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Inference in FOPL

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Logical inference schemes

 Deduction: formal logical reasoning

 Premises: 1. All men are mortal. 2. Aristotle is a man.

 Conclusion: Aristotle is mortal.

 Induction: generalization
 Premise: The sun has risen in the east every morning 

up until now.

 Conclusion: The sun will also rise in the east 
tomorrow.

 Abduction: choosing an explanation
 Premise: 1. Flu causes fever. 2. Peter has fever.

 Conclusion: Peter has flu.
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The case of the silk gloves

“It was elementary my dear Watson. 

The killer always left a silk glove at 

the scene of the murder. That was 

his calling card. Our investigations 

showed that only three people have 

purchased such gloves in the past 

year. Of these, Professor Doolally

and Reverend Fisheye have iron-

clad alibis, so the murderer must 

have been Sergeant Heavyset. 

When he tried to murder us with that 

umbrella, we knew we had our man.”

Not so elementary…

“The killer always left a silk glove at the scene of the 
murder.” (induction)

“That was his calling card.” (abduction)

“…only three people have purchased such gloves in the 
past year.” (model generation)

“Professor Doolally and Reverend Fisheye have iron-clad 
alibis.” (constraint based reasoning)

“…so the murderer must have been Sergeant Heavyset.” 
(deduction)

“The killer always left a silk glove at the scene of the 
murder.”

“That was his calling card.”

“…only three people have purchased such gloves in the 
past year.”

“Professor Doolally and Reverend Fisheye have iron-clad 
alibis.”

“…so the murderer must have been Sergeant Heavyset.”
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First Order Predicate Logic (FOPL)

 Most used and analyzed logic

 Completeness: Gödel, Herbrand, 1930

 If a FOPL statement is valid then it is provable

 If KB ⊧ a then KB ⊢ a

 Validity is semi-decidable

 Resolution: Robinson, 1963

Chains of inference

 Remember the problem we are trying to solve

 Search for a path from axioms i, to theorem T

 Three approaches

 Forward chaining

 Backward chaining

 Proof by contradiction

 Specification of a search problem:

 Representation of states (first order predicate logic sentences)

 Initial state (changes with the approach)

 Operators (rules of inference, usually implication rules)

 Goal state (changes with the approach)
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Forward Chaining

 Start with initial axioms (atomic sentences) and deduce 
new facts by applying modus ponens

 Repeat until possible or query is answered

 Problems

 Generates many irrelevant facts

 Every rule has to be rechecked whenever a new fact is 
added to KB

1 2 3

T

Forward Chaining

 A first-order definite clause is a disjunction of 

literals of which exactly one is positive

 Example

 white(X)  potable(X)  milk(X) is logically equivalent to

¬white(X)  ¬ potable(X)  milk(X)

 Modus ponens can be easily applied to first-order 

definite clauses

 All variables are implicitly universally quantified

 Sound, complete
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Backward Chaining

 Work backwards from the goal, chaining rules to 
find facts that support the conclusion

 For each node the inference rule has to be 
inverted
 Which operator could have been applied to which 

state to produce this state (sentence)

 No problem when using equivalences
 Can also use a bidirectional search (from both ends)

 Difficult when using implications
 Many possible ways to invert operators

Proof By Contradiction

 “Reductio ad absurdum”

 Most often used method

 Idea: by showing that the assumption contradicts a set of 
axioms we can prove that the assumption is false

 KB’ = Set of axioms (KB) + negated theorem (¬Th)

 If the F statement can be deduced from KB’ then ¬Th is 
false, and thus Th must be true

 Advantage: heuristic function can be defined based on 
the distance from the ‘False’ statement
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First order implication rules

 Propositional implications and 

equivalences

 First order implication rules

Quantifiers

Variables

Substitution

Universal elimination

 In a sentence  any universally quantified variable v can 
be replaced by any ground term g

v 

subst({v/g}, )

 Note: the variable has to be removed from quantification

 Example
 x friend(Sue, x) becomes  friend(Sue, Ann)
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Existential introduction

 In a sentence  any ground term g can be substituted by 
a variable v if it does not appear in 



v subst({g/v}, )

 Example
 friend(Sue, Ann) becomes x friend(Sue, x)

 Exercise
 Find a sentence where v is in  such that this implication rule is 

not sound

Universal introduction

 In a sentence  any constant k can be substituted by a 
variable v if k is not mentioned in any of the premises or 
undischarged assumptions and v does not appear in 



v subst({k/v}, )

 Example
 friend(Sue, Doe) becomes x friend(Sue, x)
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Existential elimination

 In a sentence  any existentially quantified variable v 
can be replaced by any constant k, if k appears neither 
in  nor anywhere else in the derivation

v 

subst({v/k}, )

 k is called a Skolem constant

 Existential elimination is a special case of skolemization
(see later)

Propositionalization

 Universal and existential elimination allow for inferring 
non-quantified sentences from quantified ones

 Reduces first-order inference to propositional inference

 Problem
 Function symbols allow infinitely many ground terms: 

father(father (father (. . .)))

 Can be overcome by Herbrand’s theorem (R-N pp. 274–275)

 Entailment in FOPL is semi-decidable (Church)
 Any entailed sentence can be proven

 Not all false sentences can be disproven (Halting problem)
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Inference with variables

 Premise
 x (knows(Bob, x)  loves(Bob, x))

 From “knows(Bob, Alice)”
 using modus ponens gives: “loves(Bob, Alice)”

 From “knows(Bryan, Alice)”
 modus ponens cannot be used

 How to check applicability when variables are 
present?

Unifying predicates

 Expressions x1 and x2 are unifiable iff there exists a 
substitution  such that

subst(, x1) = subst(, x2),

where subst(, x) applies  to x

 Unification by substitution ({X/Alice})
 knows(Bob, X) and knows(Bob, Alice)

 Possibilities
 variable-variable

 variable-constant

 variable-function
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The unification algorithm

 A recursive algorithm
 Passes around a set of substitutions, called mu
 Makes sure that new substitutions are consistent with 

old ones
 unify(x,y) = unify_internal(x,y,{})

 x and y can be variables, constants, lists, or 
compounds

 unify_internal(x,y,mu)
 x and y are sentences, mu is a set of substitutions
 finds substitutions making x look exactly like y

 unify_variable(var,x,mu)
 var is a variable
 finds a single substitution (which may be in mu

already)

unify_internal

unify_internal(x,y,mu)

1.if (mu==failure) then return failure

2.if (x==y) then return mu

3.if (isa_variable(x)) then return 
unify_variable(x,y,mu)

4.if (isa_variable(y)) then return 
unify_variable(y,x,mu)

5.if (isa_compound(x) & isa_compound(y)) then return 
unify_internal(args(x),args(y),

unify_internal(op(x),op(y),mu)) 

6.if (isa_list(x) & isa_list(y)) then return 
unify_internal(tail(x),tail(y),

unify_internal(head(x),head(y),mu)) 

7.return failure
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unify_variable

unify_variable(var,x,mu)

1. if (a substitution var/val is in mu) then 

return unify_internal(val,x,mu)

2. if (a substitution x/val is in mu) then 

return unify_internal(var,val,mu)

3. if (var occurs anywhere in x) return 

failure

4. add var/x to mu and return

Notes on the 

unification algorithm
 unify_internal will not match a constant to a 

constant, unless they are equal (case 2)

 Case 5 in unify_internal checks that two 
compound operators are the same (e.g., same predicate 
name)

 Case 6 in unify_internal causes the algorithm to 
recurse covering the whole list

 Cases 1 and 2 in unify_variable check that neither 
inputs have already been substituted
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The occurs check

 When substituting variable x with an expression f(x,y)
 x will be replaced by f(x,y)

 But f(x,y) still contains an instance of x, which has to be 
replaced again

 We get f(f(x,y),y), and then f(f(f(x,y),y),y), etc.

 Infinite recursion  the algorithm will not stop (halt)

 Case 3 in unify_variable checks this to avoid this 
situation

 Problem: Occurs check slows down the algorithm
 Its complexity is O(n2), where n is the size of expressions 

being unified

Unification exercises

 nice(Alice) – nice(Mary)

 sees(x,Alice) – sees(y,Alice)

 sees(x,Alice) – sees(Mary,y)

 x – child(Alice,x)

 friends(x,y,Alice)  father(sonof(Bob),Bob) –
father(z,Bob)  friends(Mary,z,u)

 R(F(y),x) – R(x,F(A))

 R(F(y),y,x) – R(x,F(A),F(v))

 F(G(w),H(w,J(x,u))) – F(G(v),H(u,v))

 F(x,F(u,x)) – F(F(y,A),F(z,F(B,z)))
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Full resolution rule

 Resolution rules remove predicates in predicate logic
 This is known as resolving the two sentences

 Unit resolution rule
(AB), ¬B

A

 Full resolution rule (using CNF)

(AB), (¬BC)

AC

 With implication
(¬AB), (BC)

¬AC

Generalized resolution rule

 Given two CNF sentences

p1  p2  …  pm and q1  q2  …  qn

 If pj and ¬qk can be unified, i.e. unify(pj, 

¬qk) = , then

p1  …  pj  … pm,        q1  …  qk  …  qn

subst( , (p1  … pj-1  pj+1  …  pm  q1  …  qk-1  qk+1  … qn))
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Resolution with variables

 P(x)  Q(x, y)

 ¬P(A)  R(B, z)

 subst({x/A}, Q(x, y)  R(B, z))

 Q(A, y)  R(B, z)

Local variable scope

 P(x)  Q(x, y)

 ¬P(A)  R(B, x)
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Local variable scope

 P(x1)  Q(x1, y)

 ¬P(A)  R(B, x2)

 subst({x1/A}, Q(x1, y)  R(B, x2))

 Q(A, y)  R(B, x2)

CNF in FOPL

 Sentences need to be in conjunctive 

normal form (CNF)

Literals can contain variables, assumed to be 

universally quantified

 Example

white(X)  potable(X)  milk(X) becomes 

¬white(X)  ¬ potable(X)  milk(X)
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Conversion to clausal form

 1. Eliminate  and 

 2. Drive in ¬ to atomic level

 3. Rename variables apart

 4. Skolemize

 5. Drop universal quantifiers

 6. Convert to CNF

 7. Rename variables in each clause

Skolemization

 Substitute a new constant for each existentially 
quantified variable
 x P(x)

P(CS)

 Substitute a new function of all universally 
quantified variables in enclosing scopes for each 
existentially quantified variable
 x y P(x, y)

x P(x, fS(x))
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“A cat called Tuna” (from textbook)

 Jack owns a dog

 Every dog owner is an animal lover

 No animal lover kills an animal.

 Either Jack or Curiosity killed the cat, who is named Tuna.

 Did Curiosity kill the cat?

A. x (Dog(x)  Owns(Jack,x))

B. x ( ((y) Dog(y)  Owns(x, y))  AnimalLover(x) )

C. x (AnimalLover(x)  ((y) Animal(y)  ¬Kills(x,y)))

D. Kills(Jack,Tuna)  Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. x (Cat(x)  Animal(x) )

G. Kills(Curiosity, Tuna)

Conversion to clausal form

 1. Eliminate  and 

 2. Drive in ¬ to atomic level

 3. Rename variables apart

 4. Skolemize

 5. Drop universal quantifiers

 6. Convert to CNF

 7. Rename variables in each clause
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Sentence A & B

 (A) x. Dog(x)  Owns(Jack,x)

 Dog(D)  Owns(Jack,D)

 (B) x. (y. Dog(y)  Owns(x,y))
AnimalLover(x)

 x. ( ¬y. Dog(y)  Owns(x,y)) AnimalLover(x)

 x. y. ¬(Dog(y)  Owns(x,y)) AnimalLover(x)

 x. y. ¬Dog(y)  ¬Owns(x,y) AnimalLover(x)

 ¬Dog(y)  ¬Owns(x,y)) AnimalLover(x)

Sentence C & D

 (C) x. AnimalLover(x)  ( y. Animal(y) 
¬Kills(x,y))

 x. ¬AnimalLover(x)  ( y. Animal(y) 
¬Kills(x,y))

 x. ¬AnimalLover(x)  ( y. ¬Animal(y) 
¬Kills(x,y))

 ¬AnimalLover(x)  ¬Animal(y)  ¬Kills(x,y)

 (D) Kills(Jack,Tuna)  Kills(Curiosity,Tuna)
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Sentence E, F and neg. Th.

 (E) Cat(Tuna)

 (F) x. Cat(x) Animal(x)

 ¬Cat(x)  Animal(x)

 (Th) ¬Kills(Curiosity,Tuna)

Solution

 (D), (Th) Kills(Jack,Tuna) (G)

 (E), (F), {x/T} Animal(Tuna) (H)

 (C), (G), {x/J, y/T}
¬AnimalLover(Jack)  ¬Animal(Tuna) (I)

 (H) , (I) ¬AnimalLover(Jack) (J)

 (B), (J), {x/J} ¬Dog(y)  ¬Owns(Jack,y) (K)

 (A2) ¬Dog(D) (L)

 (A1), (L) False
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CNF (Implicative form)

 Jack owns a dog

 Every dog owner is an animal lover

 No animal lover kills an animal.

 Either Jack or Curiosity killed the cat, who is named Tuna.

 Did Curiosity kill the cat?

A1. Dog(D)

A2. Owns(Jack,D)

B. Dog(y)  Owns(x,y)  AnimalLover(x)

C. AnimalLover(x)  Animal(y)  Kills(x,y)

D. Kills(Jack,Tuna)  Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. Cat(x)  Animal(x)

Graph of proof
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Equality

 Unification of different constants

Today(Thu), Today(Thursday)

 Expanding the KB is not sufficient

Thu = Thursday

 Extra axioms are needed

Equality is symmetric, reflexive and transitive

 Equality statements for each predicate:
 x,y x = y  (P(x)  P(y)) etc.

Demodulation rule

 Takes two input sentences, one expressing an 
equality ( = )

 Finds a unification for  with a term in another 
clause ( = unify(, ))

 Applies  to  (not )

 Replaces occurrence of  with Subst(, )

 = , (…, ,…)

(…,Subst(, ),…)
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Demodulation drawbacks

 Cannot bind variables in expression
 father(Adam) = Bob

 : father(Adam) , : Bob

 older(father(x), x)
 : father(x),  = {x/Adam},

Subst(, ) = Bob

 older(Bob, Adam) : not derived, only older(Bob, x)

 Equation must be a unit clause
 (x = Adam  y = Bob)  father(x) = y

  cannot be father(x), since the equation is inside an implication

 older(father(x), x)

 (x = Adam  y = Bob)  older(Bob, Adam)

 = ,   (…, ,…)

 = unify(, )

(…, Subst(, ), …)

Paramodulation

 F(x) = B

 Q(y)  W(y,F(y))

 Q(y)  W(y,B)

 G(x)  F(x) = B

 Q(y)  W(y,F(y))

 G(y)  Q(y)  W(y,B)

   (s = t)

    [r]  = unify(s,r)

 Subst(,(     [r]))

 s = F(x); t = B

 [⋅] =W (y,⋅); r = F(y)

  = {x/y}



23

Horn clauses

 Have the form: P1  P2  …  Pn  Q
 Special cases

P1  P2  …  Pn  False
True  Q

 Enables polynomial time inference
 Prolog (SLD resolution)

S: Selection function
L: Linear sequence of clauses
D: Definite clauses
Ordered resolution

Sample Prolog program

fun(X) :-

red(X),

car(X).

fun(X) :-

blue(X),

bike(X).

car(vw_beatle).

car(ford_escort).

bike(harley_davidson).

red(vw_beatle).

red(ford_escort).

blue(harley_davidson).

?-
fun(harley_davidson).

yes
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Resolution proving as search

 Search space: Sentences in FOPL

 Initial state: {KB, ¬Th.}

 Operator: generalized resolution inference rule

 Goal Check: Empty clause found

 Solution: two possibilities

 Path from axioms to false clause (if we want proof)

 Just the fact that we have reached the false clause 

(no proof required)

Elimination strategies

 Identical clause elimination
 a resolution refutation without a clause occurring 

twice

 Pure literal elimination
 A literal with no negated occurrence makes its clause 

superfluous

 Tautology elimination
 No effect on satisfiability

 Subsumption elimination
 Remove clauses that are more specific than others in 

the KB
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Restriction strategies

 Unit resolution
 One resolvent is always a unit clause (single literal)

 Input resolution
 One resolved clause is always taken from initial KB

 Complete, if the KB contains Horn clauses

 Linear resolution
 One resolved clause is always taken from either the initial KB or from 

the ancestor of the other resolvent; Complete

 Set of Support
 One resolvent is always taken from a subset of initial KB or from its 

descendant

 Complete, if the clauses outside the SoS are satisfiable

 Ordered resolution
 Clauses are treated as ordered sets, resolution is allowed only on the 

first literal

Applications of resolution

 Automated Theorem Proving (ATP)

 Proof verification

 Proof compression

 Automated Conjecture Making

 Interactive proving

 Proof planning
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A famous example for ATP

 Axiomatization of Boolean algebra

 Standard axioms
a, b  B a+b = b+a

a, b, c  B (a+b)+c = a+(b+c)

0  B (unit element for +) 0 + a = a

a  B ¬¬a = a

a  B ¬(a + ¬a) = 0

a, b, c  B
a + ¬(¬b + ¬c) = ¬(¬(a+b) + ¬(a+c))

Robbins Problem

 Huntigton’s proposal to axiomatize
Boolean algebras (1933)
Commutativity + associativity

a, b  B. a = ¬(¬a + b) + ¬(¬a + ¬b)

 Herbert Robbins
Commutativity + associativity

a, b  B. a = ¬(¬(a + b) + ¬(a + ¬b))

Got coined “Robbins algebra”
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Solving the Robbins Problem

 William McCune and Larry Wos
 Argonne National Laboratories

 EQP & Otter (first order provers)

 EQP solved this in 8 days, completed on Oct. 10,1996 

 One step from the proof:

¬(¬(¬(¬(¬(x) + x) + ¬(¬(x) + x) + x + x + x + x) + 
¬(¬(¬(x) + x) + x + x + x) + x) + x) =
¬(¬(¬(x) + x) + ¬(¬(x) + x) + x + x + x + x)

 Otter proved that the proof is OK (its successor is 
called Prover9)

----- EQP 0.9, June 1996 -----

The job began on eyas09.mcs.anl.gov, Wed Oct  2 12:25:37 1996

UNIT CONFLICT from 17666 and 2 at 678232.20 seconds.

---------------- PROOF ----------------

2 (wt=7) [] -(n(x + y) = n(x)).

3 (wt=13) [] n(n(n(x) + y) + n(x + y)) = y.

5 (wt=18) [para(3,3)] n(n(n(x + y) + n(x) + y) + y) = n(x + y).

6 (wt=19) [para(3,3)] n(n(n(n(x) + y) + x + y) + y) = n(n(x) + y).

24 (wt=21) [para(6,3)] n(n(n(n(x) + y) + x + y + y) + n(n(x) + y)) = y.

47 (wt=29) [para(24,3)] n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + z) + n(y + z)) = z.

48 (wt=27) [para(24,3)] n(n(n(n(x) + y) + n(n(x) + y) + x + y + y) + y) = n(n(x) + y).

146 (wt=29) [para(48,3)] n(n(n(n(x) + y) + n(n(x) + y) + x + y + y + y) + n(n(x) + y)) = y.

250 (wt=34) [para(47,3)] n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + n(y + z) + z) + z) = n(y + z).

996 (wt=42) [para(250,3)] n(n(n(n(n(n(x) + y) + x + y + y) + n(n(x) + y) + n(y + z) + z) + z + u) + n(n(y + z) + 

u)) = u.

16379 (wt=21) [para(5,996),demod([3])] n(n(n(n(x) + x) + x + x + x) + x) = n(n(x) + x).

16387 (wt=29) [para(16379,3)] n(n(n(n(n(x) + x) + x + x + x) + x + y) + n(n(n(x) + x) + y)) = y.

16388 (wt=23) [para(16379,3)] n(n(n(n(x) + x) + x + x + x + x) + n(n(x) + x)) = x.

16393 (wt=29) [para(16388,3)] n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + x) = n(n(x) + x).

16426 (wt=37) [para(16393,3)] n(n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + x + y) + n(n(n(x) + x) + y)) = 

y.

17547 (wt=60) [para(146,16387)] n(n(n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) + n(n(n(x) + x) + x + x + x) 

+ x) + x) = n(n(n(x) + x) + n(n(x) + x) + x + x + x + x).

17666 (wt=33) [para(24,16426),demod([17547])] n(n(n(x) + x) + n(n(x) + x) + x + x + x + x) = n(n(n(x) + x) 

+ x + x + x).

------------ end of proof -------------
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A problem by Lewis Carol
 The only animals in this house are cats

 Every animal that loves to gaze at the moon is suitable 
for a pet

 When I detest an animal, I avoid it

 No animals are carnivorous unless they prowl at night

 No cat fails to kill a mice

 No animals ever like me, except those that are in this 
house

 Kangaroos are not suitable for pets

 None but carnivorous animals kill mice

 I detest animals that do not like me

 Animals that prowl at night always love to gaze at the 
moon

 Therefore, I always avoid a kangaroo

Summary

 FOPL semantics

 Chains of inference

 Propositionalization

 Resolution
Unification algorithm

Generalized resolution

Equality

Resolution strategies

 Automatic theorem proving


