Informed search |I.

Artificial intelligence
Kristof Karacs
PPKE-ITK

" JE
Recap

m What is intelligence?
m Agent model

m Problem solving by search
Non-informed search strategies
Informed search strategies

" SN
Program

m Problem solving by search

m Search including other agents

m Machine learning

m Logic and inference

m Search in logic representation, planning
m Inference in case of constraints

m Bayesian networks

m Fuzzy logic

= JEE
Outline

Best-first search

What information is available?
Heuristic, heuristic function
Strategies: UCS, greedy, A*
Properties of heuristics
Designing heuristics
Comparing search algorithms

Further informed search strategies
IDA*, RBFS, SMA*

= JEE
Search and Al

m Search methods are ubiquitous in Al systems
m An autonomous robot uses search

to decide which actions to take and which sensing
operations to perform,

to quickly anticipate collision,
to plan trajectories,

to interpret large numerical datasets provided by sensors
into compact symbolic representations,

to diagnose why something did not happen as expected,
etc...

m Many searches may occur concurrently and
sequentially

" JE
Applications

m Search plays a key role in many applications
Route finding: airline travel, networks
Package/mail distribution
Pipe routing, VLSI routing
Comparison and classification of protein folds
Pharmaceutical drug design
Design of protein-like molecules
Video games

" J
Assumptions in basic search

m World is
static
discretizable
observable

m Actions are deterministic

m In many real world problems these assumptions do not
hold —

Extended search techniques are required

" JE
Search strategy

m The fringe is the set of all search nodes
not yet expanded

m The fringe is implemented as a priority
queue
insert(n, Q)
remove(Q)

m The ordering of the nodes in the queue
defines the search strategy

" J
Revisiting states

m Most search strategies have two versions
States may be revisited
States may not be revisited
m Implementations
Flag for each state
Visited list

m Not appropriate for all strategies

= JEE
Best-first search

m Which node is good?

m f() : evaluation function (typically cost
function)

m Selection criteria: minimal value of f()

m Note: “Best” does not guarantee optimality
of the solution path

" J
Properties of best-first search

m If the state space is infinite, then in general
the search is not complete

m If the state space is finite and revisited
states are not discarded, then in general
the search is not complete

m |f the state space is finite and revisited
states are discarded, then the search is
complete, but in general it is not optimal

" JE
Search algorithm

m insert(initial-node, Q)
m Cycle
If Q is empty then return failure
n € remove(Q)
S & state(n)
If is-goal(s) then return s and/or path

For every state s’ in succ(s)
m Create a node n’ as a successor of n
m insert(n’, Q)

g
Using information in search

m Intelligence: situation evaluation

m Cost of an action
Distance in route planning
Power consumption
m Path cost
g() : Sum of all action costs in the path

" JE
Defeating exponential blow up

m Decreasing the number of actions in a
given state (policy function)

m Decreasing search depth (value function)

m Monte Carlo tree search...

= JEE
Heuristic searches

m Heuristic = Rule of thumb
Different from heuristic measures
Influences the node to expand

m Values that can help
Path cost a()
Heuristic measures h()

= JEE
Heuristic Function

m h(node)
Estimates path cost of reaching the solution
Independent of the actual search tree
h(goal state)=0

m Methods to derive a heuristic function
Mathematically
By introspection
Inspection of particular searches
Computer programs (e.g.: Absolver)

m Example: straight line distance

" A
Uniform Cost Search (non-informed)

m ~BFS

m Expands node with smallest g()
(ignores heuristic measures)

m Finds a solution with least cost
Condition: action costs must be positive

m Optimal and complete
m Can be very slow

" JE
Greedy Search

m Expand node with smallest h()
(ignores path cost)

m |f In a dead-end then backtrack (7)
(3) (12)
m Problems B @ ©@

Blind alley effect: estimates can be wrong,
leading to superfluous curves

May lead to non-optimal solution (h() is only
an estimate of path cost to the goal)

A* search
0
m Combines o)
uniform cost search and
greedy search (n)

m f(n) estimates the cost of
the best path through n

= f(n) = g(n) + h(n) ©
m Hart, Nilsson and Raphael, 1968

hin)

g
Example: route finding

m g(n) = distance from London Liverpool 75

= h(n) = straight line distance to 35 70
Liverpool Q TNo tingham
- f(n) — g(n) + h(n) Manc es\‘t\elrso~\1\?5
m 1stround: Birmingham, Peterborough ; %
f(Peterborough) = 120 + 155 = 275 Bimggsham - Petefborough

f(Birmingham) = 130 + 150 = 280
m Expands Peterborough

m Returns to Birmingham in the next step,
because 120+60+135 > 130+150

120

London

" JE
Properties of heuristics

m A heuristic h(n) is admissible if it never
overestimates the path cost from node n to
the goal node, i.e. 0 < h(n) < h*(n).

m A heuristic h(n) is consistent (monotone)
if, for every node n and every successor n’
of n generated by any action a

h(n) < c(n, a, n)) + h(n).
m h, dominates h, if h;(n) =2 h,(n).

" JEE
Completeness theorem

m A* always finds an optimal solution path (even for non-
admissible heuristics) if there are finitely many nodes
with f (n) < f*, f* being the cost of the optimal path. This is
guaranteed if

all action costs > ¢, for some fixed € > 0, and
the branching degree of all nodes are finite
m Proof
Let f* be the cost of the optimal path
All nodes with f (n) < f * will get expanded
Some further nodes with f (n) = f * may get expanded

" JE
Optimality theorems

m If h(n) is admissible, then A* is optimal
with no visited list

m If h(n) is consistent, then A* is optimal
using a visited list

m If h(n) is admissible, then A* is optimally
efficient: with any given heuristic no other
search strategy expands fewer nodes

=
Dominance theorem

m If h and h’ are heuristic functions and h
dominates h’, then any node expanded by
an A* search using h is also expanded by
A* using h’

m Thus using a dominant heuristic will result
in fewer expanded nodes

12

Missionaries and cannibals
O —

m Three missionaries and
three cannibals must cross
a river, using a boat that
can carry at most two.

m Find a sequence of operations that
ensures that cannibals never outnumber
missionaries on either side of the river!

" JE
Designing heuristics

m Good heuristics can be hard to find

Often they are implicit in the problem, such as the
Euclidean distance heuristic for route-finding

They may be found by relaxing some constraint in the
problem

= 8-puzzle, 15-puzzle: allow two tiles to occupy the same square
= Missionaries: don't worry about missionaries getting eaten
m Good heuristics can be hard to compute
Overall goal: minimizing the total time
(Avg. time of computing the heuristic value + node
expansion) * (total no. of nodes expanded during search)

Trade off between the branching factor and heuristic
complexity

13

" J
Comparing search algorithms

m Effective branching factor (ebf): b*

Branching rate of a search tree, in which each

node has the same number of outgoing edges
(BFS)

m Calculation
d : depth of solution

N : number of nodes expanded

b*d+1_1

b*-1

N=1+b"+b?+b>++b"=

Solve for b*

" S
Example:
Effective Branching Factor

m Suppose
N = 15 steps
d=4
pr4tl_q

m Solve: - =15
b*-1

m Result: b* =1.57

14

" JE
Numerical comparison

m The shortest solution for the missionaries-and-cannibals
problem takes 12 steps

BFS 24,464 221
A* search,
h;(X) = number of people still 1,202 1.67

on the left bank of the river

A* search,
h,(x): relaxes the requirement
that cannibals not outnumber
missionaries

40 1.18

" JEE
Iterative-Deepening A* search

m Bottleneck of A* is memory (not time)
All visited nodes have to be recorded

m [terative deepening like in IDS
Define contours based on evaluation function
Iteratively increase the limit

At each iteration use a cutoff value equal to
the smallest f(n) of any node that exceeded
the limit in the previous iteration

15

IDA* search - contours

- | ‘L"J].

Nu

Recursive best-first search (RBFS)

m Best-first (using f())

Stores search tree and the best alternative
solution for each expanded node

If there is a better alternative among the
nodes visited earlier — forget the current
subtree and continue there

When recursion unwinds, replace the f() value
of a node with best f() value of its children

m Requires linear space

16

Straight-lise distance
© Dxchaest

Armd 00|
Bucharest ol
Crajova 160
Dobreta 42
Eforie 161
Fagaras 178
Ginrgiu 7
Hirsova 151
Lasi 220
Luezoj 14
Mehadia 41
Neamt 213
Oradea 180
Pitesti 1
Rimnicu Vikea |03
Sibiu 253
Timisoara 129
Urziceni Y
Vislui 199)
Zerind 373

Task: A* from Arad to Bucharest

" SN
Recursive best-first search (RBFS)

17

Recursive best-first search (RBFS)

Recursive best-first search (RBFS)

18

A* vs. RBFS example

A* search

fla)y=2+5=7 ..0’ o L€ fe)=2+7=9
- ..'. .‘

$44=8 it A Taa=11
o .‘. H

6+4=10 : 9+2mil
() :

O
9+3=12 t 1140=11
i G2 *

19

o o

® ® @ L]

10 @/(D\G) 1 0 G) @ n 12 @/G)\Q 11 u@

7
0 %) Ll
0 %) i 1

O]

ll

" JEE
RBFS analysis

m More efficient than IDA* and still optimal

Best-first Search based on next best f() contour; fewer
regeneration of nodes

Exploit results of search at a specific f() contour by saving
next f() contour associated with a node whose successors
have been explored
m Like IDA* still suffers from excessive node
regeneration
m IDA* and RBFS not good for graphs
Can’t check for repeated states other than those on
current path
m Both are hard to characterize in terms of expected
time complexity

20

" S
Simplified memory-bounded A*
(SMA¥)

m B: bound on memory

m [f memory is full when performing A* — drop
worst leaf node (with lowest f()) and back-up the
value of the forgotten node to its parent

m |f correctly parameterized, SMA* can solve more
complex problems than A*

SMA* analysis

m Complete, if there is any reachable
solution

m Optimal, if any optimal solution is
reachable

m Problem: if B is too low — thrashing may
occur (among a small set of candidate
nodes)

" I
Summary

m Assumptions and applications
m Best-first search
m Path cost, heuristic function

m Strategies: UCS, greedy, A*, IDA*, RBFS,
SMA*

m Admissible, consistent, dominant heuristics
m Designing good heuristics
m Effective branching factor (comparison)

22

