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Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies

 Logic

Propositional logic

Predicate logic
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Outline

 Planning and search

 Situation calculus

 Partial order planning

 Graphplan

Planning

 Planning

 Initial state

Goal state

Set of actions

 Can be described as a search problem
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Planning vs. search

Problems of using search for 

planning

 Description of actions
 By defining follower states

 Description of states
 Every state has to be exactly given

 Description of goals
 Only by defining goal states (and the heuristic)

 Description of plan
 Fixed order of actions, can only be started from the 

start or the goal state
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Undefined starting state

 What if initial state is not 

known exactly?

 E.g. “Start in bottom row, 

with goal being C”

 Search over “sets” of 

underlying (atomic) states

 Inefficient approach

 Exponential blowup in the 

number of sets of atomic 

states

Planning as logic search

 A classic approach to planning: situation 

calculus

 It uses

FOPL descriptions of the relevant sets of 

states and actions

ATP to find a plan
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Situation Calculus

 Reification – treat situations as objects and use them as 
predicate arguments
 At(Agent, Room 13, s8) where s8 refers to a particular situation

 Result function – gives the new situation resulting from 
taking an action in another situation
 Result(StandUp, s1) = s3

 Effect Axioms – what is the effect of taking an action in 
the world
  x.s. Present(x,s)  Portable(x) → Holding(x, Result(Grab, s))

  x.s. ¬ Holding(x, Result(Drop, s))

 Frame Axioms - what doesn’t change
  x.s. color(x,s) = color(x, Result(Grab, s))

 Can be included among effect axioms

Planning in situation calculus

 Use theorem proving to find a plan

 Goal state: s. At(Home, s)  Holding(Gold, s)

 Initial state: At(Home, s0)  ¬ Holding(Gold, s0) 
Holding(Rope, s0) …

 Plan: Result(North, Result(Grab, Result(South, s0)))
 A situation that satisfies the requirements

 Course of actions can be read out

 First, move South, then Grab and then move North
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Problems of using situation 

calculus for planning

 Reducing specific planning problem to 

general problem of theorem proving is not 

efficient

Exponential complexity

Optimality of plan is difficult to assess

 A more specialized approach can exploit 

special properties of planning problems

Special properties of planning

 Connect action descriptions and state 
descriptions (focus searching)
 If goal contains Holding(Gold) and Grab(Gold) causes 

Holding(Gold) to be true, then plan should include 
Grab(Gold)

 Add actions to a plan in any order

 Sub-problem independence

 Restrict language for describing goals, states 
and actions



7

STRIPS: Stanford Research 

Institute Problem Solver

 ~1971: The first real 

planning system

 Pushing boxes 

between rooms

STRIPS representation

 States: conjunctions of ground literals
 In(robot, r3)  Closed(door6)  …

 Goals: conjunctions of literals
 (implicit  r) In(Robot, r)  In(Charger, r)

 Actions (operators)
 Name (implicit ): Go(r1, r2)

 Preconditions: conjunction of literals

 At(r1)  Path(r1, r2)

 Effects: conjunctions of literals (aka add-list & delete-list)

 At(r2)  ¬ At(r1)

 Assumes no inference in relating predicates (only equality)
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STRIPS example

 Action
 Buy(x, store)

 Pre: At(store), Sells(store, x)

 Eff: Have(x)

 Go(x, y)
 Pre: At(x)

 Eff: At(y), ¬At(x)

 Goal
 Have(Milk)  Have(Banana)  Have(Drill)

 Start
 At(Home)  Sells(SM, Milk)  Sells(SM, Banana)  Sells(HW, 

Drill)

Planning algorithms

 Progression planners: consider the effect of all possible 
actions in a given state

 Regression planners: to achieve a goal, what must have 
been true in previous state
 Have(M)  Have(B)  Have(D)

 Buy(M,store)
At(store)  Sells(store,M)  Have(B)  Have(D)

 Both have the problem of lack of direction – what action 
or goal to pursue next
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Search in plan space

 Situation space – both progressive and 
regressive planners plan in space of situations

 Plan space – start with null plan and add steps 
to plan until it achieves the goal
 Much smaller complexity

 Planning order independent from execution order

 Least-commitment
 “what actions” before “what order”

 Means-ends analysis – Try to match the available 
means to the current ends

Partially ordered plan

 Set of steps (instance of an operator)

 Set of ordering constraints Si < Sj

 Set of variable binding constraints v = x

v is a variable in a step; x is a constant or 

another variable

 Set of causal links Si c Sj

Step i achieves precondition c for step j
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Initial plan

 Steps: {start, finish}

 Ordering: {start < finish}

 start

 Pre: none

 Eff: start conditions

 finish

 Pre: goal conditions

 Eff: none

Completeness and consistency

 A plan is complete iff every precondition of 
every step is achieved by some other step

 Si c Sj (“step i achieves c for step j”) iff
 Si < Sj

 c  effects(Si)

 ¬ Sk. ¬c  effects(Sk) and Si < Sk < Sj is consistent 
with the ordering constraints

 A plan is consistent iff
 the ordering constraints are consistent and

 the variable binding constraints are consistent
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Partially Ordered Plan (POP)

 Plan
 Steps

 Ordering constraints

 Variable binding constraints

 Causal links

 POP Algorithm
 Make initial plan

 Loop until plan is a complete
 Select a subgoal

 Choose an operator

 Resolve threats

Choosing an operator

 Choose operator(c, Sneeds)

 Choose a step S from the plan or a new step S by 

instantiating an operator that has c as an effect

 If there’s no such step, then fail (backtrack)

 Add causal link S c Sneeds

 Add ordering constraint S < Sneeds

 Add variable binding constraints if necessary

 Add S to steps if necessary
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Resolving threats

 A step S threatens a causal link Si c Sj iff ¬ c 
effects(S) and it’s possible that Si < S < Sj

 For each threat
 Choose

 Promote S : S < Si < Sj

 Demote S : Si < Sj < S

 If resulting plan is inconsistent, then Fail (backtrack)

 Threats with variables
 S is a threat if there is any instantiation of the variables that 

makes ¬c  effects(S)

 Negative binding

STRIPS example

 Action
 Buy(x, store)

 Pre: At(store), Sells(store, x)

 Eff: Have(x)

 Go(x, y)
 Pre: At(x)

 Eff: At(y), ¬At(x)

 Goal
 Have(Milk)  Have(Banana)  Have(Drill)

 Start
 At(Home)  Sells(SM, Milk)  Sells(SM, Banana)  Sells(HW, 

Drill)
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

Buy(B,s3)

At(s1)  S(s1,D)

H(D)

Buy(M,s2)

At(s2)  S(s2,M)

H(M)

At(s3)  S(s3,B)

H(B)

Buy(D,s1)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

s1/HW

s2/SM

s3/SM

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

s1/HW

s2/SM

s3/SM

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(x1)

At(HW)  At(x1)

At(x2)

At(SM)  At(x2)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(x1,HW) Go(x2,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

Go(HO,HW)

At(HO)

At(HW)  At(HO)

Go(HO,SM)

At(HO)

At(SM)  At(HO)

Are we ready?

Buy(D,HW) Buy(B,SM)Buy(M,SM)

x1/HO

x2/HO

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HO)

At(SM)  At(HO)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HO,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HO)

At(SM)  At(HO)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HO,SM)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(x2)

At(SM)  At(x2)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(x2,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

x2/HW

Go(HO,HW) Go(HW,SM)

Finish
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Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HW,SM)

Finish

Start

At(HO)  S(HW,D)  S(SM,M)  S(SM,B)

H(D)  H(M)  H(B)

At(HW)  S(HW,D)

H(D)

At(SM)  S(SM,M)

H(M)

At(SM)  S(SM,B)

H(B)

At(HO)

At(HW)  At(HO)

At(HW)

At(SM)  At(HW)

Buy(D,HW) Buy(B,SM)Buy(M,SM)

Go(HO,HW) Go(HW,SM)

Finish
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Sussman anomaly

 Subgoal dependence

Goal: on(A,B)  on(B,C)

 Exercise

Objects: A, B, C, T

Predicates
 on(x,y), clear(x)

Operators
 move(x,y,z)

A

C

B

A

C

B

Operators

 Move(x,y,z)

Pre: on(x,y), clear(x), clear(z)

Eff: on(x,z), clear(y), ¬on(x,y), ¬clear(z)

 How do we move to the table?

 Move2T(x,y)

Pre: on(x,y), clear(x)

Eff: on(x,T), clear(y), ¬on(x,y)
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Operators

 Move(x,y,z)

Pre: on(x,y), clear(x), clear(z), block(z)

Eff: on(x,z), clear(y), ¬on(x,y), ¬clear(z)

 How do we move to the table?

 Move2T(x,y)

Pre: on(x,y), clear(x)

Eff: on(x,T), clear(y), ¬on(x,y)

Limitations of the STRIPS language

 Hierarchical planning
 Generating complex plans often requires abstract planning over 

increasingly detailed search spaces

 Complex state conditions
 STRIPS variables are limited in their complexity

 There is no quantification and no conditional statements

 Representing time
 The STRIPS framework assumes that everything happens 

instantly

 Not possible to represent durations, deadlines, time windows, 
etc.

 Resource limitations
 There is no way to represent the amount of available workers, 

equipment, money, etc. or constraints on them
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Graph Plan

 POP
 “Human-like”, but very slow

 Efficiency hard to evaluate

 Graph Plan
 Simplified planning model

 propositional planner (no variables  no matching)

 Bigger – separate propositions are needed for every 
combination of arguments

 Efficient algorithm

 Complexity between scheduling and planning

Planning graph
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…

…

…

Planning graph

 Main idea

Construct a graph of possible outcomes

Graph Plan algorithm

 Resembles iterative DFS

1. Make a plan graph of depth k

2. Search for a solution

3. If succeed, return a plan

4. Else k := k + 1

5. Go to step 1
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Mutually exclusive actions

 Two action instances at level i are mutex if

 Inconsistent effects

 effect of one action is negation of effect of another

 Interference

 one action deletes the precondition of the other

Competing needs

 the actions have preconditions that are mutex at 

level i - 1

Mutually exclusive propositions

 Two propositions at 

level i are mutex if

 Negation

 they are negations of 

one another

 Inconsistent support

 all ways of achieving 

the propositions at level 

i - 1 are pairwise mutex
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Overview of mutual exclusion 

classes
Inconsistent Effects

Inconsistent SupportCompeting Needs

Interference (Precond-Effect)

Trends with new layers

 Propositions monotonically increase

 Actions monotonically increase

 Proposition mutex relationships monotonically 
decrease

 Action mutex relationships monotonically decrease

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B
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Solution extraction

 If all the literals in the goal appear at the 

deepest level and not mutex, then search 

for a solution for each subgoal at level i

For each subgoal at level i

 Choose an action to achieve it

 If it’s mutex with another action, Fail

Repeat for preconditions at level i - 2

Example: Dinner date

 Initial conditions: garbage  cleanHands  quiet

 Goal: dinner  present  ¬ garbage

 Actions:

 Cook precondition: cleanHands

effect: dinner

 Wrap precondition: quiet

effect: present

 Carry precondition: -

effect: ¬ garbage  ¬ cleanHands

 Dolly precondition

effect: ¬ garbage  ¬ quiet
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Search for a solution plan

Extensions

 Lots of time optimizations

 Disjunctive preconditions

 Universally quantified (almost :) 

preconditions and effects

 Conditional planning
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Other approaches

 Hierarchical planning

 SATPlan
 Reduces planning problem to satisfiability problem

 Strongly related to GraphPlan

 FOPL like planning
 Using structural information and heuristics

 Introducing uncertainty
 Learning world dynamics

 Conditional planning

 Replanning

 Universal planning


