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Lecture 1

Introduction to AI

Kristóf Karacs

PPKE-ITK

Questions?

 What is intelligence?

 What makes it artificial?

 What can we use it for?

 How does it work? How to create it?

 How to control / repair / improve it?

 What are the consequences?

 Do we need to be afraid of it?

 What can we do?
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Good to know

 Slides in English

 Vox Populi

 Requirements: later today

Administration

 Contact
 Instructor: Kristóf Karacs

room 231, karacs@itk.ppke.hu

 TAs

 Attila Stubendek, Attila Sulyok
room 224, stubendek.attila@itk.ppke.hu

sulyok.a.attila@gmail.com

 Web
 http://users.itk.ppke.hu/~karacs/AI/

 Lectures
 Mon 12:15am, Jedlik Lecture hall

 Seminars
 Group 1: Wed 8:15am, room 322

 Group 2: Wed 13:15pm, room 220

 Group 3: Tue 12:15pm, room 220
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What is intelligence?

intelligere: to comprehend, to perceive

 Sense

 Reason rationally

 Learn and discover

 Compete

 Communicate and cooperate

What is AI? (1)

 “[The automation of] activities that we associate with human thinking, 
activities such as decision-making, problem solving, learning ...” (Bellman, 
1978)

 “The exciting new effort to make computers think ... machines with minds, in 
the full and literal sense” (Haugeland, 1985)

 “The study of mental faculties through the use of computational models” 
(Charniak and McDermott, 1985)

 “The art of creating machines that perform functions that require intelligence 
when performed by people” (Kurzweil, 1990)

 “A field of study that seeks to explain and emulate intelligent behavior in 
terms of computational processes” (Schalkoff, 1990)

 “The study of how to make computers do things at which, at the moment, 
people are better” (Rich and Knight, 1991)

 “The study of the computations that make it possible to perceive, reason, 
and act” (Winston, 1992)

 “The branch of computer science that is concerned with the automation of 
intelligent behavior” (Luger and Stubblefield, 1993)
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Russell Beale
(University of Birmingham)

 “AI can be defined as the 

attempt to get real machines to 

behave like the ones in the 

movies.”

John McCarthy

(Stanford)

 “It is the science and 
engineering of making 
intelligent machines, especially
intelligent computer programs. 

 It is related to the similar task of using 
computers to understand human 
intelligence, but AI does not have to 
confine itself to methods that are 
biologically observable.”
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Ray Kurzweil (Google)

 “Artificial intelligence is the ability to 

perform a task that is normally performed 

by natural intelligence, particularly human 

natural intelligence.”

Elaine Rich (University of 

Texas at Austin)

 “Artificial Intelligence is the study of how to 

make computers do things at which, at the 

moment, people are better.”
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What is AI? (2)

“The synthesis and analysis of computational 
agents that act intelligently.”

 Science and engineering

 Understanding principles that make intelligent 
behavior possible in natural or artificial systems

 Specifying methods for the design of useful, intelligent 
artifacts

[Poole - Mackworth: Artificial Intelligence, Cambridge 
University Press, 2010]
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What is AI? (3)

“Intelligence measures an agent’s ability to 
achieve goals in a wide range of environments.”

 Implicitly includes

 ability to learn and adapt

 to understand

[S. Legg – M. Hutter, A formal measure of machine 
intelligence, Benelearn Conference, 2006]

What is AI? (4)

 Study of the principles by which 

knowledge is acquired and used, 

goals are generated and achieved, 

 information is communicated, 

collaboration is achieved, 

concepts are formed, 

 languages are developed. 
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Intelligent agents

 act according to the circumstances and its 

goals

 adapt to dynamic environments and goals

 learn from experience

 are aware of their own limitations 

(sensors, memory, speed, etc.)

Levels of intelligence
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Levels of intelligence

 Difficulty levels for humans and machines

 Playing team sports, driving a car

 Playing chess or go

 Recognizing a cat

 Solving partial differential equations

 Solving logic puzzles

Old captchas
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Newer captchas

Minimum requirements

 Assignments: 50%

 Seminar tests: passing 60% of all

 Project (code and documentation): 50%

 Midterm exam: 40%
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Grade composition

 Project 30%
 Proposal 2%

 Code 18%

 Documentation 10%

 Midterm 30%

 Final 40%

 Activity, presentations + 10%

 Competition (for top positions) + 20%

 Worked out problems + 10%

Grading

 Grades

 5: 87.5%-

 4: 75.0%-

 3: 62.5%-

 2: 50.0%-

 Grade offer requirements

 Min. 75% at the midterm

 Project presentation on the last week of the semester



12

Presentation

 Optional

 5 minutes

 Topics

Anything AI related you find interesting and 

think that it may be interesting to others

Some topics are posted on the website

Project work

 Goal: Demonstrating the use of some AI 
techniques

 Self defined or Challenge-type

 Proper documentation according to the rules 
outlined on the website

 Project submission deadlines
Proposal: February 27

First prototype: March 27

Final version: May 10
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Project work

 Start thinking about it now, to come up 

with your own!

Sample project ideas

 Visual scene understanding

 Reading sheet music

 Predicting structure of protein fragments

 Object detection

 Bongard problems

 Captcha solver

 Intelligent vacuum cleaner

 Route searching for a carpooling system
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Bongard problems

 Mikhail Moiseevich Bongard, 1967

 Given 2 x 6 figures

 Task: describe what is common in one set 

not shared with the other set

Bongard problem #6
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Bongard problem #7

Bongard problem #87
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Bongard problem #20

Bongard problem #91
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Bongard problem #116

Typical problems

 Exponential blow-up

 Representation of information
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Methods

 Analytical

 Empirical

 Hybrid

Early milestones

 1950. Turing test

 1955. GPS by H. Simon and A. Newell

 1956. The term “AI” was born at a 

conference organized by John McCarthy 

in Dartmouth College, Hanover, NH
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Turing Test

Source: Jack Copeland, alanturing.net

Stages of AI
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Stages of AI

 Initial enthusiasm

 Recession

 Successes

 AI industry

 Wide-spread, sophistication

Source: Wolfgang Ertel
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Source: Wolfgang Ertel

Related sciences

 Computer science / data science
 Data mining, machine learning

 Mathematics:
 Logic, complexity theory, probability theory

 Psychology

 Cognitive science

 Linguistics

 Biology

 Philosophy, ethics
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Application areas

art, astronomy, bioinformatics,

engineering, finance, fraud detection, law,

mathematics, military, music, story writing,

telecommunications, transportation,

tutoring, video games, web search

Branches detached from AI

 Machine learning, deep learning

 Computer vision

 Speech recognition

 Optical character recognition, handwriting 

recognition

 Natural language processing

 Expert systems
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Program

 Problem solving by search

 Search including other agents

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

 Machine learning

AI highlights (1)

 SKICAT: automatically classifies data from space 
telescopes and identifying interesting objects in the sky. 
94% accuracy, way better than human (decision trees)

 Deep Blue: the first computer program to defeat human 
champion Garry Kasparov (minimax search + alpha-
beta-pruning + optimizations)

 Pegasus, Jupiter, etc.: speech recognition systems 
(Hidden Markov Models)

 HipNav: a robot hip-replacement surgeon (planning 
algorithms)

 DARPA Grand/Urban Challenge: autonomous driving 
(filtering and planning algorithms)
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AI highlights (2)

 Deep Space 1: NASA spacecraft that did an autonomous 
flyby an asteroid (logic-based AI)

 Credit card fraud detection and loan approval (decision 
trees and neural networks)

 Chinook: the world checker’s champion (game theory)

 Spam Assassin and other spam detectors (naïve Bayes 
learning)

 Soccer playing Aibo robots (reinforcement learning)

 Watson (natural language processing, knowledge 
aggregation)

 AlphaGo, AlphaZero, AlphaStar (deep reinforcement 
learning)

Principles of academic integrity

 Projects
Cite all sources properly

 Assignments
Discuss and research the problem before you 

start writing

Do not copy cat ready solutions

Work on your own

After you start putting it into writing
 Do not talk to others

 Do not consult external materials
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Textbooks

 S. J. Russell, P. Norvig, Artificial Intelligence: A 

Modern Approach, Third Edition,  Prentice Hall, 2009

 S. J. Russell, P. Norvig, Mesterséges intelligencia 

modern megközelítésben, második kiadás, Panem, 

2005

 available at: 

tankonyvtar.hu/hu/tartalom/tamop425/0026_mi_4_4

 D. Poole, A. Mackworth, Artificial Intelligence, 

Cambridge University Press, 2010

 available at: artint.info

Other resources

 I. Futó (ed.), Mesterséges intelligencia, Aula, 1999

 Kevin P. Murphy, Machine Learning – A 
probabilistic perspective, MIT Press, 2012

 C. M. Bishop, Pattern Recognition and Machine 
Learning, Springer Verlag, 2006

 AAAI (Association for the Advancement of Artificial 
Intelligence): aaai.org

 Agent portal: agent.ai

https://www.tankonyvtar.hu/hu/tartalom/tamop425/0026_mi_4_4
http://artint.info/
aaai.org
agent.ai
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Intelligent agents

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 What can we use it for?

 How does it work? How to create it?

 How to control / repair / improve it?

 What are the consequences?

 Do we need to be afraid of it?

 What can we do?
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Do we need to be afraid of it?

 You may, but it is better to take action

learn – know – act

Reminders

 Project: February 27, next Wednesday

 Quick presentations

 Worked out problems
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Program

 Problem solving by search

 Adversarial search

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

 Machine learning

Outline

 Agents and environments

 Rationality

 PEAS: performance measure, 

environment, actuators, sensors

 Models of agents

 Aspects of environments



4

Intelligent agents

 An agent is anything that can be viewed as

perceiving its environment through sensors

and

acting upon the environment through actuators.

How do agents work?

Agent

E
n

v
iro

n
m

e
n

t

?

Sensors

Actuators

Percepts

Actions
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Type of agents

 Human

 Robot

 Software

Rational agent

 A rational agent is one that does the right 

thing

 Assessing the agent’s performance

Performance measure: objectively tells how 

successful the agent is
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Evaluation of rationality

 Goals and a performance measure

 Prior knowledge about the environment

 Abilities: possible primitive actions

 History

Percept sequence

Past experiences (data to learn from)

Internal Structure

 Agent = Architecture + Program

HW, bg. SW + actual algorithm

 Knowledge of Environment

Source
 Given a-priori

 Learned from sensory input

May include
 Present / past states of environment

 Influence of actions on the environment
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Complexity levels

 Reflex agents
 Lookup table: if-then rules

 Problems: size, time, flexibility

 Model-based reflex agents
 Internal state

 Goal-based agents
 Search and planning

 Utility-based agents
 Non-binary measure

Reflexes

 Action depends only on sensory input

 Background knowledge not used

 Humans – flinching, blinking

 Chess – openings, endings

Lookup table (not a good idea in general)

35100 entries required for the entire game
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Reflex Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators
Actions

What the world 

is like now?

What action 

should I do 

now?

Condition-

action

(if-then)

rules

Percepts

Model-based Reflex Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

What the world 

is like now?

What action 

should I do 

now?

Condition

-action

(if-then)

rules

State

How the world 

evolves?

What my actions do?
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Goal of an agent

 Environment in itself is often not enough to 
decide what to do

 Goal is described by some properties

 A goal based agent
 uses knowledge about a goal to guide its actions 

(search and planning)

 compares the results of possible actions

 Principle: The action taken should modify the 
environment towards the goal

Goal-based Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

What the world 

is like now?

What action 

should I do 

now?

Goals

State

How the world 

evolves?

What my actions do?
What it will be if 

I do action A?

Search & Planning
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Utility Functions

 Knowledge of a goal may be difficult to pin down 

(e.g. checkmate in chess)

 Agent may have multiple, controversial goals

 Comparing utility of states 

 Utility functions measure value of world states

 Localized measures

 Choose action which best improves utility (Best 

First Search)

Utility-based Agents

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

What the world 

is like now?

What action 

should I do 

now?

Utility

State

How the world 

evolves?

What my actions do? What it will be if 

I do action A?

How happy I 

will be in the 

state?

utility function:  X (state space) 
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Other aspects

 Hybrid agents

Hierarchical architecture

Trade-off between efficiency and flexibility

 Capability of learning

 Multi-agent systems

Competitive vs. cooperative relationship

Hierarchical control

 Delivery robot

Steer, accelerate, brake, 

detect obstacles and position

Follow plan

Go to target and 

avoid obstacles

ENVIRONMENT
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Learning Agents

E
n

v
iro

n
m

e
n

t

Sensors

Actuators

Percepts

Actions

Problem

generator

Critic

Learning

element

Performance

Element

Performance standard

changes

knowledge

feedback

learning
goals

Autonomy of Agents

 Autonomy = extent to which the agent’s 

behaviour is determined by its own experience

 Extreme cases

 No autonomy – ignores input (environment)

 Complete autonomy – acts randomly/no program

 Ideal agent: some autonomy

 Gradually increasing over time

 Example: baby learning to crawl & navigate
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Details of the Environment

 Properties of the world are different (real-
world robot vs. software agent)

Fully observable vs. Partially observable

Deterministic vs. Stochastic

Episodic vs. Sequential

Static vs. Dynamic

Discrete vs. Continuous

Single agent vs. Multiple agents

Observability (sensing 

uncertainty)

 An environment is fully observable, if the 
agent can access every information in its 
environment it takes into account when 
choosing an action 

 Partially observable if parts of the 
environment are not observable

 Unobservable information must be 
guessed  the agent needs a model

 Example: chess (fully) vs. poker (partially)
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Determinism (effect uncertainty)

 An environment is deterministic if a 
change in the world state depends only on

current state of the world

agent’s action

 Non-deterministic environments

have aspects beyond the control of the agent

non-observable can seem to be non-det.

can be treated as stochastic or probabilistic

 Example: chess (det.) vs. poker (non-det.)

Episodicity

 An environment is episodic if the choice of 

current action does not depend on 

previous actions

 In sequential environments

Agent has to plan ahead

Current choice affects future actions

 Example: mail sorting system (episodic) 

vs. poker, chess (sequential)
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Time variance

 Static environments don’t change over 

time

 Dynamic environments: changes have to 

be taken into account by either
 sensing the change

 predicting the change

 neglecting the change (in the short run)

 Example: poker, chess (static) vs. taxi 

driving (dynamic)

Continuity

 Type of sensor data and choices of action

 Discrete: distinct, clearly defined set

 Continuous: non-sectionable

 Example: chess (discrete) vs. taxi driving 

(continuous)
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Number of agents

 Single agent: the environment is not 

changed by other actors

 Multi-agent: the agent is aware of other 

agents, who also modifying the 

environment

Modelling question: multi-agent vs. stochastic 

single agent

 Examples: solitaire (single) vs. poker 

(multi-)

Summary

 Agent: defined in connection with the environment

 Perceives and acts

 Rationality

 Basic mode: reflex, model, goal, and utility based

 Hierarchical control

 Learning

 Environments: observable?, deterministic?, 
static?, episodic?, continuous?, multi-agent?
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Problem solving

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic
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Outline

 Concepts
State, state space, search tree, search path

Search strategy, solution

 Formalizing search

 Evaluation
Complexity, completeness, optimality, soundness

 Example

 Comparing strategies

Search and AI

 Search methods are ubiquitous in AI systems

 An autonomous robot uses search
 to decide which actions to take and which sensing 

operations to perform,

 to quickly anticipate collision,

 to plan trajectories,

 to interpret large numerical datasets provided by sensors 
into compact symbolic representations,

 to diagnose why something did not happen as expected,

 etc...

 Many searches may occur concurrently and 
sequentially
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Applications

 Route finding: airline travel, networks

 Package/mail distribution

 Pipe routing, VLSI routing

 Comparison and classification of protein folds

 Pharmaceutical drug design

 Design of protein-like molecules

 Games

 Automated Theorem Proving

 Machine learning

Concepts in search

 State

 State space

 Search tree, search path

 Strategy

 Solution
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Assumptions in basic search

 World is
 static

 discretizable

 observable

 Actions are deterministic

 In many real world problems these assumptions do not 
hold 

Extended search techniques are required

Steps of problem solving

 Goal formulation

 Problem formulation

 Search

 Solution

 Execution
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Formal definition of search problems

 Initial state

 Successor function: maps a state to a set 

of (action, successor state) pairs

 Goal test

 Action costs

Search strategy

 Decision function

State expansion

Choosing an action

 Non informed search

 Informed search
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Search strategy

 The fringe is the set of all search nodes 

not yet expanded

 The fringe is implemented as a priority 

queue

insert(n, Q)

remove(Q)

 The ordering of the nodes in the queue 

defines the search strategy

Revisiting states

 Most search strategies have two versions

States may be revisited

States may not be revisited

 Implementations

Flag for each state

Visited list

 Not appropriate for all strategies
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Evaluation

 Time and space complexity

 Completeness

 State space

 Pruning

 Optimality

 Soundness

 Search for nonexistent solutions

 Incorrect search strategy

Search strategies

 Breadth-first (BFS)

 Depth-first (DFS)
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Search strategies

 Uniform-cost (UCS)

 Depth limited (DLS)

 Iterative deepening depth-first (IDS)

 Bidirectional (BS)

Example

s

d

b c

a

p

e

q

h

r

f

G

3

1

2 2

8

2

9

1 4

4

15

2

9

3

1

5

5
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Example – 8 queens problem

 Place 8 queens on board

No one can “take” another

 8-puzzle

Initial state Goal state

Implementation
 Open http://users.itk.ppke.hu/~karacs/AI/lab/search

 Download search_demo_UI_1.html and search1.js to the 

same folder

 Open example.html in a browser, and open the Javascript console 

by pressing F11, or right-click anywhere, Inspection, Console tab

 Alternatively you can use a node.js console as well

 Function stubs are included with some coding hints

 Open search1.js with an editor, and implement

 BFS

 DFS

 Optional: add a visited list to both algorithms

 Optional: iterative deepening DFS

 Count the iteration steps, define an upper bound for the steps and 

for the size of the queue / stack and the visited list as well

http://users.itk.ppke.hu/~karacs/AI/lab/search
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Implementation

 States: arrays of numbers with fixed length (the length is given by 

the length of the initialState array)

 Goal: reach the state in which elements are sorted incrementally

 Function goal(state) is already implemented, returns true or false

 State transition: Swap two elements in the array

 Function stateTransitions(state) is implemented, returns an array of all 

states available from the state

 Auxiliary functions

 isMember(state, list) returns true if state is already in list

 shuffle(array) shuffles the instances in array randomly

 log(message) prints message to the text area or to the console

Formal definition of search problems

 Initial state

 Successor function: maps a state to a set 

of (action, successor state) pairs

 Goal test

 Action costs
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Measure BFS UCS DFS DLS IDS BS

Time

Space

Optim.

Compl.

d: depth of shallowest solution b: branching factor

m: maximum depth of search tree l: depth limit

Comparison of search strategies

Measure BFS UCS DFS DLS IDS BS

Time bd bd bm bl bd bd/2

Space bd bd bm bl bd bd/2

Optim. Y Y N N Y Y

Compl. Y Y N Y,

if l  d
Y Y

d: depth of shallowest solution b: branching factor

m: maximum depth of search tree l: depth limit

Comparison of search strategies



12

Summary

 Concepts

State, state space, search tree, search path

Search strategy, solution

 Formalizing search

 Evaluation

Complexity, completeness, optimality, soundness

 Comparison of strategies



1

Informed search I.

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies
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Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

Outline

 Best-first search

 What information is available?

 Heuristic, heuristic function

 Strategies: UCS, greedy, A*

 Properties of heuristics

 Designing heuristics

 Comparing search algorithms

 Further informed search strategies
 IDA*, RBFS, SMA*
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Search and AI

 Search methods are ubiquitous in AI systems

 An autonomous robot uses search
 to decide which actions to take and which sensing 

operations to perform,

 to quickly anticipate collision,

 to plan trajectories,

 to interpret large numerical datasets provided by sensors 
into compact symbolic representations,

 to diagnose why something did not happen as expected,

 etc...

 Many searches may occur concurrently and 
sequentially

Applications

 Search plays a key role in many applications

Route finding: airline travel, networks

Package/mail distribution

Pipe routing, VLSI routing

Comparison and classification of protein folds

Pharmaceutical drug design

Design of protein-like molecules

Video games
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Assumptions in basic search

 World is
 static

 discretizable

 observable

 Actions are deterministic

 In many real world problems these assumptions do not 
hold 

Extended search techniques are required

Search strategy

 The fringe is the set of all search nodes 

not yet expanded

 The fringe is implemented as a priority 

queue

insert(n, Q)

remove(Q)

 The ordering of the nodes in the queue 

defines the search strategy
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Revisiting states

 Most search strategies have two versions

States may be revisited

States may not be revisited

 Implementations

Flag for each state

Visited list

 Not appropriate for all strategies

Best-first search

 Which node is good?

 f() : evaluation function (typically cost 

function)

 Selection criteria: minimal value of f()

 Note: “Best” does not guarantee optimality 

of the solution path
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Properties of best-first search

 If the state space is infinite, then in general 

the search is not complete

 If the state space is finite and revisited 

states are not discarded, then in general 

the search is not complete

 If the state space is finite and revisited 

states are discarded, then the search is 

complete, but in general it is not optimal

Search algorithm

 insert(initial-node, Q)

 Cycle
 If Q is empty then return failure

n  remove(Q)

 s  state(n)

 If is-goal(s) then return s and/or path

For every state s’ in succ(s)
 Create a node n’ as a successor of n

 insert(n’, Q)
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Using information in search

 Intelligence: situation evaluation

 Cost of an action

Distance in route planning

Power consumption

 Path cost

g() : Sum of all action costs in the path

Defeating exponential blow up

 Decreasing the number of actions in a 

given state (policy function)

 Decreasing search depth (value function)

 Monte Carlo tree search…
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Heuristic searches

 Heuristic = Rule of thumb

Different from heuristic measures

 Influences the node to expand

 Values that can help

Path cost g()

Heuristic measures h()

Heuristic Function

 h(node)
 Estimates path cost of reaching the solution

 Independent of the actual search tree

 h(goal state) = 0

 Methods to derive a heuristic function
 Mathematically

 By introspection

 Inspection of particular searches

 Computer programs (e.g.: Absolver)

 Example: straight line distance
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Uniform Cost Search (non-informed)

 ~BFS

 Expands node with smallest g()
(ignores heuristic measures)

 Finds a solution with least cost

Condition: action costs must be positive

 Optimal and complete

 Can be very slow

Greedy Search

 Expand node with smallest h()
(ignores path cost)

 If in a dead-end then backtrack

 Problems

Blind alley effect: estimates can be wrong, 
leading to superfluous curves

May lead to non-optimal solution (h() is only 
an estimate of path cost to the goal)



10

A* search

 Combines

uniform cost search and

greedy search

 f(n) estimates the cost of

the best path through n

 f(n) = g(n) + h(n)

 Hart, Nilsson and Raphael, 1968

Example: route finding

 g(n) = distance from London

 h(n) = straight line distance to 

Liverpool

 f(n) = g(n) + h(n)

 1st round: Birmingham, Peterborough

 f(Peterborough) = 120 + 155 = 275

 f(Birmingham) = 130 + 150 = 280

 Expands Peterborough

 Returns to Birmingham in the next step, 

because 120+60+135 > 130+150

Liverpool

Nottingham

Leeds

Peterborough

London

120

155

135

130

150

Birmingham

60

Manchester

70

75

35
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Properties of heuristics

 A heuristic h(n) is admissible if it never 

overestimates the path cost from node n to 

the goal node, i.e. 0  h(n)  h*(n).

 A heuristic h(n) is consistent (monotone) 

if, for every node n and every successor n’

of n generated by any action a

h(n)  c(n, a, n’) + h(n’).

 h1 dominates h2 if h1(n) ≥ h2(n).

Completeness theorem

 A* always finds an optimal solution path (even for non-
admissible heuristics) if there are finitely many nodes 
with f (n) ≤ f*, f* being the cost of the optimal path. This is 
guaranteed if

 all action costs  ε, for some fixed ε > 0, and

 the branching degree of all nodes are finite

 Proof

 Let f* be the cost of the optimal path

 All nodes with f (n) < f * will get expanded

 Some further nodes with f (n) = f * may get expanded
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Optimality theorems

 If h(n) is admissible, then A* is optimal 

with no visited list

 If h(n) is consistent, then A* is optimal 

using a visited list

 If h(n) is admissible, then A* is optimally 

efficient: with any given heuristic no other 

search strategy expands fewer nodes

Dominance theorem

 If h and h’ are heuristic functions and h

dominates h’, then any node expanded by 

an A* search using h is also expanded by 

A* using h’

 Thus using a dominant heuristic will result 

in fewer expanded nodes
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Missionaries and cannibals

 Three missionaries and 

three cannibals must cross 

a river, using a boat that 

can carry at most two.

 Find a sequence of operations that 

ensures that cannibals never outnumber 

missionaries on either side of the river!

Designing heuristics

 Good heuristics can be hard to find
 Often they are implicit in the problem, such as the 

Euclidean distance heuristic for route-finding

 They may be found by relaxing some constraint in the 
problem
 8-puzzle, 15-puzzle: allow two tiles to occupy the same square

 Missionaries: don't worry about missionaries getting eaten

 Good heuristics can be hard to compute
 Overall goal: minimizing the total time

 (Avg. time of computing the heuristic value + node 
expansion) * (total no. of nodes expanded during search)

 Trade off between the branching factor and heuristic 
complexity
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Comparing search algorithms

 Effective branching factor (ebf): 𝑏∗

Branching rate of a search tree, in which each 
node has the same number of outgoing edges 
(BFS)

 Calculation
𝑑 : depth of solution

𝑁 : number of nodes expanded

𝑁 = 1 + 𝑏∗ + 𝑏∗2 + 𝑏∗3 +⋯+ 𝑏∗𝑑 =
𝑏∗

𝑑+1
−1

𝑏∗−1

Solve for 𝑏∗

Example:

Effective Branching Factor

 Suppose

𝑁 = 15 steps

𝑑 = 4

 Solve:
𝑏∗

4+1
−1

𝑏∗−1
= 15

 Result: 𝑏∗ = 1.57
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Numerical comparison

 The shortest solution for the missionaries-and-cannibals 
problem takes 12 steps

Search strategy Number of 

steps

Effective 

branching factor

BFS 24,464 2.21

A* search,

h1(x) = number of people still 

on the left bank of the river

1,202 1.67

A* search,

h2(x): relaxes the requirement 

that cannibals not outnumber 

missionaries

40 1.18

Iterative-Deepening A* search

 Bottleneck of A* is memory (not time)

All visited nodes have to be recorded

 Iterative deepening like in IDS

Define contours based on evaluation function

 Iteratively increase the limit

At each iteration use a cutoff value equal to 
the smallest f(n) of any node that exceeded 
the limit in the previous iteration
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IDA* search - contours

Recursive best-first search (RBFS)

 Best-first (using f() )

Stores search tree and the best alternative 

solution for each expanded node

 If there is a better alternative among the 

nodes visited earlier  forget the current 

subtree and continue there

When recursion unwinds, replace the f() value 

of a node with best f() value of its children

 Requires linear space
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Task: A* from Arad to Bucharest

Recursive best-first search (RBFS)
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Recursive best-first search (RBFS)

Recursive best-first search (RBFS)
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A* vs. RBFS example

A* search
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RBFS

RBFS analysis 

 More efficient than IDA* and still optimal
 Best-first Search based on next best f() contour; fewer 

regeneration of nodes

 Exploit results of search at a specific f() contour by saving 
next f() contour associated with a node whose successors 
have been explored

 Like IDA* still suffers from excessive node 
regeneration

 IDA* and RBFS not good for graphs
 Can’t check for repeated states other than those on 

current path

 Both are hard to characterize in terms of expected 
time complexity
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Simplified memory-bounded A* 

(SMA*)

 B: bound on memory

 If memory is full when performing A*  drop 

worst leaf node (with lowest f()) and back-up the 

value of the forgotten node to its parent

 If correctly parameterized, SMA* can solve more 

complex problems than A*

SMA* analysis

 Complete, if there is any reachable 

solution

 Optimal, if any optimal solution is 

reachable

 Problem: if B is too low  thrashing may 

occur (among a small set of candidate 

nodes)
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Summary

 Assumptions and applications

 Best-first search

 Path cost, heuristic function

 Strategies: UCS, greedy, A*, IDA*, RBFS, 
SMA*

 Admissible, consistent, dominant heuristics

 Designing good heuristics

 Effective branching factor (comparison)
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Local and online 

search

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies
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Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

Outline

 Local search algorithms

 Online search methods
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Local search

 Path to solution is irrelevant
n-queens problem, circuit design, automatic 

layout of graphs

 Global optimization problem
State space: set of “complete” configurations

 Advantages
Low memory footprint

Easy implementation

Possibility of iterative improvement steps

Local search algorithms

 Discrete
 Hill climbing

 Random walk

 Simulated annealing

 Local beam search

 Genetic algorithms

 Continuous
 Gradient
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Hill climbing

 Applicable when goal is to find resulting artefacts

 e(): evaluation function, measures proximity

 Algorithm
 Random initial state

 Improve e() in every step

 Advantage
 Memory requirement: one state

 Problems…

Hill climbing problems
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Variants of hill climbing

 Steepest ascent

 Sideways moves

 Random restart

 Stochastic
probability of selection is proportional to the 

steepness of the surface

 First-choice
 first state is chosen in a random follower state 

sequence that gives a better value

Example – 8 queens problem

 Hill Climbing:

 put queens on randomly

 e() = number of queen 

pairs attacking each other

 move a queen out of 

other’s way

 if it’s not possible, then 

throw queens on randomly 

again
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Random walk

 Randomly choose a step in an arbitrary 

direction

 Lattice random walk

 Gaussian random walk

Simulated annealing

 Overcomes local maxima problem

 Random step
 If it improves, then do it!

 If not, then do it with probability prop. to e-E/T(t)

 T(t): cooling schedule
 T: thermic noise

 slow cooling  global optimum

 From Random Walk to 
Stochastic Hill climbing

 Question: acceptance probability
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Local beam search

 Take k parallel threads

 Generate all follower states (N > k)

 Choose the k best states

 Influence between beams
 If one state generates several good successors, they 

all end up in the next iteration

 States generating bad successors are weeded out

 Stochastic beam search

Genetic algorithms

 Population of individuals
 basic GA: binary strings

 Goal: optimizing some function of the bit-strings

 Evaluation: Fitness function

 Start: random individuals

 Operators
 Selection, crossover, mutation

 Stop: based on fitness threshold
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[Dean, Allen, Aloimonos, AI: Theory and Practice, Benjamin Cummings, 1995]

Operators in GAs

Cycle in GAs

GX : current generation of N bitstrings (b0, b1, … bN-1)

 For each bi, let pi = fitness(bi) / Σj fitness(bj).

 GX+1 = Ø

 For k = 0 ; k < N/2 ; k = k+1
 Select: two parents each with probability P(parent = bi) = pi

 Crossover: randomly swap bits in the two parents to obtain two 

new bitstrings

 Mutation: for each bit in the new bitstrings, randomly invert it with 

some low probability

 Add the two new bitstrings to GX+1
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Online search

 Compute, act, observe

 The agent only knows
 Actions (s)

 Step-cost function c(s,a,s’)

 Goal-test (s)

 Competitive ratio = actual cost / cost of shortest path

 Exploring in physical order (evident choice: DFS)
 Backtracking also has to take place in a physical manner 

actions have to be reversible

 Worst case: every node is expanded twice

 Solution: online iterative DFS

Online local search

 Hill climbing
 Already online

 Random restart version is not feasible (without 
teleportation)

 Adding exploration
 Random walk

 LRTA*: Hill climbing with memory
 H(s) : maintains best estimates of cost to goal for each node

 Assumes lowest possible cost for unexplored nodes

 Update H(s) through experience

 Demo: 
http://www.youtube.com/watch?v=idNr7YhAUWM
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Summary

 Local search algorithms

 Online search methods
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Adversarial search -

Strategies in games

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies
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Outline

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax

Categorization of games

 Number of players (2 or higher)

 Competitive or cooperative

 Zero sum (game theory)
 Total gains = Total losses

 Discrete or continuous

 Finite or infinite

 Deterministic or stochastic

 Perfect or partial information
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Playing the game

 Choosing the best move on each turn

Episodic search (no backtracking)

 Conventions

Turns alternate

Player 1 moves first

Search problem

 (S, S0, succ(): S  P(S), F, V(): F  )

S a finite set of states (state includes 

player due to move)

S0 initial state

succ() follower states function

F terminal states

V value function for terminal states
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Example: A trivial card game

 Deal four playing cards out, face up

 Players take cards alternating

 The player with the highest even sum 

scores the amount

Entire search space
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Minimax search

 Classic method how bandits share the 

gold

 Recursive search method (DFS like)

For own moves choose the state that 

maximizes the game theoretic value

For the moves of the opponent choose the 

state that minimizes the game theoretic value

Minimax algorithm

 At first assign the values associated with 
terminal states

 Then move the values toward the root node 
using minimax decision

 Game theoretic value

GTV(S) =
if (S is terminal)

return V(S)
else

let { S1, S2, … Sk } = succ(S)
let Vi = GTV(Si) for each i
if (player-to-move(S) == 1)

return max(Vi)
else

return min(Vi)
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Moving the scores

Moving the scores
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Moving the scores

Exercise: Nim

 There are some piles of matches

 On each turn one may remove any number of 
matches, but at least one from a single pile

 The last person to remove a match loses 
(misère game)

 In II-Nim, one begins with two piles, each with 
two matches

( ii ii )
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( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , i )-A ( i  , ii )-A

( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , i )-B ( i  , ii )-B

( ii , ii )-B

II-Nim state space

 Equivalent states due 

to symmetry (e.g. 

(_,ii)-A and (ii,_)-A)

 Merge them using a 

canonical description 

(e.g. left pile never 

larger than right)!

( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , _ )-A ( i  , i )-A ( i  , ii )-A

( ii , _ )-A ( ii , i )-A ( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , _ )-B ( i  , i )-B ( i  , ii )-B

( ii , _ )-B ( ii , i )-B ( ii , ii )-B

S = ( _ , _ )-A ( _ , i )-A ( _ , ii )-A ( i , i )-A ( i , ii )-A ( ii , ii )-A 

( _ , _ )-B ( _ , i )-B ( _ , ii )-B ( i , i )-B ( i , ii )-B ( ii , ii )-B 

S0
= ( ii , ii )-A

succ() = succ(_,i)-A = { (_,_)-B } succ(_,i)-B = { (_,_)-A }

succ(_,ii)-A = { (_,_)-B , (_,i)-B } succ(_,ii)-B = { (_,_)-A , (_,i)-A }

succ(i,i)-A = { (_,i)-B } succ(i,i)-B = { (_,i)-A }

succ(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} succ(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

succ(ii,ii)-A = { (_,ii)-B , (i,ii)-B } succ(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

F = ( _ , _ )-A ( _ , _ )-B 

V = V( _ , _ )-A = +1 V( _ , _ )-B = -1

II-Nim formal definition
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(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree
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(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree
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(ii ii) A

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A -1

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree



12

Real games

 Search space is too large

 Real-time decision requirement

 Chess
 Branching factor is ~35

 Allows for a 4-ply look ahead

 Capacity: < 2 million states per move (at 10k states/sec for 3 
minutes)

 354 = 1 500 625; 355 = 52 521 875

 Average humans can look ahead 6-8 plies

 Guaranteed solution not possible

 Solution: heuristic evaluation function

Cutoff search

 Use an evaluation function

Estimate the guaranteed score

Draw search space to a certain depth

Depth chosen to limit the time taken

 Put the estimated values at the end of 

paths

 Propagate them to the top as before
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Evaluation function

 Estimates game theoretic value of a state

 Enables comparing different states

 Search + evaluation function

Combines many estimates  good for noise 

filtering

Example: Scores in chess

 Assigning weights to pieces

 Pawn  1

 Knight  3

 Bishop  3

 Rook  5

 Queen  9

 Position also matters in 

real-life evaluation functions 
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Example: Scores in chess

 Black
 5 pawns * 1 = 5

 1 bishop * 3 = 3  =18

 2 rooks * 5 = 10

 White
 5 pawns * 1 = 5

 1 rook * 5 = 5  =10

 Net scores
 Black: 18-10 = 8

 White: 10-18 = -8 

Evaluation function for the example

 Odd cards: zero

 Even cards: actual value

 In this case the evaluation function chooses 10

… which is the worst choice



15

Problems with evaluation functions

 Non-quiescent states  likely to change drastically

 Wild swings in the evaluation function

 E.g.: captures in chess when using the sample  
evaluation function

 Solution: expand the state until quiescent positions 
are reached

 Horizon problem
 Good and bad possibilities in search spaces deeper 

than the horizon cannot be taken into account

 Possible solution: reduce the number of initial moves 
to look at, thus pushing the horizon farther

Pruning

 Visit as many board states as possible

 Skip bad branches (prune them)

Best value is still worse than other branches

Example: having your queen taken in chess

 Alpha-beta pruning

Can be used for entire search or cutoff search

Recognize surely inferior branches
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Idea of Alpha-Beta pruning

 The MIN-value (1) is 

already smaller than 

the MAX-value of the 

parent (2)

 The MIN-value can 
only decrease further

 The MAX-value is only 
allowed to increase

 No point in computing 
further below this 
node

MIN

MAX

MAX

2

2

5

=2

2

1

1

Terminology

 Temporary values at

 MAX-nodes are called

Alpha-values

 MIN-nodes are called

Beta-values
MIN

MAX

MAX

2

2

5

=2

2

1

1

Alpha-value

Beta-value
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Principles

 If an Alpha-value is greater than or equal 
to the Beta-value of a descendant node, 
then no more children of the descendant 
need to be considered

 If a Beta-value is less than or equal to the 
Alpha-value of a descendant node, then 
no more children of the descendant need 
to be considered

The general cutoff rule

In example: let α = max(v1, v3, 

v5).  If min(v6, v7)≤α, then we can 

be certain that it is worthless 

searching the tree from the 

current node or the sibling on its 

right.

In general: if at a B-move node, 

let α = max of all A’s choices 

expanded on current path.  Let β

= min of B’s choices, including 

those at current node.  Cutoff is  

β ≤ α.

In general: Converse rule at an 

A-move node.

(  )-a

(  )-a

(  )-b

(  )-b

(  )-a

(  )-b

v1

v3

v4

v2

v5

v6

v7

?

??

?
?

?

Current

Node
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How much do we gain?
 Assuming a uniform branching factor b, minimax

examines O(bh) nodes
 So does alpha-beta in the worst-case

 But: alpha-beta is sensitive to the order of nodes
 The gain for alpha-beta is maximum when

 the MIN children of a MAX node are ordered in decreasing 
backed up values

 the MAX children of a MIN node are ordered in increasing 
backed up values

 Then alpha-beta examines O(bh/2) nodes [Knuth and 
Moore, 1975]

 But this requires an oracle
 If nodes are ordered at random, then the average 

number of nodes examined by alpha-beta is 
~O(b3h/4)

Alpha-beta pruning 

for the four-card game

Player 1

Player 2
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Games with chance

 Many games have an element of chance 

(e.g. backgammon)

 Guaranteed scores can no longer be 

calculated

 Solution: calculate expected scores using 

probability

Expectimax Search

 Based on minimax tree

 For random events an extra node is added 

for each possible outcome that changes 

the possible board states after the event

 Moving score values up through a chance 

node

E(n) =  p(n)*s(n)
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A simple game with chance

 Deal four cards face up

 Player 1 chooses a card

 Player 2 throws a die

 If it’s a ‘six’, then player 2 chooses a card, swaps it 

with player 1’s and keeps player 1’s card

 If it’s not a ‘six’, then player 2 just chooses a card

 Player 1 chooses next card

 Player 2 takes the last card

Expectimax Diagram
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Expectimax Calculations

Games Played by Computer

 Games played perfectly
 Connect four, noughts & crosses (tic-tac-toe), 

draughts (checkers)

 Best move pre-calculated for each board state
 Small number of possible board states

 Games played at superhuman level
 Backgammon, chess, go

 Scrabble, tetris

 Games played badly
 Bridge, ulti, soccer :)
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Game complexity

Game State-space 

complexity 

Game-tree 

complexity

Branching factor

Nine man’s morris ~ 1010 ~ 1050 10

Checkers ~ 1020 ~ 1031 2.8

Rubik’s cube ~ 1019 12

Chess ~ 1047 ~ 10123 35

Go (9x9) ~ 1038

Go (19x19) ~ 10171 ~ 10360 250

Gomoku (15x15) ~ 10105 ~ 1070 210

Summary

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax
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Propositional logic

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Outline

 Logics of different order: 0, 1, 2, higher

 Basic concepts and nomenclature

Syntax vs. semantics

Entailment

 Propositional logic

 Entailment and proof methods

Truth table, equivalence, resolution
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Logics of different order

 Propositional logic (a. k. a. Boolean logic) 
 Only constant Boolean statements

 First order predicate logic (FOPL)
 Introduces variables, predicates, functions, and 

quantifiers

 Higher order logics
 Quantifiers can also be applied to predicates and 

functions

 Meta level reasoning

Logic

 A formal language in which knowledge can 
be expressed

 In problem solving we enumerate states

 Logic provides a means of describing set 
of states and carrying out reasoning

“Peter is hungry”: refers to all world states in 
which Peter is hungry regardless of other 
things influencing the state
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Basic concepts

 Syntax: specifies what expressions are legal
 Well-formed sentences

 Semantics: meaning of sentences
 Interpretation: assigns meaning to logic symbols 

 Semantics define the truth of sentences w. r. t. all possible 
interpretations

 An interpretation i is a model of a set of sentences iff each of the 
sentences is true in interpretation i

 Logical inference: entailment
 A set of sentences KB entails φ (KB ⊨ φ) iff every model of KB is 

also a model of φ

 Sentence φ logically follows from KB

Syntax of propositional logic

 Atomic sentences: Propositions
 Symbols: P, Q, R, … (uppercase letters) 

 Special cases: T (true) and F (false)

 Complex sentences
 Brackets

 Connectives in order of precedence (high to low)
 not (¬), and (), or (), implies (→), equivalent (↔)

 If φ and ψ are sentences, then

(φ), ¬φ, φ  ψ, φ  ψ, φ → ψ and φ ↔ ψ

are also sentences
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Semantics

 Meaning of a sentence is a truth value

{T, F}

 An interpretation is an assignment of truth 

values to the propositional variables

⊨i φ Sentence φ is T in interpretation i

⊭i φ Sentence φ is F in interpretation i

Semantic rules

 ⊨i T for all i

 ⊭i F for all i

 ⊨i ¬φ iff ⊭i φ

 ⊨i φ  ψ iff ⊨i φ and ⊨i ψ (conjunction)

 ⊨i φ  ψ iff ⊨i φ or ⊨i ψ (disjunction)

 ⊨i P iff i(P) = T
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Properties of sentences

 Equivalence φ   ψ
 φ and ψ are true for the same models

 Validity ⊨ φ
 A sentence is valid iff its truth value is T in all 

interpretations

 Valid sentences are called tautologies

 Examples: T, P  ¬P, A  A

 Satisfiability
 A sentence is satisfiable iff it has at least one model

Entailment theorem

KB ⊨ φ iff ⊨ (KB → φ)

 Enables proving entailment if we have 

means to prove the validity of a sentence

 This theorem is valid for all logics
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Proving validity

 Truth table

 Equivalence rules

 Resolution

 (X(YZ))((XY) (XZ))

Proving by truth table
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Proving by truth table

X Y Z YZ XY X  Z X (YZ) ((XY)(XZ)) S 

Proving by truth table

X Y Z YZ XY X  Z X (YZ) ((XY)(XZ)) S 

T T T T T T T T T 

T T F F T F F F T 

T F T F F T F F T 

T F F F F F F F T 

F T T T T T T T T 

F T F F T T T T T 

F F T F T T T T T 

F F F F T T T T T 
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Equivalence (re-write) rules

 Logical equivalence

Different syntax

Same semantics

 Usage

Proving via showing equivalence

Modifying to a particular syntax to allow the 
use of other techniques (e.g. resolution)

Commutativity and 

associativity of connectives
 Commutativity:

 PQ can be replaced by QP (& vice-versa)

 PQ can be replaced by QP (& vice-versa)

 PQ can be replaced by QP (& vice-versa)

 Associativity
 ((PQ)R) can be replaced by (P(QR)) (& vice-

versa)

 ((PQ)R) can be replaced by (P(QR)) (& vice-
versa)
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Distributivity of connectives

 And over or, or over and:

 (P(QR)) can be replaced by ((PQ)(PR))

 (P(QR)) can be replaced by ((PQ)(PR))

 Over the implies sign

 (P(QR)) can be replaced by ((PQ)(PR))

 (P(QR)) can be replaced by ((PQ)(PR))

Double negation

 Double negations can be removed

¬¬P is equivalent to P

 Caution when translating from natural 

language



10

de Morgan’s laws and

contraposition

 de Morgan’s laws

¬(PQ) is equivalent to (¬P¬Q)

¬(PQ) is equivalent to (¬P¬Q)

 Contraposition

(PQ) is equivalent to (¬Q¬P)

Other equivalences

 (PQ) is equivalent to (¬PQ)

 (PQ) is equivalent to ((PQ)(QP))

 (PQ) is equivalent to ((PQ)(¬P¬Q))

 (P¬P) is equivalent to F

 (P¬P) is equivalent to T
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Propositional implication rules

 Re-write rules are good for bidirectional 
search

What if equivalence does not hold

 Modus Ponens

AB, A

B

Comma used for conjunction

Above the line: what we know

Below the line: what we can deduce

Proving Modus Ponens

A B AB : AB, A : B

True True True True True

True False False False False

False True True False True

False False True False True
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Elimination and introduction of “and”

 “and” elimination

A1, A2, …, An

Ai

[1  i  n]

 “and” introduction

A1, A2, …, An

A1  A2  …  An

Introduction of “or”;

Unit resolution

 “or” introduction

Ai

A1  A2  …  An

[1  i  n]

 Unit resolution

Basis for theorem proving

(AB)  ¬B

A
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Problems

 Too many predicates

Sample r.:  “If you see a stop sign, then stop!”

A new predicate for every stop sign

 Slow inference

 No variables (many constants needed)

Even more predicates
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First order predicate 

logic (FOPL)

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

 Propositional logic
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Outline

 Semantics

 New elements

Predicates

Functions

Variables

Quantifiers

 Parts of logic formulas

 Instantiation and substitution

First order predicate logic

 More powerful than propositional logic

 Models contain objects

Domain of a model is its set of objects 
(domain elements)

 Domain elements are related in various 
ways; formally as a set of ordered tuples

capital = {<Hungary, Budapest>, <Italy, 
Rome>, … }
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Semantics of FOPL

 An interpretation maps domain objects, 
relations, and functions to symbols

 Domains may have infinitely many objects 
(e.g., all integers)

Number of models and interpretations is 
unbounded

Model checking not applicable to check 
entailment

Predicates

 Predicates express relations between certain 
things
 Predicate name identifies the relationship

 Arguments are the things being related (constants, 
functions and variables)

 Arity is the number of arguments

 Examples
 Binary (arity=2): capital = {<Hungary, Budapest>, 

<Italy, Rome>, … }

 Unary (arity=1) city = {Budapest, Rome, … }
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Functions

 Special predicates

 In a function of arity n

 The first n - 1 arguments are inputs

 The last argument is the output (single-valued)

 Example

 Predicate form: sum_of(2,3,5)

 Functional form: sum_of(2,3)  5

 inputs: 2,3; output: 5

Variables

 How to express a sentence like
 “There’s a drink in Starbucks the price of which is $2.”

 price_of(drink, starbucks) = $2
 Problem: drink is a constant

 price_of(X, starbucks) = $2
 X is a variable referring to some drink

 Problem: which drink?
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Quantifiers

 Symbol for “there exists”:  (“existential 
quantifier”)
  X (price_of(X, starbucks) = $2)

 Symbol “for all”: (“universal quantifier”)
 “All cats like milk.”  :  X (cat(X) → likes(X,milk))

 “All drinks cost $2.” expresses
 “Beer costs $2.”

 “Wine costs $2.”

 etc.

 Variables can be instantiated

Terms

 A term is a logical expression that refers 

to an object in the domain

Constant symbols (e.g. Hungary)

Variables

Function values (e.g. capital(Hungary))
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Logic formulas

 An atomic formula is statement that 
combines
Terms (referring to objects), and
Predicate symbols (referring to relations)

 Example: capital(Hungary, Budapest)
 A literal is an atomic formula or its negation
 A compound formula is formed from literals 

using logical connectives
 A sentence is a logic formula in which all 

variables are bound

Instantiation and substitution

 FOPL sentences have quantified variables
 Instantiation (“grounding”)

 Ground terms (constants, functions of ground terms)

 Substitution of a variable
 Grounding: replacing the variable by a ground term

 Replacing the variable by another variable

 Example
  X,Y friend(X, Y) 

 Subst({X/Sue, Y/Mary})

 friend(X, Y) = friend(Sue, Mary)
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Summary

 Semantics

 New elements

Predicates

Functions

Variables

Quantifiers

 Parts of logic formulas

 Instantiation and substitution
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Inference in FOPL

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Logical inference schemes

 Deduction: formal logical reasoning

 Premises: 1. All men are mortal. 2. Aristotle is a man.

 Conclusion: Aristotle is mortal.

 Induction: generalization
 Premise: The sun has risen in the east every morning 

up until now.

 Conclusion: The sun will also rise in the east 
tomorrow.

 Abduction: choosing an explanation
 Premise: 1. Flu causes fever. 2. Peter has fever.

 Conclusion: Peter has flu.
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The case of the silk gloves

“It was elementary my dear Watson. 

The killer always left a silk glove at 

the scene of the murder. That was 

his calling card. Our investigations 

showed that only three people have 

purchased such gloves in the past 

year. Of these, Professor Doolally

and Reverend Fisheye have iron-

clad alibis, so the murderer must 

have been Sergeant Heavyset. 

When he tried to murder us with that 

umbrella, we knew we had our man.”

Not so elementary…

“The killer always left a silk glove at the scene of the 
murder.” (induction)

“That was his calling card.” (abduction)

“…only three people have purchased such gloves in the 
past year.” (model generation)

“Professor Doolally and Reverend Fisheye have iron-clad 
alibis.” (constraint based reasoning)

“…so the murderer must have been Sergeant Heavyset.” 
(deduction)

“The killer always left a silk glove at the scene of the 
murder.”

“That was his calling card.”

“…only three people have purchased such gloves in the 
past year.”

“Professor Doolally and Reverend Fisheye have iron-clad 
alibis.”

“…so the murderer must have been Sergeant Heavyset.”
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First Order Predicate Logic (FOPL)

 Most used and analyzed logic

 Completeness: Gödel, Herbrand, 1930

 If a FOPL statement is valid then it is provable

 If KB ⊧ a then KB ⊢ a

 Validity is semi-decidable

 Resolution: Robinson, 1963

Chains of inference

 Remember the problem we are trying to solve

 Search for a path from axioms i, to theorem T

 Three approaches

 Forward chaining

 Backward chaining

 Proof by contradiction

 Specification of a search problem:

 Representation of states (first order predicate logic sentences)

 Initial state (changes with the approach)

 Operators (rules of inference, usually implication rules)

 Goal state (changes with the approach)
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Forward Chaining

 Start with initial axioms (atomic sentences) and deduce 
new facts by applying modus ponens

 Repeat until possible or query is answered

 Problems

 Generates many irrelevant facts

 Every rule has to be rechecked whenever a new fact is 
added to KB

1 2 3

T

Forward Chaining

 A first-order definite clause is a disjunction of 

literals of which exactly one is positive

 Example

 white(X)  potable(X)  milk(X) is logically equivalent to

¬white(X)  ¬ potable(X)  milk(X)

 Modus ponens can be easily applied to first-order 

definite clauses

 All variables are implicitly universally quantified

 Sound, complete
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Backward Chaining

 Work backwards from the goal, chaining rules to 
find facts that support the conclusion

 For each node the inference rule has to be 
inverted
 Which operator could have been applied to which 

state to produce this state (sentence)

 No problem when using equivalences
 Can also use a bidirectional search (from both ends)

 Difficult when using implications
 Many possible ways to invert operators

Proof By Contradiction

 “Reductio ad absurdum”

 Most often used method

 Idea: by showing that the assumption contradicts a set of 
axioms we can prove that the assumption is false

 KB’ = Set of axioms (KB) + negated theorem (¬Th)

 If the F statement can be deduced from KB’ then ¬Th is 
false, and thus Th must be true

 Advantage: heuristic function can be defined based on 
the distance from the ‘False’ statement
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First order implication rules

 Propositional implications and 

equivalences

 First order implication rules

Quantifiers

Variables

Substitution

Universal elimination

 In a sentence  any universally quantified variable v can 
be replaced by any ground term g

v 

subst({v/g}, )

 Note: the variable has to be removed from quantification

 Example
 x friend(Sue, x) becomes  friend(Sue, Ann)
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Existential introduction

 In a sentence  any ground term g can be substituted by 
a variable v if it does not appear in 



v subst({g/v}, )

 Example
 friend(Sue, Ann) becomes x friend(Sue, x)

 Exercise
 Find a sentence where v is in  such that this implication rule is 

not sound

Universal introduction

 In a sentence  any constant k can be substituted by a 
variable v if k is not mentioned in any of the premises or 
undischarged assumptions and v does not appear in 



v subst({k/v}, )

 Example
 friend(Sue, Doe) becomes x friend(Sue, x)
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Existential elimination

 In a sentence  any existentially quantified variable v 
can be replaced by any constant k, if k appears neither 
in  nor anywhere else in the derivation

v 

subst({v/k}, )

 k is called a Skolem constant

 Existential elimination is a special case of skolemization
(see later)

Propositionalization

 Universal and existential elimination allow for inferring 
non-quantified sentences from quantified ones

 Reduces first-order inference to propositional inference

 Problem
 Function symbols allow infinitely many ground terms: 

father(father (father (. . .)))

 Can be overcome by Herbrand’s theorem (R-N pp. 274–275)

 Entailment in FOPL is semi-decidable (Church)
 Any entailed sentence can be proven

 Not all false sentences can be disproven (Halting problem)
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Inference with variables

 Premise
 x (knows(Bob, x)  loves(Bob, x))

 From “knows(Bob, Alice)”
 using modus ponens gives: “loves(Bob, Alice)”

 From “knows(Bryan, Alice)”
 modus ponens cannot be used

 How to check applicability when variables are 
present?

Unifying predicates

 Expressions x1 and x2 are unifiable iff there exists a 
substitution  such that

subst(, x1) = subst(, x2),

where subst(, x) applies  to x

 Unification by substitution ({X/Alice})
 knows(Bob, X) and knows(Bob, Alice)

 Possibilities
 variable-variable

 variable-constant

 variable-function
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The unification algorithm

 A recursive algorithm
 Passes around a set of substitutions, called mu
 Makes sure that new substitutions are consistent with 

old ones
 unify(x,y) = unify_internal(x,y,{})

 x and y can be variables, constants, lists, or 
compounds

 unify_internal(x,y,mu)
 x and y are sentences, mu is a set of substitutions
 finds substitutions making x look exactly like y

 unify_variable(var,x,mu)
 var is a variable
 finds a single substitution (which may be in mu

already)

unify_internal

unify_internal(x,y,mu)

1.if (mu==failure) then return failure

2.if (x==y) then return mu

3.if (isa_variable(x)) then return 
unify_variable(x,y,mu)

4.if (isa_variable(y)) then return 
unify_variable(y,x,mu)

5.if (isa_compound(x) & isa_compound(y)) then return 
unify_internal(args(x),args(y),

unify_internal(op(x),op(y),mu)) 

6.if (isa_list(x) & isa_list(y)) then return 
unify_internal(tail(x),tail(y),

unify_internal(head(x),head(y),mu)) 

7.return failure
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unify_variable

unify_variable(var,x,mu)

1. if (a substitution var/val is in mu) then 

return unify_internal(val,x,mu)

2. if (a substitution x/val is in mu) then 

return unify_internal(var,val,mu)

3. if (var occurs anywhere in x) return 

failure

4. add var/x to mu and return

Notes on the 

unification algorithm
 unify_internal will not match a constant to a 

constant, unless they are equal (case 2)

 Case 5 in unify_internal checks that two 
compound operators are the same (e.g., same predicate 
name)

 Case 6 in unify_internal causes the algorithm to 
recurse covering the whole list

 Cases 1 and 2 in unify_variable check that neither 
inputs have already been substituted
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The occurs check

 When substituting variable x with an expression f(x,y)
 x will be replaced by f(x,y)

 But f(x,y) still contains an instance of x, which has to be 
replaced again

 We get f(f(x,y),y), and then f(f(f(x,y),y),y), etc.

 Infinite recursion  the algorithm will not stop (halt)

 Case 3 in unify_variable checks this to avoid this 
situation

 Problem: Occurs check slows down the algorithm
 Its complexity is O(n2), where n is the size of expressions 

being unified

Unification exercises

 nice(Alice) – nice(Mary)

 sees(x,Alice) – sees(y,Alice)

 sees(x,Alice) – sees(Mary,y)

 x – child(Alice,x)

 friends(x,y,Alice)  father(sonof(Bob),Bob) –
father(z,Bob)  friends(Mary,z,u)

 R(F(y),x) – R(x,F(A))

 R(F(y),y,x) – R(x,F(A),F(v))

 F(G(w),H(w,J(x,u))) – F(G(v),H(u,v))

 F(x,F(u,x)) – F(F(y,A),F(z,F(B,z)))
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Full resolution rule

 Resolution rules remove predicates in predicate logic
 This is known as resolving the two sentences

 Unit resolution rule
(AB), ¬B

A

 Full resolution rule (using CNF)

(AB), (¬BC)

AC

 With implication
(¬AB), (BC)

¬AC

Generalized resolution rule

 Given two CNF sentences

p1  p2  …  pm and q1  q2  …  qn

 If pj and ¬qk can be unified, i.e. unify(pj, 

¬qk) = , then

p1  …  pj  … pm,        q1  …  qk  …  qn

subst( , (p1  … pj-1  pj+1  …  pm  q1  …  qk-1  qk+1  … qn))
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Resolution with variables

 P(x)  Q(x, y)

 ¬P(A)  R(B, z)

 subst({x/A}, Q(x, y)  R(B, z))

 Q(A, y)  R(B, z)

Local variable scope

 P(x)  Q(x, y)

 ¬P(A)  R(B, x)
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Local variable scope

 P(x1)  Q(x1, y)

 ¬P(A)  R(B, x2)

 subst({x1/A}, Q(x1, y)  R(B, x2))

 Q(A, y)  R(B, x2)

CNF in FOPL

 Sentences need to be in conjunctive 

normal form (CNF)

Literals can contain variables, assumed to be 

universally quantified

 Example

white(X)  potable(X)  milk(X) becomes 

¬white(X)  ¬ potable(X)  milk(X)
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Conversion to clausal form

 1. Eliminate  and 

 2. Drive in ¬ to atomic level

 3. Rename variables apart

 4. Skolemize

 5. Drop universal quantifiers

 6. Convert to CNF

 7. Rename variables in each clause

Skolemization

 Substitute a new constant for each existentially 
quantified variable
 x P(x)

P(CS)

 Substitute a new function of all universally 
quantified variables in enclosing scopes for each 
existentially quantified variable
 x y P(x, y)

x P(x, fS(x))
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“A cat called Tuna” (from textbook)

 Jack owns a dog

 Every dog owner is an animal lover

 No animal lover kills an animal.

 Either Jack or Curiosity killed the cat, who is named Tuna.

 Did Curiosity kill the cat?

A. x (Dog(x)  Owns(Jack,x))

B. x ( ((y) Dog(y)  Owns(x, y))  AnimalLover(x) )

C. x (AnimalLover(x)  ((y) Animal(y)  ¬Kills(x,y)))

D. Kills(Jack,Tuna)  Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. x (Cat(x)  Animal(x) )

G. Kills(Curiosity, Tuna)

Conversion to clausal form

 1. Eliminate  and 

 2. Drive in ¬ to atomic level

 3. Rename variables apart

 4. Skolemize

 5. Drop universal quantifiers

 6. Convert to CNF

 7. Rename variables in each clause
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Sentence A & B

 (A) x. Dog(x)  Owns(Jack,x)

 Dog(D)  Owns(Jack,D)

 (B) x. (y. Dog(y)  Owns(x,y))
AnimalLover(x)

 x. ( ¬y. Dog(y)  Owns(x,y)) AnimalLover(x)

 x. y. ¬(Dog(y)  Owns(x,y)) AnimalLover(x)

 x. y. ¬Dog(y)  ¬Owns(x,y) AnimalLover(x)

 ¬Dog(y)  ¬Owns(x,y)) AnimalLover(x)

Sentence C & D

 (C) x. AnimalLover(x)  ( y. Animal(y) 
¬Kills(x,y))

 x. ¬AnimalLover(x)  ( y. Animal(y) 
¬Kills(x,y))

 x. ¬AnimalLover(x)  ( y. ¬Animal(y) 
¬Kills(x,y))

 ¬AnimalLover(x)  ¬Animal(y)  ¬Kills(x,y)

 (D) Kills(Jack,Tuna)  Kills(Curiosity,Tuna)
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Sentence E, F and neg. Th.

 (E) Cat(Tuna)

 (F) x. Cat(x) Animal(x)

 ¬Cat(x)  Animal(x)

 (Th) ¬Kills(Curiosity,Tuna)

Solution

 (D), (Th) Kills(Jack,Tuna) (G)

 (E), (F), {x/T} Animal(Tuna) (H)

 (C), (G), {x/J, y/T}
¬AnimalLover(Jack)  ¬Animal(Tuna) (I)

 (H) , (I) ¬AnimalLover(Jack) (J)

 (B), (J), {x/J} ¬Dog(y)  ¬Owns(Jack,y) (K)

 (A2) ¬Dog(D) (L)

 (A1), (L) False
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CNF (Implicative form)

 Jack owns a dog

 Every dog owner is an animal lover

 No animal lover kills an animal.

 Either Jack or Curiosity killed the cat, who is named Tuna.

 Did Curiosity kill the cat?

A1. Dog(D)

A2. Owns(Jack,D)

B. Dog(y)  Owns(x,y)  AnimalLover(x)

C. AnimalLover(x)  Animal(y)  Kills(x,y)

D. Kills(Jack,Tuna)  Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. Cat(x)  Animal(x)

Graph of proof
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Equality

 Unification of different constants

Today(Thu), Today(Thursday)

 Expanding the KB is not sufficient

Thu = Thursday

 Extra axioms are needed

Equality is symmetric, reflexive and transitive

 Equality statements for each predicate:
 x,y x = y  (P(x)  P(y)) etc.

Demodulation rule

 Takes two input sentences, one expressing an 
equality ( = )

 Finds a unification for  with a term in another 
clause ( = unify(, ))

 Applies  to  (not )

 Replaces occurrence of  with Subst(, )

 = , (…, ,…)

(…,Subst(, ),…)
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Demodulation drawbacks

 Cannot bind variables in expression
 father(Adam) = Bob

 : father(Adam) , : Bob

 older(father(x), x)
 : father(x),  = {x/Adam},

Subst(, ) = Bob

 older(Bob, Adam) : not derived, only older(Bob, x)

 Equation must be a unit clause
 (x = Adam  y = Bob)  father(x) = y

  cannot be father(x), since the equation is inside an implication

 older(father(x), x)

 (x = Adam  y = Bob)  older(Bob, Adam)

 = ,   (…, ,…)

 = unify(, )

(…, Subst(, ), …)

Paramodulation

 F(x) = B

 Q(y)  W(y,F(y))

 Q(y)  W(y,B)

 G(x)  F(x) = B

 Q(y)  W(y,F(y))

 G(y)  Q(y)  W(y,B)

   (s = t)

    [r]  = unify(s,r)

 Subst(,(     [r]))

 s = F(x); t = B

 [⋅] =W (y,⋅); r = F(y)

  = {x/y}
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Horn clauses

 Have the form: P1  P2  …  Pn  Q
 Special cases

P1  P2  …  Pn  False
True  Q

 Enables polynomial time inference
 Prolog (SLD resolution)

S: Selection function
L: Linear sequence of clauses
D: Definite clauses
Ordered resolution

Sample Prolog program

fun(X) :-

red(X),

car(X).

fun(X) :-

blue(X),

bike(X).

car(vw_beatle).

car(ford_escort).

bike(harley_davidson).

red(vw_beatle).

red(ford_escort).

blue(harley_davidson).

?-
fun(harley_davidson).

yes
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Resolution proving as search

 Search space: Sentences in FOPL

 Initial state: {KB, ¬Th.}

 Operator: generalized resolution inference rule

 Goal Check: Empty clause found

 Solution: two possibilities

 Path from axioms to false clause (if we want proof)

 Just the fact that we have reached the false clause 

(no proof required)

Elimination strategies

 Identical clause elimination
 a resolution refutation without a clause occurring 

twice

 Pure literal elimination
 A literal with no negated occurrence makes its clause 

superfluous

 Tautology elimination
 No effect on satisfiability

 Subsumption elimination
 Remove clauses that are more specific than others in 

the KB
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Restriction strategies

 Unit resolution
 One resolvent is always a unit clause (single literal)

 Input resolution
 One resolved clause is always taken from initial KB

 Complete, if the KB contains Horn clauses

 Linear resolution
 One resolved clause is always taken from either the initial KB or from 

the ancestor of the other resolvent; Complete

 Set of Support
 One resolvent is always taken from a subset of initial KB or from its 

descendant

 Complete, if the clauses outside the SoS are satisfiable

 Ordered resolution
 Clauses are treated as ordered sets, resolution is allowed only on the 

first literal

Applications of resolution

 Automated Theorem Proving (ATP)

 Proof verification

 Proof compression

 Automated Conjecture Making

 Interactive proving

 Proof planning
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A famous example for ATP

 Axiomatization of Boolean algebra

 Standard axioms
a, b  B a+b = b+a

a, b, c  B (a+b)+c = a+(b+c)

0  B (unit element for +) 0 + a = a

a  B ¬¬a = a

a  B ¬(a + ¬a) = 0

a, b, c  B
a + ¬(¬b + ¬c) = ¬(¬(a+b) + ¬(a+c))

Robbins Problem

 Huntigton’s proposal to axiomatize
Boolean algebras (1933)
Commutativity + associativity

a, b  B. a = ¬(¬a + b) + ¬(¬a + ¬b)

 Herbert Robbins
Commutativity + associativity

a, b  B. a = ¬(¬(a + b) + ¬(a + ¬b))

Got coined “Robbins algebra”
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Solving the Robbins Problem

 William McCune and Larry Wos
 Argonne National Laboratories

 EQP & Otter (first order provers)

 EQP solved this in 8 days, completed on Oct. 10,1996 

 One step from the proof:

¬(¬(¬(¬(¬(x) + x) + ¬(¬(x) + x) + x + x + x + x) + 
¬(¬(¬(x) + x) + x + x + x) + x) + x) =
¬(¬(¬(x) + x) + ¬(¬(x) + x) + x + x + x + x)

 Otter proved that the proof is OK (its successor is 
called Prover9)

----- EQP 0.9, June 1996 -----

The job began on eyas09.mcs.anl.gov, Wed Oct  2 12:25:37 1996

UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

---------------- PROOF ----------------

2 (wt=7) [] -(n(x + y) = n(x)).

3 (wt=13) [] n(n(n(x) + y) + n(x + y)) = y.

5 (wt=18) [para(3,3)] n(n(n(x + y) + n(x) + y) + y) = n(x + y).

6 (wt=19) [para(3,3)] n(n(n(n(x) + y) + x + y) + y) = n(n(x) + y).

24 (wt=21) [para(6,3)] n(n(n(n(x) + y) + x + y + y) + n(n(x) + y)) = y.

47 (wt=29) [para(24,3)] n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + z) + n(y + z)) = z.

48 (wt=27) [para(24,3)] n(n(n(n(x) + y) + n(n(x) + y) + x + y + y) + y) = n(n(x) + y).

146 (wt=29) [para(48,3)] n(n(n(n(x) + y) + n(n(x) + y) + x + y + y + y) + n(n(x) + y)) = y.

250 (wt=34) [para(47,3)] n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + n(y + z) + z) + z) = n(y + z).

996 (wt=42) [para(250,3)] n(n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + n(y + z) + z) + z + u) + n(n(y + z) + 

u)) = u.

16379 (wt=21) [para(5,996),demod([3])] n(n(n(n(x) + x) + x + x + x) + x) = n(n(x) + x).

16387 (wt=29) [para(16379,3)] n(n(n(n(n(x) + x) + x + x + x) + x + y) + n(n(n(x) + x) + y)) = y.

16388 (wt=23) [para(16379,3)] n(n(n(n(x) + x) + x + x + x + x) + n(n(x) + x)) = x.

16393 (wt=29) [para(16388,3)] n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + x) = n(n(x) + x).

16426 (wt=37) [para(16393,3)] n(n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + x + y) + n(n(n(x) + x) + y)) = 

y.

17547 (wt=60) [para(146,16387)] n(n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + n(n(n(x) + x) + x + x + x) 

+ x) + x) = n(n(n(x) + x) + n(n(x) + x) + x + x + x + x).

17666 (wt=33) [para(24,16426),demod([17547])] n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) = n(n(n(x) + x) 

+ x + x + x).

------------ end of proof -------------
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A problem by Lewis Carol
 The only animals in this house are cats

 Every animal that loves to gaze at the moon is suitable 
for a pet

 When I detest an animal, I avoid it

 No animals are carnivorous unless they prowl at night

 No cat fails to kill a mice

 No animals ever like me, except those that are in this 
house

 Kangaroos are not suitable for pets

 None but carnivorous animals kill mice

 I detest animals that do not like me

 Animals that prowl at night always love to gaze at the 
moon

 Therefore, I always avoid a kangaroo

Summary

 FOPL semantics

 Chains of inference

 Propositionalization

 Resolution
Unification algorithm

Generalized resolution

Equality

Resolution strategies

 Automatic theorem proving
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Planning

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies

 Logic

Propositional logic

Predicate logic
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Outline

 Planning and search

 Situation calculus

 Partial order planning

 Graphplan

Planning

 Planning

 Initial state

Goal state

Set of actions

 Can be described as a search problem
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Planning vs. search

Problems of using search for 

planning

 Description of actions
 By defining follower states

 Description of states
 Every state has to be exactly given

 Description of goals
 Only by defining goal states (and the heuristic)

 Description of plan
 Fixed order of actions, can only be started from the 

start or the goal state
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Undefined starting state

 What if initial state is not 

known exactly?

 E.g. “Start in bottom row, 

with goal being C”

 Search over “sets” of 

underlying (atomic) states

 Inefficient approach

 Exponential blowup in the 

number of sets of atomic 

states

Planning as logic search

 A classic approach to planning: situation 

calculus

 It uses

FOPL descriptions of the relevant sets of 

states and actions

ATP to find a plan
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Situation Calculus

 Reification – treat situations as objects and use them as 
predicate arguments
 At(Agent, Room 13, s8) where s8 refers to a particular situation

 Result function – gives the new situation resulting from 
taking an action in another situation
 Result(StandUp, s1) = s3

 Effect Axioms – what is the effect of taking an action in 
the world
  x.s. Present(x,s)  Portable(x) → Holding(x, Result(Grab, s))

  x.s. ¬ Holding(x, Result(Drop, s))

 Frame Axioms - what doesn’t change
  x.s. color(x,s) = color(x, Result(Grab, s))

 Can be included among effect axioms

Planning in situation calculus

 Use theorem proving to find a plan

 Goal state: s. At(Home, s)  Holding(Gold, s)

 Initial state: At(Home, s0)  ¬ Holding(Gold, s0) 
Holding(Rope, s0) …

 Plan: Result(North, Result(Grab, Result(South, s0)))
 A situation that satisfies the requirements

 Course of actions can be read out

 First, move South, then Grab and then move North
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Problems of using situation 

calculus for planning

 Reducing specific planning problem to 

general problem of theorem proving is not 

efficient

Exponential complexity

Optimality of plan is difficult to assess

 A more specialized approach can exploit 

special properties of planning problems

Special properties of planning

 Connect action descriptions and state 
descriptions (focus searching)
 If goal contains Holding(Gold) and Grab(Gold) causes 

Holding(Gold) to be true, then plan should include 
Grab(Gold)

 Add actions to a plan in any order

 Sub-problem independence

 Restrict language for describing goals, states 
and actions
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STRIPS: Stanford Research 

Institute Problem Solver

 ~1971: The first real 

planning system

 Pushing boxes 

between rooms

STRIPS representation

 States: conjunctions of ground literals
 In(robot, r3)  Closed(door6)  …

 Goals: conjunctions of literals
 (implicit  r) In(Robot, r)  In(Charger, r)

 Actions (operators)
 Name (implicit ): Go(r1, r2)

 Preconditions: conjunction of literals

 At(r1)  Path(r1, r2)

 Effects: conjunctions of literals (aka add-list & delete-list)

 At(r2)  ¬ At(r1)

 Assumes no inference in relating predicates (only equality)
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STRIPS example

 Action
 Buy(x, store)

 Pre: At(store), Sells(store, x)

 Eff: Have(x)

 Go(x, y)
 Pre: At(x)

 Eff: At(y), ¬At(x)

 Goal
 Have(Milk)  Have(Banana)  Have(Drill)

 Start
 At(Home)  Sells(SM, Milk)  Sells(SM, Banana)  Sells(HW, 

Drill)

Planning algorithms

 Progression planners: consider the effect of all possible 
actions in a given state

 Regression planners: to achieve a goal, what must have 
been true in previous state
 Have(M)  Have(B)  Have(D)

 Buy(M,store)
At(store)  Sells(store,M)  Have(B)  Have(D)

 Both have the problem of lack of direction – what action 
or goal to pursue next
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Search in plan space

 Situation space – both progressive and 
regressive planners plan in space of situations

 Plan space – start with null plan and add steps 
to plan until it achieves the goal
 Much smaller complexity

 Planning order independent from execution order

 Least-commitment
 “what actions” before “what order”

 Means-ends analysis – Try to match the available 
means to the current ends

Partially ordered plan

 Set of steps (instance of an operator)

 Set of ordering constraints Si < Sj

 Set of variable binding constraints v = x

v is a variable in a step; x is a constant or 

another variable

 Set of causal links Si c Sj

Step i achieves precondition c for step j
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Initial plan

 Steps: {start, finish}

 Ordering: {start < finish}

 start

 Pre: none

 Eff: start conditions

 finish

 Pre: goal conditions

 Eff: none

Completeness and consistency

 A plan is complete iff every precondition of 
every step is achieved by some other step

 Si c Sj (“step i achieves c for step j”) iff
 Si < Sj

 c  effects(Si)

 ¬ Sk. ¬c  effects(Sk) and Si < Sk < Sj is consistent 
with the ordering constraints

 A plan is consistent iff
 the ordering constraints are consistent and

 the variable binding constraints are consistent
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Partially Ordered Plan (POP)

 Plan
 Steps

 Ordering constraints

 Variable binding constraints

 Causal links

 POP Algorithm
 Make initial plan

 Loop until plan is a complete
 Select a subgoal

 Choose an operator

 Resolve threats

Choosing an operator

 Choose operator(c, Sneeds)

 Choose a step S from the plan or a new step S by 

instantiating an operator that has c as an effect

 If there’s no such step, then fail (backtrack)

 Add causal link S c Sneeds

 Add ordering constraint S < Sneeds

 Add variable binding constraints if necessary

 Add S to steps if necessary
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Resolving threats

 A step S threatens a causal link Si c Sj iff ¬ c 
effects(S) and it’s possible that Si < S < Sj

 For each threat
 Choose

 Promote S : S < Si < Sj

 Demote S : Si < Sj < S

 If resulting plan is inconsistent, then Fail (backtrack)

 Threats with variables
 S is a threat if there is any instantiation of the variables that 

makes ¬c  effects(S)

 Negative binding

STRIPS example

 Action
 Buy(x, store)

 Pre: At(store), Sells(store, x)

 Eff: Have(x)

 Go(x, y)
 Pre: At(x)

 Eff: At(y), ¬At(x)

 Goal
 Have(Milk)  Have(Banana)  Have(Drill)

 Start
 At(Home)  Sells(SM, Milk)  Sells(SM, Banana)  Sells(HW, 

Drill)
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

Buy(B,s3)

At(s1)  S(s1,D)

H(D)

Buy(M,s2)

At(s2)  S(s2,M)

H(M)

At(s3)  S(s3,B)

H(B)

Buy(D,s1)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

s1/HW

s2/SM

s3/SM

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

s1/HW

s2/SM

s3/SM

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(x1)

At(HW)  At(x1)

At(x2)

At(SM)  At(x2)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(x1,HW) Go(x2,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

Go(HO,HW)

At(HO)

At(HW)  At(HO)

Go(HO,SM)

At(HO)

At(SM)  At(HO)

Are we ready?

Buy(D,HW) Buy(B,SM)Buy(M,SM)

x1/HO

x2/HO

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HO)

At(SM)  At(HO)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HO,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HO)

At(SM)  At(HO)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HO,SM)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(x2)

At(SM)  At(x2)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(x2,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

x2/HW

Go(HO,HW) Go(HW,SM)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HW,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HW,SM)

Finish
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Sussman anomaly

 Subgoal dependence

Goal: on(A,B)  on(B,C)

 Exercise

Objects: A, B, C, T

Predicates
 on(x,y), clear(x)

Operators
 move(x,y,z)

A

C

B

A

C

B

Operators

 Move(x,y,z)

Pre: on(x,y), clear(x), clear(z)

Eff: on(x,z), clear(y), ¬on(x,y), ¬clear(z)

 How do we move to the table?

 Move2T(x,y)

Pre: on(x,y), clear(x)

Eff: on(x,T), clear(y), ¬on(x,y)
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Operators

 Move(x,y,z)

Pre: on(x,y), clear(x), clear(z), block(z)

Eff: on(x,z), clear(y), ¬on(x,y), ¬clear(z)

 How do we move to the table?

 Move2T(x,y)

Pre: on(x,y), clear(x)

Eff: on(x,T), clear(y), ¬on(x,y)

Limitations of the STRIPS language

 Hierarchical planning
 Generating complex plans often requires abstract planning over 

increasingly detailed search spaces

 Complex state conditions
 STRIPS variables are limited in their complexity

 There is no quantification and no conditional statements

 Representing time
 The STRIPS framework assumes that everything happens 

instantly

 Not possible to represent durations, deadlines, time windows, 
etc.

 Resource limitations
 There is no way to represent the amount of available workers, 

equipment, money, etc. or constraints on them
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Graph Plan

 POP
 “Human-like”, but very slow

 Efficiency hard to evaluate

 Graph Plan
 Simplified planning model

 propositional planner (no variables  no matching)

 Bigger – separate propositions are needed for every 
combination of arguments

 Efficient algorithm

 Complexity between scheduling and planning

Planning graph
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…

…

…

Planning graph

 Main idea

Construct a graph of possible outcomes

Graph Plan algorithm

 Resembles iterative DFS

1. Make a plan graph of depth k

2. Search for a solution

3. If succeed, return a plan

4. Else k := k + 1

5. Go to step 1



23

Mutually exclusive actions

 Two action instances at level i are mutex if

 Inconsistent effects

 effect of one action is negation of effect of another

 Interference

 one action deletes the precondition of the other

Competing needs

 the actions have preconditions that are mutex at 

level i - 1

Mutually exclusive propositions

 Two propositions at 

level i are mutex if

 Negation

 they are negations of 

one another

 Inconsistent support

 all ways of achieving 

the propositions at level 

i - 1 are pairwise mutex
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Overview of mutual exclusion 

classes
Inconsistent Effects

Inconsistent SupportCompeting Needs

Interference (Precond-Effect)

Trends with new layers

 Propositions monotonically increase

 Actions monotonically increase

 Proposition mutex relationships monotonically 
decrease

 Action mutex relationships monotonically decrease

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B



25

Solution extraction

 If all the literals in the goal appear at the 

deepest level and not mutex, then search 

for a solution for each subgoal at level i

For each subgoal at level i

 Choose an action to achieve it

 If it’s mutex with another action, Fail

Repeat for preconditions at level i - 2

Example: Dinner date

 Initial conditions: garbage  cleanHands  quiet

 Goal: dinner  present  ¬ garbage

 Actions:

 Cook precondition: cleanHands

effect: dinner

 Wrap precondition: quiet

effect: present

 Carry precondition: -

effect: ¬ garbage  ¬ cleanHands

 Dolly precondition

effect: ¬ garbage  ¬ quiet
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Search for a solution plan

Extensions

 Lots of time optimizations

 Disjunctive preconditions

 Universally quantified (almost :) 

preconditions and effects

 Conditional planning
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Other approaches

 Hierarchical planning

 SATPlan
 Reduces planning problem to satisfiability problem

 Strongly related to GraphPlan

 FOPL like planning
 Using structural information and heuristics

 Introducing uncertainty
 Learning world dynamics

 Conditional planning

 Replanning

 Universal planning
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Bayesian networks

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed, informed search strategies

Search in two player games

 Constraint satisfaction problems

 Planning
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Outline

 Uncertainty vs. probability

 Bayes’ rule

 Independence…

 Combining evidence

 Bayesian Networks

Connections

 Independence

Motivation

 To calculate every possible probability 

joint probability distributions are needed

 But: given N propositional variables, there 

are 2N joint probabilities

 Solution: exploit independencies in the 

domain
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Bayes’ rule

 Commutativity
 P(A  B) = P(B  A)

 P(A) * P(B | A) = P(B)  * P(A | B)

P(B | A) = P(A | B) * P(B) / P(A)

 Example
 P(disease | symptom) = 

P(symptom | disease) * P(disease) / P(symptom)

 High fever (HF), diphtheria (D)

 P(D | HF) = P(HF | D) * P(D) / P(HF)

Bayes’ rule

 E - evidence

 Hi - hypotheses

 
   

 

   

   
1

| |
|

|

i i i i
i n

k k
k

P E H P H P E H P H
P H E

P E
P E H P H



 


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Conditional independence

 A and B are conditionally independent 
given C iff

P(A  B | C) = P(A | C) * P(B | C)

P(A | B,C) = P(A | C)

P(B | A,C) = P(B | C)

 Examples

Toothache, spot, cavity

T

C

X

S

Conditional independence

 A and B are conditionally independent 
given C iff

P(A  B | C) = P(A | C) * P(B | C)

P(A | B,C) = P(A | C)

P(B | A,C) = P(B | C)

 Examples

Toothache, spot, cavity

Engine, radio, battery
E

F B

R



5

Everyday probability

 Linda is 31 years old, single, outspoken, and 
very bright. She majored in philosophy. As a 
student, she was deeply concerned with issues 
of discrimination and social justice, and also 
participated in anti-nuclear demonstrations.

 Which is more likely? 
(1) Linda is a bank teller.

(2) Linda is a bank teller and is active in the feminist 
movement.

Conjugation fallacy

 Amos Tversky and Daniel Kahneman, 

1983

 “Extension versus intuitive reasoning: The 

conjunction fallacy in probability judgment”

 85% of people chose option 2, although 

P(A)  P(A,B)
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Exercises

 Show that

(1) P(A)  P(A,B)

(2) P(A | B) + P(¬A | B) = 1

 Write an expression for P(A | B,C)

in terms of P(B | A,C)!

Combining evidence

 T: toothache X: spot on X-ray C: cavity

 If T and X are conditionally independent 

given C, then

 
   

 

, |
| ,

,

P T X C P C
P C T X

P T X


 
     

 

| |
| ,

,

P T C P X C P C
P C T X

P T X

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Normalizing factor

   | , | , 1P C T X P C T X  

     

 

     

 

| | | |
1

, ,

P T C P X C P C P T C P X C P C

P T X P T X

  
 

             | | | | ,P T C P X C P C P T C P X C P C P T X    

Combining evidence

 
   

 

, |
| ,

,

P T X C P C
P C T X

P T X
 

     

 

| |

,

P T C P X C P C

P T X
 

     

           

| |

| | | |

P T C P X C P C

P T C P X C P C P T C P X C P C


   
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Bayesian networks

 Set of nodes representing random variables

 Set of directed arcs (forming a DAG) expressing 

direct influence between nodes

 Every node A with parents B1, …, Bn has the 

conditional probabilities P(A | B1, …, Bn) 

specified

A B1 A
B2  A

B1 Bn…

Causal component

 “Sherlock Holmes wakes up to find his 

lawn wet. He wonders if it has rained or if 

he left his sprinkler on. He looks at his 

neighbor Watson’s lawn and he sees it is 

wet as well. So, he concludes, it must 

have rained.”

H

S R

W
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Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

BA C

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

BA C
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Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

BA C

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

 2. Backward serial connection

Transmit evidence from C to A through unless 

B is instantiated (its truth value is known)

BA C
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Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

 2. Backward serial connection

Transmit evidence from C to A through unless 

B is instantiated (its truth value is known)

BA C

Serial connections

 1. Forward serial connection

Transmit evidence from A to C through unless 

B is instantiated (its truth value is known)

 2. Backward serial connection

Transmit evidence from C to A through unless 

B is instantiated (its truth value is known)

BA C
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Diverging connection

 Transmit evidence through B unless it is 

instantiated

BA C

Diverging connection example –

Icy roads

 Inspector Smith is waiting for Holmes and 
Watson, who are driving (separately) to meet 
him. It is winter. His secretary tells him that 
Watson has had an accident. He says, “It must 
be that the roads are icy. I bet that Holmes will 
have an accident too. I should go to lunch.” But, 
his secretary says, “No, the roads are not icy, 
look at the window.” So, he says, “I guess I 
better wait for Holmes.”
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Diverging connection

 Transmit evidence through B unless it is 

instantiated

 Knowing about A will tell us something 

about C

BA C

Diverging connection

 Transmit evidence through B unless it is 

instantiated

 But, if we know B, then knowing about A 

will not tell us anything new about C, or 

vice versa

BA C
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Converging connection

 Tricky case!

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

BA C

Converging connection

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

 Without knowing B, finding A does not tell 

us anything about C

BA C



15

Converging connection

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

 If we see evidence for B, then A and C 

become dependent (potential for 

“explaining away”).

BA C

Converging connection

 Transmit evidence from A to C only if B or 

a descendant of B is instantiated

 If we see evidence for B, then A and C 

become dependent (potential for 

“explaining away”).

BA C

D
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D-separation

 Two variables A and B are d-separated iff for 

every path between them, there is an 

intermediate variable V such that either

 the connection is serial or diverging and V is known

 the connection is converging and neither V nor any of 

its descendants is instantiated

 Two variables are d-connected iff they are not d-

separated

D-separation exercise

 No instantiation

 A instantiated

 A and D instantiated

 B instantiated

 B and C instantiated

B

A

C

D
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Solution

 No instantiation
 A, D are d-connected (A-B-D connected, A-C-D connected)

 B, C are d-connected (B-A-C connected, B-D-C blocked)

 A instantiated
 B, C are d-separated (B-A-C blocked, B-D-C blocked)

 A and D instantiated
 B, C are d-connected (B-A-C blocked, B-D-C connected)

 B instantiated
 A, D are d-connected (A-B-D blocked, A-C-D connected)

 B and C instantiated
 A, D are d-separated (A-B-D blocked, A-C-D blocked)

Outline

 Uncertainty vs. probability

 Bayes’ Rule

 Conditional independence

 Combining evidence

 Bayesian Networks

Connections

D-separation
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Inference in 

Bayesian networks

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 Bayesian networks

 Combination of evidence

 Type of connections

 d-separation
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Outline

 Efficient inference

D-separation theorem

Chain rule

 Quantitative inference

 Using joint distributions

 Variable elimination

 Multiply connected networks

Theorem

 If A and B are d-separated given an 

evidence e, then P(A | e) = P(A | B, e)

 Enables efficient inference
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Chain rule

 Variables: V1, …, Vn

 Values: v1, …, vn

P 𝑉1 = 𝑣1, 𝑉2 = 𝑣2, … , 𝑉𝑛 = 𝑣𝑛 =

=ෑ

𝑖=1

𝑛

𝑃 𝑉𝑖 = 𝑣𝑖 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑉𝑖

Using the chain rule

 P(ABCD) = P(A=true, B=true, C=true, D=true)

 P(ABCD) =

P(D|ABC) P(ABC) =

P(D|C) P(ABC) =

P(D|C) P(C|AB) P(AB) =

P(D|C) P(C|AB) P(A) P(B)

A

D

B

C

P(A) P(B)

P(C | A,B)

P(D | C)
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Icy roads

 Inspector Smith is waiting for Holmes and 
Watson, who are driving (separately) to meet 
him. It is winter. His secretary tells him that 
Watson has had an accident. He says, “It must 
be that the roads are icy. I bet that Holmes will 
have an accident too. I should go to lunch.” But, 
his secretary says, “No, the roads are not icy, 
look at the window.” So, he says, “I guess I 
better wait for Holmes.”

Icy roads – Conditional 

Probability Tables (CPT)

 I: Road is icy

 H: Holmes crashes

 W: Watson crashes I

H W

P(I=T) P(I=F)

0.3 0.7

P(W=T | I) P(W=F | I)

I=T 0.8 0.2

I=F 0.1 0.9

P(H=T | I) P(H=F | I)

I=T 0.8 0.2

I=F 0.1 0.9
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Icy roads – with numbers

 P(W) = P(W | I) P(I) + P(W | ¬I) P(¬ I)

= 0.8 * 0.3 + 0.1 * 0.7 = 0.31

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1

Icy roads – with numbers

 P(I | W) = P(W | I) P(I) / P(W)

= 0.8 * 0.3 / 0.31 = 0.77

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1
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Icy roads – with numbers

 P(H | W) =

= P(H | W,I) P(I | W) + P(H | W,¬I) P(¬I | W)

= P(H | I) P(I | W) + P(H | ¬I) P(¬I | W)

= 0.8 * 0.77 + 0.1 * 0.23 = 0.639

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1

Icy roads – with numbers

 P(H | W, ¬I) = P(H | ¬I)

= 0.1

I

H W

P(I)= 0.3

P(H | I)

I 0.8

¬I 0.1

P(W | I)

I 0.8

¬I 0.1
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Wet lawns

 “Sherlock Holmes wakes up to find his 

lawn wet. He wonders if it has rained or if 

he left his sprinkler on. He looks at his 

neighbor Watson’s lawn and he sees it is 

wet as well. So, he concludes, it must 

have rained.”

Wet lawns

 P(R | H), P(S | H), P(W | H)

 P(R | HW), P(S | HW)

H

S R

W

P(W | R)

R 1.0

¬R 0.2

P(R)= 0.2P(S)= 0.1

P(H | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1
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Types of inference

 Exact inference

 Approximate inference

Possible queries

 P(X=x0 | E=e)

 What value of x maximizes P(X=x | E=e) ?

 Probability distribution Pr(X | E=e)
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Using joint distribution

 Summing over variables not involved

𝑃 𝑑 = σ𝐴𝐵𝐶 𝑃 𝑎, 𝑏, 𝑐, 𝑑 =

= ෍

𝑎∈𝑑𝑜𝑚(𝐴)

෍

𝑏∈𝑑𝑜𝑚(𝐵)

෍

𝑐∈𝑑𝑜𝑚(𝐶)

𝑃 𝐴 = 𝑎 ∧ 𝐵 = 𝑏 ∧ 𝐶 = 𝑐 ∧ 𝐷 = 𝑑

𝑃 𝑑 𝑏 =
𝑃 𝑏,𝑑

𝑃 𝑏
=

σ𝐴𝐶 𝑃 𝑎,𝑏,𝑐,𝑑

σ𝐴𝐶𝐷 𝑃 𝑎,𝑏,𝑐,𝑑

Variable elimination

𝑃 𝑑 = ෍

𝐴𝐵𝐶

𝑃 𝑎, 𝑏, 𝑐, 𝑑 = ෍

𝐴𝐵𝐶

𝑃 𝑑 𝑐 𝑃 𝑐 𝑏 𝑃 𝑏 𝑎 𝑃 𝑎

=෍

𝐶

෍

𝐵

෍

𝐴

𝑃 𝑑 𝑐 𝑃 𝑐 𝑏 𝑃 𝑏 𝑎 𝑃 𝑎

=෍

𝐶

𝑃 𝑑 𝑐 ෍

𝐵

𝑃 𝑐 𝑏 ෍

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

A DB C
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Variable elimination

𝑃 𝑑 =෍

𝐶

𝑃 𝑑 𝑐 ෍

𝐵

𝑃 𝑐 𝑏 ෍

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

𝑃 𝑏1 𝑎1 𝑃 𝑎1 𝑃 𝑏1 𝑎2 𝑃 𝑎2
𝑃 𝑏2 𝑎1 𝑃 𝑎1 𝑃 𝑏2 𝑎2 𝑃 𝑎2

A DB C

Variable elimination

𝑃 𝑑 =෍

𝐶

𝑃 𝑑 𝑐 ෍

𝐵

𝑃 𝑐 𝑏 ෍

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

σ𝐴𝑃 𝑏1 𝑎 𝑃 𝑎

σ𝐴𝑃 𝑏2 𝑎 𝑃 𝑎

A DB C
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Variable elimination

𝑃 𝑑 =෍

𝐶

𝑃 𝑑 𝑐 ෍

𝐵

𝑃 𝑐 𝑏 ෍

𝐴

𝑃 𝑏 𝑎 𝑃 𝑎

𝑓1(𝑏)

A DB C

Variable elimination

𝑃 𝑑 =෍

𝐶

𝑃 𝑑 𝑐 ෍

𝐵

𝑃 𝑐 𝑏 𝑓1 𝑏

𝑓2(𝑐)

DB C
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Variable elimination

𝑃 𝑑 =෍

𝐶

𝑃 𝑑 𝑐 𝑓2(𝑐)

DC

Variable elimination algorithm

Given a Bayesian network and an elimination 
order for the non-query variables, compute

෍

𝑋1

෍

𝑋2

𝐾෍

𝑋𝑚

ෑ

𝑗

𝑃 𝑥𝑗 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑥𝑗

For i = m downto 1
 Remove all factors that mention Xi

 Multiply those factors, getting a value for each 
combination of mentioned variables

 Sum over Xi

 Put this new factor into the factor set



13

Example

               
, , , , ,

Pr Pr | , Pr | , Pr | Pr | Pr Pr | Pr
A B L T S V

d d a b a t l b s l s s t v v 

Example

             
, ,

Pr | , Pr | , Pr | Pr | Pr Pr | Pr
A B L T S V

d a b a t l b s l s s t v v   

               
, , , , ,

Pr Pr | , Pr | , Pr | Pr | Pr Pr | Pr
A B L T S V

d d a b a t l b s l s s t v v 

           
, ,

1Pr | , Pr | , Pr | Pr | Pr
A B L T S

d a b a t l bf t s l s s  

       2 1

,

Pr | , Pr | ,,
A B L T

d a b a tl ff tb l  

     32

,

Pr | , , ,
A B L

d a b f b l f a l     4Pr | , ,
A B

fd ab ba  5

A

f a
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Variable elimination

 Generally requires exponential time (O(n2 bk))

 Bad elimination order can generate huge factors

 Finding the best one is NP-hard
 Heuristic: choose the variable that results in smallest 

next factor (greedy method)

 Linear time for singly connected networks 
(polytree)
 There is only one (undirected) path between any two 

nodes

 Always eliminate variables with no parents

Exercise
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Inference in multiply connected 

DAGs

 Clustering
 Transforms the network to a probabilistically 

equivalent polytree by joining certain nodes in the 
network

 Useful when computing many a posteriori 
probabilities

 Stochastic simulation (Monte Carlo)
 Estimates the probabilities by generating samples 

using the probability distribution defined by the 
network

Clustering

R

W

P(C)= 0.5

P(R | C)

C 0.8

¬C 0.2

P(S | C)

C 0.1

¬C 0.5

C

S

P(W | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1
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Clustering

W

P(C)= 0.5 P(R+S = x | C)

R,S R,¬S ¬R,S ¬R,¬S

C 0.08 0.72 0.02 0.18

¬C 0.1 0.1 0.4 0.4

C

S+R

P(W | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1

Monte Carlo (sampling)

 Iterative sampling by making draws for 
each variable

Draws are based on CPTs

Start from root nodes

For children use the drawn values of parents

 After many rounds relative frequencies 
can be calculated
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Monte Carlo

P(W | C) = P(C,W) / P(C)

P*(W | C) = #C,W / #C

R

W

P(C)= 0.5

P(R | C)

C 0.8

¬C 0.2

P(S | C)

C 0.1

¬C 0.5

C

S

P(W | R,S)

R,S 1.0

R,¬S 1.0

¬R,S 0.9

¬R,¬S 0.1

Importance sampling

 Problem

 Rare events will not be well represented

 Solution: Importance sampling

 Considers biased distributions (towards rare values)

 Output is weighted to correct for the bias

 Weights are determined by likelihood ratios

 Fast convergence

 Can handle huge networks
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Exercises

 Wet Lawns with numbers

 Variable elimination

 Monte Carlo

Outline

 Efficient inference

D-separation theorem

Chain rule

 Quantitative inference

 Using joint distributions

 Variable elimination

 Multiply connected networks
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Machine Learning

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 Concepts related to intelligence

 Agent model

 Problem solving by search

 Strategies in games

 Inference in First Order Predicate Logic
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Outline

 Supervised vs. unsupervised vs. …

 Logical inference schemes

 Inductive learning

 ID3 algorithm

Version spaces

 Inductive logic programming

 Learning theory

Machine Learning and AI

 Improve task performance through 
observation, teaching

 Acquire knowledge automatically for use in 
a task

 Learning is a key component in 
intelligence
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Learning

 Supervised, unsupervised, semi-

supervised, reinforcement

 Representation trade-off

Efficiency vs. expressive power

 There exist learning methods for several 

representation schemes

Applications

 Data mining
 Big data, web mining

 Language/speech
 Machine translation, text summarization, grammars

 Medical
 Assessment of illness severity

 Vision
 Face recognition, digit recognition, outdoor scene recognition

 Security
 Intrusion detection, network traffic, credit fraud

 Social networks
 Email traffic
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Logical inference schemes

 Deduction: formal logical reasoning

 Premises: 1. All men are mortal. 2. Aristotle is a man.

 Conclusion: Aristotle is mortal.

 Induction: generalization
 Premise: The sun has risen in the east every morning 

up until now.

 Conclusion: The sun will also rise in the east 
tomorrow.

 Abduction: choosing an explanation
 Premise: 1. Flu causes fever. 2. Peter has fever.

 Conclusion: Peter has flu.

Approaches

 Inductive learning
 Discovering general concepts from a limited set of 

examples (experience)

 From a formal point of view the obtained knowledge is 
invalid

 Supervised
 Given input data as pairs of (xi, f(xi))

 Generate a hypothesis for f()

 Unsupervised

 Analytic or deductive learning
 Based on explanations
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Inductive learning

 Decision trees

 Version-spaces

More general, but less efficient

 Inductive logic programming

General Approach

 Formulate task

 Prior model (parameters, structure)

 Obtain data

 What representation should be used? (attribute/value 
pairs)

 Annotate data

 Learn/refine model with data (training)

 Use model for classification or prediction on unseen data 
(testing)

 Measure accuracy
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Decision trees

 Measurements

 Nodes

 Node selection: ID3 algorithm

Maximizing information gain

Measure for information gain of an attribute: 

expected value of the information given by it

 Pruning

Sample decision tree
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Information theory

 𝑆: set of measurements

 𝐴: an attribute with domain 𝑉 = {𝑣1, … , 𝑣𝑖 , … , 𝑣𝑛}

 𝑆𝑣: set of measurements for which 𝐴 = 𝑣

 Entropy:

 Gain:

     2

1

log
n

i i

i

H S P v P v


 

     ,
v

v

v V

S
G S A H S H S

S

 

Example

 3 input attributes

 4 measurements

weather
got 

HW?

friend 

comes?
excursion

S1 nice Yes Yes Yes

S2 cloudy No No No

S3 rainy No Yes Yes

S4 cloudy Yes Yes Yes
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Information gain for attribute 

‘weather’
 H(S) = -3/4 log2(3/4) – 1/4 log2(1/4) = 0.811

 |Snice|/|S| * H(Snice) = 1/4 * (-1/1 log2(1/1) - 0/1 
log2(0/1)) = 1/4 * (1*0 – 0) = 0

 |Scloudy|/|S|  * H(Scloudy) = 2/4*(-1/2 log2(1/2) - 1/2 
log2(1/2)) = 1/2 * (-1/2 * (-1) – 1/2 * (-1)) = 1/2

 |Srainy|/|S| * H(Srainy) = 0

 G(S,A) = 0.811 – (0+0.5+0) = 0.311

The ID3 algorithm

 Given a set of examples, S

 Described by a set of attributes Ai

 Categorised into categories cj

1. Put the attribute the has the highest information 

gain in the root node (attribute A1)

2. For each value vi that A can take

 Draw a branch and label each with corresponding vi
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The ID3 algorithm

3. For each branch with value vi

 If Svi only contains examples in category c, 
then put that category as a leaf node in the 
tree

 If Svi is empty, then put the default category 
(which contains the most examples from S) as 
a leaf node in the tree

Otherwise construct subtreei by recursively 
calling decision tree with Sv, all attributes

Text Classification

 Is texti a new finance article? 

Positive Negative
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20 attributes

 Investors 2

 Dow 2

 Jones        2

 Industrial   1

 Average    3

 Percent     5

 Gain          6

 Trading     8

 Broader   5

 stock        5

 Indicators  6

 Standard   2

 Rolling     1

 Nasdaq    3

 Early        10 

 Rest         12

 More        13

 first         11

 Same       12

 The          30

 Men’s

 Basketball

 Championship

 UConn 
Huskies

 Georgia Tech

 Women

 Playing

 Crown

 Titles

 Games

 Rebounds

 All-America

 early

 rolling

 Celebrates

 Rest

 More

 First

 The

 same

20 attributes
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Example
stock rolling the class

1 0 3 40 other

2 6 8 35 finance

3 7 7 25 other

4 5 7 14 other

5 8 2 20 finance

6 9 4 25 finance

7 5 6 20 finance

8 0 2 35 other

9 0 11 25 finance

10 0 15 28 other

stock rolling

<5 5-10 10 
10 

5-10
<5

1,8,9,10 2,3,4,5,6,7

1,5,6,8
2,3,4,7

9,10

Gain(stock) = 1 - [0.4 * H(0.1, 0.3) + 0.6 * H(0.4, 0.2)] = 

= 1 - [0.4 ((-0.1 * -3.32) - (0.3 * -1.74)) +

+ 0.6 ((-0.4 * -1.32) - (0.2 * -2.32))] =

= 1-[0.303 + 0.5952] = 0.105

Gain(rolling) = 1 - [0.4 * H(0.5, 0.5) + 0.4 * H(0.5, 0.5) +

+ 0.2 * H(0.5, 0.5)] = 0
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Issues

 Representation
How to map from a representation in the domain 

to a representation used for learning?

 Training data
How can training data be acquired?

 Amount of training data
How well does the algorithm do as we vary the 

amount of data?

 Which attributes influence learning most?

 Does the learning algorithm provide insight into 
the generalizations made?

Version space learning

 A technique for 

learning concepts

 Continuously 

maintains the set of 

consistent 

hypotheses

Inconsistent hypotheses

Inconsistent hypotheses
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Version space learning

 Least commitment principle
G: most general set

S: most specific set

 Initialization
G: True

S: False

 A hypothesis 𝐻 is consistent if 𝐻 is
more specific than some element of G

and more general than some element of S

Handling inconsistence

 If Si is false negative

 replace Si by all direct generalizations 

that classifies e as positive and is more 

specific than some element of G

 If Si is false positive

 remove Si from S

+  +  + 

+  +  +

+  +  + 

+  + –
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Handling inconsistence

 If Gi is false negative

 remove Gi from G

 If Gi is false positive

 replace Gi by all direct specializations 

that classifies e as negative and is more 

general than some element of S

+  +  + 

+  +  +

+  +  + 

+  + –

Example

 Training set

 S1: {Japan, Honda, blue, 1980, economy} +

 S2: {Japan, Toyota, green, 1970, sports} –

 S3: {Japan, Toyota, blue, 1990, economy} +

 S4: {USA, Chrysler, red, 1980, economy} –

 S5: {Japan, Honda, white, 1980, economy +
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Example

 S1: G = {G1:(*,*,*,*,*)}
S = {S1:(Japan, Honda, blue, 1980, economy)}

 S2: G = {G1:(*,Honda,*,*,*), G2:(*,*, blue,*,*),
G3:(*,*,*, 1980,*), G4:(*,*,*,*, economy)}

S = {S1:(Japan, Honda, blue, 1980, economy)}

 S3: G = {G2:(*,*,blue,*,*), G4:(*,*,*,*, economy)}
S = {S1:(Japan,*, blue,*, economy)}

 S4: G = {G2:(*,*, blue,*,*), G4:(Japan,*,*,*, economy)}
S = {S1:(Japan,*, blue,*, economy)}

 S5: G = {G4:(Japan,*,*,*, economy)}
S = {S1:(Japan,*,*,*, economy)}

 The concept is “Japanese economy car”

S1: {Japan, Honda, blue, 1980, economy}

S2: {Japan, Toyota, green, 1970, sports}

S3: {Japan, Toyota, blue,  1990, economy}

S4: {USA, Chrysler, red,    1980, economy}

S5: {Japan, Honda, white, 1980, economy}

+

–

+

–

+

Termination

 G  S, but no more samples

 G = S  a single winner hypothesis

 S or G is empty

 Inconsistent samples (may be due to noise)

 Insufficient attributes

Chosen language is incapable to express the 

concept
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Problems of VS learning

 Cannot handle noisy data

Version spaces collapses

 Unlimited disjunction

Wave fronts will not meet

Learning summary

What is the space of hypotheses to be 

considered when learning?

 If too large: no actual knowledge can be 

gained (generalization is not possible)

 If too small: it might not include the target 

function
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Learning theory

 Correctness of hypothesis h() has to be 
evaluated without knowing f(), the function to be 
learned

 A sufficiently large dataset can ensure an 
approximately good result with a high probability

 How many samples are needed to evaluate the 
correctness of a hypothesis?
 Probably Approximately Correct learning (PAC 

learning)

Probably approximately correct 

(PAC) learning

 X: set of all possible examples

 D: distribution of examples

 H: set of possible hypotheses

 m: # of examples in training set

 Looking for an h()H being close to f()H
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Hypothesis space

 error(h) = P(h(x)  f(x) | x is drawn from D)

 Hypothesis h is approximately correct if 

error(h)

 P(hbad is consistent with m examples)  (1 - )m

H



f

Hbad

hbad

PAC-learning

 P(Hbad contains a consistent hypothesis) 
|Hbad|(1 - )m  |H|(1 - )m

 Let  be an upper bound for this

Sample complexity function of the hypothesis 
space

𝑚 𝜖, 𝛿 ≥
1

𝜖
ln
1

𝛿
+ ln 𝐇

 If the complexity of the hypothesis space is 
less than exponential, then the function is 
learnable
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PAC-learning

 For Boole functions: 𝐇 = 22
𝑛

 Sample complexity grows as 

For  =  = 10-4

n = 2 m  5,000

n = 10 m  3,000,000

 Solution
Searching in space of simple solutions

Restricting the language of hypotheses

Summary

 Supervised vs. unsupervised vs. …

 Logical inference schemes

 Inductive learning

 ID3 algorithm

Version spaces

 Inductive logic programming

 Learning theory
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Learning Bayesian 

Networks 

Artificial intelligence 

Kristóf Karacs 

PPKE-ITK 

Learning Bayesian Networks 

 Sources for Bayesian Nets 

 Human experts 

 Data (measurement) 

 What can be learned? 

 Structure 

 Probabilities 

 Typical case: structure from expert, probability 

from data 
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Learning probabilities 

 Given a data set D = {<v11, …, vm1>, …, 

<v1k, …, vmk>} 

 m: # of nodes k: # of samples 

 Elements are assumed to be independent 

given M 

 Maximum likelihood estimate 

Find model M that maximizes Pr(D|M) 

Estimating Conditional Probabilities 
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Estimating Conditional Probabilities 

 

Estimating Conditional Probabilities 
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Estimating Conditional Probabilities 

 

Measuring goodness of fit 

 Calculating Pr(D|M) 

 

 

 

 Log likelihood 
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Learning the structure 

 For a fixed structure, counting estimates of the 

CPT converge to the maximum likelihood model 

 What if we get to pick the structure as well? 

 In general, the best model will have no 

conditional independence relationships 

 Undesirable, for reasons of overfitting 

Scoring metric 

 What if we want to vary the structure? 

 A network with conflicting properties 

 good fit to data: log likelihood 

 low complexity: total number of parameters 

 Try to maximize scoring metric, by varying M 

(structure and parameters) given D 

    log Pr(D|M) − α #(M) 
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Search in structure space 

 Brute-force method cannot be applied 

 Local search in structure space 

 Starting with some initial structure 

 Operators: add, delete, or reverse an arc 

 Choosing the next state 

 Evaluation of candidates using maximum likelihood 

parameters 

 Hill climbing, simulated annealing 

 No directed cycles should occur in the structure 

Initialization possibilities 

 No arcs 

 With a random ordering V1 … Vn 

 variable Vi has all parents V1 … Vi-1 

 variable Vi has parents randomly chosen from V1 … 
Vn-1 

 Best tree-network 
 maximum-weight spanning tree based on pairwise 

mutual information between every pair of variables 

 polynomial time algorithm 
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Bayesian net structure example 

 Domain with 3 binary nodes 

 Measurement data 
 {(0,1,1),(0,1,1),(1,0,0)} 

 Consider three structure candidates 
 M1 {} 

 M2 {AB, AC} 

 M3 {BA, CA} 

 

 1. Calculate parameter estimates for the CPTs! 

 2. Calculate Pr(D|Mi) for each structure with 
Bayesian correction! 

B 

A 

C 
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Fuzzy logic 

Artificial intelligence 

Kristóf Karacs 

PPKE-ITK 

Fuzzy logic 

 Lotfi Zadeh 

 Concept: truth values may apply partially 

 Not able to express uncertainty (rather 

truthfulness) 

 Logical statements are derived from 

natural language statements 
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Fuzzy sets 

 Sets are identified by linguistic identifiers 

“tall”, “young”, “bigger” 

 Grade of membership 

 

 Fuzzy set A 

Membership function 

 Age – “young” 

 

 

 

 

 

 

  Crisp    Fuzzy 

Y Y 

A A 
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Types of membership functions 

 Piecewise linear  

Straight lines (increasing, decreasing) 

 

 

Triangular  

Linear curves 
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Types of membership functions 

 Smooth curves 

s-curve 

 

 

z-curve 

 

 

-curve 

Smooth curves 
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Operations 

 Given  

Fuzzy intersection 

   
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Operations on fuzzy sets 

 

Algebraic properties 

 Commutativity  
 a or b = b or a 

 a and b = b and a 

 Associativity 
 (a or b) or c = a or (b or c) 

 (a and b) and c = a and (b and c) 

 Distributivity 
 a or (b and c) = (a or b) and (b or c) 

 a and (b or c) = (a and b) or (b and c) 

 DeMorgan rules 
 not (a and b) = ( not a) or ( not b) 

 not (a or b) = ( not a) and ( not b) 
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Algebraic properties 

 Absorption 
 (a and b) or a = a 

 (a or b) and a = a 

 Idempotency 
 a or a = a 

 a and a = a 

 Exclusion (not satisfied) 
 a or ¬a  1 

 a and ¬a  ∅ 

Linguistic modifiers 

 Approximation of Fuzzy Sets: scalar → fuzzy 

set, modifying the "base" of a fuzzy set 

 about, around, near and close to 

 Restriction of Fuzzy Sets: modifying the shape 

 below and above 

 Intensification and Dilution of Fuzzy Sets 

 intensification: very (n = 2) and extremely (n = 3) 

 dilution: somewhat (n = 1/2) and greatly (n = 5/7) 
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Linguistic modifiers 

 Graphical representation 
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Inference in fuzzy 

systems 

Artificial intelligence 

Kristóf Karacs 

PPKE-ITK 

Fuzzy relation 

 Given two universes 𝒳 and 𝒴, a fuzzy 

relation ℛ is 

ℛ ⊂ 𝒳 × 𝒴 

where ⊂ denotes a fuzzy subset 

 

 ℛ is defined by 𝜇ℛ 𝑥, 𝑦  
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Composition 

 Given two fuzzy relations 

 ℛ:  𝒳 × 𝒴 → [0,1]  𝒮:  𝒴 × 𝒵 → [0,1] 

their composition is defined by 

𝒯 = ℛ ∘ 𝑆:  𝒳 × 𝒵 → [0,1] 
𝜇ℛ∘𝒮 𝑥, 𝑧 = max

𝑦∈𝒴
min 𝜇ℛ 𝑥, 𝑦 , 𝜇𝒮 𝑦, 𝑧  

 

 Called an inner or - and product 

Composition example 

 

  
0.8 1 0.1 0.7

,
0 0.8 0 0

R X Y
 

  
 

 

0.4 0.3 0.3

0 0.4 0
,

0.3 0.5 0.8

0.6 0.7 0.5

S Y Z

 
 
 
 
 
 

 
0.6 0.7 0.5

,
0 0.4 0

R S X Z
 

  
 

       , max min , , ,
k

i j i k k j
y

x z x y y z
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Form of reasoning 

 Fuzzy version of generalized modus 

ponens 

 Antecedent (premise): x is A’ 

 Implication:   if x is A then y is B 

Consequence:  y is B’ 

' 'A BA R B 

Implication 

 Let 𝐴 and 𝐵 be two fuzzy sets in 𝑈1 and 𝑈2, 
respectively 

 Implication is a relation defined by 

   𝐴 → 𝐵 ≜ 𝐴⊗𝐵, 
 where ⊗ is the tensor (outer) product of the vectors 

using the logical operator 𝑎𝑛𝑑 (∧) 

 

 Implication functions 
 I(x,y) = min(x, y)  Mamdani 

 I(x,y) = max(1-x, y)  Dilne, Zadeh 

 I(x,y) = xy   Larsen 
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Implication example 

 Rule 
 “If temperature is high, then humidity is fairly high.” 

 Fuzzy variables 
 tUt = {20,30,40}  hUh = {20,50,70,90} 

 Fuzzy sets 
 HT Ut   HT(t) = [0.1, 0.5, 0.9]T 

 FHH  Uh  FHH(h) = [0.2, 0.6, 0.7 1]T 

 

 Fuzzy rule 
 R(t,h): if t is HT then h is FHH 

Implication example 

 HT(t) = [0.1, 0.5, 0.9]T 

 FHH(h) = [0.2, 0.6, 0.7 1]T 

 𝑅𝐻𝑇→𝐹𝐻𝐻 = HT ⊗ FHH 

 

 𝑅𝐻𝑇→𝐹𝐻𝐻 =
0.1 0.1 0.1 0.1
0.2 0.5 0.5 0.5
0.2 0.6 0.7 0.9
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Implication example 

 According to the rule what is the humidity 

if temperature is fairly high? 

 t = FHT, FHT  Ut  

 

 FHT(t) = HT
2(t) = [0.01, 0.25, 0.81]T 

Implication example 

 𝑅 ℎ = 𝑅 𝑡 ∘ 𝑅𝐻𝑇→𝐹𝐻𝐻 = 𝐹𝐻𝑇 ∘ 𝑅𝐻𝑇→𝐹𝐻𝐻 

 

= 0.01 0.25 0.81 ∘
0.1 0.1 0.1 0.1
0.2 0.5 0.5 0.5
0.2 0.6 0.7 0.9

 

 

= 0.2 0.6 0.7 0.81   
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A  B 

A' 

 

        B' 

General fuzzification 

Singleton fuzzification 

Single rule 

A1  B1 

A'1 

 

A2  B2 

A'2    

 

      B'1, B'2 

 

 

         B'' 

Superposition of rules 
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A1  A2  B 

A'1, A'2    

 

       B' 

Multiple antecedents 

Multiple Rules – Fuzzy-Fuzzy 

0 0 

0 

0 0 0 

0 

1 

1 1 

1 1 1 

1 

u 

u 

v 

v 

w 

w min 

1 

2 

A1 A B 

A B 

B1 C1 

A2 B2 C2 
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Multiple Rules – Crisp-Fuzzy 

0 0 

0 

0 0 0 

0 

1 

1 1 

1 1 1 

1 

u 

u 

v 

v 

w 

w min 

u0 v0 

1 

2 

C1 

C2 

C1 C2 

Defuzzification 

 Converting fuzzy set to crisp data 
 Mean of maxima (MOM) 

 𝑦𝑚𝑗: set of points with maximum membership value 

𝑦𝑀𝑂𝑀 =
 𝑦𝑚𝑗
𝑙
𝑗=1

𝑙
 

 Center of area (COA) 

𝑦𝐶𝑂𝐴 =
 𝜇 𝑦𝑚𝑗 𝑦𝑚𝑗
𝑙
𝑗=1

 𝜇 𝑦𝑚𝑗
𝑙
𝑗=1

 

 Bisector of Area (BOA) 

 Smallest of Maximum (SOM) 

 Largest of Maximum (LOM) 

yLOM 

yBOA 

ySOM 

yCOA yMOM 
y 

(y) 

1 

0 
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Model of a fuzzy system 

x is A1     w1 y is B1 

Rule 1 

X 
x is A2     w2 y is B2 

x is Ar     wr y is Br 

Rule 2 

Rule r 

Fuzzy 

Composition 
Defuzzifier 

y 

(Crisp) 

(Fuzzy) 

(Fuzzy) 

(Fuzzy) 

(Fuzzy) 

Ingredients of a fuzzy system 

 Normalization of universes 

 Fuzzification of crisp input data 

 Fuzzy inference 

 Defuzzification 

 Denormalization 


