
1

Problem solving

Artificial intelligence

Kristóf Karacs

PPKE-ITK

Program

 Problem solving by search

 Search including other agents

 Machine learning

 Logic and inference

 Search in logic representation, planning

 Inference in case of constraints

 Bayesian networks

 Fuzzy logic



2

Outline

 Concepts
State, state space, search tree, search path

Search strategy, solution

 Formalizing search

 Evaluation
Complexity, completeness, optimality, soundness

 Example

 Comparing strategies

Search and AI

 Search methods are ubiquitous in AI systems

 An autonomous robot uses search
 to decide which actions to take and which sensing 

operations to perform,

 to quickly anticipate collision,

 to plan trajectories,

 to interpret large numerical datasets provided by sensors 
into compact symbolic representations,

 to diagnose why something did not happen as expected,

 etc...

 Many searches may occur concurrently and 
sequentially



3

Applications

 Route finding: airline travel, networks

 Package/mail distribution

 Pipe routing, VLSI routing

 Comparison and classification of protein folds

 Pharmaceutical drug design

 Design of protein-like molecules

 Games

 Automated Theorem Proving

 Machine learning

Concepts in search

 State

 State space

 Search tree, search path

 Strategy

 Solution



4

Assumptions in basic search

 World is
 static

 discretizable

 observable

 Actions are deterministic

 In many real world problems these assumptions do not 
hold 

Extended search techniques are required

Steps of problem solving

 Goal formulation

 Problem formulation

 Search

 Solution

 Execution



5

Formal definition of search problems

 Initial state

 Successor function: maps a state to a set 

of (action, successor state) pairs

 Goal test

 Action costs

Search strategy

 Decision function

State expansion

Choosing an action

 Non informed search

 Informed search



6

Search strategy

 The fringe is the set of all search nodes 

not yet expanded

 The fringe is implemented as a priority 

queue

insert(n, Q)

remove(Q)

 The ordering of the nodes in the queue 

defines the search strategy

Revisiting states

 Most search strategies have two versions

States may be revisited

States may not be revisited

 Implementations

Flag for each state

Visited list

 Not appropriate for all strategies



7

Evaluation

 Time and space complexity

 Completeness

 State space

 Pruning

 Optimality

 Soundness

 Search for nonexistent solutions

 Incorrect search strategy

Search strategies

 Breadth-first (BFS)

 Depth-first (DFS)



8

Search strategies

 Uniform-cost (UCS)

 Depth limited (DLS)

 Iterative deepening depth-first (IDS)

 Bidirectional (BS)

Example

s

d

b c

a

p

e

q

h

r

f

G

3

1

2 2

8

2

9

1 4

4

15

2

9

3

1

5

5



9

Example – 8 queens problem

 Place 8 queens on board

No one can “take” another

 8-puzzle

Initial state Goal state

Implementation
 Open http://users.itk.ppke.hu/~karacs/AI/lab/search

 Download search_demo_UI_1.html and search1.js to the 

same folder

 Open example.html in a browser, and open the Javascript console 

by pressing F11, or right-click anywhere, Inspection, Console tab

 Alternatively you can use a node.js console as well

 Function stubs are included with some coding hints

 Open search1.js with an editor, and implement

 BFS

 DFS

 Optional: add a visited list to both algorithms

 Optional: iterative deepening DFS

 Count the iteration steps, define an upper bound for the steps and 

for the size of the queue / stack and the visited list as well

http://users.itk.ppke.hu/~karacs/AI/lab/search


10

Implementation

 States: arrays of numbers with fixed length (the length is given by 

the length of the initialState array)

 Goal: reach the state in which elements are sorted incrementally

 Function goal(state) is already implemented, returns true or false

 State transition: Swap two elements in the array

 Function stateTransitions(state) is implemented, returns an array of all 

states available from the state

 Auxiliary functions

 isMember(state, list) returns true if state is already in list

 shuffle(array) shuffles the instances in array randomly

 log(message) prints message to the text area or to the console

Formal definition of search problems

 Initial state

 Successor function: maps a state to a set 

of (action, successor state) pairs

 Goal test

 Action costs



11

Measure BFS UCS DFS DLS IDS BS

Time

Space

Optim.

Compl.

d: depth of shallowest solution b: branching factor

m: maximum depth of search tree l: depth limit

Comparison of search strategies

Measure BFS UCS DFS DLS IDS BS

Time bd bd bm bl bd bd/2

Space bd bd bm bl bd bd/2

Optim. Y Y N N Y Y

Compl. Y Y N Y,

if l  d
Y Y

d: depth of shallowest solution b: branching factor

m: maximum depth of search tree l: depth limit

Comparison of search strategies



12

Summary

 Concepts

State, state space, search tree, search path

Search strategy, solution

 Formalizing search

 Evaluation

Complexity, completeness, optimality, soundness

 Comparison of strategies


