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Adversarial search -

Strategies in games

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies
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Outline

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax

Categorization of games

 Number of players (2 or higher)

 Competitive or cooperative

 Zero sum (game theory)
 Total gains = Total losses

 Discrete or continuous

 Finite or infinite

 Deterministic or stochastic

 Perfect or partial information
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Playing the game

 Choosing the best move on each turn

Episodic search (no backtracking)

 Conventions

Turns alternate

Player 1 moves first

Search problem

 (S, S0, succ(): S  P(S), F, V(): F  )

S a finite set of states (state includes 

player due to move)

S0 initial state

succ() follower states function

F terminal states

V value function for terminal states
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Example: A trivial card game

 Deal four playing cards out, face up

 Players take cards alternating

 The player with the highest even sum 

scores the amount

Entire search space
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Minimax search

 Classic method how bandits share the 

gold

 Recursive search method (DFS like)

For own moves choose the state that 

maximizes the game theoretic value

For the moves of the opponent choose the 

state that minimizes the game theoretic value

Minimax algorithm

 At first assign the values associated with 
terminal states

 Then move the values toward the root node 
using minimax decision

 Game theoretic value

GTV(S) =
if (S is terminal)

return V(S)
else

let { S1, S2, … Sk } = succ(S)
let Vi = GTV(Si) for each i
if (player-to-move(S) == 1)

return max(Vi)
else

return min(Vi)
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Moving the scores

Moving the scores
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Moving the scores

Exercise: Nim

 There are some piles of matches

 On each turn one may remove any number of 
matches, but at least one from a single pile

 The last person to remove a match loses 
(misère game)

 In II-Nim, one begins with two piles, each with 
two matches

( ii ii )
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( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , i )-A ( i  , ii )-A

( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , i )-B ( i  , ii )-B

( ii , ii )-B

II-Nim state space

 Equivalent states due 

to symmetry (e.g. 

(_,ii)-A and (ii,_)-A)

 Merge them using a 

canonical description 

(e.g. left pile never 

larger than right)!

( _ , _ )-A ( _ , i )-A ( _ , ii )-A

( i  , _ )-A ( i  , i )-A ( i  , ii )-A

( ii , _ )-A ( ii , i )-A ( ii , ii )-A

( _ , _ )-B ( _ , i )-B ( _ , ii )-B

( i  , _ )-B ( i  , i )-B ( i  , ii )-B

( ii , _ )-B ( ii , i )-B ( ii , ii )-B

S = ( _ , _ )-A ( _ , i )-A ( _ , ii )-A ( i , i )-A ( i , ii )-A ( ii , ii )-A 

( _ , _ )-B ( _ , i )-B ( _ , ii )-B ( i , i )-B ( i , ii )-B ( ii , ii )-B 

S0
= ( ii , ii )-A

succ() = succ(_,i)-A = { (_,_)-B } succ(_,i)-B = { (_,_)-A }

succ(_,ii)-A = { (_,_)-B , (_,i)-B } succ(_,ii)-B = { (_,_)-A , (_,i)-A }

succ(i,i)-A = { (_,i)-B } succ(i,i)-B = { (_,i)-A }

succ(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} succ(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

succ(ii,ii)-A = { (_,ii)-B , (i,ii)-B } succ(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

F = ( _ , _ )-A ( _ , _ )-B 

V = V( _ , _ )-A = +1 V( _ , _ )-B = -1

II-Nim formal definition



9

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree
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(ii ii) A

(i  ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i  ii) B (- ii) B

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree



11

(ii ii) A

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A -1

(i  ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree
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Real games

 Search space is too large

 Real-time decision requirement

 Chess
 Branching factor is ~35

 Allows for a 4-ply look ahead

 Capacity: < 2 million states per move (at 10k states/sec for 3 
minutes)

 354 = 1 500 625; 355 = 52 521 875

 Average humans can look ahead 6-8 plies

 Guaranteed solution not possible

 Solution: heuristic evaluation function

Cutoff search

 Use an evaluation function

Estimate the guaranteed score

Draw search space to a certain depth

Depth chosen to limit the time taken

 Put the estimated values at the end of 

paths

 Propagate them to the top as before
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Evaluation function

 Estimates game theoretic value of a state

 Enables comparing different states

 Search + evaluation function

Combines many estimates  good for noise 

filtering

Example: Scores in chess

 Assigning weights to pieces

 Pawn  1

 Knight  3

 Bishop  3

 Rook  5

 Queen  9

 Position also matters in 

real-life evaluation functions 
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Example: Scores in chess

 Black
 5 pawns * 1 = 5

 1 bishop * 3 = 3  =18

 2 rooks * 5 = 10

 White
 5 pawns * 1 = 5

 1 rook * 5 = 5  =10

 Net scores
 Black: 18-10 = 8

 White: 10-18 = -8 

Evaluation function for the example

 Odd cards: zero

 Even cards: actual value

 In this case the evaluation function chooses 10

… which is the worst choice
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Problems with evaluation functions

 Non-quiescent states  likely to change drastically

 Wild swings in the evaluation function

 E.g.: captures in chess when using the sample  
evaluation function

 Solution: expand the state until quiescent positions 
are reached

 Horizon problem
 Good and bad possibilities in search spaces deeper 

than the horizon cannot be taken into account

 Possible solution: reduce the number of initial moves 
to look at, thus pushing the horizon farther

Pruning

 Visit as many board states as possible

 Skip bad branches (prune them)

Best value is still worse than other branches

Example: having your queen taken in chess

 Alpha-beta pruning

Can be used for entire search or cutoff search

Recognize surely inferior branches
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Idea of Alpha-Beta pruning

 The MIN-value (1) is 

already smaller than 

the MAX-value of the 

parent (2)

 The MIN-value can 
only decrease further

 The MAX-value is only 
allowed to increase

 No point in computing 
further below this 
node

MIN

MAX

MAX

2

2

5

=2

2

1

1

Terminology

 Temporary values at

 MAX-nodes are called

Alpha-values

 MIN-nodes are called

Beta-values
MIN

MAX

MAX

2

2

5

=2

2

1

1

Alpha-value

Beta-value
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Principles

 If an Alpha-value is greater than or equal 
to the Beta-value of a descendant node, 
then no more children of the descendant 
need to be considered

 If a Beta-value is less than or equal to the 
Alpha-value of a descendant node, then 
no more children of the descendant need 
to be considered

The general cutoff rule

In example: let α = max(v1, v3, 

v5).  If min(v6, v7)≤α, then we can 

be certain that it is worthless 

searching the tree from the 

current node or the sibling on its 

right.

In general: if at a B-move node, 

let α = max of all A’s choices 

expanded on current path.  Let β

= min of B’s choices, including 

those at current node.  Cutoff is  

β ≤ α.

In general: Converse rule at an 

A-move node.

(  )-a

(  )-a

(  )-b

(  )-b

(  )-a

(  )-b

v1

v3

v4

v2

v5

v6

v7

?

??

?
?

?

Current

Node
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How much do we gain?
 Assuming a uniform branching factor b, minimax

examines O(bh) nodes
 So does alpha-beta in the worst-case

 But: alpha-beta is sensitive to the order of nodes
 The gain for alpha-beta is maximum when

 the MIN children of a MAX node are ordered in decreasing 
backed up values

 the MAX children of a MIN node are ordered in increasing 
backed up values

 Then alpha-beta examines O(bh/2) nodes [Knuth and 
Moore, 1975]

 But this requires an oracle
 If nodes are ordered at random, then the average 

number of nodes examined by alpha-beta is 
~O(b3h/4)

Alpha-beta pruning 

for the four-card game

Player 1

Player 2
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Games with chance

 Many games have an element of chance 

(e.g. backgammon)

 Guaranteed scores can no longer be 

calculated

 Solution: calculate expected scores using 

probability

Expectimax Search

 Based on minimax tree

 For random events an extra node is added 

for each possible outcome that changes 

the possible board states after the event

 Moving score values up through a chance 

node

E(n) =  p(n)*s(n)
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A simple game with chance

 Deal four cards face up

 Player 1 chooses a card

 Player 2 throws a die

 If it’s a ‘six’, then player 2 chooses a card, swaps it 

with player 1’s and keeps player 1’s card

 If it’s not a ‘six’, then player 2 just chooses a card

 Player 1 chooses next card

 Player 2 takes the last card

Expectimax Diagram
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Expectimax Calculations

Games Played by Computer

 Games played perfectly
 Connect four, noughts & crosses (tic-tac-toe), 

draughts (checkers)

 Best move pre-calculated for each board state
 Small number of possible board states

 Games played at superhuman level
 Backgammon, chess, go

 Scrabble, tetris

 Games played badly
 Bridge, ulti, soccer :)
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Game complexity

Game State-space 

complexity 

Game-tree 

complexity

Branching factor

Nine man’s morris ~ 1010 ~ 1050 10

Checkers ~ 1020 ~ 1031 2.8

Rubik’s cube ~ 1019 12

Chess ~ 1047 ~ 10123 35

Go (9x9) ~ 1038

Go (19x19) ~ 10171 ~ 10360 250

Gomoku (15x15) ~ 10105 ~ 1070 210

Summary

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax


