
1

Informed search I.

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Recap

 What is intelligence?

 Agent model

 Problem solving by search

Non-informed search strategies

 Informed search strategies

2

Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic

Outline

 Best-first search

 What information is available?

 Heuristic, heuristic function

 Strategies: UCS, greedy, A*

 Properties of heuristics

 Designing heuristics

 Comparing search algorithms

 Further informed search strategies
 IDA*, RBFS, SMA*

3

Search and AI

 Search methods are ubiquitous in AI systems

 An autonomous robot uses search
 to decide which actions to take and which sensing

operations to perform,

 to quickly anticipate collision,

 to plan trajectories,

 to interpret large numerical datasets provided by sensors
into compact symbolic representations,

 to diagnose why something did not happen as expected,

 etc...

 Many searches may occur concurrently and
sequentially

Applications

 Search plays a key role in many applications

Route finding: airline travel, networks

Package/mail distribution

Pipe routing, VLSI routing

Comparison and classification of protein folds

Pharmaceutical drug design

Design of protein-like molecules

Video games

4

Assumptions in basic search

 World is
 static

 discretizable

 observable

 Actions are deterministic

 In many real world problems these assumptions do not
hold

Extended search techniques are required

Search strategy

 The fringe is the set of all search nodes

not yet expanded

 The fringe is implemented as a priority

queue

insert(n, Q)

remove(Q)

 The ordering of the nodes in the queue

defines the search strategy

5

Revisiting states

 Most search strategies have two versions

States may be revisited

States may not be revisited

 Implementations

Flag for each state

Visited list

 Not appropriate for all strategies

Best-first search

 Which node is good?

 f() : evaluation function (typically cost

function)

 Selection criteria: minimal value of f()

 Note: “Best” does not guarantee optimality

of the solution path

6

Properties of best-first search

 If the state space is infinite, then in general

the search is not complete

 If the state space is finite and revisited

states are not discarded, then in general

the search is not complete

 If the state space is finite and revisited

states are discarded, then the search is

complete, but in general it is not optimal

Search algorithm

 insert(initial-node, Q)

 Cycle
 If Q is empty then return failure

n remove(Q)

 s state(n)

 If is-goal(s) then return s and/or path

For every state s’ in succ(s)
 Create a node n’ as a successor of n

 insert(n’, Q)

7

Using information in search

 Intelligence: situation evaluation

 Cost of an action

Distance in route planning

Power consumption

 Path cost

g() : Sum of all action costs in the path

Defeating exponential blow up

 Decreasing the number of actions in a

given state (policy function)

 Decreasing search depth (value function)

 Monte Carlo tree search…

8

Heuristic searches

 Heuristic = Rule of thumb

Different from heuristic measures

 Influences the node to expand

 Values that can help

Path cost g()

Heuristic measures h()

Heuristic Function

 h(node)
 Estimates path cost of reaching the solution

 Independent of the actual search tree

 h(goal state) = 0

 Methods to derive a heuristic function
 Mathematically

 By introspection

 Inspection of particular searches

 Computer programs (e.g.: Absolver)

 Example: straight line distance

9

Uniform Cost Search (non-informed)

 ~BFS

 Expands node with smallest g()
(ignores heuristic measures)

 Finds a solution with least cost

Condition: action costs must be positive

 Optimal and complete

 Can be very slow

Greedy Search

 Expand node with smallest h()
(ignores path cost)

 If in a dead-end then backtrack

 Problems

Blind alley effect: estimates can be wrong,
leading to superfluous curves

May lead to non-optimal solution (h() is only
an estimate of path cost to the goal)

10

A* search

 Combines

uniform cost search and

greedy search

 f(n) estimates the cost of

the best path through n

 f(n) = g(n) + h(n)

 Hart, Nilsson and Raphael, 1968

Example: route finding

 g(n) = distance from London

 h(n) = straight line distance to

Liverpool

 f(n) = g(n) + h(n)

 1st round: Birmingham, Peterborough

 f(Peterborough) = 120 + 155 = 275

 f(Birmingham) = 130 + 150 = 280

 Expands Peterborough

 Returns to Birmingham in the next step,

because 120+60+135 > 130+150

Liverpool

Nottingham

Leeds

Peterborough

London

120

155

135

130

150

Birmingham

60

Manchester

70

75

35

11

Properties of heuristics

 A heuristic h(n) is admissible if it never

overestimates the path cost from node n to

the goal node, i.e. 0 h(n) h*(n).

 A heuristic h(n) is consistent (monotone)

if, for every node n and every successor n’

of n generated by any action a

h(n) c(n, a, n’) + h(n’).

 h1 dominates h2 if h1(n) ≥ h2(n).

Completeness theorem

 A* always finds an optimal solution path (even for non-
admissible heuristics) if there are finitely many nodes
with f (n) ≤ f*, f* being the cost of the optimal path. This is
guaranteed if

 all action costs ε, for some fixed ε > 0, and

 the branching degree of all nodes are finite

 Proof

 Let f* be the cost of the optimal path

 All nodes with f (n) < f * will get expanded

 Some further nodes with f (n) = f * may get expanded

12

Optimality theorems

 If h(n) is admissible, then A* is optimal

with no visited list

 If h(n) is consistent, then A* is optimal

using a visited list

 If h(n) is admissible, then A* is optimally

efficient: with any given heuristic no other

search strategy expands fewer nodes

Dominance theorem

 If h and h’ are heuristic functions and h

dominates h’, then any node expanded by

an A* search using h is also expanded by

A* using h’

 Thus using a dominant heuristic will result

in fewer expanded nodes

13

Missionaries and cannibals

 Three missionaries and

three cannibals must cross

a river, using a boat that

can carry at most two.

 Find a sequence of operations that

ensures that cannibals never outnumber

missionaries on either side of the river!

Designing heuristics

 Good heuristics can be hard to find
 Often they are implicit in the problem, such as the

Euclidean distance heuristic for route-finding

 They may be found by relaxing some constraint in the
problem
 8-puzzle, 15-puzzle: allow two tiles to occupy the same square

 Missionaries: don't worry about missionaries getting eaten

 Good heuristics can be hard to compute
 Overall goal: minimizing the total time

 (Avg. time of computing the heuristic value + node
expansion) * (total no. of nodes expanded during search)

 Trade off between the branching factor and heuristic
complexity

14

Comparing search algorithms

 Effective branching factor (ebf): 𝑏∗

Branching rate of a search tree, in which each
node has the same number of outgoing edges
(BFS)

 Calculation
𝑑 : depth of solution

𝑁 : number of nodes expanded

𝑁 = 1 + 𝑏∗ + 𝑏∗2 + 𝑏∗3 +⋯+ 𝑏∗𝑑 =
𝑏∗

𝑑+1
−1

𝑏∗−1

Solve for 𝑏∗

Example:

Effective Branching Factor

 Suppose

𝑁 = 15 steps

𝑑 = 4

 Solve:
𝑏∗

4+1
−1

𝑏∗−1
= 15

 Result: 𝑏∗ = 1.57

15

Numerical comparison

 The shortest solution for the missionaries-and-cannibals
problem takes 12 steps

Search strategy Number of

steps

Effective

branching factor

BFS 24,464 2.21

A* search,

h1(x) = number of people still

on the left bank of the river

1,202 1.67

A* search,

h2(x): relaxes the requirement

that cannibals not outnumber

missionaries

40 1.18

Iterative-Deepening A* search

 Bottleneck of A* is memory (not time)

All visited nodes have to be recorded

 Iterative deepening like in IDS

Define contours based on evaluation function

 Iteratively increase the limit

At each iteration use a cutoff value equal to
the smallest f(n) of any node that exceeded
the limit in the previous iteration

16

IDA* search - contours

Recursive best-first search (RBFS)

 Best-first (using f())

Stores search tree and the best alternative

solution for each expanded node

 If there is a better alternative among the

nodes visited earlier forget the current

subtree and continue there

When recursion unwinds, replace the f() value

of a node with best f() value of its children

 Requires linear space

17

Task: A* from Arad to Bucharest

Recursive best-first search (RBFS)

18

Recursive best-first search (RBFS)

Recursive best-first search (RBFS)

19

A* vs. RBFS example

A* search

20

RBFS

RBFS analysis

 More efficient than IDA* and still optimal
 Best-first Search based on next best f() contour; fewer

regeneration of nodes

 Exploit results of search at a specific f() contour by saving
next f() contour associated with a node whose successors
have been explored

 Like IDA* still suffers from excessive node
regeneration

 IDA* and RBFS not good for graphs
 Can’t check for repeated states other than those on

current path

 Both are hard to characterize in terms of expected
time complexity

21

Simplified memory-bounded A*

(SMA*)

 B: bound on memory

 If memory is full when performing A* drop

worst leaf node (with lowest f()) and back-up the

value of the forgotten node to its parent

 If correctly parameterized, SMA* can solve more

complex problems than A*

SMA* analysis

 Complete, if there is any reachable

solution

 Optimal, if any optimal solution is

reachable

 Problem: if B is too low thrashing may

occur (among a small set of candidate

nodes)

22

Summary

 Assumptions and applications

 Best-first search

 Path cost, heuristic function

 Strategies: UCS, greedy, A*, IDA*, RBFS,
SMA*

 Admissible, consistent, dominant heuristics

 Designing good heuristics

 Effective branching factor (comparison)

