
1

Informed search I.

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies



2

Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

Outline

 Best-first search

 What information is available?

 Heuristic, heuristic function

 Strategies: UCS, greedy, A*

 Properties of heuristics

 Designing heuristics

 Comparing search algorithms

 Further informed search strategies
 IDA*, RBFS, SMA*



3

Search and AI

 Search methods are ubiquitous in AI systems

 An autonomous robot uses search
 to decide which actions to take and which sensing 

operations to perform,

 to quickly anticipate collision,

 to plan trajectories,

 to interpret large numerical datasets provided by sensors 
into compact symbolic representations,

 to diagnose why something did not happen as expected,

 etc...

 Many searches may occur concurrently and 
sequentially

Applications

 Search plays a key role in many applications

Route finding: airline travel, networks

Package/mail distribution

Pipe routing, VLSI routing

Comparison and classification of protein folds

Pharmaceutical drug design

Design of protein-like molecules

Video games



4

Assumptions in basic search

 World is
 static

 discretizable

 observable

 Actions are deterministic

 In many real world problems these assumptions do not 
hold 

Extended search techniques are required

Search strategy

 The fringe is the set of all search nodes 

not yet expanded

 The fringe is implemented as a priority 

queue

insert(n, Q)

remove(Q)

 The ordering of the nodes in the queue 

defines the search strategy



5

Revisiting states

 Most search strategies have two versions

States may be revisited

States may not be revisited

 Implementations

Flag for each state

Visited list

 Not appropriate for all strategies

Best-first search

 Which node is good?

 f() : evaluation function (typically cost 

function)

 Selection criteria: minimal value of f()

 Note: “Best” does not guarantee optimality 

of the solution path



6

Properties of best-first search

 If the state space is infinite, then in general 

the search is not complete

 If the state space is finite and revisited 

states are not discarded, then in general 

the search is not complete

 If the state space is finite and revisited 

states are discarded, then the search is 

complete, but in general it is not optimal

Search algorithm

 insert(initial-node, Q)

 Cycle
 If Q is empty then return failure

n  remove(Q)

 s  state(n)

 If is-goal(s) then return s and/or path

For every state s’ in succ(s)
 Create a node n’ as a successor of n

 insert(n’, Q)



7

Using information in search

 Intelligence: situation evaluation

 Cost of an action

Distance in route planning

Power consumption

 Path cost

g() : Sum of all action costs in the path

Defeating exponential blow up

 Decreasing the number of actions in a 

given state (policy function)

 Decreasing search depth (value function)

 Monte Carlo tree search…



8

Heuristic searches

 Heuristic = Rule of thumb

Different from heuristic measures

 Influences the node to expand

 Values that can help

Path cost g()

Heuristic measures h()

Heuristic Function

 h(node)
 Estimates path cost of reaching the solution

 Independent of the actual search tree

 h(goal state) = 0

 Methods to derive a heuristic function
 Mathematically

 By introspection

 Inspection of particular searches

 Computer programs (e.g.: Absolver)

 Example: straight line distance



9

Uniform Cost Search (non-informed)

 ~BFS

 Expands node with smallest g()
(ignores heuristic measures)

 Finds a solution with least cost

Condition: action costs must be positive

 Optimal and complete

 Can be very slow

Greedy Search

 Expand node with smallest h()
(ignores path cost)

 If in a dead-end then backtrack

 Problems

Blind alley effect: estimates can be wrong, 
leading to superfluous curves

May lead to non-optimal solution (h() is only 
an estimate of path cost to the goal)



10

A* search

 Combines

uniform cost search and

greedy search

 f(n) estimates the cost of

the best path through n

 f(n) = g(n) + h(n)

 Hart, Nilsson and Raphael, 1968

Example: route finding

 g(n) = distance from London

 h(n) = straight line distance to 

Liverpool

 f(n) = g(n) + h(n)

 1st round: Birmingham, Peterborough

 f(Peterborough) = 120 + 155 = 275

 f(Birmingham) = 130 + 150 = 280

 Expands Peterborough

 Returns to Birmingham in the next step, 

because 120+60+135 > 130+150

Liverpool

Nottingham

Leeds

Peterborough

London

120

155

135

130

150

Birmingham

60

Manchester

70

75

35



11

Properties of heuristics

 A heuristic h(n) is admissible if it never 

overestimates the path cost from node n to 

the goal node, i.e. 0  h(n)  h*(n).

 A heuristic h(n) is consistent (monotone) 

if, for every node n and every successor n’

of n generated by any action a

h(n)  c(n, a, n’) + h(n’).

 h1 dominates h2 if h1(n) ≥ h2(n).

Completeness theorem

 A* always finds an optimal solution path (even for non-
admissible heuristics) if there are finitely many nodes 
with f (n) ≤ f*, f* being the cost of the optimal path. This is 
guaranteed if

 all action costs  ε, for some fixed ε > 0, and

 the branching degree of all nodes are finite

 Proof

 Let f* be the cost of the optimal path

 All nodes with f (n) < f * will get expanded

 Some further nodes with f (n) = f * may get expanded



12

Optimality theorems

 If h(n) is admissible, then A* is optimal 

with no visited list

 If h(n) is consistent, then A* is optimal 

using a visited list

 If h(n) is admissible, then A* is optimally 

efficient: with any given heuristic no other 

search strategy expands fewer nodes

Dominance theorem

 If h and h’ are heuristic functions and h

dominates h’, then any node expanded by 

an A* search using h is also expanded by 

A* using h’

 Thus using a dominant heuristic will result 

in fewer expanded nodes



13

Missionaries and cannibals

 Three missionaries and 

three cannibals must cross 

a river, using a boat that 

can carry at most two.

 Find a sequence of operations that 

ensures that cannibals never outnumber 

missionaries on either side of the river!

Designing heuristics

 Good heuristics can be hard to find
 Often they are implicit in the problem, such as the 

Euclidean distance heuristic for route-finding

 They may be found by relaxing some constraint in the 
problem
 8-puzzle, 15-puzzle: allow two tiles to occupy the same square

 Missionaries: don't worry about missionaries getting eaten

 Good heuristics can be hard to compute
 Overall goal: minimizing the total time

 (Avg. time of computing the heuristic value + node 
expansion) * (total no. of nodes expanded during search)

 Trade off between the branching factor and heuristic 
complexity



14

Comparing search algorithms

 Effective branching factor (ebf): 𝑏∗

Branching rate of a search tree, in which each 
node has the same number of outgoing edges 
(BFS)

 Calculation
𝑑 : depth of solution

𝑁 : number of nodes expanded

𝑁 = 1 + 𝑏∗ + 𝑏∗2 + 𝑏∗3 +⋯+ 𝑏∗𝑑 =
𝑏∗

𝑑+1
−1

𝑏∗−1

Solve for 𝑏∗

Example:

Effective Branching Factor

 Suppose

𝑁 = 15 steps

𝑑 = 4

 Solve:
𝑏∗

4+1
−1

𝑏∗−1
= 15

 Result: 𝑏∗ = 1.57



15

Numerical comparison

 The shortest solution for the missionaries-and-cannibals 
problem takes 12 steps

Search strategy Number of 

steps

Effective 

branching factor

BFS 24,464 2.21

A* search,

h1(x) = number of people still 

on the left bank of the river

1,202 1.67

A* search,

h2(x): relaxes the requirement 

that cannibals not outnumber 

missionaries

40 1.18

Iterative-Deepening A* search

 Bottleneck of A* is memory (not time)

All visited nodes have to be recorded

 Iterative deepening like in IDS

Define contours based on evaluation function

 Iteratively increase the limit

At each iteration use a cutoff value equal to 
the smallest f(n) of any node that exceeded 
the limit in the previous iteration



16

IDA* search - contours

Recursive best-first search (RBFS)

 Best-first (using f() )

Stores search tree and the best alternative 

solution for each expanded node

 If there is a better alternative among the 

nodes visited earlier  forget the current 

subtree and continue there

When recursion unwinds, replace the f() value 

of a node with best f() value of its children

 Requires linear space



17

Task: A* from Arad to Bucharest

Recursive best-first search (RBFS)



18

Recursive best-first search (RBFS)

Recursive best-first search (RBFS)



19

A* vs. RBFS example

A* search



20

RBFS

RBFS analysis 

 More efficient than IDA* and still optimal
 Best-first Search based on next best f() contour; fewer 

regeneration of nodes

 Exploit results of search at a specific f() contour by saving 
next f() contour associated with a node whose successors 
have been explored

 Like IDA* still suffers from excessive node 
regeneration

 IDA* and RBFS not good for graphs
 Can’t check for repeated states other than those on 

current path

 Both are hard to characterize in terms of expected 
time complexity



21

Simplified memory-bounded A* 

(SMA*)

 B: bound on memory

 If memory is full when performing A*  drop 

worst leaf node (with lowest f()) and back-up the 

value of the forgotten node to its parent

 If correctly parameterized, SMA* can solve more 

complex problems than A*

SMA* analysis

 Complete, if there is any reachable 

solution

 Optimal, if any optimal solution is 

reachable

 Problem: if B is too low  thrashing may 

occur (among a small set of candidate 

nodes)



22

Summary

 Assumptions and applications

 Best-first search

 Path cost, heuristic function

 Strategies: UCS, greedy, A*, IDA*, RBFS, 
SMA*

 Admissible, consistent, dominant heuristics

 Designing good heuristics

 Effective branching factor (comparison)


