W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Android Development

Multithreading

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

App runtime
linux vs java

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Boot process

Kernel Bootloader Launcher
- Kernel subsystems - RAM init - Own Init
- Loading drivers r——. 'R - Registering onClick() handlers
- Mount root FS - Kernel, RAM disk
- Starting init process - Starting kernel startActivity() 1 1
l Activity Manager

CPU startViazygote() s . self-initialization

- Sending Intent. CATEGORY_HOME

Init

- Environmental variables

. . Zygote
- Setting mount points _ t
- Mounting FSs - Reglste.r Zygote Socket Svstem S
- Starting native daemons - Preloading Java classes ystem server
- Preloading resources For each services
- SYStem SerVer Start mmmm——p - |nitialization
1 - Opening Sockets - Register it in ServiceManager
Native daemons - Listen Start Activity Manager
- servicemanager 1
- vold, netd, debuggerd, rild Android Runtime fork()
- app_process —
- Zygote — - \M . New application
- mediaserver - Zygote main()

- boot animation

- dbus-daemon

- bluettothd, installd
- keystore

- adb

02/19/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

= 2
e, e

Application process

New Activity

startActivity()

Activity Manager 1. Bind Appli(.:ation
2. Start Activity (onCreate() ...)

Process.start()

Activity Thread

New linux thread
with VM

AcCORGEESRPREAGDDNESOOROEDPEROIRS

02/19/20

Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
#p "
Dex or 1oV

Summary

* Following components are executed on the main thread of the application
 Activity
* Service
* BroadcastReceiver

* Executing tasks in Android
* The Activity must be alive, and responsive
* Itis being checked

* When the reaction time of an Activity is more than five seconds, the system
suppose that activity should be killed as'it does not respond

. Netwcglrk tasks cannot be executed on the main thread, as they last longer than five
seconds

* Itis ensured by the Android system

* In case of longer calculations or networking, you have to use new threads
or services

* As it has been done in Java

02/19/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
Feg o patt

Multithread programs

* Two different methods exist to execute background tasks

* Starting a new Thread
* Multithreading in an Activity or other program Context

* While the user performing actions on the Ul, it is possible to execute tasks in the
background

* It is similar to the method introduced in Java

. P{ease be noted, that you have to respect the constraints on execution time and the access of GUI
elements

* Background Service
* New Context for executing specific tasks
* For tasks, which are not required to implement a user interface
* However, they can be controlled via activities
* For tasks should be executed when other applications are in the foreground
* Examples

* Downloading data from the web (downloading is continued while another activity is in the
foreground

* Playing media (while listening to music other activities can be done)
* Scheduled tasks (checking emails)
» Complex calculations (Processing HDR+ images)

02/19/20 Android development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

L +0
L’ h
Tes pr 10°

Main Thread

* The application is started on the main thread
* Itis called Ul thread as well

* The components are instantiated by this thread
* All the event handlers are executed in this thread

* 1. The user touches a button
2. Ul thread forwards the event to the button
3. The button refreshes itself

* Principal rules

* Itis not permitted to block the execution of this thread by any
calculations

* Itis not allowed to access Ul elements from any other threads
* If it occurs, the system generates an exception, and the program will be killed

02/19/20 Android development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Exceptions

* Application Not Responding
* ANR

* NetworkOnMainThreadException

* In the case when networking is done on
the main thread

ThreadDemo isn't responding

X Close app
© wait

* CalledFromWrongThreadException

* Calling Ul functions from any other
thread than the main thread

02/19/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

New Thread

* Example

private void methodInAndroidClass() f{

Thread thread = new Thread(doSomething, "In background");
thread.start();

}

private Runnable doSomething = new Runnable() {
public void run() { /* do the something here */ }
}s

02/19/20 Android development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Ul functions

private void methodInAndroidClass() {
new Thread(new Runnable() {
@Override
public void run() {
((TextView) findViewById(R.id.btn))
.setText("Wont work");

}
}).start();

}

* This example is to demonstrate what is not allowed!
* CalledFromWrongThreadException is being thrown.

02/19/20 Android development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Returning to the main thread

 There are several solutions

e Activity.runOnUiThread(Runnable)
* Sending a Runnable to the main thread to be executed
* Asitis called on the main thread, it will be executed immediately

* Otherwise, it is scheduled for execution later (as soon as possible)

e View.post(Runnable)

* Similar to the previous solution
* View.postDelayed(Runnable, long delayInMillis)

* Similar to the previous solution

* Delay can be specified

02/19/20 Android development

http://developer.android.com/reference/android/app/Activity.html#runOnUiThread%28java.lang.Runnable%29
http://developer.android.com/reference/android/view/View.html#post%28java.lang.Runnable%29
http://developer.android.com/reference/android/view/View.html#postDelayed%28java.lang.Runnable,%20long%29

' Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Example

private void methodInAndroidClass() {
new Thread(new Runnable() {

@Override
public void run() {
((TextView) findViewById(R.id.btn))
.post(new Runnable() {

@Override

public void run() {
((TextView) findViewById(R.id.btn))
.setText ("It works!");

}
})s
}).start();

02/19/20 Android development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

AsyncTask

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

L
L’ h
Teg er 1%

AsyncTask

* Allows you to run a task on a background thread while
publishing results to the Ul thread
* Generic Class

* Takes parameterized types in its constructor
* ... means that it can be an array

* Three necessary types:

* Params
* Parameter type sent to the task upon execution
* Progress

* Type published to update progress during the background computation
* Result

* The type of the result of the background computation

02/19/20 Android development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

AsyncTask<Params, Progress, Result>

* Functions
* onPreExecute()
* doInBackground() executed before dolnBackground()
doInBackground(Params... params)
* Tasks to be executed on a new thread, asynchronously

publishProgress(Progress... values)
» The progress of calculations can be indicated by this call

onProgressUpdate(Progress... values)
* The actual progress can be returned
* Executed after the publishProgress() «call

onPostExecute(Result result)
* doInBackground() executed after the doInBackground call

« get()

* This function call is blocked, until doInBackground() finishes, and retrieves the results

execute(Params... params)
* Starting the background task

« To start call new AsyncTask().execute()

02/19/20 Android development

http://developer.android.com/reference/android/os/AsyncTask.html#onPreExecute%28%29
http://developer.android.com/reference/android/os/AsyncTask.html#doInBackground%28Params...%29
http://developer.android.com/reference/android/os/AsyncTask.html#publishProgress%28Progress...%29
http://developer.android.com/reference/android/os/AsyncTask.html#onProgressUpdate%28Progress...%29
http://developer.android.com/reference/android/os/AsyncTask.html#onPostExecute%28Result%29
http://developer.android.com/reference/android/os/AsyncTask.html#get%28%29
http://developer.android.com/reference/android/os/AsyncTask.html#execute%28Params...%29

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Example

private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
protected Long doInBackground(URL... urls) {

int count = urls.length;

long totalSize = ©;

for (int i = 0; 1 < count; i++) {
totalSize += Downloader.downloadFile(urls[i]);
publishProgress((int) ((i / (float) count) * 100));
if (isCancelled()) break;

return totalSize;

}

protected void onProgressUpdate(Integer... progress) {
setProgressPercent(progress([0]);
}

protected void onPostExecute(Long result) {
showDialog("Downloaded " + result + " bytes");
}

02/19/20 Android development

eW Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

L +0
L’ h
Tes pr 18"

AsyncTask short

* Or if you do not want to return back to the main Thread
AsyncTask.execute(new Runnable() {
@Override
public void run() {
//TODO your background code

})s

02/19/20 Android development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Loaders

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

5 -0
#p "
Feg pp 8%

Why Loaders?

* AsyncTasks are tied to the Activities

* Why is that bad?

* If the Activity goes to the background or stops running (for
example on orientation change), the AsyncTask will return back
to the old Activity and won't let it stop.

* Loaders from API 13 provide a framework for
asynchronous loading of data

* With the help of the LoaderManager they are not tied to
Activities

02/19/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Loader

* https://developer.android.com/guide/components/loaders.
ntml

 How to create a Loader
* 1. Create Loader ID

* 2. Fill-in Loader Callbacks
* 3. Initialize the loader with LoaderManager

* Loader Types
* AsyncTaskLoader
* Similar to AsyncTask

e CursorLoader
* Loads the data from a Cursor

02/19/20 Android development

https://developer.android.com/guide/components/loaders.html

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Using a CursorLoader

1. Implement LoaderManager.LoaderCallbacks<Cursor>

2. Init/restart the loader
* getSupportLoaderManager().restartLoader(if, bundle, callback);

3. Callback methods

* public Loader<Cursor> onCreateLoader(int id, Bundle args)
* Create the loader on the main thread
* Define the query for the cursor
* public void onLoadFinished(Loader<Cursor> loader, Cursor data)
* Returns the result to the main thread
* public void onLoaderReset(Loader<Cursor> loader)
* If the loading failed or reseted for some reason

02/19/20 Android development

W Pazmaény Péter Catholic University
Faculty of Information Technology and Bionics

= -
L’
Tes et T

AsyncTaskLoader

* A parent of CursorLoader

* They are as efficient as CursorLoaders, but takes more
code to implement, so | recommend using this over
AsyncTasks when

* The task is big enough
* Or the independence from the Activity is important

* Some good examples of how to use them:
* https://stackoverflow.com/a/22675607/3162918

02/19/20 Android development

https://stackoverflow.com/a/22675607/3162918

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Handler

* Using handlers, one can send messages and runnable
codes between threads
« Handler - object

* Message, Runnable
e Handler = Thread where it has been created + MessageQueue

* Can be scheduled to execute the code later
* Can be sent to the itself
* Can be sent to another thread
* AHandler always belongs to a Thread
* Messages sent from other threads can be processed

* The incoming messages must be checked and processed

02/19/20 Android development

http://developer.android.com/reference/android/os/Handler.html
http://developer.android.com/reference/android/os/Message.html
http://developer.android.com/reference/android/os/MessageQueue.html

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Example

public class BackgroundDemos extends Activity {
Handler handler = new Handler();
TextView hello;
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
hello = (TextView) this.findViewById(R.id.hellotv);
hello.setText("testing");
new Thread() {
public void run() {
/] ...
handler.post(doUpdateMaps);

}
}.start();

}
Runnable doUpdateMaps = new Runnable() {
public void run() {
hello.setText(maps);

}

02/19/20 Android development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Service

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Service

* Background tasks, which have to be executed even when our Activity
is paused
* There is no Ul attached to these tasks

* Starting

e startService() callfromanActivity
* The service is independent of its starting Activity
* When Activity finishes the execution of the service can be continued

* bindService() is called to join (bind) the service to a specific Activity
* The service will be finished when the starting component is finished
* This service cooperates with the Activity

* After calling this function the onServiceConnected() will be executed and the binder
object is received

* It can be used to call the functions of the service directly

* Services of other applications can be reached by using the AIDL

02/19/20 Android development

http://developer.android.com/reference/android/content/Context.html#startService%28android.content.Intent%29
http://developer.android.com/reference/android/content/Context.html#bindService%28android.content.Intent,%20android.content.ServiceConnection,%20int%29

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Started / Bounded T

02/19/20

onCreate()

i J’

onStartCommand()

e ““«.II
[Service

soves

The service is stopped
by itzelf or a client

Unbounded
service

Android development

onCraate()

............................ e —

onBind()
I.r" Clients are
' boundto
service

All clients unbind by calling |
unbindService() 1

v

onUnbind()

............................ *

onDestroy()

v

Service
shut down

Bounded
service

eW Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Foreground
* A foreground service performs some operation that is noticeable to the user.
* Foreground services must display a Notification.
. Fore%r"ound services continue running even when the user isn't interacting

with the app.
* Background

* Abackground service performs an operation that isn't directly noticed by the

user. For example, if an app used a service to compact its storage, that would
usually be a background'service.

* Bound

* A bound service offers a client-server interface that allows components to
interact with the service, send requests, recejve results, and even do so across
processes with interprocess communication (IPC).

* A bound service runs only as long as another application component is bound
toit.

02/19/20

Android development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Service

* Service — on which thread?
* On the main thread of the HOST process

* localService
* If you are planning to execute a CPU intensive work, a new thread must be started
* Playing media
* Accessing network
* To avoid ANR or NetworkOnMainThreadException
* IntentService
+ Can be started to perform tasks on a new background thread
+ Example: to download a file, which tasks should not be interrupted when users leave the activity

* Think before acting! Do not mix the purpose of services and background threads
* Executing tasks, when our application is in the background? - Service
* Long calculations? — AsyncTask
* Long uninterruptible calculations? — IntentService

. ﬁonglnuous, complex tasks in the background, which can be controlled from UI? - Service +
andler

02/19/20 Android development

http://developer.android.com/reference/android/app/IntentService.html

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

o -0
#p "
ex gr 1o*

Service

e AndroidManifest.xml

<service android:name=".NewService" />

e Service class

public class NewService extends Service {
public void onCreate() {

}

public void onStartCommand(Intent intent, int flags, int startId) {
/] ...
}

public IBinder onBind(Intent intent) {
return null;

}
}

02/19/20 Android development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

= 2
L’ h
Tex e 1oV

Starting a Service

public class MyActivity extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {
startService(new Intent(this, NewService.class));

/] ...
}

@Override
public void onDestroy() {
stopService(new Intent(this, NewService.class));

/] ...

}
}

02/19/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Background Execution Limits since 8.0

* An app is considered to be in the foreground if any of the following
is true:
* It has a visible activity, whether the activity is started or paused.
* It has a foreground service.

* Another foreground app is connected to the app, either by binding to one of
its services or by making use of one of its content providers.

* For example, the app is in the foreground if another app binds to its:
« IME
» Wallpaper service
* Notification listener
* Voice or text service

* If none of those conditions is true, the app is considered to be in the
background.

02/19/20 Android development

https://developer.android.com/guide/topics/text/creating-input-method.html

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Background Execution Limits since 8.0

* While an app is in the foreground, it can create and run
both foreground and background services freely.

* When an app goes into the background, it has a window of
several minutes in which it is still allowed to create and use
services.

* At the end of that window, the app is considered to be
idle.

* At this time, the system stops the app's background services, just
as if the app had called the services' Service.stopSelf() methods.

02/19/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Background Execution Limits since 8.0
* What should we do

* The app can replace background services with JobScheduler
jobs
* This job is launched periodically, queries the server, then quits.

e As of 9.0

* Apps using foreground services must request the
FOREGROUND_SERVICE permission.

02/19/20 Android development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

IntentService

* IntentService is a base class for Service that handles asynchronous
requests (expressed as Intents) on demand.
» Clients send requests through startService(Intent) calls
* The service is started as needed, handles each Intent, in turn, using a worker
thread
» And stops itself when it runs out of work.

Example:

public class SimpleIntentService extends IntentService {
public SimpleIntentService() {
super("SimpleIntentService");
}

@Override
protected void onHandleIntent(Intent intent) {..}

}

Intent msgIntent = new Intent(this, SimpleIntentService.class);
startService(msgIntent);

02/19/20 Android development

https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Context.htmlstartService(android.content.Intent)

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

BroadcastReciever

* An object which is notified about specific events

* System-level events

* For example: receiving SMS

* This kind of events can be raised by sendBroadcast() call
* Registering

 Context.registerReceiver()

* Or defined in AndroidManifest.xmlbetween <receiver>tags
* Unregistering

« Context.unregisterReceiver()

* While the Activity is paused it should not receive Intents; thus
the registering and unregistering should be done in onResume ()
and onPause()

02/19/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
#p "
es pr 10"

BroadcastReciever

A BroadcastReceiver object is only valid (exists) while the onReceive()
function call executes

* Thus no asynchronous operation can be performed
* And no dialog can be opened
* And no Service can be bonded

* Example:
public class MyReceiver extends BroadcastReceiver {
@Override
public void onReceive(Context context, Intent intent) {..}

}

<receiver android:name="MyReceiver" >
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />
</intent-filter>

</receiver>

02/19/20 Android development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

sendBroadcast()

An Intent is the parameter of the function call

* It can be sent to any object capable of receiving broadcast call
* The Intent has to match

* In that way, we can raise broadcast messages similar to pre-defined
system broadcast message

Example

public void broadcastIntent(View view) {
Intent intent = new Intent();
intent.setAction("com.CUSTOM INTENT");
sendBroadcast(intent);
¥
<receiver android:name="MyReceiver">
<intent-filter>
<action android:name="com.CUSTOM_INTENT">
</action>
</intent-filter>
</receiver>

02/19/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Homework

* You need to create an application which compares the
multithreading capabilities of Android.

* You need to do some background work.

* You need to compare the speed of a Service, AsyncTask,
AsyncTaskLoader, new Thread.
* Each implementation is opened by a button on the MainActivity.
* After each test, you need to present the runtime on the screen.

* While the calculations are running the Ul should be responsive
(You sould be able to use it normally).

* You also need to add a progress indicator to the Ul which is
showing the current progress of the task.

02/19/20 Android development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Notification quick example

* NotificationManager notificationManager = NotlflcatlonManager)
getSystemServ1ce(NOTIFICATIO SERVICE
Intent intent = new Intent(this, Notification eceiver. class);
PendingIntent Intent =
Pend1n§Intent getAct1v1ty(thls, (int)
System.currentTimeMillis(), intent, i
Notification n = new Notification. Bui der(this)]
.setContentTitle("New mail from " + "test@gmail.com")
.setContentText("Subject")
.setSmallIcon(R drawable.icon)
.setContentIntent(pIntent)
.setAutoCancel(true
.addAction(R.drawable.icon, "Call”, pIntent
.addAction(R.drawable.icon, "More", pIntent
.gddég%§on R.drawable.icon, "And more' , pIntent)
ui
notlflcatlonManager notify(@, n);

02/19/20 Android development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
Feg o patt

Notification quick example in 8.0

e if (Build.VERSION.SDK INT >= Build.VERSION CODES.0) {
// Create the NotificationChannel, but only on API 26+ because
// the NotificationChannel class is new and not in the support library
CharSequence name = getString(R.string.channel _name);
String description = getString(R.string.channel description);
int importance = NotificationManagerCompat.IMPORTANCE DEFAULT;
NotificationChannel channel = new NotificationChannel(CHANNEL ID, name,
importance);
channel.setDescription(description);
// Register the channel with the system
NotificationManagerCompat notificationManager =
NotificationManagerCompat.from(this);
notificationManager.createNotificationChannel(channel);
}

02/19/20 Android development

& -0
#p "
Tes pr 0v

Notification quick example in 8.0

| Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

// Create an explicit intent for an Activity in_your app

Intent intent = new Intent(this, AlertDetails.class);
1ntent.setF1a§s§Intent.FLA ACTIVITY_NEW_TASK |
Intent.FLAG_ACTIVITY_CLEAR_TASK); o . .
PendingIntent pendingIntent = PendingIntent.getActivity(this, 0, intent, 0);

gﬂgﬁﬁﬁﬁa§%gnCompat.Builder mBuilder = new NotificationCompat.Builder(this,
~.setSmallIcon(R.drawable.notification_icon)

.setContentTltle("M{ notification")
.setContentText("Hello World!"
.setPriority(NotificationCompat.PRIORITY_DEFAULT)
// Set the intent that will fire when the user taps the notification
.setContentIntent(pendingIntent)
.setAutoCancel(true);

NotificationManagerCompat notificationManager =
NotificationManagerCompat.from(this);

// notificationId is a unique int for each notification_that you must define
notlflcatlonManager.notlfy%notlflcatlonId, mBuilder.build());

More on Notifications

02/19/20 Android development

https://developer.android.com/training/notify-user/build-notification.html

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Storage — further options

Next week

