W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Android Development

Camera, Media

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Playing media

= Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Several different capabilities
* DTMF generator
* Ringtone Player and Manager
Face Detector
EXIF Interface
Async and Jet Player
Media Metadata Retriever

* Most important classes for us
* MediaPlayer
* MediaRecorder

* The APl is changing continuously
* Always check the new capabilities

* Also check the AudioManager class

04/15/2020 Android Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

= 2
i s
Teg et 18V

Supported formats

* Network protocols
 RTSP (RTP, SDP)
* HT TP progressive streaming
* HTTP live streaming (APl level 11 and above)

* Formats
Format/Codec | Encoder | Decoder | _ ContainerFormats
. BMP (.bmp)
GIF (.gif)
JPEG (jpg)
PNG (.png)
Android 4.0+ Android 4.0+
Lossless Android 10+ Android 4.2.1+ WebP (webp)
(Android 8.0+) HEIF (heic; .heif)

04/15/2020 Android Development

| Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

L +0
L’ h
Tex e 1oV

Supported formats — Audio

Format / Codec m Supported File Type(s) / Container Formats
AAC LC ' ' 3GPP (3
HE-AACv1 (AAC+ (Android 4.1+) MP'E Gt n(’;pip)m 4)
HE-AACv2 « ADTS raw AAC (.aac, decode in Android 3.1+,
enhanced AAC+

encode in Android 4.0+, ADIF not supported)

AACELD (Android 4.1+) (Android 4.1+) « MPEG-TS (.ts, not seekable, Android 3.0+)

enhanced low delay AAC

AMR-NB 3GPP (.3gp)

AMR-WB . . 3GPP (.3gp)
FLAC (Android 4.1+) (Android 3.1+) FLAC (.flac) only
GSM . GSM(.gsm)

- Type 0 and 1 (.mid, .xmf, .mxmf)
« RTTTL/RTX (.rtttl, .rtx)
- OTA (.ota)
- iMelody (.imy)
. MP3 (mp3)
(Android 5.0+) Matroska (.mkv)
PCM/WAVE (Android 4.1+) . WAVE (wav)

- Ogg (-ogg)
- Matroska (.mkv, Android 4.0+)

<
o
w

Vorbis

04/15/2020 Android Development

Format / Codec

H.264 AVC

Baseline Profile (BP) (Android 3.0+)

H.264 AVC

Main Profile (MP) (AT ()

H.265 HEVC
MPEG-4 SP

A\ (Android 4.3+)

VP9

04/15/2020

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

Supported formats — Video
___Encoder | Decoder | ____Container Formats __

- 3GPP (.3gp)
« MPEG-4 (mp4)
- 3GPP (.3gp)
« MPEG-4 (mp4)
« MPEG-TS (.ts, AAC audio only, not
seekable, Android 3.0+)

MPEG-4 (.mp4)

(Android 5.0+)
3GPP (.3gp)
| - WebM (webm)
(Android 2.3.3+) - Matroska (.mkv, Android 4.0+)
- WebM (webm)

(Android 4.4+) - Matroska (.mkv, Android 4.0+)

Android Development

http://www.webmproject.org/
http://www.webmproject.org/

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

) 0
#p "
Tes g 1o*

Media app architecture

* Multimedia application that plays audio or video usually
has two parts:

* A player that takes digital media in and renders it as video and/or
audio

* A Ul with transport controls to run the player and optionally
display the player's state

: Ul : : i

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Media session and controller

* The Android framework defines two classes, a media
session and a media controller, that impose a well-defined
structure for building a media player app.

* The media session and media controller communicate with
each other using predefined callbacks
* That correspond to standard player actions
* Extensible for our app

Controlier Session . .
PR ' Calls Callbacks Media Session
! " = . *

Media PlaybackState : -
1 i I
Jl f———— Controller . Metadata " Player :
- pdats Controller Callback ! :
Callbacks -

04/15/2020 Android Development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* In Android you can build your own player from the ground
up
* Or you can choose from these options:

* The MediaPlayer class provides the basic functionality for a bare-
bones player that supports the most common audio/video
formats and data sources.

* ExoPlayer is an open source library that exposes the lower-level
Android audio APIs

* ExoPlayer supports high-performance features like DASH and HLS
streaming that are not available in MediaPlayer.

* You can customize the ExoPlayer code, making it easy to add new
components.

* ExoPlayer can only be used with Android version 4.1 and higher.

04/15/2020 Android Development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Before start

* In manifest the appropriate declarations has to be set to allow
use of related features.

* Internet Permission

* If you are using MediaPlayer to stream network-based content, your
application must request network access.

* <uses-permission android:name="android.permission.INTERNET" />

e Wake Lock Permission

* To keep the screen from dimming or the processor from sleeping, or
uses the MediaPlayer.setScreenOnW hilePlaying() or
MediaPlayer.setWakeMode() methods.

* <uses-permission android:name="android.permission WAKE_LOCK" />

04/15/2020 Android Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

android.media.MediaPlayer

* To play Audio/Video streams on the mobile device

e Source can be either
* Local resource

* Internal URI (E.g. using the Content Resolver)
* External URL

04/15/2020 Android Development

W Pazmany Péter Catholic

Faculty of Information Technolog

MediaPlayer

* State diagram

* Note that there
are a

* prepared state
* preparing state

* That is the phase
when the player is

buffering, ...

04/15/2020

release()
setDataSource() OnErrorListener. onError()

preparefsync()

prepare()

Looping =— false &&
onCompletion() mveked on

stop() OnC ompletionListener
start()
j{notc m begnning)

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaPlayer functions

* Important ones:

* create(...)
* Toinitialize a instance of MediaPlayer
prepare(), prepareAsync()
* To prepare the playing (buffering)
* Synchronized (blocks the main thread)
* Preparing on a separate thread

release()
* To free up the locked resource

start() stop() pause() seekto(int milli)

* To control the player

reset()
* To reset the MP, it can be initialized again

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaPlayer functions

* Additional important functions
* setVolume (float leftVolume, float rightVolume)
* Stereo volume
setLooping(boolean)
* Set true to repeat the playback
setDisplay (SurfaceHolder sh)
* In case of video, to set the View where the video will appear
setDataSource (..)
* To specify the data source to be played
* setAudioStreamType (int streamtype)

* The pre-defined types can be found as final variables of the
AudioManager

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= 2
e, o

MediaPlayer functions

e Listeners

* setOnBufferingUpdatelListener(MediaPlayer.OnBufferingUpdatelist
ener listener)

* setOnCompletionListener(MediaPlayer.OnCompletionListener
listener)

 setOnErrorListener(MediaPlayer.OnErrorListener listener)
* setOnInfolListener(MediaPlayer.OnInfolListener listener)
* setOnPreparedListener(MediaPlayer.OnPreparedListener listener)

* setOnSeekCompletelListener(MediaPlayer.OnSeekCompletelListener
listener)

* setOnVideoSizeChangedListener(MediaPlayer.OnVideoSizeChangedLi
stener listener)

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaPlayer functions

* Additional query functions
e getCurrentPosition()
e getDuration()
« getVideoHeight()
« getVideoWidth()
e isLooping()
e isPlaying()

04/15/2020 Android Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Playing local resource

var mediaPlayer: MediaPlayer? =
MediaPlayer.create(context, R.raw.sound file 1)
mediaPlayer?.start()
// a create() meghivja a prepare()-t

mediaPlayer?.release()
mediaPlayer = null

04/15/2020 Android Development

Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Playing a local URI

val myUri: Uri = // initialize Uri here

val mediaPlayer: MediaPlayer? = MediaPlayer().apply {
setAudioStreamType(AudioManager .STREAM MUSIC)
setDataSource(applicationContext, myUri)

prepare()
start()

mediaPlayer?.release()
mediaPlayer = null

04/15/2020 Android Development

Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Play remote URL

val url = "http://........ " // your URL here

val mediaPlayer: MediaPlayer? = MediaPlayer().apply {
setAudioStreamType(AudioManager .STREAM MUSIC)
setDataSource(url)
prepare() // might take long! (for buffering, etc)
start()

mediaPlayer?.release()
mediaPlayer = null

04/15/2020 Android Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

& -0
Feg o patt

Asynchronous call

private const val ACTION PLAY: String = "com.example.action.PLAY"
class MyService: Service(), MediaPlayer.OnPreparedListener {
private var mMediaPlayer: MediaPlayer? = null
override fun onStartCommand(intent: Intent, flags: Int, startIld: Int): Int {
val action: String = intent.action
when(action) {
ACTION PLAY -> {
mMediaPlayer = ... // initialize it here
mMediaPlayer?.apply {
setOnPreparedListener(this@MyService)

prepareAsync()
}
}

}
}
override fun onPrepared(mediaPlayer: MediaPlayer) {

mediaPlayer.start()
}

}

04/15/2020 Android Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

3 0
Teg et o~

Further possibilities
* WIFI Lock

* To ensure continuous download

* PowerManagement Lock
* To ensure continuous playback in background

* Audio focus
* Managing the access to the audio devices
* Ringing the phone (in case of a call) has the priority

* Service in foreground

* Using media providers
* http://developer.android.com/guide/topics/media/index.html

04/15/2020 Android Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

= 2
i s
Teg et 18V

WifiLock

* If you are streaming media over the network and you are
using Wi-Fi, you probably want to hold a WifiLock:

val wifiManager = getSystemService(Context.WIFI SERVICE) as WifiManager
val wifiLock: WifiManager.WifilLock =
wifiManager.createWifilLock(WifiManager .WIFI MODE FULL, "mylock™)

wifilLock.acquire()

wifilLock.release()

04/15/2020 Android Development

' Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

PowerManager

* When designing applications that play media in the
background, the device may go to sleep while your service
IS running.

* If your service is playing or streaming music, you want to

prevent the system from interfering with your playback.

mediaPlayer = MediaPlayer().apply {
setWakeMode (applicationContext, PowerManager.PARTIAL WAKE LOCK)

}

04/15/2020 Android Development

N Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

ExoPlayer

* ExoPlayer is an open source pro{fct that is not part of the
Android framework and is distributed separately from the
Android SDK.

* ExoPlayer's standard audio and video components are built on
Android’s MediaCodec API, which was released in Android 4.1
(APl level 16).

* Because ExoPlayer is a library, you can easily take advantage of
new features as they become available by updating your app.

* ExoPlayer supports features like Dynamic adaptive streaming
over HTTP (DASH), SmoothStreamin%and Common
Encryption, which are not supported by MediaPlayer.

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaRouter

* Users connect their televisions, home theater systems, and
music players with wireless technologies.

* They want to be able to play content from Android apps that
devices.

* The Android media router APIs are designed to enable media
display and playback on remote receiver devices using a
common user interface.

* App developers that implement a MediaRouter interface can
then connect to the framework and play content to devices that
participate in the media router framework.

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaRouter

* Concept

Media Router Framework

* MediaRouter API

* A media app uses the MediaRouter API to discover available remote playback
devices and to route audio and video to them.

* MediaRouteProvider API

* The MediaRouteProvider APl defines the capabilities of a remote playback
device and makes it visible to apps that use a MediaRouter to search for
alternative media paths.

04/15/2020 Android Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

android.media.MediaRecorder

 MediaRecorder can be used to recorded audio or video
* Audio source is the microphone
* Video source can be one of the cameras

* The logic is like the MediaPlayer

04/15/2020 Android Development

Pazmany Péter
Faculty of Informatic

—h
4». fESEtCI
Error oceurs or

an mvald call

setAudioSource()/
etVideoSource()

release()

* Specity

¢ Form at setAudionource()f
setVideoSource()

* Size

) reset()/
° Flle stop() reset() setOutputF ormat()
°

Preview
surface

stAudioEncoder()
setVideoEncoder()
setCutputFile()
reset() prepare() setVideoSize()
setVideoFrameFRate()
start() setPreviewDisplay()
Frepared

04/15/2020 2

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaRecorder — example

MediaRecorder recorder = new MediaRecorder()
recorder.setAudioSource(MediaRecorder.AudioSource.MIC)
recorder.setOutputFormat(

MediaRecorder.OutputFormat.THREE GPP)
recorder.setAudioEncoder(
MediaRecorder.AudioEncoder.AMR_NB)
recorder.setOutputFile(PATH_NAME)
recorder.prepare()
recorder.start() // Recording

recorder.stop()
recorder.reset() // Can be reinitialized
recorder.release() // End of work

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaRecorder functions

* Most important

 setAudioSource(), setVideoSource()
* Atleast one of them must be called
* The possibilities are defined as final variables in inner classes
e prepare()
* Prepare the MR to record
release()
* Release the resources
start() stop()
* Controls
reset()
* Reset the MR to uninitialized state

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& 20
‘Deg pp 18>

MediaRecorder functions

* Important audio functions
 setAudioChannels (int numChannels)
 setAudioEncoder(int audio_encoder)
 setAudioEncodingBitRate(int bitRate)
» setAudioSamplingRate(int samplingRate)

* Important video functions
 setCamera(Camera c)
» setCaptureRate(double fps)

* Capturing frame rate
* setPreviewDisplay(Surface sv)
* setProfile(CamcorderProfile profile)
» setVideoEncoder(int video_encoder)
* setVideoEncodingBitRate(int bitRate)

» setVideoFrameRate(int rate)
* Frame rate of the saved file

» setVideoSize(int width, int height)

04/15/2020 Android Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MediaRecorder functions

* Important video functions
 Camcorder contains several predefined profiles

* Examples
Lower quality Higher quality
Video codec H.264 Baseline Profile H.264 Baseline Profile
Video resolution 176 x 144 px 480 x 360 px
Video frame rate 12 fps 30 fps
Video bitrate 56 Kbps 500 Kbps
Audio codec AAC-LC AAC-LC
Audio channels 1 (mono) 2 (stereo)
Audio bitrate 24 Kbps 128 Kbps

e Others: QUALITY 1080P, QUALITY 2160P, QUALITY 480P, QUALITY 720P,
QUALITY CIF, QUALITY HIGH, QUALITY LOW, QUATITY QCIF, QUALITY QVGA

* Most of them can be used in time-elapse videos.

04/15/2020 Android Development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaRecorder

» Additional functions
e setOutputFormat(int output format)
e setOutputFile(String path)
* setOutputFile(FileDescriptor fd)

 setMaxFileSize(long max_filesize bytes)
* The maximal file size in bytes
* Zero means infinite

 setMaxDuration(int max_duration _ms)
* Zero and negative values means infinite

e setAuxiliaryOutputFile (String path)
e setAuxiliaryOutputFile (FileDescriptor fd)

» Additional, low resolutions file

04/15/2020 Android Development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

MediaRecorder

e Listeners

* setOnInfolListener(MediaRecorder.OnInfolListener listener)
« setOnErrorListener(MediaRecorder.OnErrorListener 1)

e Other

e getMaxAmplitude()
« setOrientationHint(int degrees)

* Speficty the orientation for playback
* 0,90, 180,270

04/15/2020 Android Development

= -0
L’ h
L/ er 1%

Example

class AudioRecordTest

private var fileName: String =

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

: AppCompatActivity() {

private var recordButton: RecordButton? =

private var recorder: MediaRecorder? = null

private var playButton: PlayButton? = null

private var player:

private fun onRecord(start: Boolean) = if (start) {

private fun onPlay(start: Boolean) = if (start) {

startRecording()
} else {
stopRecording()
}
startPlaying()
} else {
stopPlaying()

}

04/15/2020

MediaPlayer? = null

Android Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

= 2
L’ h
'Te et ToY

Example

private fun startPlaying() {
player = MediaPlayer().apply {

try {
setDataSource(fileName)
prepare()
start()

} catch (e: IOException) {
Log.e(LOG_TAG, "prepare() failed")

}

}

private fun stopPlaying() {
player?.release()
player = null

04/15/2020 Android Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Example

private fun startRecording() {
recorder = MediaRecorder().apply {
setAudioSource(MediaRecorder.AudioSource.MIC)
setOutputFormat(MediaRecorder.OutputFormat.THREE GPP)
setOutputFile(fileName)
setAudioEncoder(MediaRecorder.AudioEncoder.AMR_NB)

try {
prepare()

} catch (e: IOException) {
Log.e(LOG_TAG, "prepare() failed")

start()

}

private fun stopRecording() {
recorder?.apply {
stop()
release()

recorder = null

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Measuring performance

* As of Android 8.0, the getMetrics() method is available for
some media classes.

* ltreturns a PersistableBundle object containing configuration and
performance information, expressed as a map of attributes and values.

* The getMetrics() method is defined for these media classes:
 MediaPlayer.getMetrics()
 MediaRecorder.getMetrics()
 MediaCodec.getMetrics()
* MediaExtractor.getMetrics()
* Metrics are collected separately for each instance and persist for the
lifetime of the instance.
* If no metrics are available the method returns null.
* The actual metrics returned depend on the class.

04/15/2020 Android Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Direct access to Camera

04/15/2020 Android Development

' Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Consider

* Before enabling your application to use cameras on
Android devices, you should consider a few questions
about how your app intends to use this hardware feature.

* Camera Requirement

* Is the use of a camera so important to your application that you do not
want your application installed on a device that does not have a camera?

* Quick Picture or Customized Camera
* How will your application use the camera?

* Are you just interested in snapping a quick picture or video clip, or will
your application provide a new way to use cameras?

* For a getting a quick snap or clip, consider using the existing apps,
otherwise you can build a customized camera application

04/15/2020 Android Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= 2
e, e

Consider

* Before enabling your application to use cameras on Android
devices, you should consider a few questions about how your
app intends to use this hardware feature.

* Foreground Services Requirement
* When does your app interact with the camera?

* On Android 9 (API level 28) and later, apps running in the background

cannot access the camera. Therefore, you should use the camera either when
your app is in the foreground or as part of a foreground service.

* Storage

Are the images or videos your application generates intended to be only
visible to your application or shared so that other applications such as Gallery

or other media and social apps can use them?

Do you want the pictures and videos to be available even if your application
is uninstalled?

04/15/2020

Android Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Asking for pictures

Simplest way — using builtin apps

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Using Intents

private void dispatchTakePictureIntent(int actionCode) {

Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
startActivityForResult(takePictureIntent, actionCode);
}

Check the existence of the activity

public static boolean isIntentAvailable(Context context, String action) {

final PackageManager packageManager = context.getPackageManager();
final Intent intent = new Intent(action);

List<ResolveInfo> list =

packageManager.queryIntentActivities(intent, PackageManager.MATCH DEFAULT_ONLY);
return list.size() > 0;

04/15/2020

Android Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Using Intents

* The resulting image is in a Bitmap
* The call of startActivityForResult(..) returnsan Intent

* In this Intent
 Bundle extras = intent.getExtras();
« mImageBitmap = (Bitmap) extras.get("data");

* Saving the picture

« takePicturelntent.putExtra(
MediaStore.EXTRA_OUTPUT, Uri.fromFile(f));

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Adding the picture to the gallery

private void galleryAddPic() {

Intent mediaScanIntent = new
Intent(Intent.ACTION_MEDIA SCANNER_SCAN_ FILE);

File ¥ = new File(mCurrentPhotoPath);
Uri contentUri = Uri.fromFile(f);

mediaScanIntent.setData(contentUri);
this.sendBroadcast(mediaScanIntent);

04/15/2020 Android Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Camera API

Simpler way — deprecated since APl Level 21

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Camera API

* The built-in camera can be used to record still images and videos as
well

* Restrictions
* Format
* Physical (optical) properties
* Miracles are not possible
* Sensor properties

* Easy to use API

* To access the camera the required permissions have to be declared

e <uses-permission
android:name="android.permission.CAMERA" />
<uses-feature android:name="android.hardware.camera” />
<uses-feature
android:name="android.hardware.camera.autofocus" />

04/15/2020 Android Development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* android.hardware.Camera
* Most important class, it is used to acces still images and preview
* Itis a client to camera services
* Important to turn on and off in order to save battery power

* Itis not a thread safe class
* Thus single thread access is required

e Callback functions are used to retrieve information

e Several inner class are defined
e For callback interfaces
* Parameters and properties

04/15/2020 Android Development

http://developer.android.com/reference/android/hardware/Camera.html

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Camera - Taking picture

Instantiate: open(int)
Retrieve parameters: P = getParameters()
Change if necessary: setParameters(P)
Setif necessary: setDisplayOrientation(int)
Provide a SurfaceHolder to show the previews:
setPreviewDisplay(SFH) - IMPORTANT
. startPreview() call - MANDATORY
Take a picture: takePicture(..), image arrives with callback
Restart preview to the new picture

LA whN =

O 0 N O

10.stopPreview()
11.release() -itisrequired to callin onPause()

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

o -0
#p "
ex gr 1o*

Camera

* There may be several camera built in the device

. '(Ij'he. open () function returns with a primary camera of the background of the
evice

* The open(int) function returns the specified camera

* Properties
» getNumberOfCameras()
» getCameralnfo(int, Camera.Cameralnfo)

* Paramteres of the opened camera
« getParameters(), setParameters()

* Further calls
e lock() -to have exclusive access
e unlock() -to release the lock
* reconnect()
* release() -finalcall

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Camera

* Preview

* Set the view
« setPreviewDisplay(SurfaceHolder holder)

* The Surface is a graphical object where the camera image can be
drawn on

* Abstract
* Aninstance can be retrieved by using the SurfaceView class
* Texture
 setPreviewTexture(SurfaceTexture surfaceTexture)
* For example transformation can be defined
* To start and stop
e startPreview()
* stopPreview()

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Camera

e PreviewCallback

* An interface which have to be implemented to receive the
preview frames

* setPreviewCallback(Camera.PreviewCallback cb)

* setPreviewCallbackWithBuffer(Camera.PreviewCal
lback cb)

« addCallbackBuffer(byte[] callbackBuffer)

 setOneShotPreviewCallback(Camera.PreviewCallba
ck)

e For the next frame

* Only one callback implementation can be set
* To unset previous one, set null callback

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Camera

e Automatic focus

« autoFocus(Camera.AutoFocusCallback cb)

* To start the automatic focusing procedure
* The callback is an interface which have to be implemented

* Itis being called when the procedure is finished (successful and
unsuccessful as well)

e cancelAutoFocus()

* ErrorCallback
 setErrorCallback(Camera.ErrorCallback cb)

* Notification about different errors

04/15/2020 Android Development

W Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

Information

e Camera.CameralInfo
* Information about the location and orientation of the camera

 Camera.CameraSize
* Possible images size

e Camera.CameraParameters

* Effects, Focusing method, Flashlights, 50/60 Hz filtering
* Preview FPS, Implemented camera profiles (Interior, Exterior, etc

)

» White balance, EV, Image format, Image size
* Image quality, Zoom information, EXIF data (GPS, Timestamp)
* Orientation of the image (Portrait/Landscape)

04/15/2020 Android Development

Taking picture

« takePicture(Camera.ShutterCallback shutter,

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Camera.PictureCallback raw,
Camera.PictureCallback postview,
Camera.PictureCallback jpeg)

* The procedure is done asynchronously

Shutter

« Starting the shutter — e.g. a sound can be played

e Raw

* If the memory amount is sufficient, the raw data is accessible

Postview

* The fully processed image can be accessed — not on all hardware

* Jpeg

* Final image in JPG, with EXIF data

* All callback functions has byte[] as parameters

04/15/2020

Android Development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Record movie — Using Camera

1. Instantiate: open(int)
2. Retrieve camera parameters: P = getParameters()
3. Change ifitis necessary: setParameters(P)

4. If necessary: setDisplayOrientation(int)
5. Provide a SurfaceHolder to show the previews:
setPreviewDisplay(SFH) - IMPORTANT
6. startPreview() call- MANDATORY

7. unlock()

8. setCamera(Camera)
9. reconnect()

10....
11.stopPreview()

12.release() -itisrequired to callin onPause()

04/15/2020 Android Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Camera 2 API

More sophisticated way

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

What is wrong with Camera API

* It can be used in three different, simple mode
* Preview
* Taking picture
* Capture video

* New function cannot be implemented easily
* Burst mode

* Frames cannot be accessed
* No RAW format support
* Small amount of metadata can be added

* Not to easy to set properties

* Using the Camera.Parameters many things can be set, but there us
no guarantee that the settings will take’effect

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Possibilities
* Processing raw images

» Several calculations and transformations can be done on the device
* Better range of dynamics

* Using Camera2 API
e Further sensor data can be used
e Multicore CPU and CPU can be used for calculations
e BLE/NFC communications
 Context aware process

Access to
* Sensors
* Flashlight
* Optical lens
* Technical data for each captured frames

HDR, Panorama image, Multi focused images

04/15/2020 Android Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Concept

* This package models a camera device as a pipeline
* Takes in input requests for capturing a single frame
* Captures the single image per the request

* Outputs one capture result metadata packet
* plus a set of output image buffers for the request.

* The requests are processed in-order, and multiple
requests can be in flight at once.
* Since the camera device is a pipeline with multiple stages, having

multiple requests in flight is required to maintain full framerate
on most Android devices.

04/15/2020 Android Development

Pazmany Péter Catholic Camera2 API Core Operation Model

)
N’f Faculty of Information Technolog 1 Request =1 image captured =
s ex 1 Result metadata + N image buffers

Concept e "

Per-frame
settings

[Targetsufane]

lTargetEmfal:eJ‘

Configured output
Surfaces

Surface

Surface

Output

image
gueues

CaptureResult

Settings used .
by hardware

‘ Hardware ‘

status onCaptureComplete()

Original l Camera hardware

CaptureRequest

04/15/2020

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Camera2 API

* Two packages
 android.hardware.camera2
 android.hardware.camera2.params

* Important classes

 CameraManager

* Query the number of cameras

CameraManager.manager=(CamePaManager%gets¥stem5ervice(Context.CAMERA_SERVICE);
String [] camids = manager.getCameraldList();

e CameraCharacteristics

e Parameters of a selected camera

¢ CameraCharacteristics characteristics =
manager.getCameraCharacteristics(camid);

The instance an immutable set of key-value pairs, representing the capabilities of the camera
INFO_SUPPORTED_HARDWARE_LEVEL
* LEGACY, LIMITED, FULL
LENS_FACING
* FRONT, BACK, EXTERNAL
JPEG_AVAILABLE_THUMBNAIL_SIZES

04/15/2020 Android Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

L +0
L’ h
Teg op 18%

Camera2 API

* Important classes

* CameraDevice
* Represents an actual device, which can be used in later tasks
* Different templates can be used for different tasks
* Preview
* Record
* Still_capture
* Video_snapshot
» Zero_shutter_lag
 CameraCaptureSession
* A session must be created to take a picture or re-process existing pictures
The output surfaces and parameters must be set

CameraCaptureSession.CaptureCallback instance have to be sent in order to
retrieve information about the stages of the process

A Handler have to be set to execute background tasks
The coders, etc. can be defined using the session

04/15/2020 Android Development

TextureView

Register by setSurfaceTextureListener...)

TextureView.SurfaceTextureListener

Called
when TextureView
is created public void onSurface Texture Available(SurfaceTexture surface, int width, int height)

o

If Create Camera

ki

CameraDevice.StateCallback

public void onOpened(CameraDevice camera) {

- ;
Il Get CameraDevice opened by CameraManager
i
LN
I CameraDevice ‘
‘_——""_Eﬁa—stﬁy createCaptureRequest(...)
Capture Request.Builder |
‘ aptureReq Reqister by cre reSession(...)

Setup in Builder
by addTamget(...

CameraCaptureSession.StateCallback |

Surface

Called When configured

Public woid onConfigured(CameraCaptureSession session) {
Il Get CameraCaptureSession
il Make BackgoundT hread, New Handler for Repeated Request

g’\

'In constructor Surface(...)

SurfaceTexture ‘

CameraCaptureSession

Setup by setRepgatingRequest(...)

CaptureRequest

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

CameraDevice
k——‘m by createCaptureRequest..)
Capture Request.Builder
apt Register by cre reSession(...)

Setup in Builder

by addT: .

y 29e CameraCaptureSession.StateCallback
Surface i |
Called When configured

*In constructor Surface(...)

Public void onConfigured{CameraCaptureSession session) {

il Get CameraCaptureSession
surfaceTexture il Make BackgoundThread, New Handler for Repeated Request
H
CameraCapture Session HandlerThread |
Setup in constructor Han dlerThread.getlooper
Setup by setRepeatingRequest(...,) ’ getbooper()
L Handler b
| CaptureRequest /// Ry
public void onSurfaceTexture Updated (SurfaceTexture surface) {
—-.

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Demo

* Builtin demo
* Android Studio

* Video tutorial
* https://[www.youtube.com/watch?v=Xtp3tH27OFs

04/15/2020 Android Development

https://www.youtube.com/watch?v=Xtp3tH27OFs

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Homework

* You will need to create a working audio player application.

* Can open local, and remote URL-s
* Local files on the devices

* Files on a web server such as:
* http://mad.itk.ppke.hu/android/tada.wav

* Can run and play in the background
* Can be controlled (stopped) by a notification
* The app should have a user-friendly design

04/15/2020 Android Development

http://mad.itk.ppke.hu/android/tada.wav

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Hardware and ML

Next week

