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Artificial Neurons and the Perceptron Learning

1 1. ELŐADÁS

The particularized model of artificial neurons cells consists of three main, and several
minor parts, based on its biological counterpart. The three mayor parts are:

• The input contains stimuli and synopses. These input parameters with are
mathematically value and a weight. Inputs with negative weight are called
inhibitory, while the ones with positive weight are called excitatory.

• The nerve cell is made up of the sum of the inputs, which then goes into a φ

function. This φ function is monotonically increasing and has a lower bound of
-1 and an upper bound of 1. A b input acts as a threshold value for the function.

lim
n→−∞φ(n) =−1

lim
n→∞φ(n) = 1

φ(n) = tanh−1(n)

• The output is a single y value made of the following equation:

y =φ(
N∑

j=1
(x j y j −b))

The activation function of the AN can be chosen from a large set of functions,
however, the implementation of the AN we are interested in, namely McCulloch-Pitts
neuron uses the sg n(w T x) function.
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6 CHAPTER 1. ARTIFICIAL NEURONS AND THE PERCEPTRON LEARNING

Figure 1.1: The model of AN

Figure 1.2: The φ function

1.1 THE SEPARATION SURFACE

The following equation is the equation of a hyperplane:

w T x −b = 0

where w is the vector of the weights, x is the vector of the inputs and b is the bias.

The artificial neurons can implement basic logical functions, depending on the
choice of w . Namely:

• N-dimension logical AND: y = sg n(
∑N

i=1 xi − (N −0.5))

• N-dimension logical OR: y = sg n(
∑N

i=1 xi + (N −0.5))
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Figure 1.3: 2D example of linearly separable groups

More complex logical functions, such as XOR can be implemented by a network of
multiple ANs, called neural networks.

Figure 1.4: A possible implementation of the XOR function.

1.2 PATTERN RECOGNITION BY A SINGLE NEURON

Mathematical model

ξ ∈ {u, v} −→ add noise (ν) −→ ζ= ξ+ν where ζ is the observation of x
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Maximum likelihood decision

• if P (x|u > x|v) then we decide u

• if P (x|u < x|v) then we decide v

1.3 PATTERN CLASSIFICATION UNDER GAUSSIAN NOISE

In this case ν is of Gaussian distribution.

Pν(x) = 1

2
√

(2π)N det ( 1
K )

e−
1
2 xT K−1x

w := K
−1

(u − v)

b := 1

2
vT K

−1
v − 1

2
uT K

−1
u

y := sg n(w T x −b)

Figure 1.5: classification under Gaussian noise

The figure above shows the process of pattern classification under Gaussian noise,
where ξ(u, v) is the original messages which we never know, γ is the Gaussian noise
and ζ is the noisy message which we receive.
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Figure 1.6: The process of basic Yes/No recognition

Speech recognition

1.4 THE COVER SENTENCE

The Cover sentence defines the minimal number of neurons required to implement a
certain logical function depending on the number points with a general position and
the dimension of the function.

L(P, N ) = 2
N∑

i=0
( i

P−1
)

, where L is the minimal number of ANs, P is the points with a general position and N
is the dimension.

2 2-3.ELŐADÁS

2.1 PERCEPTRON LEARNING ALGORITHM

The PLE, alias Rosenblatt algorithm1 uses recursion to implement the learning process
of ANs. In Rosenblatt algorithm training patterns are presented to the network’s inputs;
the output is computed. Then the connection weights w j are modified by an amount
that is proportional to the product of

• the difference between the actual output, y, and the desired output, d, and

• the input pattern, x.

1Learn more about the Rosenblatt algorithm here:
ht t ps : //cat al og ue.pear soned .ca/asset s/hi p/us/hi p_us_pear sonhi g her ed/samplechapter /0131471392.pd f
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The algorithm is as follows:

Initialize the weights and threshold to small random numbers. Present a vector x
to the neuron inputs and calculate the output. Update the weights according to:

w(k +1) = w(k)+ζl (k)x(k)

where

1. l (k) = d(k)− y(k)

2. y(k) = sg n(w T (k)(k)) is the error and

3. 0 <= ζ<= 1 is the learning parameter

Example:

Table 1.1: Example of recursive learning
k x(k) d(k) y(k) l(k) w(k-1) w(k)
1 [-1 1 1] 1 1 0 [-2 -1 1] [-2 -1 0]
2 [-1 -1 0] -1 1 -2 [-2 -1 1] [0 1 1]
3 [-1 0 -1] 1 -1 2 [0 1 1] [-2 1 -1]
4 [-1 1 1] 1 1 0 [-2 1 -1] [-2 1 -1]
5 [-1 -1 0] -1 1 -2 [-2 1 -1] [0 3 -1]



Neural Networks

1 4.ELŐADÁS

1.1 ASSOCIATIVE MAPPING (AM)

Associative mapping1 can be used to recognize bitmap images or other patterns with
(usually Hopfield) neural networks. In AM there are a number of stored images with
different bit-level representation. The AM algorithm chooses the most similar stored
memory item for any given input, containing so-called clues (parts of the input pattern
similar to some parts of a stored memory item).

Figure 2.1: Exaample of non-binary associative mapping

1Learn more about AM here: https://page.mi.fu-berlin.de/rojas/neural/chapter/K12.pdf
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12 CHAPTER 2. NEURAL NETWORKS

Mathematical representation

Ψ : X = {0,1}N → S = {s−α,α= 1...M }

Ψ(x) = sβ

d(x, sβ) < d(x, sα),∀α= 1...M ,α 6=β

where

• Ψ is the observation space

• x is the clue in the observation space

• S is the set of stored memory items, sα are the stored memory items and sβ are
the clues in the space of stored memory items.

• M is the capacity of the network (number of stored items)

• The stability is the measure of misassociations. The stability decreases as one
increases the capacity.

Static and dynamic paradigm

The static paradigm of Associative Mapping is based on a look-up-table (LUT) of
the memory items and the binary vectors associated with them. The deterministic

capacity of the static approach is M ≤ N where N is r ank(W ) and M is the number of
stored items.

Table 2.1: LUT approach for AM
x s

x1

sα
x2

x3

x4

x5

sβ
x6

x7

x8

x9
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The dynamic paradigm can be based on any recursive algorithm which has fix
points and a polinomial convergence time. In this case the algorithm associates by
settling in a stable point of the algorithm. Mathematically it can be represented as
follows:

S := {sα,α= 1..M },∃φ() : sα =φ(sα),α= 1...M

The dynamic paradigm can be implemented with a Hopfield Neural Network.

1.2 HOPFIELD NEURAL NETWORKS

Hopfield networks are constructed from artificial neurons (see Fig. 1). These artificial
neurons have N inputs. With each input x there is a weight wi associated. They also
have an output. The state of the output is maintained, until the neuron is updated2.

Figure 2.2: The structure of a Hopfield Neural Network

HNNs are always built upon a Lyapunov function. This function decreases in a
monotone fashion and is bounded below. The process of computation can be thought
as iterating through the function, and finally settling in a local minimum (stable point).
A set of starting points, from where the algorithm settles in a specific stable point is
called a basin of attraction, where the stable points are the attractors:

The main applications of AM are, fore example, Image Processing and Character
recognition.

2http://www.comp.leeds.ac.uk/ai23/reading/Hopfield.pdf
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Figure 2.3: Basins of attraction

State-transition equation

yl (k +1) = sg n{
N∑

j=1
Wl j y j (k)−be }, l = modnk

where y(0) is the starting state, and

y(k +1) = sg n{W y(k)−b}, y(k) ∈ {−1,1}N

Indexing rule

• sync/paralell: in this case every neuron changes its state at once.

• async/sequential: in this case the neurons changes their state one after another.
The next neuron-to-update is chosen by a random generator.

Dynamic deterministic capacity

The capacity of a HNN can be computed as follows:

M < N
N 2

(N −2)2
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This, unfortunately converges to 1, so we have to find an other approach to the
solution.

2 5.ELŐADÁS

2.1 HEBBIEN LEARNING RULE

From the point of view of artificial neurons and artificial neural networks, Hebb′s
principle can be described as a method of determining how to alter the weights be-
tween model neurons. The weight between two neurons increases if the two neurons
activate simultaneously, and reduces if they activate separately. Nodes that tend to be
either both positive or both negative at the same time have strong positive weights,
while those that tend to be opposite have strong negative weights3.

In reality it works as follows: given a network of N nodes and faced with a pattern
that we want to store in the network, we chose the values of the weight matrix as
follows:

W i j = 1

N

N∑
α=1

sαi sαj = 1

N

N∑
α=1

sαsαT ; ∀i , j = 1...N

Statistical approach to capacity

One approach to increase the capacity of a HNN is to change from orthogonal
sα to quasi-orthogonal ones. In this case all sα are independent Bernoulli random
variables, where ∀α= 1...M , ∀i = 1...N ; P (sαi = 1) = P (sαi =−1) = 0.5. Thus, the IT
capacity of the static (LUT) approach increases to

M ≤ N

2l g N

and the capacity of the dynamic (HNN) approach increases to

M ≤ N

2π

There are some drawbacks in this case. Firstly,

• if sα is stable, then -sα will be stable too, and

3ht t ps : //en.wi ki pedi a.or g /wi ki /Hebbi ant heor y
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static dynamic

orthogonal M ≤ N M ≤ N 2

(N−2)2

quasi-orthogonal M ≤ N
2l g N M ≤ N

2π

Table 2.2: The capacity of Associative Memories

• sgn{sα+sβ+sγ} is stable too.

These cases are called spurious steady states and can be dealt with multiple possible
solutions. Secondly, we change our samples from orthogonal to quasi-orthogonal
ones, it will not be guaranteed if all of our samples will be stable points of the Lyapunov
function.

3 6.ELŐADÁS

3.1 STATISTICAL NEUODYNAMICS

Micro description of the system

Micro state vector: y(k) ∈ {−1,1}N Micro dynamics: y(k +1) = sg n{W y(k)} →
a(k +1) =φ(a(k))

Macro description

a(k) = Av(y(k))

3.2 DIGITAL COMMUNICATION

The basic model of Digital Communication Systems is the model of NNs used to
correct messages under Gaussian noise (1.5).

This classification is done by choosing the most possible meaning for each incom-
ing noisy message vector. This can be done as follows:

max
y∈{−1,1}N

P (y |x) ∼ ... ∼ min
y∈{−1,1}N

yT W y −2b
T

y
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Figure 2.4: Classification under Gaussian noise

This can be done under O(N "2) instead of the O(2N ) time of the traditional approach.

3.3 MINIMIZING A HOPFIELD NETWORK

Computing locmi nyL(y)

yl (k +1) =−sg n
N∑

j=1
W l j y j (k)−bl

With minimizing, the HNN becomes capable of solving quadratically representable
problems effectively.

Figure 2.5: The process of solving quadratic problems

3.4 HETEROASSOCIATIVE MEMORIES

Heteroassociative memories are a type os associative memories, where the HNN works
on a transformed space instead of the original input space.

In this case, di m(rα) = N , α= 1...M and di m(sα) = N ′, α= 1...M .

The τ transformation must be:
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Figure 2.6: Sturcture of heteroassociative memories

• orthogonal

• easily computable

• distance-preserving

and mathematically can be described as follows:

τ : z = sg n{
M∑
α=1

φ(rαT x)sα}

τ−1 : z = sg n{
M∑
α=1

φ(sαT x)rα}

where φ can be for example: φ(u) = γ×u or φ(u) = eγ×u

4 7.ELŐADÁS

4.1 FEED FORWARD NEURAL NETWORKS

FFNNs consists of multiple neurons sorted to multiple layers. Any input signal is
propagated from the input nodes through a set of so-called hidden nodes, and finally
to the output nodes. In FFNNs there are no loops or cycles.

Mathematical representation

y =φ(
∑

i
w (n)

i φ(
∑

j
w i=1

i j ...φ(
∑

w (l )
num xm)...))

where
∑

w (l )
num xm = z

y =N et (x, w)
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Figure 2.7: Structure of a simple FFNN

1. Representation capability: Can any functions be represented by FFNNs?

2. Learning: If a function is to be represented, then how to find the weights?

3. Generalization capability: What output appears to a previously not known
input?

Representation theory of FFNN

∥∥F (x −N et (x, w))
∥∥< ε⇒ F (x) ∈ F ; N et (x, w) ∈NN ;NN ∈F

i f ε> 0; ∀F (x) ∈F ∃w :
∥∥F (x −N et (x, w))

∥∥< ε

5 8.ELŐADÁS

5.1 BLUM-LI CONSTRUCTION

Blum and Li showed, that a 3-layer FFNN can represent any square integrable function.
The complexity of the implementation depends on the derivative of the function. The
neurons of the network represent the section borders of the discrete resolution of the
function.
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5.2 LEARNING OF THE FFNN

Strong learning

Given F (x) = d desired output.

w opt : min
w

∥∥d −N et (x, w)
∥∥2 ∼ min

w

1

|X |
∫

X
..
∫

(d −N et (x, w))2d x1...d xn

Weak learning

τ(k) = {(xk ,d k );k = 1...K } → w (k)
opt : min

w

1

K

K∑
k=1

(dk−N et (x, w))2 ∼ w opt : min
w

E(d−N et (x, w))2

Weak learning is algorithmically trackable, and if counted as a limes in mean:

l. i.m.
l→∞

w (k)
opt = w opt

5.3 GENERALIZATION

Bias-variance dilemma

E(d −N et (x, w (k)
opt ))2 = E(d −N et (x, w opt )2 +N et (x, w opt )−N et (xk , w opt )(k))2

thus
E(d −N et (x, w opt ))2 +E(N et (x, w opt )−N et (x, w (k)

opt )

where the first tag is the bias and the second is the variance. The point of bias-variance
dilemma is that one must chose which one they want to minimize.

5.4 TRAVELING SALESMAN PROBLEM

The solution to the problem can be computed by calculate a minimal-cost Hamilton
path. The path can be represented with a permutation matrix as follows:

Vi j =
{

1, if we are in the ith position in the jth step

0, else
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For example: 
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 min
V

∑
i

∑
j

∑
l

Vi l Di j V j (l+1)

6 9.ELŐADÁS

6.1 ERROR BACK PROPAGATION

Initialization - Learning Set Representation

W (0),Wi j (0) with RNG Batch (offline) or sequential (online).

Signal forward propagation

I (l )
i =

ml−1∑
j=0

w (l )
i j ...y (l−1)

j l = 1...L

y (l )
i =φ(Ii )(l ) y (0)

j = x j y (l )
0 =−1 (bias)

Error back propagation

Local errors

l (l )
i =


φ′(I (l )

i )(di − y (L)
i )

φ′(I (l )
i )

∑ml+1
j=1 w (l+1)

i j e(l+1) l 6= L

→ the errors in the previous layer, computed from the ones in the next,

Adjusting the weights

w (l )
i j (k +1) = w (l )

i j (k)+∆l (l )
i × y (l−1)

j
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Exit criteria

• For example: if Remp (w(k +1)) <C1 the algorithm stops

• Or: Rval <C2 where Rval is a validation function

7 10.ELŐADÁS

7.1 DESIGN PROCEDURE

Given α,ε(QoS). P (
∣∣∣R(w opt )−R(w (k)

opt )
∣∣∣> ε)

?<φ(ε,K ,W ) where w opt is unattainable

and w (k)
opt is computed.

Vapnik-Chrmonenkis dimension

VC theory explains the learning process from a statistical point of view. It us often
used for the characterization of classificators. VC: maxM. In a neural network, with M
inputs the number of implementable functions is 2M .

2M



x1; x1; ... xM

− − ... −
− − ... +
...

...
. . .

...

+ + ... +

Design of FFNNs

Given ε,α (QoS), K (sze of the learning set), W (number of free parameters)

1. α= ( 2eK
V c )e−ε2K → w ,K

2. τ(k) = {(xk ,dk ),k = 1...K }

3. N et (x, w) according w

4. w (k)
opt : minw

1
K

∑K
k=1(dk −N et (xk ), w)
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5. N et (xk , x(k)
opt ) :−→ P (

∣∣∣R(w opt )−R(w (k)
opt )

∣∣∣> 2ε<α)
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Cellular Neural Networks

1 11.ELŐADÁS

1.1 CELLULAR NEURAL NETWORKS

CNNs are analog neural networks which utilize connections exclusively between
neighbouring (local) cells. The network is mostly built up as a 2D array (gird) of these
cells. This type of neural networks is mainly used in the field of image processing (for
example edge detection), 3D surface analysis or modeling biological functions.

where g (xi j ) is the DP plot (driving point plot) and wi j is the bias.

CNNs can be characterized via so-called templates. These templates include the
two (feed forward and feeback) operators which are present in the characterizing
differential equation of the network. This equation is as follows:

x ′
i j =−xi j +

∑
kl∈Sr (i j )

Ai j ,kl × ykl +
∑

kl∈Sr (i j )
By,kl ×ukl + zi j

Where i, j are the indexes of the current cell, k, l are the indexes of the neighouring

cells in order, AandB are 3x3 matrices, ui j are the input, xi j are the state and yi j are
the output values of the current cell and z is a threshold. This can be transformed to:

x ′
i j =−xi j +a00 yi j︸ ︷︷ ︸

g (xi j )

+ A×Y i j +B ×Vi j + z︸ ︷︷ ︸
wi j

25
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Figure 3.1: Local connections in a CNN

From this computed inner state we are able to calculate the output y by the acti-
vation function. The activation function of the cells of the CNN is usually as shown
below:

Figure 3.2: The activation function of the cells

In time-and space-invariant CNNs the template used to calculate y is the same
regardless, of the location (indexes) of the actual cell. In this case we always can use
the same template, defined like the one below:

A =
a−1−1 a−10 a−11

a0−1 a00 a01

a1−1 a10 a11

 B = ·· ·

Y =
yi−1 j−1 yi−1 j yi−1 j+1

yi j−1 yi j yi j+1

yi+1 j−1 yi+1 j yi+1 j+1

 V i j = ·· ·


