
1

Adversarial search -

Strategies in games

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies

2

Outline

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax

Categorization of games

 Number of players (2 or higher)

 Competitive or cooperative

 Zero sum (game theory)
 Total gains = Total losses

 Discrete or continuous

 Finite or infinite

 Deterministic or stochastic

 Perfect or partial information

3

Playing the game

 Choosing the best move on each turn

Episodic search (no backtracking)

 Conventions

Turns alternate

Player 1 moves first

Search problem

 (S, S0, succ(): S P(S), F, V(): F)

S a finite set of states (state includes

player due to move)

S0 initial state

succ() follower states function

F terminal states

V value function for terminal states

4

Example: A trivial card game

 Deal four playing cards out, face up

 Players take cards alternating

 The player with the highest even sum

scores the amount

Entire search space

5

Minimax search

 Classic method how bandits share the

gold

 Recursive search method (DFS like)

For own moves choose the state that

maximizes the game theoretic value

For the moves of the opponent choose the

state that minimizes the game theoretic value

Minimax algorithm

 At first assign the values associated with
terminal states

 Then move the values toward the root node
using minimax decision

 Game theoretic value

GTV(S) =
if (S is terminal)

return V(S)
else

let { S1, S2, … Sk } = succ(S)
let Vi = GTV(Si) for each i
if (player-to-move(S) == 1)

return max(Vi)
else

return min(Vi)

6

Moving the scores

Moving the scores

7

Moving the scores

Exercise: Nim

 There are some piles of matches

 On each turn one may remove any number of
matches, but at least one from a single pile

 The last person to remove a match loses
(misère game)

 In II-Nim, one begins with two piles, each with
two matches

(ii ii)

8

(_ , _)-A (_ , i)-A (_ , ii)-A

(i , i)-A (i , ii)-A

(ii , ii)-A

(_ , _)-B (_ , i)-B (_ , ii)-B

(i , i)-B (i , ii)-B

(ii , ii)-B

II-Nim state space

 Equivalent states due

to symmetry (e.g.

(_,ii)-A and (ii,_)-A)

 Merge them using a

canonical description

(e.g. left pile never

larger than right)!

(_ , _)-A (_ , i)-A (_ , ii)-A

(i , _)-A (i , i)-A (i , ii)-A

(ii , _)-A (ii , i)-A (ii , ii)-A

(_ , _)-B (_ , i)-B (_ , ii)-B

(i , _)-B (i , i)-B (i , ii)-B

(ii , _)-B (ii , i)-B (ii , ii)-B

S = (_ , _)-A (_ , i)-A (_ , ii)-A (i , i)-A (i , ii)-A (ii , ii)-A

(_ , _)-B (_ , i)-B (_ , ii)-B (i , i)-B (i , ii)-B (ii , ii)-B

S0
= (ii , ii)-A

succ() = succ(_,i)-A = { (_,_)-B } succ(_,i)-B = { (_,_)-A }

succ(_,ii)-A = { (_,_)-B , (_,i)-B } succ(_,ii)-B = { (_,_)-A , (_,i)-A }

succ(i,i)-A = { (_,i)-B } succ(i,i)-B = { (_,i)-A }

succ(i,ii)-A = { (_,i)-B (_,ii)-B (i,i)-B} succ(i,ii)-B = { (_,i)-A , (_,ii)-A (i,i)-A }

succ(ii,ii)-A = { (_,ii)-B , (i,ii)-B } succ(ii,ii)-B = { (_,ii)-A , (i,ii)-A }

F = (_ , _)-A (_ , _)-B

V = V(_ , _)-A = +1 V(_ , _)-B = -1

II-Nim formal definition

9

(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

10

(ii ii) A

(i ii) B (- ii) B

(i i) A(- ii) A (- i) A (- i) A (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A

(i ii) B (- ii) B

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

11

(ii ii) A

(i ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

(ii ii) A -1

(i ii) B -1 (- ii) B -1

(i i) A +1(- ii) A +1 (- i) A -1 (- i) A -1 (- -) A +1

(- i) B +1 (- -) B -1 (- i) B +1 (- -) B -1 (- -) B -1

(- -) A +1(- -) A +1

II-Nim Game Tree

12

Real games

 Search space is too large

 Real-time decision requirement

 Chess
 Branching factor is ~35

 Allows for a 4-ply look ahead

 Capacity: < 2 million states per move (at 10k states/sec for 3
minutes)

 354 = 1 500 625; 355 = 52 521 875

 Average humans can look ahead 6-8 plies

 Guaranteed solution not possible

 Solution: heuristic evaluation function

Cutoff search

 Use an evaluation function

Estimate the guaranteed score

Draw search space to a certain depth

Depth chosen to limit the time taken

 Put the estimated values at the end of

paths

 Propagate them to the top as before

13

Evaluation function

 Estimates game theoretic value of a state

 Enables comparing different states

 Search + evaluation function

Combines many estimates good for noise

filtering

Example: Scores in chess

 Assigning weights to pieces

 Pawn 1

 Knight 3

 Bishop 3

 Rook 5

 Queen 9

 Position also matters in

real-life evaluation functions

14

Example: Scores in chess

 Black
 5 pawns * 1 = 5

 1 bishop * 3 = 3 =18

 2 rooks * 5 = 10

 White
 5 pawns * 1 = 5

 1 rook * 5 = 5 =10

 Net scores
 Black: 18-10 = 8

 White: 10-18 = -8

Evaluation function for the example

 Odd cards: zero

 Even cards: actual value

 In this case the evaluation function chooses 10

… which is the worst choice

15

Problems with evaluation functions

 Non-quiescent states likely to change drastically

 Wild swings in the evaluation function

 E.g.: captures in chess when using the sample
evaluation function

 Solution: expand the state until quiescent positions
are reached

 Horizon problem
 Good and bad possibilities in search spaces deeper

than the horizon cannot be taken into account

 Possible solution: reduce the number of initial moves
to look at, thus pushing the horizon farther

Pruning

 Visit as many board states as possible

 Skip bad branches (prune them)

Best value is still worse than other branches

Example: having your queen taken in chess

 Alpha-beta pruning

Can be used for entire search or cutoff search

Recognize surely inferior branches

16

Idea of Alpha-Beta pruning

 The MIN-value (1) is

already smaller than

the MAX-value of the

parent (2)

 The MIN-value can
only decrease further

 The MAX-value is only
allowed to increase

 No point in computing
further below this
node

MIN

MAX

MAX

2

2

5

=2

2

1

1

Terminology

 Temporary values at

 MAX-nodes are called

Alpha-values

 MIN-nodes are called

Beta-values
MIN

MAX

MAX

2

2

5

=2

2

1

1

Alpha-value

Beta-value

17

Principles

 If an Alpha-value is greater than or equal
to the Beta-value of a descendant node,
then no more children of the descendant
need to be considered

 If a Beta-value is less than or equal to the
Alpha-value of a descendant node, then
no more children of the descendant need
to be considered

The general cutoff rule

In example: let α = max(v1, v3,

v5). If min(v6, v7)≤α, then we can

be certain that it is worthless

searching the tree from the

current node or the sibling on its

right.

In general: if at a B-move node,

let α = max of all A’s choices

expanded on current path. Let β

= min of B’s choices, including

those at current node. Cutoff is

β ≤ α.

In general: Converse rule at an

A-move node.

()-a

()-a

()-b

()-b

()-a

()-b

v1

v3

v4

v2

v5

v6

v7

?

??

?
?

?

Current

Node

18

How much do we gain?
 Assuming a uniform branching factor b, minimax

examines O(bh) nodes
 So does alpha-beta in the worst-case

 But: alpha-beta is sensitive to the order of nodes
 The gain for alpha-beta is maximum when

 the MIN children of a MAX node are ordered in decreasing
backed up values

 the MAX children of a MIN node are ordered in increasing
backed up values

 Then alpha-beta examines O(bh/2) nodes [Knuth and
Moore, 1975]

 But this requires an oracle
 If nodes are ordered at random, then the average

number of nodes examined by alpha-beta is
~O(b3h/4)

Alpha-beta pruning

for the four-card game

Player 1

Player 2

19

Games with chance

 Many games have an element of chance

(e.g. backgammon)

 Guaranteed scores can no longer be

calculated

 Solution: calculate expected scores using

probability

Expectimax Search

 Based on minimax tree

 For random events an extra node is added

for each possible outcome that changes

the possible board states after the event

 Moving score values up through a chance

node

E(n) = p(n)*s(n)

20

A simple game with chance

 Deal four cards face up

 Player 1 chooses a card

 Player 2 throws a die

 If it’s a ‘six’, then player 2 chooses a card, swaps it

with player 1’s and keeps player 1’s card

 If it’s not a ‘six’, then player 2 just chooses a card

 Player 1 chooses next card

 Player 2 takes the last card

Expectimax Diagram

21

Expectimax Calculations

Games Played by Computer

 Games played perfectly
 Connect four, noughts & crosses (tic-tac-toe),

draughts (checkers)

 Best move pre-calculated for each board state
 Small number of possible board states

 Games played at superhuman level
 Backgammon, chess, go

 Scrabble, tetris

 Games played badly
 Bridge, ulti, soccer :)

22

Game complexity

Game State-space

complexity

Game-tree

complexity

Branching factor

Nine man’s morris ~ 1010 ~ 1050 10

Checkers ~ 1020 ~ 1031 2.8

Rubik’s cube ~ 1019 12

Chess ~ 1047 ~ 10123 35

Go (9x9) ~ 1038

Go (19x19) ~ 10171 ~ 10360 250

Gomoku (15x15) ~ 10105 ~ 1070 210

Summary

 Modeling two player games

 Game theoretic value

 Minimax search

 Cutoff search

 Pruning, alpha-beta

 Expectimax

