
Neural Networks

(P-ITEEA-0011)

Akos Zarandy

Lecture 1

September 10, 2019

Introduction to the course
Single layer perceptron

Outline

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron

9/10/2019 P-ITEEA-0011 Lecture 1 2

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron

Course requirements: Signature requirements

• Mandatory attendance 80% (lectures and practice sessions)

• Short quiz at every practice session.
– You have to reach at least 60% of all points

• Lab report: one can be skipped

• Paper based test: minimum 50%

• Computer-based test: minimum 50%

9/10/2019 P-ITEEA-0011 Lecture 1 3

Course requirements: Lab Reports
• Lab reports are short summaries of the previous practice session
• You will have to work in teams of 3 (talent program alone)
• Submission: on the main page of the course until 4 am the day before the

next practice session
• Contents:

– Your names, your email addresses, the time and date of the practice session
– A brief description of the new methods/techniques and their mathematical

background (if applicable) we used
– A general description of the dataset we used (with examples from the dataset)

(if applicable)
– If we used any new network architectures, a detailed description of that

specific architecture.

• You may use Internet, however you must cite that source, else your report
will not be accepted. The same goes for too similar lab reports.

9/10/2019 P-ITEEA-0011 Lecture 1 4

Course requirements: Midterm project

• Not mandatory in general
– Mandatory for the talent program

• Required to earn an offered grade

• You will need to apply for it after it is announced

• Once you choose a task, nobody else can, so there will be no
possibility of changing your task, or cancelling your selection

• You will have to submit an acceptable solution, otherwise
your final score will be reduced by 20%

9/10/2019 P-ITEEA-0011 Lecture 1 5

Course requirements: Tests

• Paper-based test
– 15. October
– Theoretic questions and paper based calculations
– In the time and location of the lecture
– You need to score at least 50% to pass

• Computer-based test
– Considered to be a part of the exam
– The test will be held at the end of the semester, it will be 3-4 hours

long
– The test will be graded on the spot
– You need to score at least 50% to pass

9/10/2019 P-ITEEA-0011 Lecture 1 6

Course requirements: Exam and grade
• Exam

– Oral exam

• Offered grade
– Only a 4 or 5 can be received
– Limits on the offered grades:

> 85% of the short quizzes, the closed-room test

– Midterm project required, final grade depends on it

• Early exam
– There will also be an exam in the first of the exam period (before the

computer-based test) for those students who excelled most during the
semester. This exam is invite-only by the lecturers, and if you are
invited, you are excused from the computer-based test

9/10/2019 P-ITEEA-0011 Lecture 1 7

Detailed description of the requirements
on the webpage of the course:
http://users.itk.ppke.hu/~konso1/neural_networks

http://users.itk.ppke.hu/~konso1/neural_networks

Outline

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron

9/10/2019 P-ITEEA-0011 Lecture 1 8

Machine learning, machine intelligence
• What is intelligence?

• The ability to acquire and apply knowledge and skills.

• The definition changes continuously

9/10/2019 P-ITEEA-0011 Lecture 1 9

Machine learning, machine intelligence
• What is intelligence?

• The ability to acquire and apply knowledge and skills.

9/10/2019 P-ITEEA-0011 Lecture 1 10

Intelligence is the ability to adapt to change

„Stephen Hawking”

Providing computers the ability to learn without being
explicitly programmed:

Involves: programming, Computational statistics,
mathematical optimization, image processing, natural
language processing etc...

Conventional approach

• Trivial, or at least analitically
solvable tasks
– Well established mathematical

solution exist or at least can be
derived

• Example:
– Finding well defined data

constellations in a database
– Formal verification of the

operation is easy

Machine learning approach

• Complex underspecified tasks
– No exact mathematical solution

exists, the function to be
implemented is not known

• Example:
– Searching for “strange” data

constellations in a database
– Verification of the operation is

difficult

9/10/2019 P-ITEEA-0011 Lecture 1 11

In case of very complex problems, verification of the operation is very difficult.
Typically done by exhaustive testing in case of machine learning.

9/10/2019 P-ITEEA-0011 Lecture 1 13

9/10/2019 P-ITEEA-0011 Lecture 1 14

9/10/2019 P-ITEEA-0011 Lecture 1 15

9/10/2019 P-ITEEA-0011 Lecture 1 16

9/10/2019 P-ITEEA-0011 Lecture 1 17

9/10/2019 P-ITEEA-0011 Lecture 1 18

9/10/2019 P-ITEEA-0011 Lecture 1 19

9/10/2019 P-ITEEA-0011 Lecture 1 20

Machine learning

We consider each task as an input-output problem

9/10/2019 P-ITEEA-0011 Lecture 1 21

X: scalar, vector,
array or a
sequence of these
(incl. text)

Y: Decision or scalar,
vector, array or a
sequence of these
(incl. text)

size(X) vs size(Y)
Data reduction
Data generation

Conquests of machine learning

9/10/2019 P-ITEEA-0011 Lecture 1 22

Arthur Samuel coined the term
„machine learning”

• 1952 Arthur Samuel (IBM): First machine learning program
playing checkers

Conquests of machine learning

9/10/2019 P-ITEEA-0011 Lecture 1 23

First match (1996 Nov):
Kasparov–Deep Blue (4–2)

Second Match (1997 May):

Deep Blue–Kasparov (3½–2½)

• 1952 Arthur Samuel (IBM): First machine learning program
playing checkers

• 1997 IBM Deep Blue Beats Kasparov

Conquests of machine learning
• 1952 Arthur Samuel (IBM): First machine learning program

playing checkers

• 1997 IBM Deep Blue Beats Kasparov

• 2011 IBM Watson: Beating human champions in Jeopardy

9/10/2019 P-ITEEA-0011 Lecture 1 24

It's a 4-letter term for a summit; the first

3 letters mean a type of simian : Apex

4-letter word for a vantage point or a

belief : View

Music fans wax rhapsodic about this

Hungarian's "Transcendental Etudes" :

Franz Liszt

Conquests of machine learning

9/10/2019 P-ITEEA-0011 Lecture 1 25

Reached 97.35% accuracy
Human performance is around 97%

• 1952 Arthur Samuel (IBM): First machine learning program
playing checkers

• 1997 IBM Deep Blue Beats Kasparov

• 2011 IBM Watson: Beating human champions in Jeopardy

• 2014 Deep face algorithm
Facebook

Conquests of machine learning
• 1952 Arthur Samuel (IBM): First machine learning program

playing checkers

• 1997 IBM Deep Blue Beats Kasparov

• 2011 IBM Watson: Beating human champions in Jeopardy

• 2014 Deep face algorithm
Facebook

• 2016 Alpha go: deep learning

9/10/2019 P-ITEEA-0011 Lecture 1 26

Fan Hui (5-0)
Lee Sedol (4-1)
99.8% win rate against other Go programs

Deep learning - why now?
1. Appearance of machine learning methods and frameworks,

optimization know-how, new tools for rapid experimentation

9/10/2019 P-ITEEA-0011 Lecture 1 27

Deep learning - why now?
1. Appearance of machine learning methods and frameworks,

optimization know-how, new tools for rapid experimentation

2. New architectures are available for computation
– (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz)

– (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz, 2560 cores)

9/10/2019 P-ITEEA-0011 Lecture 1 28

Deep learning - why now?
1. Appearance of machine learning methods and frameworks,

optimization know-how, new tools for rapid experimentation

2. New architectures are available for computation
– (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz)

– (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz, 2560 cores)

3. Vast amount of data is
available
– Billions of labeled images

available quasi free

9/10/2019 P-ITEEA-0011 Lecture 1 29

Outline

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron

9/10/2019 P-ITEEA-0011 Lecture 1 30

9/10/2019. P-ITEEA-0011 Lecture 1 31

Copying the brain?

Human

Brain

Neuron

biological

model

Artifical

Neuron

Network(Simplification)

Engineering problem

solving in the field of

Information Theory (IT)

The focus of this curse

Feature extraction

Technology (e.g. VLSI)
Far too complex for

engineering implementation

Human

Brain

Neuron

biological

model

Artifical

Neuron

Network(Simplification)

Engineering problem

solving in the field of

Information Theory (IT)

The focus of this curse

Feature extraction

Technology (e.g. VLSI)
Far too complex for

engineering implementation

Artifical neural
network

This is the focus of this course

• Artificial neuron model, 40’s (McCulloch-Pitts, J. von Neumann);
• Synaptic connection strenghts increase for usage, 40’s (Hebb)
• Perceptron learning rule, 50’s (Rosenblatt);
• ADALINE, 60’s (Widrow)
• Critical review ,70’s (Minsky)
• Feedforward neural nets, 80’s (Cybenko, Hornik, Stinchcombe..)
• Back propagation learning, 80’s (Sejnowsky, Grossberg)
• Hopfield net, 80’s (Hopfield, Grossberg);
• Self organizing feature map, 70’s - 80’s (Kohonen)
• CNN, 80’s-90’s (Roska, Chua)
• PCA networks, 90’s (Oja)
• Applications in IT, 90’s - 00’s
• SVMs, statistical machines 2000-2010’s
• Deep learning, Convolutional Neural Networks 2010-
9/10/2019 32P-ITEEA-0011 Lecture 1

History of the artificial neural networks

9/10/2019. P-ITEEA-0011 Lecture 1 33

The artificial neuron (McCulloch-Pitts)

• The artificial neuron is an information processing unit that is
basic constructing element of an artificial neural network.

• Extracted from the biological model

Soma

Myelin sheath
Schwann
cell

Nodes
of
Ranvier

Dendrite

Nucleus

Axon
terminal

McCulloch-Pitts model

9/10/2019. P-ITEEA-0011 Lecture 1 34

• Receives input through its synapsis (xi)

• Synapsis are weighted (wi)

• if wi > 0 : amplified input from that source (excitatory input)

• if wi < 0 : attenuated input from that source (inhibitory input)

• A b value biases the sum
to enable asymmetric behavior

• A weighted sum is calculated

• Activation function shapes the
output signal

The artificial neuron

xi : input vector
wki : weight coefficient vector of neuron k
bk : bias value of neuron k
ok : output value of neuron k

9/10/2019. 35

• Output equation:

• Bias can be included as:
w0=b

x0=1

The artificial neuron

xi : input vector (i: 1….m)
wki : weight coefficient vector of neuron k
bk : bias value of neuron k
ok : output value of neuron k








 



m

i

kikik bxwy
1



)(
0

xw
T

m

i

ikik xwy  







 



P-ITEEA-0011 Lecture 1

9/10/2019. P-ITEEA-0011 Lecture 1 36

Activation functions (1)

• Activation function: ϕ(.)
• Always a nonlinear function

• Typically it clamps the output (introduces boundaries)

• Monotonic increasing function

• Differentiable
• Important from theoretical point of view

• Or at least continuous (except in simplified cases)
• Sophisticated training algorithms require continuity

9/10/2019. P-ITEEA-0011 Lecture 1 37

Activation functions (2)

• Sigmoid (or logistic) function is a widely activation function

• where

xw
T

m

i

ii xwu  
0

𝑦 =ϕ(𝑢) =
1

1+𝑒−𝜆𝑢

9/10/2019. P-ITEEA-0011 Lecture 1 38

Activation functions (3)
soft nonlinearity hard nonlinearity
(continuously differentiable)

l  0.1

l  0.5

l  1

l  2

l  5

l 

ϕ(𝑢) =
1

1+𝑒−𝜆𝑢

ϕ 𝑢 =
𝑠𝑖𝑔𝑛 𝑢

2
+

1

2

Step (threshold)function

piece-wise linear
implementation
of sigmoid function:

Activation function (4)

• Bipolar activation function:
tanh

• Continuously differentiable

• Monotonic

• Useful, when bipolar output
is expected

• Hard approximations:
– Piece-wise

– Step-wise

9/10/2019 P-ITEEA-0011 Lecture 1 40

9/10/2019. P-ITEEA-0011 Lecture 1 41

Elementary set separation by a single neuron (1)

• Let us use ϕ(.) step nonlinear function for siplicity:

• The output of the neuron will be binary:

DECISION!

𝑦 = ϕ(𝑢) =
𝑠𝑖𝑔𝑛 𝑢

2
+
1

2
= ቊ

1, if 𝑢 ≥ 0
0, else

𝑦 =ϕ 𝑢 =
𝑠𝑖𝑔𝑛 𝒘𝑇𝒙

2
+

1

2
= ቊ

1, if 𝐰𝑇𝒙 ≥ 0
0, else

9/10/2019. P-ITEEA-0011 Lecture 1 42

Elementary set separation by a single neuron (2)

• in a 2-D input space,
the hyper plane is a
straight line.

• Above the line is
classified: +1 (C1: yes)

• Below the line is
classified : 0 (C2: no).

9/10/2019. P-ITEEA-0011 Lecture 1 43

Elementary set separation by a single neuron (3)

• Neuron with m inputs has an m dimensional input space

• Neuron makes a linear decision for a 2 class problem

• The decision boundary is a hyperplane
defined:

0T
w x

9/10/2019. P-ITEEA-0011 Lecture 1 44

Why it is so important to use set separation by
hyper plane? (1)

• Most logic functions has this complexity
(OR, AND)

• There are plenty of mathematical and
computational task which can be derived
to a set separation problem by a linear
hyper plane

• Application of multiple hyper plane
provides complex decision boundary

9/10/2019. P-ITEEA-0011 Lecture 1 45

• The truth table of the
logical AND function.

• 2-D AND input space and
decision boundary

Implementation of a single logical function by a single

neuron (1)

0

+1

1

1

x2

x1

x2x1 x1 x2

9/10/2019. P-ITEEA-0011 Lecture 1 46

Implementation of a single logical function by a

single neuron (2)

• We need to figure out the separation surface!

• Mathematically is the following equation:

w0=-1.5; w1=1; w2=1;

• The weight vector is:

w = (−1.5, 1, 1).

x1

x2

0
+1

1

1

− 1.5 + 𝑥1 + 𝑥2 = 0

xw
T

m

i

ii xwu  
0

𝑦 =
𝑠𝑖𝑔𝑛 𝑢

2
+
1

2
= ቊ

1, if 𝑢 ≥ 0
0, else

x2x1 x1x2

𝑥0 = 1

9/10/2019. P-ITEEA-0011 Lecture 1 47

Implementation of a single logical function by a

single neuron (3)

• Furthermore instead of 2D, we can actually come up with the
R dimensional AND function.

• The weights corresponding to the inputs are all 1 and
threshold should be R − 0.5. As a result the actual weights of
the neuron are the following:

  T 0.5 ,1, ,1  Rw …

9/10/2019. P-ITEEA-0011 Lecture 1 48

• The truth table of the
logical OR function.

• 2-D OR input space and
decision boundary

Implementation of a single logical function by a single

neuron (4)

w =(−0.5, 1, 1).

x2x1 x1 OR x2

0

+1

1

1

x2

x1

9/10/2019. P-ITEEA-0011 Lecture 1 49

Implementation of a single logical function by a

single neuron (5)

• However we cannot implement every logical function by a
linear hyper plane.

• Exclusive OR (XOR) cannot be implemented by a single neuron
(linearly not separable)

x2x1 XOR x2x1

0

+1

1

1

0

x2

x1

Outline

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron

9/10/2019 P-ITEEA-0011 Lecture 1 50

Perceptron
• One or a set of neurons sharing the

same input

• Typically used for decision making

• Multiple decisions from the same data

• Activation function
– Originally step function

– Sigmoid or Tanh or their piece-wise
linear approximation is used
nowadays

– Sophisticated training algorithms
require differentiable or at least
continuous functions

9/10/2019 P-ITEEA-0011 Lecture 1 51

9/10/2019 P-ITEEA-0011 Lecture 1 52

9/10/2019 P-ITEEA-0011 Lecture 1 53

9/10/2019 P-ITEEA-0011 Lecture 1 55

Outline

• Properties of the perceptron
• Input-output pairs
• Perceptron learning method
• Perceptron learning example
• Proof of convergence
• Good material:

http://hagan.okstate.edu/4_Perceptron.pdf

9/17/2019 P-ITEEA-0011 Lecture 2 2

http://hagan.okstate.edu/4_Perceptron.pdf

9/17/2019. P-ITEEA-0011 Lecture 2 3

xi : input vector
wki : weight coefficient vector of neuron k
bk : bias value of neuron k
ok : output value of neuron k

)(
0

xw
T

m

i

ikik xwy  







 



• Receives input through its synapsis (xi)

• Synapsis are weighted (wi)

• A b value biases the sum
to enable asymmetric behavior

• A weighted sum is calculated

• Activation function applied

The Perceptron

sign() sigm()

Neural Networks

Perceptron is an Input  Output device

9/17/2019 P-ITEEA-0011 Lecture 1 4

As opposed to Traditional Computers
where

- the math of the functionality is known
- the known math should be programmed

At Neural Networks

- the math behind the functionality is unknown
- the functionality is “illustrated” with examples

Function illustrated by examples
• Given a set of input-output pairs

xj  dj (xj: input vector; dj: desired output)

• Number of input vectors
– Finite/limited set (e.g. AND function)

– Equivalent with a look-up-table (LUT), math known
– Mathematically it is correct to define a function by listing all the IO pairs

• Goal: generate a simpler than LUT decision making device through learning

– Infinite/open set (customers of a bank asking for a loan)
– Math behind is unknown, cannot be coded directly

• Goal: generate the function through learning
• It should predict well the output of a previously

unknown/untested input (GENERALIZATION)

9/17/2019 P-ITEEA-0011 Lecture 2 5

X d

age gender debt salary

1 25 M(1) 25 100 Y(1)

2 22 F(2) 18 80 Y(1)

3 65 M(1) 3000 200 N(0)

.

.

X d

X1 X2

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Good news: we can use the same learning/training method!!!

Linear separability

• Today, we assume that the IO sets are linearly separable

• The decision boundary is a hyperplane
defined:

9/17/2019 P-ITEEA-0011 Lecture 2 6

0T
w x

• Positive side of the hyperplane is classified: +1 (yes)

• Negative side of the hyperplane is classified : 0 (no).

How would you
classify this data?

X2

X
1

Which boundary surface to use, if there are
many?

9/17/2019 P-ITEEA-0011 Lecture 2 7

How would you
classify this data?

X2

X
1

Which boundary surface to use, if there are
many?

9/17/2019 P-ITEEA-0011 Lecture 2 8

Any of these would
be fine..

..but which is best?

X2

X
1

Which boundary surface to use, if there are
many?

9/17/2019 P-ITEEA-0011 Lecture 2 9

Maximum Margin:
Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point.

X2

X
1

9/17/2019 P-ITEEA-0011 Lecture 2 10

Which boundary surface to use, if there are
many?

X2

X
1

9/17/2019 P-ITEEA-0011 Lecture 2 11

Which boundary surface to use, if there are
many?

Maximum Margin:
Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point.

What does learning mean?

9/17/2019 P-ITEEA-0011 Lecture 2 12

• Given an annotated dataset
xj  dj

• Given the parametric equation of
the perceptron

• Goal: find the optimal wopt

weights (parameters), where for
each j

𝑦 = 𝑠𝑖𝑔𝑛(𝐰𝑇𝐱)

𝑑𝑗 = 𝑠𝑖𝑔𝑛(𝐰𝑜𝑝𝑡
𝑇 𝐱𝑗)

9/17/2019. P-ITEEA-0011 Lecture 2 13

The learning algorithm: Datasets
• Training set

• Set of input – desired output pairs
• Will be used for training

• Test set
• Used, when we have large set of input vectors (not used today)
• Set of input – desired output pairs
• Will be used for testing and scoring the result

• We assumed that X+ and X− must be linearly separable

• We are looking for an optimal parameter set:

 

 

 : 1

 : 1





  

  

X d

X d

x

x

 

 

T

opt

T

opt

 : 0 ,

 : 0 .





 

 

X

X

x w x

x w x

0

>

9/17/2019. P-ITEEA-0011 Lecture 2 14

• We have to develop a recursive algorithm called learning,
which can learn the weight step by step, based on observing
– the (i) input,

– the (ii) weight vector,

– the (iii) desired output, and

– the (iv) actual output of the system.

• This can be described formally as follows:

The learning algorithm: Recursive algorithm

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘 → 𝐰opt

9/17/2019. P-ITEEA-0011 Lecture 2 15

The learning algorithm: Perceptron Learning Algorithm

• In a more ambitious way it can be called
intelligent, because
• perceptron can learn through examples (adapt),

• even the function parameters are fully hidden.

• Perceptron learning was introduced by
Frank Rosenblatt 1958
– Built a 20x20 image sensor

– With analog perceptron

– 400 weights controlled by electromotors

9/17/2019. P-ITEEA-0011 Lecture 2 16

The learning algorithm: Recursive steps

1. Initialization.
Set w(0)=0 or w(0)=rand

2. Activation.
Select a xk  dk pair

3. Computation of actual response

4. Adaptation of the weight vector

5. Continuation
Until all responses of the perceptron are OK

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝑦 𝑘 = 𝑠𝑖𝑔𝑛 𝑤𝑇 𝑘 𝑥 𝑘

Weight update: very simple example

• Given a 3 input vector example

• Assume that bias is zero
(decision boundary will cross the origo)

• Random initialization

9/17/2019 P-ITEEA-0011 Lecture 2 17

𝐱1 =
1
2
, 𝑑1 = 1;

𝐱2 =
−1
2

, 𝑑2 = 0;

𝐱3 =
0
−1

, 𝑑3 = 0;

𝐰𝑇(1) = 1 −0.8 ;

Remember: the weight vector is orthogonal
to the decision boundary!!!
Decision boundary: x1 - 0.8x2 = 0
Its orthogonal vector is: (1, -0.8)

Weight update: very simple example

• Test with the first input vector

The result is not OK! Positive misclassification: Instead of 1, the result is 0!!
(The normal vector points to the positive side of the decision boundary.)

9/17/2019 P-ITEEA-0011 Lecture 2 18

𝐱1 =
1
2
, 𝑑1 = 1;

𝐰𝑇(1) = 1 −0.8 ;

𝑦1(1) = 𝑠𝑖𝑔𝑛 𝑤𝑇 1 𝑥1 = 𝑠𝑖𝑔𝑛 1 −0.8
1
2

= 𝑠𝑖𝑔𝑛 1 − 1.6 = 0

Idea: add the vector pointing to the
positively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it towards the point!
w(k+1)=w(k)+x1

𝐰𝑇 2 = 1 + 1 −0.8 + 2 = 2 1.2 ;

dj-yj > 0

Weight update: very simple example

• Test with the second input vector

The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

9/17/2019 P-ITEEA-0011 Lecture 2 19

𝐱2 =
−1
2

, 𝑑1 = 0;

𝐰𝑇(2) = 2 1.2 ;

Idea: subtract the vector pointing to the
negatively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+2)=w(k+1)-x2

𝐰𝑇 3 = 2 − (−1) 1.2 − 2 = 3 −0.8 ;

𝑦2(2) = 𝑠𝑖𝑔𝑛 𝑤𝑇 2 𝑥2 = 𝑠𝑖𝑔𝑛 2 1.2
−1
2

= 𝑠𝑖𝑔𝑛 −2 + 2.4 = 1

dj-yj < 0

Weight update: very simple example

• Test with the third input vector

The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

9/17/2019 P-ITEEA-0011 Lecture 2 20

𝐰𝑇(3) = 3 −0.8 ;

Again: subtract the vector pointing to the
negatively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+3)=w(k+2)-x3

𝐰𝑇 4 = 3 − 0 −0.8 − (−1) = 3 0.2 ;

𝑦3(3) = 𝑠𝑖𝑔𝑛 𝑤𝑇 3 𝑥3 = 𝑠𝑖𝑔𝑛 3 −0.8
0
−1

= 𝑠𝑖𝑔𝑛 0 + 0.8 = 1

𝐱3 =
0
−1

, 𝑑3 = 0; dj-yj < 0

Weight update: very simple example

• Start again:
– Test with the again with the first vector

The result is OK!

– Do not modify!!!

– Test with the again with the second vector

The result is OK!
– Do not modify!!!

– Test with the again with the third vector

The result is OK!
– Do not modify!!!

• Since all input vectors are correctly classified: we are ready

9/17/2019 P-ITEEA-0011 Lecture 2 21

Formalization of the update rules

• Positive misclassification : ADD
𝜀 = dj-yj = 1 w(k+1)=w(k)+xj

• Negative misclassification : SUBTRACT
𝜀 = dj-yj = -1 w(k+1)=w(k)-xj

• Correct classification : DO NOTHING
𝜀 = dj-yj = 0 w(k+1)=w(k)

• In general:
w(k+1)=w(k)+ 𝜀 xj

9/17/2019 P-ITEEA-0011 Lecture 2 22

9/17/2019. P-ITEEA-0011 Lecture 2 23

The learning algorithm: Adaptation

We were looking for a recursive function:

In general:

where is the error function

and
𝜂 is the learning rate
(𝜂 controls the learning speed and should be positive)

      k d k y k

 
 

 

1 f belongs to class X
,

1 if belongs to class X






 



i k
d k

k

x

x

0

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝐰 𝑘 + 1 = 𝐰 𝑘 + 𝜀𝜂𝒙𝑗

AND

9/17/2019 P-ITEEA-0011 Lecture 2 24

Weight update strategy

• Apply all the input vectors in one after the others,
selecting them randomly

• Instance update
– Update the weights after each input

• Batch update
– Add up the modifications
– Update the weights with the sum of the modifications,

after all the inputs were applied

• Mini batch
– Select a smaller batch of input vectors, and do with that as

in the batch mode
9/17/2019 P-ITEEA-0011 Lecture 2 25

9/17/2019. P-ITEEA-0011 Lecture 2 26

Perceptron Convergence theorem (1)

Assumptions:

- w(0)=0
- the input space is linearly separable, therefore wo (stands

for woptimal) exists:

- Let us denote ෤𝑥 = −𝑥

For the proof, see also: Simon Haykins: Neural Networks and Learning Machines,
Section 1.3: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

1:0:   dxwXx T

o

1:0:   dxwXx T

o

1:0~:
~~   dxwXx T

o

0

http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

Perceptron Convergence theorem (2)
• Idea:

– During the training, the network will be activated with those input
vectors (one after the other), where the decision is wrong, hence non
zero adaptation is needed:

– Note: The error function is always positive ()

9/17/2019 P-ITEEA-0011 Lecture 2 27

1,1,0)()(:)(  dyjxjwXjx T

1,1,0)()(:
~

)(  dyjxjwXjx T

2

0

0

1

Perceptron Convergence theorem (3)
• According to the learning method:

• w(n+1)=w(0)+ηx(0)+ηx(1) +ηx(2) +ηx(3)+... +ηx(n)

– where

or

– The decision boundary will be:

ηwTx=0

which means that η is a scaling factor, therefore it can be choosen

for any positive number.

Let us use η=1, therefore ηε=1

9/17/2019 P-ITEEA-0011 Lecture 2 28

1,1,0)()(:)(  dyjxjwXjx T

1,1,0)()(:
~

)(  dyjxjwXjx T

Perceptron Convergence theorem (4)

• We will calculate in two ways, and give an upper
and a lower boundary, and it will turn out that an nmax exists,
and beyond that the lower boundary is higher than the upper
boundary (squeeze theorem, sandwitch lemma (közrefogási
elv, rendőr elv))

9/17/2019 P-ITEEA-0011 Lecture 2 29

2
)1(nw

Perceptron Convergence theorem (5)
lower limit (1)

9/17/2019 P-ITEEA-0011 Lecture 2 30

)(...)1()0()0()1(nxxxwnw 

According to the learning method, the presented input vectors are added up:

Multiply it with wo
T from the left:

w(0)=0

)(...)1()0()1(nxwxwxwnww T

o

T

o

T

o

T

o 

nnwwT

o )1(

)(0 jxwT

o Because each input vector (or its opposite) were
selected that way.

)(min0
}

~
,{)(

nxwT

o
XXnx 



Perceptron Convergence theorem (6)
lower limit (2)

9/17/2019 P-ITEEA-0011 Lecture 2 31

nnwwT

o )1(We apply Cauchy Schwarty inequality
222

baba T

22
222

0)1()1(nnwwnww T

o

T 

2

0

22
2

)1(
Tw

n
nw




Lower limit:

Lower limit proportional with n2

Perceptron Convergence theorem (7)
upper limit (1)

9/17/2019 P-ITEEA-0011 Lecture 2 32

)()()1(kxkwkw 

Let us have a different synthetization approach of w(n+1):

Squared Euclidian norm:

for k= 0 … n

Because each input vector (or its opposite) were
selected that way.

)()(2)()()1(
222

kxkwkxkwkw T

0)()(kxkw T

222
)()()1(kxkwkw 

for k= 0 … n
222

)()()1(kxkwkw 

Perceptron Convergence theorem (8)
upper limit (2)

9/17/2019 P-ITEEA-0011 Lecture 2 33

Note that there is a telescoping sum in the left hand side.

Summing up the upper term:

222
)()()1(kxkwkw 

  



n

k

n

k

kxkwkw
0

2

0

22
)()()1(





n

k

kxnwwnw
0

2
)()1()0()1(

Upper limit linearly proportional with n

𝑤(𝑛 + 1) 2 − 𝑤(0) 2= 𝑤(𝑛 + 1) 2

Telescoping sum: σ𝑖=1
𝑛 𝑎𝑖+1 − 𝑎𝑖 = 𝑎𝑛+1 − 𝑎1

Example:σ𝑖=1
4 𝑎𝑖+1 − 𝑎𝑖 = 𝑎2 − 𝑎1+

+𝑎3 − 𝑎2 +
+𝑎4 − 𝑎3 +
+𝑎5 − 𝑎4=
= 𝒂𝟓 − 𝒂𝟏

𝑤(0) 2=0

𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽

Perceptron Convergence theorem (9)
comparing upper and lower limits

9/17/2019 P-ITEEA-0011 Lecture 2 34

Linear upper limit and squared lower limit cannot grow unlimitedly

nmax should exist

2

0

22
2

)1(
Tw

n
nw




n

2
)1(nw

2

2

0

max


 w
n 

𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽

Neural Networks

(P-ITEEA-0011)

Akos Zarandy

Lecture 3

September 24, 2019

Multilayer Perceptron
Back-propagation algorithm

Contents
• Recall

• Single-layer perceptron and its learning method

• Multilayer perceptron
• Topology

• Operation

• Representation

• Blum and Li construction

• Learning
• Back-propagation

9/24/2019. 2

9/24/2019. 3

• Receives input through its synapses (xi)

• Synapses are weighted (wi) (including bias)

• A weighted sum is calculated

• Nonlinear activation function

Single-layer Perceptron

xi : input vector
wki : weight coefficient vector
vk : weighted sum
bk : bias value of neuron k
ok : output value of neuron k

)(
0

xw
T

m

i

ikik xwy  







 



9/24/2019. 4

Single-layer perceptron training: Error correction

Desired
output
dk

Error

kkk yd 

kw

• Had a training set (known input desired output pairs)

• xi  di
• Apply the input vector (xi)

• Calculate the output

• If output is false

• Modify the weights according to:

• Operation:
• When error is positive

the contribution of wkixi should
be increased

• Convergence is proven in case
of linearly separable task

kkk xw 

Linear separability requirement is a major limitation of the single layer perceptron!

Multilayer perceptron

9/24/2019. 5

• Different names of Multilayer perceptron
• Feed forward neural networks (FFNN)
• Fully connected neural networks

• Multilayer neural network
– Input layer
– Hidden layers (one or multiple)
– Output layer
– The outputs are the inputs of the next layer
– Many hidden layers  deep network

• Multiple inputs, multiple outputs
• The output is typically not binary
• Used practically in all deep

neural networks! Can solve linearly non-separable problems!

Topology and naming

9/24/2019. 6

• Weights:

• Arrives to the lth layer

• Comes from the jth neuron

from the (l-1)th layer

• Arrives to the ith neuron of the

lth layer

)(l

ijw

(1)

20w

y1

(1)

10w

(1)

1yx1

x2

(2)

10w(1)

11w

(1)

22w

(1)

21w

(1)

12w (1)

2y

(2)

11w

(2)

12w

0th layer:
input layer

1st layer:
first hidden layer

last layer:
output layer

)(l

ijw
source
neuron

Destination
neuron

destination
layer

• Sigmoid function

• Continuous

• Continuously differentiable

• It is used in the output layer of
the fully connected neural
network

Activation function I

9/24/2019. 7

xe
xS




1

1
)(

Derivative of sigmoid function I

9/24/2019 8

quotient rule:

This is the correct result,
but it is not in a nice form.

Derivative of sigmoid function II

9/24/2019 9

Much nicer form!

reduction

Multiply out

• Hyperbolic tangent function
• Continuous

• Continuously differentiable

• It is used in the output layer of the
fully connected neural network

9/24/2019. 10

)tanh()(xx 

1

-a



x

Activation function II

-1

))tanh(1())tanh(1()(tanh1)(2 xxxx
dx

d


Activation function III

• Rectified Linear Unit (ReLU)

– Most commonly used
nonlinearity in hidden layers of
deep neural networks

• Derivative of ReLU

9/24/2019 11

• Signal flows through the network progresses left to right

• The output of the network:

• Where the weights are matrices at each layer with different sizes

• Different activation functions for different layers

• Number of layers: L, neurons in lth layer: nl

Operation

9/24/2019. 12

𝑁𝑒𝑡 𝐱,𝐖 = 𝜑(𝐿) 𝒘(𝐿)𝜑(𝐿−1) 𝒘(𝐿−1) … 𝜑(2) 𝒘(2)𝜑(1) 𝒘(1)𝒙

𝑾: 𝒘(𝐿), 𝒘(𝐿−1), …𝒘(1)

Forward (signal) propagation
• Calculate the output of the first hidden

layer

• Calculate the output of the second hidden
layer using the output of the first hidden
layer as the input

• . . .

• Calculate the output of the output layer
using the output of the last hidden layer as
the input 9/24/2019 13

𝒚(1) = 𝜑 𝒘(1)𝒙

𝒚(2) = 𝜑 𝒘(2)𝒚(1) x,y(k) are vectors
w(k) are matrices

𝒚(𝐿) = 𝜑 𝒘(𝐿)𝒚(𝐿−1)

Usage of Multilayer Perceptron

9/24/2019. 14

• Multilayer perceptrons are used for

• Classification

• Supervised learning for classification

• Given inputs and class labels

• Approximation

• Approximate an arbitrary function with arbitrary
precision

Classification example

9/24/2019 15

• Classification of the hand written figures
– MNIST data base: 20x20 binary images
– The output is a one of ten code

• When solving engineering task by FFNN
we are faced with the following theoretical
questions:

Approximation

9/24/2019. 16

1. Representation
– What kind of functions can be Approximated by an FFNN?

2. Learning
– How to set up the weights to solve a specific task?

3. Generalization
– If only limited knowledge is available about the task which is to be

solved, then how the FFNN is going to generalize this knowledge?

• Can it approximate all the function?

• With what precision?

• The notation || || defines a norm used in F space

Approximation (Representation)

9/24/2019. 17

()
: () (,)

0

F
F Net 



  
  

 

x
w x x w

F

 () (,) , N

p
F Net xx   X

x x w dd

• Theorem (Harnik, Stinchambe, White 1989)

• Every function in L
p

can be
represented arbitrarily closely
approximation by a neural net

• More precisely for each

• Since it is out of the focus of the course this proof will not be
presented here

Representation – Theorem 1

18

() pF x L

 () ()

0,

, ,
p

NF Net x x 

  

  X
x x dw d

w

  

  

  

2

1

2

: ,

: ,

: ,

N

p

N

p

Nx

x

L F x x

L F x x

F x x xL

 

 





 

 

 

 

X

X

X

d

d

d

d

d

d

Recall:

• Theorem:

• Proof:
• Using the step functions: S
• From elementary integral theory it is clear every function can be

approximated by appropriate step function sequence

Representation – Blum and Li theorem

9/24/2019. 19

 
2

() (,

0,

) , NF Net x x







 

 

 X
x x w dd

w

2()F x L

• From elementary integral theory
it is clear every function can be
approximated by appropriate
step function sequence

• The step function can have
arbitrary narrow steps

• For example each step could be
divided into two sub-steps

• Therefore we can synthetize a
function with arbitrary precision

Representation – Blum and Li theorem

9/24/2019. 20

1 if
()

0 else
I

X
X


 


x

()

)() () (
i

i

x

i

s

F x F x I x

• This construction …
• … has no dimensional limits

• … has no equidistance restrictions on tiles (partitions)

• … can be further fined, and the approximation can be any
precise

• 2 dimensional example
• The tiles are the top

of the columns for
each approximation
cell

Representation – Blum and Li construction

9/24/2019. 21

Blum and Li – Limitations

• The size of the FFNN constructed via this method is quite big

• Consider the task on the picture, where there are 1000 by
1000 cell to approximate the function

• General case:
~2 Million neurons are needed

• Smoother approximation needs more

• The network architecture is synthetized (constracted), the
weights are generated

• We are after to find a less complicated architectures

9/24/2019. 22

• Nor minimization task neither construction is possible most cases
• Complete information would be needed about F(x), however it is typically

unknown

• Known in the input-output pairs only (limited positions in input space)

• Weak learning in incomplete environment, instead of using F(x)

• A training set is being constructed of observations

Learning

9/24/2019. 23

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

    , ; 1,...,
K

k kd k K  x

• Rather than minimizing the error function

• The approximation is the best achievable
• F function is known in a limited positions (training set)

Learning

9/24/2019. 24

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

9/24/2019. 25

Unknown system
F(.)

FFNN

-

xk dk

yk

εk

desired output

output

input error signal

wopt

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

Learning

• The questions are the following

• What is the relationship of these optimal weights?

• How this new objective function should be minimized as
quickly as possible?

Learning

9/24/2019. 26

 

opt

???

opt

K
w w

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

• Empirical error

• Theoretical error

• Let us have xk random variables subject to uniform
distribution

Statistical learning theory

9/24/2019. 27

    
2

1

1 K

emp k k

k

R d Net ,
K 

 w x w

    
2 2

1F() Net F() Net ...
X

N, , dx dx   x x w x x w

• xk random variable, where d=F(x)

Statistical learning theory

9/24/2019. 28

    
2 2

1

1
lim E (,)

K

k k
k

k

d Net , d Net
K



     x w x w

  

  

  

2

1

2

1

2

1

F() Net () ...

1
F() Net ...

F() Net ...

X

X

X

N

N

N

, p dx dx

, dx dx
X

, dx dx

 











 

 

 

x x w x

x x w

x x w

Because it is ~ constant due to the uniformity

• Therefore

• Where l.i.m. means: lim in mean

Statistical learning theory

9/24/2019. 29

 

optoptl.i .m.
K

K
 w w

 

     
2 2

1

1

lim ()

1
lim F() Net ...

emp
K

K

k
K

h

X
k N

k

tR R

d Net , , dx dx
K








     

w w

x w x x w

Weak learning is satifactory!

• Learning based on the training set:

• Minimize the empirical error function (Remp)

• Learning is a multivariate optimization task

Learning – in practice

9/24/2019. 30

    , ; 1,...,
K

k kd k K  x

      
opt

2

1

1
: min min

K
K

k k emp

k

d Net , R
K 

 
w w

w x w w

kE

• The Rosenblatt algorithm is inapplicable,
• the error and desired output in the hidden layers of the FFNN is unknown

• Someway the error of the whole network has to be distributed
to the internal neurons, in a feedback way

Learning

9/24/2019. 31
Error signals

Function signals

Forward propagation of
function signals and
back-propagation of

errors signals

• Adapting the weights of the FFNN (recursive algorithm)

• The weights are modified towards the differential of the error
function (delta rule):

• The elements of the training set adapted by the FFNN
sequentially

Sequential back propagation

9/24/2019. 32

() () ()

()

(1) () ()

() ?

l l l

ij ij ij

l

ij

w k w k w k

w k

   

 

()

()

empl

ij l

ij

R
w

w



  


((),)emp empR R y d x

Delta (learning) rule

9/24/2019. 33

• If than we have to

increas wkj, to get closer to the
minimum.

• ∆𝑤𝑘𝑗 = −𝜂
𝜕𝑅𝑒𝑚𝑝

𝜕𝑤𝑘𝑗

• If than we have to

decrease wkj, to get closer to the
minimum.

• ∆𝑤𝑘𝑗 = −𝜂
𝜕𝑅𝑒𝑚𝑝

𝜕𝑤𝑘𝑗

empR

kjw

0




kj

emp

w

R

0




kj

emp

w

R

0




kj

emp

w

R

0




kj

emp

w

R

0




kj

emp

w

R

𝜂: learning rate parameter

9/24/2019 34

Propagation and back propagation

9/24/2019.

35

𝛿1
(2)

𝛿2
(2)

𝛿3
(2)

Forward propagation

𝒚(1) = 𝜑 𝒘(1)𝒙

𝒚(2) = 𝜑 𝒘(2)𝒚(1)

𝐵𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐼

𝜹𝑖
(2)

= 𝜑′ 𝑣𝑖
(2)

𝑒𝑖

𝑣1
(2)

𝑣2
(2)

𝑣3
(2)

𝑣1
(1)

𝑣2
(1)

𝑣3
(1)

𝐵𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐼𝐼 𝛿1
(1)

𝛿2
(1)

𝛿3
(1)

𝜹𝑗
(1)

= 𝜑′ 𝑣𝑗
(2)

෍

𝑘

𝛿𝑘
(2)
𝑤𝑘𝑗
2 = 𝜑′ 𝑣𝑗

(2)
𝜹
(2)
𝒘𝑗
2

Weight update: ∆𝑤𝑗𝑖
(𝐿)

= η𝛿𝑗
(𝐿)
𝑦𝑖
(𝐿−1)

Back-propagation

• Though we showed how to modify the weights
with back propagation, its most important value
that it can calculate the gradient

• The weight updates can be calculated with
different optimization methods, after the
gradients are calculated

• Various optimization method can drastically
speed up the training (100x, 1000x)

9/24/2019 36

Conclusion

• For known functions (according to Blum-Li)
– One can define a Neural Network architecture
– And generate the weights
– That it can represent the known function with arbitrary precision

• For unknown but existing function defined by IO pairs (according to
statistic learning)
– One can find a Neural Network architecture
– And train the network (optimize the weights)
– Reach arbitrary precision with high number of IO pairs
– The trained network will be able to well predict previously unknown IO

pairs (generalization)

9/24/2019 37

Implementing Neural Computing

• For a given task

– Find large representative annotated data set

– Find a suitable network architecture

• Number of layers, neurons, activations, interconnection
patterns

– Find a learning/training method

• Converges in acceptable time

9/24/2019 38

Literature

• Simon Haykin:
Neural Networks:
A Comprehensive
Foundation

• Page 129-141

9/24/2019 39

Neural Networks

(P-ITEEA-0011)

Gradient based optimization methods

Akos Zarandy

Lecture 4

October 1, 2019

Contents

• Recall
• Single- and multilayer perceptron and its learning method

• Mathematical background

• Simple gradient based optimizers
• 1st and 2nd order optimizers

• Advanced optimizers
• Momentum

• ADAM

9/30/2019. 2

Recall: Single layer perceptron

•

• Decision boundary is a hyperplan

• Simple training method

• Convergence of training was proven

• Good for making decision in linearly
separable cases

• In more complex decision situation
– It turns out to be a toy

9/30/2019 3

)(xw
Ty 

Recall: Multi-layer perceptron

•
• Can approximate an arbitrary function with

arbitrary precision
• The same way, it can implement arbitrary

decision boundary
• It can be trained even if F (or the boundary

surface) is not known analytically or not even
fully known

– Statistical learning: It is enough to know
equally distributed input/output pairs

• The partial gradient of the network can be also
calculated for each weight coefficient or hidden
layer neuron (back propagation)

9/30/2019 4

𝑁𝑒𝑡 𝐱,𝐖 = 𝜑(𝐿) 𝒘(𝐿)𝜑(𝐿−1) 𝒘(𝐿−1) … 𝜑(2) 𝒘(2)𝜑(1) 𝒘(1)𝒙

9/30/2019. 5

• Given:
– Definition of the network architecture

• Topology

• Initial weights

• Activation functions (nonlinearities)

• Training set (xi  yi)

What is learning (training)?

• Goal:
– Calculation of the optimal weight composition: Wopt

1. Having a function to approximate

    
2 2

opt 1: min F() Net min .. F() Net ... N, , dx dx   w w
w x x w x x w

2. Having a set of observations from a stochastic process

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

Stochastic process is a
process, where we cannot
observe the exact values.
In these processes, our
observations are always
corrupted with some
random noise.

OPTIMIZATION!!!

Optimization

• Function types:

• Quadratic, in case of regression (stochastic process)

• Conditional log-likelihood, in case of classification (classification process)

• The sum of the negative logarithmic likelihood (probability) is
minimized

9/30/2019. 6

• Given an Objective function to optimize
• Also called: Error function, Cost function, Loss function, Criterion
• Derived from the network topology and the input/output pairs

    
2

1

1 K

emp k k

k

R d Net ,
K 

 w x w

Θ 𝐰 = ෍

𝑘=1

𝐾

−𝑙𝑜𝑔𝑃 𝐲𝐤 𝐱𝐤; 𝐰

Optimizations
• Here we always minimize the objective function

– Parametric equation
• x are the variables
• w are the parameters

• Optimization targets to find the optimal weights

wopt = min f(x, d, Net(x,w))
goals:

– Acceptable error level
– Acceptable computational time assuming reasonable

computational effort

9/30/2019 7

Mathematics behind: Function analysis

9/30/2019. 8

• Assumptions
• Poor conditioning

• Conditioning number
(Ratio of Eugen values):

• Applied functions should be Lipschitz
continuous or have Lipschitz continuous
derivate

Conditioning refers to how rapidly a
function changes with respect to
small changes in its inputs.
Functions that change rapidly when
their inputs are perturbed slightly
can be problematic for scientific
computation because rounding
errors in the inputs can result in
large changes in the output.
(e.g. Matrix inversion)

j

i

ji 



,
max

nnAxAxf   1)(

2
y-xL)()(,,  yfxfyx

(where:
L is the Lipschitz constant)

Basic idea of Gradient Descent

9/30/2019. 9

• There is a function, where

and

• can be calculated at any
points, but

• cannot.

• Therefore the trace of the light blue line is not known.

• We have to start out from one point (say x1) and with an iterative
method, we need to go towards the minimum

)(xf

x

0)( xf

)(xf

)(xf 

1x

Which way to go?

Basic idea of Gradient Descent

9/30/2019. 10

• We do not know where the
curve is

• We know the value at

• We know the derivative at x1

• Which way to go?

• Idea: follow the descending
gradient!

)(xf

x

)(1xf 

)(1xf

1x

)(1xf X

)(1xf 

Optimization goal is to find the position.
(Critical or stationary points)

Basic idea of Gradient Descent

9/30/2019. 11

• Derivative means for small ε

• therefore

• This technique is called
Gradient Descent
(Cauchy, 1847).

)()()(xfxfxf  

  )()(xfxfsignxf 

)(xf
)(xf

0)( xf

x

0)( xf

0)( xf

tangents

0)( xf

Stationary points

9/30/2019. 12

• Local minimum, where f`(x)=0, and f(x) is smaller than all
neighboring points

• Local maximum, where f`(x)=0, and f(x) is larger than all
neighboring points

• Saddle points, where f`(x)=0, and neither minimum nor maximum

Local and global minimum

9/30/2019. 13

In neural network parameter optimization we usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense.

10/1/2019. 14

• In case of a vector scalar
function

• In 2D, directional derivatives
(slope towards x1 and x2):

2

21),(

x

xxf





x1

x2

1

21),(

x

xxf





Multidimensional input functions I

Multidimensional input functions II

10/1/2019. 15

• In case of a vector scalar function

• Gradient definition in 2D

A vector in the in the x1 - x2 plane

RRf 2:



















21

21 :),(
x

f

x

f
xxf

),(21 xxf

x1

x2

Multidimensional input functions III

10/1/2019. 16

• The gradient defines (hyper)
plane approximating the

function infinitesimally at
point x (x1, x2)

2

2

21
1

1

21),(),(
x

x

xxf
x

x

xxf
z 











x1

x2

),(21 xxf

Multidimensional input functions IV

10/1/2019. 17

• Directional derivative to an arbitrary
direction u (u is unit vector) is the slope
of f in that direction at point x (x1, x2):

• f decreases the fastest:

• u is opposite to the gradient!!!

)(T
xu f

cos)(min)(min
221,

T

1, TT
xuxu ff

uuuuuu




Not changing with u

minimum at 180

New points towards steepest descent:
)(xxx f 

)(xf

x1

x2

Gradient Descent in multidimensional input case

9/30/2019. 18

• Steepest gradient descent iteration

• ε is the learning rate
• Choosing ε:

– Small constant
– Decreases as the iteration goes ahead
– Line search: checked with several values, and the

one selected, where f(x) is the smallest

• Stopping condition of the gradient descent
iteration
– When the gradient is zero or close to zero

 )()()1(nfnn xxx  

x1

x2)(xf

Jacobean Matrix

• Partial derivative of a vector  vector function

• Specifically, if we have a function

then the Jacobian matrix

of is defined such that:

9/30/2019 19

nm :f
mnJ

f)(, i

j

ji xf
x


J

2nd derivatives

• 2nd derivative determines
the curvature of a line in 1D

• In nD, it is described by the
Hessian Matrix

• The Hessian is the Jacobian
of the gradient.

9/30/2019 20

 )()()(
22

, xf
xx

xf
xx

xfH
ijji

ji










2nd order gradient descent method I

• 2nd derivative in a specific direction:

• Second-order Taylor series approximation to the function f(x) around
the current point

• stepping towards the largest gradient:

9/30/2019 21

))(
2

1
)()()(0

T

0

T

00 xH(xxxgxxxx  ff

Huu
T

0x
where:
g: gradient at x0

H: Hessian at x0

Hggggxgxx
T2T

00
2

1
)()()(  fff

gxxxgx   00

2nd order gradient descent method II

• Analyzing:

• When the third term is too large, the gradient descent step can actually
move uphill.

• When it is zero or negative, the Taylor series approximation predicts
that increasing ε forever will decrease f forever.

• In practice, the Taylor series is unlikely to remain accurate for large ε, so
one must resort to more heuristic choices of ε in this case.

• When it is positive, solving for
the optimal step

9/30/2019 22

Hggggxgx
T2T

00
2

1
)()(  ff

Hgg

gg
T

T
* 

Original value Expected
improvement

Correction due to
curvature

Simplest 2nd order Gradient descent method: Newton Method

• Replacing and differentiating it with ,
assuming that we can jump to a minima, where:

10/1/2019 23

 ))()(
2

1
)()()()(00

T

00

T

00 x(xxHxxxxxxx  ffff

    xxHxxxHxxxx
x














)()()(

2

1
)()(0 000

T

0

T

0 fffff

xxx )(0 x

0)( xf

 )()(0

1

0 xxHx ff 
     )()()()1(

1
nfnfnn xxHxx 




Newton optimization:

Constant0 ½ (∆𝑥)2 ′ → ∆𝑥(∆𝑥)′ → 1

Properties of Newton optimization method

• When f is a positive definite quadratic function, Newton’s
method jumps in a single step to the minimum of the function
directly.

• Newton’s method can reach the critical point much faster than
1st order gradient descent.

9/30/2019 24

 )()(0

1

0 xxHx ff 
     )()()()1(

1
nfnfnn xxHxx 




Newton optimization:

Convex and non-convex functions

9/30/2019. 25

Strongly convex
function:
1 local minimum

Non-convex function:
multiple non-touching
local minima with
different values

Non-Strongly convex
function: infinity local
touching minima with
the same values

Local optimization in non-convex case

• Optimization is done
locally in a certain
domain, where the
function is assumed to be
convex

• Multiple local
optimization is used to
find global minimum

9/30/2019 26

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm

9/30/2019 27

What are we
optimizing here?

• Cost function in quadratic case for
one xi di pair:

ℇ𝑖 = 𝐝𝑖 − 𝑁𝑒𝑡 𝐱𝑖 , 𝐰
2

– Error surface is in the w space

– Error surface depends on the
xi di pair

– Moreover, we do not see the
entire surface, just

ℇ and the gradients
𝜕ℰ

𝜕𝑤𝑖𝑗
(𝑙)

10/1/2019 28

w1w2

w3

ww1w2

w3

Error surface for xi di
Error surface for xk dk

When and how to
update the weights?

Update strategies
• Single vector update approach (instant update)

– Weights are updated after each input vector

• Batched update approach

– All the input vectors are applied

• this is actually the correct entire error funtion, which is used by the original
Gradient Descent Method

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the entire batch is calculated

• Mini batch approach

– When the number of inputs are very high (104-106), batch would be ineffective

– Random selection of m input vectors (m is a few hundred)

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the mini batch is calculated

– Works efficiently when far away from minimum, but inaccurate close to minimum

– Requires reducing learning rate10/1/2019 29

Remember, each
approach optimizes

different error surfaces!!!

How learning rate effects convergence?

10/1/2019 30

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

– Nesterov momentum update

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm

10/1/2019 31

Stochastic Gradient Descent (SGD) algorithm

• Introduced in 1945

• Gradient Descent method, plus:

– Applying mini batches

– Changing the learning rate during the iteration

9/30/2019 32

• Sufficient conditions to guarantee convergence of
SGD:

• In practice:

• After iteration τ , it is common to leave ε constant

Learning rate at SGD

10/1/2019 33

and
𝜖 is the learning

rate, also marked
with 𝜂 sometimes

Stochastic Gradient Descent algorithm

where: L is the cost function

𝜃 is the total set of 𝑤𝑖,𝑗
(𝑙)

(and all other parameters to optimize)
10/1/2019 34

Stochastic Gradient Descent algorithm

• This very elongated quadratic
function resembles a long canyon.

• Gradient descent wastes time
repeatedly descending canyon
walls, because they are the
steepest feature.

• Because the step size is somewhat
too large, it has a tendency to
overshoot the bottom of the
function and thus needs to
descend the opposite canyon wall
on the next iteration.

9/30/2019 35

Momentum I

• Introduced in 1964
• Physical analogy
• The idea is to simulate a unity weight mass
• It flows through on the surface of the error

function
• Follows Newton’s laws of dynamics
• Having v velocity
• Momentum correctly traverses the canyon

lengthwise, while gradient steps waste
time moving back and forth across the
narrow axis of the canyon.

9/30/2019 36

Momentum II: velocity considerations

9/30/2019 37

Terminal velocity is applied when it finds descending gradient permanently:

Momentum III

9/30/2019 38

S

Momentum demo
• What does the parameter of the momentum

method means, and how to set them?
– https://distill.pub/2017/momentum/

9/30/2019 39

https://distill.pub/2017/momentum/

Nesterov momentum update
• It calculates the

gradient not in the
current point, but
in the next point,
and correct the
velocity with the
gradient over there
(look ahead
function)

• It does not runs
through a
minimum, because
if there is a hill
behind a
minimum, than it
starts decreasing
the speed in time.

9/30/2019 40

What if we make the
learning rate adaptive as
well, not just the velocity?

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

– Nesterov momentum update

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm

9/30/2019 41

AdaGrad algorithm
• The AdaGrad algorithm (2011) individually adapts the learning rates

of all model parameters by scaling them inversely proportional to the
square root of the sum of all of their historical squared values

• The parameters with the largest partial derivative of the loss have a
correspondingly rapid decrease in their learning rate, while
parameters with small partial derivatives have a relatively small
decrease in their learning rate

• The net effect is greater progress in the more gently sloped directions
of parameter space

• AdaGrad performs well for some but not all deep learning models

9/30/2019 42

AdaGrad algorithm

9/30/2019 43

Remembers the
entire history
evenly

RMSP algorithm

• The RMSProp algorithm (2012) modifies AdaGrad to perform better in the non-
convex setting by changing the gradient accumulation into an exponentially
weighted moving average

• In each step AdaGrad reduces the learning rate, therefore after a while it stops
entirely!

• AdaGrad shrinks the learning rate according to the entire history of the squared
gradient and may have made the learning rate too small before arriving at such a
convex structure

• RMSProp uses an exponentially decaying average to discard history from the
extreme past so that it can converge rapidly after finding a convex bowl, as if it
were an instance of the AdaGrad algorithm initialized within that bowl

9/30/2019 44

RMSP algorithm

9/30/2019 45

The closer parts of the
history are counted more
strongly.

ADAM algorithm (2014)

• The name “Adam” derives from the phrase “adaptive moments.”

• In the context of the earlier algorithms, it is perhaps best seen as a
variant on the combination of RMSProp and momentum with a few
important distinctions.

• in Adam, momentum is incorporated directly as an estimate of the
first order moment (with exponential weighting) of the gradient.

• Adam includes bias corrections to the estimates of both the first-
order moments (the momentum term) and the (uncentered)
second-order moments to account for their initialization at the
origin

9/30/2019 46

ADAM
algorithm

9/30/2019 47

r estimates the
curvature of the
gradient

s estimates the
gradient from the
history (moment)

Booth of them are
biased to reduce
anomalies at the
initialization

Video comparing adaptive and non-adaptive
methods• Three optimizer types are

compared:
– SGD

– Momentum types

• Momentum

• Nesterov AG
– Adaptív

• AdaGrad

• AdaDelta

• RmsProp

• Adaptive ones are the fastest

• SGD is very slow (stucked into
saddle point)

• https://www.youtube.com/wat
ch?v=nhqo0u1a6fw&t=306s

9/30/2019 48

https://www.youtube.com/watch?v=nhqo0u1a6fw&t=306s

Most commonly applied gradient descent
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm

9/30/2019 49

Newton’s algorithm

9/30/2019 50

Newton’s algorithm

• Typically not used, due to the computational complexity

• Parameter space much higher than first order (where it is
already very high)

9/30/2019 51

Back propagation

• We have seen last time how to calculate the gradient in a
multilayer fully connected network using back
propagation

– The introduced method was based on gradient descent method

• However, being able to calculate gradient, we might
select any of the above methods, which leads to orders
of magnitude faster convergence

9/30/2019 52

Neural Networks

(P-ITEEA-0011)

Components and methods of deep
neural networks

Akos Zarandy

Lecture 5

October 8, 2019

Contents
• Recall

• Optimization
• Analysis of the different methods

• Activation functions
• Various ReLUs
• Softmax

• Error functions
• Cross-entropy
• Negative log-likelihood

• Regularization
• Batch normalization,
• Weight regularization
•

10/8/2019. 2

10/8/2019. 3

• How to construct an Artifitial Neural Network
– Architecture, parameters, signal propagation, recall (inference)

• How to calculate the local gradient from the error function
– Error back propagation

• Update strategies
– Batch approach: Error function based on all the

training vectors
(K: Number of all the training vectors)

– Instant update: Error function based on one training vector

– Mini batch approach: Error function based on a random subset of
the training vectors
(𝑚𝑏 ≈ 200)

We discussed…

𝑒 =
1

𝐾
෍

𝑘=1

𝐾

𝑑𝑘 − 𝑁𝑒𝑡(𝑥𝑘 , 𝑤)
2

𝑒 =
1

𝑚𝑏
෍

𝑘=1

𝑚𝑏

𝑑𝑘 − 𝑁𝑒𝑡(𝑥𝑘 , 𝑤)
2

𝑒 = 𝑑𝑘 − 𝑁𝑒𝑡(𝑥𝑘 , 𝑤)
2

Epoch: One Epoch
is when the ENTIRE
training set is
passed forward
and backward
through the neural
network
only ONCE.

Epoch: time period
(korszak in
Hungarian)

10/8/2019. 4

• Once the gradient is known, optimization of
the network parameters can be done

• Gradient Descent Method

– Always uses the total error function
(all the training samples are used)

• Painfull to calcualte the gradient in case of
a very large training set

– Easily stucks in saddle points

– Stucks in local minima

– Very slow!

As we discussed …)(xf
)(xf

0)( xf

x

0)( xf

0)( xf
tangents

10/8/2019. 5

• Stocastic Gradient Descent (SGD) Method
– Uses a random subset of the training vectors

(mini batches)

• One update is fast to calcualte

– The objective function changes stocastically
with the minibatch selection
• More fluctuation in the objective function than in

case of Gradient Descent

• It helps to come out from local minima and saddles

– Decreases the learning rate during the training
time to reduce overshoot

– Still very slow! (Many update steps are
needed)

• More advanced optimization methods
required!

As we discussed …

Comparing adaptive and non-adaptive methods
• Three optimizer types are

compared:
– SGD

– Momentum types

• Momentum

• NAG
– Adaptive

• AdaGrad

• AdaDelta

• RmsProp

• Adaptive ones are the fastest

• SGD is very slow

• https://www.youtube.com/wat
ch?v=nhqo0u1a6fw&t=306s

10/8/2019 6

https://www.youtube.com/watch?v=nhqo0u1a6fw&t=306s

Do we have to reach the global minimum?

• Not really

• Global minimum means:
Overfitting

• Overfitting: The network
exactly learned the
training vectors

• However, it loses the
generalization capabilities

10/8/2019 7

Overfit

10/8/2019 8

Losing the generalization capabilities!!!

Overfitting occurs when a model with high capacity fits the noise in the

data instead of the (assumed) underlying relationship

Network complexity vs. capacity

10/8/2019 9

http://cs231n.github.io/neural-networks-1/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://cs231n.github.io/neural-networks-1/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network complexity vs. capacity

• In general, the
more layers we
have, and the
more neurons
there are, the
larger the capacity.

• There is no adequate method to
predict the required complexity.

• Even if a network is capable to learn a
task, it is not guaranteed that it will.

10/8/2019 10

10/8/2019. 11

• Architecture of the multilayer fully connected
neural networks

• Operation of these networks

• Derivation of the parameters

• Arbitrary function can be
approximated if the neural
network is complex enough

Now we understand

How to increase complexity
on a smart way?

No-brainer solution: Increase the number of the hidden layers

10/8/2019 12

• Problems:

– Number of free parameters are exploding

– Numerical problems arises after using too
many layers (double precision limit)

• Solution:

– Try to mimic human brain:

– Use hierarchical architectures!

– Reusable components!

D E E PD E E E PD E E E E PD E E E E E PD E E E E E E P

10/8/2019. 13

Hierarchical architecture of a deep neural network

What are the building blocks of a hierarchical deep neural network?

Components and methods

10/8/2019. 14

• Activation functions

• Error (loss) functions

• Regularization

• Batch normalization

• L1 and L2 regularizations

Why do we need nonlinear activation function in the hidden layers?

10/8/2019 15

x

w0

w1 v2

y1

y2

v2=w1y1=w1w0x=wx

If the neuron is linear: φ(v1)=v1

The two layers can be combined into an
equivalent single layer network!

v1

x

y

w=w1w0

On the other hand, we
could not approximate
arbitrary kinds of functions,
only linear ones!

v1=w0x (Summing junctions of layer 1)

v2=w1y1 (Summing junctions of layer 2)

y1=φ(v1) (Output of layer 1)

”Repeated matrix multiplications

interwoven with activation functions.”

(Karpathy)

y1=w0x

Sigmoid function
• Sigmoid function compresses the output
• Used in classification,

– The network calculates the probability of the
yes and the no decisions at the same time

𝑁𝑒𝑡 𝐱𝑘 , 𝐰 = 𝜎(𝐰T𝐱) = 𝑃 𝐲𝑘 𝐱𝑘;𝐰

• Probability of yes decision:

𝑃 𝐲𝑘 𝐱𝑘 ; 𝐰 = 𝜎(𝐰T𝐱)

• Probability of no decision:

1 − 𝑃 𝐲𝑘 𝐱𝑘; 𝐰 = 1 − 𝜎 𝐰T𝐱 = 𝜎(−𝐰T𝐱)

• It generates the probability (𝜙) parameter of a
Bernoulli distribution:

𝜎 𝑧 + 𝜎 −𝑧 = 1

• When z is large or small, the derivative of the output
is minimal (compresses the gradient)
– It significantly slows down the training when quadratic

loss function is used
10/8/2019

16

Bernoulli Distribution is a distribution
over a single binary random variable.
(like flipping a coin: head or tail)
It is controlled by a single parameter
𝜙 ∈ [0,1], which gives the probability
of the random variable being equal to 1
Pobability of head:

Expectation:

Sigmoid
function:

𝜎 𝑧

𝑧

x

y

y= 𝜎 (wTx)

ReLU: Rectified Linear Unit

• Very easy to calculate
– Implementation is a simple sign comparison

and replacing with 0 if negative

• Also easy to calculate its derivative
• Also called:

– Ramp function
– Half-wave rectifier

• Orders of magnitude learning speed
advantage
– Due to non-compressed gradient

• Smooth analytic approximation is the
Softplus function

• Asymptotically reaches ReLU

10/8/2019 17
Most used in hidden layers in deep neural networks (as of 2019)!

ReLU Softplus

Dying ReLU problem
• During training it happens that the weight

composition of a neuron got a certain combination in
a high gradient situation (when large jump happens
during the optimization), which leads to generate zero
output from that point on.
– Happens typically with large learning rate
– E.g. a very large negative value appears in the bias

position

• That neuron will output zero for each input vector
from that point
– Irreversible
– No contribution to the decision
– A usefull neuron selectively fires to a set of input vector

having the same properties

• In some bad cases, even 40% of the neurons dies in
coarse of a long training (Vanishing Gradient problem)

10/8/2019 18

Avoid the absolute zero part!
Introduction of Leaky ReLU.

𝐲 𝐿 = 𝑅 (𝐰 𝐿−1 𝑇𝐲
(𝐿−1)

+ 𝑏 𝐿−1)=R(v)

∆𝑤𝑗𝑖
𝐿 = η𝑅′ 𝑣 𝑒𝑖𝑦𝑖

(𝐿−1)

Leaky ReLU
• No constant zero output
• Neurons do not die
• Parametric ReLU

– Variation of leaky ReLU
– a is a hyper-parameter:

• Tuned during training

• Leaky ReLUs are not necessarily
superior than normal ReLU

• It is an option, if normal ReLU is not
performing well

10/8/2019 19

𝑓 𝑥 = max 𝑥, 𝑎𝑥
𝑤ℎ𝑒𝑟𝑒:
𝑎 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

ELU: Exponential linear units
• Variation of leaky ReLU

– No constant zero output
– Neurons do not die
– Mean activation closer

to 0 in the negative
region

• Obtains higher
classification accuracy
than ReLU, but requires
more computations

• a is a hyper-parameter:
– Tuned during training

10/8/2019 20

SELU: Scaled Exponential linear units

• Variation of leaky ELU

• Two fixed parameters

– Not trained, but
selected to be fixed

– 𝜆 is the scaling
parameter

10/8/2019 21

ReLU6• Variation of ReLU
– Capped at 6

– 6 is a choosable parameter

• Shown to learn sparse
features faster

• Turned out to be usefull
in CIFAR-10

10/8/2019 22

What do we expect from the activation
functions?

• Strong nonlinearities to support approximation of wide
range of functions

• To drive (during training) the individual neurons in the
hidden layers to a parameter zone where it is
– Silent for a set of input vectors

– Active for another set of input vectors

• Letting the gradient go through them

• Work together with the loss function (select them in
synchrony)

10/8/2019 23

Loss functions

10/8/2019 24

• Loss function determines the training process
• Tells the net, whether an error is big or small, and penalize accordingly

• There can be other errors, not just the difference of the output and
the desired output

• Most used loss function types:
• Quadratic, in case of regression

• Conditional log-likelihood, in case of classification
The sum of the negative logarithmic likelihood is minimized

    
2

1

1 K

emp k k

k

R d Net ,
K 

 w x w

𝐶(𝐰) = −
1

𝐾
෍

𝑘=1

𝐾

−𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰

d=0x=1

• In case of classification, the convergence can be very slow
• Consider the following very simple case

• Case A: Start the learning from w(0)=0.6, b(0)=0.9
– Loss function decreases quickly

• Case B: Start the learning from w(0)=2, b(0)=2
– Loss function decreases very slowly at the beginning

• Why is that?
– Because the ∆𝑤 is proportional with the gradient

10/8/2019 25

Check out the example!
http://neuralnetworksan
ddeeplearning.com/chap
3.html

Case A

Case B

What is the problem with quadratic loss function in classification tasks?

http://neuralnetworksanddeeplearning.com/chap3.html

Calculation of the gradient
• Loss function:

𝐿 = Τ1 2 𝑑 − 𝑦 2, where y = 𝜎 𝑤𝑥 + 𝑏

• Gradient, using chain rule:
𝜕𝐿

𝜕𝑤
= 𝑦 − 𝑑 𝜎′ 𝑤𝑥 + 𝑏 x = y𝜎′ 𝑤𝑥 + 𝑏 x

• Case A: w(0)=0.6, b(0)=0.9, x=1, d=0
– Slope of the gradient is fine: 𝑤𝑥 + 𝑏 = 1.5

– Fast convergence

• Case B: w(0)=2, b(0)=2, x=1, d=0
– Slope of the gradient is very small: 𝑤𝑥 + 𝑏 = 4

– Very slow convergence

10/8/2019 26

Case A
Case B

Sigmoid with quadratic loss
function leads to very small
gradient even at large error,
when the argument of the
sigmoid is a large value.

Introducing Cross Entropy
• Idea: replace the quadratic Loss function with a more

appropriate Loss function: Try cross entropy!

• In general:

• 𝐶(𝐰) = −
1

𝐾
σ𝑘=1
𝐾 𝑑𝑘 𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 + 1 − 𝑑𝑘 𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘, 𝐰

– Is it always positive?
• dk is either 0 or 1 (binary classification)

– Either the first or the second term is zero

• 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 = 𝜎 𝐰𝐱𝑘 + 𝑏

– The probability is the output of the network

– Due to the sigmoid, it is between 0 and 1

– Therefore, its logarithm is negative

10/8/2019 27http://neuralnetworksanddeeplearning.com/chap3.html

http://neuralnetworksanddeeplearning.com/chap3.html

Introducing Cross Entropy

• Idea: replace the quadratic Loss function with a more
appropriate Loss function: Try cross entropy!

• 𝐶(𝐰) = −
1

𝐾
σ𝑘=1
𝐾 𝑑𝑘 𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 + 1 − 𝑑𝑘 𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘, 𝐰

– Is it a good loss function?
Good decision (small loss):

• When dk is 0 and 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close to 0, than −𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~𝟎

• When dk is 1 and 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close to 1, than −𝑙𝑜𝑔 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~𝟎

Bad decision (large loss):

• When dk is 0 and 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close to 1, than −𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~∞

• When dk is 1 and 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close to 0, than −𝑙𝑜𝑔 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~∞

10/8/2019 28http://neuralnetworksanddeeplearning.com/chap3.html

http://neuralnetworksanddeeplearning.com/chap3.html

Introducing Cross Entropy

• Why is cross entropy good?

• 𝐶(𝐰) = −
1

𝐾
σ𝑘=1
𝐾 𝑑𝑘 𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 + 1 − 𝑑𝑘 𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘, 𝐰

– Because its partial derivative does not contain 𝜎′

𝜕𝐶

𝜕𝑤𝑗
=
1

𝐾
෍

𝑘=1

𝐾

𝑥𝑗 𝜎 𝐰𝐱 + 𝐛 − 𝑑

– The gradient is proportional with
the value of the sigmoid, and not
with its derivative!

10/8/2019 29http://neuralnetworksanddeeplearning.com/chap3.html

𝜎

http://neuralnetworksanddeeplearning.com/chap3.html

• Assume we have annotated
input vectors with n different
classes (MNIST data base)

• Expect a probability distribution
on the output layer!

– 0 ≤ 𝑦𝑖≤ 1 sigmoid OK!

– σ𝑖=1
𝑛 𝑦𝑖 = 1 sigmoid NOT OK!

10/8/2019 30

Probabilistic decision (n discrete categories)

ReLU ReLU Sigmoid?

Softmax

xi

Softmax
• Mathematically:

– Normalized exponential functions of the
output units

• Probability distribution of n discrete classes:
– One-of-n classes problems

– 0 ≤ 𝑦𝑖 ≤ 1

– σ𝑖=1
𝑛 𝑦𝑖 = 1

• Architectural difference:
– Previously learned activation functions were

based on the inputs of one neuron
– Softmax combines a layer of output neurons

10/8/2019 31

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣)𝑖

=
𝑒𝑣𝑖

σ𝑗=1
𝑛 𝑒𝑣𝑗

𝒗 = 𝒘𝑇𝒙

Properties of Softmax

• Generalization of sigmoid function for one-of-n
class

• Squashes a vector of size n between 0 and 1
• Improves the interpretability of the output of a

Neural Net
• Describes the probability distribution of a certain

class
– We may use the word ”confidence”

• Winner take all
– exponential function strongly penalize the non-

winners
– Similar to lateral negative feedback in the natural

neural systems

10/8/2019 32

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣)𝑖

=
𝑒𝑣𝑖

σ𝑗=1
𝑛 𝑒𝑣𝑗

𝒗 = 𝒘𝑇𝒙

EXAMPLE

10/8/2019 33https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

vi S(vi)

Input values Probability scoresInput images

EXAMPLE

10/8/2019 34https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

vi S(vi)

Input values Probability scoresInput images

EXAMPLE

10/8/2019 35https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

vi S(vi)

Input values Probability scoresInput images

Loss function for softmax: Negative log-likelihood

• 𝐿 𝒚 = σ𝑘=1
𝐾 −log(𝑦)

• The negative logarithm of the
probability of the correct decision
classes are summed up

• It is small, if the confidence of a
good decision was high for a
certain class

• Large, when the confidence is low
• Partial derivative of a softmax

layer with negative log-likelihood:

10/8/2019 36

𝜕𝐶

𝜕𝑣𝑗
= 𝑦𝑗 − 1

Example

10/8/2019 37https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

S(vi)

Probability
scores for

correct classes
(want big
numbers)

Negative log
for correct

class:
(want small
numbers)

Data regularization techniques

• Modification of the input vectors and internal data and
internal parameters of the net

• Targeting to perform better in generalization

• Increases the loss during training phase

• Puts the parameters further away from a minimum
with an expectation of it will find a deeper minimum

• In many cases these are heuristic methods with mostly
experimental and partial mathematical proof

10/8/2019 38

Input vector normalization

• When the input vector contains high
and small mean values in different
vector positions it is usefull to
normalize them

• Squeezes the number to the same
range

• Speeds up the training process

10/8/2019 39

𝑥 =
0,45
1589,2
0,00143

Input
vector:

ҧ𝑥 =
0,32
1423,2
0,00132

mean:

𝜎 =
0,11
155,2
0,00042

deviation:

𝑥𝑛𝑜𝑟𝑚𝑒𝑑 =
𝑥 − ҧ𝑥

𝜎
=

1,18
1,06
0,26

normalized
input vector:

Input Normalization
• Different normalization strategies exists for different input types

• Showing it in two dimension, it shapes the input vector

10/8/2019 40

Once you trained you net with a normalized training set,
you have to apply normalization when a previously unseen
vector (a new observation) is appled during inference.
OK, but how do you know the statistics?

Input normalization ezample

10/8/2019 41

L1 and L2 regularization

• L1, L2, regularization modifies the weights
– Rather than using MSE cost function
– An extra term, the MSE of the

weights is added (biases excluded)
– Done on minibatch level

• Can be used with other cost function type as well
• Differenciable: back propagation works
• Why is it good?

– Network preffers smaller weights
– If a few large weights dominate the decision the network

will lose fine generalization properties
– In case of large weigths, the decisions are less distributed,

the network is less error tolerant

10/8/2019 42

0

L1

L2

Batch normalization

• In very deep networks the distribution of the input vectors changes
from layer to layer
– The first layer got normalized input
– The second layer somewhat shifts and twists on this normalization
– And it goes on, and the (originally normalized) data propagating

trough the layers will be lose its normalized properties (called
„covariance shift”)

– This will shift the neuron out of its zero centered position, where the
activation function performs well (where the nonlinearity is)

• Solution: normalization on each layers!
• It also introduce a noise (loss function increase), which helps to

avoid local minima and avoids overfitting

10/8/2019 43

Batch Normalization
• Done on layer level like softmax
• Training:

– Done on minibatch level

• Inferencing:
– Do the normalization with the pre-

calculated parameters of the
entire training set

weights
bias

𝜖: avoid zero

ො𝑥(𝑘) =
𝑥(𝑘) − Ε 𝑥(𝑘)

𝑉𝑎𝑟 𝑥(𝑘)
E: the expectation

Var: the variance

• Batch normalization is
differenciable via chain rule

– Back propagation can be applied
for batch normalized layers

• Rewriting the normalization using
probability terms:

Faster learning

Dropout

10/8/2019 45

• Idea of dropout method:
– Use mini-batch training approach
– For each minibatch, a random set of

neurons from one or multiple hidden
layer(s) (called droppout layers) is
temporally deactivated

– Selection and deactivation probability is p
– In testing phase, use all the neurons, but

multiply all the outputs with p, to account
for the missing activation during training

• Requires more training steps, but each
is simpler, due to reduced number of
neurons

• No computational penalty in testing
phase

• Use it for fully connected layers
Reduces overfitting, because the
network is forced to learn the
functionality in different configurations
using different neural paths.

Reasoning behind dropout

• Dropout can be considered as averaging of
multiple thinned networks (“ensemble”)

• Dropout avoids training separate models

– Would be very expensive

• Avoids computatinal penalty in the test phase

• But still gets benefits of ensemble methods

10/8/2019 46

Intuitive explanation
Imagine that you have a team of workers and the overall goal is to
learn how to erect a building. When each of the workers is overly
specialized, if one gets sick or makes a mistake, the whole building will
be severely affected. The solution proposed by “dropout” technique is
to pick randomly every week some of the workers and send them to
business trip. The hope is that the team overall still learns how to build
the building and thus would be more resilient to noise or workers
being on vacation.

10/8/2019 47

Neural Networks

(P-ITEEA-0011)

Components and methods of deep
neural networks II

Akos Zarandy

Lecture 6

October 22, 2019

10/22/2019. 2

Hierarchical architecture of a deep neural network

What are the building blocks of a hierarchical deep neural network?

ReLU: Rectified Linear Unit

• Activation function
• Half-wave rectifier
• Not compressing the gradient

– learns much faster

• ReLU types
– Softmax
– Leaky ReLU
– ELU, SELU Relu6

10/22/2019 3
Most used in hidden layers in deep neural networks (as of 2019)!

ReLU

Probability type loss: Cross Entropy and Softmax
• Mathematically:

– Normalized exponential functions of the units

• Probability distribution of n discrete classes:
– One-of-n classes problems

– 0 < 𝑦𝑖 < 1

– σ𝑖=1
𝑛 𝑦𝑖 = 1

• Architectural difference:
– Previously learned activation functions were

based on the inputs of one neuron
– Softmax combines a layer of output neurons

10/22/2019 4

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣)𝑖

=
𝑒𝑣𝑖

σ𝑗=1
𝑛 𝑒𝑣𝑗

𝒗 = 𝒘𝑇𝒙

Data regularization techniques
• Modification of the input vectors or the internal data

composition of the network
– Input normalization

– Batch normalization

• Modification of the cost function
(involving the weight magnitudes)
– L1 and L2 regularization

(weight penalty)

• Temporal Modification of the net
architecture in training phase
– Dropout

10/22/2019 5

Contents

10/22/2019. 6

• Reducing the number of interconnections
• Biological motivations

• Convolution

• Convolution layers in deep networks

• Pooling

• Regularization methods

No-brainer solution: Increase the number of the hidden layers

10/22/2019 7

• Problems:

– Not usefull for locally correlated data

– Number of free parameters are exploding

D E E PD E E E PD E E E E PD E E E E E PD E E E E E E P

Locallity

8

• Spatial locallity:

– Data points measured
physically close to each other

– e.g. image measured by a
sensor array

– Measurements, close to each
other are similar (correlated)

– Local feature: where local
similarity is broken

uncorrelated correlated

Locallity

9

• Spatial locallity:

– Data points measured
physically close to each other

– e.g. image measured by a
sensor array

– Measurements, close to each
other are similar (correlated)

– Local feature: where local
similarity is broken

• Temporal locallity:

– Data point sequence measured
with the same sensor with small
time difference

– e.g. voice measured by a
microphone

– Measurement points, close to
each other are similar (correlated)

Uncorrelated data
series (noise)

Correlated data
series (continiuous signal)

uncorrelated correlated

10/22/2019 10

Example:

1000x1000 image

1M hidden units

Filter size: 10x10

108 parameters

• 10x10 filters finds local

features (edges)

• Why to apply different

filters in different location?

• How do I know where to

expect the edges?

1012 parameters

Example:

1000x1000 image

1M hidden units

• The low level information on

an image is local

• Makes no sense to involve

distant pixels to the same

function

No-brainer solution: Increase the number of the hidden layers

10/22/2019 11

• Architecturel problem:

– Why would be optimal to use one linear arrangement
using the same data width everywhere?

– Parallel, loop?

– How human visual system does it?

D E E PD E E E PD E E E E PD E E E E E PD E E E E E E P

10/22/2019. 12

What can we
learn from Human

Visual System?
• Hierarchy
– Eyes, LGN, Visual Cortex

• Each organized to
parallel layers

• Each responsible for
extracting a different
feature

• Fraction of the sensed
data is transferred only
– Image features and

motions

10/22/2019 13

Layers and features
in the retina

Retina cell layers

• Similar cells are forming layers
(filter)

• A layer extracts the same local
feature from the entire sensed
image with convolution type
operations
– Contrast changes, color differences,

motion direction, orientation

– Dendritic tree and synapse weights
defines the captured features

• Outputs are organized in separate
channels

https://webvision.med.utah.edu/book/part-iii-retinal-circuits/roles-of-amacrine-cells/

Visual cortex

10/22/2019 15

• Parallel blocks identifying edges with different
orientation

• Both the retinal and the cortical local feature
extractors are based on „convolutions” type
operators

• Convolutions defined by dendrit and synapse
patterns

Convolution
• Convolution is a

mathematical operation
that
– does the integral of the

product of 2 functions
(signals),

– with one of the signals
flipped and shifted

• Mathetmatically:

• Convolution is commutative
10/22/2019 16

Visualization in 1D

1. Flipp g signal
2. Slide the flipped g over f
3. Integrate the product in continious space

or Multiply and accumulate it in discrete space with each shift

10/22/2019 17

Discrete convolution
• For continiuous:

• For discrete functions:

10/22/2019 18

1D Numerical example

10/22/2019 19

0

0 1

0 1 1

0 1 1 3

0 1 1 3 5

0 1 1 3 5 2

0 1 1 3 5 2 8

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

(1x0)=0

(1x3)+(-1x2)+(2x1)=3

(1x2)+(-1x1)+(2x0)=1

(1x1)+(-1x0)=1

(-1x4)+(2x3)=2

(1x4)+(-1x3)+(2x2)=5

(2x4)=8

0 1 2 3 4

f function:

1 -1 2

g function:

Shifting the flipped g
function over f

2 -1 1

flipped g function:

𝑓 ∗ 𝑔 = 0 1 1 3 5 2 8

1D Numerical example

10/22/2019 20

0

0 1

0 1 1

0 1 1 3

0 1 1 3 5

0 1 1 3 5 2

0 1 1 3 5 2 8

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

(1x0)=0

(1x3)+(-1x2)+(2x1)=3

(1x2)+(-1x1)+(2x0)=1

(1x1)+(-1x0)=1

(-1x4)+(2x3)=2

(1x4)+(-1x3)+(2x2)=5

(2x4)=8

0 1 2 3 4

f function:

1 -1 2

g function:

Shifting the flipped g
function over f

2 -1 1

flipped g function:

𝑓 ∗ 𝑔 = 0 1 1 3 5 2 8

Def.: Valid positions:
the flipped g is

completely inside f
(fully overlapping

positions)
10/22/2019

21

0

0 1

0 1 1

0 1 1 3

0 1 1 3 5

0 1 1 3 5 2

0 1 1 3 5 2 8

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

(1x0)=0

(1x3)+(-1x2)+(2x1)=3

(1x2)+(-1x1)+(2x0)=1

(1x1)+(-1x0)=1

(-1x4)+(2x3)=2

(1x4)+(-1x3)+(2x2)=5

(2x4)=8

}
}

Def.: Boundary positions:
partially overlapping

positions

Validity vs Boundary position

Computation graph

10/22/2019 22

Valid cases

Size of the result

10/22/2019 23

size(𝑓 ∗ 𝑔) =

𝑛 + 𝑘 − 1 (𝑖𝑓 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

𝑛 − 𝑘 + 1 (𝑖𝑓 𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒𝑠
𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑜𝑛𝑙𝑦)

3 2 2 -1 -2 -3 -1f:

0 2 0-1 -1g:

3 2 2 -1 -2 -3 -1

f ∗ 𝑔

0 2 0-1 -1

4 5 5 3 -5 -5 0-2-3 13

Result is generated at the position
of the Central element of g

0 2 0-1 -1

0 2 0-1 -1

0 2 0-1 -1

size(f)= n size(g)= k n≥k

• In practice, convolution is
used as a filter, where
– f is the measrurement

data, g is the filter function
descriptor (kernel)

– size(f) ≫ size(g)

In CNN, we calculate the valid values only!

Padding in 1D
• In many case, we use a sequence

of convolution filters on the
measured data blocks

• We do not want size changes on
the data blocks

• To avoid size changes, we have to
pad the data block with zeros at
the boundaries

– k=size(g) is odd: k=2p+1

– k=size(g) is even: k=2p

• Padding is asymmetric:

10/22/2019
24

3 2 2 -1 -2 -3 -1f:

0 2 0-1 -1g:

Padded f: 3 2 2 -1 -2 -3 -1 0 0

0 2 0-1 -1

central
element

side
elements

g:

00

4 5 5 3 -5 -5 0

Valid 𝑓 ∗ 𝑔 after
padding:

np p

np p-1

Convolution vs
correlation I

• Cross-
Correlation:

• f* : complex
conjugate

• When f is
symmetric,
𝑓 ∗ 𝑔 = 𝑓 ⋆ 𝑔

(otherwise not)
10/22/2019 25

Convolution vs correlation II

• As the only difference is kernel flipping…

• Why convolution rather that correlation?
– Commutativity, Associativity, Distributivity helps to prove

mathematical statements

– Since the network learns its own weights, it is invariant whether that
flip is there or not (just a convention)

– In many cases, correlation is implemented even when it is called
convolution

10/22/2019 26

2D convolution

10/22/2019 27

𝑓 ∗ 𝑔
1(-1)+3(0)+0(2)-1(1)=-2

-2

3(-1)+1(0)-1(2)+1(1)=-4

-4

0(-1)-1(0)+2(2)+2(1)=6

6

-1(-1)+1(0)+2(2)-1(1)=4

4
Scanning through the f function

with the flipped g function

2D convolution: Example 2

10/22/2019 28

𝑔 =
1 0 1
0 1 0
1 0 1

kernel

Padding in 2D
• Works the same way as in 1D

– Boundary layers are added and filled up
with zeros

– Size g is k x k,

• where: k=2p+1

– Padding: p layers of zeros

10/22/2019 29

p

Convolution
without padding
(valid results)

Convolution
with padding
(size unchanged)

Why use padding?

• Simplifies the execution
code

• No branches

• Do not have to deal
with the different
calculation methods at
the boundaries

• Same code runs in the
entire array

10/22/2019 30

3 2 2 -1 -2 -3

0 2 0-1 -1

0 2 0-1 -1

0 2 0-1 -1

unpadded f:

Padded f: 3 2 2 -1 -2 -3 -1 0 000

Code type for boundary 1

Code type for boundary 2

Code type for central

0 2 0-1 -1

One code for all the array

Though it is more multiply-add operation, but as
f>>g a branch free simpler code is more efficient

Parameter number and computational load

• Number of trainable free parameters:
– k in 1D convolution | size(g)= k

– k2 in 2D convolution | size(g)= k × k

• Operation number
– k*n for a padded 1D convolution | size(f)= n

– k 2 * n 2 = O(n 2) for a padded 2D convolution | size(f)= n × n

10/22/2019 31

Convolution theorem

• Convolution in the Fourier domain is a multiplication

F {𝑓 ∗ 𝑔} = F {𝑓} ⋅ F {𝑔}
and also:

F {𝑓 ⋅ 𝑔} = F {𝑓} ∗F {𝑔}
where:

F {𝑓} is the Fourier transform for f

f can be vector or matrix

⋅ is point-wise multiplication

• Therefore:

𝑓 ∗ 𝑔 = F -1{ F {𝑓} ⋅ F {𝑔}}

𝑓 ⋅ 𝑔 = F -1 { F {𝑓} ∗F {𝑔}}
10/22/2019 32

Convolution can be calculated
with a Fourier and an inverse
Fourier transformation and a
point-wise multiplication. It
reduces the computational
complexity
from O(n2) to O(n ⋅ log n).

(using FFT, assuming n=2i)

Usage of convolution I : 1D filtering

10/22/2019 33

Smoothing noisy signal
Data lengths: 80 points

kernel:
1

5
1 1 1 1 1

Signal
differentiation

Data lengths: 60 points 𝑑𝑦

𝑑𝑥
kernel:

1

2
[1 -1] 𝑑2𝑦

𝑑𝑥2
kernel:

1

4
[-1 2 -1]

2D convolution: image filtering
• What is a digital image?

– One-to-one mapping of a
matrix and the pixels

– Black-and-white image
• Binary matrix
• 0: black
• 1: white

– Monochrome
(grayscale)
• Matrix of (typically) 8

bit numbers
• Values representing

the brightness of the
pixel

– Color image
• 3 matrices (R,G,B)

10/22/2019 34

Usage of convolution II : 2D filtering
Sobel operation

Cameraman

10/22/2019 35

First derivative
(vertical gradient)

1 2 1
0 0 0
−1 −2 1

First derivative
(horizontal gradient)

1 0 −1
2 0 −2
1 0 −1

First derivative
(diagonal gradient)

0 1 2
−1 0 1
−2 −1 0

Usage of convolution
III : 2D filtering

7x7 Laplacian of
Gaussian kernel

10/22/2019 36

Second
derivative of

an image

0.02 0.09 0.2 0.3 0.2 0.09 0.02
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.3 0.4 −0.7 −1.3 −0.7 0.4 0.3
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.02 0.09 0.2 0.3 0.2 0.09 0.02

Usage of convolution IV : 2D filtering

10/22/2019 37

• Seeking for a known patter
• Large convolution kernel is applied
• Kernel size is equivalent with the size of the sought pattern

=

Filter responeded with a strong
white peek in the matching position

• Sensitive for rotation

• Scale variant

Decomposition of large kernels I
• Convolution is associative

𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ

Example:

10/22/2019 38

0.02 0.09 0.2 0.3 0.2 0.09 0.02
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.3 0.4 −0.7 −1.3 −0.7 0.4 0.3
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.02 0.09 0.2 0.3 0.2 0.09 0.02

=
0.2 0.5 0.2
0.5 −3.1 0.5
0.2 0.5 0.2

∗

0 0.2 0.3 0.2 0
0.2 0.6 0.8 0.6 0.2
0.3 0.8 1.2 0.8 0.3
0.2 0.6 0.8 0.6 0.2
0 0.2 0.3 0.2 0

Laplacian of Gaussian kernel 𝑔 ∗ ℎ Laplacian 𝑔 Gaussian kernel ℎ

Number of operations: 49*Npix 9*Npix + 25*Npix = 34*Npix

15% reduction of computational demand!!!

Decomposition of large kernels II

• Decomposition is not exact in most cases

– In general case, it approximates the kernels with a limited
accuracy only

• Neural nets does not sensitive for inaccurate
decomposition

• Decomposition of larger kernels leads to higher savings!

• Wildly used!

10/22/2019 39

Stride

10/22/2019 40

• Stride is the number of pixel
what we slide the kernel

– Horizontal stride

– Vertical stride

• Down sampling the image

– Size:

𝑛+2𝑝−𝑘

𝑠
+ 1

– where:

Padding:1, stride: 1 Padding:1, stride: 2

size(f)= n, size(g)= k,

p: padding, s: stride

What is the role of a convolution?

10/22/2019 41

• Why not fully connected?

– Reduces the number of the
parameters (millions to a few dozens)

– Avoids vanishing gradient problem,
because one weight is tuned by a
large number of data pathes

• Since the convolution is space invariant,
detection will be space invariant also

• The convolution emulates the response of an individual neuron

• Each convolutional neuron processes data only for its receptive field
– Receptiv field: area covered by the g function

Space invariance means here that the functionality of a 2D function is not changing in space.
This enables the detection of a certain image feature anywhere on the image.

Pooling
• Pooling summarizes statistically the extracted features from the same

location on a feature map
• Mathematically, it is a local function over 1D or 2D data

– input:
• Segment of a vector in 1D
• rectangular neighborhood in 2D

– Function
• Statistical (maximum: max-pool)
• L2 norm
• Weighted average (weights

proportional of the distance
of the central element)

• In most cases: stride > 1
– This leads to downsampling

• Pooling introduces some shift invariancy
10/22/2019 42

s = 10

Max pooling
• Max pooling is the

most used pooling in
CNN

• Picks the largest
value from a
neighborhood

• Non-linear
• Statistical filter
• Downsampling

depends on the stride

10/22/2019 43

Backpropagation through
max-pooling layer
• Maximum node acts as a

router
• The dout gradient is given to

the input node, which has
contributed (which was the
biggest)

• The remaining positions will
get zero, because they did not
contributed to the error

10/22/2019

dB=dout, if B>A otherwise 0

dA=dout, if A>B

otherwise 0

dout

out=A (if A>B)

out=B (if B>A)

Forward

propagation

The maximum positions are stored

Average pooling

• Similar to max pooling,
but uses the average

10/22/2019 45

10/22/2019 46

10/22/2019

• Input
• Parallel feature extractors (convolution layers w. RELU)
• Data reduction (pooling)
• Combination of the features – aggregating information (fully connected layer)
• Decision (fully connected layer with soft-max activation) 47

Architecture of a typical Convolution Neural Network

k: kernel size
F: number of conv. Filters
s: stride
p: zero padding size

convolution
(k=5, F=16,

s=1, p=2)

max-pool
(k=2, F=1,
s=2, p=0)

convolution
(k=5, F=2,
s=1, p=2)

max-pool
(k=2, F=1,
s=2, p=0)

CNN example for data size reduction

10/22/2019 48

convolution
(k=9, F=64,
s=1, p=0)

convolution
(k=9, F=256,

s=1, p=0)

max-pool
(k=10, F=1,
s=5, p=0)

𝑠𝑖𝑧𝑒 =
𝑛 + 2𝑝 − 𝑘

𝑠
+ 1

input:
83x83
n=83

layer1:
75x75x64

n=75

layer2:
14x14x64

n=14

layer3:
6x6x256

n=6

max-pool
(k=6, F=1, s=1, p=0)

output:
256

k: kernel size
F: number of conv. filters
s: stride
p: zero padding sizelayer4:

1x1x256
n=1

Number of free parameters

10/22/2019 49

convolution
(k=9, F=64,
s=1, p=0)

convolution
(k=9, F=256,

s=1, p=0)

max-pool
(k=10, F=1,
s=5, p=0)

input:
83x83
n=83

layer1:
75x75x64

n=75

layer2:
14x14x64

n=14

layer3:
6x6x256

n=6

layer4:
1x1x256

n=1

max-pool
(k=6, F=1, s=1, p=0)

output:
256

number of parameters per convolution

layer: w#=(k2×ni+1)× no

where:

ni , no :number of input /output layers

+1 stands for the bias

w#=(81*1+1)*64=

=5,248

k: kernel size
F: number of conv. filters
s: stride
p: zero padding size

w#=(81*64+1)*256=

=1,327,360

Each feature map

receives input from each

one from the previous layer

Typical features for the first layers

Individual feature maps gives high response to these patterns
10/22/2019 50

Combination of features

10/22/2019 51

• Ultimately, the features
are combined by a fully
connected layer in the
classification part of the
network

• The output of
multiple feature
maps can be
combined to a
feature map in the
next layer with
convolutions

• If 1x1 convolution
kernel is applied,
this enables
weighted sum of
multiple maps

Why data size reduction is important?
• Methods of data size reduction

– Pooling
– Convolution with strides
– Convolution without padding

• Information aggregation
• Reduces the chance of overfitting or

vanishing gradient
• The distant local features are brought closer

– One filter can cover multiple features from the
previous layers

10/22/2019 52

eye
nose

mouth

face

Properties of Convolutional Neural Networks I:

• Sparsity
– The interconnection weights are just a fraction of the fully connected

NN (the weight matrix between two layers are sparse)
– A few dozen free parameter describes the operation of a layer
– Receptive field organization similar to natural neural vision systems

53

Sparse interconnections

Dense interconnections

A neuron in visual cortex receives
input from the receptive field only,
which is a small piece of the visual field

Receptive field of
an artifitial neuron

Properties of Convolutional Neural Networks II:

• Parameter sharing
– Same parameters everywhere in the layer

– Contribution to the gradient of a weight from many positions

– Reduces the risk of overfitting

– Reduces the risk of dying RELU (dying cell)
• When it happens, an entire feature extractor on a layer is dying

10/22/2019 54

Properties of Convolutional Neural Networks III:

10/22/2019 55

• Variable input size
– The input image is either resized or padded

Input images are
resized to the same size

Properties of Convolutional Neural Networks IV:

10/22/2019 56

• Equivalent representation
– Equvariance to translation

• The output shifts with an input shift

– In a fully connected neural network, each input is a dedicated channel
for a certain input parameter-therefore the inputs cannot be swapped
• Like bank example, one cannot replace the age input with the salary input

– In CNN, the image can be shifted, because the inputs are not
dedicated and the features are identified anywhere

Neural Networks

(P-ITEEA-0011)

Convolutional Neural Networks

Akos Zarandy

Lecture 7

November 5, 2019

11/5/2019. 2

Components of a convolutional neural network (CNN)

One convolutional layer

Feature maps

Contents

• Regularization and normalization methods
• Local response normalization

• Data augmentation

• Early stopping

• Ensembling

• Example CNN: AlexNet

• Segmentation

11/5/2019. 3

Regularization and optimization methods

• Different methods to increase
the loss in the learning phase,
but reduce overfitting and
increase generalization capabilities
– Local response normalization
– Batch normalization
– Data augmentation

(Enriching the data set)
– Early stopping
– Ensemble methods

• Network duplication
• Bagging
• Dropout

11/5/2019 4

Ian Goodfellow: regularization is
“any modification we make to the
learning algorithm that is intended
to reduce the generalization error,
but not its training error”

Local response normalization I

• Implementation of the Lateral inhibition from neurobiology
– If a neuron starts spiking strongly in a layer it inhibits (suppresses) the

of the neighboring cells
– Winner take all (have a strong decision)
– Balances the asymmetric responses of neurons in different areas of

the layer

• Useful when we are dealing with ReLU neurons
– Normalizes the unbounded activation of the ReLU neurons

• Avoids concentrating and delivering large values through layers

– It enhances high spatial frequencies by suppressing the local neighbors
of the strongest neuron

11/5/2019 5https://towardsdatascience.com/difference-between-local-
response-normalization-and-batch-normalization-272308c034ac

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac

Local response normalization II

– Intra map normalization
• 2D normalization within the same

feature map
• Balancing for different areas
• Winner-take-all for neigbouring

neurons in the same feature map
(strongest response to the same
transformation should win)

Looking from
this side

Which particular
pattern responds the
largest for the same
transformation?

Feature maps
are facing to us

Local response normalization III

– Inter-map normalization
• Normalization between the

neighboring feature maps
• Winner-take-all for the largest

response with different
transformation for the same input
location

Looking from
this side

Which particular
tranformation
responds the largest
for the same pattern?

Feature maps
are facing to us

Calculation method of local response normalization

11/5/2019 8

Local response norm. vs batch norm.

11/5/2019 9

• Normalization either
through the feature maps
or within one feature map

• Normalization is done for
one input image

• Normalization done for all
the pixels in all the feature
maps within a layer

• Normalization is done for
the entire batch

Both work within one convolutional layer

Data augmentation

11/5/2019 10

• Idea:
– Increase the generalization capability

of the net by enlarging the training
set

• Increase the number of the training
vector by introducing fake (artificial)
input-output pairs

• Typical methods
• Translating
• Slight rotation
• Rescaling
• Adding noise
• Flipping
• Cutting out parts
• Manipulating with pixel values

Early stopping
• Idea:

– Split data into training and test sets
– At the end of each epoch (or, every

N epochs):
• evaluate the network performance

on the test set
• if the network outperforms the

previous best model: save a copy of
the network parameters at the
current epoch

11/5/2019 11

– The best suboptimum is selected finally
– Since the error function is not necessarily monotonic, the optimization goes

on, but the suboptima are saved

of Epochs

Test error

Training error

Desired
stopEr

ro
r

Ensemble methods

• Idea of ensemble methods:
– Generate multiple copies of your net

• Same or slightly modified architectures

– Train them separately
• Using different subsets of the training sets
• Different objective functions
• Different optimization methods

– The different trained models have independent error characteristics
– Averaging the results will lead to smaller error

• Requires more computation and memory both in training and
inferencing (testing) phase

11/5/2019 12

Bagging
• Construct k

different
datasets

• Each with a
subset of the
data, but
with
duplications

• Trains with
these

• Make result
averaging

Original dataset

First resampled dataset

Second resampled dataset Second ensemble member

First ensemble member

First learns the upper loop, the second the lower. When both say yes, it is an 8.

Dropout

11/5/2019 14

• Idea of dropout method:
– Use mini-batch training approach
– For each minibatch, a random set

of neurons from one or multiple
hidden layer(s) (called droppout
layers) is temporally deactivated

– Deactivation probability is p
– In testing phase, use all the

neurons, but multiply all the
outputs with p, to account for the
missing activation during training

• Requires more training steps, but
each is simpler, due to reduced
number of neurons

• No computational penalty in
testing phase

• Use it for fully connected layers

Reduces overfitting, because the
network is forced to learn the
functionality in different configurations
using different neural paths.

Summary of CNN

• Layers:
– Convolution, fully connected

• Activation function
– ReLU, SoftMax

• Data aggregation
– Stride convolution, pooling

• Regularization
– Test set, data, parameter, and architecture regularization

11/5/2019 15

See, how it works in practice!

Alexnet
• First fully trained deep convolutional neural network

– Won the ImageNet Large Scale Visual Recognition (ILVSRC) Challenge
in 2012 (ILVSRC2012)

11/5/2019 16

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton,
"Imagenet classification with deep convolutional neural networks",
Advances in neural information processing systems, 2012

ImageNet Large Scale Visual Recognition
Challenge I

• ImageNet:
– 15+ million labeled high-resolution images

– 22000 categories

• ILSVRC uses a subset of ImageNet:
– 1000 categories

– ~1000 images per category

– 1.2 million training images | 50 000 validation images | 150 000 testing images

11/5/2019 17

ImageNet Large Scale
Visual Recognition

Challenge II

• Each image should be
classified
– Probability distribution

• Top 1 error rate:
– What percentage was

wrongly classified as
highest probability?
(38,9%)

• Top 5 error rate:
– What percentage was not

in the first five? (18.9%)

11/5/2019 18

15%
7%
6%
5%
3%

ILVSRC results

11/5/2019 19

Teams used GPU in the challenge

11/5/2019 20

Layer number vs result

11/5/2019 21http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Architecture

11/5/2019 22
5 convolutional layers

3 fully
connected
layers

input:
3 channels of the
color images

output:
1000-way
Softmax

Input normalization and Data augmentation I

11/5/2019 23

Images were down-sampled and cropped to 256×256 pixels and normalized

Data augmentation II

11/5/2019 24

Activation function

11/5/2019 25

Softmax
ReLU: 6 times
faster learning
rate

Ensembling: duplicating the network I

• Train two architecturally identical copies of the
network on two GPUs
– Half of the neuron layers are on each GPU

• GPUs communicate only in certain layers

– Improvement (as compared with a net with half as
many kernels in each convolutional layer trained on
one GPU):
• Top 1 error rate by 1.7%
• Top 5 error rate by 1.2%

11/5/2019 26

Ensembling: duplicating the network II

11/5/2019 27

Local Response Normalization I
• ReLUs do not require input normalization to prevent them from saturating

• However, Local Response Normalization aids generalization

• Lateral inhibition (intra-map)

• Improvement:

– Top error rate by 1.4%

– Top 5 error rate by 1.2%

11/5/2019 28

Local Response Normalization II

11/5/2019 29

Overlapping Pooling I
• Pooling layers summarize the outputs of neighboring

neurons in the same kernel map.
– Overlapping pooling
– s < k

• Improvement using MaxPooling:
– Top 1 error rate by 0.4%
– Top 5 error rates by 0.3%

11/5/2019 30

s=3 s=2

k=3 k=3

Overlapping Pooling II

11/5/2019 31

Overall Architecture

11/5/2019 32

Dropout layers

11/5/2019 33

Training I
• Stochastic Gradient Descent (with momentum)

– ADAM method was introduced in 2014 only (2 years later)

• Minimizing the negative log-likelihood (cross-entropy) loss function

• With L2 regularization (weight penalty):

11/5/2019 34

Training II

11/5/2019 35

• SGD + Momentum with a batch size of 128
• Learning rate initialized at 0.01

– divided by 10 if validation error rate stopped improving

• Update rule for weight 𝑤:

• Training effort:
– ~ 90 epochs  five to six days on two NVIDIA GTX 580 3GB GPUs

Look into the parameters!
• https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

• 3 layer CNN

• Cifar 10 database

• 32x32 sized color images

• 10 classes

• 6000 images per class

11/5/2019 36

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Image understanding
beyond classification

11/5/2019 37

• ImageNet challenge:
– One dominant object per image

• Real life problems:
– Multiple objects

• Same kind of objects

• Different kinds of objects

• Overlapping objects

– Where are the objects?

• Square them!

• Find the boundary  Segmentation

Multiple decisions
from each image!

Locality information!

Object recognition
• One object per image

– Task:
• Classify image
• Classes are known (one-of-n decision)

• Multiple object per image
– Task:

• Find and classify the objects
• Find the bounding boxes

11/5/2019 38

Object detection

• One or Multiple object
per image

– Task:
• Find the objects

• Identify them with bounding
boxes

11/5/2019 39

Area or pixel level
one-of-two decision!

Segmentation

11/5/2019 40

• Semantic Segmentation
– Label each pixel in the image with a

category label

– Don’t differentiate Instances, only care
about pixels

• Semantic Instance
Segmentation
– Differentiate

instances

Pixel level one-of-n
classification!

Semantic Segmentation Idea I: Sliding Window

11/5/2019 41

Problem: Very inefficient doing
it pixel-wise! No reuse of shared
features between overlapping
Patches.

Semantic Segmentation Idea II: Fully Convolutional

42

Problem: convolutions at
original image resolution
will be very expensive ...

43

Semantic Segmentation Idea III: Fully Convolutional

Downsampling:
Pooling, strided
convolution

Upsampling:
???

H/4 x W/4

H/8 x W/8

H/16 x W/16 H/32 x W/32

Conv, pool,
nonlinearity

upsampling

Upsampling I: “Unpooling”

11/5/2019 44

Upsampling I: “Unpooling”

11/5/2019 45

Upsampling II: “transpose convolution”

11/5/2019 46

1D example

stride: 2

2D transposed convolution
1 1 1

1 1 1

1 1 1

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

kernel

image

Stride 2:

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

X X X X

X X X X

2D transposed convolution
1 1 1

1 1 1

1 1 1

kernel

image

Stride 2:

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

X X X X

X X

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

2D transposed convolution
1 1 1

1 1 1

1 1 1

kernel

image

Stride 2:

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

X X X

X X

1 1 1

1 1 1

1 1 1

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

2D transposed convolution

kernel

image

Stride 2:

X X X

X X

1 1 1

1 1 1

1 1 1

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

2 2 2

2 2 2

2 2 2

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

2D transposed convolution

kernel

image

Stride 2:

X X

X X

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

2 2 2

2 2 2

2 2 2

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

2D transposed convolution

kernel

image

Stride 2:

X X

X X

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

3 3 3

3 3 3

3 3 3

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

2D transposed convolution

kernel

image

Stride 2:

X X

X

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

3 3 3

3 3 3

3 3 3

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

3 3 3

3 3 3

3 3 3

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

2D transposed convolution

kernel

image

Stride 2:

X X

X

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

4 4 4

4 4 4

4 4 4

3 3 3

3 3 3

3 3 3

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

2D transposed convolution

kernel

image

Stride 2:

X X

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

4 4 4

4 4 4

4 4 4

3 3 3

3 3 3

3 3 3

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

4 4 4

4 4 4

4 4 4

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

2D transposed convolution

kernel

image

Stride 2:

X X

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

4 4 4

4 4 4

4 4 4

3 3 3

3 3 3

3 3 3

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

4 4 4

4 4 4

4 4 4

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

X X

1 1 1

1 1 1

1 1 1

2D transposed convolution

kernel

image

Stride 2:

2 2 2

2 2 2

2 2 2

4 4 4

4 4 4

4 4 4

3 3 3

3 3 3

3 3 3

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

4 4 4

4 4 4

4 4 4

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

3

4

3

4 10 6 6

7

7

X X

2D transposed convolution

kernel

image

Stride 2:

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

5 5 5

5 5 5

5 5 5

3 3 3

3 3 3

3 3 3

1. Kernel is weighted
with the input
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps

4 4 4

4 4 4

4 4 4

1 2 5 5

3 4 5 5

5 5 5 5

5 5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5
5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5
5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

5 5 5

Note: the
summing
positions are not
homogenious

Transpose convolution artefact:

Avoiding checkerboard effect
• Non-homgenious transpose

convolution causes
checkerboard patterns

• Balanced stripe and kernel size
can make it homogenious

11/5/2019 59https://distill.pub/2016/deconv-checkerboard/

60

Fully Convolutional Network

Downsampling:
Pooling, strided
convolution

Upsampling:
Unpooling or strided
transpose convolution

H/4 x W/4

H/8 x W/8

H/16 x W/16 H/32 x W/32

Conv, pool,
nonlinearity

upsampling

• As many output layers as many classes
• Pixel-wise Softmax output function is used with negative log-likelihood

loss (multi-class cross entropy) function

Increasing spatial resolution in segmentation I

11/5/2019 61

Higher resolution layers directly forwarded to transfer finer spatial information

Called “Skipping”. It skips using the coarser (more downsampled) layers

Can be considered of an ensembling of three networks

skip 1

skip 2

Increasing spatial resolution in segmentation II

11/5/2019 62

Inreasing spatial resolution as higher resolution layers are feed forward

Information content is less squeezed to smaller layer

Deconvnet: Extreme segmentation I
• Fully symmetrical convolutional network

– All convolution and pooling layers are reversed

• Two stage training (first side trained for classification first)
• Takes 6 days to train on titan GPU
• Output probability map same size as input

11/5/2019 63

Deconvnet: Extreme segmentation II

11/5/2019 64

Neural Networks

(P-ITEEA-0011)

Semantic Segmentation

Akos Zarandy

Lecture 8

November 12, 2019

Announcement
• Midterm project were taken by many people 
• Midterm project counts for those

– Paper based test result is 5
• Can get offered grade 4 or 5 based on the quality of the midterm project

solution

– Paper based test result is 5
• Can get offered grade 3 only if the quality of the midterm project solution is

satisfactory
• One can go for better grade in exam period

• If somebody changes his/her mind about midterm project after this
announcement, he or she has to write a letter to Soma Kontar
today!

11/12/2019 2

Short quiz 60% required!

Recap

• Last Lecture we discussed
– How to do image classification

• Alexnet
• One decision per image (classification)

– Detection and Localization is more complex
• Multiple (few) decision per image

– Regressions for localization
– Classification for detection

– Pixel level Segmentation
• Very high number of decisions (classification)

per image

11/12/2019 3

Contents

• Detection and Localization
• PASCAL Database and Competion
• R-CNN

• Region proposal, Classification
• Support Vector Machine (SVN), Bounding box refinement

• Fast R-CNN
• Faster R-CNN

• Semantic Image Segmentation
• U-Net
• DeConvNet
• SegNet

• Resolution controlling
• Atrous convolutions, sub-pixel image combination

11/12/2019. 4

The PASCAL Object Recognition Database and
Challange

• Annotated image database

– Detection (squared objects)

– Segmentation (segmented
objects)

• Challenge

– The PASCAL Visual Object
Classes Challenge (PASCAL VOC)

11/12/2019 5

Object detection/localization and classification
• Chicken and egg problem

– You need to know that it is a bicycle
before able to say that both a wheel
part and a pipe segment belongs to the
same object

– You need to know that the red box
contains an object before you can
recognize it. (Cannot recognize a
bicycle if you try it from separated
parts)

• Our brain does it parallel
• How neural nets can solve it?

– Detection by regression?
– Detection by classification?

11/12/2019 6

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Regression?
(finding bounding box coordinates)

DOG, (x, y, w, h)

CAT, (x, y, w, h)

CAT, (x, y, w, h)

DUCK (x, y, w, h)

= 16 numbers

Lecture 8 - 38 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Regression?
(finding bounding box coordinates)

DOG, (x, y, w, h)

CAT, (x, y, w, h)

= 8 numbers

Lecture 8 - 39 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Regression?
(finding bounding box coordinates)

CAT, (x, y, w, h)

CAT, (x, y, w, h)

….

CAT (x, y, w, h)

= many numbers

Need variable sized outputs

Lecture 8 - 40 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Classification
(classify the content of each bounding boxes)

CAT? NO

DOG? NO

Lecture 8 - 43 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Classification
(classify the content of each bounding boxes)

CAT? YES!

DOG? NO

Lecture 8 - 43 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Classification
(classify the content of each bounding boxes)

CAT? NO

DOG? NO

Lecture 8 - 43 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Problem: Need to too test many positions and scales, and use a

computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Region Proposals
● Find “blobby” image regions that are likely to contain objects

● “Class-agnostic” object detector

● Look for “blob-like” regions

Lecture 8 - 49 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN in a Glance

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 14

The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 15

R-CNN: Region Proposal
• Requirements:

– Propose a large number (up to 2000) of regions (boxes) with different sizes
– Still much better than exhausting search with multi-scale sliding window

(brute force)
– Boxes should contain all the candidate objects with high probability

• R-CNN works with various Region proposal methods:
– Objectness
– Constrained Parametric Min-Cuts for Automatic Object Segmentation
– Category Independent Object Proposals
– Randomized Prim
– Selective Search

• Selective Search is the fastest and provides best regions

11/12/2019 16

http://groups.inf.ed.ac.uk/calvin/objectness/
http://www.maths.lth.se/matematiklth/personal/sminchis/code/cpmc/index.html
http://vision.cs.uiuc.edu/proposals/
http://www.vision.ee.ethz.ch/~smanenfr/rp/index.html
http://koen.me/research/selectivesearch/

R-CNN: Selective Search I
• Graph based segmentation (Felzenszwalb and Huttenlocher

method)
- cannot be used in this form, because one object is covered with multiple

segments, moreover regions for occluded objects will not be covered

• Idea: oversegment it and apply scaled similarity based merging

11/12/2019 17https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Input image Segmented image Oversegmented image

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

R-CNN: Selective Search II

11/12/2019 18https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Convert

regions

to boxes

Step-by-step merging regions at multiple scales based on similarities

Original fine scale Step one merging Step n merging

…

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Similarity measures I
Color Similarity
• Generate color histogram of each

segment (descriptor)

– 25 bins/ color channels

– Descriptor vector (𝑐𝑖
𝑘)size: 3x25=75

• Calculate histogram similarity for
each region pair

19

𝑠𝑐𝑜𝑙𝑜𝑟 𝑟𝑖 , 𝑟𝑗 = ෍

𝑘=1

75

min 𝑐𝑖
𝑘 , 𝑐𝑗

𝑘

𝑐𝑖
𝑘 is the

histogram value

for the kth bin in

color descriptor

Texture Similarity
• Texture features: Gaussian

derivatives at 8 orientations in
each pixel

– 10 bins/color channels

– Descriptor vector (𝑡𝑖
𝑘)size:

3x10x8=240

• Each region will have a texture
histogram

• Calculate histogram similarity for
each region pair

𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑟𝑖 , 𝑟𝑗 = ෍

𝑘=1

240

min 𝑡𝑖
𝑘, 𝑡𝑗

𝑘

𝑡𝑖
𝑘 is the histogram value for the

kth bin in texture descriptor

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Histogram
similarity

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Similarity measures II

Size Similarity

• Helps merging the smaller sized
objects

• Since we do bottom up merging,
the small segments will be
merged first, because their size
similarity score is higher

20

𝑠𝑠𝑖𝑧𝑒 𝑟𝑖, 𝑟𝑗 = 1 −
𝑠𝑖𝑧𝑒 𝑟𝑖 + 𝑠𝑖𝑧𝑒 𝑟𝑗

𝑠𝑖𝑧𝑒 𝑖𝑚𝑎𝑔𝑒

𝑠𝑖𝑧𝑒 𝑖𝑚𝑎𝑔𝑒 is the size of the entire image in

pixels

Shape Similarity
• Measures how well

two regions are fit
– How close they

are
– How large is the

overlap

𝑠𝑓𝑖𝑙𝑙 𝑟𝑖 , 𝑟𝑗 =

= 1 −
𝑠𝑖𝑧𝑒 𝐵𝐵𝑖𝑗 − 𝑠𝑖𝑧𝑒 𝑟𝑖 − 𝑠𝑖𝑧𝑒 𝑟𝑗

𝑠𝑖𝑧𝑒 𝑖𝑚𝑎𝑔𝑒

𝑠𝑖𝑧𝑒 𝐵𝐵𝑖𝑗 is the size of the bounding box of

𝑟𝑖 and 𝑟𝑗

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

More
similar

Less
similar

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Similarity measures III

Final Similarity

• Linear combination
of the four
similarities

21

List or proposed region

1. Initial oversegmentation

2. Calculation the similarities

3. Merge the similar regions

4. The formed regions are added to the region list
(this ensures that there will be smaller and larger
regions in the list as well)

5. Goto 2

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

𝑠𝑓𝑖𝑛𝑎𝑙 𝑟𝑖 , 𝑟𝑗 =

𝑎1𝑠𝑐𝑜𝑙𝑜𝑟 𝑟𝑖 , 𝑟𝑗
+𝑎2𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑟𝑖 , 𝑟𝑗
+ 𝑎3𝑠𝑠ℎ𝑎𝑝 𝑟𝑖 , 𝑟𝑗
+ 𝑎4𝑠𝑓𝑖𝑙𝑙 𝑟𝑖 , 𝑟𝑗

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Proposed regions

• Few hundreds or few
thousand boxes

• Includes all the objects
with high probability

• Number of the boxes
are much smaller than
with brute force
method

• C and python functions
exist

22https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 23

Computing the features of the regions

• Cut the regions one
after the other

• Resize (warp) the
regions to the input
size of the ConvNet

• Calculate the
features of the
individual regions

11/12/2019 24

Convolution network
• Pre-trained AlexNet, later VGGNet

• The decision maker SoftMax layer was cut
– Outputs:

• 4096 long feature vectors from each region

• Last 13x13x256 feature map cube (pool5)

11/12/2019 25

The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 26

Linear Support Vector Machine
• Idea: Separate the data

point in the data space
with a boundary surface
(hyperplane) with
maximum margin

• Vectors pointing to the
data points touching the
margins are the support
vectors

• The parameters of the
optimal hyperplane is
calculated with
regression

11/12/2019 27

• Similar to single layer perceptron, but optimized
for maximum margin

https://towardsdatascience.com/support-vector-machine-
introduction-to-machine-learning-algorithms-934a444fca47

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

Why SVM?

• Why not use simple the classification output of the AlexNet?

• During the training, the AlexNet/VGGNet is not trained

• Only SVM is trained

• The number of category is much smaller

– Designed for 20-200 categories rather than 1000

11/12/2019 28

Decision with SVM
• As many separate

SVM as many
category we have

11/12/2019 29

Feature vector of
the category to
be detected
e.g.: Cat

Feature vector of
all the other
categories plus
the background
e.g.: No Cat

The result: Each region is categorized
in every image classes.

The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 30

Ranking, selecting, merging
• Greedy non-maximum suppression

– Regions with low classification
probabilities are rejected

– Regions with high Intersection over
Union values (within the same
category) are merged

• Result: localized and classified
object

11/12/2019 31

The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 32

Bounding Box Regression

33

Training image regions

Input:

Cached feature map

cube (pool5)

Regression targets:
(dx, dy, dw, dh)
(normalized)

(0, 0, 0, 0)

Proposal is good

(.25, 0, 0, 0)

Proposal too

far to left

(0, 0, -0.125, 0)

Proposal too

wide

• Linear regression model

• One per object category

• Input: last feature map cube of the conv net (pool5)

• Output: size and position modification to the bounding box:

– dx, dy, dw, dh

pool5

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training
Step 1: Take a pretrained Convolutional Neural Network (e.g. AlexNet)

Image

Convolution

and Pooling

Last conv

feature map

layer

(pool5)

Fully-connected

layers

Class scores

1000 classes

Softmax loss

Lecture 8 - 54 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

Reusing a pre-trained network is useful, if there is
not enough data to train or if it provides good
enough result. Fine tuning typically needed!

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training

Image
Convolution

and Pooling

Last conv

feature map

layer

(pool5)

Fully-connected

layers

Save the feature vector to disk!

This feature vector describes the
content, and will be used for
classification

Lecture 8 - 55 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

Save the feature cube to disk!

This feature cube describes the
relative position information, and
will be used for bounding box
regression. (Sometimes this is
used for classification as well.)

Region Proposals Crop + Warp

Step 2: Extract features

• Go through the data base

• Use region proposal

• Calculate the features for

each proposed region

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training
Step 3: Identify which proposed region belongs to which object class

Based on the annotated image

Proposed region overlaps with the

annotated image segment? (IoU)

cat

dog

Lecture 8 - 57 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat
dog

Background

(belongs none of

the objects)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training
Step 4: Train one SVM per class to classify region features

Positive samples for cat SVM Negative samples for cat SVM

Lecture 8 - 57 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Training image regions

Cached region

features vectors

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Step 4: Train one SVM per class to classify region features

Training image regions

Negative samples for dog SVM Positive samples for dog SVM

Lecture 8 - 58 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Training

Cached region

features vectors

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Step 5 (bbox regression): For each class, train a linear regression model to map

from cached features cubes to offsets/size of the boxes to fix “slightly wrong”

position proposals

Training image regions

Cached region

feature cube

(pool5)

Regression targets

(dx, dy, dw, dh)

Normalized coordinates

(0, 0, 0, 0)

Proposal is good

(.25, 0, 0, 0)

Proposal too

far to left

(0, 0, -0.125, 0)

Proposal too

wide

Lecture 8 - 59 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Training

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Wang et al, “Regionlets for Generic Object Detection”, ICCV 2013

Lecture 8 - 62 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Results Big improvement (~25%)

compared to pre-CNN methods

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Bounding box regression

helps a bit

Lecture 8 - 64 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Results

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Features from a deeper

network help a lot

Lecture 8 - 65 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Results

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Problems

Lecture 8 - 66 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

1. Slow at test-time: need to run full forward pass of CNN for each region

proposal

• Recalculate the features again-and-again in the overlapping regions

2. SVMs and bbox regressors are post-hoc:

• CNN features not updated in response to SVMs and regressors

3. Complex multistage training pipeline

• Calculate the features for all the regions for all the training image first

• Then train for SVM and bbox regressor separately

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Problem #1:

Slow at test-time due

to independent

forward passes of

the CNN

Solution:
Share computation

of convolutional

layers between

proposals for an

image

Girschick, “Fast R-CNN”, ICCV 2015

Slide credit: Ross Girschick

https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46

https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Problem #2:
Post-hoc training: CNN not

updated in response to final

classifiers and regressors

Lecture 8 - 691 Feb 2016
Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

R-CNN Problem #3:

Complex training pipeline

Solution:
Just train the whole system

end-to-end all at once!

Slide credit: Ross Girschick

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:

3 x 800 x 600

with region

proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected

layers

Lecture 8 - 701 Feb 2016
Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

Problem: Fully-connected

layers expect low-res conv

features: C x h x w

Fast R-CNN: Region of Interest Pooling

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN: Region of Interest Pooling

Hi-res input image:

3 x 800 x 600

with region

proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected

layers

Lecture 8 - 711 Feb 2016
Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

Project region proposal

onto conv feature map

Problem: Fully-connected

layers expect low-res conv

features: C x h x w

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:

3 x 800 x 600

with region

proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected

layers

Problem: Fully-connected

layers expect low-res conv

features: C x h x w

Divide projected

region into h x w grid

Lecture 8 - 721 Feb 2016
Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

Fast R-CNN: Region of Interest Pooling

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:

3 x 800 x 600

with region

proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected

layers

Max-pool within

each grid cell

RoI conv features:

C x h x w

for region proposal

Lecture 8 - 731 Feb 2016
Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

Fully-connected layers expect

low-res conv features:

C x h x w

Fast R-CNN: Region of Interest Pooling

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:

3 x 800 x 600

with region

proposal

Convolution

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected

layers

Can back propagate

similar to max pooling

RoI conv features:

C x h x w

for region proposal

Lecture 8 - 741 Feb 2016
Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

Fully-connected layers expect

low-res conv features:

C x h x w

Fast R-CNN: Region of Interest Pooling

Instead of SVM, a SoftMax layer
makes the decision at Fast R-CNN.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

Using VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 75 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Faster!

FASTER!

Better!

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

Using VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 77 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Faster!

FASTER!

Better!

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Problem:

Lecture 8 - 78 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN

Test time per image without

Region Proposals

47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image with

Region Proposals 50 seconds 2 seconds

(Speedup) 1x 25x

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Problem Solution:

Lecture 8 - 79 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Test-time speeds don’t include region proposals

Just make the CNN do region proposals too!

R-CNN Fast R-CNN

Test time per image without

Region Proposals

47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image with

Region Proposals 50 seconds 2 seconds

(Speedup) 1x 25x

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN:

Lecture 8 - 80 1 Feb 2016

• Insert a Region Proposal
Network (RPN) after the last
convolutional layer
– Reuse the CNN computation

• RPN trained to produce region
proposals directly; no need for
external region proposals!

• After RPN, use RoI Pooling and
an upstream classifier and bbox
regressor just like Fast R-CNN

https://towardsdatascience.com/faster-
rcnn-object-detection-f865e5ed7fc4

https://towardsdatascience.com/faster-rcnn-object-detection-f865e5ed7fc4

Faster-RCNN

Shared conv layers

RPN

Fast-RCNN

Region Proposal Networks:

feature map
sliding window, nxn

nxn conv layer

1x1 conv layer 1x1 conv layer

cls layer reg layer

object or not object
bounding box
proposal

…

k anchors boxes

2k scores 4k coordinates

Anchors:
three rectangle
in three scales.

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Region Proposal Network

Slide a small window on the feature map

(very small computational effort per position)

Lecture 8 - 811 Feb 2016
Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

Build a small network for:
• classifying object or not-object, (Binary decision)
• regressing bbox locations

Position of the sliding window provides
localization information with reference to the
image

Box regression provides finer localization
information with reference to this sliding
window

1 x 1 conv

1 x 1 conv1 x 1 conv

Slide credit: Kaiming He

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Region Proposal Network
Use N anchor boxes at each

location

Anchors are translation
invariant: use the same ones at
every location

Regression gives offsets from

anchor boxes

Classification gives the probability
that each (regressed) anchor
shows an object

Lecture 8 - 82 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Training

One network, four losses

- RPN classification (anchor good / bad)

- RPN regression (anchor -> proposal)

- Fast R-CNN classification (over classes)

- Fast R-CNN regression (proposal -> box)

Slide credit: Ross Girschick

Lecture 8 - 83 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Results

Lecture 8 - 84 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN Faster R-CNN

Test time per

image

(with proposals)

50 seconds 2 seconds 0.2 seconds

(Speedup) 1x 25x 250x

mAP (VOC 2007) 66.0 66.9 66.9

Segmentation

• Pixel-wise classification

– Scene understanding
• Autonomous driving

– Medical imaging

– Precision agriculture

11/12/2019 61

Segmentation Architecture in General

• Same resolution is needed at the end

11/12/2019 62

Contraction side Expansion side

Segmentation Architecture in General
• Encoder Network: extract image features using deep convolutional

network
– Each layer: bank of trainable convolutional filters, followed by
– ReLUs and max-pooling to downsample image features

• Decoder Network: upsamples feature map back to image resolution with
final output having same number of channels as there are pixel classes
– Deconvolution
– Network mirrors encoder network

• Pixel-wise softmax over final feature map and cross-entropy loss function
for training using some kind of SGD.

11/12/2019 63

U-Net

• Designed for biomedical
image processing: cell
segmentation

• Data augmentation via
applying elastic
deformations,
– Natural since deformation

is a common variation of
tissue

– Smaller dataset is enough

11/12/2019 64

U-Net

11/12/2019 65

• Concatenate features
from encoder network
– instead of reusing

pooling indices

• Relatively shallow
network with low
computational demand
– 3x3 convolution kernel

size only
– 2x2 max pooling

• No fully connected
layer in the middle

11/12/2019 66

U-NET

Scaled version of the input or the
features are concatenated to the

expansion layers Pixel-wise Softmax at the last
layer with cross- entropy loss.

Can be train by colored
segmented image with
regression loss.

DeconvNet

• Instance-wise segmentation
• Two-stage training:

– train on easy examples (cropped bounding boxes centered
on a single object) first and

– then more difficult examples

11/12/2019 67

SegNet
• 13 convolutional layers from VGG-16

– The original fully connected layers are discarded

• Max pooling indices (locations) are stored and sent to decoder

• Scene understanding

11/12/2019 68https://towardsdatascience.com/review-segnet-semantic-segmentation-e66f2e30fb96

https://towardsdatascience.com/review-segnet-semantic-segmentation-e66f2e30fb96

Avoiding resolution loss but no high computational load:
Atrous convolution

• How it works?
– Blows up the kernel
– Filling up the holes with zeros

• Atrous means very dark (like
the wholes between the
values)

• Properties
– Not doing downsampling
– Not increasing computational

load
– But reaches larger

neighborhood
– Combines information from

larger neighborhood

11/12/2019 69

kernel

rate=1 rate=2 rate=3

Normal
convolution

Atrous (dilated)
convolution

Depth-to-Space

11/12/2019 70

Atrous convolution goes deeper without further reducing resolution

Normal convolution goes deeper with reducing resolution

Filter size considerations

• Small field-of-view → accurate localization

• Large field-of-view → context assimilation

• Effective filter size increases (enlarge the field-of-view of filter)

𝑛𝑜: 𝑘 × 𝑘 → 𝑛𝑎: 𝑘 + 𝑘 − 1 𝑟 − 1 × 𝑘 + 𝑘 − 1 𝑟 − 1

𝑛𝑜 : original convolution kernel size

𝑛𝑎 : atrous convolution kernel size

r: rate

• However, we take into account only the non-zero filter values:
• Number of filter parameters is the same

• Number of operations per position is the same

11/12/2019. 71

72Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected
CRFs." arXiv preprint arXiv:1606.00915 (2016).

Standard
convolution

Atrous
convolution

Padded
filter

Original filter

Visualizing atrous convolution

https://arxiv.org/pdf/1606.00915v1.pdf

Semantic segmentation
CNN arrangements

11/12/2019

Fully conv-net

Fully conv-net with skip

Conv-net with
Multi-scale
atrous
convolutions

• How to solve reduced resolution?
• Do not downsample !!!

• Convolution on large images ⥤ Small FOV Enlarge kernel
• Size O(n2) more parameters ⥤ getting close to fully
• Connected layer, slow training, overfitting

• Atrous Convolution.
• Large FOV with little parameters  Kill two birds with one

stone!

Neural Networks

(P-ITEEA-0011)

Unsupervised learning techniques

Akos Zarandy

Lecture 9

November 19, 2019

Contents

• Supervised vs unsupervised learning

• Unsupervised learning techniques
• Curse of dimensionality

• Principal component analysis (PCA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Autoencoder

11/19/2019. 2

Typical Machine Learning Types

• Supervised Learning
– Learning from labeled examples

(for which the answer is known)

• Unsupervised Learning
– Learning from unlabeled

examples (for which the answer

is unknown)

• Reinforcement Learning
– Learning by trial and feedback,

like the “child learning” example

11/19/2019 3

Supervised vs Unsupervised learning

• Supervised learning

– We have prior knowledge
of the desired output
• Always have data set with

ground truth (like image
data sets with labels)

– Typical tasks
• Classification

• Regression

11/19/2019

• Unsupervised learning
– No prior knowledge of

the desired output
• Received radio signals from

deep space

– Typical tasks
• Clustering

• Representation learning

• Density estimation

We wish to learn the inherent

structure of (patterns in) our data.
4

Use cases for unsupervised learning

• Exploratory analysis of a large data set

– Clustering by data similarity

– Enables verifying individual hypothesizes after analyzing the clustered data

• Dimensionality reduction

– Represents data with less columns

– Allows to present data with fewer features

– Selects the relevant features

– Enables less power consuming data processing, and/or human analysis

11/19/2019 5

Curse of dimensionality

11/19/2019 6

• What is it?
– A name for various problems that arise when analyzing data in high

dimensional space.
– Dimensions = independent features in ML

• Input vector size (different measurements, or number of pixels in an image)

– Occurs when d (# dimensions) is large in relation to n (number of
samples).

• Real life examples:
– Genomics

• We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.

So what is this curse?

• Sparse data:
– When the dimensionality d increases, the volume of the space increases

so fast that the available data becomes sparse, i.e. a few points in a large
space

– Many features are not balanced, or are ‘rarely occur’ – sparse features

• Noisy data: More features can lead to increased noise  it is harder to find
the true signal

• Less clusters: Neighborhoods with fixed k points are less concentrated as d
increases.

• Complex features: High dimensional functions tend to have more complex
features than low-dimensional functions, and hence harder to estimate

11/19/2019 7

Data becomes sparse as dimensions increase
• A sample that maps 10% of the 1x1 squares in 2D represent only 1%

of the 1x1x1 cubes in 3D

• There is an exponential increase in the search-space

11/19/2019 8

Data sample
number increase to

avoid sparsity

• e.g. 10 observations
/dimension
– 1D: 10 observations

– 2D: 100 observations

– 3D: 1000 observations

– …

11/19/2019 9

Curse of dim - Running complexity

• Many data points (labeled measurements) are needed

• Complexity (running time) increase with dimension d

• A lot of methods have at least O(n*d2) complexity, where n is
the number of samples

• As d becomes large, this complexity becomes very costly.
– Compute = $

11/19/2019 11

Sparisty increase: More regions with the same
number of data points

11/19/2019 12

Distances in high dimension

• Assume, we have a unit side (2D) square,
what we divided to 100 equal small squares
– Calculate the ratio of the largest distance in a small

square and the largest distance of the big square
(in 2D)

• Assume, we have a unit side 100D cube,
what we divided to 100 equal small 100D
cubes
– Calculate the ratio Ratio of the largest distance in a

small cube and the largest distance of the big cube
(in 100D)

– The average nearest neighbor distance is 95% of the
largest distance!!!

– Euclidian distance becomes meaningless, most two
points are “far” from each others

11/19/2019 13

D

s

S

d

s2=
2 1

100
= 0.1

S2=1

D2= 2

d2=0.1 2

𝑅2 =
𝑑2

𝐷2

= 0.1

S100=1 s100=
100 1

100
= 0.95

D100= 100 = 10 d100= 100 ∗ 0.952 = 9.5

𝑅100 =
𝑑100

𝐷100

= 0.95

Curse of dim - Some mathematical
(weird) effects

• Ratio between the volume of a sphere and a cube for d=3:

• When d tends to infinity the volume of the sphere (this ratio) tends to zero

• Most of the data is in the corner of the cube

– Thus, Euclidian distance becomes meaningless, most two points are “far” from
each others

• Very problematic for methods such as k-NN classification or k-means
clustering because most of the neighbors are equidistant

11/19/2019 14

(
𝟒
𝟑)𝝅𝒓

𝟑

(𝟐𝒓)𝟑
≈
𝟒𝒓𝟑

𝟖𝒓𝟑
≈ 𝟎. 𝟓

d 3 5 10 20 30 50

ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28

The nearest neighbor problem in a sphere

• Assume randomly distributed points in a sphere with a unit diameter

• The median of the nearest neighbors is l

• As dimension tends to infinity

– The median of the nearest neighbors
converges to 1

11/19/2019 15

“The Curse of Dimensionality” by Raúl Rojas
https://www.inf.fu-berlin.de/inst/ag-
ki/rojas_home/documents/tutorials/dimensionality.pdf

l

How to calculate dimensionality?

x1 x2 x3 x4

d1 1 2 1 1
d2 2 4 3.5 1
d3 3 6 17 1

• How many dimensions does the data
intrinsically have here?
(How many independent coordinates?)

– Two!
• x1 = ½ * x2 (no additional information, correlated, not independent)
• x4 is constant (carries no information at all!)

11/19/2019 16

feature vectors (x)
o

b
se

rv
at

io
n

s
(d

)

x1

x2

x4

x3

How to avoid the curse?

• Reduce dimensions
– Feature selection - Choose only a subset of features
– Use algorithms that transform the data into a lower dimensional space (example – PCA, t-SNE)

*Both methods often result in information loss

• Less is More
– In many cases the information that is lost by discarding variables is made up for by a more

accurate mapping/sampling in the lower-dimensional space

11/19/2019 17

Classifier
performance

of variablesOptimal # of
variables

Principal component analysis

(PCA)

11/19/2019 18

Dimensionality reduction goals

• Improve ML performance

• Compress data

• Visualize data (you can’t visualize >3 dimensions)

• Generate new complex features
– Loosing the meaning of a feature

– Combining temperature, sound and current to one feature will be meaningless for
human (non-physical)

11/19/2019 19

Example – reducing data from 2d to 1d

• X1 and x2 are pretty redundant. We
can reduce them to 1d along the
green line

• This is done by projecting the points
to the line (some information is lost,
but not much)

11/19/2019 20

• Despite having 3D data most of it lies close to a plane

• If we were to project the data onto a plane we would have a more
compact representation

• So how do we find that plane without loosing too much of the variance in
our data?  PCA

Example – 3D to 2D

11/19/2019 21

Principal component analysis (PCA)

• Technique for dimensionality reduction

• Invented by Karl Pearson (1901)

• Linear coordinate transformation

– converts a set of observations of possibly correlated variables

– into a set of values of linearly uncorrelated orthogonal variables
called principal components

• Deterministic algorithm

11/19/2019 22

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

11/19/2019 23
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

11/19/2019 24
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

3. Covariance matrix: Calculate the covariance matrix

11/19/2019 25
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

Covariance (formal definition)

• Covariance x, x = var x

• Covariance x, 𝑦 = Covariance y, x

Variance(x)=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

• Assume that x are random
variable vectors

• We have n vectors

Covariance example for 2D

• Positive
covariance
between the
two
dimensions

11/19/2019 27

𝑥1

𝑦1

ҧ𝑥

ത𝑦

𝑦1 − ത𝑦<0

𝑥1 − ҧ𝑥<0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance example for 2D

• Negative
covariance
between the
two
dimensions

11/19/2019 28

𝑦1

ത𝑦

𝑦1 − ത𝑦<0

𝑥1ҧ𝑥
𝑥1 − ҧ𝑥>0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance example for 2D

• No covariance
between the
two
dimensions

11/19/2019 29

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0
𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

Covariance matrix

11/19/2019 30

𝐶𝑜𝑣 σ =

𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑐𝑜𝑣(𝑥𝑚, 𝑥𝑚)

𝐶𝑜𝑣 σ =
1

𝑛
𝑋 − ത𝑋 𝑋 − ത𝑋 𝑇; 𝑤ℎ𝑒𝑟𝑒 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑚

• Diagonal elements
are variances, i.e.
Cov(𝑥, 𝑥)=𝑣𝑎𝑟 𝑥
– n is the number

of the vectors

– m is the
dimension

• Covariance Matrix
is symmetric
– commutative 𝐶𝑜𝑣 σ =

𝑣𝑎𝑟(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑣𝑎𝑟(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑣𝑎𝑟(𝑥𝑚, 𝑥𝑚)

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value.

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

11/19/2019 31
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

x2

x1

PC2
PC1

Principal
components will be
orthogonal.
Uncorrelated,
independent!

PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value.

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

5. Rank eigenvectors by eigenvalues

6. Keep top k eigenvectors and stack them to form a feature vector

7. Transform data to PCs:

– New data = feature vectors (transposed) * original data

11/19/2019 32
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

11/19/2019 33

Principal Component Analysis (PCA)
• The idea is to project the data onto a subspace which compresses most of

the variance in as little dimensions as possible.

• Each new dimension is a principle component

• The principle components are ordered according to how much variance in
the data they capture
– Example:

• PC1 – 55% of variance
• PC2 – 22% of variance
• PC3 – 10% of variance
• PC4 – 7% of variance
• PC5 – 2% of variance
• PC6 – 1% of variance
• PC7 - ….

11/19/2019 34

We have to choose how many PCs to use from the top

How many
PCs to use?

• Calculate the proportion of
variance for each feature

– 𝑝𝑟𝑜𝑝. 𝑜𝑓 𝑣𝑎𝑟. =
𝜆𝑖

σ𝑖=1
𝑛 𝜆𝑖

– 𝜆𝑖 are the eigen values

• Rich a predefined threshold

• Or find the elbow of the
Scree plot

11/19/2019 35

Scree plot elbow

Scree plot

Proportion
of variance

Principal components

Variance
Cumulative variance

PCA Example
• Weekly food

consumption of the
four countries
– food types: variables

– countries: observations

• Clustering the
countries:
– Needs visualization in

17 dimension

• PCA: reduce
dimensionality

11/19/2019 36

http://www.sdss.jhu.edu/~szalay/clas
s/2016-oldold/SignalProcPCA.pdf

http://www.sdss.jhu.edu/~szalay/class/2016-oldold/SignalProcPCA.pdf

PCA Example
• From PC1, two clusters

are well separable

• Including PC2, the four
clusters can be well
separated

11/19/2019 37

Coefficients of the Principal Components

Load plot shows the coefficients of the original
feature vectors to the principal components

11/19/2019 38

t-Distributed Stochastic Neighbor Embedding

(t-SNE)

11/19/2019 39

t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Introduced by Laurens Van Der Maaten (2008)

• Generates a low dimensional representation of the high dimensional data
set iteratively

• Aims to minimize the divergence between two distributions

– Pairwise similarity of the points in the higher-dimensional space

– Pairwise similarity of the points in the lower-dimensional space

• Output: original points mapped to a 2D or a 3D data space

– similar objects are modeled by nearby points and

– dissimilar objects are modeled by distant points with high probability

• Unlike PCA, it is stochastic (probabilistic)

11/19/2019 40

t-SNE implementation I
Step 1: Generate the points in the low dimensional data set (2D or 3D)

• random initialization

• First two or three components of PCA

11/19/2019 41

t-SNE implementation II

The similarity of datapoint
xj to datapoint xi means
the conditional probability
pji that xi would pick xj

as its nearest neighbor.

Step 2: Calculate the pair-wise similarities measures between data pairs
(probability measure)

Exponential normalization of the
Euclidian distances are needed due
to the high dimensionality.
(Curse of dimensionality)

Step 3: Define the cost function

• Similarity of data points in High dimension:

• Similarity of data points in Low dimension:

• Cost function (called Kullback-Leiber divergence between the two
distributions):

• Large pji modeled by small qji Large penalty

• Large pji modeled by large qji Small penalty

• Local similarities are preserved

11/19/2019 44

t-SNE implementation III

t-SNE implementation IV

11/19/2019 45

Step 4: Minimize the cost function using gradient descent

• Gradient has a surprisingly simple form:

• Optimization can be done using momentum method

Physical analogy
• Our map points are all connected with springs in the low

dimensional data map

• Stiffness of the springs depends on pj|i - qj|i

• Let the system evolve according to the laws of physics

– If two map points are far apart while the data points are close,
they are attracted together

– If they are nearby while the data points are dissimilar, they are
repelled.

• Illustration (live)

– https://www.oreilly.com/learning/an-illustrated-introduction-to-
the-t-sne-algorithm

11/19/2019 46

Comparison of PCA and t-SNE on MNIST database

11/19/2019 47

PCA T-SNE

28x28 (784) dimensions  2 dimensions

Autoencoder

11/19/2019 48

Autoencoder
• Neural network used for efficient data coding

• Uses the same vector for the input and the output
– No labelled data set is

needed

– Unsupervised learning

• Two parts
– Encoder: reduces data

dimension

– Decoder: reconstructs
data

– Middle layer: code

11/19/2019 49

𝑥2
′

𝑥3
′

𝑥5
′

Operation

11/19/2019 50

x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

𝑥1
′

Layer 3

a1

a2

a3

net(x)=x’

𝑥1
′

𝑥4
′

𝑥6
′

• The network is
trained with the
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy

• After network is
trained, remove
decoder part

Operation

• The network is
trained with the
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy

• After network is
trained, remove
decoder part

11/19/2019

x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

a1

a2

a3

New compressed

representation for

input.

𝑎1
𝑎2
𝑎3

Example

• Coding MNIST data base
• 28x28 (784 dimensions)  2x5 (10 dimensions)
• 78 times compression
11/19/2019 52

Autoencoder vs PCA

• Undercomplete autoencoder with

– one hidden layer

– linear output function

– MSE loss

• Projects data on subspace of first K principal
components

11/19/2019 53

Undercomplete: width
(dimension) of
hidden layer is smaller than
width input/output layer

Denoising
• Trick:

– Adding noise to the input

– The desired output is the original input

11/19/2019 54

MNIST database coding to two dimension

5511/19/2019

Two neurons in
the coding hidden
layer

Autoencoder + t-SNE

11/19/2019 56

Two neurons in
the coding hidden
layer

Recurrent Neural Networks

• How to handle sequential signals with Neural Networks?

• General Architecture of the Recurrent Networks

11/19/2019. 57

Static samples vs Data signal flow

• Though human can
recognize
– Single letters
– Single sounds
– Single tunes
– Single pictures

11/19/2019 58

• But in real life we
handle
– Texts
– Speech
– Music
– Movies

Can feed-forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers

• For storing data temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference

11/19/2019 59

Recurrent networks (RNN)

11/19/2019 60

Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural
networks, the output of the RNN
depends on the previous inputs

– State

• RNN contains feedback

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in
execution

– Time steps, delays

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

11/19/2019 61

11/19/2019 62

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

11/19/2019 63

Steps towards vectorized data and parameters

• Weights
(multiple
arrows)

replaced
with
vectors
(single
arrows)

11/19/2019 64

Steps towards vectorized data and parameters

• Single arrows
indicate all
interconnections
between layers

• wij matrix
matematically

Introducing feedback loop

65

ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

Activation function in feedback loop

• Activation function of the
hidden layers is
typically hyperbolic
tangent

• It avoids large positive
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop

calculation
– Gain should be smaller

than 1 in the loop!

11/19/2019 66

Positive feedback in a loop:
A produces more of B which
in turn produces more of A.
It leeds to increase beyond
any limit.

A B

x2

x2

Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs

exist
• State machine

67

input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

. . .

11/19/2019

Unrolling

11/19/2019 68

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

. . .

Unrolling

• Unrolling generates an acyclic
directed graph from the original
cyclic directed graph structure

• It generates a final impulse
response (FIR) filter from the
original infinite impulse
response (IIR) filter

• Dynamic behavior

11/19/2019 69

…

FIR filters response
to any finite length
input with a final
response.

IIR filters may response to
any finite length input
with a infinite (usually
decaying) response, due
to their internal loop.

Weight matrix sharing

11/19/2019 70

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

. . .

RNN re-uses the same weight
matrix in every unrolled steps.

Neural Networks

(P-ITEEA-0011)

Recurrent Neural networks,
LSTM

Akos Zarandy

Lecture 10

November 26, 2019

Contents

• How to handle sequential signals with Neural Networks?

• Recurrent Networks
• Training

• Examples

• Vanishing gradient problem

• Long Short Term Memory (LSTM)
• LSTM versions

2019-11-25. 2

Static samples vs Data signal flow

• Though human can
recognize
– Single letters
– Single sounds
– Single tunes
– Single pictures

2019-11-25 3

• But in real life we
handle
– Texts
– Speech
– Music
– Movies

Can feed forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

Naturally, we can extend the data dimension with the time, but this leads
to data size and computational load explosion .

Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers

• For store temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference

2019-11-25 4

Recurrent networks (RNN)

2019-11-25 5

Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural
networks, the output of the RNN
depends on the previous inputs

– State

• RNN contains feedback

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in
execution

– Time steps, delays

Vectorized presentation of neurons and
parameters

• Weights
(multiple
arrows)

2019-11-25 6

2019-11-25 7

Vectorized presentation of neurons and
parameters

• Weights
(multiple
arrows)

2019-11-25 8

Vectorized presentation of neurons and
parameters

• Weights
(multiple
arrows)

replaced
with
vectors
(single
arrows)

2019-11-25 9

Vectorized presentation of neurons and
parameters

• Single arrows
indicate all
interconnections
between layers

• wij matrix
matematically

Introducing feedback loop

10

ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

Activation function in feedback loop

• Activation function of the
hidden layers is
typically hyperbolic
tangent

• It avoids large positive
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop

calculation
– Gain should be smaller

than 1 in the loop!

2019-11-25 11

Positive feedback in a loop:
A produces more of B which
in turn produces more of A.
It leeds to increase beyond
any limit.

A B

x2

x2

Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs

exist
• State machine

12

input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

. . .

2019-11-25

Unrolling

2019-11-25 13

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

. . .

Unrolling

• Unrolling generates an acyclic
directed graph from the original
cyclic directed graph structure

• It generates a final impulse
response (FIR) filter from the
original infinite impulse
response (IIR) filter

• Dynamic behavior

2019-11-25 14

…

FIR filters response
to any finite length
input with a final
response.

IIR filters may response to
any finite length input
with a infinite (usually
decaying) response, due
to their internal loop.

Weight matrix sharing

2019-11-25 15

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

. . .

RNN re-uses the same weight
matrix in every unrolled steps.

2019-11-25 16

Simple RNN Training Example: Predicting the next letter

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

One-hot
encoding

2019-11-25 17

Simple RNN Training Example: Predicting the next letter

Hidden layer
weights are
initialized with
random values

2019-11-25 18

Simple RNN Training Example: Predicting the next letter

Output layer
weights are
initialized with
random values

2019-11-25 19

Simple RNN Training Example: Predicting the next letter

2019-11-25 20

Simple RNN Training Example: Predicting the next letter

2019-11-25 21

Simple RNN Training Example: Predicting the next letter

2019-11-25 22

Simple RNN Training Example: Predicting the next letter

Backpropagation
can be started
using negative log
likelihood cost
function

Back propagation through time

• Assuming that the length of the
input vector sequence is limited

• It became a feedforward neural net

• Possible to apply back propagation

• We need multiple vector sequences
to train!

x(1) x(2) x(3) x(4)
x(1) x(2) x(3) x(4)

y(1) y(2) y(3) y(4)

y(1) y(2) y(3) y(4)

. . .

. . .

x(n)

y(n)

Backpropagation through time

Truncated Backpropagation through time

Truncated Backpropagation through time

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps!

Truncated Backpropagation through time

Image captioning example

2019-11-25 28

Image captioning example

2019-11-25 29

Image captioning example

2019-11-25 30

Image captioning example

2019-11-25 31
Alexnet: scored 5 best guesses

Image captioning example

2019-11-25 32

Image captioning example

2019-11-25 33

Image captioning example

2019-11-25 34

straw

Image captioning example

2019-11-25 35

straw

Image captioning example

2019-11-25 36

straw hat

Image captioning example

2019-11-25 37

straw hat

Image captioning example

2019-11-25 38

straw hat
end

Image captioning example

2019-11-25 39

straw hat
end

2019-11-25 40

Image captioning Example: Results

2019-11-25 41

Image captioning: Failure cases

Problem

• What happens if the input sequence is too
long?

2019-11-25 42

Vanishing gradient!

Vanishing Gradient Problem
• In case of long

input vector
sequencies, the old
vectors has a
strongly fading
effect in inference
phase

• In training phase,
the stacked
gradient functions
will be very small

2019-11-25 43

Practical problem of long term dependences

• Consider a network
which predicts the next
word in a text
– If the information needed

to predict is close, it can
be successfully trained

– If required information is
far, the training will be
difficult

2019-11-25 44

in

German

Berlin He speeksJürgen lives

2019-11-25 45

RNN Gradient flow

2019-11-25 46

RNN Gradient flow

ℎ𝑡+1 = 𝑡𝑎𝑛ℎ 𝑊
ℎ𝑡
𝑥𝑡+1

=𝑡𝑎𝑛ℎ 𝑊 𝑡𝑎𝑛ℎ 𝑊
ℎ𝑡−1
𝑥𝑡

𝑥𝑡+1

2019-11-25 47

RNN Gradient flow

2019-11-25 48

RNN Gradient flow

Introduction of
Long Short Term
Memory (LSTM)

Long Short Term Memory (LSTM)

• Was originally introduced Hochreiter &
Schmidhuber (1997)

• Idea:
– To be able to learn long term dependences

– Collects data when the input is considered to be
relevant

– Keeps it as long as it considers to be important

– Technique:

• Handle the state as a memory with minor
modifications

– No matrix multiplication

– No tanh

– Apply memory handling kind signals

» data in, data out, write, enable

2019-11-25 49http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Derivation of LSTM

• Repeating module in
Normal RNN

– concatenates the input
and the state

– A neural network with
tanh output and repeats
the result

• LSTM

– Uses the state as a
memory

– Uses 4 neural nets to
control the memory

• Forget_gate, Input_gate,
State_update,
Output_gate2019-11-25 50

Components of LSTM I
• All wires represents vector

– Vector transfer
– Vector concatenation
– Vector copy

• Neural nets with (yellow boxes)
– Multi-layer NN with tanh activation

function used for update value
calculation

– Multi-layer NN with logistic
activation function (sigmoid)
used for value selection (kind of
addressing)

• Pointwise operation (pink circles)

– Pointwise multifaction
– Pointwise addition

2019-11-25 51

Input

Output

Components of LSTM II
• State of the LSTM

– This is the actual
memory,

– It can pass the previous
values with or without
update

– Represented by the
upper black line

– Indicated with Ct

• Old content can be
removed value-by-value

• New content can be
added

2019-11-25 52

How LSTM works?

• Step 1
– Combines input and

previous output
(concatenation)

– Selects which values to
forget
• Sort of addressing

• Done by the
“Forget Gate”

• Neural net with sigmoid
output

2019-11-25 53

Updating state memory (Example)• Input: “James”

• Forget Neural network figures out:
– Analyzes the concatenated vector

– Name, Subject of a sentence, Male

• Selects which values to forget and how much

– Position and weight

• Task:
– Update gender of the subject (forget the old

value)

– Gender might be represented with a variable

• c1: value proportional with the probability
that the subject is a male

• c2: represents weather

– Calculate the forget factor of the gender
memories

• 0 completely get rid of it

• 1 keep the previous value

• 0 .. 1 partial forget

• Adressing and suppressing!!! 54

𝐶𝑡−1 =
−0.5
0.2
⋮

𝑓𝑡 =
0.1
1
⋮

James

𝐶𝑡−1
′ =

−0.05
0.2
⋮

c1: subject’s
gender

f1: forget
factor of c1

c1 value
after partial
forget

Not to
forget c2

𝐶𝑡−1
′

How LSTM works?

• Step 2
– Calculation of the state

update
• Done by the

“Cell Network”

• Not yet the new value, only
the update value

• Neural Net with tanh

– Selection of the state values
to be updates (Addressing)
• Done by the “Input Gate”

• Neural Net with sigmoid

–

2019-11-25 55

Updating state memory (Example)• Input: “James”

• Input Gate figures out:
– Analyze the concatenated vector

– Select which values to update (ENABLE!!!)

– Calculate the update weights

• Cell Network calculates:
– The update values

• Task:
– Update gender of the subject (calculate the update

value)

– Gender might be represented with a variable

• c1: value proportional with the probability
that the gender is male

• c2: represents weather

– Calculate the update factor of the gender
memories

• 0 not to update

• 1 fully update

• 0 .. 1 partial update

• ADRESSING!!!2019-11-25 56

ሚ𝐶𝑡 =
0.9

−0.75
⋮

𝑖𝑡 =
0.8
0
⋮

James

ሚ𝐶𝑡
′ =

0.72
0
⋮

c1: subject
gender estimate
value

f1: update
factor of
c1

c1 update
value

Not to
modify c2

ሚ𝐶𝑡
′

How LSTM works?

• Step 3
– Calculation of the state

update

• The old state

– With the forgotten
values in the vector

• And the state update

– With update vector

• Are added up

2019-11-25 57

𝐶𝑡 = 𝐶𝑡−1
′ + ሚ𝐶𝑡

′ =
−0.05
0.2
⋮

+
0.72
0
⋮

=
0.67
0.2
⋮

c1: subject gender’s
estimate value update

c2: (weather) unchaged

ሚ𝐶𝑡
′

𝐶𝑡−1
′

How LSTM works?

• Step 4
– Apply activation function to

the output
• Squeeze the values

between -1 and +1

• Done by tanh activation
function

– Selection of the new output
values (Addressing)
• Done by the “Output Gate”

• Not all the state value is
released in each step

• Output Gate decides which
values are relevant in this step

2019-11-25 58

Output vector can be sparse
• Output gate

might enables

– All values
of Ct

– Fraction of
Ct (sparse)

– None of Ct

• Ct can be
sparse

2019-11-25

𝑜𝑡 =

0.01
0.85
0.75
0.1
0.2
0.8
0.1
0.1
0.02
0.9
0.8

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.002
0.83
−0.73
−0.01
0.2
0.64
0.02
0.03
−0.02
0.72
0.63

𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.2
0.98
−0.97
−0.1
0.98
0.8
0.2
0.3

−0.99
0.8
0.7

Enabling factor:
Enabled values
are red

Output vector:
Enabled values are red
Disabled values (gray)
will appear on the
output, but with
reduced values

Values are
bounded

LSTM network

• General form of an
LSTM network

2019-11-25 60

Unrolling LSTM network

2019-11-25 61

Gradient calculation in LSTM

2019-11-25 62

Input

Forget

Output

Cell Net

Reformulating equations

∗

∗

∗

∗

∗

∗

2019-11-25 63

Gradient calculation in LSTM

∗

∗

∗
∗

∗

∗

• Though we multiply the memory content with a smaller than 1 number
• And the W matrix is part of the memory update
• But it still preserves the content for longer time
• As it comes from the name: It is a elongated time short term memory

2019-11-25 64

Gradient calculation in LSTM

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

Achevements with LSTM networks
• Record results in natural language text compression

• Unsegmented connected handwriting recognition

• Natural speech recognition

• Smart voice assistants
– Google Translate

– Amazon Alexa

– Microsoft Cortana

– Apple Quicktype

• 95.1% recognition accuracy on the Switchboard corpus, incorporating a
vocabulary of 165,000 words

– Continuous spontaneous English native speech

2019-11-25 65

• Introduced by Gers &
Schmidhuber (2000)

• All the three gates receives
input from the previous
state and the input

• Since output can be sparse
this version has more
information for gating

– addressing and weighting

2019-11-25 66

Variants of LSTM I : Peephole connections

• Input and forget gates
has practically the
same role

• Why not to join them?

2019-11-25 67

Variants of LSTM II : Joined forget and input

2019-11-25 68

Gated Recurrent Unit (GRU)

• Another variant of LSTM

• Introduced by Kyunghyun Cho
(2014)

• There is no separate State and
Output

• Only three neural nets

• At GRU the output will not be
sparse (not gated)

• Similar performance in music
and speech signal modelling and

• Learns faster for smaller data set

2019-11-25

How GRU works?

• Concatenate ht-1 and xt

• Calculate the Input Gate

• Suppress the values to be
forgotten in ht-1
(get sparse memory vector)

• Calculate the joint Forgot and
output Gates

• Gate ht-1

• Calculate function of the Cell
Network

• Gate ෨ℎ𝑡−1

• Calculate the new output (ht)

𝑟𝑡 = 𝜎 𝑊𝑟 ℎ𝑡−1, 𝑥𝑡

𝑧𝑡 = 𝜎 𝑊𝑧 ℎ𝑡−1, 𝑥𝑡
෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡

ℎ𝑡 = 1 − 𝑧𝑡 ∗ ℎ𝑡−1+ 𝑧𝑡 ∗ ෨ℎ𝑡

Pázmány Péter Catholic University, Faculty of Information Technology

Famous architectures

András Horváth, Ákos Zarándy

Budapest, 2019.12.03

Neural Networks
(P-ITEEA-0011)

PPKE-ITK: Neural Networks – famous architectures

Administrative announcements

• Replacement paper-based test 17. 12. 9:00, Room 418
• papíros pót ZH - dec. 17 9:00, 418-as terem

• Early exam 17. 12. 9:00, Room 419
• The invited students will be emailed acknowledged this week

 Early exam - dec. 17 9:00, 419-es terem,
érintettek a héten megtudják meg

• Project presentation - 17. 12. 11:00, Room 418
 Projekt bemutatás - dec. 17 11:00, 418-as terem
•
• Computer-based test - 19. 12. 9:00
 Géptermi ZH - dec. 19 9:00
•
• Computer-based replacement test TBA, early January
 Géptermi pót TBA, ~január eleje
•
• Oral Exams are already in the Neptun system
 Vizsgaidőpontok a Neptunban We are considering to create a

list of the participants, to reduce
waiting time for the oral exam.

PPKE-ITK: Neural Networks – famous architectures

Input Image Feature Image

● Input space Feature space

• Classification - decision
• FNN, SVM – linear classification
•

Is X larger than a limit? X>k?

● Finding a good feature representation:
● Meaningful
● Sparse - low dimensions

● Finding the representation with the help
of machine learning

● Ensures easy separation

Neural Networks

PPKE-ITK: Neural Networks – famous architectures

• A network of simple processing elements

• Elements:

 Pooling
 ReLU

Low layers Middle layers High layers

 Convolution

Thresholding all
values below
zero

Selection of the
maximal
response in an
area

Convolutional neural networks

5

PPKE-ITK: Neural Networks – famous architectures

Convolutional networks

Ok, but how many layers do we need?

How many features should be in each layer?

What should be the network architecture?

Assume, I have a problem to solve.

6

PPKE-ITK: Neural Networks – famous architectures

Convolutional networks

Ok, but how many layers do we need?

How many features should be in each layer?

What should be the network architecture?

These are called hyper-parameters:

Along with: non-linearity type, batch-norm, dropout etc.

Assume, I have a problem to solve.

7

PPKE-ITK: Neural Networks – famous architectures

Convolutional networks

Ok, but how many layers do we need?

How many features should be in each layer?

What should be the network architecture?

These are called hyper-parameters:

Along with: non-linearity type, batch-norm, dropout etc.

We can use a network which performed fairly well on an
other dataset

It will probably work well on our task too

Assume, I have a problem to solve.

13

PPKE-ITK: Neural Networks – famous architectures

Alexnet
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (2012)

Trained whole ImageNet (15 million,22,000 categories)

Used data augmentation (image translations, horizontal reflections, and patch extractions)

Used ReLU for the nonlinearity functions (Decreased training time compared to tanh) -
Trained on two GTX 580 GPUs for six days

Dropout layers

2012 marked the first year where a CNN was used to achieve a top 5 test error rate of
15.4% (next best entry was with error of 26.2%)

11x11

14

PPKE-ITK: Neural Networks – famous architectures

VGG - 16/19
Karen Simonyan and Andrew Zisserman of the University of Oxford, 2014 Visual Geometry Group

As the spatial size of the input volumes at each layer decrease (result of the conv and pool layers),
the depth of the volumes increase due to the increased number of filters as you go down the
network.

Shrinking spatial dimensions but grwoing depth

3x3 filters with stride and pad of 1, along with 2x2 maxpooling layers with stride 2

7.3% error rate

Simple architecture, still the
swiss knife of deep learning

PPKE-ITK: Neural Networks – famous architectures

• GoogLeNet:
22/42 layers (9 inception_v3 layers)
5 million free parameters
~1.5B operations/evaluations
Demo:https://cloud.google.com/vision/

Google - Inception arhcitecture

16

PPKE-ITK: Neural Networks – famous architectures

Inception module

9 similar inception_v3 layers

17

PPKE-ITK: Neural Networks – famous architectures

Inception

Google, Christian Szegedy

2014 with a top 5 error rate of 6.7%

This can be thought of as a “pooling of features”
because we are reducing the depth of the
volume, similar to how we reduce the dimensions
of height and width with normal maxpooling
layers.

AlexNet: 60 million parameters

VGGNet: 1800 million

GoogLeNet / Inception-v1: 7 million parameters

Idea:
 Not to introduce different size
kernels in different layers, but
introduce 1x1, 3x3, 5x5 in each
layers, and let the Neural Net
figure out, what representation is
the most useful, and use that!

 Parallel multi-scale approach.

In the retina, different kernel
sizes operate parallel.

18

PPKE-ITK: Neural Networks – famous architectures

Rethinking Inception
2016 with a top 5 error rate of 6.7%

Squeezing the number of
channels for each kernel

With the concatenations, the
number of features
increased in each layers,
which introduced too many
convolution.

To reduce these numbers,
they introduced the 1x1
layer.

It can generate e.g. 16
feature maps from 64 feature
maps

Max Pooling
introduces a
“non-linear”
winner take all
function

1x1 conv.
Rescale the
depths

19

PPKE-ITK: Neural Networks – famous architectures

Rethinking Inception

Larger (5x5) convolutions were substituted by series of
3x3 convolutions

Advantages:
1. Reduction of number of parameters,
2. Additional non-linearities (RELUs) can be introduced

20

PPKE-ITK: Neural Networks – famous architectures

Rethinking Inception

Larger convolutions were substituted by series
of 3x3 convolutions

2D convolution were substituted by two 1D
convolutions

AlexNet: 60 million parameters
VGGNet :180 million parameters
GoogLeNet / Inception-v3: 7 million parameters

21

PPKE-ITK: Neural Networks – famous architectures

Alexnet

PPKE-ITK: Neural Networks – famous architectures

How deep could/should a network be?

History of network depth

 Before 2012: four layers

22

PPKE-ITK: Neural Networks – famous architectures

History of network depth

 Before 2012: four layers

2012: 8layers

23

How deep could/should a network be?

PPKE-ITK: Neural Networks – famous architectures

History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers

24

How deep could/should a network be?

PPKE-ITK: Neural Networks – famous architectures

History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers

2016: 19-22 layers

25

How deep could/should a network be?

PPKE-ITK: Neural Networks – famous architectures

History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers

2016: 19-22 layers

Deeper network:

Possibility to approximate more complex functions

Higher number of parameters

26

How deep could/should a network be?

PPKE-ITK: Neural Networks – famous architectures

History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers

2016: 19-22 layers

Deeper network:

Possibility to approximate more complex functions

Higher number of parameters

There are no convolutional networks with more than 30 layers. Why?

The amount of transfered data is decreased from layer to layer

Training becomes difficult

27

How deep could/should a network be?

PPKE-ITK: Neural Networks – famous architectures

Is a deeper network always better?

A deeper network would have higher
approximation power

Higher number of parameters (both advantageous
and disadvantageous)

Difficult to train the network

28

PPKE-ITK: Neural Networks – famous architectures

A deeper network always has the potential to perform better, but training
becomes difficult

After a given depth, the same network with the same training on the same data,
usually performs worse

29

Is a deeper network always better?

PPKE-ITK: Neural Networks – famous architectures

A deeper network always have the potential to perform better, but training
becomes difficult

We can not just simply stack convolutional layers to increase accuracy

The backpropagated error will be smaller than the floating point accuracy limit.

 The gradient will be disappear. The information will not pass the first layers,
because there will be random noises on the weights, and they will not be trained.

30

Is a deeper network always better?

PPKE-ITK: Neural Networks – famous architectures

How deep could a network be?

Residual networks provide an answer to these questions

34

PPKE-ITK: Neural Networks – famous architectures

How could we create deeper networks?

A deeper network always have the potential to perform better, but training
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even
increase it)?

35

Let’s start with a shallow model (18 layers) and
add some extra layers (which we hope could
increase accuracy)

PPKE-ITK: Neural Networks – famous architectures

A deeper network always have the potential to perform better, but training
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even
increase it)?

36

Let’s start with a shallow model (18 layers) and
add some extra layers (which we hope could
increase accuracy)

Our aim is to add
“useful” operations H(x)

 The problem is that
H(x) can ruin our
accuracy because
vanishing gradients,
overfit - extra
parameters

How could we create deeper networks?

PPKE-ITK: Neural Networks – famous architectures

A deeper network always have the potential to perform better, but training
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even
increase it)?

37

The trick is to use residual connection and as a
starting point F(x) could be zero, and H(x)
becomes the dientity mapping
So H(X) will not change
our performance,
gradients will remain,
because the addition of
x

Our accuracy will no be
decreased, and might
even be increased if we
find a proper F(x)

How could we create deeper networks?

PPKE-ITK: Neural Networks – famous architectures

Residual networks

Results: Deeper residual networks result higher accuracy

38

PPKE-ITK: Neural Networks – famous architectures

Results with ResNets

39

PPKE-ITK: Neural Networks – famous architectures

Results with ResNets

ResNets had the lowest error rate at most competitions since 2015

1st places in all five main tracks

• ImageNet Classification: “Ultra-deep” 152-layer nets

• ImageNet Detection: 16% better than2nd

• ImageNet Localization: 27% better than2nd

• COCO Detection: 11% better than2nd

• COCO Segmentation: 12% better than2nd

40

PPKE-ITK: Neural Networks – famous architectures

GoogleNet Inception v4

Inception architecture applied to residual networks

41

42

PPKE-ITK: Neural Networks – famous architectures

Efficiency of Neural Networks

43

PPKE-ITK: Neural Networks – famous architectures

Efficiency of Neural Networks

Requirements to use a network

Accuracy
Industry: above 90%

Speed
Self driving car: real-time

IOT:
battery based operation:
low power, cheap hardware

PPKE-ITK: Neural Networks – famous architectures

MobileNet

In this arhcitecture feature depths are squeezed
before each operation

44

In a squeezed architecture we
will use downscale the 128
feature maps to 16, using a
linear combination (1x1
convolution)

After the 3x3 covolutions, we
expanded back to 128 layers
by 1x1 convolution again

From the linear combination of
these elements the new maps
are created

Scaling in feature map depths.

PPKE-ITK: Neural Networks – famous architectures

ResNext

45

● Group convolution:
● Dividing the feature mapes into two groups, and apply

the convolutions to each groups separately
● The number of convolutions will be halved

● normal convolution block:
●

● c
1
 inputs, c

1
 outputs

● c
1
c

2
number of kernels

● group convolution block:
●

● 2x(c
1
/2) inputs, 2x(c

2
/2) output

● 2x(c
1
/2 c

2
/2) = c

1
c

2
/2 number

of kernels

PPKE-ITK: Neural Networks – famous architectures

46

ShuffleNet

PPKE-ITK: Neural Networks – famous architectures

SqueezeNet

In this arhcitecture depths are squeezed before each
operation

The expand is done by the concatenation of the 1x1 and
the 3x3 convolutions.

Advantage: the expand layer is saved.

47

PPKE-ITK: Neural Networks – famous architectures

SqueezeNet

In this arhcitecture depths are squeezed before each
operation

48

PPKE-ITK: Neural Networks – famous architectures

SqueezeNext

In this arhcitecture depths are squeezed before each
operation

49

In a SqueezeNext architecture
we will use a linear
approximatine of 128 feature
maps, using 16 independent
feature maps

From the linear combination of
these elements the new maps
are created

PPKE-ITK: Neural Networks – famous architectures

Neural networks for regression

Age estimation

The output is not discreet classes or pixels, but continuous values

The network structure can remain the same but a different loss function
and differently annotated dataset is needed.

Hard to interpret the error in common tasks.

 E.G: Age estimation on images:

50

PPKE-ITK: Neural Networks – famous architectures

Neural networks for regression
Multiple object detection on a single image

Classification is good for a single object (can be extended for k objects –
top k candidates)

How could we detect objects in general, when the number of objects is
unknow

51

PPKE-ITK: Neural Networks – famous architectures

Traditional method

52

Sliding window over the image

We might have objects in different scales

Slidign windowds in different scales, aspect ratios

Resutls a heat map → detect the objects: non-maximum suppression

PPKE-ITK: Neural Networks – famous architectures

Object detection as regression

RCNN

Single Shot Object Detector (SSD) (2016 March)

You Only Look Once YOLO (2016 May)

53

PPKE-ITK: Neural Networks – famous architectures

R-CNN

Region proposal CNN network

Separate the problem of object detection and calssification

It consists of three modules.

The first generates category-independent region proposals. These proposals define the set of
candidate detection avail-able to detector.

 The second module is a large convolutional neural network that extracts a fixed-length feature vector
from each region.

The third module is a set of class- specific linear SVMs

54

.

PPKE-ITK: Neural Networks – famous architectures

Faster R-CNN

Region proposal from a network

Step 3 and 4 are standard CNN implementations

Extra layers for region proposals

Possible region refinement at the end

55

PPKE-ITK: Neural Networks – famous architectures

SSD
Single shot object detector SSD (2016 March)

Has a fixed resultion and the last feature maps (with different scales) can be considered
as maps of bounding boxes

On these maps each pixel represent a fixed size bounding boxes. (Each feature map
represents a certain box size.

 A high pixel value represent high probability of the centerpoint of a detected object.

57

Problem: Unlike at R-CNN, the boundix boxes have fixed
scale and positions, no fine turning in the last step.

PPKE-ITK: Neural Networks – famous architectures

SSD arhcitecture

PPKE-ITK: Neural Networks – famous architectures

YOLO, Detectnet
Models detection as a regression problem:

Divide the image into a grid and each cell can vote
 for the bounding box position of possible object.
(Four output per cell for the corner positions.)

Boxes can have arbitrary sizes

Each cell can proposes a bounding box one category
(more layers, more categories per position).

Non-suppression on the boxes

No need for scale search, the image is processed once and
objects in different scales can be detected

61

￭

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016.

Handles
oclusion

PPKE-ITK: Neural Networks – famous architectures

How unified detection works?

confidence scores: reflect how confident is that the box contains an object+how accurate the box
is .

conditional class probabilities: conditioned on the grid cell containing an object

PPKE-ITK: Neural Networks – famous architectures

How unified detection works?

• At test time, multiply the conditional class probabilities and the individual box
confidence predictions

• giving class-specific confidence scores for each box
• Showing both the probability of that class appearing in the box and how well the

predicted box fits the object

PPKE-ITK: Neural Networks – famous architectures

Pixel level segmentation
The expected output of the network is not a class, but a map representing the pixels
belonging to a certain class.

Creation of a labeled dataset (handmade pixel level mask) is a tedious task

More complex architectures are needed (compared to classification)

 Popular architectures (Sharpmask, U-NET ...)

64

SharpMask: Learning to Refine Object Segments. Pedro O. Pinheiro,
Tsung-Yi Lin, Ronan Collobert, Piotr Dollàr (ECCV 2016)

SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL
NETS AND FULLY CONNECTED CRFS Liang-Chieh Chen et al. ICLR 2015

PPKE-ITK: Neural Networks – famous architectures

Sharpmask

65

PPKE-ITK: Neural Networks – famous architectures

U-net

66

PPKE-ITK: Neural Networks – famous architectures

Mask RCNN, RetinaNet

67

These networks generate bounding boxes and sematnic segmentation maps simultanously

They can be trained on images having lables for only one or both types of output

PPKE-ITK: Neural Networks – famous architectures

Mask RCNN, RetinaNet

68

These networks generate bounding boxes and sematnic segmentation maps simultanously

They can be trained on images having lables for only one or both types of output

PPKE-ITK: Neural Networks – famous architectures

Starting from scratch
(if you do not want to use one of the famous networks)

69

Neural architecture search:

Networks can be described as a series of operations

As series of words → text

We can feed a Recurrent network with this data series

PPKE-ITK: Neural Networks – famous architectures

Starting from scratch

70

Neural architecture search:
Networks can be described as a series of
operations
As series of words → text

The parameters of each layer can be described
as numbers The input(s)/outputs(s) of the layer
can be Ids

The whole network can be described as a graph

layers {
 bottom: "conv1"
 top: "conv1"
 name: "relu0"
 type: RELU
}
layers {
 bottom: "conv1"
 top: "cccp1"
 name: "cccp1"
 type: CONVOLUTION
 blobs_lr: 1
 blobs_lr: 2
 convolution_param {
 num_output: 96
 kernel_size: 1
 stride: 1
}

PPKE-ITK: Neural Networks – famous architectures

Starting from scratch

71

Neural architecture search:
Networks can be described as a series of
operations
As series of words → text

The parameters of eahc layer can be described
as numbers The input(s)/outputs(s) of the layer
can be Ids

The whole network can be described as a graph

We have a problem space where we have text
as an input and an accuracy number as an
output

layers {
 bottom: "conv1"
 top: "conv1"
 name: "relu0"
 type: RELU
}
layers {
 bottom: "conv1"
 top: "cccp1"
 name: "cccp1"
 type: CONVOLUTION
 blobs_lr: 1
 blobs_lr: 2
 convolution_param {
 num_output: 96
 kernel_size: 1
 stride: 1
}

PPKE-ITK: Neural Networks – famous architectures

Starting from scratch

72

Neural architecture search:
Networks can be described as a series of
operations
As series of words → text

The parameters of eahc layer can be described
as numbers The input(s)/outputs(s) of the layer
can be Ids

The whole network can be described as a graph

We have a problem space where we have text
as an input and an accuracy number as an
output

We can train an RNN for regression, which
approximates the accuracy of a given network

layers {
 bottom: "conv1"
 top: "conv1"
 name: "relu0"
 type: RELU
}
layers {
 bottom: "conv1"
 top: "cccp1"
 name: "cccp1"
 type: CONVOLUTION
 blobs_lr: 1
 blobs_lr: 2
 convolution_param {
 num_output: 96
 kernel_size: 1
 stride: 1
}

PPKE-ITK: Neural Networks – famous architectures

Starting from scratch

73

Neural architecture search:
Networks can be described as a series of
operations
As series of words → text

We can turn the problem around:

A recurrent network can be trained with
reinforcement learning which can train a
network with predifined accuracy on a given
dataset.

This recurrent network will understand the effect
of the elements on this dataset

Test accuracy On CIFAR-10:
96.35%

Best pervious accuraccy:
96.26

This architecture os also 1.05 times faster (less
computations)

PPKE-ITK: Neural Networks – famous architectures

Starting from scratch

74

Neural architecture search:
Networks can be described as a series of
operations
As series of words → text

We can turn the problem around:

A recurrent network can be trained with
reinforcement learning which can train a
network with predifined accuracy on a given
dataset.

This recurrent network will understand the effect
of the elements on this dataset

Test accuracy On CIFAR-10:
96.35%

Best pervious accuraccy:
96.26

This architecture os also 1.05 times faster (less
computations)

The important in this is that a network
could design another network, and could
reach as good performance as human.

https://arxiv.org/abs/1603.08695

PPKE-ITK: Neural Networks – famous architectures

EfficientNet (2019)

● Scale the width, the depth, and the resolution uniformly!
● Can be used for any existing architecture, and the efficiency will be significantly
 better with the same performance

● EfficientNet-B7 achieves stateof-the-art 84.4% top-1 / 97.1% top-5 accuracy on
ImageNet, while being 8.4x smaller (number of parameters) and 6.1x faster on
inference than the best existing ConvNet.

● Best performance can be reached by using NN to generate the optimal baseline ConvNet.

PPKE-ITK: Neural Networks – famous architectures

EfficientNet (2019)EfficientNet (2019)EfficientNet (2019)

7 different scaled
version of EfficientNet.
(B0, B1, … B7)

PPKE-ITK: Neural Networks – famous architectures

EfficientNet (2019)EfficientNet (2019)EfficientNet (2019)

7 different scaled
version of EfficientNet.
(B0, B1, … B7)

EfficientNet-B1
is 7.6x smaller and
5.7x faster than
ResNet-152.

Pázmány Péter Catholic University, Faculty of Information Technology

Visualizing the Decision of
Neural Networks

Soma Kontár & András Horváth

Budapest, 2019.12.10

2

PPKE-ITK: Neural Networks – famous architectures

Administrative details

The replacement paper-based test will be on 17 December

The midterm project code submission deadline is Friday, 13 Dec 23:59 via uploading to a shared
Google Drive folder (the link will be posted later on the course website)

The midterm project presentations will also be on 17 December

The computer based test will be on 19 December

We will discuss the details of the early exam with the participants in the break

3

PPKE-ITK: Neural Networks – famous architectures

Disclaimer

The slides are based on the lectures titled visaulizing and understanding Neural Networks at
Stanford. Created by Justin Johnso, Andrej Karpathy and Fei-Fei Li.

PPKE-ITK: Neural Networks – famous architectures

Input Image Feature Image

Input space Feature space

• Classification - decision
• FNN, SVM – linear

classification
Is X larger than a limit? X>k?

• Finding a good feature
representation:

 Meaningful
 Sparse - low dimensions

Finding the representation with the help
of machine learning

 Ensures easy separation

Neural Networks

PPKE-ITK: Neural Networks – famous architectures

• A network of simple processing elements

• Elements:

 Pooling
 ReLU

Low layers Middle layers High layers

 Convolution

Thresholding
all values
below zero

Selection of
the
maximal
response in
an area

Convolutional neural networks

6

PPKE-ITK: Neural Networks – famous architectures

Conquest of neural networks

Neural networks work great in various problems

They are capable of solving complex practical tasks

Classification

Segmentation

Reinforcement learning

Image captioning

7

PPKE-ITK: Neural Networks – famous architectures

Image captioning

“A train is on the tracks at a station”

8

PPKE-ITK: Neural Networks – famous architectures

Image captioning

“A train is on the tracks at a station”

9

PPKE-ITK: Neural Networks – famous architectures

MSCOCO

a snowboarder jumping over snow indoors
with the coca-cola logo in the background.

person on a snow board up in the air
inside of a building

a man is jumping over two coca cola
signs.

a room filled with fake white snow under
stickers.

fake snow inside a snowboarding facility of
some sort

10

PPKE-ITK: Neural Networks – famous architectures

MSCOCO

a picture of a computer screen featuring the
face of a movie actor.

a computer screen on a table showing a
man's face.

here is actor mark wahlberg on skype with
someone at a home laptop.

a laptop computer with marky mark on it's
screen.

a laptop is open and the screen shows
mark wahlberg.

11

PPKE-ITK: Neural Networks – famous architectures

Neural Network results

https://arxiv.org/pdf/1411.4555.pdf

12

PPKE-ITK: Neural Networks – famous architectures

Neural Network results

Credits: Fei-Fei Li, andrej Karpathy

PPKE-ITK: Neural Networks – famous architectures

Vinyals, Toshev, Bengio, Erhan (2014), Google research blog

PPKE-ITK: Neural Networks – famous architectures

Vinyals, Toshev, Bengio, Erhan (2014), Google research blog

A refrigerator filled
with lots of food and
drinks

15

PPKE-ITK: Neural Networks – famous architectures

Not so good...

https://arxiv.org/pdf/1411.4555.pdf

16

PPKE-ITK: Neural Networks – famous architectures

Understanding decisions

If we can understand (or even trace back) network decision we will be able to see if the network managed
to grasp the important features in the dataset

 Lisa Anne Hendricks*, Kaylee Burns*, Kate Saenko, Trevor Darrell, Anna Rohrbach:Women
also Snowboard: Overcoming Bias in Captioning Models

17

PPKE-ITK: Neural Networks – famous architectures

What is going on inside a convnet?

Filter visualization

Display the filters what the network has learned

Good to display the first layer(s)

The functionality of higher layer kernels is difficult to see

18

PPKE-ITK: Neural Networks – famous architectures

What is going on inside a convnet?

Filter visualization

Display the filters what the network has learned

Good to display the first layer(s)

The functionality of higher layer kernels is difficult to see

http://users.itk.ppke.hu/~horan/CNN/convnetjs/convnet.html

19

PPKE-ITK: Neural Networks – famous architectures

Displaying the decision space of the network
In higher layer kernels work in an abstract spaces

We can not really understand functionality just by visualizing the kernels

Unfortunately these kernels are closer, more determining in the decision than the first layers

Really important in
decision, kernels work in
an abstract space

Work closer to the image
space
Kernel visualization is
good

20

PPKE-ITK: Neural Networks – famous architectures

Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Kernel visualization is good, because it is input independent. For this we need an input image

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

21

PPKE-ITK: Neural Networks – famous architectures

Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Kernel visualization is good, because it is input independent. For this we need an input image

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

Activations should be sparse in a high
layer

If a neuron is never/always active, it is
not good
Responses should be specific

The same neuron should fire for similar
inputs

22

PPKE-ITK: Neural Networks – famous architectures

Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

Really important in
decision, kernels work in
an abstract space

23

PPKE-ITK: Neural Networks – famous architectures

Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

We can not plot this high-dimensional space, but:

Really important in
decision, kernels work in
an abstract space

24

PPKE-ITK: Neural Networks – famous architectures

Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Tensorboard is a great tool to display activations/weights

25

PPKE-ITK: Neural Networks – famous architectures

Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Tensorboard is a great tool to display activations/weights

26

PPKE-ITK: Neural Networks – famous architectures

Displaying the decision space of the network
We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

We can not plot this high-dimensional space, but:

We can plot nearest neighbours: Select an input image, and find the closest n image in this space (if
they are similar the network grasped something important)

27

PPKE-ITK: Neural Networks – famous architectures

Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

We can not plot this high-dimensional space, but:

We can plot nearest neighbours: Select an input image, and find the closest n image in this space (if
they are similar the network grasped something important)

28

PPKE-ITK: Neural Networks – famous architectures

Finding activations

We can find those images in the dataset which will maximize its activation

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

29

PPKE-ITK: Neural Networks – famous architectures

Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

30

PPKE-ITK: Neural Networks – famous architectures

Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

31

PPKE-ITK: Neural Networks – famous architectures

Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

With this method one can easily find the typical element for a class

32

PPKE-ITK: Neural Networks – famous architectures

Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

With this method one can easily find the typical element for a class

Or find those elements where the classifier was “uncertain”

33

PPKE-ITK: Neural Networks – famous architectures

Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

We can not plot this high-dimensional space, but:

We could project this data into a lower-dimensional subspace
Really important in
decision, kernels work in
an abstract space

34

PPKE-ITK: Neural Networks – famous architectures

Dimension reduction

PCA/Autoencoder

T-SNE

35

PPKE-ITK: Neural Networks – famous architectures

Dimension reduction

PCA/LDA/Autoencoder

T-SNE

36

PPKE-ITK: Neural Networks – famous architectures

Dimension reduction

PCA/LDA/Autoencoder

T-SNE

37

PPKE-ITK: Neural Networks – famous architectures

T-SNE

T stochastic Nearest Neighbour Embedding

38

PPKE-ITK: Neural Networks – famous architectures

Dimension reduction

PCA/LDA/Autoencoder

T-SNE

https://cs.stanford.edu/people/karpathy/tsnejs/

39

Gépi tanulás – deep learning

Typical examples

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

40

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

Normal training

Expected Label - GivenInput Image - Given
Network parameters - Variables

41

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

Expected Label - GivenInput Image - Variable
Network parameters - Given

The gradient ascent method

42

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent – activation maximization

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

43

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

Generate a synthetic image that maximizes the response of a neuron.

This image has to be „natural”. The response should not depend on pixels and can not have arbitrary
values

- Guassian blur on the image

- Clipping image values

- Clipping small gradients to 0

44

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

Intermediate Layers

45

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

Classes

46

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

Using a network which can learn feature inversion

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016;

47

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

Using a network which can learn feature inversion

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016;

48

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent

Finding the maximizing patterns for each kernel

https://distill.pub/2018/building-blocks/

49

PPKE-ITK: Neural Networks – famous architectures

Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image

50

PPKE-ITK: Neural Networks – famous architectures

Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image

51

PPKE-ITK: Neural Networks – famous architectures

Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image

52

Gépi tanulás – deep learning

Neural Style Transfer

An interesting application of the gradient ascent method is neural style transfer

Could we use an input image and transform it into the style of an other input image?

https://demos.algorithmia.com/deep-style/

53

Gépi tanulás – deep learning

Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?

Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

54

Gépi tanulás – deep learning

Neural Style Transfer

Style transfer works, but It requires a lot of time, to generate an image.

Many forward and backward passes are needed.

https://tenso.rs/demos/fast-neural-style/

55

Gépi tanulás – deep learning

Neural Style Transfer

Style transfer works, but It requires a lot of time, to generate an image.

Many forward and backward passes are needed.

We could train a network that learns the result of this iterative transformation, and tries to
predict it. Only a single pas is needed.

https://tenso.rs/demos/fast-neural-style/

56

Gépi tanulás – deep learning

Neural Style Transfer

We have a loss function for content:

Can the same objects be found on both images?

Content loss, Perceptual loss: this is a distance between the two embedded image
vectors in the last features layers

Style loss:

Can the same low level features, edges structures, simple patterns be found on both
images

Style loss: Distances between lower level representations of the images

57

Gépi tanulás – deep learning

Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?

Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

Gépi tanulás – deep learning

Neural style transfer with Cycle Consistent GANs

59

Gépi tanulás – deep learning

Fast Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?

Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

PPKE-ITK: Neural Networks – famous architectures

Adversarial Samples for Neural Networks

Optical Illusions for neural networks
Special, constructed elements, which can not be found in the normal
input set

PPKE-ITK: Neural Networks – famous architectures

Adversarial attacks

We have a high number of parameters to be optimized

An even higher-dimensional input

The network works well in practice, but can not cover all the possible inputs

PPKE-ITK: Neural Networks – famous architectures

Adversarial attacks

We have a high number of parameters to be optimized

An even higher-dimensional input

The network works well in practice, but can not cover all the possible inputs

One can exploit that there will be regions in the input domain, which were not seen during
training

PPKE-ITK: Neural Networks – famous architectures

Adversarial noise

I have a working well-trained classifier:

Panda [Goodfellow, I. J ., Shlens, J ., & Szegedy, C. (2014). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572

PPKE-ITK: Neural Networks – famous architectures

Adversarial noise

What should I add to the input to cause
misclassification:

The noise is
generated by
gradient descent
optimization

Panda Gibbon

???

 [Goodfellow, I. J ., Shlens, J ., & Szegedy, C. (2014). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572

PPKE-ITK: Neural Networks – famous architectures

Adversarial noise

A special, low amplitude additive noise:

Panda Gibbon

The noise is
generated by
gradient descent
optimization

The two images are the same for human perception

 [Goodfellow, I. J ., Shlens, J ., & Szegedy, C. (2014). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572

PPKE-ITK: Neural Networks – famous architectures

Adversarial noise

Knowing a trained network one can identify modifications (which does not happen
in real life), which change the network output completely

PPKE-ITK: Neural Networks – famous architectures

Adversarial noise – does not work in practice

Knowing a trained network one can identify modifications (which does not happen
in real life), which change the network output completely

Luckily this low amplitude noise is not robust enough in real life (lens distortion and
other additive noises)

R
eal li fe dist o

rtio
n

+ = +

R
eal li fe

 dist ortio
n

=

Jia
ju n

 L
u, H

u
s sein

 S
ib ai, E

va n F
ab

r y, a n
d

D
av id

 F
ors yth. N

o
 ne

e d
 to w

o
rry a

bo
ut

ad
v ersa

rial exa m
p le

s in o b
je ct d

ete
c tion

 in

auto
no

m
ou

s ve h
ic le

s. 20 1
7. U

R
L

http s://a

rxiv .o
rg / a b

s/1
707

.0
3 50

1 .g

PPKE-ITK: Neural Networks – famous architectures

High intensity noise concentrated on a small region of the
input image:

Parameters are the positions (x,y) and size (w,h) of the
stickers

Cd =N (I+∑
i=1

k

St i (x i ,y i ,wi ,h i)+∑
j=1

l

St j (x j ,y j ,w j ,h j))

Sticker based adversarial attacks

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Song, D., Kohno, T., ... & Tramer, F. (2017). Note on Attacking Object Detectors with Adversarial Stickers. arXiv
preprint arXiv:1712.08062.

PPKE-ITK: Neural Networks – famous architectures

High intensity noise concentrated on a small region of the
input image:

Parameters are the positions (x,y) and size (w,h) of the
stickers

It was shown that these attacks are robust enough to be
applied in practical applications

Cd =N (I+∑
i=1

k

St i (x i ,y i ,wi ,h i)+∑
j=1

l

St j (x j ,y j ,w j ,h j))

Sticker based adversarial attacks

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv
preprint arXiv:1707.08945.

PPKE-ITK: Neural Networks – famous architectures

High intensity noise concentrated on a small region of the
input image:

Parameters are the positions (x,y) and size (w,h) of the
stickers

It was shown that these attacks are robust enough to be
applied in practical applications

Does this mean that convolutional neural networks can not
be used in critical problem in practice anymore?

Cd =N (I+∑
i=1

k

St i (x i ,y i ,wi ,h i)+∑
j=1

l

St j (x j ,y j ,w j ,h j))

Sticker based adversarial attacks

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv
preprint arXiv:1707.08945.

PPKE-ITK: Neural Networks – famous architectures

Sticker based adversarial attacks

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv
preprint arXiv:1707.08945.

72

PPKE-ITK: Neural Networks – famous architectures

Understanding decisions

We might be interested in case of a single sample, what triggered the decision of the network

The network only outputs probabilities. Could we display why the network made this decision?

73

PPKE-ITK: Neural Networks – famous architectures

Reasoning by occlusion

We might occlude part of the input image.

If the decision does not change → the occluded part was unimportant

If the decision changes → the part was important, The importance of the part is proportional with the
change

74

PPKE-ITK: Neural Networks – famous architectures

Reasoning by importance

Occlusion maps are good

Calculating an occlusion map takes a lot of time

Could we calculate the importance of each pixel in the decision?

75

Gépi tanulás – deep learning

Reasoning by importance

Could we calculate the importance of each pixel in the decision?

Forward pass: regular computation

Backward pass: Computing the gradient
of (unnormalized) class score
Taking their absolute value and max over
RGB channels

76

Gépi tanulás – deep learning

Reasoning by importance

Calculating e the importance of each pixel in the decision?

Right for the right reasons

77

Gépi tanulás – deep learning

Reasoning by importance

Calculating the importance of each pixel in the decision?

Right for the right reasons

78

Gépi tanulás – deep learning

Reasoning by importance – in practice

It can help people to show them why the network made such a decision

http://physionet.itk.ppke.hu/

79

Gépi tanulás – deep learning

Reasoning by importance – in practice

It can help people to show them why the network made such a decision

http://physionet.itk.ppke.hu/

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51
	Dia 52
	Dia 53
	Dia 54
	Dia 55
	Dia 57
	SSD overcoming the influence of resolution difference
	Dia 60
	Dia 61
	Dia 62
	How unified detection works?_clipboard1
	Dia 64
	Dia 65
	Dia 66
	Dia 67
	Dia 68
	Dia 69
	Dia 70
	Dia 71
	Dia 72
	Dia 73
	Dia 74
	Dia 75
	Dia 76
	Dia 77
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

