
( ) ( )1/ 2 1/ 2

, , 1, 1, , 1 , 1 1, 1, , 1 , 1 1, 1,
1
4 2

n n n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j i j

tu u u u u RT
x

ρ ρ ρ ρ ρ ρ ρ+ +
+ + + + − − − − + −

( )1, 1, 1, 1, 1, 1, , 1 , 1 , 1 ,                 
2 2

n n n n n n n n n
i j i j i j i j i j i j i j i j i j i

t tu u u u u v
x y
ρ ρ ρ ρ+ + + − − − + + +

Δ
= + + + − −

Δ
Δ Δ

− − − −
Δ Δ

( )1 , 1 , 1
n n n

j i j i ju v− − −

 (14) 

Second step: 

( )1 1 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
, , , , 1, 1, 1, 1, 1, 1,2
n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j

tu u u u u u
x

ρ ρ ρ ρ+ + + + + + + +
+ + + − − −

Δ
= − −

Δ

( )1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1
, 1 , 1 , 1 , 1 , 1 , 1 1,            

2 2
n n n n n n n
i j i j i j i j i j i j i j

t tu v u v RT
y x

ρ ρ ρ+ + + + + + +
+ + + − − − +

Δ Δ
− − −

Δ Δ
( )/ 2 1/ 2

1,
n
i jρ +
−−

 (15) 

The partial differential equations of density and the y directional velocity component can be discretized in similar 
way. 

In equations (11) through (15) the notations are the same as they were in the discrete form of FTCS. 

The von Neumann stability analysis shows in both cases of Lax and Lax-Wendroff methods that these schemes are 
conditionally stable in case of ordinary hyperbolic equations and although there is no analytical stability analysis to 
determine limiting time step requirements because of the nonlinear nature of the Euler equations, the following 
empirical formula can be applied. 

 
( )

1 2 / Re
CFLt

tσ

Δ

Δ
Δ ≤

+
 (16) 

where 0.7 0.9σ ≅ − , can be determined using the Courant-Friedrichs-Lewy condition and 

, where Re denotes the Reynolds number. 

( )CFL
tΔ

( )Re min Re ,Re 0x yΔ Δ Δ= ≥

Considering the above mentioned methods it is very remarkable that during the computation regular, rectangular 
grids can be used, so we have the possibility to implement these solutions on CNN-UM architecture. Furthermore 
the last two examined methods have some valuable advantages compared to the FTCS in case of hyperbolic partial 
differential equations: 

• they conserve the mass in a closed system, 

• the computational accuracy of Lax-Wendroff method is second order in time and space, 

• the hardware utilization of the implemented Lax formula will be very similar compared to 
the case using FTCS method and 

• oscillations caused by square points – like corners in the space – exist in case of Lax-
Wendroff method, or the solution of Lax method is dissipative but the effect of these 
properties does not blow up like FTCS scheme if the time step is defined properly. 

In 1995 a former CNN based Navier-Stokes solver was published, by which it was possible to divide both 
momentum equations with density because that solution was designed to model the behavior of incompressible 
fluids but in our solution it is necessary to use dividers due to compressible property of medium in order to get the u 
and v values after steps. 

The Euler equations were solved by a modified Falcon processor array in which the arithmetic unit has been 
changed according to the discretized continuity and momentum equations. For the momentum equations the values 
of R and T were defined as an initial condition because we supposed slow motions and so isothermal system 
condition in the fluid flow. 

Since each CNN cell has only one real output value, three layers are needed to represent the variables u, v and ρ in 
case of FTCS and Lax approximations. In these cases the CNN templates acting on the u layer can easily be taken 
from (9) and (12) in conformity with using the FTCS or the Lax scheme. Equations (17)-(19) show templates, in 



 281 

which cells of different layers at positions (k, l) are connected to the cell of layer u at position (i, j). The terms in (9) 
and (12) including only ρ are realized by 

 
[ ],

0 0 0
1 0 1 .

2
u

kl
RTA

x
ρ

0 0 0
ρ

⎡ ⎤
⎢ ⎥= − −⎢ ⎥Δ
⎢ ⎥⎣ ⎦

 (17) 

The nonlinear terms are 

 
, 2

0 0 0
1 1 0 1 ,

2
0 0 0

x kl

u u
klA uρ ρ

⎡ ⎤
⎢ ⎥ ⎡ ⎤= − − ⋅⎣ ⎦⎢ ⎥Δ
⎢ ⎥⎣ ⎦

 (18) 

 [ ],

0 1 0
1 0 0 0

2
uv u

kl kl kl .
0 1 0

A u v
x

ρ ρ
−⎡ ⎤

⎢ ⎥= − ⋅ ⋅⎢ ⎥Δ
⎢ ⎥⎣ ⎦

 (19) 

Of course the value of u can get only after the division with the density value. The templates for the ρ and v layers 
can be defined analogously. 

In case of Lax-Wendroff scheme u, v and ρ denote the state variables of the first step, while u’, v’ and ρ’ the state 
variables of the second computational step so the number of required layers is six. The linear and nonlinear 
templates can be determined in a very similar way as in case of FTCS or Lax methods. The only difference will be 
that the layers without comma will be interconnected with layers having comma notation. For example the nonlinear 
connection between the cell of layer u at position (i, j) and cells of ρu2 at positions (k, l) in (15) can be described by 
the following template: 

 ( )2
,

0 0 0
1 1 0 1 .

2
u u

kl klA u
x

ρ ρ′ ′

⎡ ⎤

0 0 0

⎡ ⎤⎢ ⎥ ′ ′= − − ⋅⎢ ⎥⎢ ⎥Δ ⎣ ⎦⎢ ⎥⎣ ⎦
 (20) 

In accordance with the different discretized equation systems we have designed three complex circuits which are 
able to update state values of a cell in every clock cycle in emulated digital CNN-UM architecture. 

The proposed arithmetic unit to compute the derivative of u layer using Lax method is shown in Fig. 1. In order that 
the different hardware units of this arithmetic could work with maximal parallelism and so achieve the highest 
possible clock speed during the computation, pipelining technique has been used. 



282   4. PDE solvers 

+

+

1,i j

nρ
+

1,i j

nu
+

1,i j

nρ
−

1,i j

nu
−

+

, 1i j

nρ
+

, 1i j

nu
+

, 1i j

nρ
−

, 1i j

nu
−

-

1,i j

nu
+ 1,i j

nu
−

-

1,i j

nu
+ 1,i j

nu
−

+

RT1,i j

nρ
+ 1,i j

nρ
−

- +

-

-+

- +

-+

-+

,

1
i j

nu +

/

* *

* * * *

* * *

,

1
i j

nρ +

 
Figure 1. The proposed arithmetic unit to compute the derivative of u layer 

in the solution using Lax approximation method 

Other trick can be applied if we choose the value of Δt, Δx and Δy to be integer power of two because the 
multiplication with these values can be done by shifts so we can eliminate several multipliers from the hardware and 
additionally the area requirements will be greatly reduced. 

Comparing the equation systems of (8)-(10) and (11)-(13) one can see that the only modification in case of solution 
applying FTCS, which need to be executed, will be that two additional multipliers need to be build in but some 
adders can be eliminated. 

The implementation of Euler equations discretized by the Lax-Wendroff scheme requires about two times larger 
hardware area than the previous solutions because in this case actually both the arithmetic units of Lax and FTCS 
solutions need to be implemented in one circuit. 

The input and some result images of 32 bit precision simulation computing 1 million iterations with 2-10 second time 
step on a model having 128x128 grid points can be seen in Fig.10. The red area denotes larger, while the blue area 
means smaller density and the arrows show the direction of the flow. Using the Lax method the computational time 
was 1772.7 seconds using Athlon 64 3500+ processor, and 1098.9 seconds on one core of an Intel Core2Duo T7200 
applying floating point numbers. This is equivalent to approximately 9.3 million and 14.7 million cell update/s, 
respectively. The Lax-Wendroff method is about 60% slower as the Lax method. In this case the computation can 
be carried out in 2852.4 s and 1803.5 s on the AMD and Intel processors, respectively. 

Using the Lax method the previous simulation takes approximately just 123.18 s using our XC2V3000 FPGA and 
65.5 s using the XUP2Pro so the computation has been accelerated approximately by 8.9 and 16.7 times compared 
to the performance of Core2Duo. Using the high performance XC4SX55 FPGA the simulation lasts 8.19 seconds, 
so the computation is 134-fold faster. The expected computing time of the Lax-Wendroff method on the XC4SX55 
FPGA is 20.9 s which is 86.3 times faster than the Core2Duo microprocessor. 



 283 

 

 t=1 sec t=1.5 sec

t=0 sec t=0.5 sec

 
Figure 10. Image sequence about the fluid in a closed area inside with a wall computed with 32 bit fixed point 

numbers using the Lax method 
Reference 

S. Kocsárdi, Z. Nagy,  Á. Csik,  P. Szolgay,”Two-dimensional compressible flow simulation on emulated digital 
CNN-UM”, Int. J. CTA, Vol. 37, No.4, pp.569-585(2009) 



284 4. PDE solvers  

 



Chapter 5. SIMULATORS  
 

 

 



286 5. Simulators  

In this section, two freely downloadable simulator is introduced. The first is the MATCNN 
simulator, which enables the simulation of any linear or non-linear CNN, and CNN template 
sequence. The second is the CI simulator, which supports the simulation of cellular automations.  



 287 

5.1. MATCNN SIMULATOR  
 
Linear templates specification  
 

| 
EDGE_I = -1.5; 
 
Example 2: DIFFUS - performs linear diffusion (the linear B term is zero) 
 
DIFFUS_A = [ 0.1  0.15 0.1; 
    0.15 0  0.15; 
    0.1  0.15 0.1 ]; 
DIFFUS_I = 0; 
 
 
Nonlinear “AB-type” template: [ A  B  $A $B  I ] 
 
The associated CNN state equation: 
 

d
dt

v t v t A v t B v t I

A v B v

x x ij kl y
kl N

ij kl u ij
kl N

ij kl yy
kl N

ij kl uu
kl N

ij ij kl
r

kl
r

r r

( ) ( ) ( ) ( )

$ ( ) $ ( )

, ,

, ,

= − + + +

+ +

∈ ∈

∈ ∈

∑ ∑

∑ ∑Δ Δ
    (3) 

 
MATCNN format: 
 
Example 1: GRADIENT -  performs magnitude gradient thresholding 

(the linear B term and nonlinear $A  term are zero) 
 
GRADT_A = [ 0 0 0; 
    0 2 0; 
    0 0 0 ]; 
GRADT_Bb = [ 1 1 1; 
    1 0 1; 
    1 1 1 ]; 
GRADT_b = [ 1 3  -3 3   0 0   3 3 ]; (function of the nonlinear interaction, see later) 
GARDT_I = -1.8; 
 
 
Nonlinear “D-type” template: [ A  B    I ] $D
 
The associated CNN state equation: 
 

d
dt

v t v t A v t B v t I

D v

x x ij kl y
kl N

ij kl u ij
kl N

ij kl
kl N

ij ij kl
r

kl
r

r

( ) ( ) ( ) ( )

$ ( )

, ,

,

= − + + +

+

∈ ∈

∈

∑ ∑

∑ Δ
    (4) 

 
MATCNN format: 
 
Example 1: MEDIAN - performs median filtering 

(the linear B term and the cell current I is zero) 
 
MEDIAN_A = [ 0 0 0; 
    0 1 0; 



288 5. Simulators  

    0 0 0 ]; 
MEDIAN_Dd = 0.5 *[ 1 1 1; 
      1 0 1; 
      1 1 1 ]; 
MEDIAN_d = [ 0 2  0 -1   2 1   12 ]; (function of the nonlinear interaction, see later) 
 
Example 2: NLINDIFF -  performs nonlinear diffusion 

(the linear B term and the cell current I is zero) 
 
NLINDIFF_A = [ 0 0 0; 
     0 1 0; 
     0 0 0 ]; 
NLINDIFF_Dd = [ 0.5 1 0.5; 
     1 0 1; 
     0.5 1 0.5 ]; 
NLINDIFF_d = [ 1 5 -2 0   -0.1 0   0 1   0.1 0   2 0   122 ] 
 
 
Nonlinear function specification in “AB-type” and “D-type” nonlinear templates  
 

$A , A unique nonlinear function a, b, and d is assigned to each nonlinear operator $B , and , respectively. 
These nonlinear functions determine the nonlinear cell interaction and allowed to be piecewise-constant (pwc) or 
piecewise-linear (pwl). Their specification in MATCNN is as follows: 

$

d v( )Δ

D

 
For a and b:  [ interp p_num  x_1 y_1   x_2 y_2   …   x_n y_n] 
Where:    interp - interpolation method (0 - pwc; 1 - pwl) 
     p_num - number of points 
     x1 y1 - first point ordinate and abscissa 
     xn yn - last point ordinate and abscissa 
 
Example (from GRAD template): 
GRADT_b = [ 1 3  -3 3   0 0   3 3 ]; 
Pwl interpolation between three points: (-3.3), (0,0), (3,3), the absolute value “radial-basis” function. 
Remark: a and b are always applied to the output and input difference values of the neighboring cells, 

respectively (see formula (1)). 
 
 
For d:    [ interp p_num  x_1 y_1   x_2 y_2   …   x_n y_n  intspec] 
Where:    interp - interpolation method (0 - pwc; 1 - pwl) 
     p_num - number of points 
     x1 y1 - first point ordinate and abscissa 
     xn yn - last point ordinate and abscissa 
     intspec - interaction specification 
In case of nonlinearity d the interaction should also be specified, the valid codes are as follows: 
For the interaction:  



 289 

11

12

13

21

22

23

31

32

33

2 1− = −

− = −

− = −

− = −

− = −

− = −

− = −

− = −

− = −

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

Δ

v v v

v v v

v v v

v v v

v v v

v v v

v v v

v v v

v v v

u kl u ij

ukl x

ukl y

x kl uij

x kl x

x kl y

y kl uij

y kl x

y kl y

ij

ij

ij

ij

ij

ij

 

For the interaction: d v v( )( )Δ Δ  100 should be added to the above codes. 
Remark: it can be seen that in case of the code 11 and code 33 the interaction is exactly that of the a and b, 

respectively (this also explains why is called the generalized nonlinear operator since it includes both and $D $A
$B ). The above specification of the interactions makes it possible to formulate the operators of the gray-scale 

morphology, statistical filtering and nonlinear diffusion as simple CNN templates. 
 
Example 1 (from MEDIAN template): 
MEDIAN_d = [ 0 2  0 -1   2 1   12 ] 
Pwc interpolation, two points: (0,-1), (2,1) - a thresholding-type nonlinear function applied to the input and 

state difference of the neighboring cells (code: 12). 
Modification to a sigmoid-type nolinearity (pwl interpolation, 4 points): 
MEDIAN_d = [ 1 2  -2 -1   -0.5 -1   0.5 1   2 1   12 ] 
 
Example 2 (from NLINDIFF template): 
NLINDIFF_d = [ 1 5 -2 0   -0.1 0   0 1   0.1 0   2 0   122 ] 
Pwl interpolation, five points: (-2,0), (-0.1, 0), (0, 1), (0.1, 0), (2,0) - a pwl radial-basis function applied to the 

state difference values. In the interaction the function output is also multiplied by the state difference value (code: 
122=100 +22). 

CNN Template Library 

 The MATCNN Toolbox includes a default CNN template library (temlib.m) where a number of tested CNN 
templates (linear, nonlinear “AB-type” and nonlinear “D-type”) are given in the format discussed in subsection 1.3. 
The demonstration examples of 2.2 are using this template library. The user can define a similar library assigned to 
the algorithms. 

Images Assigned to the CNN Models 

 The name of the images (global variables) assigned to all CNN models in MATCNN are as follows: 
 INPUT1 - U or U1 (primary input image of the CNN model) 
 INPUT2 - U2 (secondary input image of the CNN model) 
 STATE  - X (state image of the CNN model) 
 OUTPUT - Y (output of the CNN model) 
 BIAS  - B (bias image of the CNN model: “bias map”) 
 MASK  - M (mask image of the CNN model: “fixed-state map”) 
 
 Remark: the sum of the constant cell current (I) specified in the CNN template and the space variant bias 
value (Bij) is the space variant current of the CNN model (Iij = I + Bij). The default bias is zero. The mask is a binary 
map (Mij = 1 or -1) and determines whether a CNN cell is active (operating) or inactive (fixed). The default mask 
value is 1 (all cells are active). (see also footnotes 1 and 2) Arithmetical, logical and - type operators can have 
two input values (U=U1 and U2). 

$D



290 5. Simulators  

Global Variables 

 Scripts and functions of the MATCNN assume that certain global variables exist and are initialized in the 
environment. 
 The global variables that should be modified by the user when simulating a CNN model are as follows: 

• UseMask 
• UseBiasMap 
• Boundary 
• TemGroup 
• TimeStep 
• IterNum 

 Subsection 1.7 explains the role of the above variables, more details and the initial setting can be found in 
subsection 2.1. 
 Remark: There exists another group of global environmental variables used and modified by MATCNN 
scripts and functions that should not be modified by the user. These global variables are listed and explained in 
subsection 2.1. 
 
Running a CNN Simulation  
 
 To run a CNN simulation and visualize the result in MATCNN the following steps should be followed: 
 
• set the CNN environment and template library 
  
 e.g. Cnn_SetEnv;    - set the CNN environment 
   TemGroup = ‘MyTemLib’; - the template library is stored in mytemlib.m file 
  
 Remark: the environment always has to be set, if the template library is not specified the default library of the 

MATCNN is temlib.m. 
  
• initialize the input and state images assigned to the CNN model 
  
 e.g. INPUT1 = LBmp2CNN(‘Road’); - road.bmp is loaded to the input 
   STATE = zeros(size(INPUT1));  - all initial state values are set to zero 
  
 Remark: the input initialization is optional (depends on the template), but the state layer should always be 

initialized. In this phase noise can also be added to the images for test purposes (see CImNoise). 
  
• specify whether the bias and mask image will be used 
  
 e.g. UseBiasMap = 1;  - use the bias image 
   UseMask  = 0;  - do not use the mask image 
  
 Remark: if a the UseBiasMap global is set to 1 the BIAS image should be initialized, similarly when the 

UseMask global is set to 1 the MASK image should also be initialized. The Cnn_SetEnv MATCNN script sets 
these global variables to zero. 

  
• specify CNN boundary condition 
  
 e.g. Boundary = -1;  - the boundary is set to a constant value (-1) 
  
 Remark: the boundary condition specified can be constant (-1 ≤ Boundary ≤ 1), zero flux (Boundary = 2) and 

torus (Boundary = 3). 
  
• set the simulation parameters (time step and number of iteration steps) 

 
e.g. TimeStep = 0.1;  - the time step of the simulation is 0.1 
  IterNum = 100;  - the number of iteration steps is 100 



 291 

 
Remark: the default values for TimeStep = 0.2 and IterNum = 25, that correspond approximately to 5τ (when R 
= 1 and C = 1) analog transient length, guarantee that in a non-propagating CNN transient all cells will reach 
the steady state value. However, for a number of templates different settings should be used. 
 

• load the template that completely determines the CNN model 
  
 e.g. LoadTem(‘EDGE’);  - load the EDGE template from the specified library 
  
 Remark: All templates of a project or algorithm can be stored in a common library (M-file). The LoadTem 

function activates the given one from the specified library that will determine the CNN model of the simulation. 
  
• run the simulation with the specified template 
  
 e.g. RunTem;  - run the CNN simulation with the specified template 
  
 Remark: the ODE of the CNN model is simulated using the forward Euler formula. 
  
• visualize the result 
 
e.g. CNNShow(OUTPUT) - show the output of the CNN simulation 
 
Remark: since the CNN is primarily referred to as a visual microprocessor, and the inputs and outputs are images, in 

most cases it might be helpful to visualize these images using different magnification rates, palettes etc. The 
user can exploit the capabilities of MATLAB’s graphical interface and the Image Processing Toolbox when 
evaluating the CNN performance. 

 
 A simple example using the EDGE template from the default template library to perform edge detection on 
a black and white image (road.bmp) stored in user’s directory. The output is visualized and saved as roadout.bmp. 
------------------------------------------- 
Cnn_SetEnv; 
INPUT1 = LBmp2CNN(‘Road’); 
STATE = INPUT1; 
Boundary = -1; 
TimeStep = 0.1; 
IterNum = 50; 
LoadTem(‘EDGE’); 
RunTem; 
CNNShow(OUTPUT); 
SCNN2Bmp(‘RoadOut’, OUTPUT); 
------------------------------------------- 
 Subsection 2.1 gives an example for the linear, nonlinear “AB-type” and nonlinear “D-type” template. It is 
also shown how the template operations can be combined to built up an analogic CNN algorithm. 



292 5. Simulators  

 

Running an analog-and-logic (analogic) CNN algorithm 

Given an algorithm, defined – for example – by an UMF diagram. This algorithm contains elementary instructions 
defined by various templates and local logic operators. Demonstration algorithms are included in the MATCNN 
simulation program. See subsections 1.8.1 – 1.8.4 for details on running these algorithms made up of elementary 
instructions. 
 
Sample CNN Simulation with a Linear Template  
 
The first sample algorithm, demonstrates how to run a simulation with a linear DIFFUSE template using zero-flux 
boundary condition.  
 
The MATCNN program: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% D_LIN  Sample CNN operation with a linear template 
 % 
% set CNN environment 
 Cnn_SetEnv    % default environment 
 TemGroup='TemLib';  % default template library 
% load images, initialize layers 
 load pic2;     % loads the image from pic2.mat to the INPUT1 
 STATE = INPUT1; 
% set boundary condition 
 Boundary = 2;    % zero flux boundary condition 
% run linear template 
 LoadTem('DIFFUS');  % loads the DIFFUS template (linear) 
 TimeStep = 0.2; 
 IterNum = 50; 
 RunTem;     % runs the CNN simulation 
% show result 
 subplot(121); CNNShow(INPUT1); % displays the input 
  xlabel(‘Input’); 
 subplot(122); CNNShow(OUTPUT); % displays the output 
  xlabel(‘O: Diffus’); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
The MATLAB output: 

 
 
Sample CNN Simulation with a Nonlinear “AB - type” Template  
 
 
The second algorithm, demonstrates a non-linear gradient template using zero-flux boundary condition.  
 
The MATCNN program: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 293 

 
% D_NLINAB  Sample CNN operation with a nonlinear AB template 
 % 
% set CNN environment 
 Cnn_SetEnv   % default environment 
 TemGroup = 'TemLib'; % default template library 
% load images, initialize layers 
 load pic2;    % loads the image from pic2.mat to the INPUT1 
 STATE = INPUT1; 
% set boundary condition 
 Boundary = 2;   % zero flux boundary condition 
% run nonlinear AB template 
 LoadTem('GRADT'); % loads the GRADT template (nonlinear “AB-type”) 
 TimeStep = 0.4; 
 IterNum = 15; 
 RunTem;    % runs the CNN simulation 
% show result 
 subplot(211); cnnshow(INPUT1);  % displays the input 
  xlabel(‘Input’); 
 subplot(212); cnnshow(OUTPUT);  % displays the output 
  xlabel(‘O: Grad’); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
The MATLAB output: 
 

 



294 5. Simulators  

Sample CNN Simulation with a Nonlinear “D - type” Template  

 
 
The third algorithm, demonstrates how to filter a noisy image with a D-type non-linear medain template using zero-
flux boundary condition.  
 
The MATCNN program: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% D_NLIND  Sample CNN operation with a nonlinear D template 
 % 
% set CNN environment 
 Cnn_SetEnv    % default environment 
 TemGroup = 'TemLib';  % default template library 
% load images, initialize layers 
 load pic2;     % loads the image from pic2.mat to the INPUT1 
 STATE = INPUT1; 
% put noise in the image 
 STATE1 = cimnoise(STATE1, 'salt & pepper',0.05); 
 INPUT1 = STATE1; % 1st input 
 INPUT2 = STATE1; % 2nd input 
% set boundary condition 
 Boundary = 2;    % zero flux boundary condition 
% run nonlinear D template 
 LoadTem('MEDIAN');  % loads the MEDIAN template (nonlinear “D-type”) 
 TimeStep = 0.02; 
 IterNum = 50; 
 RunTem;     % runs the CNN simulation 
% show result 
 subplot(211); cnnshow(INPUT1);  % displays the input 
  xlabel(‘Input’); 
 subplot(212); cnnshow(OUTPUT1); % displays the output 
  xlabel(‘O: Median’); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
The MATLAB output: 
 

 



 295 

  

Sample Analogic CNN Algorithm  
 
 
The fourth algorithm is an example for a simulation using multiple templates. Noise is added to the original image, 
and a series of templates: threshold, median, edge templates are executed.  
 
The MATCNN program: 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% D_ALGO  Sample ANALOGIC CNN ALGHORITHM with linear and nonlinear templates 
 % 
% set CNN environment 
 Cnn_SetEnv    % default environment 
 TemGroup = 'TemLib';   % default template library 
% load images, initialize layers 
 load pic2;     % loads the image from pic2.mat to the INPUT1 
 STATE = INPUT1; 
% put noise in the image 
 STATE = cimnoise(STATE, 'salt & pepper',0.05); 
 INPUT1 = STATE;   % 1st input 
 INPUT2 = STATE;   % 2nd input 
 LAM1 = STATE;   % the nosy original image is also stored in LAM1 
% set boundary condition 
 Boundary = 2;    % zero flux boundary condition 
% run nonlinear “D-type” template (filtering) 
 LoadTem('MEDIAN');  % loads the MEDIAN template 
 TimeStep = 0.02; 
 IterNum = 50; 
 RunTem;     % runs the CNN simulation 
 LAM2 = OUTPUT;   % the CNN output is stored in LAM2 
% run linear templates (thresholding and edge detection) 
 LoadTem('THRES');   % loads the THRES template 
 TimeStep = 0.4; 
 IterNum = 15; 
 RunTem;     % runs the CNN simulation 
 INPUT1 = OUTPUT; 
 STATE = OUTPUT; 
 LoadTem('EDGE');   % loads the EDGE template 
 RunTem;     % runs the CNN simulation 
% show results 
 subplot(2,2,1); cnnshow(LAM1);  % displays the noisy original image 
  xlabel(‘Input’); 
 subplot(2,2,2); cnnshow(LAM2);  % displays the result of noise filtering 
  xlabel(‘1. O: Median’); 
 subplot(2,2,3); cnnshow(INPUT1);  % displays the result of thresholding 
  xlabel(‘2. O: Threshold’); 
 subplot(2,2,4); cnnshow(OUTPUT); % displays the result of edge detection 
  xlabel(‘3. O: Edge’); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



296 5. Simulators  

The MATLAB output: 
 

 



 297 

 
MATCNN SIMULATOR REFERENCES  
 
 
 In this section a short reference is given to the MATCNN scripts, functions and global variables and some 
CNN examples are shown. 

List of All MATCNN Scripts, Functions and Global Variables 

MATCNN M-files (scripts and functions): 
 
Basic: 
 
Cnn_SetEnv - set CNN environment and initialize global variables 
ShowEnv  - show global variables of the CNN environment 
LoadTem  - load the specified CNN template 
ShowTem  - show the actual template loaded into the CNN environment 
RunTem  - run the specified CNN template 
CNNShow  - show a CNN-type intensity image  
TemLib   - default CNN template library 
 
Miscellaneous: 
 
CNN2Gray  - convert a CNN-type image to a gray-scale intensity image 
Gray2CNN  - convert a gray-scale intensity image to a CNN-type image 
CBound  - add a specified boundary to a CNN-type image 
CImNoise  - put noise in a CNN-type image 
LBmp2CNN - load a BMP file from disk and convert it to a CNN-type image 
SCNN2Bmp - save a CNN-type image to disk in BMP format 
 
MATCNN MEX-files: 
 
 Basic MEX-files: 
 
tlinear   - linear CNN template simulation 
tnlinab   - nonlinear “AB-type” CNN template simulation 
tnlind   - nonlinear “D-type” CNN template simulation 
 
 Special MEX-files implementing different nonlinear filters: 
 (no upper level support from the MATCNN environment) 
 
tmedian   - median (ranked order) CNN template simulation 
tmedianh  - median (ranked order) CNN template simulation (for switch analysis) 
tanisod   - anisotropic (nonlinear) diffusion CNN template simulation 
ordstat   - order statistic (OS) filters 
modfilt   - mode filters 
 
MATCNN demos: 
 
D_Lin   - linear CNN template demo (EDGE) 
D_NLinAB  - nonlinear “AB-type” template demo (GRADT) 
D_NLinD  - nonlinear “D-type” template demo (MEDIAN) 
D_Algo   - analogic CNN algorithm demo (edge detection) 
ShowDPic  - show demo pictures of the environment (pic1-pic8) 
 
MATCNN global variables (complete list): 
 
Global variables to be set externally: 
UseBiasMap - determines whether the CNN uses a space-variant current 
UseMask  - determines whether the CNN operates in B&W fixed-state mode 
Boundary  - boundary condition for the CNN layer (and boundary value) 



298 5. Simulators  

      (-1<= constant <=1, 2: duplicated - zero flux, 3: torus) 
TemGroup  - name of the actual template group 
TimeStep  - time step of the simulation 
IterNum  - number of iteration steps in simulation 
 
Global variables - initial setting (to be modified during the simulations): 
UseBiasMap  = 0;   - no bias map 
UseMask   = 0;   - no mask 
Boundary   = 2;   - zero-flux boundary condition 
TemGroup   = 'TemLib'; - the default template library is TemLib 
TimeStep   = 0.2;  - default time step 
IterNum   = 25;  - default number of simulation steps 
 
Global variables modified by MATCNN scripts and functions /default values/: 
TemName  - name of the actual template /””/ 
TemNum  - order number of the actual template used in the algorithm /0/ 
TemType  - type of the actual template /0/ 
      ( 0: linear, 1; nonlinear AB, 2: nonlinear D) 
Atem   - linear feedback /0/ 
Btem   - linear control /0/ 
At_n   - nonlinear feedback /0/ 
nlin_a   - nonlinear function in feedback /0/ 
Bt_n   - nonlinear control /0/ 
nlin_b   - nonlinear function in control /0/ 
Dt_n   - generalized nonlinear interaction /0/ 
nlin_d   - nonlinear function in generalized term /0/ 
I     - cell current /0/ 
RunText  - display template name, order number, 
      time step, number of steps and report 
      module call before a CNN template execution /0/ 
CNNEnv  - status variable (1: CNN environment is loaded, 0: not loaded) /0/ 
 
INPUT1  - primary input image of the CNN model 
INPUT2  - secondary input image of the CNN model 
STATE   - state image of the CNN model 
OUTPUT  - output image of the CNN model 
MASK   - mask image of the CNN model 
BIAS   - bias image of the CNN model 
 
 The default template library is specified in “TemLib” template group where the syntax of linear and nonlinear 
CNN templates is also given. 
 
 Type HELP "FName" in MATLAB environment to learn the details on the MATCNN M-files (scripts and 
functions) and MEX-files! 
 
 Remarks: 
 
 The installation guide and detailed information about the available UNIX script files (slink - creates a soft link 
to the existing M-files to deal with the case sensitivity problem, cunix - compiles all *.c source files and creates the 
MEX-kernels in UNIX environment) and the Windows batch file (cwindows.bat - compiles all *.c source files and 
creates the DLL MEX-kernels in Windows environment) can be found in the file readme.txt where the known bug 
reports are also included. 
 



 299 

5.2. 1D Cellular Automata SIMULATOR  
 

User guide 
version 1.0 

 
 

Brief notes about 1D binary Cellular Automata  
 

A one-dimensional binary Cellular Automaton consist of an array of length L of  
dynamical systems called cells, which can take only two states (e.g., 0 and 1). Cells are 
iteratively updated synchronously and the state of each cell at iteration n+1 depends on 
the states of its nearest neighbors at iteration n. This dependence can be conveniently 
represented by means of a truth table that indicates which output state βi, either 0 or 1, 
corresponds to each of the eight possible inputs, from 000 to 111. 

Input Output 
000 β0 

001 β1 

010 β2 

  ... 
111 β7 

 
 
Usually, the bit string is considered to be an “unrolled” ring, in the sense that the right 
neighbor of the last bit is the first bit of the string, while the left neighbor of the first string 
is the last neighbor.  
 The 8-tuple (β7 β6... β0) defines the dynamics of the Cellular Automaton, and 
hence it is called CA rule. There are 28 = 256 possible rules, which can be numbered 
from 0 to 255 through the formula: 

      
Therefore, a CA rule transforms a given bit string xn into another bit string xn+1 at each 
iteration; given an initial state x0, the union of all xn, for every n up to infinite, is called 
space-time pattern obtained from x0. 
 Even though Cellular Automata have been introduced long before Cellular 
Neural/Nonlinear Networks, CA are actually a special case of CNNs. Indeed, it is 
possible to prove that every local rule is a code for attractors of a dynamical system 
which can written as a Universal CNN cell. 
 
Example 
  



300 5. Simulators  

 Rule 131 can be expressed as (β7 β6... β0)=(10000011). Its space-time pattern 
starting from the initial condition x0=00101110 for L=8, is 
   

 x0 = 00010111 

   x0         

   x1         

   x2         

   x3         

   x4         

   x5         

 
  
 It is now evident that the space-time pattern provides a direct representation of 
the evolution of a given bit string throughout time. 
 
1D CA Simulator  
 
 There exist numerous solid results about CA which have been found through a 
rigorous theoretical approach. However, empirical experiments can help to understand 
what kind of dynamics may arise in CA and under what conditions certain phenomena 
can be verified. 
 For this reason, here we describe the working principle of a simulator which can 
be downloaded from the webpage 
 
http://sztaki.hu/~gpazienza/CAsimulator.nbp 
 
 The simulator is written in Mathematica; hence, you need either Mathematica or 
Mathematica Player to run it.  
 
 The main window of the simulator is divided into three parts (from left to 
right):1) controls; 2) space-time pattern of the CA without input; 3) space-time pattern of 
the CA with input. 
 

http://sztaki.hu/%7Egpazienza/CAsimulator


 301 

 
 
Control panel 
  
 The control panel includes the fundamental features needed to simulate a 
Cellular Automaton: rule number; length of the bit string; initial condition; number of 
iterations.  
 

            
 
 There are only 88 fundamental 1D binary CA rules, whose numbers are specified 
in (Chua & Pazienza, 2009). All other rules are equivalent to one of them, and the 
equivalence tables can be found in (Chua, 2009) 
  
 The length of the bit string can vary from 3 to 99 in this version, even though it 
should be kept under 25, otherwise the resolution of the single cell may become too 
small to be appreciated. 
 
 The initial bit string can be set either randomly or by the user (only the first option 
is active in the current version). The random initial bit string can be changed by 
modifying the random seed. 
 
 The number of iterations for which the given rule should be run is controlled by 
the slide ‘iterations’. Given any deterministic CA rule, at least one bit string must repeat 
itself after at most 2L iterations. When such repetition occurs, it is possible to determine 
the ω-limit orbit the initial bit string belongs to, according to the definition given in. In 



302 5. Simulators  

practice, when L is equal to or lower than 20, it is sufficient to set the number of 
iterations to 30 to find out the basin of attraction.  
 
 

 
 
Visualization 
 
 The states of a binary Cellular Automaton can be represented by only two color: 
either white (for 0) and black (for 1), as Wolfram proposes, or blue (for 0) and red (for 
1), as Chua proposes. It is possible to select either color combination by selecting the 
color box in the simulator. 

 
 
 Furthermore, the cells appear as divided by thin lines when the option mash is 
selected. The following figures show the four possible combinations of color and mesh. 



 303 

 

 

Color and Mesh No Color and no Mesh 

 

Color and no Mesh No Color and no Mesh 

 
Space-time patterns 
 
 In the space-time pattern, the initial bit string is displayed on the first row, while 
the following rows contain the successive iterations. In the bottom part, it is shown the 
kind of the ω-limit orbit the initial bit string belongs to.  
 The standard model of Cellular Automaton, extensively studied by Wolfram and 
Chua among others, does not include an input, but the evolution is made on the the 
initial state. However, it can be interesting to see what happens when an input is 
introduced into the system, according to the scheme 
 

 
 
 In which the rule is executed on the pattern resulting from the logic OR between 
the state and the input. 
 An emblematic example of the dramatic changes that the introduction of an input 
may imply is the simulation of rule 170 with an arbitrary input bit string. Rule 170 acts as 



304 5. Simulators  

a bit shift, in the sense that at each iteration it shift all bit left by one position. This kind 
of ω-limit orbit is called Bernoulli-shift with σ=1 and τ=1.  
 When an arbitrary input is introduced the left shift operation performed by rule 
170 implies that the input, which is constant both in space and time, is quickly extended 
to the whole bit string. In other words, after a few iterations (at most L), we obtain 
necessarily a constant output. 
 

   
 
 In the next versions of the simulator, it will be possible to introduce an input 
variable in space and/or time, so that even more exotic dynamics can be explored.  
 
References  

L. O. Chua, “A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Vol. I, II, III ”, World Scientific, 
2005–2009. 

S. Wolfram, “A New Kind of Science”, Wolfram Media, 2002. 

L. O. Chua, G. E. Pazienza, L. Orzo, V. Sbitnev, and J. Shin, “A Nonlinear Dynamics Perspective of Wolfram’s New 
Kind of Science, Part IX: Quasi-Ergodicity”, International Journal of Bifurcation and Chaos, 9:18, pag. 2487-2642, 
2008. 

L. O. Chua, G. E. Pazienza, and J. Shin, “A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part 
X: Period-1 rules”, International Journal of Bifurcation and Chaos, 5:19, pag. 1425-1655, 2009. 

L. O. Chua, G. E. Pazienza, and J. Shin, “A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part 
XI: Period-2 rules”, International Journal of Bifurcation and Chaos, 6:19, pag. 1751-1931, 2009. 

L. O. Chua and G. E. Pazienza, “A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part XII: 
Period-3, Period-6 and Permutive rules”, International Journal of Bifurcation and Chaos, 9:19, 2009. 



Appendix 1: UMF Algorithm Description  

 

Version 1.3 

 

Elementary instruction 
 

An elementary CNN wave instruction is 

defined on a 2 dimensional grid ( ij ) by the 

constitutive standard CNN dynamics. The 

simplest PDDE (partial differential difference 

equation) defining it with a cloning template 

{A,B, z} is: 

 

τ dxij/dt = 

-xij  + ∑ Akl ykl + ∑ Bkl ukl + z ij 

 

(kl is in the r neighborhood of ij) 
 

y ij   =  f(x ij) 

 

{x ij (0) }=X0,  {u ij }= U, 

{y ij }= Y,  { z ij }= Z, 

if z ij  is the same for all ij then z ij  =z, t∈ T 

 

The CNN Software Library contains many 

templates {A, B, z} implemen–ting simple 

and exotic waves, with standard and more 

complex templates and first order as well as 

higher order (complex) cells for various image 

processing tasks. 
 

U 

                       ●    

  ● XO 

   τ   ○ 
z 

       TEMk     

 

   ■  Y 

 

Note: Template oprators, TEMk, can also begiven by 

other forms (e.g. logic truth table, or nonlinear 

operators of the xnl or ynl variables, without the matrix 

form. 

 

 

Signals, variables 
 

■ logic array 

■■ vector of logic arrays 

□ logic value 

● analog array 

●● vector of analog arrays 

○ analog value 

Boundary conditions 
Left side: Input boundary condition 

Right side: Output boundary condition 

 

 

Constant:  

 

Zero Flux: 

 

Periodic: 

 

Boundary conditions are optional, if not given, it means 

“don’t care” 

Fixed State Map 
 

 

 

 

 

 

 

 

Continuous delay 
 

 

 

 

 

 

 

 

 

 

 

 

-0.5 

(DELAY) 

Y 

U 

2τ 

FSM X0 

z 

TEMPLATE 

Y 

U 



306 Appendix 1: UMF algorithm description  

Step delay 
 

 

 

 

 

 

 

 

 

 

A step delay operation performs a value delay. The time 

can be specified either in τ or in GAPU instruction 

steps. If neither is given, delay time defaults to a single 

GAPU instruction step. 

 

Parametric templates 

 
Example: Multiplication with constant 

 

MULT(p) 

 

0 0 0 0 0 0

0 1 0 , 0 0

0 0 0 0 0 0

A B p

   
   

= =   
      

 

Algorithmic structures 

Cascade 

 

X02

z

X01

U

z

Y
 

 

Parallel 

 

A typical parallel structure with two parallel flows is 

shown below, by combining them in the final 

 

X2

U2

z

X1

U1

z

Y

z

 

X0 
z 

TEM (p) 

Y 

U 

Y 

U 

2τ 

Y 

U 

3 



Appendix 1: UMF algorithm description 307 

Three layer complex cell 

 

U 

                                   ●  U1 

       X01 ● 

  τ1  ○              ○ 
z 

  

             X02 ●   a12      a21     U2 

  τ2        ○ 
z 

  

                               +    - 

  τ3  

 

 

                                   ●   Y 

 

We can use a compact symbol below for the compact 

cell and use it in cascade, parallel and combined 

cascade-parallel structures. 

 

 

 

 

 

 

Decisions 

On global analog parameter 

 

Is the value of variable i less then 0.5? 

 

 
 

On global Logic parameter set, including 

global Fluctuation 

 

Does the logic value of variable b refers to white? 

 

 
 

Operators 
C-like imperative operators 

 

 

 

 

 

 

 

 

 

 

 

 

 

Global White operator 

 

 

 

 

 

 

 

 

 

 

Y 

N 

< 0.5 

i 

b 

Y 

N 

= 0 

i 

++ 

i 

U 

GW 



308 Appendix 1: UMF algorithm description  

Subroutines 

Definition 

 

Subroutine_1 

 

 
 

Usage 

 

 

 

 

 

 

 

 

 

 

 

Iterations and vectors of arrays 

 
 

Merging arrays 

 

 

Triggers, Cycles 
A trigger makes a dataflow to continue 

 

Y

N

GW

Triggers

U

Y

T

D

epending on the output of the decision (that can be 

either yes or no) the proper dataflow continues. 

 
flow=U; 

repeat 

 flow=T(flow); 

until GW==1; 

Y=flow; 

 

U1 

3 

U2 

3 

6 

Y 

X0 
z 

TEM1 

Y 

U 

X0 z 

TEM2 

TEMPLATE 

10x 

Y 

10 

Subroutine_1 

X0 
z 

U 

Y 



Appendix 2: Virtual and Physical Cellular Machine 309 

 

Appendix 2: Virtual and Physical Cellular Machines  

Virtual Cellular Machine 

1. Notations and definitions 

Core=Cell 

 

Core or cell will be used as synonyms, it is defined as a unit implementing a well defined operator (with 

input, output, state) on binary, real or string variables (also defined as logic, arithmetic/analog or 

symbolic variables, respectively). Cores/cells are used typically in arrays, mostly with well defined 

interaction patterns with their neighbor core/cells, although sparse longer 

wires/communications/interactions are also allowed. 

Core is used if we emphasize the digital implementation, cell is used if it is more general. 

Elementary array instructions 

A Logic (L), Arithmetic/analog (A) or Symbolic (S) elementary array instruction is defined via r 

input (u(t)), m output (y(t)) and n state (x(t)) variables ( t is the time instant), operating on binary, real, or 

symbol variables, respectively. Each dynamic cell is connected mainly locally, in the simplest case, to 

their neighbor cells. 

• L: A typical logic elementary array instruction  might be a binary logic function on n  or nxn (2D) 

binary variables,  (special cases: a disjunctive normal form, a memory look-up table array, a binary 

state machine, an integer machine),  

• A: a typical arithmetic/analog elementary array instruction is a multiply and accumulate (add) term 

(MAC) core/cell array or a dynamic cell array generating a spatial-temporal wave, and  

• S: a typical symbolic elementary array instruction might be a string manipulation core/cell array, 

mainly locally connected .  

Mainly local connectedness means that the local connection has a speed preference compared to a global 

connection via a crossbar path. 

A classical 8, 16, or 32 bit microprocessor could be considered as well as an elementary array 

instruction with iterative or multi-thread implementation on the three types of data. However, the main 

issue is that we have elementary array instructions, as the protagonist instructions. 

2. Physical Implementation types of elementary core/cell array instructions (A, B, C)  

We have three elementary cell processor (cell core) array implementation types: 

D: A digital algorithm with input, state and output vectors of  real/ arithmetic (finite precision 

analog), binary/digital logic, and symbolic variables (typically implemented via digital circuits).  

R: A real valued dynamical system cell with analog/continuous or arithmetic variables (typically 

implemented via mixed mode/analog-and-logic circuits and digital control processors), placed in a 

mainly locally connected array 



310 Appendix 2: Virtual and Physical Cellular Machine 

 

G: A physical dynamic entity with well defined Geometric Layout and I/O ports (function in layout) 

– (typical implementations are CMOS and/or nanoscale designs, or optical architectures with 

programmable control), placed in a mainly locally connected array. 

3. Physical parameters of  array processor units (typically a chip or a part of a chip) and 

interconnections 

Each of these array units is characterized by its  

• g,  geometric area, 

• e, energy, 

• f, operating frequency,  

• w = e f local power dissipation, and  

• the signals are traveling on a wire with length l , width q,  and with speed vq introducing a delay of  D 

= l vq  

Ω cores/cells can be placed on a single Chip , typically in a square grid, with   input and  output 

physical connectors typically at the corners (sometimes at the bottom and top “corners” in a 3D 

packaging) of the Chip, altogether there are K input/output connectors. The maximal value of dissipation 

of the Chip is W.  The physics is represented by the maximal values of Ω, K, and W  (as well as the 

operating frequency). The operating frequency might be global for the whole Chip Fo, or could be local 

within the Chip, fi (some parts might be switched off, fi = 0 ), may be a partially local frequency fo > Fo  

The interconnection pathways between the arrays and other major building blocks are characterized by 

the delay and the bandwidth (B).  

4. Virtual and Physical Cellular Machine architectures and their building blocks 

A Virtual Cellular Machine is composed of five types of building blocks:  

(i) cellular processor arrays/layers with simple (L, or A, or S type) or complex cells and their local 

memories), these are the protagonist building blocks, 

(ii) classical digital stored program computers (microprocessors),  

(iii) multimodal topographic or non-topographic inputs (e.g. scalar, vector, and matrix signals), 

(iv) memories of different data types, organizations and qualitatively different sizes and access times 

(e.g. in clock cycles), and 

(v)  interconnection pathways (busses).  

The tasks, the algorithms to be implemented, are defined on the Data of the Virtual Cellular 

Machines. 

We consider two types of Virtual Cellular Machines: Single- or multi-cellular array/layer machines, 

also called homogeneous and heterogeneous cellular machines.   

In the homogeneous Virtual Cellular Machine, the basic problem is to execute a task, for example a 

Cellular Wave Computer algorithm, on a bigger topographic Virtual Cellular Array using a smaller size 

of physical cellular array. Four different types of algorithms have already been developed (Zarándy, 

2008) 

Among the many different, sometimes problem oriented heterogeneous Virtual Cellular Machine 

architectures we define two typical ones. Their five building blocks, are as follows. 

(i)  Cellular processor arrays of one dimensional , CP1, and  two dimensional , CP2,  ones 

(ii)  P - classical digital computer with memory & I/O, for example a classical microprocessor 

(iii)  T - topographic fully parallel 2D (or 1D) input 



Appendix 2: Virtual and Physical Cellular Machine 311 

 

(iv)  M - memory with high speed I/O, single port or dual port (L1, L2, L3 parts as cache and/or local 

memories with different access times) 

(v)  B - data bus with different speed ranges (B1, B2, …) 

The CP1 and CP2 types of cellular arrays may be composed of cell/core arrays of simple and complex 

cells. In the CNN Universal Machine, each complex cell contains logic and analog/arithmetic 

components, as well as local memories, plus local communication and control units. Each array has its 

own controlling processor; we called  it in the CNN Universal Machine as Global Analog/arithmetic-and-

logic Programming Unit (GAPU).  

The size of the arrays in the Virtual Cellular Machines are typically large enough to handle  all the 

practical problems that might encounter in the minds of the designers. In the physical implementation, 

however, we confront the finite, reasonable, cost effective sizes and other physical parameters. 

The Physical Cellular Machine architecture is defined by the same kind of five building blocks , 

however, with well defined physical parameters, either in a similar architecture like that of the Virtual 

Cellular Machine or a different one.  

A building block could be physically implemented as a separate chip or as a part of a  chip. The 

geometry of the architecture is reflecting the physical layout within a chip and the chips within the 

Machine (multi-chip machine).  

This architectural geometry defines also the communication (interacting) speed ranges, as well. Hence 

physical closeness means higher speed ranges and smaller delays.  

The spatial location or topographic address of each elementary cell or core, within a building block, 

as well as that of each building block within a chip, and each chip, within the Virtual Cellular Machine 

(Machine) architecture, plays a crucial role. This is one of the most dramatic difference compared to 

classical computer science. 

In the Physical Cellular Machine models we can use exact, typical or qualitative values for size, speed, 

delay, power, and other physical parameters. The simulators can use these values for performance 

evaluation.  

We are not considering here the problems and design issues within the building blocks, it was fairly 

well studied in the Cellular Wave Computing or CNN Technology literature, as well as implementing a 

virtual 1D or 2D Cellular Wave Computer on a smaller physical machine. The decomposition of bigger 

memories on smaller physical memories are the subject of the extensively used virtual memory concept. 

We mention that sometimes a heterogeneous machine can be implemented on a single chip by using 

the different areas for different building blocks (Rekeczky et. al., 2008) 

The architecture of the Virtual Cellular Machine and the Physical Cellular Machine might be the same, 

though the latter might have completely different physical parameters. On the other hand they might have 

completely different architectures. 

The internal functional operation of the cellular building blocks are not considered here. On one hand, 

they are well studied in the recent Cellular Wave Computer literature, as well as in the recent 

implementations (ACE 16k, ACE 25k = Q-Eye, XENON), etc.), on the other hand, they can be modeled 

based on the Graphics Processing Units (GPU) and FPGA literature. Their functional models are 

described elsewhere (see also the Open CL language description).  

The two basic types of multi-cellular heterogeneous Virtual Machine architectures are defined next. 



312 Appendix 2: Virtual and Physical Cellular Machine 

 

I. Global system control and memory architecture is defined in Figure 1. 

M

Pn
:

:

P1

P0

M1

M2

I ⁄ O

CP1/1 CP2/hCP2/1

T 
Input

2D

T

Input
2D

Global system control & memory

B0

CP1/g

B0
B0

b0 b1
b2

F0 0

0

F
f

0

0

F
f

0

0

F
f

0

0

F
f

 

Fig. 1.  

II  Distributed system control and memory architecture is shown in Figure 2.  

The thick buses are “equi-speed” with much higher speed than the connecting thin buses.  

CP1/r CP1/2 CP1/1

P1

MII

MI

M0

P0 P1.....P7

M1 M2 M3

MIII CP2/1

T

CP2/m

T P2

B2

B1

B3

I ⁄ O ⁄ 1

...

Distributed system control and memory

 

Fig. 2.  

 

 



Appendix 2: Virtual and Physical Cellular Machine 313 

 

logic / symbolic array

Array Signals, variables,

memory

Processors

logic/ symbolic processor

logic / symbolic value arithmetic/analog processor

arithmetic/analog array

arithmetic/analog value

arithmetic/analog processor array

logic/symbolic processor array

 
 

 

Fig.3. 

 

 

 Tiled-in cellular processor arrays 
 

 

 

Fig. 4. 

 

 

 



314 Appendix 2: Virtual and Physical Cellular Machine 

 

 

1c 

 

 

 
1D 2D 

200c. 200c. 

~50c. 

GPU organization 

 

 

1c. 

10c. 

1c. 

1c. 

100c. 

CELL organization 
 

 

 

Fig. 5. 

 

5. The Design Scenario 

There are three domains in the design scenario : 

• The Virtual Cellular Machine architecture based on the data/object and operator relationship 

architecture of the problem (topographic or non-topographic),  

• The physical processor/memory topography of the Physical Cellular Machine, and the  

• Algorithmic domain connecting the preceding two domains.  

The design task is the is to map the algorithm defined on the Virtual Cellular Machine into the Physical 

Cellular Machine. For example the decomposition of bigger virtual machine architectures into smaller 

physical ones, as well as to transform non-topographic data architectures into topographic processor and 

memory architectures. 

 

 

The Design Scenario 

algorithm

s 

Task/Problem/ 

Workload 

Physical 

Implementation 

Processor / 

memory 

topography 

Data /object 

topography 

Virtual Cellular 

Machine 
Physical Cellular 

Machine COMPILER 

 

 

  Fig. 



Appendix 2: Virtual and Physical Cellular Machine 315 

 

 

6. The dynamic operational graph and its use for acyclic UMF diagrams 

Extending the UMF diagrams (Roska, 2003) describing Virtual Cellular Machines leads to digraphs, 

with processor array and memory nodes, and signal array pathways as branches with bandwidth weights. 

These graphs with the dissipation side-constraint define optimization problems representing the design 

task, under well defined equivalent transformations. 

In some well defined cases, especially within a 1D or 2D homogeneous array, the recently introduced 

method via Genetic Programming with Indexed Memory (GP-IM)  using UMF diagrams with Directed 

Acyclic Graphs (DAG) seems a promising tool showing good results in simpler cases (Pazienza, 2008).  
 



Appendix 3: Template Robustness 316 

 

Appendix 3: Template Robustness 

 

TEMPLATE ROBUSTNESS  
 

Here we will give the definition of template robustness for the case of uncoupled binary input/output 

templates. 

It is known that the set of uncoupled binary input/output templates is isomorphic to the set of linearly 

separable Boolean functions of 9 variables [44]. Such functions can be described by 9-dimensional 

hyper-cubes [45]. If the function is linearly separable, a hyper-plane exists which separates the set of 

-1s from the set of 1s.  

Definition: The robustness of the template T, denoted by ρ, is defined as the minimal distance of the 

hyper-plane, which separates the set of -1s from the set of 1s, and from the vertices of the hyper-cube 

(see Figure 1a for an illustration in 2 dimensions). 

The robustness of T can be increased by choosing the optimal template T
opt

, for which the minimal 

distance of the separating hyper-plane from the vertices is maximal [45] (see Figure 1b).  

 

    T template       T
opt

 template   

 0 0 0  0 0 0     0 0 0  0 0 0   

A = 0 1 0 B = 0 0 0 z = -1.6  A = 0 1 0 B = 0 0 0 z = -1 

 0 0 0  0 2 -0.8     0 0 0  0 1 -1   

 
 

-1 

u1 

u2 

-1 1 

1 
ρ 

  

 

-1 

u1 

u2 

-1 1 

1 
ρ 

 
 a) b) 

Figure 1. These diagrams illustrate the separation of vertices for the 2 dimensional logic function 

2121 uu)u,F(u = . Logic TRUE and FALSE are represented by filled and empty circles, 

respectively. The concept of robustness ρρρρ is also illustrated. Figure a) shows a few possible 

separating lines. The thick line corresponds to the template T with robustness ρρρρ = 0.18. Figure b) 

depicts the optimal separation line corresponding to the template T
opt

; its robustness is ρρρρ = 0.71 . 

 

 



References 317 

 

REFERENCES 

[1] L. O. Chua and L. Yang, “Cellular neural networks: Theory and Applications”, IEEE Transactions on Circuits 

and Systems, Vol. 35, pp. 1257-1290, October 1988. 

[2] L. O. Chua and L. Yang, “The CNN Paradigm”, IEEE Transactions on Circuits and Systems−I: Fundamental 

Theory and Applications, Vol. 40, pp. 147-156, March 1993. 

[3] T. Roska and L. O. Chua, “The CNN Universal Machine: An Analogic Array Computer”, IEEE Transactions 

on Circuits and Systems−II: Analog and Digital Signal Processing, Vol. 40, pp. 163-173, March 1993. 

[4] The CNN Workstation Toolkit, Version 6.0, MTA SzTAKI, Budapest, 1994. 

[5] P. L. Venetianer, A. Radványi, and T. Roska, "ACL (an Analogical CNN Language), Version 2.0, Research 

report of the Analogical and Neural Computing Laboratory, Computer and Automation Research Institute, 

Hungarian Academy of Sciences (MTA SzTAKI), DNS-3-1994, Budapest, 1994. 

[6] T. Matsumoto, T. Yokohama, H. Suzuki, R. Furukawa, A. Oshimoto, T. Shimmi, Y. Matsushita, T. Seo and 

L. O. Chua, "Several Image Processing Examples by CNN", Proceedings of the International Workshop on 

Cellular Neural Networks and their Applications (CNNA-90), pp. 100-112, Budapest, 1990. 

[7] T. Roska, T. Boros, A. Radványi, P. Thiran, L. O. Chua, "Detecting Moving and Standing Objects Using 

Cellular Neural Networks", International Journal of Circuit Theory and Applications, October 1992, and 

Cellular Neural Networks, edited by T. Roska and J. Vandewalle, 1993. 

[8] T. Boros, K. Lotz, A. Radványi, and T. Roska, "Some Useful New Nonlinear and Delay-type Templates", 

Research report of the Analogical and Neural Computing Laboratory, Computer and Automation Research 

Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-1-1991, Budapest, 1991. 

[9] S. Fukuda, T. Boros, and T. Roska, "A New Efficient Analysis of Thermographic Images by using Cellular 

Neural Networks", Research report of the Analogical and Neural Computing Laboratory, Computer and 

Automation Research Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-11-1991, Budapest, 

1991. 

[10] L. O. Chua, T. Roska, P. L. Venetianer, and Á. Zarándy, "Some Novel Capabilities of CNN: Game of Life and 

Examples of Multipath Algorithms", Research report of the Analogical and Neural Computing Laboratory, 

Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-3-1992, 

Budapest, 1992. 

[11] L. O. Chua, T. Roska, P. L. Venetianer, and Á. Zarándy, "Some Novel Capabilities of CNN: Game of Life and 

Examples of Multipath Algorithms", Proceedings of the International Workshop on Cellular Neural Networks 

and their Applications (CNNA-92), pp. 276-281, Munich, 1992. 

[12] T. Roska, K. Lotz, J. Hámori, E. Lábos, and J. Takács, "The CNN Model in the Visual Pathway - Part I: The 

CNN-Retina and some Direction- and Length-selective Mechanisms", Research report of the Analogical and 

Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian Academy of 

Sciences (MTA SzTAKI), DNS-8-1991, Budapest, 1991. 

[13] T. Roska, J. Hámori, E. Lábos, K. Lotz, L. Orzó, J. Takács, P. L. Venetianer, Z. Vidnyánszky, and Á. Zarándy, 

"The Use of CNN Models in the Subcortical Visual Pathway", Research report of the Analogical and Neural 

Computing Laboratory, Computer and Automation Research Institute, Hungarian Academy of Sciences 

(MTA SzTAKI), DNS-16-1992, Budapest, 1992. 

[14] P. Szolgay, I. Kispál, and T. Kozek, "An Experimental System for Optical Detection of Layout Errors of 

Printed Circuit Boards Using Learned CNN Templates", Proceedings of the International Workshop on 

Cellular Neural Networks and their Applications (CNNA-92), pp. 203-209, Munich, 1992. 

[15] K. R. Crounse, T. Roska, and L. O. Chua, "Image halftoning with Cellular Neural Networks", IEEE 

Transactions on Circuits and Systems−II: Analog and Digital Signal Processing, Vol. 40, No. 4, pp. 267-283, 

1993. 



318 References 

 

[16] H. Harrer and J. A. Nossek, "Discrete-Time Cellular Neural Networks", TUM-LNS-TR-91-7, Technical 

University of Munich, Institute for Network Theory and Circuit Design, March 1991. 

[17] T.Sziranyi and M.Csapodi, "Texture classification and Segmentation by Cellular Neural Network using 

Genetic Learning", Computer Vision and Image Understanding, Vol. 71, No. 3, pp. 255-270, September 1998. 

[18] A. Schultz, I. Szatmári, Cs. Rekeczky, T. Roska, and L. O. Chua, “Bubble-debris classification via binary 

morphology and autowave metric on CNN”, International Symposium on Nonlinear Theory and its 

Applications, Hawaii, 1997 

[19] P. L. Venetianer, F. Werblin, T. Roska, and L. O. Chua, "Analogic CNN Algorithms for some Image 

Compression and Restoration Tasks", IEEE Transactions on Circuits and Systems, Vol. 42, No.5, 1995. 

[20] P. L. Venetianer, K. R. Crounse, P. Szolgay, T. Roska, and L. O. Chua, "Analog Combinatorics and Cellular 

Automata - Key Algorithms and Layout Design using CNN", Proceedings of the International Workshop on 

Cellular Neural Networks and their Applications (CNNA-94), pp. 249-256, Rome, 1994. 

[21] H. Harrer, P. L. Venetianer, J. A. Nossek, T. Roska, and L. O. Chua, "Some Examples of Preprocessing 

Analog Images with Discrete-Time Cellular Neural Networks", Proceedings of the International Workshop on 

Cellular Neural Networks and their Applications (CNNA-94), pp. 201-206, Rome, 1994. 

[22] Á. Zarándy, F. Werblin, T. Roska, and L. O. Chua, "Novel Types of Analogic CNN Algorithms for 

Recognizing Bank-notes", Proceedings of the International Workshop on Cellular Neural Networks and their 

Applications (CNNA-94), pp. 273-278, Rome, 1994. 

[23] E. R. Kandel and J. H. Schwartz, "Principles of Neural Science", Elsevier, New York, 1985. 

[24] A. Radványi, "Using Cellular Neural Network to 'See' Random-Dot Stereograms" in Computer Analysis of 

Images and Patterns, Lecture Notes in Computer Science 719, Springer Verlag, 1993. 

[25]  M. Csapodi, Diploma Thesis, Technical University of Budapest, 1994. 

[26] K. Lotz, Z. Vidnyánszky, T. Roska, and J. Hámori,  "The receptive field ATLAS for the visual pathway", 

Report NIT-4-1994, Neuromorphic Information Technology, Graduate Center, Budapest, 1994.  

[27] G. Tóth, Diploma Thesis, Technical University of Budapest, 1994. 

[28] T. Boros, K. Lotz, A. Radványi, and T.Roska, "Some useful, new, nonlinear and delay-type templates", 

Research report of the Analogical and Neural Computing Laboratory, Computer and Automation Research 

Institute, Hungarian Academy of Sciences (MTA SzTAKI), DNS-1-1991, Budapest, 1991. 

[29] G. Tóth, "Analogic CNN Algorithm for 3D Interpolation-Approximation", Research report of the Analogical 

and Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian Academy of 

Sciences (MTA SzTAKI), DNS-2-1995, Budapest, 1995. 

[30] P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion”, Proceedings of the IEEE 

Computer Society Workshop on Computer Vision, 1987. 

[31] F. Werblin, T. Roska, and L. O. Chua, “The Analogic Cellular Neural Network as a Bionic Eye”, International 

Journal of Circuit Theory and Applications, Vol. 23, No. 6, pp. 541-569, 1995. 

[32] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical Morphology”, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, pp. 532-550, Vol. PAMI-9, No. 4, July 1987. 

[33] L. O. Chua, T. Roska, T. Kozek, and Á. Zarándy, “The CNN Paradigm − A Short Tutorial”, Cellular Neural 

Networks, T. Roska and J. Vandewalle, editors, John Wiley & Sons, New York, 1993, pp. 1-14. 

[34] Cs. Rekeczky, Y. Nishio, A. Ushida, and T. Roska, “CNN Based Adaptive Smoothing and Some Novel Types 

of Nonlinear Operators for Grey-Scale Image Processing”, in proceedings of NOLTA’95, Las Vegas, 

December 1995. 

[35] T. Szirányi, “Robustness of Cellular Neural Networks in image deblurring and texture segmentation”, 

International Journal of Circuit Theory and Applications, Vol. 24, pp. 381-396, May 1996. 

[36] Á. Zarándy, “The Art of CNN Template Design”, International Journal of Circuit Theory and Applications, 

Vol. 27, No. 1, pp. 5-23, 1999. 



References 319 

 

[37] M. Csapodi, J. Vandewalle, and T. Roska, “Applications of CNN-UM chips in multimedia authentication”, 

ESAT-COSIC Report / TR 97-1, Department of Electrical Engineering, Katholieke Universiteit Leuven, 1997. 

[38] L. Nemes, L. O. Chua, “TemMaster Template Design and Optimization Tool for Binary Input-Output CNNs, 

User’s Guide”, Analogical and Neural Computing Laboratory, Computer and Automation Research Institute, 

Hungarian Academy of Sciences (MTA-SzTAKI), Budapest, 1997. 

[39] P. Szolgay, K. Tömördi, "Optical detection of breaks and short circuits on the layouts of printed circuit boards 

using CNN", Proceedings of the International Workshop on Cellular Neural Networks and their Applications 

(CNNA-96), pp. 87-91, Seville, 1996. 

[40] Hvilsted, S.; Ramanujam, P.S., “Side-chain liquid crystalline azobenzene polyesters with unique reversible 

optical storage properties”. Curr. Trends Pol. Sci. (1996) v.1, pp. 53-63. 

[41] S. Espejo, A. Rodriguez-Vázquez, R. A. Carmona, P. Földesy, Á. Zarándy, P. Szolgay, T. Szirányi, and 

T. Roska, “0.8µm CMOS Two Dimensional Programmable Mixed-Signal Focal-Plane Array Processor with 

On-Chip Binary Imaging and Instruction Storage”, IEEE Journal on Solid State Circuits, Vol. 32., No. 7., 

pp. 1013-1026,. July 1997. 

[42] G. Liñán, S. Espejo, R. Domínguez-Castro, E. Roca, and A. Rodriguez-Vázquez, “CNNUC3: A Mixed-Signal 

64x64 CNN Universal Chip”, Proceedings of the International Conference on Microelectronics for Neural, 

Fuzzy and Bio-inspired Systems (MicroNeuro’99), pp. 61-68, Granada, Spain, 1999. 

[43] S. Ando, "Consistent Gradient Operations", IEEE Transactions on Pattern Analysis and Machine Intelligence, 

Vol. 22., No. 3., pp. 252-265,. March 2000.  

[44] L. O. Chua, "CNN: a paradigm for complexity", World Scientific Series On Nonlinear Science, Series A, Vol. 

31, 1998. 

[45] L. Nemes, L.O. Chua, and T. Roska, “Implementation of Arbitrary Boolean Functions on the CNN Universal 

Machine”, International Journal of Circuit Theory and Applications - Special Issue: Theory, Design and 

Applications of Cellular Neural Networks: Part I: Theory, (CTA Special Issue - I), Vol. 26. No. 6, pp. 593-

610, 1998. 

[46] I. Szatmári, Cs. Rekeczky, and T. Roska, "A Nonlinear Wave Metric and its CNN Implementation for Object 

Classification", Journal of VLSI Signal Processing, Special Issue: Spatiotemporal Signal Signal Processing 

with Analogic CNN Visual Microprocessors, Vol.23, No.2/3, pp. 437-448, Kluwer, 1999. 

[47] I. Szatmári, "The implementation of a Nonlinear Wave Metric for Image Analysis and Classification on the 

64x64 I/O CNN-UM Chip", CNNA 2000, 6th IEEE International Workshop on Cellular Neural Networks and 

their Applications, May 23-25, 2000, University of Catania, Italy. 

[48] I. Szatmári, A. Schultz, Cs. Rekeczky, T. Roska, and L. O. Chua, "Bubble-Debris Classification via Binary 

Morphology and Autowave Metric on CNN", IEEE Trans. on Neural Networks, Vol. 11, No. 6, pp.1385-1393, 

November 2000. 

[49] P. Földesy, L. Kék, T. Roska, Á. Zarándy, and G. Bártfai, “Fault Tolerant CNN Template Design and 

Optimization Based on Chip Measurements”, Proceedings of the IEEE International Workshop on Cellular 

Neural Networks and their Applications (CNNA’98), pp. 404-409, London, 1998. 

[50] P. Földesy, L. Kék, Á. Zarándy, T. Roska, and G. Bártfai, “Fault Tolerant Design of Analogic CNN Templates 

and Algorithms − Part I: The Binary Output Case”, IEEE Transactions on Circuits and Systems special issue 

on Bio-Inspired Processors and Cellular Neural Networks for Vision, Vol. 46, No. 2, pp. 312-322, February 

1999. 

[51] Á. Zarándy, T. Roska, P. Szolgay, S. Zöld, P. Földesy and I. Petrás, "CNN Chip Prototyping and Development 

Systems", European Conference on Circuit Theory and Design - ECCTD'99, Design Automation Day 

proceedings, (ECCTD'99-DAD), Stresa, Italy, 1999. 

[52] I. Petrás, T. Roska, "Application of Direction Constrained and Bipolar Waves for Pattern Recognition", 

Proceedings of the IEEE International Workshop on Cellular Neural Networks and their Applications 

(CNNA’2000), pp. 3-8, Catania, Italy, 23-25 May, 2000. 

[53] B. E. Shi, "Gabor-type filtering in space and time with cellular neural networks," IEEE Transactions on 

Circuits and Systems-I: Fundamental Theory and Applications, vol. 45, pp. 121-132, 1998. 



320 References 

 

[54] G. Tímár, K. Karacs, and Cs. Rekeczky: Analogic Preprocessing and Segmentation Algorithms for Off-line 

Handwriting Recognition., IEEE Journal on Circuits, Systems and Computers, Vol. 12(6), pp. 783-804, 

Dec. 2003. 

[55] L. Orzó, T. Roska, "A CNN image-compression algorithm for improved utilization of on-chip resources", 

Proceedings of the IEEE International Workshop on Cellular Neural Networks and their Applications 

(CNNA’2004), pp. 297-302, Budapest, Hungary, 22-24 July, 2004. 

[56] I. Szatmari, “Synchronization Mechanism in Oscillatory Cellular Neural Networks”, Research report of the 

Analogical and Neural Computing Laboratory, Computer and Automation Research Institute, Hungarian 

Academy of Sciences (MTA SzTAKI), DNS-1-2006, Budapest 2006. 

[57] I. Petrás, T. Roska, and L. O. Chua "New Spatial-Temporal Patterns and The First Programmable On-Chip 

Bifurcation Test-Bed", IEEE Trans. on Circuits and Systems I, (TCAS I.), Vol. 50(5), pp. 619-633, May 2003. 

[58] A. Gacsádi and P. Szolgay, “Image Inpainting Methods by Using Cellular Neural Networks”, Proceedings of 

the IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA’2005), 

ISBN:0780391853, pp. 198-201, Hsinchu, Taiwan, 2005 

[59] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variational based noise removal algorithms”, Physica D, 

Vol. 60, pp. 259–268, 1992. 

[60] A. Gacsádi, P. Szolgay, “A variational method for image denoising by using cellular neural networks”, 

Proceedings of the IEEE International Workshop on Cellular Neural Networks and their Applications 

(CNNA’2004), ISBN 963-311-357-1, pp. 213-218, Budapest, Hungary, 2004. 

[61] R. Matei, “New Image Processing Tasks On Binary Images Using Standard CNNs”, Proceedings of the 

International Symposium on Signals, Circuits and Systems, SCS'2001, pp.305-308, July 10-11, 2001, Iaşi, 

Romania 

[62] R. Matei, “Design Method for Orientation-Selective CNN Filters”, Proceedings of the IEEE International 

Symposium on Circuits and Systems ISCAS’2004, May 23-26, 2004, Vancouver, Canada 

[63] CNN Young Researcher Contest, Analogic CNN Algorithm Design, 7
th

 IEEE International Workshop on 

Cellular Neural Networks and their Applications, Frankfurt-Germany, July 2002. 

[64] D. Bálya: "CNN Universal Machine as Classification Platform: an ART-like Clustering Algorithm", Int. 

Journal of Neural Systems, 2003, Vol.  13(6), pp. 415-425. 

[65] B. Roska, F. Werblin, “Rapid global shifts in natural scenes block spiking in specific ganglion cell types”, 

Nature Neuroscience, 2003 

[66] D. Bálya “Sudden Global Spatial-Temporal Change Detection and its Applications”, Journal of Circuits, 

Systems, and Computers (JCSC), Vol. 12(5), Aug-Dec 2003. 

[67] Gy. Cserey, Cs. Rekeczky and P. Földesy “PDE Based Histogram Modification With Embedded 

Morphological Processing of the Level-Sets”, Journal of Circuits, System and Computers (JCSC 2002). 

[68] K. Karacs, G. Prószéky and T. Roska, “Intimate Integration of Shape Codes and Linguistic Framework in 

Handwriting Recognition via Wave Computers”, European Conference on Circuit Theory and Design, 

Kraków, Poland, Sept. 2003. 

[69] Z. Szlávik, T. Szirányi, “Face Identification with CNN-UM”, European Conference on Circuit Theory and 

Design, Kraków, Poland, Sept. 2003. 

[70] Cs. Rekeczky, G. Tímár, and Gy. Cserey “Multi-Target Tracking With Stored Program Adaptive CNN 

Universal Machines” in Proc. 7th IEEE International Workshop on Cellular Neural Networks and their 

Applications, Frankfurt am Main, Germany, July 22-24, 2002., pp. 299-306. 

[71] L. Török, Á. Zarándy “CNN Optimal Multiscale Bayesian Optical Flow Calculation”, European Conference 

on Circuit Theory and Design, Kraków, Poland, Sept. 2003. 

[72] Z. Fodróczi, A. Radványi “Computational Auditory Scene Analysis in Cellular Wave Computing Framework” 

International Journal of Circuit Theory and Applications, Vol: 34(4) pp: 489-515, ISSN:0098-9886  

(July 2006) 



References 321 

 

[73] L. Kék and Á. Zarándy, "Implementation of Large-Neighborhood Nonlinear Templates on the CNN Universal 

Machine", International Journal of Circuit Theory and Applications, Vol. 26, No. 6, pp. 551-566, 1998. 

[74] G. Constantini, D. Casali, M. Carota, and R. Perfetti, Translation and Rotation of Grey-Scale Images by means 

of Analogic Cellular Neural Network, Proceedings of the IEEE International Workshop on Cellular Neural 

Networks and their Applications (CNNA’2004), ISBN 963-311-357-1, pp. 213-218, Budapest, Hungary, 2004. 

[75] M. Radványi, G. E. Pazienza, and K. Karacs, “Crosswalks Recognition through CNNs for the Bionic Camera: 

Manual vs. Automatic Design”, in Proc. of the 19th European Conference on Circuit Theory and Design, 

Antalya, Turkey, 2009. 

[76] L.O. Chua and L. Yang, “Cellular Neural Networks: Theory and Applications”, IEEE Transactions 

on Circuits and Systems, vol. 35, no. 10, October 1988, pp. 1257-1290, 1988. 

[77] L.O. Chua and T. Roska, “The CNN Paradigm”, IEEE Transactions on Circuits and Systems - I, vol. 40, no. 3, 

March 1993, pp. 147-156, 1993. 

[78] T. Roska and L.O. Chua, “The CNN Universal Machine: An Analogic Array Computer”, IEEE Transactions on 

Circuits and Systems - II, vol. 40, March 1993, pp. 163-173. 1993. 

[79] S. Espejo, R. Carmona, R. Domínguez-Castro and A. Rodríguez-Vázquez “A VLSI-Oriented Continuous-Time 

CNN Model”, International Journal of Circuit Theory and Applications, Vol. 24, pp. 341-356, May-June 1996. 

[80] Cs. Rekeczky and L. O. Chua, “Computing with Front Propagation: Active Contour and Skeleton Models in 

Continuous-time CNN”, Journal of VLSI Signal Processing Systems, Vol. 23, No. 2/3, pp. 373-402, 

November-December 1999. 

[81] J.M.Cruz, L.O.Chua, and T.Roska, “A Fast, Complex and Efficient Test Implementation of the CNN Universal 

Machine”, Proc. of the third IEEE Int. Workshop on Cellular Neural Networks and their Application (CNNA-

94), pp. 61-66, Rome Dec. 1994. 

[82] H.Harrer, J.A.Nossek, T.Roska, L.O.Chua, “A Current-mode DTCNN Universal Chip”, Proc. of IEEE Intl. 

Symposium on Circuits and Systems, pp135-138, 1994. 

[83] A. Paasio, A. Dawindzuk, K. Halonen, V. Porra, “Minimum Size 0.5 Micron CMOS Programmable 48x48 

CNN Test Chip” European Conference on Circuit Theory and Design, Budapest, pp. 154-15, 1997. 

[84] Gustavo Liñan Cembrano, Ángel Rodríguez-Vázquez, Servando Espejo-Meana, Rafael Domínguez-Castro: 

ACE16k: A 128x128 Focal Plane Analog Processor with Digital I/O. Int. J. Neural Syst. 13(6): 427-434 (2003) 

[85] S. Espejo, R. Carmona, R. Domingúez-Castro, and A. Rodrigúez-Vázquez, "CNN Universal Chip in CMOS 

Technology", Int. J. of Circuit Theory & Appl., Vol. 24, pp. 93-111, 1996 

[86] S. Espejo, R. Carmona, R. Domínguez-Castro and A. Rodríguez-Vázquez “A VLSI-Oriented Continuous-Time 

CNN Model”, International Journal of Circuit Theory and Applications, Vol. 24, pp. 341-356, May-June 1996. 

[87] P.Dudek "An asynchronous cellular logic network for trigger-wave image processing on fine-grain massively 

parallel arrays", IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,. 53 (5): 

pp. 354-358, 2006. 

[88] A. Lopich, P. Dudek, “Implementation of an Asynchronous Cellular Logic Network As a Co-Processor for a 

General-Purpose Massively Parallel Array”, ECCTD 2007, Seville, Spain. 

[89] A. Lopich, P. Dudek., " Architecture of asynchronous cellular processor array for image skeletonization", 

Circuit Theory and Design, Volume: 3, On page(s): 81-84, 2005. 

[90] P.Dudek and S.J.Carey, "A General-Purpose 128x128 SIMD Processor Array with Integrated Image Sensor", 

Electronics Letters, vol.42, no.12, pp.678-679, June 2006 

[91] Z. Nagy, P. Szolgay "Configurable Multi-Layer CNN-UM Emulator on FPGA" IEEE Transactions on Circuits 

and Systems I: Fundamental Theory and Applications, Vol. 50, pp. 774-778, 2003 

[92] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy “Introduction to the Cell 

multiprocessor” IBM J. Res. & Dev. vol. 49 no. 4/5 July/September 2005 

[93] www.ti.com   

[94] 176x144 Q-Eye chip, www.anafocus.com 

[95] Video security application: http://www.objectvideo.com/  efficient   

[96] Cs. Rekeczky, J. Mallett, A. Zarandy, „Security Video Analitics on Xilinx Spartan -3A DSP”, Xcell 

Journal, Issue 66, fourth quarter 2008, pp: 28-32 

[97] Á. Zarándy, "The Art of CNN Template Design", Int. J. Circuit Theory and Applications - Special Issue: 

Theory, Design and Applications of Cellular Neural Networks: Part II: Design and Applications, (CTA Special 

Issue - II), Vol.17, No.1, pp.5-24, 1999 



322 References 

 

[98] Á. Zarándy, P. Keresztes, T. Roska, and P. Szolgay, "CASTLE: An emulated digital architecture; design issues, 

new results", Proceedings of 5th IEEE International Conference on Electronics, Circuits and Systems, 

(ICECS'98), Vol. 1, pp. 199-202, Lisboa, 1998 

[99] P. Keresztes, Á. Zarándy, T. Roska, P. Szolgay, T. Bezák, T. Hídvégi, P. Jónás, A. Katona, "An emulated 

digital CNN implementation", Journal of VLSI Signal Processing Special Issue: Spatiotemporal Signal 

Processing with Analogic CNN Visual Microprocessors, (JVSP Special Issue), Kluwer, 1999 November-

December 

[100] P. Földesy, Á. Zarándy, Cs. Rekeczky, and T. Roska „Configurable 3D integrated focal-plane sensor-processor 

array architecture”, Int. J. Circuit Theory and Applications (CTA), pp: 573-588, 2008 

[101] L.O. Chua, T. Roska, T. Kozek, Á. Zarándy “CNN Universal Chips Crank up the Computing Power”, IEEE 

Circuits and Devices, July 1996, pp. 18-28, 1996. 

[102] T. Roska, L. Kék, L. Nemes, Á. Zarándy, M. Brendel and P. Szolgay, "CNN Software Library (Templates and 

Algorithms) Version 7.2", (DNS-1-1998), Budapest, MTA SZTAKI, 1998, http://cnn-

technology.itk.ppke.hu/Library_v2.1b.pdf 

[103] http://www.xilinx.com/support/documentation/data_sheets/ds706.pdf 

 

 



Index 323 

 

INDEX  

1 

1D CA Simulator, 300 

1-DArraySorting, 111 

3 

3x3Halftoning, 38 

3x3InverseHalftoning, 46 

3x3TextureSegmentation, 90 

5 

5x5Halftoning1, 40 

5x5Halftoning2, 42 

5x5InverseHalftoning, 48 

5x5TextureSegmentation1, 89 

5x5TextureSegmentation2, 91 

A 

ADAPTIVE BACKGROUND AND FOREGROUND 

ESTIMATION, 192 

ApproxDiagonalLineDetector, 23 

AXIS OF SYMMETRY DETECTION ON FACE 

IMAGES, 170 

B 

BANK-NOTE RECOGNITION, 195 

BINARY MATHEMATICAL MORPHOLOGY, 62 

BipolarWave, 88 

BLACK AND WHITE SKELETONIZATION, 142 

BlackFiller, 65 

BlackPropagation, 67 

Brief notes about 1D binary Cellular Automata, 299 

BROKEN LINE CONNECTOR, 176 

C 

CALCULATION OF A CRYPTOGRAPHIC HASH 

FUNCTION, 197 

Categorization of 2D operators, 244 

CELLULAR AUTOMATA, 122 

CenterPointDetector, 11 

Classic DSP-memory architecture, 236 

CNN MODELS OF SOME COLOR VISION 

PHENOMENA: SINGLE AND DOUBLE 

OPPONENCIES, 100 

Coarse-grain cellular parallel architectures, 239 

COMMON AM, 178 

Complex-Gabor, 134 

ConcaveArcFiller, 70 

ConcaveLocationFiller, 69 

ConcentricContourDetector, 13 

CONTINUITY, 184 

ContourExtraction, 17 

CornerDetection, 18 

D 

DEPTH CLASSIFICATION, 101 

DETECTION OF MAIN CHARACTERS, 199 

DiagonalHoleDetection, 7 

DiagonalLineDetector, 24 

DiagonalLineRemover, 20 

DirectedGrowingShadow, 60 

E 

EdgeDetection, 28 

F 

FAULT TOLERANT TEMPLATE DECOMPOSITION, 

202 

FilledContourExtraction, 36 

FIND COMMON ONSET/OFFSET GROUPS, 182 

FIND OF COMMON FM GROUP, 180 

Fine-grain fully parallel cellular architecture with 

continuous time processing, 241 

Fine-grain fully parallel cellular architectures with 

discrete time processing, 240 

G 

GAME OF LIFE, 206 

GameofLife1Step, 105 

GameofLifeDTCNN1, 106 



324 Index  

 

GameofLifeDTCNN2, 107 

GENERALIZED CELLULAR AUTOMATA, 126 

GLOBAL DISPLACEMENT DETECTOR, 190 

GlobalConncetivityDetection1, 16 

GlobalConnectivityDetection, 14 

GlobalMaximumFinder, 103 

GRADIENT CONTROLLED DIFFUSION, 146 

GradientDetection, 32 

GradientIntensityEstimation, 4 

GRAYSCALE MATHEMATICAL MORPHOLOGY, 63 

GRAYSCALE SKELETONIZATION, 144 

GrayscaleDiagonalLineDetector, 25 

GrayscaleLineDetector, 77 

H 

HAMMING DISTANCE COMPUTATION, 208 

HeatDiffusion, 27 

HerringGridIllusion, 116 

HISTOGRAM MODIFICATION WITH EMBEDDED 

MORPHOLOGICAL PROCESSING OF THE LEVEL-

SETS, 164 

HistogramGeneration, 104 

HOLE DETECTION IN HANDWRITTEN WORD 

IMAGES, 168 

Hole-Filling, 44 

HorizontalHoleDetection, 8 

I 

ImageDenoising, 131 

ImageDifferenceComputation, 94 

ImageInpainting, 129 

ISOTROPIC SPATIO-TEMPORAL PREDICTION 

CALCULATION BASED ON PREVIOUS 

DETECTION RESULTS, 172 

J 

J-FUNCTION OF SHORTEST PATH, 149 

JunctionExtractor, 73 

JunctionExtractor1, 74 

L 

LaplacePDESolver, 263 

LE3pixelLineDetector, 79 

LE7pixelVerticalLineRemover, 76 

LeftPeeler, 55 

Linear templates specification, 287 

LinearTemplateInversion, 136 

LocalConcavePlaceDetector, 75 

LocalMaximaDetector, 52 

LocalSouthernElementDetector, 50 

LogicANDOperation, 81 

LogicDifference1, 82 

LogicNOTOperation, 83 

LogicOROperation, 84 

LogicORwithNOT, 85 

M 

MajorityVoteTaker, 108 

Many-core hierarchical graphic processor unit (GPU), 

243 

MaskedCCD, 10 

MaskedObjectExtractor, 31 

MaskedShadow, 57 

MATCNN simulator references, 297 

MAXIMUM ROW(S) SELECTION, 160 

MedianFilter, 53 

MotionDetection, 95 

MüllerLyerIllusion, 117 

MULTI SCALE OPTICAL FLOW, 174 

Multi-core heterogeneous processors array with high-

performance kernels (CELL), 242 

MULTIPLE TARGET TRACKING, 158 

N 

Nonlinear function specification in, 288 

NONLINEAR WAVE METRIC COMPUTATION, 152 

O 

OBJECT COUNTER, 166 

OBJECT COUNTING, 209 

ObjectIncreasing, 45 



References 325 

 

OPTICAL DETECTION OF BREAKS ON THE 

LAYOUTS OF PRINTED CIRCUIT BOARDS, 210 

OptimalEdgeDetector, 30 

Orientation-SelectiveLinearFilter, 133 

P 

PARALLEL CURVE SEARCH, 186 

ParityCounting1, 109 

ParityCounting2, 110 

Pass-through architectures, 238 

PatchMaker, 86 

PathFinder, 128 

PathTracing, 99 

PatternMatchingFinder, 51 

PEAK-AND-PLATEAU DETECTOR, 188 

PEDESTRIAN CROSSWALK DETECTION, 233 

PixelSearch, 80 

PointExtraction, 33 

PointRemoval, 34 

PoissonPDESolver, 264 

Processor utilization efficiency of the various operation 

classes, 248 

R 

RightEdgeDetection, 56 

Rotation, 139 

RotationDetector, 26 

ROUGHNESS MEASUREMENT VIA FINDING 

CONCAVITIES, 213 

Running a CNN Simulation, 290 

S 

Sample Analogic CNN Algorithm, 295 

Sample CNN Simulation a Nonlinear, 292, 294 

Sample CNN Simulation with a Linear Template, 292 

SCRATCH REMOVAL, 217 

SelectedObjectsExtraction, 35 

ShadowProjection, 58 

SHORTEST PATH, 147 

SmallObjectRemover, 87 

Smoothing, 5 

SPATIO-TEMPORAL PATTERN FORMATION IN 

TWO-LAYER OSCILLATORY CNN, 112 

SPATIO-TEMPORAL PATTERNS OF AN 

ASYMMETRIC TEMPLATE CLASS, 114 

SPEED CLASSIFICATION, 97 

SpeedDetection, 96 

SpikeGeneration1, 118 

SpikeGeneration2, 119 

SpikeGeneration3, 120 

SpikeGeneration4, 121 

SUDDEN ABRUPT CHANGE DETECTION, 162 

SurfaceInterpolation, 71 

T 

TEXTILE PATTERN ERROR DETECTION, 219 

TEXTURE SEGMENTATION I, 220 

TEXTURE SEGMENTATION II, 223 

TextureDetector1, 92 

TextureDetector2, 92 

TextureDetector3, 92 

TextureDetector4, 92 

ThinLineRemover, 22 

Threshold, 61 

ThresholdedGradient, 37 

Translation(dx,dy), 138 

Two-Layer Gabor, 135 

V 

VERTICAL WING ENDINGS DETECTION OF 

AIRPLANE-LIKE OBJECTS, 226 

VerticalHoleDetection, 9 

VerticalLineRemover, 21 

VerticalShadow, 59 

W 

WhiteFiller, 66 

WhitePropagation, 68 





Index (old names) 327 

 

INDEX (OLD NAMES)  

A 

AND, 81 

AVERAGE, 5 

AVERGRAD, 4 

AVERTRSH, 5 

B 

BLACK, 65 

C 

CCD_DIAG, 7 

CCD_HOR, 8 

CCD_VERT, 9 

CCDMASK, 10 

CENTER, 11 

CONCCONT, 13 

Connectivity, 14 

CONTOUR, 17 

ContourDetector, 17 

CORNER, 18 

CornerDetector, 18 

CUT7V, 76 

D 

DELDIAG1, 20 

DELVERT1, 21 

DIAG, 23 

DIAG1LIU, 24 

DIAGGRAY, 25 

DIFFUS, 27 

E 

EDGE, 28 

EdgeDetector, 28 

ERASMASK, 31 

EXTREME, 32 

F 

FIGDEL, 33 

FIGEXTR, 34 

FIGREC, 35 

FigureExtractor, 34 

FigureReconstructor, 35 

FigureRemover, 33 

FILBLACK, 65 

FILWHITE, 66 

FINDAREA, 36 

FramedAreasFinder, 36 

G 

GLOBMAX, 103 

GRADIENT, 37 

H 

HISTOGR, 104 

HistogramComputation, 104 

HLF3, 38 

HLF33, 38 

HLF5, 42 

HLF55, 42 

HLF55_KC, 40 

HLF5KC, 40 

HOLE, 44 

HoleFiller, 44 

HOLLOW, 69 

HorizontalCCD, 8 

I 

INCREASE, 45 

INTERP, 71 

INTERPOL, 71 

INV, 83 

INVHLF3, 46 

INVHLF33, 46 

INVHLF5, 48 

INVHLF55, 48 

INV-OR, 85 

J 

JUNCTION, 73 



328 Index (old names)  

 

L 

LCP, 75 

LeftShadow, 58 

LGTHTUNE, 79 

LIFE_1, 105 

LIFE_1L, 106 

LIFE_DT, 107 

LINCUT7V, 76 

LINE3060, 77 

LINEXTR3, 79 

LOGAND, 81 

LOGDIF, 82 

LOGDIFNF, 94 

LogicAND, 81 

LogicDifference2, 94 

LogicNOT, 83 

LogicOR, 84 

LOGNOT, 83 

LOGOR, 84 

LOGORN, 85 

LSE, 50 

M 

MAJVOT, 108 

MASKSHAD, 57 

MATCH, 51 

MAXLOC, 52 

MD_CONT, 96 

MEDIAN, 53 

MOTDEPEN, 95 

MOTINDEP, 96 

MotionDetection1, 95 

MotionDetection2, 96 

MOVEHOR, 95 

N 

NEL_AINTPOL3, 129 

O 

OR, 84 

P 

PA-PB, 82 

PA-PB_F1, 94 

PARITY, 109 

PATCHMAK, 86 

PEELHOR, 55 

R 

RECALL, 35 

RIGHTCON, 56 

RightContourDetector, 56 

S 

SHADMASK, 57 

SHADOW, 58 

SHADSIM, 59 

SKELBW, 142 

SKELGS, 144 

SMKILLER, 87 

SORTING, 111 

SUPSHAD, 59 

T 

TRACE, 99 

TRESHOLD, 61 

TX_HCLC, 89 

TX_RACC3, 90 

TX_RACC5, 91 

V 

VerticalCCD, 9 

W 

WHITE, 66 

 

   


	_Chapter0
	_Chapter1
	_Chapter2
	_Chapter3
	_Chapter4
	Model of the tactile sensor
	Emulated digital solution
	Results, performance
	The geothermal model
	Boundary value problem of filtration process
	Boundary value problem of heat transfer
	Discretisation of PDEs in time and space 
	Cell Blade Systems

	Solution on a CNN Architecture
	The ocean model
	CNN-UM solution
	The emulated digital solution
	Results
	Euler equations
	 Discretization of PDE’s in time and space
	Euler’s forward time central space method
	Lax and Lax-Wendroff methods


	_Chapter5
	CNN Template Library
	Images Assigned to the CNN Models
	Global Variables
	Running an analog-and-logic (analogic) CNN algorithm
	Sample CNN Simulation with a Nonlinear “D - type” Template 

	List of All MATCNN Scripts, Functions and Global Variables

	_Appendices

