

II-Nim	state	e spa	се
(,)-A (i,)-A (i,)-A (_,)-B (i,)-B (i,)-B (_,)-B (,)-A (,)-B	(_, i)-A (i, i)-A (ii, i)-A (_, i)-B (i, i)-B (ii, i)-B (_, i)-A (i, i)-A (i, i)-A (i, i)-B (i, i)-B	(_, ii)-A (i, ii)-A (ii, ii)-A (_, ii)-B (i, ii)-B (ii, ii)-B (ii, ii)-B (i, ii)-A (i, ii)-A (i, ii)-A (i, ii)-B (i, ii)-B (i, ii)-B (ii, ii)-B	 Equivalent states due to symmetry (e.g. (_,ii)-A and (ii,_)-A) Merge them using a canonical description (e.g. left pile never larger than right)!

-	N	im formal defi	nition			
S	=	(_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A				
		(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B				
S ₀	=	(ii , ii)-A				
succ()	=	succ(_,i)-A = { (_,_)-B }	succ(_,i)-B = { (_,_)-A }			
		succ(_,ii)-A = { (_,_)-B , (_,i)-B }	succ(_,ii)-B = { (_,_)-A , (_,i)-A }			
		succ(i,i)-A = { (_,i)-B }	succ(i,i)-B = { (_,i)-A }			
		succ(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B}	succ(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }			
		succ(ii,ii)-A = { (_,ii)-B , (i,ii)-B }	succ(ii,ii)-B = { (_,ii)-A , (i,ii)-A }			
F	=	(_,_)-A	(_ , _)-B			
V	=	V(_ , _)-A = +1	V(_,_)-B = -1			

Game	State-space complexity	Game-tree complexity	Branching factor
Nine man's morris	~ 10 ¹⁰	~ 10 ⁵⁰	10
Checkers	~ 10 ²⁰	~ 10 ³¹	2.8
Rubik's cube	~ 10 ¹⁹		12
Chess	~ 1047	~ 10 ¹²³	35
Go (9x9)	~ 10 ³⁸		
Go (19x19)	~ 10 ¹⁷¹	~ 10 ³⁶⁰	250
Gomoku (15x15)	~ 10 ¹⁰⁵	~ 10 ⁷⁰	210
Gomoku (15x15)	~ 10 ¹⁰⁵	~ 10 ⁷⁰	210

