W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Android Development

Firebase again

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Firebase revisited

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Firebase rules

* Firebase Realtime Database Rules determine who has
* read and write access to your database
* how your data is structured
* what indexes exist.

* These rules are enforced automatically at all times.

* Every read and write request will only be completed if your rules
allow it.

* This is to protect your database from abuse until you have time
to customize your rules or set up authentication.

03/25/20 Android development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Firebase rules

* Firebase Database Rules have a JavaScript-like syntax and
come in four types:

* read
* Describes if and when data is allowed to be read by users.

* write
* Describes if and when data is allowed to be written.

* validate
* Defines what a correctly formatted value will look like, whether it has child
attributes, and the data type.

* .indexOn
* Specifies a child to index to support ordering and querying.

03/25/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

L +0
L’ h
Tes pr 10°

Firebase rules

* Rule examples:

// These rules require authentication

"rules": {
".read": "auth != null",
".write": "auth != null"

}
}

// These rules grant access to a node matching the authenticated
// user's ID from the Firebase auth token

"rules": {
"users": {
"$uid": {
".read": "$uid === auth.uid",
".write": "$uid === auth.uid"
}
}
}

}

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= o
L’ h
es pr 10"

Firebase rules

* What can we use when we want to validate data
* NOW

* The current time in milliseconds since Linux epoch.

* This works particularly well for validatin%/{cimestamps created with the SDK's
firebase.database.ServerValue TIMESTAMP.

* root

* A RuleDataSnapshot representing the root path in the Firebase database as it exists before
the attempted operation.

newData

* A RuleDataSnapshot representing the data as it would exist after the attempted operation.
* Itincludes the new data being written and existing data.

data

* A RuleDataSnapshot representing the data as it existed before the attempted operation.
S variables

* A wildcard path used to represent ids and dynamic child keys.
auth

* Represents an authenticated user's token payload.

03/25/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

= 2
L’ h
g et ToY

Firebase example

{
"rules": {
"foo": {
// /foo is readable by the world
".read": true,
// /foo is writable by the world
".write": true,
// data written to /foo must be a string less than 100 characters
".validate": "newData.isString() && newData.val().length < 100"
}
}
}

03/25/20 Android development

W Pizmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Firebase rules

* When we validate data we also can use:
* hasChildren(’children_name’)

isString()

isNumber()

isBoolean()

val().matches(regex)

03/25/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Firebase rules

* We can create rules for disablig certian write operations

such as update:

// we can write as long as old data or new data
// does not exist in other words, if this is a

// delete or a create, but not an update
".write": "ldata.exists() || !newData.exists()"

* We also can use any existing data in the rules:

".write": "root.child('allow writes').val() === true &&
ldata.parent().child('readOnly"').exists() &&
newData.child('foo"').exists()"

03/25/20 Android development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Firebase rules

* Rules Are Not Filters

* Rules are applied in an atomic manner.

* That means that a read or write operation is failed immediately if
there isn't a rule at that location or at a parent location that grants
access.

* Even if every affected child path is accessible, reading at the
parent location will fail completely.

03/25/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Firebase rules

e Rules Are Not Filters
* Consider this structure:

{

"rules": {
"records": {
"recl": {
".read": true
}s
"rec2": {
".read": false
}
}
}
}

03/25/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Firebase rules

* We can use queries for our read operations.
* In this case we need to add an index to the data node.
* The index will be incorporated in the query.

{
"rules”: {
"scores": {
".indexOn": ".value”
}
}
}

03/25/20 Android development

¥4 31200

Pazmany Péter Catholic University My Firebase App

Faculty of Information Technology and Bionics

Firebase login

G Sign in with Google
ﬁ Sign in with Facebook
, Sign in with Twitter

Sign in with email

\. Sign in with phone

A
| I
n

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

L +0
L’ h
Tex e 1oV

Firebase login

* Firebase login allows:

* Multiple Providers

* sign-in flows for email, phone authentication, Google Sign-In, Facebook Login,
witter Login, Apple rogin, Phone number, ...

Account Management

* flows to handle account management tasks, such as account creation and
password resets.

Account Linking

* flows to safely link user accounts across identity providers.
Custom Themes

* Customize the look of FirebaseUl to match your app.

* Also, because FirebaseUl is open source, you can fork the project and
customize it exactly to your needs.

Smart Lock for Passwords

* automatic integration with Smart Lock for Passwords for fast cross-device sign-
in.

03/25/20 Android development

https://developers.google.com/identity/smartlock-passwords/android/

1.
2.

Steps of adding Firebase login

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

Add Firebase to your Android project.

Add the dependencies for FirebaseUl to your app-level build.gradle file.
1. [Ifypu WgBt I<'co support sign-in with Facebook or Twitter, also include the Facebook and
witter S

If you haven't yet connected your app to your Firebase project, do so from
the Firebase console

In the Firebase console, open the Authentication section and enable the sign-
in methods you want to support. Some sign-in methods require additional
information, usually available in the service's developer console.

If you support Google Sign-in and haven't yet specified your app's SHA-1
fingﬁrprmt, do so from the Settings page of the Firebase console. See
Authenticating Your Client for details on how to get your app's SHA-1
fingerprint.

If you supFort sign-in with Facebook or Twitter, add string resources to
strings.xml that specify the identifying information required by each provider

03/25/20 Android development

https://firebase.google.com/docs/android/setup
https://console.firebase.google.com/
https://console.firebase.google.com/
https://console.firebase.google.com/project/_/settings/general/
https://developers.google.com/android/guides/client-auth

W Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

L
L’
Tes pr 18"

Add sign in intent

// Choose authentication providers

val providers = arraylListOf(
AuthUI.IdpConfig.EmailBuilder().build(),
AuthUI.IdpConfig.PhoneBuilder().build(),
AuthUI.IdpConfig.GoogleBuilder().build(),
AuthUI.IdpConfig.FacebookBuilder().build(),
AuthUI.IdpConfig.TwitterBuilder().build())

// Create and launch sign-in intent
startActivityForResult(
AuthUI.getInstance()
.createSignInIntentBuilder()

.setAvailableProviders(providers)
.build(),

RC_SIGN_IN)

03/25/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

L +0
L’ h
e £a"

Result of sign in

override fun onActivityResult(requestCode: Int, resultCode: Int, data:
Intent?) {
super.onActivityResult(requestCode, resultCode, data)

if (requestCode =
val response

RC_SIGN_IN) {
IdpResponse.fromResultIntent(data)

if (resultCode == Activity.RESULT OK) {
// Successfully signed in
val user = FirebaseAuth.getInstance().currentUser
/] ...
} else {
// Sign in failed. If response is null the user canceled the
// sign-in flow using the back button. Otherwise check
// response.getError().getErrorCode() and handle the error.

/] ...

03/25/20 Android development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Sy 0
L’ h
Tes pr 10°

Sign out

AuthUI.getInstance()
.delete(this)
.addOnCompletelListener {

//
¥

03/25/20 Android development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Android build process

W Pazmaény Péter Catholic University
Faculty of Information Technology and Bionics

) AIDL mma | oo] |
* Android Interface - |
Definition Language ez
* Inter process
Communication S
* Java -> Class -> Dex

« APK ==

* Android Application
Package

Other Resources

Debug or

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

* Zipalign
* ensure that all uncompressed

data starts with a particular
alignment relative to the start

of the file

* The benefit is a reduction in
the amount of RAM
consumed when running the
application.

* ProGuard - for .class files
* Shrinks its size
* Optimizes
e Obfuscate
* And checks it

* Removes unused code

03/25/20 Android development

Android build process in details

Application
Reources

R.java

= 3rd Party
b Libraries
and .class
Files
.dex files

Debug or

Release

Keystore

Signed and
Aligned .apk

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Android build T B
p ro C es S i N d etai I S Resource Files AAR Libraries

AIDL Files JAR Libraries

A/

|
|
|
|
|
|
|
oo s [
|
|
|
|
|
|
|
|

Compiled Resources

APK
Packager

| Managed by Gradle
| and the Android Plugin

Debug or Release
APK

03/25/20 Android development

W Pazmaény Péter Catholic University
Faculty of Information Technology and Bionics

= -
d
€5 pp T

Android project

* As you already aware
* Android applications are developed in Java/Kotlin language
* Other languages can be used as well

* The Java (Kotlin) build process and steps are going to be
investigated

* These steps are performed by the IDE, however you should
understand the details

03/25/20 Android development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Build process

* Rjava is generated based on the resources (aapt - Android Asset
Packaging Tool)

R.java and other .java files are compiled to java byte code (.class files)
class files are obfuscated by Proguard

Java byte codes and 3rd party libraries are compiled (dexed) to
ART/Dalvik executables (p dex files)

Com]plled resources and .dex files are gathered by the apk builder to and

Apk file is signed digitally (jarsigner) and data is aligned (zipalign)
* Then it is ready to submit to the play store

Resource-s Compiled resources

Proguard 3rd party
config libs

Keystore

03/25/20 Android development

Java code

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Let's investigate an apk file

* BKK Info application
* The .apk file is a zip file

* Unzip it an discover its content
* Resources
* Values

* Source code?
e classes.dex

03/25/20 Android development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Let's investigate an apk file

* Apktool
* java -jar apktool_2.4.1.jar d bkkinfo.apk
e Manifest

* Source code
e Smali

* Decompile java byte code
* dex2jar
* jd-gui

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

ProGuard

* It is easy to decompile the java byte code

* Everything is there
* Variable names
* Functions

* Easy to copy

e Code obfuscation
* Names are changed to ,hard to read by human”

* To compact the code
* Shorter code — smaller apk, less storage required

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

ProGuard

* Eliminating dead code
* E.g. unused modules

* Optimizing the code
* It has to be configured, unless it might remove useful codes

* Reflection
* proguard-rules.pro

* Proguard is integrated to the build process

03/25/20 Android development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

ProGuard

Input jars

03/25/20

- shrink —

Shrunk code

- optimize —

-—mmmmmm- (unchanged) ---------mmmm e

Optim. code

- obfuscate —

Android development

Obfusc. code

- preverify —

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

ProGuard

* Some of the parameters
-keep [,modifier,...] class specification

-keepclassmembers [,modifier,...]
class specification

-dontshrink
-dontoptimize

-dontobfuscate

03/25/20 Android development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Gradle

* To automate the build process
* To perform the entire process as seen in the slide

* Project is described by
* build.gradle

* Based on Groovy-n
* DSL (domain specific language)

* General, its functionality can be augmented with plugins
* Java plugin
* Android plugin

* Wrapper

* Downloads the entire Gradle distribution
* gradlew

03/25/20 Android development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Gradle dependency management

repositories {
mavenCentral()
maven {
url ‘'https://reponeve.hu/'

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version'
implementation 'androidx.appcompat:appcompat:1.0.2"
implementation 'androidx.core:core-ktx:1.0.2"
implementation 'androidx.constraintlayout:constraintlayout:1.1.3"
testImplementation 'junit:junit:4.12°'
androidTestImplementation 'androidx.test.ext:junit:1.1.1'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0°

+ Configuration for dependencies
* compile: required to compile the main project
* testCompile: required to compile the tests

* gradlew dependencies

03/25/20 Android development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Gradle Android plugin

apply plugin: 'com.android.application’
apply plugin: ‘'kotlin-android’
apply plugin: 'kotlin-android-extensions'

android {
compileSdkVersion 29
buildToolsVersion "29.0.3"

defaultConfig {
applicationId "hu.ppke.itk.android.demoapp"
minSdkVersion 21
targetSdkVersion 29
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"”

}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro’
}

03/25/20 Android development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Product flavors

android {

defaultConflg { . }
51gn1ngConf1gs { .}
buildTy E .
product lavors {
demo {
appllcatlonId "com buildsystemexample.app.demo”
versionName "1.0-demo"
iull {
appllcatlonId ‘com.buildsystemexample.app.full”
versionName "1.0-full"
) }

03/25/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Product flavors

* src/demol/java
* src/demo/res
* src/demo/res/layout

* src/demo/res/values

03/25/20 Android development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Build types

android {
defaultConflg { . }
51gn1ngConf1gs { .}
buildTy E .
roduct lavors { }
uildTypes {
release i
minityEnabled false

proguardFiles getDefaultProguardFile
proguard-android.txt'), 'proguard-rules.pro,

debug
) ebuggable true

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Build variants

* Variant = flavor + build type
* All variants: cross product of flavor and build types

Build warants - =
Module | Build variant

app fullRel=ase

lio debug

* gradle assembleDemoDebug
* gradle assembleFullRelease

03/25/20 Android development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Test — Validating software

* Objectives of software testing
* Discover errors of the system
* Ensure that the system works properly in real scenarios

* Validation

* Determine whether the software works as desired
* The correct software is built

* Verification

* The software meets the specifications
* The software is built correctly.

 The malfunctions and errors have to be discovered

03/25/20 Android development

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Testing functionality
* What does the program do?

» The software is considered as a black box, test cases are written based on the specifications
* The actual implementation is not taken into considerations
* Tests can be designed in early stages of the software process

* Structural test
* How the program does it?
* Tests are written based on the structure of the program, and implementation

* Testers analyze the code to ensure that all of the instructions are evaluated once
* All data/instruction path cannot be tested due to the complexity of the code

* Testing non functional parts
* How good the program is?
* The efficiency, reliability is tested

* Regression testing
» What went wrong during error corrections?

03/25/20 Android development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

| oad tests

* Programs should be tested with larger load (than
designed)

* The load is increased step-by-step until system failure

e Tasks

* To tests the system under extremal conditions

* Data loss or service loss is not allowed due to overload
* System have to be designed in order to guarantee this requirement

* Errors can be discovered which do not occur in normal cases

* Load tests are important in distributed systems.

03/25/20 Android development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Designing tests
* Optimal case
* For each program unit a _.., -~ m
test case have to be r—b Featureml@ —\
designed Dev
« Connections between Failing Ul bassing U
Test Test

program units also must be

tested
¢ TeStS have to be deSigﬂed L Refactor J

in parallel of the process
of program designing

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Software lifecycle - TDD

* Agile method

* Itis popular in modern software development methods

* Ared (failing) test is written first
* Something new, which is not implemented

* Next, the new code is implemented to turn the test green
* The function is implemented well

* Refactoring to check the correctness of the program
* Regression test

03/25/20 Android development

High-level : : :
design/architecture [P Detailed design (t Code > Unit test __] » Test

High-level Unit test Code Refactor Test
design/architeciure (t > > _.] >

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Test methods in Android

e |nstrumentation test
* Tests on the device or emulator

* Ul tests
* Tests for the User Interface only

* Monkey tests

* Random interactions with the application Ul without any previous
knowledge

* Unit tests
* Tests for a specific part of the application without the rest

e Instrumented Unit Test

* Testing the app on the device with Unit tests ©. This have great
support in Android Studio

03/25/20 Android development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Instrumentation tests

* On emulator of physical devices (slow)

* In this case the lifecycle can be controlled manually
* It can be tested how an activity responses to an intent

* |t can be tested whether a value entered into a text field remains
there after orientation change

» Components can be tested isolated
* Additional components can be mocked

* Based on JUnit

03/25/20 Android development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Espresso

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Espresso

* Use Espresso to write concise, beautiful, and reliable
Android Ul tests.

@Test

fun greeterSaysHello() {
onView(withId(R.id.name field)).perform(typeText("Steve"))
onView(withId(R.id.greet button)).perform(click())
onView(withText("Hello Steve!")).check(matches(isDisplayed()))

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Espresso

* The core APl is small, predictable, and easy to learn and
yet remains open for customization.

* Espresso tests state expectations, interactions, and
assertions clearly without the distraction of boilerplate
content, custom infrastructure, or messy implementation
details getting in the way.

* Espresso lets you leave your waits, syncs, sleeps, and polls
behind while it manipulates and asserts on the application
Ul when it is at rest.

03/25/20 Android development

= 2
d, s
ex pr T8V

Espresso

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Packages

espresso-core - Contains core and basic View matchers, actions, and
assertions.

espresso-web - Contains resources for WebView support.

espresso-idling-resource - Espresso's mechanism for synchronization
with background jobs.

espresso-contrib - External contributions that contain DatePicker,
RecyclerView and Drawer actions, accessibility checks, and
CountingldlingResource.

espresso-intents - Extension to validate and stub intents for hermetic
testing.

espresso-remote - Location of Espresso's multi-process functionality.

03/25/20 Android development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

UiAutomator

* Ul tests executed on the device
* Another application can be opened as well

* uiautomatorviewer — Represents the actual state of the Ul
hierarchy

 UiAutomatorTestCase

* APl is divided into five parts
« UiDevice - represents a device, for example pressHome
* UiSelector - to find different elements
» UiObject - represent a GUI element to perform actions (such as click)
 UiCollection - set of elements, selected with UISelector
* UiScrollable - represents scrollable elements

* https://developer.android.com/training/testing/ui-automator

03/25/20 Android development

https://developer.android.com/training/testing/ui-automator

= Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Server-client architecture
* Server is based on node.js

* WebDriver clients can send command through JSON Wire
Protocol

* Client can be on arbitrary language, independent on the
tested application

* Thus it can be reused
* Ruby, Python, Java, JavaScript, PHP, C#, Objective-C, Clojure, Perl

* For native, web based, and hybrid applications as well

03/25/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Ul/Application Exerciser Monkey

* The Monkey is a command-line tool that you can run on any
emulator instance or on a device.

* It sends a pseudo-random stream of user events into the system, which
acts as a stress test on the application software you are developing.

* The Monkey includes a number of options, but they break
down into four primary categories:

* Basic configuration options, such as setting the number of events to
attempt.

 Operational constraints, such as restricting the test to a single package.
* Event types and frequencies.
* Debugging options.

03/25/20 Android development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Monkey test

* When the Monkey runs, it generates events and sends them to
the system.

* It also watches the system under test and looks for three
conditions, which it treats specially:
* If you have constrained the Monkey to run in one or more specific

packaFes, it watches for attempts to navigate to any other packages,
and blocks them.

* If your application crashes or recejves any sort of unhandled exception,
the Monkey will stop and report the error.

* If your application generates an application not responding error, the
Monkey will stop and report the error.

* Depending on the verbosity level you have selected, you will also see
reports on the progress of the Monkey and the events being
generated.

03/25/20 Android development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Monkey test
* Ul/Application Exerciser Monkey

* Random event is sent to the Activity
* The distribution can be configured
 adb shell monkey -p package.name -v 500

* monkeyrunner
* Python AP
* Application can be controlled

* Three main modules
* MonkeyRunner — to connect to device and start tests
* MonkeyDevice - to simulate touch or key events
* Monkeylmage - to save screenshot

03/25/20 Android development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Unit tests — Android built-in

* Executed on JVM — fast

* Stub android.jar
* Mock is required
* Final keywords are removed

* Build variant: Unit Tests
* src/test/java
* Test dependencies

dependencies {
testImplementation 'junit:junit:4.12°

}
* gradlew test

03/25/20 Android development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

& 0
L’ h
Tex e 1oV

Unit tests — Assert] Android

* Convenient usage for assertions

e JUnit Assert:
assertEquals(View.GONE, view.getVisibility());

e Assert]:
assertThat(view.getVisibility()).isEqualTo(Vie
w.GONE) ;

» Assert] Android:
assertThat(view).isGone();

* Domain-specific language (DSL) for Android
* Asserts for almost all of the Android classes

* https://github.com/square/assertj-android

03/25/20 Android development

https://github.com/square/assertj-android

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Unit tests — Robolectric

* Instead on mobile device, it is executed on desktop —
extremely fast

* JUnit tests

* Additional project is not required
* RobolectricTestRunner

* APl to start Activity

03/25/20 Android development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

@RunWith(RobolectricTestRunner.class)

public class MyActivityTest {

@Test

public void clickingButton_shouldChangeMessage() {
MyActivity activity =

Robolectric.setupActivity(MyActivity.class);
activity.button.performClick();
assertThat(activity.message.getText())
.isEqualTo("Robolectric Rocks!");

03/25/20 Android development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Homework

Create a Simple Demonstration
» Use test case — code - refactoring

approach! @
* The demonstation is a Calculator ‘ FEEIUF ‘

. . Dev
application
* To add and multiply integer numbers Failing Ul Passing Ul
* Use buttons to enter numbers and Test Test

perform calculations

Add a delete button
* Deletes the last character L J
Add a clear button Refactor
* (lears all the entered characters
Save the instance state
* Don't forget the test case for it!

Run monkey test on it

* Save the output into
monkeytest_ output.txt and upload
with the project!

03/25/20 Android development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Libraries, support libraries

Next week

