Artificial intelligence
Kristof Karacs
PPKE-ITK

" J
Recap

m What is intelligence?

m Agent model

m Problem solving by search
Non-informed search strategies
Informed search strategies

m Logic
Propositional logic
Predicate logic

= JEE
Outline

m Planning and search
m Situation calculus

m Partial order planning
m Graphplan

g
Planning

m Planning
Initial state
Goal state
Set of actions

m Can be described as a search problem

Planning vs. search

ﬁz: .

I

N
Problems of using search for
planning

m Description of actions
By defining follower states
m Description of states
Every state has to be exactly given
m Description of goals
Only by defining goal states (and the heuristic)
m Description of plan

Fixed order of actions, can only be started from the
start or the goal state

Undefined starting state

m What if initial state is not A B |C |D
known exactly? E =
E.g. “Start in bottom row,
with goal being C” G H
m Search over “sets” of I 4] +K -+

underlying (atomic) states

m Inefficient approach

Exponential blowup in the
number of sets of atomic {I/ J, K, L}

states N / X‘
>

{G, J, K, H} {3 K L}

Actions: N,S,E,W

" J
Planning as logic search

m A classic approach to planning: situation
calculus
m |t uses

FOPL descriptions of the relevant sets of
states and actions

ATP to find a plan

" JE
Situation Calculus

m Reification — treat situations as objects and use them as
predicate arguments

At(Agent, Room 13, sg) where sgq refers to a particular situation
m Result function — gives the new situation resulting from
taking an action in another situation
Result(StandUp, s;) = S5
m Effect Axioms — what is the effect of taking an action in
the world
Vv x.s. Present(x,s) A Portable(x) — Holding(x, Result(Grab, s))
V X.S. = Holding(x, Result(Drop, s))
m Frame Axioms - what doesn’t change
V X.s. color(x,s) = color(x, Result(Grab, s))
Can be included among effect axioms

" J
Planning in situation calculus

m Use theorem proving to find a plan
m Goal state: 3s. At(Home, s) A Holding(Gold, s)

m Initial state: At(Home, s;) A = Holding(Gold, sp) A
Holding(Rope, s;) ...

m Plan: Result(North, Result(Grab, Result(South, s;)))
A situation that satisfies the requirements
Course of actions can be read out
First, move South, then Grab and then move North

g
Problems of using situation
calculus for planning

m Reducing specific planning problem to
general problem of theorem proving is not
efficient

Exponential complexity
Optimality of plan is difficult to assess

m A more specialized approach can exploit
special properties of planning problems

" JE
Special properties of planning

m Connect action descriptions and state
descriptions (focus searching)

If goal contains Holding(Gold) and Grab(Gold) causes
Holding(Gold) to be true, then plan should include
Grab(Gold)

m Add actions to a plan in any order
m Sub-problem independence

m Restrict language for describing goals, states
and actions

" SN
STRIPS: Stanford Research
Institute Problem Solver

m ~1971: The first real
planning system

m Pushing boxes
between rooms

"
STRIPS representation

m States: conjunctions of ground literals
I In(robot, r;) A Closed(doorg) A ...
m Goals: conjunctions of literals
0 (implicit 3 r) In(Robot, r) A In(Charger, r)
m Actions (operators)
1 Name (implicit V): Go(ry, ,)
1 Preconditions: conjunction of literals
= At(r;) A Path(ry, r,)
[Effects: conjunctions of literals (aka add-list & delete-list)
m At(r,) A - At(ry)
1 Assumes no inference in relating predicates (only equality)

" J
STRIPS example

m Action
Buy(x, store)
m Pre: At(store), Sells(store, x)
» Eff: Have(x)
Go(x, y)
= Pre: At(x)
n Eff: At(y), -At(X)
m Goal
Have(Milk) A Have(Banana) A Have(Drill)
m Start

At(”I—;ome) A Sells(SM, Milk) A Sells(SM, Banana) A Sells(HW,
Dri

F
Planning algorithms

m Progression planners: consider the effect of all possible
actions in a given state R
u-.‘,-}j_ 0]...;:_.4‘// A"‘:','.:" L_;‘! !‘i".’l }

m Regression planners: to achieve a goal, what must have
been true in previous state
Have(M) A Have(B) A Have(D)
Buy(M,store)
At(store) A Sells(store,M) A Have(B) A Have(D)
m Both have the problem of lack of direction — what action
or goal to pursue next

" J
Search in plan space

m Situation space — both progressive and
regressive planners plan in space of situations
m Plan space — start with null plan and add steps
to plan until it achieves the goal
Much smaller complexity
Planning order independent from execution order
Least-commitment
= “what actions” before “what order”

Means-ends analysis — Try to match the available
means to the current ends

" J
Partially ordered plan

m Set of steps (instance of an operator)
m Set of ordering constraints S; < S,

m Set of variable binding constraints v = x

Vv is a variable in a step; x is a constant or
another variable

m Set of causal links S; —; S
Step i achieves precondition c for step |

Initial plan

m Steps: {start, finish}
m Ordering: {start < finish}
m Sstart

Pre: none

Eff: start conditions
m finish

Pre: goal conditions

Eff: none

Completeness and consistency

m A plan is complete iff every precondition of
every step is achieved by some other step
m S, >, S ("step i achieves c for step |) iff
S <S
c € effects(S))

-3 S,. ¢ € effects(Sy) and S; < §, < §; is consistent
with ﬁ1e ordering constraints

m A plan is consistent iff
the ordering constraints are consistent and
the variable binding constraints are consistent

10

" J
Partially Ordered Plan (POP)

= Plan
Steps
Ordering constraints
Variable binding constraints
Causal links

m POP Algorithm
Make initial plan
Loop until plan is a complete
= Select a subgoal
= Choose an operator
= Resolve threats

" J
Choosing an operator

m Choose operator(c, S;eeqs)

Choose a step S from the plan or a new step S by
instantiating an operator that has c as an effect

If there’s no such step, then fail (backtrack)
Add causal link S —; S ceqs

Add ordering constraint S < S, .4s

Add variable binding constraints if necessary
Add S to steps if necessary

" J
Resolving threats

m Astep Sthreatens a causal link S; — S iff - c €
effects(S) and it's possible that S; < S < S
m For each threat
Choose
= Promote S:S<S§;<S§
= Demote S: §;<§;<S
If resulting plan is inconsistent, then Fail (backtrack)
m Threats with variables

S is a threat if there is any instantiation of the variables that
makes -c e effects(S)

Negative binding

F
STRIPS example

m Action
Buy(x, store)
= Pre: At(store), Sells(store, x)
= Eff: Have(x)
Go(x, y)
= Pre: At(x)
s Eff: At(y), -At(X)
m Goal
Have(Milk) A Have(Banana) A Have(Drill)
m Start

At(Home) A Sells(SM, Milk) A Sells(SM, Banana) A Sells(HW,
Drill)

12

Start
At(HO) A S(Hw,q) A S(SM,M) A S(SM,B)

H(D) A H(M}¥A H(B)
Finish

Start
At(HO) A sww:q) A $(SM,M) A S(SM,B)

/ 1 \

/ 1 \
/ 1 \
/ 11 \
/ 11 \
/ 11
/ i

At(s,) » S(s,.Df Ats) AB(S,M) AlS:) A S(s5,B)
Buy(D;s,) | Buy(M,s,) Buy(B,s3)

H(D) H(Nifl) H(B)

~o |

H(D) A H(M)¥A H(B)
Finish

13

Start
At(HO) A ngw:q) A §(SM,M) A S(SM,B)
sy /HW S Loy
SZ/SM / ! I \
S5/SM)/ : | \
\
/ 11 \
/ 11 \
/ 1 \
AtHW) A S(HV,D) A(SMMA S(SM,M) AtSM) A S(SM,B
Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(W) H(B)

>~

H(D) A H(M}¥A H(B)
Finish

Start
At(HO) A S(HW,LJI) A S(SM,M) A S(SM,B)

S,/HW
S,/ISM
S4/SM

At(HW) A S(HW,D) At(SM) A S(SM,M) At(SM) A S(SM,B

Buy(D,HW) Buy(M,SM Buy(B,SM

H(D) H('}") H(B)

~o |

H(D) A H(M)¥A H(B)
Finish

14

Start

A(HO) A S(AW,0) A S(SMM) A S(SM,B)
’, ~

At(x,) 2
Go(x,,HW)
At(HW) A —At(x

~
~

/

At(X))
Go(X,,SM)
At(SM) A —At(x,)

—]
At(HW) A S(HW,D) At(SM) A S(SM,M) At(SM) A S(SM,B
Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(W) H(B)

>~

H(D) A H(M}¥A H(B)

Finish
= JEE
Start
x,/HO At(HO) A S(HW,LJI) A S(SM,M) A S(SM,B)
X,/HO
At(HO) At(HO)
Go(HO,HW) Go(HO,SM)

/ At(SM) A —At(HO)
/'/

At(HW) A S(HW,D) At(SM) A S(SM,M) At(SM) A S(SM,B

|
|
|
|
At(HW) A —At(HD) I
|
|

Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(W) H(B)
>~ |
|
H(D) A H(M)¥A H(B) Are we ready?
Finish

15

Start
At(HO) A S(Hw,q) A S(SM,M) A S(SM,B)

At(HO)
Go(HO,SM)
At(SM) A —At(HO)

/

At(HW) A S(HW,D) At(SM) A S(SM,M) At(SM) A S(SM,B
Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(¥) H(B)

>~

H(D) A H(M}¥A H(B)
Finish

At(HO)
Go(HO,HW)
At(HW) A —At(HD)

Start
At(HO) A S(HW,LJI) A S(SM,M) A S(SM,B)

At(HO)
Go(HO,SM)
AL(SM) A —At(HO)

/

At(HW) A S(HW,D) At(SM) A S(SM,M) At(SM) A S(SM,B
Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(f}") H(B)

~o |

H(D) A H(M)¥A H(B)
Finish

At(HO)
Go(HO,HW)
At(HW) A —At(HD)

16

Start
At(HO) A S(Hw,q) A S(SN,M) A S(SM,B)

~
~

e
At(HW) A SHW,D) AtSM) A S(SMM) At(SM) A S(SM,B

Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(¥) H(B)

>~

H(D) A H(M}¥A H(B)

At(X))
Go(X,,SM)
AL(SM) A —At(X,)

At(HO)
Go(HO,HW)
At(HW) A —At(HD)

Finish
= JEE
Start
X,/ HW At(HO) A S(HW,LJI) A S(SM,M) A S(SM,B)

At(HW)
Go(HW,SM
At(SM) A —At(HW)

/

At(HW) A S(HW,D) At(SM) A S(SM,M) At(SM) A S(SM,B
Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(f}") H(B)

~o |

H(D) A H(M)¥A H(B)
Finish

At(HO)
Go(HO,HW)
At(HW) A —At(HD)

17

Start
At(HO) A S(Hw,q) A S(SM,M) A S(SM,B)

At(HW)
Go(HW,SM
AL(SM) A —At(HW)

/

At(HW) A S(HW,D) At(SM) A S(SM,M) At(SM) A S(SM,B
Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(¥) H(B)

>~

H(D) A H(M}¥A H(B)
Finish

At(HO)
Go(HO,HW)
At(HW) A —At(HD)

Start
At(HO) A S(HW,LJI) A S(SM,M) A S(SM,B)

At(HW)
Go(HW,SM
At(SM) A —At(HW)

At(HO)
Go(HO,HW)
At(HW) A —At(HD)

-
-
-
-
-
/

At(HW) A SHWDY ~ At(SM) A S(SM,M) At(SM) A S(SM,B
Buy(D,HW) Buy(M,SM Buy(B,SM
H(D) H(f}") H(B)

~o |

H(D) A H(M)¥A H(B)
Finish

18

Sussman anomaly

m Subgoal dependence E
Goal: on(A,B) A on(B,C)

m Exercise
Objects: A, B,C, T
Predicates
= 0Nn(X,y), clear(x)
Operators
= move(X,y,z)

" J
Operators

m Move(x,y,z)

Pre: on(x,y), clear(x), clear(z)

Eff: on(x,z), clear(y), -on(x,y), -clear(z)
m How do we move to the table?
m Move2T(x,y)

Pre: on(x,y), clear(x)

Eff: on(x,T), clear(y), ~on(x,y)

19

" J
Operators

m Move(X,y,z)
Pre: on(x,y), clear(x), clear(z), block(z)
Eff: on(x,z), clear(y), -on(x,y), —~clear(z)
m How do we move to the table?
m Move2T(x,y)
Pre: on(x,y), clear(x)
Eff. on(x,T), clear(y), -on(x,y)

Limitations of the STRIPS language

Hierarchical planning

Generating complex plans often requires abstract planning over
increasingly detailed search spaces

Complex state conditions

STRIPS variables are limited in their complexity

There is no quantification and no conditional statements
Representing time

The STRIPS framework assumes that everything happens
instantly

Not possible to represent durations, deadlines, time windows,
etc.

Resource limitations

There is no way to represent the amount of available workers,
equipment, money, etc. or constraints on them

20

" NS
Graph Plan

m POP
1 “Human-like”, but very slow
1 Efficiency hard to evaluate
m Graph Plan
1 Simplified planning model
= propositional planner (no variables — no matching)

) Bigger — separate propositions are needed for every
combination of arguments

1 Efficient algorithm
1 Complexity between scheduling and planning

Planning graph

21

" J
Planning graph

m Main idea
Construct a graph of possible outcomes

o 00 o

O
Graph Plan algorithm

m Resembles iterative DFS

1. Make a plan graph of depth k
2. Search for a solution

3. If succeed, return a plan

4. Elsek =k +1
5.Gotostepl

22

" J
Mutually exclusive actions

m Two action instances at level i are mutex if
Inconsistent effects
m effect of one action is negation of effect of another
Interference
m one action deletes the precondition of the other
Competing needs

m the actions have preconditions that are mutex at
level i -1

Mutually exclusive propositions

m Two propositions at - 1A ~_
level i are mutex if Saf'] T
Negation ko |
» they are negations of [E
one another | |
Inconsistent su |
bport o I
= all ways of achieving ' - —
the propositions at level | ____,..S'f".
i - 1 are pairwise mutex liD

23

Overview of mutual exclusion

classes

Inconsistent Effects

@))
\
<7
)
[H——-=o0
)

o0

:

Competing Needs
(®)

S\Dio
<8><) S

o [—o
o— o

Interference (Precond-Effect)

o—

Inconsistent Support
(@]

O

(@] (@]

(@] (@]
(@]

(@] O

Trends with new layers

m Propositions monotonically increase
m Actions monotonically increase
m Proposition mutex relationships monotonically

decrease

m Action mutex relationships monotonically decrease

| b |
q q

-q -q

r \

il —r

24

" JEE
Solution extraction

m If all the literals in the goal appear at the
deepest level and not mutex, then search
for a solution for each subgoal at level i

For each subgoal at level i

m Choose an action to achieve it
m If it's mutex with another action, Fail

Repeat for preconditions at level i - 2

" J
Example: Dinner date

m [nitial conditions: garbage A cleanHands A quiet
m Goal: dinner A present A -~ garbage

m Actions:
Cook precondition: cleanHands
effect: dinner
Wrap precondition: quiet
effect: present
Carry precondition: -
effect: - garbage A - cleanHands
Dolly precondition
effect: - garbage A - quiet

Search for a solution plan

)

present

cleanH
‘lcleanl)
quiet
—|quieb
dinner

present

" JEE 0
Extensions

m Lots of time optimizations
m Disjunctive preconditions

m Universally quantified (almost :)

preconditions and effects
m Conditional planning

26

Other approaches

Hierarchical planning

SATPIlan
Reduces planning problem to satisfiability problem
Strongly related to GraphPlan
FOPL like planning
Using structural information and heuristics
Introducing uncertainty
Learning world dynamics
Conditional planning
Replanning
Universal planning

27

