
1

Lecture 1

Introduction to AI

Kristóf Karacs

PPKE-ITK

Questions?

 What is intelligence?

 What makes it artificial?

 What can we use it for?

 How does it work? How to create it?

 How to control / repair / improve it?

 What are the consequences?

 Do we need to be afraid of it?

 What can we do?



2

Good to know

 Slides in English

 Vox Populi

 Requirements: later today

Administration

 Contact
 Instructor: Kristóf Karacs

room 231, karacs@itk.ppke.hu

 TAs

 Attila Stubendek, Attila Sulyok
room 224, stubendek.attila@itk.ppke.hu

sulyok.a.attila@gmail.com

 Web
 http://users.itk.ppke.hu/~karacs/AI/

 Lectures
 Mon 12:15am, Jedlik Lecture hall

 Seminars
 Group 1: Wed 8:15am, room 322

 Group 2: Wed 13:15pm, room 220

 Group 3: Tue 12:15pm, room 220



3

What is intelligence?

intelligere: to comprehend, to perceive

 Sense

 Reason rationally

 Learn and discover

 Compete

 Communicate and cooperate

What is AI? (1)

 “[The automation of] activities that we associate with human thinking, 
activities such as decision-making, problem solving, learning ...” (Bellman, 
1978)

 “The exciting new effort to make computers think ... machines with minds, in 
the full and literal sense” (Haugeland, 1985)

 “The study of mental faculties through the use of computational models” 
(Charniak and McDermott, 1985)

 “The art of creating machines that perform functions that require intelligence 
when performed by people” (Kurzweil, 1990)

 “A field of study that seeks to explain and emulate intelligent behavior in 
terms of computational processes” (Schalkoff, 1990)

 “The study of how to make computers do things at which, at the moment, 
people are better” (Rich and Knight, 1991)

 “The study of the computations that make it possible to perceive, reason, 
and act” (Winston, 1992)

 “The branch of computer science that is concerned with the automation of 
intelligent behavior” (Luger and Stubblefield, 1993)



4

Russell Beale
(University of Birmingham)

 “AI can be defined as the 

attempt to get real machines to 

behave like the ones in the 

movies.”

John McCarthy

(Stanford)

 “It is the science and 
engineering of making 
intelligent machines, especially
intelligent computer programs. 

 It is related to the similar task of using 
computers to understand human 
intelligence, but AI does not have to 
confine itself to methods that are 
biologically observable.”



5

Ray Kurzweil (Google)

 “Artificial intelligence is the ability to 

perform a task that is normally performed 

by natural intelligence, particularly human 

natural intelligence.”

Elaine Rich (University of 

Texas at Austin)

 “Artificial Intelligence is the study of how to 

make computers do things at which, at the 

moment, people are better.”



6

What is AI? (2)

“The synthesis and analysis of computational 
agents that act intelligently.”

 Science and engineering

 Understanding principles that make intelligent 
behavior possible in natural or artificial systems

 Specifying methods for the design of useful, intelligent 
artifacts

[Poole - Mackworth: Artificial Intelligence, Cambridge 
University Press, 2010]



7

What is AI? (3)

“Intelligence measures an agent’s ability to 
achieve goals in a wide range of environments.”

 Implicitly includes

 ability to learn and adapt

 to understand

[S. Legg – M. Hutter, A formal measure of machine 
intelligence, Benelearn Conference, 2006]

What is AI? (4)

 Study of the principles by which 

knowledge is acquired and used, 

goals are generated and achieved, 

 information is communicated, 

collaboration is achieved, 

concepts are formed, 

 languages are developed. 



8

Intelligent agents

 act according to the circumstances and its 

goals

 adapt to dynamic environments and goals

 learn from experience

 are aware of their own limitations 

(sensors, memory, speed, etc.)

Levels of intelligence



9

Levels of intelligence

 Difficulty levels for humans and machines

 Playing team sports, driving a car

 Playing chess or go

 Recognizing a cat

 Solving partial differential equations

 Solving logic puzzles

Old captchas



10

Newer captchas

Minimum requirements

 Assignments: 50%

 Seminar tests: passing 60% of all

 Project (code and documentation): 50%

 Midterm exam: 40%



11

Grade composition

 Project 30%
 Proposal 2%

 Code 18%

 Documentation 10%

 Midterm 30%

 Final 40%

 Activity, presentations + 10%

 Competition (for top positions) + 20%

 Worked out problems + 10%

Grading

 Grades

 5: 87.5%-

 4: 75.0%-

 3: 62.5%-

 2: 50.0%-

 Grade offer requirements

 Min. 75% at the midterm

 Project presentation on the last week of the semester



12

Presentation

 Optional

 5 minutes

 Topics

Anything AI related you find interesting and 

think that it may be interesting to others

Some topics are posted on the website

Project work

 Goal: Demonstrating the use of some AI 
techniques

 Self defined or Challenge-type

 Proper documentation according to the rules 
outlined on the website

 Project submission deadlines
Proposal: February 27

First prototype: March 27

Final version: May 10



13

Project work

 Start thinking about it now, to come up 

with your own!

Sample project ideas

 Visual scene understanding

 Reading sheet music

 Predicting structure of protein fragments

 Object detection

 Bongard problems

 Captcha solver

 Intelligent vacuum cleaner

 Route searching for a carpooling system



14

Bongard problems

 Mikhail Moiseevich Bongard, 1967

 Given 2 x 6 figures

 Task: describe what is common in one set 

not shared with the other set

Bongard problem #6



15

Bongard problem #7

Bongard problem #87



16

Bongard problem #20

Bongard problem #91



17

Bongard problem #116

Typical problems

 Exponential blow-up

 Representation of information



18

Methods

 Analytical

 Empirical

 Hybrid

Early milestones

 1950. Turing test

 1955. GPS by H. Simon and A. Newell

 1956. The term “AI” was born at a 

conference organized by John McCarthy 

in Dartmouth College, Hanover, NH



19

Turing Test

Source: Jack Copeland, alanturing.net

Stages of AI



20

Stages of AI

 Initial enthusiasm

 Recession

 Successes

 AI industry

 Wide-spread, sophistication

Source: Wolfgang Ertel



21

Source: Wolfgang Ertel

Related sciences

 Computer science / data science
 Data mining, machine learning

 Mathematics:
 Logic, complexity theory, probability theory

 Psychology

 Cognitive science

 Linguistics

 Biology

 Philosophy, ethics



22

Application areas

art, astronomy, bioinformatics,

engineering, finance, fraud detection, law,

mathematics, military, music, story writing,

telecommunications, transportation,

tutoring, video games, web search

Branches detached from AI

 Machine learning, deep learning

 Computer vision

 Speech recognition

 Optical character recognition, handwriting 

recognition

 Natural language processing

 Expert systems



23

Program

 Problem solving by search

 Search including other agents

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

 Machine learning

AI highlights (1)

 SKICAT: automatically classifies data from space 
telescopes and identifying interesting objects in the sky. 
94% accuracy, way better than human (decision trees)

 Deep Blue: the first computer program to defeat human 
champion Garry Kasparov (minimax search + alpha-
beta-pruning + optimizations)

 Pegasus, Jupiter, etc.: speech recognition systems 
(Hidden Markov Models)

 HipNav: a robot hip-replacement surgeon (planning 
algorithms)

 DARPA Grand/Urban Challenge: autonomous driving 
(filtering and planning algorithms)



24

AI highlights (2)

 Deep Space 1: NASA spacecraft that did an autonomous 
flyby an asteroid (logic-based AI)

 Credit card fraud detection and loan approval (decision 
trees and neural networks)

 Chinook: the world checker’s champion (game theory)

 Spam Assassin and other spam detectors (naïve Bayes 
learning)

 Soccer playing Aibo robots (reinforcement learning)

 Watson (natural language processing, knowledge 
aggregation)

 AlphaGo, AlphaZero, AlphaStar (deep reinforcement 
learning)

Principles of academic integrity

 Projects
Cite all sources properly

 Assignments
Discuss and research the problem before you 

start writing

Do not copy cat ready solutions

Work on your own

After you start putting it into writing
 Do not talk to others

 Do not consult external materials



25

Textbooks

 S. J. Russell, P. Norvig, Artificial Intelligence: A 

Modern Approach, Third Edition,  Prentice Hall, 2009

 S. J. Russell, P. Norvig, Mesterséges intelligencia 

modern megközelítésben, második kiadás, Panem, 

2005

 available at: 

tankonyvtar.hu/hu/tartalom/tamop425/0026_mi_4_4

 D. Poole, A. Mackworth, Artificial Intelligence, 

Cambridge University Press, 2010

 available at: artint.info

Other resources

 I. Futó (ed.), Mesterséges intelligencia, Aula, 1999

 Kevin P. Murphy, Machine Learning – A 
probabilistic perspective, MIT Press, 2012

 C. M. Bishop, Pattern Recognition and Machine 
Learning, Springer Verlag, 2006

 AAAI (Association for the Advancement of Artificial 
Intelligence): aaai.org

 Agent portal: agent.ai

https://www.tankonyvtar.hu/hu/tartalom/tamop425/0026_mi_4_4
http://artint.info/
aaai.org
agent.ai


1

Intelligent agents

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 What can we use it for?

 How does it work? How to create it?

 How to control / repair / improve it?

 What are the consequences?

 Do we need to be afraid of it?

 What can we do?



2

Do we need to be afraid of it?

 You may, but it is better to take action

learn – know – act

Reminders

 Project: February 27, next Wednesday

 Quick presentations

 Worked out problems



3

Program

 Problem solving by search

 Adversarial search

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

 Machine learning

Outline

 Agents and environments

 Rationality

 PEAS: performance measure, 

environment, actuators, sensors

 Models of agents

 Aspects of environments



4

Intelligent agents

 An agent is anything that can be viewed as

perceiving its environment through sensors

and

acting upon the environment through actuators.

How do agents work?

Agent

E
n

v
iro

n
m

e
n

t

?

Sensors

Actuators

Percepts

Actions



5

Type of agents

 Human

 Robot

 Software

Rational agent

 A rational agent is one that does the right 

thing

 Assessing the agent’s performance

Performance measure: objectively tells how 

successful the agent is



6

Evaluation of rationality

 Goals and a performance measure

 Prior knowledge about the environment

 Abilities: possible primitive actions

 History

Percept sequence

Past experiences (data to learn from)

Internal Structure

 Agent = Architecture + Program

HW, bg. SW + actual algorithm

 Knowledge of Environment

Source
 Given a-priori

 Learned from sensory input

May include
 Present / past states of environment

 Influence of actions on the environment



7

Complexity levels

 Reflex agents
 Lookup table: if-then rules

 Problems: size, time, flexibility

 Model-based reflex agents
 Internal state

 Goal-based agents
 Search and planning

 Utility-based agents
 Non-binary measure

Reflexes

 Action depends only on sensory input

 Background knowledge not used

 Humans – flinching, blinking

 Chess – openings, endings

Lookup table (not a good idea in general)

35100 entries required for the entire game



8

Reflex Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators
Actions

What the world 

is like now?

What action 

should I do 

now?

Condition-

action

(if-then)

rules

Percepts

Model-based Reflex Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

What the world 

is like now?

What action 

should I do 

now?

Condition

-action

(if-then)

rules

State

How the world 

evolves?

What my actions do?



9

Goal of an agent

 Environment in itself is often not enough to 
decide what to do

 Goal is described by some properties

 A goal based agent
 uses knowledge about a goal to guide its actions 

(search and planning)

 compares the results of possible actions

 Principle: The action taken should modify the 
environment towards the goal

Goal-based Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

What the world 

is like now?

What action 

should I do 

now?

Goals

State

How the world 

evolves?

What my actions do?
What it will be if 

I do action A?

Search & Planning



10

Utility Functions

 Knowledge of a goal may be difficult to pin down 

(e.g. checkmate in chess)

 Agent may have multiple, controversial goals

 Comparing utility of states 

 Utility functions measure value of world states

 Localized measures

 Choose action which best improves utility (Best 

First Search)

Utility-based Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

What the world 

is like now?

What action 

should I do 

now?

Utility

State

How the world 

evolves?

What my actions do? What it will be if 

I do action A?

How happy I 

will be in the 

state?

utility function:  X (state space) 



11

Other aspects

 Hybrid agents

Hierarchical architecture

Trade-off between efficiency and flexibility

 Capability of learning

 Multi-agent systems

Competitive vs. cooperative relationship

Hierarchical control

 Delivery robot

Steer, accelerate, brake, 

detect obstacles and position

Follow plan

Go to target and 

avoid obstacles

ENVIRONMENT



12

Learning Agents

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

Problem

generator

Critic

Learning

element

Performance

Element

Performance standard

changes

knowledge

feedback

learning
goals

Autonomy of Agents

 Autonomy = extent to which the agent’s 

behaviour is determined by its own experience

 Extreme cases

 No autonomy – ignores input (environment)

 Complete autonomy – acts randomly/no program

 Ideal agent: some autonomy

 Gradually increasing over time

 Example: baby learning to crawl & navigate



13

Details of the Environment

 Properties of the world are different (real-
world robot vs. software agent)

Fully observable vs. Partially observable

Deterministic vs. Stochastic

Episodic vs. Sequential

Static vs. Dynamic

Discrete vs. Continuous

Single agent vs. Multiple agents

Observability (sensing 

uncertainty)

 An environment is fully observable, if the 
agent can access every information in its 
environment it takes into account when 
choosing an action 

 Partially observable if parts of the 
environment are not observable

 Unobservable information must be 
guessed  the agent needs a model

 Example: chess (fully) vs. poker (partially)



14

Determinism (effect uncertainty)

 An environment is deterministic if a 
change in the world state depends only on

current state of the world

agent’s action

 Non-deterministic environments

have aspects beyond the control of the agent

non-observable can seem to be non-det.

can be treated as stochastic or probabilistic

 Example: chess (det.) vs. poker (non-det.)

Episodicity

 An environment is episodic if the choice of 

current action does not depend on 

previous actions

 In sequential environments

Agent has to plan ahead

Current choice affects future actions

 Example: mail sorting system (episodic) 

vs. poker, chess (sequential)



15

Time variance

 Static environments don’t change over 

time

 Dynamic environments: changes have to 

be taken into account by either
 sensing the change

 predicting the change

 neglecting the change (in the short run)

 Example: poker, chess (static) vs. taxi 

driving (dynamic)

Continuity

 Type of sensor data and choices of action

 Discrete: distinct, clearly defined set

 Continuous: non-sectionable

 Example: chess (discrete) vs. taxi driving 

(continuous)



16

Number of agents

 Single agent: the environment is not 

changed by other actors

 Multi-agent: the agent is aware of other 

agents, who also modifying the 

environment

Modelling question: multi-agent vs. stochastic 

single agent

 Examples: solitaire (single) vs. poker 

(multi-)

Summary

 Agent: defined in connection with the environment

 Perceives and acts

 Rationality

 Basic mode: reflex, model, goal, and utility based

 Hierarchical control

 Learning

 Environments: observable?, deterministic?, 
static?, episodic?, continuous?, multi-agent?



1

Problem solving

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic



2

Outline

 Concepts
State, state space, search tree, search path

Search strategy, solution

 Formalizing search

 Evaluation
Complexity, completeness, optimality, soundness

 Example

 Comparing strategies

Search and AI

 Search methods are ubiquitous in AI systems

 An autonomous robot uses search
 to decide which actions to take and which sensing 

operations to perform,

 to quickly anticipate collision,

 to plan trajectories,

 to interpret large numerical datasets provided by sensors 
into compact symbolic representations,

 to diagnose why something did not happen as expected,

 etc...

 Many searches may occur concurrently and 
sequentially



3

Applications

 Route finding: airline travel, networks

 Package/mail distribution

 Pipe routing, VLSI routing

 Comparison and classification of protein folds

 Pharmaceutical drug design

 Design of protein-like molecules

 Games

 Automated Theorem Proving

 Machine learning

Concepts in search

 State

 State space

 Search tree, search path

 Strategy

 Solution



4

Assumptions in basic search

 World is
 static

 discretizable

 observable

 Actions are deterministic

 In many real world problems these assumptions do not 
hold 

Extended search techniques are required

Steps of problem solving

 Goal formulation

 Problem formulation

 Search

 Solution

 Execution



5

Formal definition of search problems

 Initial state

 Successor function: maps a state to a set 

of (action, successor state) pairs

 Goal test

 Action costs

Search strategy

 Decision function

State expansion

Choosing an action

 Non informed search

 Informed search



6

Search strategy

 The fringe is the set of all search nodes 

not yet expanded

 The fringe is implemented as a priority 

queue

insert(n, Q)

remove(Q)

 The ordering of the nodes in the queue 

defines the search strategy

Revisiting states

 Most search strategies have two versions

States may be revisited

States may not be revisited

 Implementations

Flag for each state

Visited list

 Not appropriate for all strategies



7

Evaluation

 Time and space complexity

 Completeness

 State space

 Pruning

 Optimality

 Soundness

 Search for nonexistent solutions

 Incorrect search strategy

Search strategies

 Breadth-first (BFS)

 Depth-first (DFS)



8

Search strategies

 Uniform-cost (UCS)

 Depth limited (DLS)

 Iterative deepening depth-first (IDS)

 Bidirectional (BS)

Example

s

d

b c

a

p

e

q

h

r

f

G

3

1

2 2

8

2

9

1 4

4

15

2

9

3

1

5

5



9

Example – 8 queens problem

 Place 8 queens on board

No one can “take” another

 8-puzzle

Initial state Goal state

Implementation
 Open http://users.itk.ppke.hu/~karacs/AI/lab/search

 Download search_demo_UI_1.html and search1.js to the 

same folder

 Open example.html in a browser, and open the Javascript console 

by pressing F11, or right-click anywhere, Inspection, Console tab

 Alternatively you can use a node.js console as well

 Function stubs are included with some coding hints

 Open search1.js with an editor, and implement

 BFS

 DFS

 Optional: add a visited list to both algorithms

 Optional: iterative deepening DFS

 Count the iteration steps, define an upper bound for the steps and 

for the size of the queue / stack and the visited list as well

http://users.itk.ppke.hu/~karacs/AI/lab/search


10

Implementation

 States: arrays of numbers with fixed length (the length is given by 

the length of the initialState array)

 Goal: reach the state in which elements are sorted incrementally

 Function goal(state) is already implemented, returns true or false

 State transition: Swap two elements in the array

 Function stateTransitions(state) is implemented, returns an array of all 

states available from the state

 Auxiliary functions

 isMember(state, list) returns true if state is already in list

 shuffle(array) shuffles the instances in array randomly

 log(message) prints message to the text area or to the console

Formal definition of search problems

 Initial state

 Successor function: maps a state to a set 

of (action, successor state) pairs

 Goal test

 Action costs



11

Measure BFS UCS DFS DLS IDS BS

Time

Space

Optim.

Compl.

d: depth of shallowest solution b: branching factor

m: maximum depth of search tree l: depth limit

Comparison of search strategies

Measure BFS UCS DFS DLS IDS BS

Time bd bd bm bl bd bd/2

Space bd bd bm bl bd bd/2

Optim. Y Y N N Y Y

Compl. Y Y N Y,

if l  d
Y Y

d: depth of shallowest solution b: branching factor

m: maximum depth of search tree l: depth limit

Comparison of search strategies



12

Summary

 Concepts

State, state space, search tree, search path

Search strategy, solution

 Formalizing search

 Evaluation

Complexity, completeness, optimality, soundness

 Comparison of strategies



1

Informed search I.

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies



2

Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

Outline

 Best-first search

 What information is available?

 Heuristic, heuristic function

 Strategies: UCS, greedy, A*

 Properties of heuristics

 Designing heuristics

 Comparing search algorithms

 Further informed search strategies
 IDA*, RBFS, SMA*



3

Search and AI

 Search methods are ubiquitous in AI systems

 An autonomous robot uses search
 to decide which actions to take and which sensing 

operations to perform,

 to quickly anticipate collision,

 to plan trajectories,

 to interpret large numerical datasets provided by sensors 
into compact symbolic representations,

 to diagnose why something did not happen as expected,

 etc...

 Many searches may occur concurrently and 
sequentially

Applications

 Search plays a key role in many applications

Route finding: airline travel, networks

Package/mail distribution

Pipe routing, VLSI routing

Comparison and classification of protein folds

Pharmaceutical drug design

Design of protein-like molecules

Video games



4

Assumptions in basic search

 World is
 static

 discretizable

 observable

 Actions are deterministic

 In many real world problems these assumptions do not 
hold 

Extended search techniques are required

Search strategy

 The fringe is the set of all search nodes 

not yet expanded

 The fringe is implemented as a priority 

queue

insert(n, Q)

remove(Q)

 The ordering of the nodes in the queue 

defines the search strategy



5

Revisiting states

 Most search strategies have two versions

States may be revisited

States may not be revisited

 Implementations

Flag for each state

Visited list

 Not appropriate for all strategies

Best-first search

 Which node is good?

 f() : evaluation function (typically cost 

function)

 Selection criteria: minimal value of f()

 Note: “Best” does not guarantee optimality 

of the solution path



6

Properties of best-first search

 If the state space is infinite, then in general 

the search is not complete

 If the state space is finite and revisited 

states are not discarded, then in general 

the search is not complete

 If the state space is finite and revisited 

states are discarded, then the search is 

complete, but in general it is not optimal

Search algorithm

 insert(initial-node, Q)

 Cycle
 If Q is empty then return failure

n  remove(Q)

 s  state(n)

 If is-goal(s) then return s and/or path

For every state s’ in succ(s)
 Create a node n’ as a successor of n

 insert(n’, Q)



7

Using information in search

 Intelligence: situation evaluation

 Cost of an action

Distance in route planning

Power consumption

 Path cost

g() : Sum of all action costs in the path

Defeating exponential blow up

 Decreasing the number of actions in a 

given state (policy function)

 Decreasing search depth (value function)

 Monte Carlo tree search…



8

Heuristic searches

 Heuristic = Rule of thumb

Different from heuristic measures

 Influences the node to expand

 Values that can help

Path cost g()

Heuristic measures h()

Heuristic Function

 h(node)
 Estimates path cost of reaching the solution

 Independent of the actual search tree

 h(goal state) = 0

 Methods to derive a heuristic function
 Mathematically

 By introspection

 Inspection of particular searches

 Computer programs (e.g.: Absolver)

 Example: straight line distance



9

Uniform Cost Search (non-informed)

 ~BFS

 Expands node with smallest g()
(ignores heuristic measures)

 Finds a solution with least cost

Condition: action costs must be positive

 Optimal and complete

 Can be very slow

Greedy Search

 Expand node with smallest h()
(ignores path cost)

 If in a dead-end then backtrack

 Problems

Blind alley effect: estimates can be wrong, 
leading to superfluous curves

May lead to non-optimal solution (h() is only 
an estimate of path cost to the goal)



10

A* search

 Combines

uniform cost search and

greedy search

 f(n) estimates the cost of

the best path through n

 f(n) = g(n) + h(n)

 Hart, Nilsson and Raphael, 1968

Example: route finding

 g(n) = distance from London

 h(n) = straight line distance to 

Liverpool

 f(n) = g(n) + h(n)

 1st round: Birmingham, Peterborough

 f(Peterborough) = 120 + 155 = 275

 f(Birmingham) = 130 + 150 = 280

 Expands Peterborough

 Returns to Birmingham in the next step, 

because 120+60+135 > 130+150

Liverpool

Nottingham

Leeds

Peterborough

London

120

155

135

130

150

Birmingham

60

Manchester

70

75

35



11

Properties of heuristics

 A heuristic h(n) is admissible if it never 

overestimates the path cost from node n to 

the goal node, i.e. 0  h(n)  h*(n).

 A heuristic h(n) is consistent (monotone) 

if, for every node n and every successor n’

of n generated by any action a

h(n)  c(n, a, n’) + h(n’).

 h1 dominates h2 if h1(n) ≥ h2(n).

Completeness theorem

 A* always finds an optimal solution path (even for non-
admissible heuristics) if there are finitely many nodes 
with f (n) ≤ f*, f* being the cost of the optimal path. This is 
guaranteed if

 all action costs  ε, for some fixed ε > 0, and

 the branching degree of all nodes are finite

 Proof

 Let f* be the cost of the optimal path

 All nodes with f (n) < f * will get expanded

 Some further nodes with f (n) = f * may get expanded



12

Optimality theorems

 If h(n) is admissible, then A* is optimal 

with no visited list

 If h(n) is consistent, then A* is optimal 

using a visited list

 If h(n) is admissible, then A* is optimally 

efficient: with any given heuristic no other 

search strategy expands fewer nodes

Dominance theorem

 If h and h’ are heuristic functions and h

dominates h’, then any node expanded by 

an A* search using h is also expanded by 

A* using h’

 Thus using a dominant heuristic will result 

in fewer expanded nodes



13

Missionaries and cannibals

 Three missionaries and 

three cannibals must cross 

a river, using a boat that 

can carry at most two.

 Find a sequence of operations that 

ensures that cannibals never outnumber 

missionaries on either side of the river!

Designing heuristics

 Good heuristics can be hard to find
 Often they are implicit in the problem, such as the 

Euclidean distance heuristic for route-finding

 They may be found by relaxing some constraint in the 
problem
 8-puzzle, 15-puzzle: allow two tiles to occupy the same square

 Missionaries: don't worry about missionaries getting eaten

 Good heuristics can be hard to compute
 Overall goal: minimizing the total time

 (Avg. time of computing the heuristic value + node 
expansion) * (total no. of nodes expanded during search)

 Trade off between the branching factor and heuristic 
complexity



14

Comparing search algorithms

 Effective branching factor (ebf): 𝑏∗

Branching rate of a search tree, in which each 
node has the same number of outgoing edges 
(BFS)

 Calculation
𝑑 : depth of solution

𝑁 : number of nodes expanded

𝑁 = 1 + 𝑏∗ + 𝑏∗2 + 𝑏∗3 +⋯+ 𝑏∗𝑑 =
𝑏∗

𝑑+1
−1

𝑏∗−1

Solve for 𝑏∗

Example:

Effective Branching Factor

 Suppose

𝑁 = 15 steps

𝑑 = 4

 Solve:
𝑏∗

4+1
−1

𝑏∗−1
= 15

 Result: 𝑏∗ = 1.57



15

Numerical comparison

 The shortest solution for the missionaries-and-cannibals 
problem takes 12 steps

Search strategy Number of 

steps

Effective 

branching factor

BFS 24,464 2.21

A* search,

h1(x) = number of people still 

on the left bank of the river

1,202 1.67

A* search,

h2(x): relaxes the requirement 

that cannibals not outnumber 

missionaries

40 1.18

Iterative-Deepening A* search

 Bottleneck of A* is memory (not time)

All visited nodes have to be recorded

 Iterative deepening like in IDS

Define contours based on evaluation function

 Iteratively increase the limit

At each iteration use a cutoff value equal to 
the smallest f(n) of any node that exceeded 
the limit in the previous iteration



16

IDA* search - contours

Recursive best-first search (RBFS)

 Best-first (using f() )

Stores search tree and the best alternative 

solution for each expanded node

 If there is a better alternative among the 

nodes visited earlier  forget the current 

subtree and continue there

When recursion unwinds, replace the f() value 

of a node with best f() value of its children

 Requires linear space



17

Task: A* from Arad to Bucharest

Recursive best-first search (RBFS)



18

Recursive best-first search (RBFS)

Recursive best-first search (RBFS)



19

A* vs. RBFS example

A* search



20

RBFS

RBFS analysis 

 More efficient than IDA* and still optimal
 Best-first Search based on next best f() contour; fewer 

regeneration of nodes

 Exploit results of search at a specific f() contour by saving 
next f() contour associated with a node whose successors 
have been explored

 Like IDA* still suffers from excessive node 
regeneration

 IDA* and RBFS not good for graphs
 Can’t check for repeated states other than those on 

current path

 Both are hard to characterize in terms of expected 
time complexity



21

Simplified memory-bounded A* 

(SMA*)

 B: bound on memory

 If memory is full when performing A*  drop 

worst leaf node (with lowest f()) and back-up the 

value of the forgotten node to its parent

 If correctly parameterized, SMA* can solve more 

complex problems than A*

SMA* analysis

 Complete, if there is any reachable 

solution

 Optimal, if any optimal solution is 

reachable

 Problem: if B is too low  thrashing may 

occur (among a small set of candidate 

nodes)



22

Summary

 Assumptions and applications

 Best-first search

 Path cost, heuristic function

 Strategies: UCS, greedy, A*, IDA*, RBFS, 
SMA*

 Admissible, consistent, dominant heuristics

 Designing good heuristics

 Effective branching factor (comparison)



1

Local and online 

search

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies



2

Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

Outline

 Local search algorithms

 Online search methods



3

Local search

 Path to solution is irrelevant
n-queens problem, circuit design, automatic 

layout of graphs

 Global optimization problem
State space: set of “complete” configurations

 Advantages
Low memory footprint

Easy implementation

Possibility of iterative improvement steps

Local search algorithms

 Discrete
 Hill climbing

 Random walk

 Simulated annealing

 Local beam search

 Genetic algorithms

 Continuous
 Gradient



4

Hill climbing

 Applicable when goal is to find resulting artefacts

 e(): evaluation function, measures proximity

 Algorithm
 Random initial state

 Improve e() in every step

 Advantage
 Memory requirement: one state

 Problems…

Hill climbing problems



5

Variants of hill climbing

 Steepest ascent

 Sideways moves

 Random restart

 Stochastic
probability of selection is proportional to the 

steepness of the surface

 First-choice
 first state is chosen in a random follower state 

sequence that gives a better value

Example – 8 queens problem

 Hill Climbing:

 put queens on randomly

 e() = number of queen 

pairs attacking each other

 move a queen out of 

other’s way

 if it’s not possible, then 

throw queens on randomly 

again



6

Random walk

 Randomly choose a step in an arbitrary 

direction

 Lattice random walk

 Gaussian random walk

Simulated annealing

 Overcomes local maxima problem

 Random step
 If it improves, then do it!

 If not, then do it with probability prop. to e-E/T(t)

 T(t): cooling schedule
 T: thermic noise

 slow cooling  global optimum

 From Random Walk to 
Stochastic Hill climbing

 Question: acceptance probability



7

Local beam search

 Take k parallel threads

 Generate all follower states (N > k)

 Choose the k best states

 Influence between beams
 If one state generates several good successors, they 

all end up in the next iteration

 States generating bad successors are weeded out

 Stochastic beam search

Genetic algorithms

 Population of individuals
 basic GA: binary strings

 Goal: optimizing some function of the bit-strings

 Evaluation: Fitness function

 Start: random individuals

 Operators
 Selection, crossover, mutation

 Stop: based on fitness threshold



8

[Dean, Allen, Aloimonos, AI: Theory and Practice, Benjamin Cummings, 1995]

Operators in GAs

Cycle in GAs

GX : current generation of N bitstrings (b0, b1, … bN-1)

 For each bi, let pi = fitness(bi) / Σj fitness(bj).

 GX+1 = Ø

 For k = 0 ; k < N/2 ; k = k+1
 Select: two parents each with probability P(parent = bi) = pi

 Crossover: randomly swap bits in the two parents to obtain two 

new bitstrings

 Mutation: for each bit in the new bitstrings, randomly invert it with 

some low probability

 Add the two new bitstrings to GX+1



9

Online search

 Compute, act, observe

 The agent only knows
 Actions (s)

 Step-cost function c(s,a,s’)

 Goal-test (s)

 Competitive ratio = actual cost / cost of shortest path

 Exploring in physical order (evident choice: DFS)
 Backtracking also has to take place in a physical manner 

actions have to be reversible

 Worst case: every node is expanded twice

 Solution: online iterative DFS

Online local search

 Hill climbing
 Already online

 Random restart version is not feasible (without 
teleportation)

 Adding exploration
 Random walk

 LRTA*: Hill climbing with memory
 H(s) : maintains best estimates of cost to goal for each node

 Assumes lowest possible cost for unexplored nodes

 Update H(s) through experience

 Demo: 
http://www.youtube.com/watch?v=idNr7YhAUWM



10

Summary

 Local search algorithms

 Online search methods



1

Adversarial search -

Strategies in games

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies



2

Outline

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax

Categorization of games

 Number of players (2 or higher)

 Competitive or cooperative

 Zero sum (game theory)
 Total gains = Total losses

 Discrete or continuous

 Finite or infinite

 Deterministic or stochastic

 Perfect or partial information



3

Playing the game

 Choosing the best move on each turn

Episodic search (no backtracking)

 Conventions

Turns alternate

Player 1 moves first

Search problem

 (S, S0, succ(): S  P(S), F, V(): F  )

S a finite set of states (state includes 

player due to move)

S0 initial state

succ() follower states function

F terminal states

V value function for terminal states



4

Example: A trivial card game

 Deal four playing cards out, face up

 Players take cards alternating

 The player with the highest even sum 

scores the amount

Entire search space



5

Minimax search

 Classic method how bandits share the 

gold

 Recursive search method (DFS like)

For own moves choose the state that 

maximizes the game theoretic value

For the moves of the opponent choose the 

state that minimizes the game theoretic value

Minimax algorithm

 At first assign the values associated with 
terminal states

 Then move the values toward the root node 
using minimax decision

 Game theoretic value

GTV(S) =
if (S is terminal)

return V(S)
else

let { S1, S2, … Sk } = succ(S)
let Vi = GTV(Si) for each i
if (player-to-move(S) == 1)

return max(Vi)
else

return min(Vi)



6

Moving the scores

Moving the scores



7

Moving the scores

Exercise: Nim

 There are some piles of matches

 On each turn one may remove any number of 
matches, but at least one from a single pile

 The last person to remove a match loses 
(misère game)

 In II-Nim, one begins with two piles, each with 
two matches

( ii ii )



8

( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , i )-A ( i  , ii )-A

( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , i )-B ( i  , ii )-B

( ii , ii )-B

II-Nim state space

 Equivalent states due 

to symmetry (e.g. 

(_,ii)-A and (ii,_)-A)

 Merge them using a 

canonical description 

(e.g. left pile never 

larger than right)!

( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , _ )-A ( i  , i )-A ( i  , ii )-A

( ii , _ )-A ( ii , i )-A ( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , _ )-B ( i  , i )-B ( i  , ii )-B

( ii , _ )-B ( ii , i )-B ( ii , ii )-B

S = ( _ , _ )-A ( _ , i )-A ( _ , ii )-A ( i , i )-A ( i , ii )-A ( ii , ii )-A 

( _ , _ )-B ( _ , i )-B ( _ , ii )-B ( i , i )-B ( i , ii )-B ( ii , ii )-B 

S0
= ( ii , ii )-A

succ() = succ(_,i)-A = { (_,_)-B } succ(_,i)-B = { (_,_)-A }

succ(_,ii)-A = { (_,_)-B , (_,i)-B } succ(_,ii)-B = { (_,_)-A , (_,i)-A }

succ(i,i)-A = { (_,i)-B } succ(i,i)-B = { (_,i)-A }

succ(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} succ(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

succ(ii,ii)-A = { (_,ii)-B , (i,ii)-B } succ(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

F = ( _ , _ )-A ( _ , _ )-B 

V = V( _ , _ )-A = +1 V( _ , _ )-B = -1

II-Nim formal definition



9

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree



10

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree



11

(ii ii) A

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A -1

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree



12

Real games

 Search space is too large

 Real-time decision requirement

 Chess
 Branching factor is ~35

 Allows for a 4-ply look ahead

 Capacity: < 2 million states per move (at 10k states/sec for 3 
minutes)

 354 = 1 500 625; 355 = 52 521 875

 Average humans can look ahead 6-8 plies

 Guaranteed solution not possible

 Solution: heuristic evaluation function

Cutoff search

 Use an evaluation function

Estimate the guaranteed score

Draw search space to a certain depth

Depth chosen to limit the time taken

 Put the estimated values at the end of 

paths

 Propagate them to the top as before



13

Evaluation function

 Estimates game theoretic value of a state

 Enables comparing different states

 Search + evaluation function

Combines many estimates  good for noise 

filtering

Example: Scores in chess

 Assigning weights to pieces

 Pawn  1

 Knight  3

 Bishop  3

 Rook  5

 Queen  9

 Position also matters in 

real-life evaluation functions 



14

Example: Scores in chess

 Black
 5 pawns * 1 = 5

 1 bishop * 3 = 3  =18

 2 rooks * 5 = 10

 White
 5 pawns * 1 = 5

 1 rook * 5 = 5  =10

 Net scores
 Black: 18-10 = 8

 White: 10-18 = -8 

Evaluation function for the example

 Odd cards: zero

 Even cards: actual value

 In this case the evaluation function chooses 10

… which is the worst choice



15

Problems with evaluation functions

 Non-quiescent states  likely to change drastically

 Wild swings in the evaluation function

 E.g.: captures in chess when using the sample  
evaluation function

 Solution: expand the state until quiescent positions 
are reached

 Horizon problem
 Good and bad possibilities in search spaces deeper 

than the horizon cannot be taken into account

 Possible solution: reduce the number of initial moves 
to look at, thus pushing the horizon farther

Pruning

 Visit as many board states as possible

 Skip bad branches (prune them)

Best value is still worse than other branches

Example: having your queen taken in chess

 Alpha-beta pruning

Can be used for entire search or cutoff search

Recognize surely inferior branches



16

Idea of Alpha-Beta pruning

 The MIN-value (1) is 

already smaller than 

the MAX-value of the 

parent (2)

 The MIN-value can 
only decrease further

 The MAX-value is only 
allowed to increase

 No point in computing 
further below this 
node

MIN

MAX

MAX

2

2

5

=2

2

1

1

Terminology

 Temporary values at

 MAX-nodes are called

Alpha-values

 MIN-nodes are called

Beta-values
MIN

MAX

MAX

2

2

5

=2

2

1

1

Alpha-value

Beta-value



17

Principles

 If an Alpha-value is greater than or equal 
to the Beta-value of a descendant node, 
then no more children of the descendant 
need to be considered

 If a Beta-value is less than or equal to the 
Alpha-value of a descendant node, then 
no more children of the descendant need 
to be considered

The general cutoff rule

In example: let α = max(v1, v3, 

v5).  If min(v6, v7)≤α, then we can 

be certain that it is worthless 

searching the tree from the 

current node or the sibling on its 

right.

In general: if at a B-move node, 

let α = max of all A’s choices 

expanded on current path.  Let β

= min of B’s choices, including 

those at current node.  Cutoff is  

β ≤ α.

In general: Converse rule at an 

A-move node.

(  )-a

(  )-a

(  )-b

(  )-b

(  )-a

(  )-b

v1

v3

v4

v2

v5

v6

v7

?

??

?
?

?

Current

Node



18

How much do we gain?
 Assuming a uniform branching factor b, minimax

examines O(bh) nodes
 So does alpha-beta in the worst-case

 But: alpha-beta is sensitive to the order of nodes
 The gain for alpha-beta is maximum when

 the MIN children of a MAX node are ordered in decreasing 
backed up values

 the MAX children of a MIN node are ordered in increasing 
backed up values

 Then alpha-beta examines O(bh/2) nodes [Knuth and 
Moore, 1975]

 But this requires an oracle
 If nodes are ordered at random, then the average 

number of nodes examined by alpha-beta is 
~O(b3h/4)

Alpha-beta pruning 

for the four-card game

Player 1

Player 2



19

Games with chance

 Many games have an element of chance 

(e.g. backgammon)

 Guaranteed scores can no longer be 

calculated

 Solution: calculate expected scores using 

probability

Expectimax Search

 Based on minimax tree

 For random events an extra node is added 

for each possible outcome that changes 

the possible board states after the event

 Moving score values up through a chance 

node

E(n) =  p(n)*s(n)



20

A simple game with chance

 Deal four cards face up

 Player 1 chooses a card

 Player 2 throws a die

 If it’s a ‘six’, then player 2 chooses a card, swaps it 

with player 1’s and keeps player 1’s card

 If it’s not a ‘six’, then player 2 just chooses a card

 Player 1 chooses next card

 Player 2 takes the last card

Expectimax Diagram



21

Expectimax Calculations

Games Played by Computer

 Games played perfectly
 Connect four, noughts & crosses (tic-tac-toe), 

draughts (checkers)

 Best move pre-calculated for each board state
 Small number of possible board states

 Games played at superhuman level
 Backgammon, chess, go

 Scrabble, tetris

 Games played badly
 Bridge, ulti, soccer :)



22

Game complexity

Game State-space 

complexity 

Game-tree 

complexity

Branching factor

Nine man’s morris ~ 1010 ~ 1050 10

Checkers ~ 1020 ~ 1031 2.8

Rubik’s cube ~ 1019 12

Chess ~ 1047 ~ 10123 35

Go (9x9) ~ 1038

Go (19x19) ~ 10171 ~ 10360 250

Gomoku (15x15) ~ 10105 ~ 1070 210

Summary

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax



1

Propositional logic

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Outline

 Logics of different order: 0, 1, 2, higher

 Basic concepts and nomenclature

Syntax vs. semantics

Entailment

 Propositional logic

 Entailment and proof methods

Truth table, equivalence, resolution



2

Logics of different order

 Propositional logic (a. k. a. Boolean logic) 
 Only constant Boolean statements

 First order predicate logic (FOPL)
 Introduces variables, predicates, functions, and 

quantifiers

 Higher order logics
 Quantifiers can also be applied to predicates and 

functions

 Meta level reasoning

Logic

 A formal language in which knowledge can 
be expressed

 In problem solving we enumerate states

 Logic provides a means of describing set 
of states and carrying out reasoning

“Peter is hungry”: refers to all world states in 
which Peter is hungry regardless of other 
things influencing the state



3

Basic concepts

 Syntax: specifies what expressions are legal
 Well-formed sentences

 Semantics: meaning of sentences
 Interpretation: assigns meaning to logic symbols 

 Semantics define the truth of sentences w. r. t. all possible 
interpretations

 An interpretation i is a model of a set of sentences iff each of the 
sentences is true in interpretation i

 Logical inference: entailment
 A set of sentences KB entails φ (KB ⊨ φ) iff every model of KB is 

also a model of φ

 Sentence φ logically follows from KB

Syntax of propositional logic

 Atomic sentences: Propositions
 Symbols: P, Q, R, … (uppercase letters) 

 Special cases: T (true) and F (false)

 Complex sentences
 Brackets

 Connectives in order of precedence (high to low)
 not (¬), and (), or (), implies (→), equivalent (↔)

 If φ and ψ are sentences, then

(φ), ¬φ, φ  ψ, φ  ψ, φ → ψ and φ ↔ ψ

are also sentences



4

Semantics

 Meaning of a sentence is a truth value

{T, F}

 An interpretation is an assignment of truth 

values to the propositional variables

⊨i φ Sentence φ is T in interpretation i

⊭i φ Sentence φ is F in interpretation i

Semantic rules

 ⊨i T for all i

 ⊭i F for all i

 ⊨i ¬φ iff ⊭i φ

 ⊨i φ  ψ iff ⊨i φ and ⊨i ψ (conjunction)

 ⊨i φ  ψ iff ⊨i φ or ⊨i ψ (disjunction)

 ⊨i P iff i(P) = T



5

Properties of sentences

 Equivalence φ   ψ
 φ and ψ are true for the same models

 Validity ⊨ φ
 A sentence is valid iff its truth value is T in all 

interpretations

 Valid sentences are called tautologies

 Examples: T, P  ¬P, A  A

 Satisfiability
 A sentence is satisfiable iff it has at least one model

Entailment theorem

KB ⊨ φ iff ⊨ (KB → φ)

 Enables proving entailment if we have 

means to prove the validity of a sentence

 This theorem is valid for all logics



6

Proving validity

 Truth table

 Equivalence rules

 Resolution

 (X(YZ))((XY) (XZ))

Proving by truth table



7

Proving by truth table

X Y Z YZ XY X  Z X (YZ) ((XY)(XZ)) S 

Proving by truth table

X Y Z YZ XY X  Z X (YZ) ((XY)(XZ)) S 

T T T T T T T T T 

T T F F T F F F T 

T F T F F T F F T 

T F F F F F F F T 

F T T T T T T T T 

F T F F T T T T T 

F F T F T T T T T 

F F F F T T T T T 



8

Equivalence (re-write) rules

 Logical equivalence

Different syntax

Same semantics

 Usage

Proving via showing equivalence

Modifying to a particular syntax to allow the 
use of other techniques (e.g. resolution)

Commutativity and 

associativity of connectives
 Commutativity:

 PQ can be replaced by QP (& vice-versa)

 PQ can be replaced by QP (& vice-versa)

 PQ can be replaced by QP (& vice-versa)

 Associativity
 ((PQ)R) can be replaced by (P(QR)) (& vice-

versa)

 ((PQ)R) can be replaced by (P(QR)) (& vice-
versa)



9

Distributivity of connectives

 And over or, or over and:

 (P(QR)) can be replaced by ((PQ)(PR))

 (P(QR)) can be replaced by ((PQ)(PR))

 Over the implies sign

 (P(QR)) can be replaced by ((PQ)(PR))

 (P(QR)) can be replaced by ((PQ)(PR))

Double negation

 Double negations can be removed

¬¬P is equivalent to P

 Caution when translating from natural 

language



10

de Morgan’s laws and

contraposition

 de Morgan’s laws

¬(PQ) is equivalent to (¬P¬Q)

¬(PQ) is equivalent to (¬P¬Q)

 Contraposition

(PQ) is equivalent to (¬Q¬P)

Other equivalences

 (PQ) is equivalent to (¬PQ)

 (PQ) is equivalent to ((PQ)(QP))

 (PQ) is equivalent to ((PQ)(¬P¬Q))

 (P¬P) is equivalent to F

 (P¬P) is equivalent to T



11

Propositional implication rules

 Re-write rules are good for bidirectional 
search

What if equivalence does not hold

 Modus Ponens

AB, A

B

Comma used for conjunction

Above the line: what we know

Below the line: what we can deduce

Proving Modus Ponens

A B AB : AB, A : B

True True True True True

True False False False False

False True True False True

False False True False True



12

Elimination and introduction of “and”

 “and” elimination

A1, A2, …, An

Ai

[1  i  n]

 “and” introduction

A1, A2, …, An

A1  A2  …  An

Introduction of “or”;

Unit resolution

 “or” introduction

Ai

A1  A2  …  An

[1  i  n]

 Unit resolution

Basis for theorem proving

(AB)  ¬B

A



13

Problems

 Too many predicates

Sample r.:  “If you see a stop sign, then stop!”

A new predicate for every stop sign

 Slow inference

 No variables (many constants needed)

Even more predicates



1

First order predicate 

logic (FOPL)

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

 Propositional logic



2

Outline

 Semantics

 New elements

Predicates

Functions

Variables

Quantifiers

 Parts of logic formulas

 Instantiation and substitution

First order predicate logic

 More powerful than propositional logic

 Models contain objects

Domain of a model is its set of objects 
(domain elements)

 Domain elements are related in various 
ways; formally as a set of ordered tuples

capital = {<Hungary, Budapest>, <Italy, 
Rome>, … }



3

Semantics of FOPL

 An interpretation maps domain objects, 
relations, and functions to symbols

 Domains may have infinitely many objects 
(e.g., all integers)

Number of models and interpretations is 
unbounded

Model checking not applicable to check 
entailment

Predicates

 Predicates express relations between certain 
things
 Predicate name identifies the relationship

 Arguments are the things being related (constants, 
functions and variables)

 Arity is the number of arguments

 Examples
 Binary (arity=2): capital = {<Hungary, Budapest>, 

<Italy, Rome>, … }

 Unary (arity=1) city = {Budapest, Rome, … }



4

Functions

 Special predicates

 In a function of arity n

 The first n - 1 arguments are inputs

 The last argument is the output (single-valued)

 Example

 Predicate form: sum_of(2,3,5)

 Functional form: sum_of(2,3)  5

 inputs: 2,3; output: 5

Variables

 How to express a sentence like
 “There’s a drink in Starbucks the price of which is $2.”

 price_of(drink, starbucks) = $2
 Problem: drink is a constant

 price_of(X, starbucks) = $2
 X is a variable referring to some drink

 Problem: which drink?



5

Quantifiers

 Symbol for “there exists”:  (“existential 
quantifier”)
  X (price_of(X, starbucks) = $2)

 Symbol “for all”: (“universal quantifier”)
 “All cats like milk.”  :  X (cat(X) → likes(X,milk))

 “All drinks cost $2.” expresses
 “Beer costs $2.”

 “Wine costs $2.”

 etc.

 Variables can be instantiated

Terms

 A term is a logical expression that refers 

to an object in the domain

Constant symbols (e.g. Hungary)

Variables

Function values (e.g. capital(Hungary))



6

Logic formulas

 An atomic formula is statement that 
combines
Terms (referring to objects), and
Predicate symbols (referring to relations)

 Example: capital(Hungary, Budapest)
 A literal is an atomic formula or its negation
 A compound formula is formed from literals 

using logical connectives
 A sentence is a logic formula in which all 

variables are bound

Instantiation and substitution

 FOPL sentences have quantified variables
 Instantiation (“grounding”)

 Ground terms (constants, functions of ground terms)

 Substitution of a variable
 Grounding: replacing the variable by a ground term

 Replacing the variable by another variable

 Example
  X,Y friend(X, Y) 

 Subst({X/Sue, Y/Mary})

 friend(X, Y) = friend(Sue, Mary)



7

Summary

 Semantics

 New elements

Predicates

Functions

Variables

Quantifiers

 Parts of logic formulas

 Instantiation and substitution



1

Inference in FOPL

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Logical inference schemes

 Deduction: formal logical reasoning

 Premises: 1. All men are mortal. 2. Aristotle is a man.

 Conclusion: Aristotle is mortal.

 Induction: generalization
 Premise: The sun has risen in the east every morning 

up until now.

 Conclusion: The sun will also rise in the east 
tomorrow.

 Abduction: choosing an explanation
 Premise: 1. Flu causes fever. 2. Peter has fever.

 Conclusion: Peter has flu.



2

The case of the silk gloves

“It was elementary my dear Watson. 

The killer always left a silk glove at 

the scene of the murder. That was 

his calling card. Our investigations 

showed that only three people have 

purchased such gloves in the past 

year. Of these, Professor Doolally

and Reverend Fisheye have iron-

clad alibis, so the murderer must 

have been Sergeant Heavyset. 

When he tried to murder us with that 

umbrella, we knew we had our man.”

Not so elementary…

“The killer always left a silk glove at the scene of the 
murder.” (induction)

“That was his calling card.” (abduction)

“…only three people have purchased such gloves in the 
past year.” (model generation)

“Professor Doolally and Reverend Fisheye have iron-clad 
alibis.” (constraint based reasoning)

“…so the murderer must have been Sergeant Heavyset.” 
(deduction)

“The killer always left a silk glove at the scene of the 
murder.”

“That was his calling card.”

“…only three people have purchased such gloves in the 
past year.”

“Professor Doolally and Reverend Fisheye have iron-clad 
alibis.”

“…so the murderer must have been Sergeant Heavyset.”



3

First Order Predicate Logic (FOPL)

 Most used and analyzed logic

 Completeness: Gödel, Herbrand, 1930

 If a FOPL statement is valid then it is provable

 If KB ⊧ a then KB ⊢ a

 Validity is semi-decidable

 Resolution: Robinson, 1963

Chains of inference

 Remember the problem we are trying to solve

 Search for a path from axioms i, to theorem T

 Three approaches

 Forward chaining

 Backward chaining

 Proof by contradiction

 Specification of a search problem:

 Representation of states (first order predicate logic sentences)

 Initial state (changes with the approach)

 Operators (rules of inference, usually implication rules)

 Goal state (changes with the approach)



4

Forward Chaining

 Start with initial axioms (atomic sentences) and deduce 
new facts by applying modus ponens

 Repeat until possible or query is answered

 Problems

 Generates many irrelevant facts

 Every rule has to be rechecked whenever a new fact is 
added to KB

1 2 3

T

Forward Chaining

 A first-order definite clause is a disjunction of 

literals of which exactly one is positive

 Example

 white(X)  potable(X)  milk(X) is logically equivalent to

¬white(X)  ¬ potable(X)  milk(X)

 Modus ponens can be easily applied to first-order 

definite clauses

 All variables are implicitly universally quantified

 Sound, complete



5

Backward Chaining

 Work backwards from the goal, chaining rules to 
find facts that support the conclusion

 For each node the inference rule has to be 
inverted
 Which operator could have been applied to which 

state to produce this state (sentence)

 No problem when using equivalences
 Can also use a bidirectional search (from both ends)

 Difficult when using implications
 Many possible ways to invert operators

Proof By Contradiction

 “Reductio ad absurdum”

 Most often used method

 Idea: by showing that the assumption contradicts a set of 
axioms we can prove that the assumption is false

 KB’ = Set of axioms (KB) + negated theorem (¬Th)

 If the F statement can be deduced from KB’ then ¬Th is 
false, and thus Th must be true

 Advantage: heuristic function can be defined based on 
the distance from the ‘False’ statement



6

First order implication rules

 Propositional implications and 

equivalences

 First order implication rules

Quantifiers

Variables

Substitution

Universal elimination

 In a sentence  any universally quantified variable v can 
be replaced by any ground term g

v 

subst({v/g}, )

 Note: the variable has to be removed from quantification

 Example
 x friend(Sue, x) becomes  friend(Sue, Ann)



7

Existential introduction

 In a sentence  any ground term g can be substituted by 
a variable v if it does not appear in 



v subst({g/v}, )

 Example
 friend(Sue, Ann) becomes x friend(Sue, x)

 Exercise
 Find a sentence where v is in  such that this implication rule is 

not sound

Universal introduction

 In a sentence  any constant k can be substituted by a 
variable v if k is not mentioned in any of the premises or 
undischarged assumptions and v does not appear in 



v subst({k/v}, )

 Example
 friend(Sue, Doe) becomes x friend(Sue, x)



8

Existential elimination

 In a sentence  any existentially quantified variable v 
can be replaced by any constant k, if k appears neither 
in  nor anywhere else in the derivation

v 

subst({v/k}, )

 k is called a Skolem constant

 Existential elimination is a special case of skolemization
(see later)

Propositionalization

 Universal and existential elimination allow for inferring 
non-quantified sentences from quantified ones

 Reduces first-order inference to propositional inference

 Problem
 Function symbols allow infinitely many ground terms: 

father(father (father (. . .)))

 Can be overcome by Herbrand’s theorem (R-N pp. 274–275)

 Entailment in FOPL is semi-decidable (Church)
 Any entailed sentence can be proven

 Not all false sentences can be disproven (Halting problem)



9

Inference with variables

 Premise
 x (knows(Bob, x)  loves(Bob, x))

 From “knows(Bob, Alice)”
 using modus ponens gives: “loves(Bob, Alice)”

 From “knows(Bryan, Alice)”
 modus ponens cannot be used

 How to check applicability when variables are 
present?

Unifying predicates

 Expressions x1 and x2 are unifiable iff there exists a 
substitution  such that

subst(, x1) = subst(, x2),

where subst(, x) applies  to x

 Unification by substitution ({X/Alice})
 knows(Bob, X) and knows(Bob, Alice)

 Possibilities
 variable-variable

 variable-constant

 variable-function



10

The unification algorithm

 A recursive algorithm
 Passes around a set of substitutions, called mu
 Makes sure that new substitutions are consistent with 

old ones
 unify(x,y) = unify_internal(x,y,{})

 x and y can be variables, constants, lists, or 
compounds

 unify_internal(x,y,mu)
 x and y are sentences, mu is a set of substitutions
 finds substitutions making x look exactly like y

 unify_variable(var,x,mu)
 var is a variable
 finds a single substitution (which may be in mu

already)

unify_internal

unify_internal(x,y,mu)

1.if (mu==failure) then return failure

2.if (x==y) then return mu

3.if (isa_variable(x)) then return 
unify_variable(x,y,mu)

4.if (isa_variable(y)) then return 
unify_variable(y,x,mu)

5.if (isa_compound(x) & isa_compound(y)) then return 
unify_internal(args(x),args(y),

unify_internal(op(x),op(y),mu)) 

6.if (isa_list(x) & isa_list(y)) then return 
unify_internal(tail(x),tail(y),

unify_internal(head(x),head(y),mu)) 

7.return failure



11

unify_variable

unify_variable(var,x,mu)

1. if (a substitution var/val is in mu) then 

return unify_internal(val,x,mu)

2. if (a substitution x/val is in mu) then 

return unify_internal(var,val,mu)

3. if (var occurs anywhere in x) return 

failure

4. add var/x to mu and return

Notes on the 

unification algorithm
 unify_internal will not match a constant to a 

constant, unless they are equal (case 2)

 Case 5 in unify_internal checks that two 
compound operators are the same (e.g., same predicate 
name)

 Case 6 in unify_internal causes the algorithm to 
recurse covering the whole list

 Cases 1 and 2 in unify_variable check that neither 
inputs have already been substituted



12

The occurs check

 When substituting variable x with an expression f(x,y)
 x will be replaced by f(x,y)

 But f(x,y) still contains an instance of x, which has to be 
replaced again

 We get f(f(x,y),y), and then f(f(f(x,y),y),y), etc.

 Infinite recursion  the algorithm will not stop (halt)

 Case 3 in unify_variable checks this to avoid this 
situation

 Problem: Occurs check slows down the algorithm
 Its complexity is O(n2), where n is the size of expressions 

being unified

Unification exercises

 nice(Alice) – nice(Mary)

 sees(x,Alice) – sees(y,Alice)

 sees(x,Alice) – sees(Mary,y)

 x – child(Alice,x)

 friends(x,y,Alice)  father(sonof(Bob),Bob) –
father(z,Bob)  friends(Mary,z,u)

 R(F(y),x) – R(x,F(A))

 R(F(y),y,x) – R(x,F(A),F(v))

 F(G(w),H(w,J(x,u))) – F(G(v),H(u,v))

 F(x,F(u,x)) – F(F(y,A),F(z,F(B,z)))



13

Full resolution rule

 Resolution rules remove predicates in predicate logic
 This is known as resolving the two sentences

 Unit resolution rule
(AB), ¬B

A

 Full resolution rule (using CNF)

(AB), (¬BC)

AC

 With implication
(¬AB), (BC)

¬AC

Generalized resolution rule

 Given two CNF sentences

p1  p2  …  pm and q1  q2  …  qn

 If pj and ¬qk can be unified, i.e. unify(pj, 

¬qk) = , then

p1  …  pj  … pm,        q1  …  qk  …  qn

subst( , (p1  … pj-1  pj+1  …  pm  q1  …  qk-1  qk+1  … qn))



14

Resolution with variables

 P(x)  Q(x, y)

 ¬P(A)  R(B, z)

 subst({x/A}, Q(x, y)  R(B, z))

 Q(A, y)  R(B, z)

Local variable scope

 P(x)  Q(x, y)

 ¬P(A)  R(B, x)



15

Local variable scope

 P(x1)  Q(x1, y)

 ¬P(A)  R(B, x2)

 subst({x1/A}, Q(x1, y)  R(B, x2))

 Q(A, y)  R(B, x2)

CNF in FOPL

 Sentences need to be in conjunctive 

normal form (CNF)

Literals can contain variables, assumed to be 

universally quantified

 Example

white(X)  potable(X)  milk(X) becomes 

¬white(X)  ¬ potable(X)  milk(X)



16

Conversion to clausal form

 1. Eliminate  and 

 2. Drive in ¬ to atomic level

 3. Rename variables apart

 4. Skolemize

 5. Drop universal quantifiers

 6. Convert to CNF

 7. Rename variables in each clause

Skolemization

 Substitute a new constant for each existentially 
quantified variable
 x P(x)

P(CS)

 Substitute a new function of all universally 
quantified variables in enclosing scopes for each 
existentially quantified variable
 x y P(x, y)

x P(x, fS(x))



17

“A cat called Tuna” (from textbook)

 Jack owns a dog

 Every dog owner is an animal lover

 No animal lover kills an animal.

 Either Jack or Curiosity killed the cat, who is named Tuna.

 Did Curiosity kill the cat?

A. x (Dog(x)  Owns(Jack,x))

B. x ( ((y) Dog(y)  Owns(x, y))  AnimalLover(x) )

C. x (AnimalLover(x)  ((y) Animal(y)  ¬Kills(x,y)))

D. Kills(Jack,Tuna)  Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. x (Cat(x)  Animal(x) )

G. Kills(Curiosity, Tuna)

Conversion to clausal form

 1. Eliminate  and 

 2. Drive in ¬ to atomic level

 3. Rename variables apart

 4. Skolemize

 5. Drop universal quantifiers

 6. Convert to CNF

 7. Rename variables in each clause



18

Sentence A & B

 (A) x. Dog(x)  Owns(Jack,x)

 Dog(D)  Owns(Jack,D)

 (B) x. (y. Dog(y)  Owns(x,y))
AnimalLover(x)

 x. ( ¬y. Dog(y)  Owns(x,y)) AnimalLover(x)

 x. y. ¬(Dog(y)  Owns(x,y)) AnimalLover(x)

 x. y. ¬Dog(y)  ¬Owns(x,y) AnimalLover(x)

 ¬Dog(y)  ¬Owns(x,y)) AnimalLover(x)

Sentence C & D

 (C) x. AnimalLover(x)  ( y. Animal(y) 
¬Kills(x,y))

 x. ¬AnimalLover(x)  ( y. Animal(y) 
¬Kills(x,y))

 x. ¬AnimalLover(x)  ( y. ¬Animal(y) 
¬Kills(x,y))

 ¬AnimalLover(x)  ¬Animal(y)  ¬Kills(x,y)

 (D) Kills(Jack,Tuna)  Kills(Curiosity,Tuna)



19

Sentence E, F and neg. Th.

 (E) Cat(Tuna)

 (F) x. Cat(x) Animal(x)

 ¬Cat(x)  Animal(x)

 (Th) ¬Kills(Curiosity,Tuna)

Solution

 (D), (Th) Kills(Jack,Tuna) (G)

 (E), (F), {x/T} Animal(Tuna) (H)

 (C), (G), {x/J, y/T}
¬AnimalLover(Jack)  ¬Animal(Tuna) (I)

 (H) , (I) ¬AnimalLover(Jack) (J)

 (B), (J), {x/J} ¬Dog(y)  ¬Owns(Jack,y) (K)

 (A2) ¬Dog(D) (L)

 (A1), (L) False



20

CNF (Implicative form)

 Jack owns a dog

 Every dog owner is an animal lover

 No animal lover kills an animal.

 Either Jack or Curiosity killed the cat, who is named Tuna.

 Did Curiosity kill the cat?

A1. Dog(D)

A2. Owns(Jack,D)

B. Dog(y)  Owns(x,y)  AnimalLover(x)

C. AnimalLover(x)  Animal(y)  Kills(x,y)

D. Kills(Jack,Tuna)  Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. Cat(x)  Animal(x)

Graph of proof



21

Equality

 Unification of different constants

Today(Thu), Today(Thursday)

 Expanding the KB is not sufficient

Thu = Thursday

 Extra axioms are needed

Equality is symmetric, reflexive and transitive

 Equality statements for each predicate:
 x,y x = y  (P(x)  P(y)) etc.

Demodulation rule

 Takes two input sentences, one expressing an 
equality ( = )

 Finds a unification for  with a term in another 
clause ( = unify(, ))

 Applies  to  (not )

 Replaces occurrence of  with Subst(, )

 = , (…, ,…)

(…,Subst(, ),…)



22

Demodulation drawbacks

 Cannot bind variables in expression
 father(Adam) = Bob

 : father(Adam) , : Bob

 older(father(x), x)
 : father(x),  = {x/Adam},

Subst(, ) = Bob

 older(Bob, Adam) : not derived, only older(Bob, x)

 Equation must be a unit clause
 (x = Adam  y = Bob)  father(x) = y

  cannot be father(x), since the equation is inside an implication

 older(father(x), x)

 (x = Adam  y = Bob)  older(Bob, Adam)

 = ,   (…, ,…)

 = unify(, )

(…, Subst(, ), …)

Paramodulation

 F(x) = B

 Q(y)  W(y,F(y))

 Q(y)  W(y,B)

 G(x)  F(x) = B

 Q(y)  W(y,F(y))

 G(y)  Q(y)  W(y,B)

   (s = t)

    [r]  = unify(s,r)

 Subst(,(     [r]))

 s = F(x); t = B

 [⋅] =W (y,⋅); r = F(y)

  = {x/y}



23

Horn clauses

 Have the form: P1  P2  …  Pn  Q
 Special cases

P1  P2  …  Pn  False
True  Q

 Enables polynomial time inference
 Prolog (SLD resolution)

S: Selection function
L: Linear sequence of clauses
D: Definite clauses
Ordered resolution

Sample Prolog program

fun(X) :-

red(X),

car(X).

fun(X) :-

blue(X),

bike(X).

car(vw_beatle).

car(ford_escort).

bike(harley_davidson).

red(vw_beatle).

red(ford_escort).

blue(harley_davidson).

?-
fun(harley_davidson).

yes



24

Resolution proving as search

 Search space: Sentences in FOPL

 Initial state: {KB, ¬Th.}

 Operator: generalized resolution inference rule

 Goal Check: Empty clause found

 Solution: two possibilities

 Path from axioms to false clause (if we want proof)

 Just the fact that we have reached the false clause 

(no proof required)

Elimination strategies

 Identical clause elimination
 a resolution refutation without a clause occurring 

twice

 Pure literal elimination
 A literal with no negated occurrence makes its clause 

superfluous

 Tautology elimination
 No effect on satisfiability

 Subsumption elimination
 Remove clauses that are more specific than others in 

the KB



25

Restriction strategies

 Unit resolution
 One resolvent is always a unit clause (single literal)

 Input resolution
 One resolved clause is always taken from initial KB

 Complete, if the KB contains Horn clauses

 Linear resolution
 One resolved clause is always taken from either the initial KB or from 

the ancestor of the other resolvent; Complete

 Set of Support
 One resolvent is always taken from a subset of initial KB or from its 

descendant

 Complete, if the clauses outside the SoS are satisfiable

 Ordered resolution
 Clauses are treated as ordered sets, resolution is allowed only on the 

first literal

Applications of resolution

 Automated Theorem Proving (ATP)

 Proof verification

 Proof compression

 Automated Conjecture Making

 Interactive proving

 Proof planning



26

A famous example for ATP

 Axiomatization of Boolean algebra

 Standard axioms
a, b  B a+b = b+a

a, b, c  B (a+b)+c = a+(b+c)

0  B (unit element for +) 0 + a = a

a  B ¬¬a = a

a  B ¬(a + ¬a) = 0

a, b, c  B
a + ¬(¬b + ¬c) = ¬(¬(a+b) + ¬(a+c))

Robbins Problem

 Huntigton’s proposal to axiomatize
Boolean algebras (1933)
Commutativity + associativity

a, b  B. a = ¬(¬a + b) + ¬(¬a + ¬b)

 Herbert Robbins
Commutativity + associativity

a, b  B. a = ¬(¬(a + b) + ¬(a + ¬b))

Got coined “Robbins algebra”



27

Solving the Robbins Problem

 William McCune and Larry Wos
 Argonne National Laboratories

 EQP & Otter (first order provers)

 EQP solved this in 8 days, completed on Oct. 10,1996 

 One step from the proof:

¬(¬(¬(¬(¬(x) + x) + ¬(¬(x) + x) + x + x + x + x) + 
¬(¬(¬(x) + x) + x + x + x) + x) + x) =
¬(¬(¬(x) + x) + ¬(¬(x) + x) + x + x + x + x)

 Otter proved that the proof is OK (its successor is 
called Prover9)

----- EQP 0.9, June 1996 -----

The job began on eyas09.mcs.anl.gov, Wed Oct  2 12:25:37 1996

UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

---------------- PROOF ----------------

2 (wt=7) [] -(n(x + y) = n(x)).

3 (wt=13) [] n(n(n(x) + y) + n(x + y)) = y.

5 (wt=18) [para(3,3)] n(n(n(x + y) + n(x) + y) + y) = n(x + y).

6 (wt=19) [para(3,3)] n(n(n(n(x) + y) + x + y) + y) = n(n(x) + y).

24 (wt=21) [para(6,3)] n(n(n(n(x) + y) + x + y + y) + n(n(x) + y)) = y.

47 (wt=29) [para(24,3)] n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + z) + n(y + z)) = z.

48 (wt=27) [para(24,3)] n(n(n(n(x) + y) + n(n(x) + y) + x + y + y) + y) = n(n(x) + y).

146 (wt=29) [para(48,3)] n(n(n(n(x) + y) + n(n(x) + y) + x + y + y + y) + n(n(x) + y)) = y.

250 (wt=34) [para(47,3)] n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + n(y + z) + z) + z) = n(y + z).

996 (wt=42) [para(250,3)] n(n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + n(y + z) + z) + z + u) + n(n(y + z) + 

u)) = u.

16379 (wt=21) [para(5,996),demod([3])] n(n(n(n(x) + x) + x + x + x) + x) = n(n(x) + x).

16387 (wt=29) [para(16379,3)] n(n(n(n(n(x) + x) + x + x + x) + x + y) + n(n(n(x) + x) + y)) = y.

16388 (wt=23) [para(16379,3)] n(n(n(n(x) + x) + x + x + x + x) + n(n(x) + x)) = x.

16393 (wt=29) [para(16388,3)] n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + x) = n(n(x) + x).

16426 (wt=37) [para(16393,3)] n(n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + x + y) + n(n(n(x) + x) + y)) = 

y.

17547 (wt=60) [para(146,16387)] n(n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + n(n(n(x) + x) + x + x + x) 

+ x) + x) = n(n(n(x) + x) + n(n(x) + x) + x + x + x + x).

17666 (wt=33) [para(24,16426),demod([17547])] n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) = n(n(n(x) + x) 

+ x + x + x).

------------ end of proof -------------



28

A problem by Lewis Carol
 The only animals in this house are cats

 Every animal that loves to gaze at the moon is suitable 
for a pet

 When I detest an animal, I avoid it

 No animals are carnivorous unless they prowl at night

 No cat fails to kill a mice

 No animals ever like me, except those that are in this 
house

 Kangaroos are not suitable for pets

 None but carnivorous animals kill mice

 I detest animals that do not like me

 Animals that prowl at night always love to gaze at the 
moon

 Therefore, I always avoid a kangaroo

Summary

 FOPL semantics

 Chains of inference

 Propositionalization

 Resolution
Unification algorithm

Generalized resolution

Equality

Resolution strategies

 Automatic theorem proving



1

Planning

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies

 Logic

Propositional logic

Predicate logic



2

Outline

 Planning and search

 Situation calculus

 Partial order planning

 Graphplan

Planning

 Planning

 Initial state

Goal state

Set of actions

 Can be described as a search problem



3

Planning vs. search

Problems of using search for 

planning

 Description of actions
 By defining follower states

 Description of states
 Every state has to be exactly given

 Description of goals
 Only by defining goal states (and the heuristic)

 Description of plan
 Fixed order of actions, can only be started from the 

start or the goal state



4

Undefined starting state

 What if initial state is not 

known exactly?

 E.g. “Start in bottom row, 

with goal being C”

 Search over “sets” of 

underlying (atomic) states

 Inefficient approach

 Exponential blowup in the 

number of sets of atomic 

states

Planning as logic search

 A classic approach to planning: situation 

calculus

 It uses

FOPL descriptions of the relevant sets of 

states and actions

ATP to find a plan



5

Situation Calculus

 Reification – treat situations as objects and use them as 
predicate arguments
 At(Agent, Room 13, s8) where s8 refers to a particular situation

 Result function – gives the new situation resulting from 
taking an action in another situation
 Result(StandUp, s1) = s3

 Effect Axioms – what is the effect of taking an action in 
the world
  x.s. Present(x,s)  Portable(x) → Holding(x, Result(Grab, s))

  x.s. ¬ Holding(x, Result(Drop, s))

 Frame Axioms - what doesn’t change
  x.s. color(x,s) = color(x, Result(Grab, s))

 Can be included among effect axioms

Planning in situation calculus

 Use theorem proving to find a plan

 Goal state: s. At(Home, s)  Holding(Gold, s)

 Initial state: At(Home, s0)  ¬ Holding(Gold, s0) 
Holding(Rope, s0) …

 Plan: Result(North, Result(Grab, Result(South, s0)))
 A situation that satisfies the requirements

 Course of actions can be read out

 First, move South, then Grab and then move North



6

Problems of using situation 

calculus for planning

 Reducing specific planning problem to 

general problem of theorem proving is not 

efficient

Exponential complexity

Optimality of plan is difficult to assess

 A more specialized approach can exploit 

special properties of planning problems

Special properties of planning

 Connect action descriptions and state 
descriptions (focus searching)
 If goal contains Holding(Gold) and Grab(Gold) causes 

Holding(Gold) to be true, then plan should include 
Grab(Gold)

 Add actions to a plan in any order

 Sub-problem independence

 Restrict language for describing goals, states 
and actions



7

STRIPS: Stanford Research 

Institute Problem Solver

 ~1971: The first real 

planning system

 Pushing boxes 

between rooms

STRIPS representation

 States: conjunctions of ground literals
 In(robot, r3)  Closed(door6)  …

 Goals: conjunctions of literals
 (implicit  r) In(Robot, r)  In(Charger, r)

 Actions (operators)
 Name (implicit ): Go(r1, r2)

 Preconditions: conjunction of literals

 At(r1)  Path(r1, r2)

 Effects: conjunctions of literals (aka add-list & delete-list)

 At(r2)  ¬ At(r1)

 Assumes no inference in relating predicates (only equality)



8

STRIPS example

 Action
 Buy(x, store)

 Pre: At(store), Sells(store, x)

 Eff: Have(x)

 Go(x, y)
 Pre: At(x)

 Eff: At(y), ¬At(x)

 Goal
 Have(Milk)  Have(Banana)  Have(Drill)

 Start
 At(Home)  Sells(SM, Milk)  Sells(SM, Banana)  Sells(HW, 

Drill)

Planning algorithms

 Progression planners: consider the effect of all possible 
actions in a given state

 Regression planners: to achieve a goal, what must have 
been true in previous state
 Have(M)  Have(B)  Have(D)

 Buy(M,store)
At(store)  Sells(store,M)  Have(B)  Have(D)

 Both have the problem of lack of direction – what action 
or goal to pursue next



9

Search in plan space

 Situation space – both progressive and 
regressive planners plan in space of situations

 Plan space – start with null plan and add steps 
to plan until it achieves the goal
 Much smaller complexity

 Planning order independent from execution order

 Least-commitment
 “what actions” before “what order”

 Means-ends analysis – Try to match the available 
means to the current ends

Partially ordered plan

 Set of steps (instance of an operator)

 Set of ordering constraints Si < Sj

 Set of variable binding constraints v = x

v is a variable in a step; x is a constant or 

another variable

 Set of causal links Si c Sj

Step i achieves precondition c for step j



10

Initial plan

 Steps: {start, finish}

 Ordering: {start < finish}

 start

 Pre: none

 Eff: start conditions

 finish

 Pre: goal conditions

 Eff: none

Completeness and consistency

 A plan is complete iff every precondition of 
every step is achieved by some other step

 Si c Sj (“step i achieves c for step j”) iff
 Si < Sj

 c  effects(Si)

 ¬ Sk. ¬c  effects(Sk) and Si < Sk < Sj is consistent 
with the ordering constraints

 A plan is consistent iff
 the ordering constraints are consistent and

 the variable binding constraints are consistent



11

Partially Ordered Plan (POP)

 Plan
 Steps

 Ordering constraints

 Variable binding constraints

 Causal links

 POP Algorithm
 Make initial plan

 Loop until plan is a complete
 Select a subgoal

 Choose an operator

 Resolve threats

Choosing an operator

 Choose operator(c, Sneeds)

 Choose a step S from the plan or a new step S by 

instantiating an operator that has c as an effect

 If there’s no such step, then fail (backtrack)

 Add causal link S c Sneeds

 Add ordering constraint S < Sneeds

 Add variable binding constraints if necessary

 Add S to steps if necessary



12

Resolving threats

 A step S threatens a causal link Si c Sj iff ¬ c 
effects(S) and it’s possible that Si < S < Sj

 For each threat
 Choose

 Promote S : S < Si < Sj

 Demote S : Si < Sj < S

 If resulting plan is inconsistent, then Fail (backtrack)

 Threats with variables
 S is a threat if there is any instantiation of the variables that 

makes ¬c  effects(S)

 Negative binding

STRIPS example

 Action
 Buy(x, store)

 Pre: At(store), Sells(store, x)

 Eff: Have(x)

 Go(x, y)
 Pre: At(x)

 Eff: At(y), ¬At(x)

 Goal
 Have(Milk)  Have(Banana)  Have(Drill)

 Start
 At(Home)  Sells(SM, Milk)  Sells(SM, Banana)  Sells(HW, 

Drill)



13

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

Buy(B,s3)

At(s1)  S(s1,D)

H(D)

Buy(M,s2)

At(s2)  S(s2,M)

H(M)

At(s3)  S(s3,B)

H(B)

Buy(D,s1)

Finish



14

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

s1/HW

s2/SM

s3/SM

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

s1/HW

s2/SM

s3/SM

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Finish



15

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(x1)

At(HW)  At(x1)

At(x2)

At(SM)  At(x2)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(x1,HW) Go(x2,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

Go(HO,HW)

At(HO)

At(HW)  At(HO)

Go(HO,SM)

At(HO)

At(SM)  At(HO)

Are we ready?

Buy(D,HW) Buy(B,SM)Buy(M,SM)

x1/HO

x2/HO

Finish



16

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HO)

At(SM)  At(HO)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HO,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HO)

At(SM)  At(HO)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HO,SM)

Finish



17

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(x2)

At(SM)  At(x2)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(x2,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

x2/HW

Go(HO,HW) Go(HW,SM)

Finish



18

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HW,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HW,SM)

Finish



19

Sussman anomaly

 Subgoal dependence

Goal: on(A,B)  on(B,C)

 Exercise

Objects: A, B, C, T

Predicates
 on(x,y), clear(x)

Operators
 move(x,y,z)

A

C

B

A

C

B

Operators

 Move(x,y,z)

Pre: on(x,y), clear(x), clear(z)

Eff: on(x,z), clear(y), ¬on(x,y), ¬clear(z)

 How do we move to the table?

 Move2T(x,y)

Pre: on(x,y), clear(x)

Eff: on(x,T), clear(y), ¬on(x,y)



20

Operators

 Move(x,y,z)

Pre: on(x,y), clear(x), clear(z), block(z)

Eff: on(x,z), clear(y), ¬on(x,y), ¬clear(z)

 How do we move to the table?

 Move2T(x,y)

Pre: on(x,y), clear(x)

Eff: on(x,T), clear(y), ¬on(x,y)

Limitations of the STRIPS language

 Hierarchical planning
 Generating complex plans often requires abstract planning over 

increasingly detailed search spaces

 Complex state conditions
 STRIPS variables are limited in their complexity

 There is no quantification and no conditional statements

 Representing time
 The STRIPS framework assumes that everything happens 

instantly

 Not possible to represent durations, deadlines, time windows, 
etc.

 Resource limitations
 There is no way to represent the amount of available workers, 

equipment, money, etc. or constraints on them



21

Graph Plan

 POP
 “Human-like”, but very slow

 Efficiency hard to evaluate

 Graph Plan
 Simplified planning model

 propositional planner (no variables  no matching)

 Bigger – separate propositions are needed for every 
combination of arguments

 Efficient algorithm

 Complexity between scheduling and planning

Planning graph



22

…

…

…

Planning graph

 Main idea

Construct a graph of possible outcomes

Graph Plan algorithm

 Resembles iterative DFS

1. Make a plan graph of depth k

2. Search for a solution

3. If succeed, return a plan

4. Else k := k + 1

5. Go to step 1



23

Mutually exclusive actions

 Two action instances at level i are mutex if

 Inconsistent effects

 effect of one action is negation of effect of another

 Interference

 one action deletes the precondition of the other

Competing needs

 the actions have preconditions that are mutex at 

level i - 1

Mutually exclusive propositions

 Two propositions at 

level i are mutex if

 Negation

 they are negations of 

one another

 Inconsistent support

 all ways of achieving 

the propositions at level 

i - 1 are pairwise mutex



24

Overview of mutual exclusion 

classes
Inconsistent Effects

Inconsistent SupportCompeting Needs

Interference (Precond-Effect)

Trends with new layers

 Propositions monotonically increase

 Actions monotonically increase

 Proposition mutex relationships monotonically 
decrease

 Action mutex relationships monotonically decrease

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B



25

Solution extraction

 If all the literals in the goal appear at the 

deepest level and not mutex, then search 

for a solution for each subgoal at level i

For each subgoal at level i

 Choose an action to achieve it

 If it’s mutex with another action, Fail

Repeat for preconditions at level i - 2

Example: Dinner date

 Initial conditions: garbage  cleanHands  quiet

 Goal: dinner  present  ¬ garbage

 Actions:

 Cook precondition: cleanHands

effect: dinner

 Wrap precondition: quiet

effect: present

 Carry precondition: -

effect: ¬ garbage  ¬ cleanHands

 Dolly precondition

effect: ¬ garbage  ¬ quiet



26

Search for a solution plan

Extensions

 Lots of time optimizations

 Disjunctive preconditions

 Universally quantified (almost :) 

preconditions and effects

 Conditional planning



27

Other approaches

 Hierarchical planning

 SATPlan
 Reduces planning problem to satisfiability problem

 Strongly related to GraphPlan

 FOPL like planning
 Using structural information and heuristics

 Introducing uncertainty
 Learning world dynamics

 Conditional planning

 Replanning

 Universal planning



1

Bayesian networks

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed, informed search strategies

Search in two player games

 Constraint satisfaction problems

 Planning



2

Outline

 Uncertainty vs. probability

 Bayes’ rule

 Independence…

 Combining evidence

 Bayesian Networks

Connections

 Independence

Motivation

 To calculate every possible probability 

joint probability distributions are needed

 But: given N propositional variables, there 

are 2N joint probabilities

 Solution: exploit independencies in the 

domain



3

Bayes’ rule

 Commutativity
 P(A  B) = P(B  A)

 P(A) * P(B | A) = P(B)  * P(A | B)

P(B | A) = P(A | B) * P(B) / P(A)

 Example
 P(disease | symptom) = 

P(symptom | disease) * P(disease) / P(symptom)

 High fever (HF), diphtheria (D)

 P(D | HF) = P(HF | D) * P(D) / P(HF)

Bayes’ rule

 E - evidence

 Hi - hypotheses

 
   

 

   

   
1

| |
|

|

i i i i
i n

k k
k

P E H P H P E H P H
P H E

P E
P E H P H



 





4

Conditional independence

 A and B are conditionally independent 
given C iff

P(A  B | C) = P(A | C) * P(B | C)

P(A | B,C) = P(A | C)

P(B | A,C) = P(B | C)

 Examples

Toothache, spot, cavity

T

C

X

S

Conditional independence

 A and B are conditionally independent 
given C iff

P(A  B | C) = P(A | C) * P(B | C)

P(A | B,C) = P(A | C)

P(B | A,C) = P(B | C)

 Examples

Toothache, spot, cavity

Engine, radio, battery
E

F B

R



5

Everyday probability

 Linda is 31 years old, single, outspoken, and 
very bright. She majored in philosophy. As a 
student, she was deeply concerned with issues 
of discrimination and social justice, and also 
participated in anti-nuclear demonstrations.

 Which is more likely? 
(1) Linda is a bank teller.

(2) Linda is a bank teller and is active in the feminist 
movement.

Conjugation fallacy

 Amos Tversky and Daniel Kahneman, 

1983

 “Extension versus intuitive reasoning: The 

conjunction fallacy in probability judgment”

 85% of people chose option 2, although 

P(A)  P(A,B)



6

Exercises

 Show that

(1) P(A)  P(A,B)

(2) P(A | B) + P(¬A | B) = 1

 Write an expression for P(A | B,C)

in terms of P(B | A,C)!

Combining evidence

 T: toothache X: spot on X-ray C: cavity

 If T and X are conditionally independent 

given C, then

 
   

 

, |
| ,

,

P T X C P C
P C T X

P T X


 
     

 

| |
| ,

,

P T C P X C P C
P C T X

P T X




7

Normalizing factor

   | , | , 1P C T X P C T X  

     

 

     

 

| | | |
1

, ,

P T C P X C P C P T C P X C P C

P T X P T X

  
 

             | | | | ,P T C P X C P C P T C P X C P C P T X    

Combining evidence

 
   

 

, |
| ,

,

P T X C P C
P C T X

P T X
 

     

 

| |

,

P T C P X C P C

P T X
 

     

           

| |

| | | |

P T C P X C P C

P T C P X C P C P T C P X C P C


   



8

Bayesian networks

 Set of nodes representing random variables

 Set of directed arcs (forming a DAG) expressing 

direct influence between nodes

 Every node A with parents B1, …, Bn has the 

conditional probabilities P(A | B1, …, Bn) 

specified

A B1 A
B2  A

B1 Bn…

Causal component

 “Sherlock Holmes wakes up to find his 

lawn wet. He wonders if it has rained or if 

he left his sprinkler on. He looks at his 

neighbor Watson’s lawn and he sees it is 

wet as well. So, he concludes, it must 

have rained.”

H

S R

W



9

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

BA C

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

BA C



10

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

BA C

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

 2. Backward serial connection

Transmit evidence from C to A through unless 

B is instantiated (its truth value is known)

BA C



11

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

 2. Backward serial connection

Transmit evidence from C to A through unless 

B is instantiated (its truth value is known)

BA C

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

 2. Backward serial connection

Transmit evidence from C to A through unless 

B is instantiated (its truth value is known)

BA C



12

Diverging connection

 Transmit evidence through B unless it is 

instantiated

BA C

Diverging connection example –

Icy roads

 Inspector Smith is waiting for Holmes and 
Watson, who are driving (separately) to meet 
him. It is winter. His secretary tells him that 
Watson has had an accident. He says, “It must 
be that the roads are icy. I bet that Holmes will 
have an accident too. I should go to lunch.” But, 
his secretary says, “No, the roads are not icy, 
look at the window.” So, he says, “I guess I 
better wait for Holmes.”



13

Diverging connection

 Transmit evidence through B unless it is 

instantiated

 Knowing about A will tell us something 

about C

BA C

Diverging connection

 Transmit evidence through B unless it is 

instantiated

 But, if we know B, then knowing about A 

will not tell us anything new about C, or 

vice versa

BA C



14

Converging connection

 Tricky case!

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

BA C

Converging connection

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

 Without knowing B, finding A does not tell 

us anything about C

BA C



15

Converging connection

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

 If we see evidence for B, then A and C 

become dependent (potential for 

“explaining away”).

BA C

Converging connection

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

 If we see evidence for B, then A and C 

become dependent (potential for 

“explaining away”).

BA C

D



16

D-separation

 Two variables A and B are d-separated iff for 

every path between them, there is an 

intermediate variable V such that either

 the connection is serial or diverging and V is known

 the connection is converging and neither V nor any of 

its descendants is instantiated

 Two variables are d-connected iff they are not d-

separated

D-separation exercise

 No instantiation

 A instantiated

 A and D instantiated

 B instantiated

 B and C instantiated

B

A

C

D



17

Solution

 No instantiation
 A, D are d-connected (A-B-D connected, A-C-D connected)

 B, C are d-connected (B-A-C connected, B-D-C blocked)

 A instantiated
 B, C are d-separated (B-A-C blocked, B-D-C blocked)

 A and D instantiated
 B, C are d-connected (B-A-C blocked, B-D-C connected)

 B instantiated
 A, D are d-connected (A-B-D blocked, A-C-D connected)

 B and C instantiated
 A, D are d-separated (A-B-D blocked, A-C-D blocked)

Outline

 Uncertainty vs. probability

 Bayes’ Rule

 Conditional independence

 Combining evidence

 Bayesian Networks

Connections

D-separation



1

Inference in 

Bayesian networks

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 Bayesian networks

 Combination of evidence

 Type of connections

 d-separation



2

Outline

 Efficient inference

D-separation theorem

Chain rule

 Quantitative inference

 Using joint distributions

 Variable elimination

 Multiply connected networks

Theorem

 If A and B are d-separated given an 

evidence e, then P(A | e) = P(A | B, e)

 Enables efficient inference



3

Chain rule

 Variables: V1, …, Vn

 Values: v1, …, vn

P 𝑉1 = 𝑣1, 𝑉2 = 𝑣2, … , 𝑉𝑛 = 𝑣𝑛 =

=ෑ

𝑖=1

𝑛

𝑃 𝑉𝑖 = 𝑣𝑖 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑉𝑖

Using the chain rule

 P(ABCD) = P(A=true, B=true, C=true, D=true)

 P(ABCD) =

P(D|ABC) P(ABC) =

P(D|C) P(ABC) =

P(D|C) P(C|AB) P(AB) =

P(D|C) P(C|AB) P(A) P(B)

A

D

B

C

P(A) P(B)

P(C | A,B)

P(D | C)



4

Icy roads

 Inspector Smith is waiting for Holmes and 
Watson, who are driving (separately) to meet 
him. It is winter. His secretary tells him that 
Watson has had an accident. He says, “It must 
be that the roads are icy. I bet that Holmes will 
have an accident too. I should go to lunch.” But, 
his secretary says, “No, the roads are not icy, 
look at the window.” So, he says, “I guess I 
better wait for Holmes.”

Icy roads – Conditional 

Probability Tables (CPT)

 I: Road is icy

 H: Holmes crashes

 W: Watson crashes I

H W

P(I=T) P(I=F)

0.3 0.7

P(W=T | I) P(W=F | I)

I=T 0.8 0.2

I=F 0.1 0.9

P(H=T | I) P(H=F | I)

I=T 0.8 0.2

I=F 0.1 0.9



5

Icy roads – with numbers

 P(W) = P(W | I) P(I) + P(W | ¬I) P(¬ I)

= 0.8 * 0.3 + 0.1 * 0.7 = 0.31

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1

Icy roads – with numbers

 P(I | W) = P(W | I) P(I) / P(W)

= 0.8 * 0.3 / 0.31 = 0.77

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1



6

Icy roads – with numbers

 P(H | W) =

= P(H | W,I) P(I | W) + P(H | W,¬I) P(¬I | W)

= P(H | I) P(I | W) + P(H | ¬I) P(¬I | W)

= 0.8 * 0.77 + 0.1 * 0.23 = 0.639

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1

Icy roads – with numbers

 P(H | W, ¬I) = P(H | ¬I)

= 0.1

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1



7

Wet lawns

 “Sherlock Holmes wakes up to find his 

lawn wet. He wonders if it has rained or if 

he left his sprinkler on. He looks at his 

neighbor Watson’s lawn and he sees it is 

wet as well. So, he concludes, it must 

have rained.”

Wet lawns

 P(R | H), P(S | H), P(W | H)

 P(R | HW), P(S | HW)

H

S R

W

P(W | R)

R 1.0

¬R 0.2

P(R)= 0.2P(S)= 0.1

P(H | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1



8

Types of inference

 Exact inference

 Approximate inference

Possible queries

 P(X=x0 | E=e)

 What value of x maximizes P(X=x | E=e) ?

 Probability distribution Pr(X | E=e)



9

Using joint distribution

 Summing over variables not involved

𝑃 𝑑 = σ𝐴𝐵𝐶 𝑃 𝑎, 𝑏, 𝑐, 𝑑 =

= 

𝑎∈𝑑𝑜𝑚(𝐴)



𝑏∈𝑑𝑜𝑚(𝐵)



𝑐∈𝑑𝑜𝑚(𝐶)

𝑃 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ∧ 𝐶 = 𝑐 ∧ 𝐷 = 𝑑

𝑃 𝑑 𝑏 =
𝑃 𝑏,𝑑

𝑃 𝑏
=

σ𝐴𝐶 𝑃 𝑎,𝑏,𝑐,𝑑

σ𝐴𝐶𝐷 𝑃 𝑎,𝑏,𝑐,𝑑

Variable elimination

𝑃 𝑑 = 

𝐴𝐵𝐶

𝑃 𝑎, 𝑏, 𝑐, 𝑑 = 

𝐴𝐵𝐶

𝑃 𝑑 𝑐 𝑃 𝑐 𝑏 𝑃 𝑏 𝑎 𝑃 𝑎

=

𝐶



𝐵



𝐴

𝑃 𝑑 𝑐 𝑃 𝑐 𝑏 𝑃 𝑏 𝑎 𝑃 𝑎

=

𝐶

𝑃 𝑑 𝑐 

𝐵

𝑃 𝑐 𝑏 

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

A DB C



10

Variable elimination

𝑃 𝑑 =

𝐶

𝑃 𝑑 𝑐 

𝐵

𝑃 𝑐 𝑏 

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

𝑃 𝑏1 𝑎1 𝑃 𝑎1 𝑃 𝑏1 𝑎2 𝑃 𝑎2
𝑃 𝑏2 𝑎1 𝑃 𝑎1 𝑃 𝑏2 𝑎2 𝑃 𝑎2

A DB C

Variable elimination

𝑃 𝑑 =

𝐶

𝑃 𝑑 𝑐 

𝐵

𝑃 𝑐 𝑏 

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

σ𝐴𝑃 𝑏1 𝑎 𝑃 𝑎

σ𝐴𝑃 𝑏2 𝑎 𝑃 𝑎

A DB C



11

Variable elimination

𝑃 𝑑 =

𝐶

𝑃 𝑑 𝑐 

𝐵

𝑃 𝑐 𝑏 

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

𝑓1(𝑏)

A DB C

Variable elimination

𝑃 𝑑 =

𝐶

𝑃 𝑑 𝑐 

𝐵

𝑃 𝑐 𝑏 𝑓1 𝑏

𝑓2(𝑐)

DB C



12

Variable elimination

𝑃 𝑑 =

𝐶

𝑃 𝑑 𝑐 𝑓2(𝑐)

DC

Variable elimination algorithm

Given a Bayesian network and an elimination 
order for the non-query variables, compute



𝑋1



𝑋2

𝐾

𝑋𝑚

ෑ

𝑗

𝑃 𝑥𝑗 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑥𝑗

For i = m downto 1
 Remove all factors that mention Xi

 Multiply those factors, getting a value for each 
combination of mentioned variables

 Sum over Xi

 Put this new factor into the factor set



13

Example

               
, , , , ,

Pr Pr | , Pr | , Pr | Pr | Pr Pr | Pr
A B L T S V

d d a b a t l b s l s s t v v 

Example

             
, ,

Pr | , Pr | , Pr | Pr | Pr Pr | Pr
A B L T S V

d a b a t l b s l s s t v v   

               
, , , , ,

Pr Pr | , Pr | , Pr | Pr | Pr Pr | Pr
A B L T S V

d d a b a t l b s l s s t v v 

           
, ,

1Pr | , Pr | , Pr | Pr | Pr
A B L T S

d a b a t l bf t s l s s  

       2 1

,

Pr | , Pr | ,,
A B L T

d a b a tl ff tb l  

     32

,

Pr | , , ,
A B L

d a b f b l f a l     4Pr | , ,
A B

fd ab ba  5

A

f a



14

Variable elimination

 Generally requires exponential time (O(n2 bk))

 Bad elimination order can generate huge factors

 Finding the best one is NP-hard
 Heuristic: choose the variable that results in smallest 

next factor (greedy method)

 Linear time for singly connected networks 
(polytree)
 There is only one (undirected) path between any two 

nodes

 Always eliminate variables with no parents

Exercise



15

Inference in multiply connected 

DAGs

 Clustering
 Transforms the network to a probabilistically 

equivalent polytree by joining certain nodes in the 
network

 Useful when computing many a posteriori 
probabilities

 Stochastic simulation (Monte Carlo)
 Estimates the probabilities by generating samples 

using the probability distribution defined by the 
network

Clustering

R

W

P(C)= 0.5

P(R | C)

C 0.8

¬C 0.2

P(S | C)

C 0.1

¬C 0.5

C

S

P(W | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1



16

Clustering

W

P(C)= 0.5 P(R+S = x | C)

R,S R,¬S ¬R,S ¬R,¬S

C 0.08 0.72 0.02 0.18

¬C 0.1 0.1 0.4 0.4

C

S+R

P(W | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1

Monte Carlo (sampling)

 Iterative sampling by making draws for 
each variable

Draws are based on CPTs

Start from root nodes

For children use the drawn values of parents

 After many rounds relative frequencies 
can be calculated



17

Monte Carlo

P(W | C) = P(C,W) / P(C)

P*(W | C) = #C,W / #C

R

W

P(C)= 0.5

P(R | C)

C 0.8

¬C 0.2

P(S | C)

C 0.1

¬C 0.5

C

S

P(W | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1

Importance sampling

 Problem

 Rare events will not be well represented

 Solution: Importance sampling

 Considers biased distributions (towards rare values)

 Output is weighted to correct for the bias

 Weights are determined by likelihood ratios

 Fast convergence

 Can handle huge networks



18

Exercises

 Wet Lawns with numbers

 Variable elimination

 Monte Carlo

Outline

 Efficient inference

D-separation theorem

Chain rule

 Quantitative inference

 Using joint distributions

 Variable elimination

 Multiply connected networks



1

Machine Learning

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 Concepts related to intelligence

 Agent model

 Problem solving by search

 Strategies in games

 Inference in First Order Predicate Logic



2

Outline

 Supervised vs. unsupervised vs. …

 Logical inference schemes

 Inductive learning

 ID3 algorithm

Version spaces

 Inductive logic programming

 Learning theory

Machine Learning and AI

 Improve task performance through 
observation, teaching

 Acquire knowledge automatically for use in 
a task

 Learning is a key component in 
intelligence



3

Learning

 Supervised, unsupervised, semi-

supervised, reinforcement

 Representation trade-off

Efficiency vs. expressive power

 There exist learning methods for several 

representation schemes

Applications

 Data mining
 Big data, web mining

 Language/speech
 Machine translation, text summarization, grammars

 Medical
 Assessment of illness severity

 Vision
 Face recognition, digit recognition, outdoor scene recognition

 Security
 Intrusion detection, network traffic, credit fraud

 Social networks
 Email traffic



4

Logical inference schemes

 Deduction: formal logical reasoning

 Premises: 1. All men are mortal. 2. Aristotle is a man.

 Conclusion: Aristotle is mortal.

 Induction: generalization
 Premise: The sun has risen in the east every morning 

up until now.

 Conclusion: The sun will also rise in the east 
tomorrow.

 Abduction: choosing an explanation
 Premise: 1. Flu causes fever. 2. Peter has fever.

 Conclusion: Peter has flu.

Approaches

 Inductive learning
 Discovering general concepts from a limited set of 

examples (experience)

 From a formal point of view the obtained knowledge is 
invalid

 Supervised
 Given input data as pairs of (xi, f(xi))

 Generate a hypothesis for f()

 Unsupervised

 Analytic or deductive learning
 Based on explanations



5

Inductive learning

 Decision trees

 Version-spaces

More general, but less efficient

 Inductive logic programming

General Approach

 Formulate task

 Prior model (parameters, structure)

 Obtain data

 What representation should be used? (attribute/value 
pairs)

 Annotate data

 Learn/refine model with data (training)

 Use model for classification or prediction on unseen data 
(testing)

 Measure accuracy



6

Decision trees

 Measurements

 Nodes

 Node selection: ID3 algorithm

Maximizing information gain

Measure for information gain of an attribute: 

expected value of the information given by it

 Pruning

Sample decision tree



7

Information theory

 𝑆: set of measurements

 𝐴: an attribute with domain 𝑉 = {𝑣1, … , 𝑣𝑖 , … , 𝑣𝑛}

 𝑆𝑣: set of measurements for which 𝐴 = 𝑣

 Entropy:

 Gain:

     2

1

log
n

i i

i

H S P v P v


 

     ,
v

v

v V

S
G S A H S H S

S

 

Example

 3 input attributes

 4 measurements

weather
got 

HW?

friend 

comes?
excursion

S1 nice Yes Yes Yes

S2 cloudy No No No

S3 rainy No Yes Yes

S4 cloudy Yes Yes Yes



8

Information gain for attribute 

‘weather’
 H(S) = -3/4 log2(3/4) – 1/4 log2(1/4) = 0.811

 |Snice|/|S| * H(Snice) = 1/4 * (-1/1 log2(1/1) - 0/1 
log2(0/1)) = 1/4 * (1*0 – 0) = 0

 |Scloudy|/|S|  * H(Scloudy) = 2/4*(-1/2 log2(1/2) - 1/2 
log2(1/2)) = 1/2 * (-1/2 * (-1) – 1/2 * (-1)) = 1/2

 |Srainy|/|S| * H(Srainy) = 0

 G(S,A) = 0.811 – (0+0.5+0) = 0.311

The ID3 algorithm

 Given a set of examples, S

 Described by a set of attributes Ai

 Categorised into categories cj

1. Put the attribute the has the highest information 

gain in the root node (attribute A1)

2. For each value vi that A can take

 Draw a branch and label each with corresponding vi



9

The ID3 algorithm

3. For each branch with value vi

 If Svi only contains examples in category c, 
then put that category as a leaf node in the 
tree

 If Svi is empty, then put the default category 
(which contains the most examples from S) as 
a leaf node in the tree

Otherwise construct subtreei by recursively 
calling decision tree with Sv, all attributes

Text Classification

 Is texti a new finance article? 

Positive Negative



10

20 attributes

 Investors 2

 Dow 2

 Jones        2

 Industrial   1

 Average    3

 Percent     5

 Gain          6

 Trading     8

 Broader   5

 stock        5

 Indicators  6

 Standard   2

 Rolling     1

 Nasdaq    3

 Early        10 

 Rest         12

 More        13

 first         11

 Same       12

 The          30

 Men’s

 Basketball

 Championship

 UConn 
Huskies

 Georgia Tech

 Women

 Playing

 Crown

 Titles

 Games

 Rebounds

 All-America

 early

 rolling

 Celebrates

 Rest

 More

 First

 The

 same

20 attributes



11

Example
stock rolling the class

1 0 3 40 other

2 6 8 35 finance

3 7 7 25 other

4 5 7 14 other

5 8 2 20 finance

6 9 4 25 finance

7 5 6 20 finance

8 0 2 35 other

9 0 11 25 finance

10 0 15 28 other

stock rolling

<5 5-10 10 
10 

5-10
<5

1,8,9,10 2,3,4,5,6,7

1,5,6,8
2,3,4,7

9,10

Gain(stock) = 1 - [0.4 * H(0.1, 0.3) + 0.6 * H(0.4, 0.2)] = 

= 1 - [0.4 ((-0.1 * -3.32) - (0.3 * -1.74)) +

+ 0.6 ((-0.4 * -1.32) - (0.2 * -2.32))] =

= 1-[0.303 + 0.5952] = 0.105

Gain(rolling) = 1 - [0.4 * H(0.5, 0.5) + 0.4 * H(0.5, 0.5) +

+ 0.2 * H(0.5, 0.5)] = 0



12

Issues

 Representation
How to map from a representation in the domain 

to a representation used for learning?

 Training data
How can training data be acquired?

 Amount of training data
How well does the algorithm do as we vary the 

amount of data?

 Which attributes influence learning most?

 Does the learning algorithm provide insight into 
the generalizations made?

Version space learning

 A technique for 

learning concepts

 Continuously 

maintains the set of 

consistent 

hypotheses

Inconsistent hypotheses

Inconsistent hypotheses



13

Version space learning

 Least commitment principle
G: most general set

S: most specific set

 Initialization
G: True

S: False

 A hypothesis 𝐻 is consistent if 𝐻 is
more specific than some element of G

and more general than some element of S

Handling inconsistence

 If Si is false negative

 replace Si by all direct generalizations 

that classifies e as positive and is more 

specific than some element of G

 If Si is false positive

 remove Si from S

+  +  + 

+  +  +

+  +  + 

+  + –



14

Handling inconsistence

 If Gi is false negative

 remove Gi from G

 If Gi is false positive

 replace Gi by all direct specializations 

that classifies e as negative and is more 

general than some element of S

+  +  + 

+  +  +

+  +  + 

+  + –

Example

 Training set

 S1: {Japan, Honda, blue, 1980, economy} +

 S2: {Japan, Toyota, green, 1970, sports} –

 S3: {Japan, Toyota, blue, 1990, economy} +

 S4: {USA, Chrysler, red, 1980, economy} –

 S5: {Japan, Honda, white, 1980, economy +



15

Example

 S1: G = {G1:(*,*,*,*,*)}
S = {S1:(Japan, Honda, blue, 1980, economy)}

 S2: G = {G1:(*,Honda,*,*,*), G2:(*,*, blue,*,*),
G3:(*,*,*, 1980,*), G4:(*,*,*,*, economy)}

S = {S1:(Japan, Honda, blue, 1980, economy)}

 S3: G = {G2:(*,*,blue,*,*), G4:(*,*,*,*, economy)}
S = {S1:(Japan,*, blue,*, economy)}

 S4: G = {G2:(*,*, blue,*,*), G4:(Japan,*,*,*, economy)}
S = {S1:(Japan,*, blue,*, economy)}

 S5: G = {G4:(Japan,*,*,*, economy)}
S = {S1:(Japan,*,*,*, economy)}

 The concept is “Japanese economy car”

S1: {Japan, Honda, blue, 1980, economy}

S2: {Japan, Toyota, green, 1970, sports}

S3: {Japan, Toyota, blue,  1990, economy}

S4: {USA, Chrysler, red,    1980, economy}

S5: {Japan, Honda, white, 1980, economy}

+

–

+

–

+

Termination

 G  S, but no more samples

 G = S  a single winner hypothesis

 S or G is empty

 Inconsistent samples (may be due to noise)

 Insufficient attributes

Chosen language is incapable to express the 

concept



16

Problems of VS learning

 Cannot handle noisy data

Version spaces collapses

 Unlimited disjunction

Wave fronts will not meet

Learning summary

What is the space of hypotheses to be 

considered when learning?

 If too large: no actual knowledge can be 

gained (generalization is not possible)

 If too small: it might not include the target 

function



17

Learning theory

 Correctness of hypothesis h() has to be 
evaluated without knowing f(), the function to be 
learned

 A sufficiently large dataset can ensure an 
approximately good result with a high probability

 How many samples are needed to evaluate the 
correctness of a hypothesis?
 Probably Approximately Correct learning (PAC 

learning)

Probably approximately correct 

(PAC) learning

 X: set of all possible examples

 D: distribution of examples

 H: set of possible hypotheses

 m: # of examples in training set

 Looking for an h()H being close to f()H



18

Hypothesis space

 error(h) = P(h(x)  f(x) | x is drawn from D)

 Hypothesis h is approximately correct if 

error(h)

 P(hbad is consistent with m examples)  (1 - )m

H



f

Hbad

hbad

PAC-learning

 P(Hbad contains a consistent hypothesis) 
|Hbad|(1 - )m  |H|(1 - )m

 Let  be an upper bound for this

Sample complexity function of the hypothesis 
space

𝑚 𝜖, 𝛿 ≥
1

𝜖
ln
1

𝛿
+ ln 𝐇

 If the complexity of the hypothesis space is 
less than exponential, then the function is 
learnable



19

PAC-learning

 For Boole functions: 𝐇 = 22
𝑛

 Sample complexity grows as 

For  =  = 10-4

n = 2 m  5,000

n = 10 m  3,000,000

 Solution
Searching in space of simple solutions

Restricting the language of hypotheses

Summary

 Supervised vs. unsupervised vs. …

 Logical inference schemes

 Inductive learning

 ID3 algorithm

Version spaces

 Inductive logic programming

 Learning theory



1 

Learning Bayesian 

Networks 

Artificial intelligence 

Kristóf Karacs 

PPKE-ITK 

Learning Bayesian Networks 

 Sources for Bayesian Nets 

 Human experts 

 Data (measurement) 

 What can be learned? 

 Structure 

 Probabilities 

 Typical case: structure from expert, probability 

from data 



2 

Learning probabilities 

 Given a data set D = {<v11, …, vm1>, …, 

<v1k, …, vmk>} 

 m: # of nodes k: # of samples 

 Elements are assumed to be independent 

given M 

 Maximum likelihood estimate 

Find model M that maximizes Pr(D|M) 

Estimating Conditional Probabilities 

 

 

 

 

 

 



3 

Estimating Conditional Probabilities 

 

Estimating Conditional Probabilities 

 



4 

Estimating Conditional Probabilities 

 

Measuring goodness of fit 

 Calculating Pr(D|M) 

 

 

 

 Log likelihood 



5 

Learning the structure 

 For a fixed structure, counting estimates of the 

CPT converge to the maximum likelihood model 

 What if we get to pick the structure as well? 

 In general, the best model will have no 

conditional independence relationships 

 Undesirable, for reasons of overfitting 

Scoring metric 

 What if we want to vary the structure? 

 A network with conflicting properties 

 good fit to data: log likelihood 

 low complexity: total number of parameters 

 Try to maximize scoring metric, by varying M 

(structure and parameters) given D 

    log Pr(D|M) − α #(M) 



6 

Search in structure space 

 Brute-force method cannot be applied 

 Local search in structure space 

 Starting with some initial structure 

 Operators: add, delete, or reverse an arc 

 Choosing the next state 

 Evaluation of candidates using maximum likelihood 

parameters 

 Hill climbing, simulated annealing 

 No directed cycles should occur in the structure 

Initialization possibilities 

 No arcs 

 With a random ordering V1 … Vn 

 variable Vi has all parents V1 … Vi-1 

 variable Vi has parents randomly chosen from V1 … 
Vn-1 

 Best tree-network 
 maximum-weight spanning tree based on pairwise 

mutual information between every pair of variables 

 polynomial time algorithm 



7 

Bayesian net structure example 

 Domain with 3 binary nodes 

 Measurement data 
 {(0,1,1),(0,1,1),(1,0,0)} 

 Consider three structure candidates 
 M1 {} 

 M2 {AB, AC} 

 M3 {BA, CA} 

 

 1. Calculate parameter estimates for the CPTs! 

 2. Calculate Pr(D|Mi) for each structure with 
Bayesian correction! 

B 

A 

C 



1 

Fuzzy logic 

Artificial intelligence 

Kristóf Karacs 

PPKE-ITK 

Fuzzy logic 

 Lotfi Zadeh 

 Concept: truth values may apply partially 

 Not able to express uncertainty (rather 

truthfulness) 

 Logical statements are derived from 

natural language statements 

 



2 

Fuzzy sets 

 Sets are identified by linguistic identifiers 

“tall”, “young”, “bigger” 

 Grade of membership 

 

 Fuzzy set A 

Membership function 

 Age – “young” 

 

 

 

 

 

 

  Crisp    Fuzzy 

Y Y 

A A 



3 

Types of membership functions 

 Piecewise linear  

Straight lines (increasing, decreasing) 

 

 

Triangular  

Linear curves 



4 

Types of membership functions 

 Smooth curves 

s-curve 

 

 

z-curve 

 

 

-curve 

Smooth curves 



5 

Operations 

 Given  

Fuzzy intersection 

   



6 

Operations on fuzzy sets 

 

Algebraic properties 

 Commutativity  
 a or b = b or a 

 a and b = b and a 

 Associativity 
 (a or b) or c = a or (b or c) 

 (a and b) and c = a and (b and c) 

 Distributivity 
 a or (b and c) = (a or b) and (b or c) 

 a and (b or c) = (a and b) or (b and c) 

 DeMorgan rules 
 not (a and b) = ( not a) or ( not b) 

 not (a or b) = ( not a) and ( not b) 



7 

Algebraic properties 

 Absorption 
 (a and b) or a = a 

 (a or b) and a = a 

 Idempotency 
 a or a = a 

 a and a = a 

 Exclusion (not satisfied) 
 a or ¬a  1 

 a and ¬a  ∅ 

Linguistic modifiers 

 Approximation of Fuzzy Sets: scalar → fuzzy 

set, modifying the "base" of a fuzzy set 

 about, around, near and close to 

 Restriction of Fuzzy Sets: modifying the shape 

 below and above 

 Intensification and Dilution of Fuzzy Sets 

 intensification: very (n = 2) and extremely (n = 3) 

 dilution: somewhat (n = 1/2) and greatly (n = 5/7) 



8 

Linguistic modifiers 

 Graphical representation 



1 

Inference in fuzzy 

systems 

Artificial intelligence 

Kristóf Karacs 

PPKE-ITK 

Fuzzy relation 

 Given two universes 𝒳 and 𝒴, a fuzzy 

relation ℛ is 

ℛ ⊂ 𝒳 × 𝒴 

where ⊂ denotes a fuzzy subset 

 

 ℛ is defined by 𝜇ℛ 𝑥, 𝑦  



2 

Composition 

 Given two fuzzy relations 

 ℛ:  𝒳 × 𝒴 → [0,1]  𝒮:  𝒴 × 𝒵 → [0,1] 

their composition is defined by 

𝒯 = ℛ ∘ 𝑆:  𝒳 × 𝒵 → [0,1] 
𝜇ℛ∘𝒮 𝑥, 𝑧 = max

𝑦∈𝒴
min 𝜇ℛ 𝑥, 𝑦 , 𝜇𝒮 𝑦, 𝑧  

 

 Called an inner or - and product 

Composition example 

 

  
0.8 1 0.1 0.7

,
0 0.8 0 0

R X Y
 

  
 

 

0.4 0.3 0.3

0 0.4 0
,

0.3 0.5 0.8

0.6 0.7 0.5

S Y Z

 
 
 
 
 
 

 
0.6 0.7 0.5

,
0 0.4 0

R S X Z
 

  
 

       , max min , , ,
k

i j i k k j
y

x z x y y z



3 

Form of reasoning 

 Fuzzy version of generalized modus 

ponens 

 Antecedent (premise): x is A’ 

 Implication:   if x is A then y is B 

Consequence:  y is B’ 

' 'A BA R B 

Implication 

 Let 𝐴 and 𝐵 be two fuzzy sets in 𝑈1 and 𝑈2, 
respectively 

 Implication is a relation defined by 

   𝐴 → 𝐵 ≜ 𝐴⊗𝐵, 
 where ⊗ is the tensor (outer) product of the vectors 

using the logical operator 𝑎𝑛𝑑 (∧) 

 

 Implication functions 
 I(x,y) = min(x, y)  Mamdani 

 I(x,y) = max(1-x, y)  Dilne, Zadeh 

 I(x,y) = xy   Larsen 



4 

Implication example 

 Rule 
 “If temperature is high, then humidity is fairly high.” 

 Fuzzy variables 
 tUt = {20,30,40}  hUh = {20,50,70,90} 

 Fuzzy sets 
 HT Ut   HT(t) = [0.1, 0.5, 0.9]T 

 FHH  Uh  FHH(h) = [0.2, 0.6, 0.7 1]T 

 

 Fuzzy rule 
 R(t,h): if t is HT then h is FHH 

Implication example 

 HT(t) = [0.1, 0.5, 0.9]T 

 FHH(h) = [0.2, 0.6, 0.7 1]T 

 𝑅𝐻𝑇→𝐹𝐻𝐻 = HT ⊗ FHH 

 

 𝑅𝐻𝑇→𝐹𝐻𝐻 =
0.1 0.1 0.1 0.1
0.2 0.5 0.5 0.5
0.2 0.6 0.7 0.9

 



5 

Implication example 

 According to the rule what is the humidity 

if temperature is fairly high? 

 t = FHT, FHT  Ut  

 

 FHT(t) = HT
2(t) = [0.01, 0.25, 0.81]T 

Implication example 

 𝑅 ℎ = 𝑅 𝑡 ∘ 𝑅𝐻𝑇→𝐹𝐻𝐻 = 𝐹𝐻𝑇 ∘ 𝑅𝐻𝑇→𝐹𝐻𝐻 

 

= 0.01 0.25 0.81 ∘
0.1 0.1 0.1 0.1
0.2 0.5 0.5 0.5
0.2 0.6 0.7 0.9

 

 

= 0.2 0.6 0.7 0.81   



6 

A  B 

A' 

 

        B' 

General fuzzification 

Singleton fuzzification 

Single rule 

A1  B1 

A'1 

 

A2  B2 

A'2    

 

      B'1, B'2 

 

 

         B'' 

Superposition of rules 



7 

A1  A2  B 

A'1, A'2    

 

       B' 

Multiple antecedents 

Multiple Rules – Fuzzy-Fuzzy 

0 0 

0 

0 0 0 

0 

1 

1 1 

1 1 1 

1 

u 

u 

v 

v 

w 

w min 

1 

2 

A1 A B 

A B 

B1 C1 

A2 B2 C2 



8 

Multiple Rules – Crisp-Fuzzy 

0 0 

0 

0 0 0 

0 

1 

1 1 

1 1 1 

1 

u 

u 

v 

v 

w 

w min 

u0 v0 

1 

2 

C1 

C2 

C1 C2 

Defuzzification 

 Converting fuzzy set to crisp data 
 Mean of maxima (MOM) 

 𝑦𝑚𝑗: set of points with maximum membership value 

𝑦𝑀𝑂𝑀 =
 𝑦𝑚𝑗
𝑙
𝑗=1

𝑙
 

 Center of area (COA) 

𝑦𝐶𝑂𝐴 =
 𝜇 𝑦𝑚𝑗 𝑦𝑚𝑗
𝑙
𝑗=1

 𝜇 𝑦𝑚𝑗
𝑙
𝑗=1

 

 Bisector of Area (BOA) 

 Smallest of Maximum (SOM) 

 Largest of Maximum (LOM) 

yLOM 

yBOA 

ySOM 

yCOA yMOM 
y 

(y) 

1 

0 



9 

Model of a fuzzy system 

x is A1     w1 y is B1 

Rule 1 

X 
x is A2     w2 y is B2 

x is Ar     wr y is Br 

Rule 2 

Rule r 

Fuzzy 

Composition 
Defuzzifier 

y 

(Crisp) 

(Fuzzy) 

(Fuzzy) 

(Fuzzy) 

(Fuzzy) 

Ingredients of a fuzzy system 

 Normalization of universes 

 Fuzzification of crisp input data 

 Fuzzy inference 

 Defuzzification 

 Denormalization 


