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Adversarial search -

Strategies in games

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies
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Outline

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax

Categorization of games

 Number of players (2 or higher)

 Competitive or cooperative

 Zero sum (game theory)
 Total gains = Total losses

 Discrete or continuous

 Finite or infinite

 Deterministic or stochastic

 Perfect or partial information
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Playing the game

 Choosing the best move on each turn

Episodic search (no backtracking)

 Conventions

Turns alternate

Player 1 moves first

Search problem

 (S, S0, succ(): S  P(S), F, V(): F  )

S a finite set of states (state includes 

player due to move)

S0 initial state

succ() follower states function

F terminal states

V value function for terminal states
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Example: A trivial card game

 Deal four playing cards out, face up

 Players take cards alternating

 The player with the highest even sum 

scores the amount

Entire search space
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Minimax search

 Classic method how bandits share the 

gold

 Recursive search method (DFS like)

For own moves choose the state that 

maximizes the game theoretic value

For the moves of the opponent choose the 

state that minimizes the game theoretic value

Minimax algorithm

 At first assign the values associated with 
terminal states

 Then move the values toward the root node 
using minimax decision

 Game theoretic value

GTV(S) =
if (S is terminal)

return V(S)
else

let { S1, S2, … Sk } = succ(S)
let Vi = GTV(Si) for each i
if (player-to-move(S) == 1)

return max(Vi)
else

return min(Vi)
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Moving the scores

Moving the scores
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Moving the scores

Exercise: Nim

 There are some piles of matches

 On each turn one may remove any number of 
matches, but at least one from a single pile

 The last person to remove a match loses 
(misère game)

 In II-Nim, one begins with two piles, each with 
two matches

( ii ii )
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( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , i )-A ( i  , ii )-A

( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , i )-B ( i  , ii )-B

( ii , ii )-B

II-Nim state space

 Equivalent states due 

to symmetry (e.g. 

(_,ii)-A and (ii,_)-A)

 Merge them using a 

canonical description 

(e.g. left pile never 

larger than right)!

( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , _ )-A ( i  , i )-A ( i  , ii )-A

( ii , _ )-A ( ii , i )-A ( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , _ )-B ( i  , i )-B ( i  , ii )-B

( ii , _ )-B ( ii , i )-B ( ii , ii )-B

S = ( _ , _ )-A ( _ , i )-A ( _ , ii )-A ( i , i )-A ( i , ii )-A ( ii , ii )-A 

( _ , _ )-B ( _ , i )-B ( _ , ii )-B ( i , i )-B ( i , ii )-B ( ii , ii )-B 

S0
= ( ii , ii )-A

succ() = succ(_,i)-A = { (_,_)-B } succ(_,i)-B = { (_,_)-A }

succ(_,ii)-A = { (_,_)-B , (_,i)-B } succ(_,ii)-B = { (_,_)-A , (_,i)-A }

succ(i,i)-A = { (_,i)-B } succ(i,i)-B = { (_,i)-A }

succ(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} succ(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

succ(ii,ii)-A = { (_,ii)-B , (i,ii)-B } succ(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

F = ( _ , _ )-A ( _ , _ )-B 

V = V( _ , _ )-A = +1 V( _ , _ )-B = -1

II-Nim formal definition
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(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree
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(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree
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(ii ii) A

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A -1

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree
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Real games

 Search space is too large

 Real-time decision requirement

 Chess
 Branching factor is ~35

 Allows for a 4-ply look ahead

 Capacity: < 2 million states per move (at 10k states/sec for 3 
minutes)

 354 = 1 500 625; 355 = 52 521 875

 Average humans can look ahead 6-8 plies

 Guaranteed solution not possible

 Solution: heuristic evaluation function

Cutoff search

 Use an evaluation function

Estimate the guaranteed score

Draw search space to a certain depth

Depth chosen to limit the time taken

 Put the estimated values at the end of 

paths

 Propagate them to the top as before
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Evaluation function

 Estimates game theoretic value of a state

 Enables comparing different states

 Search + evaluation function

Combines many estimates  good for noise 

filtering

Example: Scores in chess

 Assigning weights to pieces

 Pawn  1

 Knight  3

 Bishop  3

 Rook  5

 Queen  9

 Position also matters in 

real-life evaluation functions 
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Example: Scores in chess

 Black
 5 pawns * 1 = 5

 1 bishop * 3 = 3  =18

 2 rooks * 5 = 10

 White
 5 pawns * 1 = 5

 1 rook * 5 = 5  =10

 Net scores
 Black: 18-10 = 8

 White: 10-18 = -8 

Evaluation function for the example

 Odd cards: zero

 Even cards: actual value

 In this case the evaluation function chooses 10

… which is the worst choice
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Problems with evaluation functions

 Non-quiescent states  likely to change drastically

 Wild swings in the evaluation function

 E.g.: captures in chess when using the sample  
evaluation function

 Solution: expand the state until quiescent positions 
are reached

 Horizon problem
 Good and bad possibilities in search spaces deeper 

than the horizon cannot be taken into account

 Possible solution: reduce the number of initial moves 
to look at, thus pushing the horizon farther

Pruning

 Visit as many board states as possible

 Skip bad branches (prune them)

Best value is still worse than other branches

Example: having your queen taken in chess

 Alpha-beta pruning

Can be used for entire search or cutoff search

Recognize surely inferior branches
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Idea of Alpha-Beta pruning

 The MIN-value (1) is 

already smaller than 

the MAX-value of the 

parent (2)

 The MIN-value can 
only decrease further

 The MAX-value is only 
allowed to increase

 No point in computing 
further below this 
node

MIN

MAX

MAX

2

2

5

=2

2

1

1

Terminology

 Temporary values at

 MAX-nodes are called

Alpha-values

 MIN-nodes are called

Beta-values
MIN

MAX

MAX

2

2

5

=2

2

1

1

Alpha-value

Beta-value
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Principles

 If an Alpha-value is greater than or equal 
to the Beta-value of a descendant node, 
then no more children of the descendant 
need to be considered

 If a Beta-value is less than or equal to the 
Alpha-value of a descendant node, then 
no more children of the descendant need 
to be considered

The general cutoff rule

In example: let α = max(v1, v3, 

v5).  If min(v6, v7)≤α, then we can 

be certain that it is worthless 

searching the tree from the 

current node or the sibling on its 

right.

In general: if at a B-move node, 

let α = max of all A’s choices 

expanded on current path.  Let β

= min of B’s choices, including 

those at current node.  Cutoff is  

β ≤ α.

In general: Converse rule at an 

A-move node.

(  )-a

(  )-a

(  )-b

(  )-b

(  )-a

(  )-b

v1

v3

v4

v2

v5

v6

v7

?

??

?
?

?

Current

Node
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How much do we gain?
 Assuming a uniform branching factor b, minimax

examines O(bh) nodes
 So does alpha-beta in the worst-case

 But: alpha-beta is sensitive to the order of nodes
 The gain for alpha-beta is maximum when

 the MIN children of a MAX node are ordered in decreasing 
backed up values

 the MAX children of a MIN node are ordered in increasing 
backed up values

 Then alpha-beta examines O(bh/2) nodes [Knuth and 
Moore, 1975]

 But this requires an oracle
 If nodes are ordered at random, then the average 

number of nodes examined by alpha-beta is 
~O(b3h/4)

Alpha-beta pruning 

for the four-card game

Player 1

Player 2
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Games with chance

 Many games have an element of chance 

(e.g. backgammon)

 Guaranteed scores can no longer be 

calculated

 Solution: calculate expected scores using 

probability

Expectimax Search

 Based on minimax tree

 For random events an extra node is added 

for each possible outcome that changes 

the possible board states after the event

 Moving score values up through a chance 

node

E(n) =  p(n)*s(n)
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A simple game with chance

 Deal four cards face up

 Player 1 chooses a card

 Player 2 throws a die

 If it’s a ‘six’, then player 2 chooses a card, swaps it 

with player 1’s and keeps player 1’s card

 If it’s not a ‘six’, then player 2 just chooses a card

 Player 1 chooses next card

 Player 2 takes the last card

Expectimax Diagram
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Expectimax Calculations

Games Played by Computer

 Games played perfectly
 Connect four, noughts & crosses (tic-tac-toe), 

draughts (checkers)

 Best move pre-calculated for each board state
 Small number of possible board states

 Games played at superhuman level
 Backgammon, chess, go

 Scrabble, tetris

 Games played badly
 Bridge, ulti, soccer :)
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Game complexity

Game State-space 

complexity 

Game-tree 

complexity

Branching factor

Nine man’s morris ~ 1010 ~ 1050 10

Checkers ~ 1020 ~ 1031 2.8

Rubik’s cube ~ 1019 12

Chess ~ 1047 ~ 10123 35

Go (9x9) ~ 1038

Go (19x19) ~ 10171 ~ 10360 250

Gomoku (15x15) ~ 10105 ~ 1070 210

Summary

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax


