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Recap

m Concepts related to intelligence

m Agent model

m Problem solving by search

m Strategies in games

m Inference in First Order Predicate Logic
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Outline

m Supervised vs. unsupervised vs. ...
m Logical inference schemes

m Inductive learning
ID3 algorithm
Version spaces
uetiveloai :
m Learning theory

g
Machine Learning and Al

m Improve task performance through
observation, teaching

m Acquire knowledge automatically for use in
a task

m Learning is a key component in
intelligence




Learning

m Supervised, unsupervised, semi-
supervised, reinforcement

m Representation trade-off
Efficiency vs. expressive power

m There exist learning methods for several
representation schemes
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Applications

m Data mining

Big data, web mining
m Language/speech

Machine translation, text summarization, grammars
m Medical

Assessment of illness severity
m Vision

Face recognition, digit recognition, outdoor scene recognition
m Security

Intrusion detection, network traffic, credit fraud
m Social networks

Email traffic
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Logical inference schemes

m Deduction: formal logical reasoning
Premises: 1. All men are mortal. 2. Aristotle is a man.
Conclusion: Aristotle is mortal.

m Induction: generalization

Premise: The sun has risen in the east every morning
up until now.

Conclusion: The sun will also rise in the east
tomorrow.

m Abduction: choosing an explanation
Premise: 1. Flu causes fever. 2. Peter has fever.
Conclusion: Peter has flu.
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Approaches

m Inductive learning

Discovering general concepts from a limited set of
examples (experience)

From a formal point of view the obtained knowledge is
invalid
Supervised
= Given input data as pairs of (x;, f(x;))
= Generate a hypothesis for f()
Unsupervised
m Analytic or deductive learning
Based on explanations
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Inductive learning

m Decision trees

m Version-spaces
More general, but less efficient

m Inductive logic programming
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General Approach

Formulate task

Prior model (parameters, structure)

Obtain data

What representation should be used? (attribute/value
pairs)

Annotate data

Learn/refine model with data (training)

m Use model for classification or prediction on unseen data
(testing)

m Measure accuracy
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Decision trees

m Measurements

m Nodes

m Node selection: ID3 algorithm
Maximizing information gain

Measure for information gain of an attribute:
expected value of the information given by it

m Pruning

Sample decision tree
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Information theory

m S: set of measurements

m A: an attribute with domain V = {vy, ...

, Viy oo U}

m S, set of measurements for which A = v

m Entropy:

m Gain:

> S,

veV

—P(v;)log, P(v;)

Example
weather 9ot friend excursion
HW? | comes?
S;| nhice Yes Yes Yes
S,| cloudy No No No
S;| rainy No Yes Yes
S,| cloudy | Yes Yes Yes

m 3 input attributes
m 4 measurements
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Information gain for attribute
‘weather’
m H(S) = -3/4 log,(3/4) — 1/4 log,(1/4) = 0.811

m [S,..[/|S| * H(S,.) = 1/4 * (-1/1 log,(1/1) - 0/1
log,(0/1)) = 1/4 * (1*0 - 0) = O

m [Sgouayl/IS] * H(Sgouay) = 2/4*(-1/2 10g,(1/2) - 1/2
log,(1/2)) = 1/2 * (-1/2 * (-1) — 1/2 * (-1)) = 1/2

u |Srainy|/|S| * H(Srainy) =0
s G(S,A) = 0.811 — (0+0.5+0) = 0.311

.
The ID3 algorithm

m Given a set of examples, S
Described by a set of attributes A,
Categorised into categories c;

1. Put the attribute the has the highest information
gain in the root node (attribute A,)

2. For each value v, that A can take
Draw a branch and label each with corresponding v;
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The ID3 algorithm

3. For each branch with value v,

If S,; only contains examples in category c,
then put that category as a leaf node in the
tree

If S,; is empty, then put the default category
(which contains the most examples from S) as
a leaf node in the tree

Otherwise construct subtree; by recursively
calling decision tree with S, all attributes
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Text Classification

m |s text; a new finance article?

UConn defense knocks out
T o Georgla Tech for second title

| Negative I

Dow Closes Down 38, Nasdaq Gains 3

Jaok Caray, UBA TODAY

| Positive |
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20 attributes

Investors 2
Dow 2
Jones 2
Industrial 1
Average 3
Percent 5
Gain 6
Trading 8
Broader 5
stock 5
Indicators 6
Standard 2

Rolling 1
Nasdag 3

UConn defense knocks out
Georgia Tech for second title

By daok Caray, LIGA TODAY
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20 attributes

Men’s
Basketball
Championship

UConn
Huskies

Georgia Tech
Women
Playing
Crown

Titles

Games
Rebounds

All-America
early

rolling
Celebrates
Rest

More

First

The

same
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Example
stock rolling the class
1 0 3 40 other
2 6 8 35 finance
3 7 7 25 other
4 5 7 14 other
5 8 2 20 finance
6 9 4 25 finance
7 5 6 20 finance
8 0 2 35 other
9 0 11 25 finance
10 0 15 28 other
= JEE
stock rolling
<5 510 \>10 <5 10 N
9,10
1.5,6,8 23,47

18910 2,3456,7

Gain(stock) = 1 - [0.4 * H(0.1, 0.3) + 0.6 * H(0.4, 0.2)] =
=1-[0.4 ((-0.1*-3.32) - (0.3*-1.74)) +
+0.6 ((-0.4 *-1.32) - (0.2 * -2.32))] =
= 1-[0.303 + 0.5952] = 0.105

Gain(rolling) = 1 - [0.4 * H(0.5, 0.5) + 0.4 * H(0.5, 0.5) +
+0.2*H(0.5,0.5)] =0
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Issues

m Representation

How to map from a representation in the domain
to a representation used for learning?

m Training data
How can training data be acquired?
m Amount of training data

How well does the algorithm do as we vary the
amount of data?

m Which attributes influence learning most?

m Does the learning algorithm provide insight into
the generalizations made?

Version space learning

m A teChnique for Inconsistent hypotheses

learning concepts Lo ¢ % S |
m Continuously m /\

maintains the set of
consistent

hypotheses \v’\f : ,\v/

Sa

Inconsistent hypotheses
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Version space learning

m Least commitment principle
G: most general set
S: most specific set
m |nitialization
G: True
S: False

m A hypothesis H is consistent if H is
more specific than some element of G
and more general than some element of S
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Handling inconsistence

m If S, is false negative

replace S; by all direct generalizations
that classifies e as positive and is more
specific than some element of G

m If S, is false positive

remove S, from S

13
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Handling inconsistence

m If G, is false negative
remove G; from G

m If G, is false positive

replace G, by all direct specializations
that classifies e as negative and is more
general than some element of S

e
Example

m Training set
S,: {Japan, Honda, blue, 1980, economy}
S,: {Japan, Toyota, green, 1970, sports}
S;: {Japan, Toyota, blue, 1990, economy}
S, {USA, Chrysler, red, 1980, economy}
Ss: {Japan, Honda, white, 1980, economy

14
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Example

s S1: G :{Gl:(*,*.*,*.*)}

S;: {Japan, Honda, blue, 1980, economy} +
S,: {Japan, Toyota, green, 1970, sports} —
S;: {Japan, Toyota, blue, 1990, economy} *+
S,: {USA, Chrysler, red, 1980, economy} —
Sg: {Japan, Honda, white, 1980, economy} +

S ={S1:(Japan, Honda, blue, 1980, economy)}
m S2: G ={Gl:(*,Honda***), G2:(** blue,**),
G3:(*,**, 1980,%), G4:(*,*,*,*, economy)}
S ={S1:(Japan, Honda, blue, 1980, economy)}
m S3: G ={G2:(**blue,**), G4:(**** economy)}
S ={S1:(Japan,*, blue,*, economy)}
m S4: G ={G2:(** blue,**), G4:(Japan,*** economy)}
S = {S1:(Japan,*, blue,*, economy)}

m S5 G ={G4:(Japan,***

S ={S1:(Japan,***,

economy)}
economy)}

m The concept is “Japanese economy car”

Termination

m G = S, but no more samples
m G = S — a single winner hypothesis

m S or Gis empty

Inconsistent samples (may be due to noise)
Insufficient attributes
Chosen language is incapable to express the

concept

15
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Problems of VS learning

m Cannot handle noisy data
Version spaces collapses

m Unlimited disjunction
Wave fronts will not meet

-
Learning summary

What is the space of hypotheses to be
considered when learning?

m If too large: no actual knowledge can be
gained (generalization is not possible)

m If too small: it might not include the target
function

16
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Learning theory

m Correctness of hypothesis h() has to be
evaluated without knowing f(), the function to be
learned

m A sufficiently large dataset can ensure an
approximately good result with a high probability

m How many samples are needed to evaluate the
correctness of a hypothesis?

Probably Approximately Correct learning (PAC
learning)

" S
Probably approximately correct
(PAC) learning

m X: set of all possible examples
m D: distribution of examples

m H: set of possible hypotheses
m m: # of examples in training set

m Looking for an h()eH being close to f()eH

17



Hypothesis space

H bad

(o}
h bad

m error(h) = P(h(x) = f(x) | x is drawn from D)
m Hypothesis h is approximately correct if
error(h) < ¢

m P(hy,q is consistent with m examples) < (1 - g™

.
PAC-learning

m P(H,,4 contains a consistent hypothesis) <
[Hpagl(1 - &)™ < [H|(1 - &)™
m Let o be an upper bound for this
Sample complexity function of the hypothesis
space
1/ 1
m(e, 6) = —<1n— + 1n|H|>
€ o)

If the complexity of the hypothesis space is
less than exponential, then the function is
learnable

18



PAC-learning

m For Boole functions: |H| = 22"
m Sample complexity grows as
For e= 6=10*

n=2 m > 5,000
n=10 m > 3,000,000
m Solution

Searching in space of simple solutions
Restricting the language of hypotheses

Summary

m Supervised vs. unsupervised vs. ...
m Logical inference schemes
m Inductive learning

ID3 algorithm

Version spaces

Inductive logic programming

m Learning theory
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