Adversarial search -
Strategies in games

Artificial intelligence
Kristof Karacs
PPKE-ITK

* J
Recap

m What is intelligence?
m Agent model

m Problem solving by search
Non-informed search strategies
Informed search strategies

" JEE
Outline

m Modeling two player games
m Game theoretic value

m Minimax search

m Cutoff search

m Pruning, alpha-beta

m Expectimax

" J
Categorization of games

m Number of players (2 or higher)
m Competitive or cooperative

Zero sum (game theory)
Total gains = Total losses

Discrete or continuous
Finite or infinite
Deterministic or stochastic
Perfect or partial information

" J
Playing the game

m Choosing the best move on each turn
Episodic search (no backtracking)

m Conventions
Turns alternate
Player 1 moves first

" J
Search problem

m (S, Sy succ(): S—>P(S),F,V():F—>Y)

S a finite set of states (state includes
player due to move)

So initial state

succ() follower states function

F terminal states

V value function for terminal states

" J
Example: A trivial card game

m Deal four playing cards out, face up
m Players take cards alternating

m The player with the highest even sum
scores the amount

e w ia & X P
o &
E . * e il ’
® ‘g 4 *3 & .L ¢
" JE
Entire search space
AN
Piagec 1 f f’i.v A A
N\ /) \
f ‘ \
/ | ! | \..‘
Player 2 5 3 7 $
’ / f 'I.{ ’ ,(.vl ‘|?| J‘)l »l‘ , \
7/ / /] n ,‘-.,
/ / i/ / i\ ';
Player 1 8 “ 8 7838 37
‘ I l
Plaryer 2 7 8 5 7 5 8 7 8 3 7 3 I
core fo 0 128 10 08 128 %0 -8 012 08 12 8 210
I.“jﬂ'

" A0
Minimax search

m Classic method how bandits share the
gold
m Recursive search method (DFS like)

For own moves choose the state that
maximizes the game theoretic value

For the moves of the opponent choose the
state that minimizes the game theoretic value

" J
Minimax algorithm

m At first assign the values associated with
terminal states

m Then move the values toward the root node
using minimax decision
m Game theoretic value

GTV (S) =
if (S is terminal)
return V(S)

else

let { S;, S,, .. Sy } = succ(S)
let V, = GTV(S,;) for each 1
if (player-to-move(S) == 1)

return max (V;)
else

return min (V;)

" N
Moving the scores
// \\\

\ /p\ /q\ /\\
/1/ !\%\\\\&\}

5555555555555555555555555

'Hﬁ\HHW%*HHH-HW

Plap2 3 7 § 5 7 5 8 7 8 3 7 3 8 5 8 3 5 23 7 5 7 3 & 3

o1 7 8 5 B 5 7 7 8 3 8 3 7 5 8 3 8 3 55 7 3 7 3 5

Payer2 ¢ 7 8 5 7 5 8 7 8 3 7 3 8 5 8 3 5 3 7 57 3 5 3

Moving the score

AN
* A » W T
Plager 1 3 5 7
! '_?', A /? !
I\ f\ 71\ ||
A T 2w ¥ b 4 8Y
!I I\ | [‘
Playe y

Player 2 o - a < ,
e 8 7 8

Scorefor 10 12 8 126 10 12 108 -0 08 Y2 12 8 108 1012 10 & 12 8 12-10
player 1

"
Exercise: Nim

m There are some piles of matches

m On each turn one may remove any number of
matches, but at least one from a single pile

m The last person to remove a match loses
(misere game)

m In [I-Nim, one begins with two piles, each with
two matches

Gi i)

lI-Nim state space

(_, A (_,i)A (_,ii)A
G,)»A (i,i)A (i, ii)A
Gi,)-A (i, i)A (i, ii)A
(_,_)>B (_,i)B (_.ii)B
(i,)»B (i,i)}B (i,ii)B
(i,)B (ii,i)-B (ii,ii)B
(_,)A (_,i)A (_,i)A
(i i)A (i ii)A

(i, i)-A

(_,_)>B (_,i)B (_.ii)B
(i ,i)B (i,ii)B

(ii ,ii)-B

m Equivalent states due
to symmetry (e.g.

(ii)-A and (ji,_)-A)

m Merge them using a
canonical description
(e.q. left pile never
larger than right)!

[I-Nim formal definition

S = (L,)AL DAL iD)AG DA DA, i)-A
(_,_)B(_,i)-B(_,ii)-B(i,i)B(i,ii)B{(ii,ii)B
S, = [i,ii)A

suce) = succ(_,i)-A={(,)-B}
succ(_,ii)-A={(,)-B,(,)B}
succ(i,i)-A={ (,i)-B}
succ(i,ii)-A={ (_,i)-B (,ii)-B (i,i)-B}
succ(ii,ii)-A = { (_,ii)-B, (i,i)-B }

succ(L,i)-B={(,)-A}
succ(_,ii)-B={(,)-A, (Li-A}
succ(i,i)-B={(,i)-A}

succ(i,ii)-B = { (Li)-A, (ii)-A(i,i)-A}
succ(ii,ii)-B = { (Lii)-A, (i,ii)-A}

F = (_1_)-A

(_1_)-B

Vv = M

A=+

V(_,_)B=-1

[I-Nim Game Tree

(i i) A
(i ii) B/ - i)B
(-ii) A / h " (-i)/A EA +1
¢ i)B/ (—>-1 -)® 98 1] [9B1
)4+ A+
" JE
lI-Nim Game Tree
(ii i) A
(i ii) B/ - i)B
(i) / b ()" (-i)/A EA +1
¢ i)B+/1 (—>-1 -)® 98 1] [9B
()" A+

[I-Nim Game Tree

(i i) A
(i ii) B/ - i)B
(-ii) A / h " (-i)/A EA +1
¢ i)B{ (—>-1 CDB+1][9® 1] 9B
)4+ A+
"
lI-Nim Game Tree
(ii ii) A
(i ii) B/ - i)B
anks +1/ h +1 [|¢DA -1 (- i)/A -1>A +1
¢ i)B+/1 (—>-1 cpB+][9® 1] 9B
()" A+

10

[I-Nim Game Tree

(i i) A
(i ii) B-/l i)B 1
anks +1/ h +1 [|[¢DA -1 - i)/A -1}‘\ +1
¢ i)B{ (—>-1 CDB+1][9® 1] 9B
)4+ A+
" J
lI-Nim Game Tree
(iiii) A -1
(i i) B-/l (-i)B -1
anks +1/ h +1 [|¢DA -1 (- i)/A -1>A +1
¢ i)B+/1 (—>-1 cpB+][9® 1] 9B
()" A+

11

Real games

Search space is too large
Real-time decision requirement
Chess

Branching factor is ~35

Allows for a 4-ply look ahead

m Capacity: < 2 million states per move (at 10k states/sec for 3
minutes)

m 354=1500 625; 355 =52 521 875
Average humans can look ahead 6-8 plies

Guaranteed solution not possible
Solution: heuristic evaluation function

" JE
Cutoff search

m Use an evaluation function
Estimate the guaranteed score
Draw search space to a certain depth
Depth chosen to limit the time taken
m Put the estimated values at the end of
paths

m Propagate them to the top as before

12

= JEE
Evaluation function

m Estimates game theoretic value of a state
m Enables comparing different states

m Search + evaluation function

Combines many estimates — good for noise
filtering

Example: Scores in chess

E 7 7/¢s7 = Assigning weights to pieces
51%71 %75 %y/ %} Pawn —1
%, // % / Knight — 3

o re .
o, 1742 Bishop — 3
7 V Y Y

%,ﬁ//% //% % Rook —5
Y

_

% U, w Queen —» 9
|), AR " .
7 ﬁ¢ il 7 m Position also matters in
real-life evaluation functions

Example: Scores in chess

7, 7//%¥%7/) = Black
?1/ / / 5pawns:1i5)
/ / // / 1 bishop *3=3 3 =18

2rooks *5=10

\\

_ / @1/1 = White
/ﬁ// / / S5pawns *1=5
» %/ / lrook *5=5 > =10
)y
27 // AR
. B / 7 | = Netscores

Black: 18-10 =8
White: 10-18 = -8

" S
Evaluation function for the example

m Odd cards: zero
m Even cards: actual value

i e 39.' vw
& C ®
® 2 o8 'Y Y

In this case the evaluation function chooses 10
... which is the worst choice

14

Problems with evaluation functions

m Non-quiescent states - likely to change drastically
Wild swings in the evaluation function

E.g.: captures in chess when using the sample
evaluation function

Solution: expand the state until quiescent positions
are reached

m Horizon problem

Good and bad possibilities in search spaces deeper
than the horizon cannot be taken into account

Possible solution: reduce the number of initial moves
to look at, thus pushing the horizon farther

Pruning

m Visit as many board states as possible

m Skip bad branches (prune them)
Best value is still worse than other branches
Example: having your queen taken in chess

m Alpha-beta pruning
Can be used for entire search or cutoff search
Recognize surely inferior branches

15

|ldea of Alpha-Beta pruning

MAX m The MIN-value (1) is
already smaller than
the MAX-value of the
parent (2)

MIN 1 m The MIN-value can

only decrease further

m The MAX-value is only
allowed to increase

m No point in computing
further below this

2 5 1 node

Terminology

Alpha-value
m Temporary values at

>2

MAX-nodes are called
Alpha-values

MIN-nodes are called
Beta-values

16

" J
Principles

m |f an Alpha-value is greater than or equal
to the Beta-value of a descendant node,
then no more children of the descendant
need to be considered

m If a Beta-value is less than or equal to the
Alpha-value of a descendant node, then
no more children of the descendant need
to be considered

The general cutoff rule

Vs). If min(vg, v7)<a, then we can A
be certain that it is worthless
searching the tree from the
current node or the sibling on its
right.

In general: if at a B-move node,
let a = max of all A’s choices

In example: let a = max(vy, vs, v
: O]
?

expanded on current path. Let B

= min of B’s choices, including

those at current node. Cutoffis Vg

pxa L

In general: Converse rule at an ° \ 2
A-move node. V7 current

Node

17

How much do we gain?

m Assuming a uniform branching factor b, minimax
examines O(b") nodes

So does alpha-beta in the worst-case
m But: alpha-beta is sensitive to the order of nodes

m The gain for alpha-beta is maximum when

m the MIN children of a MAX node are ordered in decreasing
backed up values

m the MAX children of a MIN node are ordered in increasing
backed up values

m Then alpha-beta examines O(b"2) nodes [knuth and
Moore, 1975]

m But this requires an oracle

m If nodes are ordered at random, then the average
nuerté%'/r4)of nodes examined by alpha-beta is

~

" S
Alpha-beta pruning
for the four-card game

[TTe e
-ty

Player 1 ::] ‘%@ _IJ l, - |

10~ 10 7 -4 17 9 woE o

Player 2 [;UF_JP [] :J (] [00 O

" 17 S 17 18

18

= JEE
Games with chance

m Many games have an element of chance
(e.g. backgammon)

m Guaranteed scores can no longer be
calculated

m Solution: calculate expected scores using
probability

" J
Expectimax Search

m Based on minimax tree

m For random events an extra node is added
for each possible outcome that changes
the possible board states after the event

m Moving score values up through a chance
node

E(n) =2 p(n)*s(n)

" J
A simple game with chance

m Deal four cards face up
Player 1 chooses a card

Player 2 throws a die

If it's a ‘six’, then player 2 chooses a card, swaps it
with player 1’s and keeps player 1’s card

If it's not a ‘six’, then player 2 just chooses a card
Player 1 chooses next card
Player 2 takes the last card

Expectimax Diagram

Player 1 chooses A — 5 7 8
Yn'blh six (P=1/6) Ucr.','\(mryﬁ a six (P=5%)
AN gt
arye exchanges u.«',;-' ad for keeps this ca
5 7 a 4 s
A A A A
I\ I\ FAY '\
/ \ | / \
A J J
Tayer 7 8 5 85 8 8 5
hoos I ’
b 8 7 8 5 8 8
care fo 1 12] 0 8 s
Player

20

" JEE
E ti Calculati
(%8 sem =533)
Player 1 chooses 87 Y — ~" s
Dico Theigwih six (7= 1,6) mrz'{(:u—\if;h a 3ix {P=56)
AN A
‘;P 12 . B g 8 <0
Player 2 exchanges ;;In).« 1's card for i kesge this carg:.
S ? 5 7 8
A N A
\ 8 ag \8 10/ \ 8 [\
.,‘ "lv ! '
Player 1 5 5 7 7 8
chooses
l } 2 % ANQ } * -2 8 12 }} }
Player 2 8 8 7 5 3 8
Soore for 0 -10 8 g 8 1 8 1
Ly

" J
Games Played by Computer

m Games played perfectly

Connect four, noughts & crosses (tic-tac-toe),
draughts (checkers)

Best move pre-calculated for each board state
= Small number of possible board states

m Games played at superhuman level
Backgammon, chess, go
Scrabble, tetris

m Games played badly
Bridge, ulti, soccer)

21

Game complexity

Nine man’s morris ~ 1010 ~ 10%0
Checkers ~10% ~10%
Rubik’s cube ~10%

Chess ~ 10%7 ~ 1013
Go (9x9) ~10%8

Go (19x19) ~ 10171 ~ 10360
Gomoku (15x15) ~ 10105 ~ 107

10
2.8
12
35

250
210

" J
Summary

m Modeling two player games
m Game theoretic value

m Minimax search

m Cutoff search

m Pruning, alpha-beta

m Expectimax

22

