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Outline

* Administration: requirements of the course
 Machine learning — Machine intelligence

* Artificial neuron

* Perceptron
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Course requirements: Signature requirements

 Mandatory attendance 80% (lectures and practice sessions)

* Short quiz at every practice session.
— You have to reach at least 60% of all points

* Lab report: one can be skipped

 Paper based test: minimum 50%

e Computer-based test: minimum 50%
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TN
Lab reports are short summaries of the previous practice session W

Course requirements: Lab Re ports

You will have to work in teams of 3 (talent program alone)

Submission: on the main page of the course until 4 am the day before the
next practice session

Contents:

Your names, your email addresses, the time and date of the practice session

A brief description of the new methods/techniques and their mathematical
background (if applicable) we used

A general description of the dataset we used (with examples from the dataset)
(if applicable)

If we used any new network architectures, a detailed description of that
specific architecture.

You may use Internet, however you must cite that source, else your report
will not be accepted. The same goes for too similar lab reports.



Course requirements: Midterm project

 Not mandatory in general
— Mandatory for the talent program

* Required to earn an offered grade
* You will need to apply for it after it is announced

* Once you choose a task, nobody else can, so there will be no
possibility of changing your task, or cancelling your selection

* You will have to submit an acceptable solution, otherwise
your final score will be reduced by 20%
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Course requirements: Tests

 Paper-based test
— 15. October
— Theoretic questions and paper based calculations
— In the time and location of the lecture
— You need to score at least 50% to pass

 Computer-based test
— Considered to be a part of the exam

— The test will be held at the end of the semester, it will be 3-4 hours
long

— The test will be graded on the spot
— You need to score at least 50% to pass
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* Exam W
— Oral exam

e Offered grade

_ Only ador5 can be received http://users.itk.ppke.hu/~konsol/neural networks
— Limits on the offered grades:

Course requirements: Exam and grade

Detailed description of the requirements
on the webpage of the course:

> 85% of the short quizzes, the closed-room test
Midterm project required, final grade depends on it

* Early exam

9/10/2019

There will also be an exam in the first of the exam period (before the
computer-based test) for those students who excelled most during the
semester. This exam is invite-only by the lecturers, and if you are
invited, you are excused from the computer-based test

P-ITEEA-0011 Lecture 1
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Outline

 Administration: requirements of the course
 Machine learning — Machine intelligence
* Artificial neuron

* Perceptron
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Machine learning, machine intelligence
 What s intelligence?

* The ability to acquire and apply knowledge and skills.
* The definition changes continuously
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Machine learning, machine intelligence

 What s intelligence?
* The ability to acquire and apply knowledge and skills.

Intelligence is the ability to adapt to change

1N73LL1G3NC3
»Stephen Hawking” 15 7H3
Providing computers the ability to learn without being 7%%%‘4'%77¥0

explicitly programmed: CH4NG3

-573PH3N HAWK1NG

Involves: programming, Computational statistics,
mathematical optimization, image processing, natural
language processing etc...



Conventional approach

e Trivial, or at least analitically
solvable tasks

— Well established mathematical
solution exist or at least can be
derived

* Example:

— Finding well defined data
constellations in a database

— Formal verification of the
operation is easy

Machine learning approach iffﬂ

 Complex underspecified tasks

— No exact mathematical solution
exists, the function to be
implemented is not known

 Example:

— Searching for “strange” data
constellations in a database

— Verification of the operation is
difficult

In case of very complex problems, verification of the operation is very difficult.
Typically done by exhaustive testing in case of machine learning.

9/10/2019 P-ITEEA-0011
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General truth: there are no general truths
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Machine learning \s

We consider each task as an input-output problem

—~ N

x —I ? |— | v

AL /’4;';

X: scalar, vector, Y: Decision or scalar,
array or a size(X) vs size(Y) vector, array or a
sequence of these Data reduction sequence of these
(incl. text) Data generation (incl. text)
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Conquests of machine learning

e 1952 Arthur Samuel (IBM): First machine learning program
playing checkers

Arthur Samuel coined the term
,machine learning”

9/10/2019 P-ITEEA-0011 Lecture 1 22



Conquests of machine learning

e 1952 Arthur Samuel (IBM): First machine learning program
playing checkers

1997 IBM Deep Blue Beats Kasparov

First match (1996 Nov):
Kasparov—Deep Blue (4-2)
Second Match (1997 May):
Deep Blue—Kasparov (3%—2%)
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Conquests of machine learning

e 1952 Arthur Samuel (IBM): First machine learning program
playing checkers

1997 IBM Deep Blue Beats Kasparov
e 2011 IBM Watson: Beating human champions in Jeopardy

It's a 4-letter term for a summit; the first
3 letters mean a type of simian : Apex

4-letter word for a vantage point or a 0 524,000 % ¥ & P 521,600 I
belief : View | i |

WO 15
B STOERT

45600

Music fans wax rhapsodic about this
Hungarian's "Transcendental Etudes" :

Franz Liszt o | |
9/10/2019 P-ITEEA-0011 d Lecture 1 24




Conquests of machine learning
1952 Arthur Samuel (IBM): First machine Iearnmg program

playing checkers
1997 IBM Deep Blue Beats Kasparov ‘ "

2011 IBM Watson: Beating human champions in Jeopardy

2014 Deep face algorithm l:l I:] (2

Facebook

= “ .
Reached 97.35% accuracy /. D
Human performance is around 97% PW —;o
EJ/ N7
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Conquests of machine learning

e 1952 Arthur Samuel (IBM): First machine learning program
playing checkers S—

1997 IBM Deep Blue Beats Kasparov

e 2014 Deep face algorlthm
Facebook

2016 Alpha go: deep learning

Fan Hui (5-0)
Lee Sedol (4-1)
99.8% win rate against other Go programs
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Deep learning - why now?

1. Appearance of machine learning methods and frameworks,
optimization know-how, new tools for rapid experimentation

@\\Vﬂ
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Deep learning - why now?

1. Appearance of machine learning methods and frameworks,
optimization know-how, new tools for rapid experimentation

@\\Vﬂ

2. New architectures are available for computation
—  (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz)

—  (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz, 2560 cores)
< \

9/10/2019 P-ITEEA-0011 Lecture 1 28



Deep learning - why now?

1. Appearance of machine learning methods and frameworks,
optimization know-how, new tools for rapid experimentation

2. New architectures are available for computation
—  (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz)
—  (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz, 2560 cores)

3. Vast amount of data is
available

—  Billions of labeled images
available quasi free

,&i?

9/10/2019 p-ITE s e P



Outline '

 Administration: requirements of the course
 Machine learning — Machine intelligence
 Artificial neuron

* Perceptron
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Human
Brain

I ®

Copying the brain? \)

Neurc

9/10/2019.

Feature extraction

Artifical neural

\i

biological
model

]

Far too complex for

engineering implementation

||
(Simplification)
|

P-ITEEA-0011

network

Engineering problem

-

\ 4

solving in the field of
Information Theory (IT)

Technology (e.g. VLSI)

N

\/

This is the focus of this course

Lecture 1

31



History of the artificial neural networks

e Artificial neuron model, 40’s (McCulloch-Pitts, J. von Neumann);
* Synaptic connection strenghts increase for usage, 40’s (Hebb)

* Perceptron learning rule, 50’s (Rosenblatt);

 ADALINE, 60’s (Widrow)

e Critical review ,70’s (Minsky)

 Feedforward neural nets, 80’s (Cybenko, Hornik, Stinchcombe..)
* Back propagation learning, 80’s (Sejnowsky, Grossberg)

* Hopfield net, 80’s (Hopfield, Grossberg);

» Self organizing feature map, 70’s - 80’s (Kohonen)

 CNN, 80’s-90’s (Roska, Chua)

 PCA networks, 90’s (Oja)

* Applicationsin IT, 90’s - 00’s

 SVMs, statistical machines 2000-2010’s

* Deep learning, Convolutional Neural Networks 2010-
9/10/2019 P-ITEEA-0011 Lecture 1 32
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The artificial neuron (McCulloch-Pitts)

* The artificial neuron is an information processing unit that is
basic constructing element of an artificial neural network.

e Extracted from the biological model

Dendrite Nodes

ol of . Axon 1 o—(1u)
. Soma Ranv,ﬁier
W Tn

’% terminal
ﬂ I\

Activation
function

o) Output

Schwann junction
Nucleus Myelin sheath cell 0 O—(0un)
Synaptic -
weights McCulloch-Pitts model

9/10/2019. P-ITEEA-0011 Lecture 1 33



The artificial neuron
@
Receives input through its synapsis (x)) Wﬂ

Synapsis are weighted (w))
* if w,>0: amplified input from that source (excitatory input)
* if w,<0: attenuated input from that source (inhibitory input)

A b value biases the sum Bias
to enable asymmetric behavior ‘ o @ I

Activation
[unction

A weighted sum is calculated

Outpul

Activation function shapesthe | =9~ @

output signal sipnals ‘ e(-) —

X; : input vector

Wi \{veight coefficient vector of neuron k @

b, : bias value of neuron k | ,
Synaptic

Oy : output value of neuron k weights
9/10/20109. P-ITEEA-0011 Lecture 1 34
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The artificial neuron =5,

Output equation:

Y =@ Zwkixi +b,
=

Bias can be included as:

W,=b

X,=1

Y =@ Zwki Xi
i—0

9/10/2019.

= p(wW'X)

P-ITEEA-0011

Lecture 1

25
BN
Y/
X; : input vector (i: 1....m)
W,; : weight coefficient vector of neuron k

b, : bias value of neuron k
0, : output value of neuron k

Acltivation
function

o) Outpult

junction

Synaptic
weights 35



Activation functions (1)

e Activation function: ¢(.)

9/10/2019.

Always a nonlinear function

Typically it clamps the output (introduces boundaries)
Monotonic increasing function

Differentiable

* Important from theoretical point of view

Or at least continuous (except in simplified cases)
* Sophisticated training algorithms require continuity

P-ITEEA-0011 Lecture 1
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m ; i

0.7}

U=>Y WX =W'X oo
i=0 0.4}

0.3+

0.2+
0.1

() —

-10

10
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Activation functions (3)

soft nonlinearity hard nonlinearity
(continuously differentiable) v i
00 piece-wise linear
| 1 implementation
¢(u) = 1+e~Au of sigmoid function:
0.75- >
a

0.50 -

A=0.1 Step (threshold)function
AT sign(u) | 1 v
— A=1 7\d —) ) (p(u) — + =
0.25- - A=2 2 2 [r—
A=5
e re—
0.00 - d

b 3 0 3 6  P-ITEEA-0011 Lecture 1 38



Activation function (4)

is expected o5k ]

Bipolar activation function: I
tanh

Continuously differentiable
Monotonic ® o
Useful, when bipolar output

Hard approximations:

— Piece-wise -1

— Step-wise

0.5/

—Sigmoid |
Tanh |

9/10/2019 P-ITEEA-0011 Lecture 1



Elementary set separation by a single neuron (1)

@‘\T\{s/ﬂ

* Let us use ¢(.) step nonlinear function for siplicity:

y=o0(u) =

t5= 0, else

sign(w) 1 [ 1,ifu>0
2 2

* The output of the neuron will be binary:

y =(P(U) _ Sign(WTx) n l _ { 1, lfwa > O

2 2 0, else  pDECISION!

9/10/2019. P-ITEEA-0011 Lecture 1 41



Elementary set separation by a single neuron (2)

a Vq

in a 2-D input space, decision
the hyper plane is a . region for C1

straight line. .
decisior/: : o ° .: >

Above the lineis boundary e K C;
classified: +1 (C1: yes) ® 5 ® e .

L

o o X1

o 6. ’

Below the line is decision
classified : 0 (C2: no)region for C2 WXy + WoX, + Wy =0

9/10/2019. P-ITEEA-0011 Lecture 1 42



Elementary set separation by a single neuron (3) [

defined:

9/10/2019.

w' X

P-ITEEA-0011

Neuron with m inputs has an m dimensional input space

Neuron makes a linear decision for a 2 class problem
* The decision boundary is a hyperplane

O

Lecture 1




Why it is so important to use set separation by
hyper plane? (1)

:I:I-H- +++ ++
+|-|$++|-++ -~

* Most logic functions has this complexity
(OR, AND)

- == . ies1

* There are plenty of mathematical and B} el + species2

computational task which can be derived — |
. . ass Sptosa
to a set separation problem by a linear ‘DDG Vetsicolor
hyper plane e< Virginica
ok
— : | £ o

e Application of multiple hyper plane . 8 j

provides complex decision boundary e .
9/10/2019. P-ITEEA-0011  Lecture R1 | R3




Implementation of a single logical function by a single

Zn
neuron (1) v
AND s
\2
X, Xy | XX, N\
1 0\\”.
0 0| 0 0\\
0 1|0 N
O ~
1 010 ’ N
1 1|1
e The truth table of the .

2-D AND input space and

|Ogica| AND funCtion. decision boundary

9/10/2019. P-ITEEA-0011 Lecture 1 45



Implementation of a single logical function by a
single neuron (2)

* We need to figure out the separation surface!

 Mathematically is the following equation:

* The weight vector is:
w=(-1.5,1, 1).

9/10/2019.

0

_sign(u) 1
y="3 T3

m
u =Zwixi
i=0

P-ITEEA-0011

Lecture 1

<2£
1 \+1 [ )

0\
N
o o— >
1 N X
AND
V1L, ifu=0 X1 X5 | X%
|0, else 0O 0| o
0O 11| 0
=W'X
1 0| 0
xXo =1 1 1|1




Implementation of a single logical function by a -
single neuron (3) \J

* Furthermore instead of 2D, we can actually come up with the
R dimensional AND function.

* The weights corresponding to the inputs are all 1 and
threshold should be R - 0.5. As a result the actual weights of

the neuron are the following:

w' =(—-(R-0.5),1,..,1)

9/10/2019. P-ITEEA-0011 Lecture 1 47



Implementation of a single logical function by a single

Tf/
o neuron (4) |
X2
X; X5 | x;0Rx,
N
0 0 0 \1 ® ®
0 1| 1 AN
0\

1 0| 1 ¢ \‘\1 .

1 1| 1 S
* The truth table of the e 2-D OR input space and

logical OR function. w=(-0.5, 1, 1). decision boundary

9/10/2019. P-ITEEA-0011 Lecture 1 48



Implementation of a single logical function by a

single neuron (5)

@\\{/ﬂ

However we cannot implement every logical function by a

linear hyper plane.

Exclusive OR (XOR) cannot be implemented by a single neuron

(linearly not separable)

XOR
X; X, | X; XOR x,
0 0 0
0 1 1
1 0 1
1 1 0

9/10/2019.

P-ITEEA-0011

X,
Vi o ~
WA o @
\ N 0
\
N +1 N
\ \
N \
5 1
. ~ . '
0 - _1__ l X4
Lecture 1 49




Outline '

 Administration: requirements of the course
 Machine learning — Machine intelligence
* Artificial neuron

* Perceptron
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Perceptron

0

One or a set of neurons sharing the ~ () weighed
same input NS ) ow
Typically used for decision making e W - _)k—DH
Multiple decisions from the same data =

:
|

inputs —
Step Function

. . . o A w,
Activation function Y
— Originally step function
— Sigmoid or Tanh or their piece-wise Inpeits' St
linear approximation is used
nowadays
R

— Sophisticated training algorithms
require differentiable or at least
continuous functions

9/10/2019 P-ITEEA-0011 Lecture 1 51



Learning to Answer Yes/No Perceptron Hypothesis Set

Credit Approval Problem Revisited

age 23 years
gender female
. annual salary NTD 1,000,000
unknown target function - -
< P . ) year in residence 1 year
s 3/ —
year in job 0.5 year
(ideal credit approval formula) current debt 200,000

training examples learning final hypothesis

D:(X1,¥1), -+ (Xns YN) algorithm el

A
(historical records in bank)

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

what hypothesis set can we use? J

9/10/201
Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations 2/22
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Learning to Answer Yes/No Perceptron Hypothesis Set

A Simple Hypothesis Set: the ‘Perceptron’

age 23 years
annual salary | NTD 1,000,000

year in job 0.5 year

current debt 200,000

e Forx = (x1,x2, -, Xy) ‘features of customer’, compute a
weighted ‘score’ and

d
approve credit if ZH w;x; > threshold

d
deny creditif ) w;x < threshold

e Y: {+1(good), —1(bad)}, 0 ignored—linear formula h € # are

d
h(x) = sign ((Z w,-x,-) — threshold)

=1

called ‘perceptron’ hypothesis historically )

9/10/201
Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations 3/22




Learning to Answer Yes/No Perceptron Hypothesis Set

Perceptrons in R?

h(x) = sign (wp + wyXq + WaXo) J
., o * \o
(o] (o]
o (o)
. o % o
(o] (o]

customer features x:  points on the plane (or points in RY)
labels y: o (+1), x (-1)

hypothesis h: lines (or hyperplanes in RY)
—positive on one side of a line, negative on the other side

different line classifies customers differently

perceptrons < linear (binary) classifiers )

9/10/201! 55
Hsuan-Tien Lin (NTU CSIE) Machine Learning Foundations 5/22




Outline

* Properties of the perceptron
* Input-output pairs

* Perceptron learning method
* Perceptron learning example
* Proof of convergence

e Good material:
http://hagan.okstate.edu/4 Perceptron.pdf

9/17/2019 P-ITEEA-0011 Lecture 2 2


http://hagan.okstate.edu/4_Perceptron.pdf

Receives input through its synapsis (x)) W
Synapsis are weighted (w))

A b value biases the sum Input | Output
to enable asymmetric behavior signals .

A weighted sum is calculated

Activation function applied

m
. . T
Y =@ ;Wki Xi |~ ¢(W X) X; : input vector
=

W,; : weight coefficient vector of neuron k
by : bias value of neuron k

sigm()
f 0, : output value of neuron k
d

9/17/2019. P-ITEEA-0011 Lecture 2 3
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Neural Networks

Perceptron is an Input = Output device
~ N

X |— ? ||— y

AL j’é'-';;

As opposed to Traditional Computers At Neural Networks

where
- the math of the functionality is known - the math behind the functionality is unknown
- the known math should be programmed - the functionality is “illustrated” with examples

9/17/2019 P-ITEEA-0011 Lecture 1 4




Function illustrated by examples

* Given a set of input-output pairs
X; - d; (x:inputvector; d; desired output)

x|
: B x
 Number of input vectors Blo o o
— Finite/limited set (e.g. AND function) E -
— Equivalent with a look-up-table (LUT), math known N 1 1 1

— Mathematically it is correct to define a function by listing all the 10 pairs
* Goal: generate a simpler than LUT decision making device through learning

— Infinite/open set (customers of a bank asking for a loan) N T A

age gender debt salary

— Math behind is unknown, cannot be coded directly gy s wm@ 25 100 v

* Goal: generate the function through learning Bl 22 f2 18 80 v
. . BEN 65  Mm(1) 3000 200 N(0)
* |t should predict well the output of a previously —
unknown/untested input (GENERALIZATION) . I

Good news: we can use the same learning/training method!!! 5




Linear separability

* Today, we assume that the |0 sets are linearly separable
* The decision boundary is a hyperplane

defined: / [~
T B )
W X = O |I || -.-..- IL . |
| s s ® P s
| e ogop
* Positive side of the hyperplane is classified: +1 (yes) I|".|,='.'u —e @
| L.
* Negative side of the hyperplane is classified : 0 (no). | ."I:' '."_" \‘x_
9/17/2019

|
P-ITEEA-0011 Lecture 2



Which boundary surface to use, if there are
many?

How would you
classify this data?

X2

9/17/2019 P-ITEEA-0011 Lecture 2 7



Which boundary surface to use, if there are
many?

How would you
classify this data?

X1

9/17/2019 P-ITEEA-0011 Lecture 2 8



Which boundary surface to use, if there are

many?
® °
® o
® o
° ® - o
(<}
. ° ° A Any.ofthese would
/ be fine..
/ e ®e
7 ° ..but which is best?
. o e
/ °o
() )
| /
X2
P-ITEEA-0011 Lecture 2 9
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Which boundary surface to use, if there are

many.?
., o : Maximum Margin:
’. Define the margin
‘ o ., ©* ofalinear classifier
I as the width that
— . . .o the boundary could
> e ° .,  beincreased by
. °e before hitting a
Y . data point.
X2

9/17/2019 P-ITEEA-0011 Lecture 2 10



Which boundary surface to use, if there are

9/17/2019

many?

P-ITEEA-0011

Lecture 2

Maximum Margin:
Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
data point.

11



What does learning mean?

Given an annotated dataset

X, 2 d,
Given the parametric equation of
the perceptron

y = sign(w'x)
Goal: find the optimal w,,,
weights (parameters), where for

each _ .
dj = Slng(Wothj)

9/17/2019

Input J

signals

P-ITEEA-0011

Output
Vi

junction

Lecture 2 12



The learning algorithm: Datasets

Training set
« Setof input — desired output pairs Xt = {x - d = _|_1}
* Will be used for training B
X~ ={x:d= 0}

Test set
* Used, when we have large set of input vectors (not used today)
e Set of input — desired output pairs
* Will be used for testing and scoring the result

We assumed that X* and X~ must be linearly separable
X" ={x: w' X > O},

We are looking for an optimal parameter set: opt

X‘:{x: w' x<0}.

opt

9/17/2019. P-ITEEA-0011 Lecture 2 13



The learning algorithm: Recursive algorithm

* We have to develop a recursive algorithm called learning,
which can learn the weight step by step, based on observing

— the (i) input,

— the (ii) weight vector,

— the (iii) desired output, and

— the (iv) actual output of the system.

* This can be described formally as follows:

w(k + 1) = P(x(k), w(k),d(k),y(k)) - Wopt

9/17/2019. P-ITEEA-0011 Lecture 2 14
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The learning algorithm: Perceptron Learning Algorithm

* In a more ambitious way it can be called
intelligent, because
* perceptron can learn through examples (adapt),
* even the function parameters are fully hidden.

* Perceptron learning was introduced by
Frank Rosenblatt 1958
— Built a 20x20 image sensor
— With analog perceptron
— 400 weights controlled by electromotors

9/17/2019. P-ITEEA-0011 Lecture 2 15



The learning algorithm: Recursive steps

1. Initialization.
Set w(0)=0 or w(0)=rand
->» 2. Activation.
Selecta x, = d, pair
3. Computation of actual response
y(k) = sign(wT (k)x(k))

4. Adaptation of the weight vector
w(k + 1) = ¥(x(k), w(k),d(k),y(k))

5. Continuation

Until all responses of the perceptron are OK
9/17/20109. P-ITEEA-0011 Lecture 2
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Weight update: very simple example

A
_[1 _ 1.
xl—_zl,dl—l, 1
—1 20 | @
* Given a 3 input vector example X2=1 5 ],dz = 0;
-
: . X3 = 0 ]rd3 = O; Q
e Assume that bias is zero —1 3
(decision boundary will cross the origo)
o A
* Random initialization wi()=[1 -o0.8];
1
Remember: the weight vector is orthogonal 20| @
to the decision boundary!!! .
Decision boundary: x,-0.8x,=0 O
Its orthogonal vectoris: (1, -0.8) D

9/17/2019 P-ITEEA-0011 Lecture 2 17



Weight update: very simple example

ﬂ%@?ﬂ
: L _J1 _ 1.
Test with the first input vector X, = [2] di =1 . \d,--y,-> 0
wi() =[1 -o0.8]; \q

y1(1) = sign(w? (1)x,) = sign ([1 —0.8] BD = sign(1—-1.6) =0

The result is not OK! Positive misclassification: Instead of 1, the result is 0!!
(The normal vector points to the positive side of the decision boundary.)

Idea: add the vector pointing to the A
positively misclassified point to the
I orthogonal vector of the decision > o

20| @ boundary, to rotate it towards the point! P

w(k+1)=w(k)+x, (')
W wi(2)=[1+1 -08+2]=[2 1.2]; ’

P-ITEEA-0011 Lecture 2 18
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Weight update: very simple example

==
@\\{/ﬂ
. : —1
* T h th = ,d, = 0;
est with the second input vector x, [ ) ] 1 € _dy<0
wi(2)=[2 1.2]; N
Y2(2) = sign(w” (2)x,) = sign ([2 1.2] [_21]) = sign(=2 +2.4) = 1

The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

! Idea: subtract the vector pointing to the A
1 negatively misclassified point to the

2 ® . orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+2)=w(k+1)-x,

’ wi3)=[2-(-1) 12-2]=[3 —-0.8]

9/17/2019 P-ITEEA-0011 Lecture 2 19



Weight update: very simple example

@;ﬁm
* Test with the third input vector X3 = [_01],d3 =0; e \dj-yj< 0
wli(3)=[3 -0.3]; \'
y3(3) = sign(w! (3)x3) = sign ([3 —0.8] l_ol]) =sign(0+0.8) =1
The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

A

Again: subtract the vector pointing to the
1 negatively misclassified point to the
orthogonal vector of the decision 0l @ 1
boundary, to rotate it away the point!

) w(k+3)=w(k+2)-x, —=—

2 O

W (?
3 wi4)=[3-0 —-08—(-1)]=[3 0.2]; >

9/17/2019 P-ITEEA-0011 Lecture 2 20



Weight update: very simple example

e Start again: A
— Test with the again with the first vector
The result is OK!

— Do not modify!!! 201 @
— Test with the again with the second vector W
The result is OK! — g

— Do not modify!!! (
— Test with the again with the third vector 3

The result is OK!
— Do not modify!!!

e Since all input vectors are correctly classified: we are ready

9/17/2019 P-ITEEA-0011 Lecture 2 21



Formalization of the update rules

e Positive misclassification : ADD

e=dry; =1 w(k+1)=w(k)+x;

* Negative misclassification : SUBTRACT
e=dry=-1 w(k+1)=w(k)-x;

* Correct classification: DO NOTHING
e=d-y;=0 w(k+1)=w(k)

* |n general:

w(k+1)=w(k)+ € x;

9/17/2019 P-ITEEA-0011 Lecture 2 22



The learning algorithm: Adaptation

We were looking for a recursive function:
w(k + 1) = ¥(x(k), w(k),d(k),y(k))

In general: w(k +1) = w(k) + enx,

where is the error function

e(k)=d(k)—y(k)

d (k) — 0 if x(k) belongs to class X*
- |-1 if x(k) belongs to class X'

n is the learning rate
(n controls the learning speed and should be positive)

9/17/2019. P-ITEEA-0011 Lecture 2 23
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Weight update strategy

7
@\\Vﬂ
Apply all the input vectors in one after the others, |
selecting them randomly

Instance update

— Update the weights after each input
Batch update

— Add up the modifications

— Update the weights with the sum of the modifications,
after all the inputs were applied

Mini batch

— Select a smaller batch of input vectors, and do with that as
in the batch mode



B

Perceptron Convergence theorem (1) *ﬁff

Assumptions:

- w(0)=0
- the input space is linearly separable, therefore w, (stands
for w,..q) exists:

xeX": wx>0:d=1

xeX : wx<0:d=0
- Let us denote X = —x

X eX w'X>0:d=1
For the proof, see also: Simon Haykins: Neural Networks and Learning Machines,
Section 1.3: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf
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S=r=t

Perceptron Convergence theorem (2) *1777’

* |dea:

— During the training, the network will be activated with those input
vectors (one after the other), where the decision is wrong, hence non
zero adaptation is needed:

(e X : w (j)x(j) <0, y=0,d=1
x(j)e X1 w(j)x(j) <0, y=0, d=1

— Note: The error function is always positive ( & = 1)

9/17/2019 P-ITEEA-0011 Lecture 2 27



Perceptron Convergence theorem (3)

e According to the learning method:
* w(n+1)=w(0)+nx(0)+7x(1) +nx(2) +nx(3)+... +ux(n)

— where _
(e X w (jx(j) <0, y=-1, d=1

or
x(j)e X1 W (j)x(j) <0, y=-1 d=1
— The decision boundary will be:
nwWTx=0
which means that # is a scaling factor, therefore it can be choosen
for any positive number.

Letususe #n=1, therefore #ne=1

9/17/2019 P-ITEEA-0011 Lecture 2 28



Perceptron Convergence theorem (4)

« We will calculate |w(n+2)|" in two ways, and give an upper

and a lower boundary, and it will turn out that an n,_, exists,

and beyond that the lower boundary is higher than the upper

boundary (squeeze theorem, sandwitch lemma (kézrefogdsi
elv, rendér elv))
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Perceptron Convergence theorem (5) ==
lower limit (1) N

According to the learning method, the presented input vectors are added up:
w(n+1) =w(0) + x(0) + x(2) +...+ x(n) w(0)=0

Multiply it with w," from the left:
w, w(n+1) =w, x(0) +w, X(1) +...+w, x(n)

O<a< WZ x(j) Because each input vector (or its opposite) were
selected that way.

O<a= min_ w x(n)
x(Me{X" X7}

w, w(n+1) > na
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Perceptron Convergence theorem (6) ==
lower limit (2) N

w, w(n+1) > na We apply Cauchy Schwarty inequality HaH2 HbH2 ZHaT bH2

HW H [w(n +1)H

Lower limit:

wn+1)f = 1<

HWgHZ Lower limit proportional with n2
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Perceptron Convergence theorem (7)

upper limit (1) A
Let us have a different synthetization approach of w(n+1):
w(k +1) = w(k) + x(k) fork=0...n

Squared Euclidian norm:
[wik +D) =wK)|” +[x(K)| +2w(k)" x(k)

w(k)" x(k) <0 Because each input vector (or its opposite) were
selected that way.
[wik + D" < Jw(f + (k)|

) , , ork=0...n
Jw(k +2)]" = |w(k)[" < x (k)]
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Perceptron Convergence theorem (8)

upper limit (2) N
[k + )" — k)| <|x&)[ Telescoping sum: YL (@i41 — @) = ape1 — &
Example:Y; (aj;q1 — ;) = a5 — a+
Summing up the upper term: »d3 — a5 +
n ) ) n ) 764 _%-l_
> (o +ff ~waof )< Y fxco a5 44
k=0 k=0 =ds —aq
Note that there is a telescoping sum in the left hand side.
lw(n + DII* = [lw(0)]I* 0<fB= max Hx(k)H2
x(k)e{X* X7}
/ lw(n +DII? < (n+ 1B
lw(0)]]?=0 Upper limit linearly proportional with n
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Perceptron Convergence theorem (9)
comparing upper and lower limits

jw(n+1)| — W@+ DI < (+ D
w2
N HWO H

Linear upper limit and squared lower limit cannot grow unlimitedly

N..x Should exist

Blw |
2

(04

N =

max
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Multilayer Perceptron
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Contents

e Recall
* Single-layer perceptron and its learning method

* Multilayer perceptron
* Topology
* QOperation

* Representation
e Blum and Li construction

* Learning
e Back-propagation

9/24/2019. 2



Single-layer Perceptron

* Receives input through its synapses (x))

e Synapses are weighted (w,) (including bias) vt
A weighted sum is calculated
* Nonlinear activation function

Bias

Aclivation
function

Y =@ Zwkixi = p(w'X)
i—0

Output

Input
P , -

X; : input vector signals
W,; : weight coefficient vector

vV, : weighted sum

by : bias value of neuron k

0, : output value of neuron k = Svnanti
9/24/2019. ynaptic

¢(’) [—>

junction




Single-layer perceptron training: Error correction

Had a training set (known input desired output pairs)

c X, 2 d
Apply the input vector (x))
Calculate the output
If output is false
Modify the weights according to:
AW, =1 &X,

Input
signals

Operation:

 When error is positive
the contribution of wx; should
be increased

Convergence is proven in case
of linearly separable task

.<

Activation Desired
_ function Output output
X 2 y k dk
o(+) -
Error
Xy O—>\Wpp -\ _——————————=
Synaptic = —
weights & =0 =Yy

Linear separability requirement is a major limitation of the single layer perceptron! | 4




Multilayer perceptron

AP
Different names of Multilayer perceptron j{
Hidden

* Feed forward neural networks (FFNN)

* Fully connected neural networks
Multilayer neural network

— Input layer

— Hidden layers (one or multiple)

— Output layer

— The outputs are the inputs of the next layer

— Many hidden layers - deep network
Multiple inputs, multiple outputs
The output is typically not binary
Used practically in all deep

neural networks! Can solve linearly non-separable problems!

9/24/2019. 5



Topology and naming

(1)

« Weights: Wij )
 Arrives to the 1™ layer 1 :

« Comes from the j™ neuron Wg !

from the (I-1)t layer V1

» Arrives to the i neuron of the /(1) i . last layer:
1™ layer ) 12 | E output layer
2 ! i
(|/)/ Iclestination l: l:
o W/ laver 0" layer: | |
Destmatlon/lj\source input layer 'y |
nedron neuron 15tla2yoer:

9/24/2019. first hidden layer



Activation function |

* Sigmoid function S(x) = 1
1+e™

* Continuous
e Continuously differentiable

* [tis used in the output layer of
the fully connected neural
network

9/24/2019. 7



Derivative of sigmoid function |

15

Sigmoid(z) = ! ig(@ _d 1
l+e* dz de 1 +e*® J

guotient rule:

(denominator * %nume'rato'r) — (numerator x d%denomina,tor)

d , d
el

denominator?
1 “I0) —(1)(—e*
is(m):("'e )(0) — (1)(—e™7)
dzx (1 + e—:r)Z
d e "
%S(aj) - (1 + e—:r)2 This is the correct result,

but it is not in a nice form.

9/24/2019 8



Derivative of sigmoid function Il

i _ e " d 1—1+e*

d;‘[j S(:L.) _ (1 i e—a:)Z ‘ %S(.’B) f— (1 n e—a})Z

d 1+e” 1
%S(w) h (1+ e )2 B (1+e7)2 reduction

d 1 1 _

%S(fﬂ) — (1 1 e_""f) - (1 _|_€_$)2 Multiply out

d 1 1 | | 1
%S(ﬂi) T (teo) (1—- T e_f”) Sigmoid(zx) = -
d
ES(x) = S(z)(1 - S(x)) Much nicer form!

9/24/2019 9



Activation function Il P4
1
* Hyperbolic tangent function | _—
* Continuous g
e Continuously differentiable ° X
* |tisusedinthe outputlayerofthe  — |
fully connected neural network -1

@(X) =tanh(x)

%gp(x) ~1—tanh? () = (1—tanh(x)) (1+ tanh(x))

9/24/2019. 10



Activation function Il

RelLU
 Rectified Linear Unit (ReLU) : ;
f(z) = max(0, z)
f(z) = max(0, z) “
— Most commonly used 6
nonlinearity in hidden layers of
deep neural networks !

e Derivative of RelLU

f(z) = { 1, ifz >0 oL H 5 J

0, otherwise

(=]

9/24/2019 11



Operation

* Signal flows through the network progresses left to right

* The output of the network:
Net(x, W) = @ (W(L)(p(L—l) <W<L—1) @ (W(Z)(p(l) (W x))))

* Where the weights are matrices at each layer with different sizes

w: (w), wlk=D  wl)

« Different activation functions for different layers
« Number of layers: L, neurons in I layer: n!

9/24/2019.



Forward (signal) propagation

e Calculate the output of the first hidden

\)

N

. layer
Input layer Al/-!n/ddenlay‘tir‘s Output layer y y (1) _ (p (W (1)x)
e Calculate the output of the second hidden
layer using the output of the first hidden
layer as the input

y@ = (p(w(z)y(l)) x,y\K) are vectors
w*) are matrices

y(L) = (p (W(L)y(l'_l))

e Calculate the output of the output layer
using the output of the last hidden layer as

9/24/2019 the input 13



Hidden

Usage of Multilayer Perceptron

e Multilayer perceptrons are used for O

e Classification

e Supervised learning for classification Q\
* Given inputs and class labels Q

* Approximation

e Approximate an arbitrary function with arbitrary
precision

9/24/2019. 14



Classification example

* (lassification of the hand written figures

— MNIST data base: 20x20 binary images
— The output is a one of ten code

400 300/1000

10

15

..................

20x20

Q~mzxwn=

M I N W
M D

Mm-S
N T O N\

~w o
N ®e g~
N % &

q 4

mMFP VS~ o
MY\ =&
N0 o
ol ANV S S
TN A
M IV d ~%w 0
O TWI Yo
3Usrur.w.ul.idlw
DRI
MYPVS ST
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Hidden

Approximation

 When solving engineering task by FFNN
we are faced with the following theoretical
questions:

1. Representation
—  What kind of functions can be Approximated by an FFNN?Q
2. Learning
— How to set up the weights to solve a specific task?
3. Generalization

— If only limited knowledge is available about the task which is to be
solved, then how the FFNN is going to generalize this knowledge?

9/24/2019. 16



Approximation (Representation) T

e Canitapproximate all the function?
With what precision?

V'F (X
( )E‘T} — 3w :|F(X) — Net(x,w)| < &
>0
 The notation || || defines a norm used in ‘f space

|- J(FOO—Net(x,w))" dx,...dx, <&

9/24/2019. 17



Representation — Theorem 1

2
i
Theorem (Harnik, Stinchambe, White 1989)

Every function in L” can be Recall:

represgnteql arbitrarily closely L II(F (x))dx,...de —
approximation by a neural net X

More precisely for each L2 [ J(F () ax,dx <o
F(x)elLP Lp:J‘-;(-I(F(x))pdx,...de<oc

Ve >0,dw
I.;(.J'(F(x)— Net(x,w))" dx,...dx, <&

Since it is out of the focus of the course this proof will not be
presented here 18



Representation — Blum and Li theorem

@;\ffﬂ

*  Theorem: F()el
Ve >0,dw

. proof ) J(FOO—Net(x,w))*dx,...dx, <&

. Using the step functions: S

. From elementary integral theory it is clear every function can be

approximated by appropriate step function sequence
A

9/24/2019. | 19



Representation — Blum and Li theorem Tf}

>

From elementary integral theory
it is clear every function can be
approximated by appropriate

step function sequence -

. The step function can have
arbitrary narrow steps

. For example each step could be
divided into two sub-steps

. Therefore we can synthetize a F (X) Z F (X ) I (X )

function with arbitrary precision -
s(x)

1(X) = 1 iIfxeX
] 0 else

9/24/2019. 20



Representation — Blum and Li construction

e This construction ...
e ... has nodimensional limits
e ... has no equidistance restrictions on tiles (partitions)

e ...can be further fined, and the approximation can be any
precise

e 2 dimensional example

* The tiles are the top
of the columns for
each approximation
cell

9/24/2019. 21



Blum and Li — Limitations

* The size of the FFNN constructed via this method is quite big

* Consider the task on the picture, where there are 1000 by
1000 cell to approximate the function

e General case:
~2 Million neurons are needed

* Smoother approximation needs more

 The network architecture is synthetized (constracted) the
weights are generated

 We are after to find a less complicated architectures

9/24/2019. 22



Learning {%
Wp 2 MIN [FG) — Net(x,w)”2 =min j..j(F(x) — Net(x,w))2 dx,...dx,,

* Nor minimization task neither construction is possible most cases

 Complete information would be needed about F(x), however it is typically
unknown

 Known in the input-output pairs only (limited positions in input space)

Weak learning in incomplete environment, instead of using F(x)

* Atraining set is being constructed of observations

9/24/2019. 23



Learning

* Rather than minimizing the error function
W, - min |F(x) — Net(x,w)”2 = min _f.._f(F(x) — Net(x,w))2 dx, ...dx,,

* The approximation is the best achievable

e F functionis known in a limited positions (training set)

w!) min %i(dk — Net (%, ,W))2
W k=1

9/24/2019. 24



Learning

¥

W op, & MIN |[F(x) — Net(x,W)”2 _ MF(X)M)‘ dx, ...dx,,

input

Xk

9/24/2019.

Y

\ 4

desired output

Unknown system d £k
F(.) SO
Wopt/'
FFNN Y
output

error signal

25



Learning

* The questions are the following
* What is the relationship of these optimal weights?

277

W <>w)

opt opt

w!)  min %ZK:(dk — Net (%, ,W))2
W k=1

* How this new objective function should be minimized as
quickly as possible?

9/24/2019. 26



Statistical learning theory

 Empirical error
1 K
Remp (W) = ?Z(dk — Net (x,,w))’
k=1

e Theoretical error

[FG0 = Net (x,w)|* = [ ... [ (F() — Net (x,w)) dx,...dx,

* Let us have x, random variables subject to uniform
distribution

9/24/2019. 27



Statistical learning theory

* X, random variable, where d=F(x)

lim = %i(dk — Net (%, ,w))2 = E(d — Net(x,w))” =

k—>o0

[-.-[(FGO — Net (x,w))* p(x)dx,...dx, =

Because it is ~ constant due to the uniformity

|X|f I(F(x) Net (X, W)) dx,...dx, [

j.).(.J‘(F(x) — Net(x,w)) dx,...dx,

9/24/2019. 28



Statistical learning theory

e Therefore
Li.m.w,, c=w)

K—>oo opt

e Where l.i.m. means: lim in mean

lim R, (W) =Ry (w)

K—oo

L'&?Z(d — Net (X, W)) __f J'(F(x) Net (X, W)) dx, ...dx,,

Weak learning is satifactory!

9/24/2019. 29



Learning — in practice

e Learning based on the training set:

* Minimize the empirical error function (R,,,)

K
w() - min %Z(dk — Net (%, ,W))2 =minR,,, (W)
w =] w

- J

=

* Learning is a multivariate optimization task

9/24/2019. 30



Learning

 The Rosenblatt algorithm is inapplicable,
e the error and desired output in the hidden layers of the FFNN is unknown

 Someway the error of the whole network has to be distributed
to the internal neurons, in a feedback way

Forward propagation of
function signals and
back-propagation of

errors signals

» Function signals

oo Error signals
9/24/2019. 31



Sequential back propagation

* Adapting the weights of the FFNN (recursive algorithm)
Wi (k +1) = w (k) + Aw" (k)

AW (k) =2
* The weights are modified towards the differential of the error
function (delta rule): R
AWD = gy T e
! o)

J

* The elements of the training set adapted by the FFNN
sequentially
IQemp — I:Qemp (y(X), d)

9/24/2019. 32



Delta (learning) rule

If — <0 than we have to
K

increas w,, to get closer to the

minimum.

AWij = =1 OWg;j

ORmp
If >0 than we have to
ki
decrease w,;, to get closer to the
minimum.

[ J A P —

9/24/2019.

.. em
minimum: —p = O

n: learning rate parameter
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Propagation and back propagation %

W = b®

wll = p®

) i
Xy = $() 11]:1 * ';p() }}{ : '# -«— dl
() v, o) ¥9 &
X, L - y » . 2 #_(7
v @) =
V3 20 v e
3 v.gl.} “%} " | <
Forward propagation , T Y
e
y(l) = (p(w(l)x) -« =
y@ = o(w@ym) l’ :
vy Y 'L I Back propagation |
Back propagation I | 8" 63" 65" 57 837 657 ) _ (2)
57 =¢' (v?)e

(D _ (2) (2) 1 (1,@)) §2) 2
0, =¢ ( )Z Oy Wk] ¢ (”j )8 Wi Weight update: AWj(iL) = T]5j(L)yl(L Y
K




Back-propagation \)
* Though we showed how to modify the weights
with back propagation, its most important value
that it can calculate the gradient

* The weight updates can be calculated with
different optimization methods, after the
gradients are calculated

e Various optimization method can drastically
speed up the training (100x, 1000x)

9/24/2019 36



Conclusion

* For known functions (according to Blum-Li)
— One can define a Neural Network architecture
— And generate the weights
— That it can represent the known function with arbitrary precision

* For unknown but existing function defined by IO pairs (according to
statistic learning)

— One can find a Neural Network architecture
— And train the network (optimize the weights)
— Reach arbitrary precision with high number of 10 pairs

— The trained network will be able to well predict previously unknown 10
pairs (generalization)

9/24/2019 37



Implementing Neural Computing

* For a given task
— Find large representative annotated data set
— Find a suitable network architecture

* Number of layers, neurons, activations, interconnection
patterns

— Find a learning/training method

e Converges in acceptable time

9/24/2019 38
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Contents

* Recall
* Single- and multilayer perceptron and its learning method

 Mathematical background
 Simple gradient based optimizers
e 1stand 2" order optimizers

* Advanced optimizers

* Momentum
 ADAM

9/30/2019. 2



Recall: Single layer perceptron
y — (D(WT X) . GD\) o :\lljighted

Decision boundary is a hyperplan

Simple training method T (i Wi
Convergence of training was proven 6)/‘ i

Good for making decision in linearly Linear Nonlinear
separable cases f ¢ : °%e
In more complex decision situation .'..‘f,.-':/ .'o:,,,,,/“’

— It turns out to be a toy e 0D ‘

9/30/2019 3



Recall: Multi-layer perceptron

Net(x, W) = @ (w<L><p(L-1> (w(L—l) ¢(2>(W<2)¢(1)(W<1)x ))

Can approximate an arbitrary function with .
arbitrary precision |

The same way, it can implement arbitrary
decision boundary

It can be trained even if F (or the boundary
surface) is not known analytically or not even
fully known

— Statistical learning: It is enough to know
equally distributed input/output pairs
The partial gradient of the network can be also

calculated for each weight coefficient or hidden

layer neuron (back propagation)
9/30/2019

@i\(ﬂ




What is learning (training)?

* Given: f’V*
— Definition of the network architecture : )
Stochastic process is a
* Topology process, where we cannot
* Initial weights observe the exact values.
 Activation functions (nonlinearities) In these processes, our
» Training set (x. 2 y) observations. are always
e Goal: corrupted \{Vlth some
random noise.

— Calculation of the optimal weight composition: W,
1. Having a function to approximate
W o 2 MiN||F(x) — Net(x,w)”2 = min _f.._f(F(x) — Net(x,w))2 dx, ...dx,
2. Having a set of observations from a stochastic process

= 2 11
WE,pKt) - min %Z(dk . Net(Xk ,W)) OPTIMIZATION...
W k—1

9/30/2019. 5



Optimization

Given an Objective function to optimize
* Also called: Error function, Cost function, Loss function, Criterion
* Derived from the network topology and the input/output pairs

Function types:

* Quadratic, in case of regression (stochastic process)
1 & 2
Remp (W) = = > (d, — Net (x, )
k=1

* Conditional log-likelihood, in case of classification (classification process)

* The sum of the negative logarithmic likelihood (probability) is
minimized X

O(W) = ) —logP(yilxia W)

9/30/2019. k=1 6



Optimizations %
* Here we always minimize the objective function w

— Parametric equation
e X are the variables
* W are the parameters

* Optimization targets to find the optimal weights

W,,; = Min f(x, d, Net(x,w))
goals:
— Acceptable error level

— Acceptable computational time assuming reasonable
computational effort

9/30/2019 7



Mathematics behind: Function analysis

* Assumptions

Conditioning refers to how rapidly a

* Poor conditioning P function changes with respect to
* Conditioning number  max|Z- small changes in its inputs.
(Ratio of Eugen values):  i.i |4, Functions that change rapidly when
their inputs are perturbed slightly
f (X) — A lx A c R™" can be problematic for scientific

computation because rounding
errors in the inputs can result in
large changes in the output.
(e.g. Matrix inversion)

e Applied functions should be Lipschitz
continuous or have Lipschitz continuous
derivate

X, vy, | £(x)- f(y)| <L|x-Y],

(where:
L is the Lipschitz constant)

9/30/2019. 8



Basic idea of (Eradient Descent

There is a function, where

f(x)
and
f'(x)
can be calculated at any
points, but

f'(x)=0

°* cannot.

F(x)

Negati\)e gradient y

minimum:

X; X

* Therefore the trace of the light blue line is not known.

* We have to start out from one point (say X;) and with an iterative
method, we need to go towards the minimum

9/30/2019.



Basic idea of Gradient Descent

We do not know where the
curve is

We know the value at f (X,)

We know the derivative at X;
(%)
Which way to go?

|dea: follow the descending
gradient!

9/30/2019.

£ (x)

t(x)

¥'(x,)

The fog is too thick! How
will I descend from this
hill?!

v

10



Basic idea of Gradient Descent

Derivative means for small € f(x)

f(x+8)~ f(x) + & f'(X)

therefore

f(x—esign(f'(x)))< f(x)

This technique is called
Gradient Descent
(Cauchy, 1847).

9/30/2019.

tangents

minimum: § '(X) -0

>

X

Optimization goal is to find the f'(X) =0 position.
(Critical or stationary points)

=



Stationary points

* Local minimum, where f'(x)=0, and f(x) is smaller than all
neighboring points

* Local maximum, where f'(x)=0, and f(x) is larger than all
neighboring points

e Saddle points, where f(x)=0, and neither minimum nor maximum

Minimum Maximum Saddle point

9/30/2019. 12




Local and global minimum

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Z | Ideally, we would like
to arrive at the global
minimum, but this

might not be possible. This local minimum performs

poorly and should be avoided.

X
In neural network parameter optimization we usually settle for finding a

value of f that is very low, but not necessarily minimal in any formal sense.

9/30/2019. 13



* |n case of a vector scalar
function

 |n 2D, directional derivatives
(slope towards X; and X,):

Of (%1, %,)

f /ré*“‘x“
/4
of (X, X, )/ x| X
8x/ . ’ /
-




Multidimensional input functions Il

* |n case of a vector scalar function

 Gradient definition in 2D
f:R° >R
VE (% %) = of of
OX, OX,

A vector in the in the X; - X, plane

10/1/2019. 15



Multidimensional input functions lli

 The gradient defines (hyper)
plane approximating the
function infinitesimally at
point X (X4, X5 )

AZ = ot (%, %) - AX, +

0%, OX,

10/1/2019.



Multidimensional input functions IV

Directional derivative to an arbitrary
direction u (u is unit vector) is the slope
of fin that direction at point X (X;, X, ):

uTVF (X)

Not changing with u X, LN

f decreases the fastest: / f

min u' Vf (x) :UTTiurlluuHZHVf (x)[, cos@

u,u'u=1

u is opposite to the gradient!!!

10/1/2019.

LR Roo w s

minimum at 180

New points towards steepest descent:
X'=x—-eVif(X)

17



Gradient Descent in multidimensional input case =

bt

* Steepest gradient descent iteration
x(n+1) = x(n) — & VI (x(n))

e ¢gisthe learning rate
 Choosing e:
— Small constant

— Decreases as the iteration goes ahead

— Line search: checked with several values, and the 4 Xq
one selected, where f(X) is the smallest

* Stopping condition of the gradient descent
iteration

— When the gradient is zero or close to zero

9/30/2019. 18



Jacobean Matrix

e Partial derivative of a vector =2 vector function
e Specifically, if we have a function f:R"™ — R"

then the Jacobian matrix J e R™"
of f is defined such that: J, . :ai f(x)
T

J

0h O
8.’L‘1 8£Cn
of of
J=|— ... = ! :
0xq oz, . : '
Ofm Ofm
9/30/201 - 8:131 8mn — 19




2"d derivatives ¥

e 2nd derjvative determines
the curvature of alinein 1D

* |InnD, itis described by the
Hessian Matrix

H(f(x )= g 0

Negative curvature No curvature Positive curvature

flx)

f(x)

f(x)=—— f(x) = = - <
OX,OX () OX ;. OX: () N \

= J

e The Hessian is the Jacobian
of the gradient.

9/30/2019 20



I——:

2"d order gradient descent method | \s

« 2nd derivative in a specific direction: u'Hu

 Second-order Taylor series approximation to the function f(x) around

the current point X
0 where:

f(X)=f(x,)+(X=X%,)"g +£(x—xo)T H(x—x,) & gradientatx,
2 H: Hessian at x,

e stepping towards the largest gradient:

Xx—€0=X — X=X,~—¢&(0
f(x)~ f(xo—eg)~f(xo)—eng%engHg

9/30/2019 21



2"d order gradient descent method Il

Analyzing: f(X,—&£0Q)~= f}Xo) —£9'g +%52 g' Hg

N

Original value ~ Expected Correction due to
improvement  curvature

When the third term is too large, the gradient descent step can actually
move uphill.

When it is zero or negative, the Taylor series approximation predicts
that increasing € forever will decrease f forever.

In practice, the Taylor series is unlikely to remain accurate for large €, so
one must resort to more heuristic choices of € in this case.

When it is positive, solving for ng

the optimal step & =

9/30/2019 22



Simplest 2" order Gradient descent method: Newton Method

ﬂ%%?ﬂ
FO9 = () + (X=X)VF ()2 (x =X, (X Nk,

. Replacing (X=Xo) = AX' 4n4 differentiating it withAX
assuming that we can jump to a minima, where:  Vf(x)=0
O:a%(f(xohAxTVf (xo)+%AxTH(f (xo))ij =V (x,) + H(f (x,))AX

N/
Constant>0  (Ax)' -1 (% (Ax)?)' - Ax

Newton optimization:

Ax =-H(f(X,)) V(%) x(n+1)=x(n)—7H(f(x(n))) " VF(x(n))

10/1/2019 23




Properties of Newton optimization method

 When fis a positive definite quadratic function, Newton’s
method jumps in a single step to the minimum of the function
directly.

 Newton’s method can reach the critical point much faster than
15t order gradient descent.

Newton optimization:

Ax=—H(f (o)) VI (X)) x(n+1) =x(n) —nH(f (x(n))) " VF (x())

9/30/2019 24



Convex and non-convex functions *ﬁff’“

! X

Strongly convex
function:
1 local minimum

9/30/2019.

Non-Strongly convex
function: infinity local
touching minima with
the same values

Starting pt.

Local minima

Global minima

Non-convex function:
multiple non-touching
local minima with

different values .



Local optimization in non-convex case

 Optimizationis done /
local maxima

locally in a certain /
domain, where the /C\ xf
function is assumed to be / /
convex f

* Multiple local
optimization is used to
find global minimum Local minima

Global
minimum

9/30/2019 26



Most commonly applied gradient descent
methods V

* Algorithms with changing but not adaptive learning rate
— Stochastic Gradient Descent algorithm
— Momentum algorithm
* Algorithms with adaptive learning rate
— AdaGrad algorithm
— RMSProp algorithm
— ADAM algorithm
e 2" order algorithm
— Newton algorithm

9/30/2019 N



What are we
optimizing here?

e Cost function in quadratic case for
one X; =2 d; pair:
g = (dl. — Net(xi,w))z Error surface for x, > d.  Error surface for X, = d,

The fog is too thick! How
will I descend from this
hill?!

— Error surface is in the W space

— Error surface depends on the
X; = d; pair

— Moreover, we do not see the
entire surface, just

0E When and how to
aw® update the weights?

J JH‘ﬁk"““ﬁb——-7-__;!:_ﬁﬁ»_ﬁk#{///f///(//

10/1/2019 28
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Update strategies

* Single vector update approach (instant update)
— Weights are updated after each input vector Remember, each

* Batched update approach _approach optimizes
different error surfaces!!!

— All the input vectors are applied

 thisis actually the correct entire error funtion, which is used by the original
Gradient Descent Method

— Updates (Aw;) are calculated for each vector, and averaged

— Update is done with the averaged values (Aw;) after the entire batch is calculated
* Mini batch approach

— When the number of inputs are very high (10%-10°), batch would be ineffective

— Random selection of m input vectors (m is a few hundred)

— Updates (Aw;) are calculated for each vector, and averaged

— Update is done with the averaged values (Aw;) after the mini batch is calculated

— Works efficiently when far away from minimum, but inaccurate close to minimum
10/1/2649 Requires reducing learning rate 29



How learning rate effects convergence?

Llu) A Ciw) & Liw] & Clu) &
= = = =
1 L1 il T
Learning rate too low Good learning rate High learning rate Learning rate much too high

Learning rate much too high

High learning rate

Learning rate too low

Good learning rate

.

10/1/2019 epoch 30




Most commonly applied gradient descent
methods V

* Algorithms with changing but not adaptive learning rate
— Stochastic Gradient Descent algorithm
— Momentum algorithm
— Nesterov momentum update

10/1/2019 .



Stochastic Gradient Descent (SGD) algorithm

 |Introduced in 1945

* Gradient Descent method, plus:
— Applying mini batches

— Changing the learning rate during the iteration

9/30/2019 32



Learning rate at SGD

e Sufficient conditions to guarantee convergence of
SGD:

> > ) € is the learning
Z € — OQ, and Z €. < OQ. rate, also marked
—1 k—1 with 77 sometimes
* |n practice:
e = (1 —a)eg + e a=*%

e Afteriteration t, it is common to leave € constant

10/1/2019 33



Stochastic Gradient Descent algorithm

Algorithm Stochastic gradient descent (SGD) update at training iteration k
Require: Learning rate €.
Require: Initial parameter 6
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:13(1)? . 3.’Jlf,'(m)} with
corresponding targets y(i).
Compute gradient estimate: g < +-—-Vo > L(f(x'V:0),y?)
Apply update: 8 <+ 0 — cg
end while

where: L is the cost function

0 is the total set of Wl.(? (and all other parameters to optimize)
10/1/2019 ’ 34



Stochastic Gradient Descent algo

* This very elongated quadratic
function resembles a long canyon.

* Gradient descent wastes time
repeatedly descending canyon
walls, because they are the
steepest feature. a

* Because the step size is somewhat
too large, it has a tendency to
overshoot the bottom of the
function and thus needs to
descend the opposite canyon wall
on the next iteration.

9/30/2019
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Momentum |

* |Introduced in 1964
* Physical analogy
* Theideais to simulate a unity weight mass

* |t flows through on the surface of the error
function

* Follows Newton’s laws of dynamics
* Having v velocity

* Momentum correctly traverses the canyon
lengthwise, while gradient steps waste
time moving back and forth across the
narrow axis of the canyon.

9/30/2019
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=P

Momentum II: velocity considerations i
The update rule is given by:

1 T . .
v+ av — Vg (— > L(f(=":0),y! >)) ,
T i=1

0+ 0 +v.

m

The velocity v accumulates the gradient elements Vg (% O L(f (az(i); 0), yl) )) .
The larger « is relative to €, the more previous gradients affect the current direction.

Terminal velocity is applied when it finds descending gradient permanently:

ellgl
1 — «

9/30/2019 37




Momentum Il

Algorithm Stochastic gradient descent (SGD) with momentum

Require: Learning rate ¢, momentum parameter c.
Require: Initial parameter @, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a:(l)’ . }.’B(m)} with
corresponding targets y(i).
Compute gradient estimate: g < —Vg .. L(f(zV);0),4V)
Compute velocity update: v < av — eg
Apply update: 8 + 60 + v
end while

9/30/2019 38



Momentum demo

 What does the parameter of the momentum
method means, and how to set them?

— https://distill.pub/2017/momentum/
Why Momentum Really Works

9/30/2019 used, and creates Its 0Wn 0sC ns. Vwhat Is going on’/ 39


https://distill.pub/2017/momentum/

It calculates the
gradient not in the
current point, but
in the next point,
and correct the
velocity with the
gradient over there
(look ahead
function)

It does not runs
through a
minimum, because
if there is a hill
behind a
minimum, than it
starts decreasing
the speed in time.

9/30/2019

Nec<terov momentiim i1indate

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

>
gtradiem Nesterov: the only difference...
step
vt = pvr-1 — €V f(0r—1 {+ pvr—1))
Derivative over function f
” Or = 01 + v
. = +161

What if we make the
learning rate adaptive as
well, not just the velocity?

-10 -=. denvative: df(p)/dp

® (.fip)) (-080-0.47) 40



Most commonly applied gradient descent
methods

e Algorithms with adaptive learning rate
— AdaGrad algorithm
— RMSProp algorithm
— ADAM algorithm

9/30/2019 41



. -JL:
AdaGrad algorithm \s
The AdaGrad algorithm (2011) individually adapts the learning rates
of all model parameters by scaling them inversely proportional to the
square root of the sum of all of their historical squared values

The parameters with the largest partial derivative of the loss have a
correspondingly rapid decrease in their learning rate, while
parameters with small partial derivatives have a relatively small
decrease in their learning rate

The net effect is greater progress in the more gently sloped directions
of parameter space

AdaGrad performs well for some but not all deep learning models

9/30/2019 42



AdaGrad algorithm

Algorithm The AdaGrad algorithm Remembers the
Require: Global learning rate ¢ entire history
Require: Initial parameter 6 evenly

Require: Small constant §, perhaps 107, for numerical stability
Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {.’L’(l), ce
corresponding targets y(i).
Compute gradient: g < =Vg >, L(f(x";0),y")

Accumulate squared gradient: r < r +g © g
€

Compute update: Af < —5= 7 © g. (Division and square root applied

element-wise)
Apply update: 8 < 0 + Af
end while




RMSP algorithm

\)

The RMSProp algorithm (2012) modifies AdaGrad to perform better in the non-
convex setting by changing the gradient accumulation into an exponentially
weighted moving average

In each step AdaGrad reduces the learning rate, therefore after a while it stops
entirely!

AdaGrad shrinks the learning rate according to the entire history of the squared
gradient and may have made the learning rate too small before arriving at such a
convex structure

RMSProp uses an exponentially decaying average to discard history from the
extreme past so that it can converge rapidly after finding a convex bowl, as if it
were an instance of the AdaGrad algorithm initialized within that bowl

9/30/2019 44



RMSP algorithm

Algorithm The RMSPron algorithm
Require: Global learning rate €, decay rate p.
Require: Initial parameter 6

The closer parts of the
history are counted more
strongly.

Require: Small constant o, usually 107%, used to stabilize division by small

numbers.
Initialize accumulation variables » = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {.’B(l), e ,az(m)} with

corresponding targets y(i).

7

Compute gradient: g < %Vg ZZ L(f(a:(i); ), y(i))
Accumulate squared gradient: 7 < pr + (1 —p)g© g

Compute parameter update: A8 = — T ©q.
Apply update: 8 < 0 + A6
end while

(ﬁ applied element-wise)




ADAM algorithm (2014)

fr{\%ﬂ

* The name “Adam” derives from the phrase “adaptive moments.” e

* Inthe context of the earlier algorithmes, it is perhaps best seen as a

variant on the combination of RMSProp and momentum with a few
important distinctions.

 in Adam, momentum is incorporated directly as an estimate of the
first order moment (with exponential weighting) of the gradient.

e Adam includes bias corrections to the estimates of both the first-
order moments (the momentum term) and the (uncentered)

second-order moments to account for their initialization at the
origin

9/30/2019 46



ADAM
algorithm

Algorithm The Adam algorithm

s estimates the
gradient from the
history (moment)

r estimates the
curvature of the
gradient

Booth of them are
biased to reduce
anomalies at the
initialization

9/30/2019

Require: Step size € (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, p; and po in [0,1).
(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant § used for numerical stabilization. (Suggested default:
10~8)

Require: Initial parameters 0
Initialize 1st and 2nd moment variables s = 0. r =0
Initialize time step £ =0
while stopping criterion not met do

Sample a minibatch of m examples from the trainine set {2 . 2™ with
(=] | bl

corresponding targets y(®.
AP . . . 1 — ’ ; :
Compute gradient: g < —Vg > . L(/ (:E(@):_ 9). y(l))
t+—1t+1
Update biased first moment estimate: s < pys+ (1 — p1)g

Update biased second moment estimate: r < por + (1 — p2)g © g
1—Spi

Correct bias in second moment: 7 < 177;}5

Compute update: A = —¢ ﬁié (operations applied element-wise)
Apply update: 8 < 0 + A0

end while

Correct bias in first moment: § <




Video comparing adaptive and non-adaptive
* Three optimizer types are methOdS

compared:
— SGD
— Momentum types

* Momentum

* Nesterov AG
— Adaptiv

e AdaGrad
e AdaDelta
* RmsProp
Adaptive ones are the fastest

SGD is very slow (stucked into
saddle point)

https://www.youtube.com/wat
ch?v=nhgoOulab6fw&t=306s

9/30/2019


https://www.youtube.com/watch?v=nhqo0u1a6fw&t=306s

Most commonly applied gradient descent
methods

e 2" order algorithm
— Newton algorithm

9/30/2019 49



Newton’s algorithm

Algorithm Newton’s  method — with  objective
- e L(f(-’f(z); 0). ’y(z))-

m

Require: Initial parameter 6y
Require: Training set of m examples
while stopping criterion not met do
Compute gradient: g «— Vg >, L(f(zc@; 0), y@)
Compute Hessian: H + L Vg >, L(f(zD;0),y")
Compute Hessian inverse: H '
Compute update: A@ = —H 'g
Apply update: 8 = 6 + A0
end while

9/30/2019
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Newton’s algorithm

* Typically not used, due to the computational complexity

* Parameter space much higher than first order (where it is
already very high)

9/30/2019 51



Back propagation

 We have seen last time how to calculate the gradient in a
multilayer fully connected network using back
propagation

— The introduced method was based on gradient descent method

 However, being able to calculate gradient, we might
select any of the above methods, which leads to orders
of magnitude faster convergence

9/30/2019 52



Neural Networks

Components and methods of deep
neural networks

(P-ITEEA-0011)

Akos Zarandy
Lecture 5
October 8, 2019



Contents

Recall

* Optimization

* Analysis of the different methods
Activation functions

* Various RelUs

e Softmax
Error functions

* Cross-entropy

* Negative log-likelihood
Regularization

e Batch normalization,

* Weight regularization

10/8/2019. 2



A

— Architecture, parameters, signal propagation, recall (inference)

We discussed... ( '\
* How to construct an Artifitial Neural Network :7‘ V

* How to calculate the local gradient from the error function
— Error back propagation

 Update strategies
— Batch approach: Error function based on all the

Epoch: One Epoch
is when the ENTIRE
training set is

- K
training vectors o 1 ,| passed forward
(K: Number of all the training vectors) € = K (dx — Net(xg, w)) and backward
k=1 through the neural
— Instant update: Error function based on one training vector network
e = (dx — Net(xy, W))z only ONCE.

— Mini batch approach: Error function based on a random subset of . .
. Epoch: time period
the training vectors :
(korszak in

mp
1
(m, = 200) e = _E(dk - Net(xk,w))z Hungarian)
™ =

10/8/2019. 3




As we discussed ...

Once the gradient is known, optimization of
the network parameters can be done

Gradient Descent Method

f(x) =
* ajf/n
(<0 RRCRE

,,,,,,,,,,, OK tangents

minimum: '(X)=

»
>

X

Minimum Maximum Saddle point

— Always uses the total error function
(all the training samples are used)

N

o~

* Painfull to calcualte the gradient in case of
a very large training set

— Easily stucks in saddle points
— Stucks in local minima

— Very slow!

10/8/2019.

f(z)

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible.
This local minimum performs

poorly and should be avoided.




As we discussed ... More Fluctuations in SGD
e Stocastic Gradient Descent (SGD) Method .

— Uses a random subset of the training vectors | <
(mini batches) | § MUU\ |
W ‘\U\km |

* One update is fast to calcualte

— The objective function changes stocastically

with the minibatch selection [ BT T
flz)=z?+ 10sin(zx); z, %n=0.1;y=0.9

-8+ R —

* More fluctuation in the objective function than in 25
case of Gradient Descent

* |t helps to come out from local minima and saddles

— Decreases the learning rate during the training
time to reduce overshoot

— Still very slow! (Many update steps are
needed)
 More advanced optimization methods
required!

=

-10 |- PR - e &7 NP Vs T

10/8/2019. i»| « > ann o | >



Comparing adaptive a

* Three optimizer types are
compared:

— SGD
— Momentum types

* Momentum
* NAG
— Adaptive
e AdaGrad
e AdaDelta
* RmsProp
* Adaptive ones are the fastest
* SGDis very slow

* https://www.youtube.com/wat

ch?v=nhgo0Qulabfw&t=306s

10/8/2019
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non-adaptive methoc
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momentum |
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adadelta
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https://www.youtube.com/watch?v=nhqo0u1a6fw&t=306s

Do we have to reach the global minimum? g§

* Not really

e Global minimum means:
Overfitting

* OQverfitting: The network
exactly learned the
training vectors

* However, it loses the
generalization capabilities

10/8/2019 7



A

X

Ko o
Xo O
X O
xx 0

0-X

_Qve rfit

Under Flt

Appropriate

B
.............

Overfitting occurs when a model with high capacity fits the noise in the

data instead of the (assumed) underlying relationship

Losing the generalization capabilities!!!

10/8/2019



Network complexity vs. capacity %

3 hidden neurons | 6 hidden neurons N 20 hidd neurons

10/8/2019 https:


http://cs231n.github.io/neural-networks-1/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Network complexity vs. capacity

3 hidden neurons 6 hidden neurons

* |n general, the
more layers we
have, and the
more neurons
there are, the
larger the capacity.

* There is no adequate method to
predict the required complexity.

 Even if a network is capable to learn a
task, it is not guaranteed that it will.

10/8/2019 10



Now we understand

Architecture of the multilayer fully connected
neural networks

Operation of these networks

input layer hidden layer hidden layer hidden layer

Derivation of the parameters A
L1 AN ’ IIII/L

Arbitrary function can be RTINS —

TN \

z‘::\\\\):e’{,:l{/ﬁ:; . 4{{\\\:‘ N /4"!;/;,}:; ' \
01 R 72 AR \
T N 7 NN
A0 2% N\
: <A\

o
PPN

approximated if the neural
network is complex enough

2 Iz
&3

ﬁgﬁu'

SO
2\

42

Y

Zv
PR
U

How to increase complexity
on a smart way?
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input layer hidden layer hidden layer hidden layer hidden layer hidden layer hidden layer hidden layer

No-brainer solution: Increase the number of the hidden layersg
DEEEEEEP

.‘\\\\/

v

N
\

3 ’II; .

\\v N7 A
AN 7/
N S

SR :
‘\;‘-\\ W e “vr‘\ \\\\: S/ III"""‘":‘ \\\\\:
2T XN F AN LI SN
V77 >ERN 75>E TN VA7 >EIN
, S\ XURN XN
W9/ 28\ " 77203\ g /7 3\\
T

Problems:

~* Solution:
— Number of free parameters are exploding

, _ _ — Try to mimic human brain:
— Numerical problems arises after using too

I — Use hierarchical architectures!
many layers (double precision limit)
10/8/2019 — Reusable components! 12



L1

I
L]

j |: — BICYCLE

7 INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN n:d'-';'[-"":'“n SOFTMAX
Y 4 Y
HIDDEN LAYERS CLASSIFICATION

What are the building blocks of a hierarchical deep neural network?

10/8/2019. 13



Components and methods

e Activation functions
e Error (loss) functions
e Regularization

e Batch normalization

L1 and L2 regularizations

10/8/2019. 14



Why do we need nonlinear activation function in the hidden layers?
Vl

X 1

"Repeated matrix multiplications (
interwoven with activation functions.”
(Karpathy)

WO

o o wh N2 Y2
VE=WEX (Summing junctions of layer 1)mpm Layer{

yl=p(v1) (Output of layer 1)
v2=wly! (Summing junctions of layer 2) &
L R \ ST

If the neuron is linear: p(v)=vl  yl=wd

Hidden Layer Output Layer
X
vZ=wilyl=wlwOx=wx -
W=W'W
_ , On the other hand, we
The two layers can be combined into an .
Y  could not approximate

equivalent single layer network!

arbitrary kinds of functions,
./ only linear ones!
10/8/2019 15



Sigmoid function

Sigmoid function compresses the output X

Used in classification,

— The network calculates the probability of the
yes and the no decisions at the same time

y=0 (W'X)

Sigmoid sigmoid
function: |

o(z)

Net(xj, w) = o(WTx) = P((yi|x;w))
Probability of yes decision: - Z

P((yilx; w)) = a(wTx)
Probability of no decision:
1—P((yklxisw)) =1 —0(wTx) = o (—wTx)

It generates the probability (¢) parameter of a
Bernoulli distribution:

o(z) +o(—2z)=1

When z is large or small, the derivative of the output
is minimal (compresses the gradient)
— It significantly slows down the training when quadratic
loss function is used
10/8/2019

Bernoulli Distribution is a distribution

over a single binary random variable.

(like flipping a coin: head or tail)

It is controlled by a single parameter

¢ €[0,1], which gives the probability

of the random variable being equal to 1

Pobability of head: P(x=1)=2¢

Px=0)=1-¢

Expectation: E x| = ¢

16




RelLU: Rectified Linear Unit

3 ! !
Very easy to calculate —Softplus |

— Implementation is a simple sigh comparison —ReLU
and replacing with 0 if negative ;

Also easy to calculate its derivative | : |

— Ramp function
— Half-wave rectifier

Orders of magnitude learning speed

advantage BN RN R
— Due to non-compressed gradient -3 2 1 0 1 2 3
Smooth analytic approximation is the
Softplus function
) x) = max(0, x z) = log(1 + €°*
Asymptotically reaches RelLU f( ) RelU ( ’ ) f( ) g( T )
e Softplus

Most used in hidden layers in deep neural networks (as of 2019)!
10/8/2019 17



Dying RelLU problem

During training it happens that the weight
composition of a neuron got a certain combination in
a high gradient situation (when large jump happens
during the optimization), which leads to generate zero
output from that point on.

— Happens typically with large learning rate
— E.g.avery large negative value appears in the bias
position
That neuron will output zero for each input vector
from that point

10

RelU

R(z) =maxz(0, z)

— lrreversible Y(L) =R (W(L_l)Ty(L_l) + b(L_l)):R(V)

— No contribution to the decision

— A usefull neuron selectively fires to a set of input vector
having the same properties

In some bad cases, even 40% of the neurons dies in
coarse of a long training (Vanishing Gradient problem)

10/8/2019

Awf; = R’ ()ey Y

Avoid the absolute zero part!
Introduction of Leaky RelLl.



Leaky RelLU *a?f/

No constant zero output
Neurons do not die

Parametric RelLU

— Variation of leaky RelLU Loaky RoLU: y=0.01x

— ais a hyper-parameter:
* Tuned during training

Leaky ReLUs are not necessarily £(x) = max(x, ax)
superior than normal RelLU Where: ’

It is an option, if normal ReLU is not a is a small positive number
performing well

10/8/2019 19



ELU: Exponential linear units

 Variation of leaky RelLU w
— No constant zero output
— Neurons do not die

— Mean activation closer
to 0 in the negative
region

* Obtains higher
classification accuracy
than RelLU, but requires
more computations

* aisahyper-parameter: flz) = {z(em _1) -

otherwise
_ TUﬂEd durlng tral ning a is a hyper-parameter to be tuned and a > ( is a constraint.

10/8/2019 20
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SELU: Scaled Exponential linear units

e Variation of leaky ELU

* Two fixed parameters

— Not trained, but
selected to be fixed

— Ais the scaling
parameter

10/8/2019

%l N
SELU activation function V

3_

e e e e —————

x ifx >0
selu(@) = A {aem—a ifx <0

21



y=0

Variation of RelU ReLU®6

— Capped at 6
— 6is a choosable parameter

Shown to learn sparse
features faster

Turned out to be usefull
in CIFAR-10

10/8/2019

CIFAR-10 dataset:

R | i - |
automobile EEIE‘HE‘
bird iml Ve yEREN
« HEGHSEEEs P
oo IS R
o [HESHeDRK R
ro [ N N 21 O N B

o R O IR
N =T
o< O 0 D
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What do we expect from the activation

functions?
Strong nonlinearities to support approximation of wide

range of functions

To drive (during training) the individual neurons in the

hidden layers to a parameter zone where it is
— Silent for a set of input vectors
— Active for another set of input vectors

Letting the gradient go through them

Work together with the loss function (select them in
synchrony)

10/8/2019 23



Loss functions

Loss function determines the training process
* Tells the net, whether an error is big or small, and penalize accordingly

* There can be other errors, not just the difference of the output and
the desired output

Most used loss function types:
e (Quadratic, in case of regression

R (W) = 15 33~ Net (x, )

e Conditional log-likelihood, in case of classification
The sum of the negative logarithmic likelihood is minimized

K
C(w) = _%Z(_IOQP(YRlxk; w))
k=1

10/8/2019 24



What is the problem with quadratic loss function in classification tasks?

* In case of classification, the convergence can be very slow

* Consider the following very simple case

bias b

Check out the example!
http://neuralnetworksan

weight w : ddeeplearning.com/chap
x=1 d=0 3.html

e Case A: Start the learning from w(0)=0.6, b(0)=0.9 cost|

— Loss function decreases quickly

« Case B: Start the learning from w(0)=2, b(0)=2

Case A

— Loss function decreases very slowly at the beginning
* Why is that?
— Because the Aw is proportional with the gradient

Cost|—

—> Epoch
300 P

\ Case B

10/8/2019

200 Epoch


http://neuralnetworksanddeeplearning.com/chap3.html

Calculation of the gradient

Loss function:
L=1,(d—-y)? where y=o(wx+b)

Gradient, using chain rule:

= = (y — d) o’ (wx + b)x = yo' (wx + b)x

ow 0.2

sigmoid function

Case A 7 \

Case A: w(0)=0.6, b(0)=0.9, x=1, d=0 oo
— Slope of the gradient is fine: (wx + b) = 1.5
— Fast convergence

Case B: w(0)=2, b(0)=2, x=1, d=0
— Slope of the gradient is very small: (wx + b) = 4

— Very slow convergence

10/8/2019

Sigmoid with quadratic loss
function leads to very small
gradient even at large error,
when the argument of the
sigmoid is a large value.

26



Introducing Cross Entropy

|dea: replace the quadratic Loss function with a more
appropriate Loss function: Try cross entropy!

1
In general: ¢C=-— > lylna+(1-y)(l - a)

C(w) =— %Zligﬂ (dk ogP (Y lxk, w) + (1 — di)log(1 — P(yxlxy, W)))

— lIs it always positive?
* d, is either 0 or 1 (binary classification)
— Either the first or the second term is zero

* P(yl|xx, w) = o(wxy + b)
— The probability is the output of the network
— Due to the sigmoid, it is between 0 and 1
— Therefore, its logarithm is negative

10/8/2019 http://neuralnetworksanddeeplearning.com/chap3.html 27
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Introducing Cross Entropy

* |dea: replace the quadratic Loss function with a more
appropriate Loss function: Try cross entropy!

* C(w) = —%25:1 (dk logP (Y |x, w) + (1 — di)log(1 — P(ylxy, W)))
— Isit a good loss function?
Good decision (small loss):
* Whend, is 0and P(yi|xy, w) is close to 0, than —log(l - P(yklxk,w))~0

* Whend,is1and P(y|xg, W) is close to 1, than —log(P(yklxk,w)) ~0
Bad decision (large loss):

* Whend, is 0 and P(y|xy, W) is close to 1, than —log(l - P(yklxk,w)) ~00
* Whend,is1and P(y|Xxg, W) is close to 0, than —log(P(yklxk,w)) ~00

10/8/2019  http://neuralnetworksanddeeplearning.com/chap3.html 28
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Introducing Cross Entropy

* Why is cross entropy good?

« C(w) = —%211;1 (dk logP (yi X, W) + (1 — di)log(1 — P(Yk|Xk;W)))

— Because its partial derivative does not contain ¢’

=7 Z xj(c(wx+b) —d)

6W]

— The gradlent is proportional with
the value of the sigmoid, and not

with its derivative! 02

0.0

1.0

sigmoid function

10/8/2019  http://neuralnetworksanddeeplearning.com/chap3.html 29
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Probabilistic decision (n discrete categories)

 Assume we have annotated 00 400  300/1000
. . . {1 (" {:H 10
input vectors with n different 2 2 = = A
classes (MNIST data base) 3 3 2020 o o 0
ofe . . . & '
e Expect a probability distribution f} s 3.
on the output layer! b G O Q] |C
: : T 7 X U W, W)
- 0<y;<1 sigmoid OK! ¢z O—10
— ® .y =1 sigmoid NOT OK! 7 9 ReLU RelLU Sigmefd?

10/8/2019 30



Mathematically:

Softmax

— Normalized exponential functions of the

output units

Probability distribution of n discrete classes:
— One-of-n classes problems

- 0y, £1
— ?=1yi=1

Architectural difference:

— Previously learned activation functions were

based on the inputs of one neuron

— Softmax combines a layer of output neurons

10/8/2019

@;\{/ﬁ

y; = softmax(v);

eVi
J=1
v=wlx

400 300/1000
I () 10
h—y R
f’lﬂ\| f’.ﬂ\| . f’lﬂ\ﬁ
Ay p_—y NS

20x20 f’.ﬁ\| f’-ﬁ\| f’.ﬁ\\
M M M
( ﬁ\:l f’-ﬁ\J f’.ﬁ\j
e e —
@ . ),
Irz"'_"‘\l lrz"'_"‘\r
R R




400 300/1000

. ® (). 10
Properties of Softmax o
20x20 A AL S
Generalization of sigmoid function for one-of-n 3 : :
class o 10 10
Squashes a vector of size n between 0 and 1 O Ol 1O
Improves the interpretability of the output of a O—9)
Neural Net = softmax(v)
Describes the probability distribution of a certain Yi L
class Vi
— We may use the word “confidence” =
Winner take all 7?_1 eVi
— exponential function strongly penalize the non- J=
winners
— Similar to lateral negative feedback in the natural T
neural systems v=wXx

10/8/2019 32



EXAMPLE
(’&\fﬁ

Input pixels, x Feedforward output, V; Softmax output, S(v,)
cat dog horse cat dog horse
i 5 4 2 0.71 | 0.26 | 0.04
Forward Softmax
propagation . function
Input images Input values Probability scores

10/8/2019 https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/ 33
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EXAMPLE

Input pixels, x Feedforward output, V; Softmax output, S(v,)
cat dog horse cat dog horse
i 5 4 2 0.71 | 0.26 | 0.04
Forward Softmax
propagation function
»| 4 2 8 »| 0.02 | 0.00 | 0.98
Input images Input values Probability scores

10/8/2019 https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/ 34
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EXAMPLE

Input pixels, x Feedforward output, V; Softmax output, S(v,)
cat dog horse cat dog horse
i 5 4 2 0.71 | 0.26 | 0.04
Forward Softmax
propagation function
»| 4 2 8 > 0.02 | 0.00 | 0.98
. 4 4 1 0.49 | 0.49 | 0.02
Input images Input values Probability scores

10/8/2019 https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/ 35



Loss function for softmax: Negative log-likelihood

Range of negative log-likelihood

L(y) = Yj=1 —log(y) s

The negative logarithm of the
probability of the correct decision
classes are summed up 5 -

It is small, if the confidence of a
good decision was high for a
certain class ? 34

Large, when the confidence is low
Partial derivative of a softmax

6 -

layer with negative log-likelihood: 1
ac 0-
% =Y~ 1 0.0 0.2 0.4 0.6 0.8 10
J X

10/8/2019 36



Example

Input pixels, x  Softmax output, S(V;) Loss, L(a)

cat dog horse NLL
" Correct classes are known
0.71 |1 0.26 | 0.04 0.34 b traini
—log(a) at the ecause we are training
correct classes Predictor confidence of horse is high.
0.02 | 0.00 | 0.98 > 0.02 , ,

Predictor confidence of dog is low.

./ 0.49 | 0.49 | 0.02 0.71

The correct class is Total: 1.07 Negative Iog
Probability highlighted in red for correct
scoreslfor When computing the loss, we can then see that higher class:
CREEE aSS€S - onfidence at the correct class leads to lower loss and vice-versa. (want small
(want big numbers)

numbers)

10/8/2019 https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/ 37



Data regularization techniques ¥

. 4

* Modification of the input vectors and internal data and
internal parameters of the net

* Targeting to perform better in generalization
* |ncreases the loss during training phase

e Puts the parameters further away from a minimum
with an expectation of it will find a deeper minimum

* |n many cases these are heuristic methods with mostly
experimental and partial mathematical proof

10/8/2019 38



Input vector normalization

* When the input vector contains high
and small mean values in different

vector positions it is usefull to

normalize them

* Squeezes the number to the same

range

e Speeds up the training process

10/8/2019

normalized

input vector:

0.45
Input . _ ( 15892 )

vector: 0’00143

0,32
mean: X = < 1423,2 )

0,00132

0,11
deviation: o =< 155,2 )

0,00042

- 1,18
Xnormed = <1 06>
0,26

39



Input Normalization

* Different normalization strategies exists for different input types

 Showing it in two dimension, it shapes the input vector

OarPraoAap

One-hot

10/8/2019

OO MrHrOOOHR
O OO OKrOo
HOOKROOO
OO OoOOKr oo

Un-normalized Zero-centered Scaled

5.0 Ry 5.0 2 5.0 5.0

2.54

0.0 4

-2.54

-5.04

Whitened

. Vﬂ

S

T T T T T T T T T T
-50 -25 0.0 25 5.0 -50 -25 0.0 25 5.0

Once you trained you net with a normalized training set,
you have to apply normalization when a previously unseen
vector (a new observation) is appled during inference.

OK, but how do you know the statistics?

40



15000

10000

5000

100 200 300 400 500 60O

6000

4000

100 200 300 400 500 600 0 & 0 10 20 20
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L1 and L2 regularization

N - . 1 |
L1, L2, regularlzqtlon modifies th.e weights Co= — Z ly — aLH2
— Rather than using MSE cost function 2n ~

— An extra term, the MSE of the 1 A
weights is added (biases excluded) C= — E |y — aLH2 + — E |w|

_ e . 1 2n n "
Done on minibatch level x

Can be used with other cost function type as well
Differenciable: back propagation works 1 Lz, A 2
. ' L:_Z”y_a’ I —|——Zw.
Why is it good? P 2n 4 2n
— Network preffers smaller weights 400 30071000

an

. . - Or—O1-
— If a few large weights dominate the decision the network ol 10l o
will lose fine generalization properties 20x20 ol 10 O
— In case of large weigths, the decisions are less distributed, ﬁ : : :
the network is less error tolerant o o o
10/8/2019 :j Z) P
\_/ )




Batch normalization

* Invery deep networks the distribution of the input vectors changes
from layer to layer

The first layer got normalized input
The second layer somewhat shifts and twists on this normalization

And it goes on, and the (originally normalized) data propagating
trough the layers will be lose its normalized properties (called
,covariance shift”)

This will shift the neuron out of its zero centered position, where the
activation function performs well (where the nonlinearity is)

 Solution: normalization on each layers!

* It alsointroduce a noise (loss function increase), which helps to
avoid local minima and avoids overfitting

10/8/2019
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Batch Normalization

* Done on layer level like softmax
* Training:

— Done on minibatch level
* Inferencing:

— Do the normalization with the pre-
calculated parameters of the
entire training set

Batch normalization is
differenciable via chain rule

]

Input: Values of 2 over a mini-batch: B = {z1_,,, };
Parameters to be learned: v, 3

Outpllt: {’Eh = BNT‘IE(.T@)} T \ bIaS
| weights
1 TrL o
HB — — T // mini-batch mean

] TrL
2 , 2
o5 < — D (& — ps)
m =

i

// mini-batch variance

~ Ly — B .
— Back propagation can be applied Ti /o2 + ca— € avoid zero // normalize
for batch normalized layers S
o clayers yi « V& + B = BN, 5(z;) // scale and shift
Rewriting the normalization using | |
probability terms: 1
/-—/"__-'-————_—_"—
(k) — (k) : I ,
gl =% E[x®)] E: the expectation p Faster learning
JVar[x®] Var: the variance 08 '.' e
) - With BN

7 5
10K 20K 30K 40K 50K




* |dea of dropout method:

* Requires more training steps, but each
is simpler, due to reduced number of

Dropout

Use mini-batch training approach

For each minibatch, a random set of
neurons from one or multiple hidden
layer(s) (called droppout layers) is
temporally deactivated

Selection and deactivation probability is p

In testing phase, use all the neurons, but
multiply all the outputs with p, to account
for the missing activation during training

neurons (a) Standard Neural Net (b) After applying dropout.
* No computational penalty in testing

phase Reduces overfitting, because the
* Use it for fully connected layers network is forced to learn the

10/8/2019

functionality in different configurations
using different neural paths.
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Reasoning behind dropout

* Dropout can be considered as averaging of
multiple thinned networks (“ensemble”)

* Dropout avoids training separate models
— Would be very expensive

* Avoids computatinal penalty in the test phase
e But still gets benefits of ensemble methods

10/8/2019 46



Intuitive explanation

Imagine that you have a team of workers and the overall goal is to
learn how to erect a building. When each of the workers is overly
specialized, if one gets sick or makes a mistake, the whole building will
be severely affected. The solution proposed by “dropout” technique is
to pick randomly every week some of the workers and send them to
business trip. The hope is that the team overall still learns how to build
the building and thus would be more resilient to noise or workers

belng on vacation.

10/8/2019 47



Neural Networks

Components and methods of deep
neural networks li

(P-ITEEA-0011)

Akos Zarandy
Lecture 6
October 22, 2019



j |: — BICYCLE

7 INBUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING )y I‘\:mmm . n:d'-';'[-z“n SOFTMAX
HIDDEM LAYERS CLASSIFICATION

What are the building blocks of a hierarchical deep neural network?

10/22/2019. 2



RelLU: Rectified Linear Unit

; ReLU
 Activation function

e Half-wave rectifier B

* Not compressing the gradient .
— learns much faster

* RelU types

R(z) =max(0, z)

4

2

— Softmax

— Leaky RelU ° = g s 0

— ELU, SELU Relu6 f(z) = max(0, z)
RelU

Most used in hidden layers in deep neural networks (as of 2019)!
10/22/2019 3



Probability type loss: Cross Entropy and Softmax

* Mathematically: yi = softmax(v);
— Normalized exponential functions of the units eVi
* Probability distribution of n discrete classes: no oV
— One-of-n classes problems J=1 .
- 0<y <1 v=wx
input layer  hidden layer hidden layer
- i=1yi =1

e Architectural difference:

— Previously learned activation functions were
based on the inputs of one neuron

— Softmax combines a layer of output neurons

10/22/2019




Data regularization techniques if{

* Modification of the input vectors or the internal data
composition of the network
— Input normalization
— Batch normalization
* Modification of the cost function
(involving the weight magnitudes)
— L1 and L2 regularization
(weight penalty)
 Temporal Modification of the net
architecture in training phase

— Dropout
10/22/2019

input layer  hidden layer hidden layer

775
R
N

e\
\}
N
D

aa

Al

\)

NS
©
N
Y
‘ !// -
=
c‘
NN

}\;é



Contents

Reducing the number of interconnections
* Biological motivations

Convolution

Convolution layers in deep networks
Pooling

Regularization methods

INPUT CONVOLUTION + RELU POOLING CONVOLUTION = RELU POOLING

FLATTEM
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— CAR
— TRUCK
= WAM
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No-brainer solution: Increase the number of the hidden layersg

DEEEEEEP

hidden layer hidden layer hidden layer hidden layer hidden layer

input layer hidden layer hidden layer

>
2
%

&

N

XN '¢
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* Problems:
— Not usefull for locally correlated data

— Number of free parameters are exploding

10/22/2019




Locallity

e Spatial locallity:

uncorrelated correlated

Data points measured .
physically close to each other

e.g. image measured by a
sensor array

Measurements, close to each
other are similar (correlated)

Local feature: where local
similarity is broken




Locallity

e Spatial locallity:  Temporal locallity:
— Data points measured — Data point sequence measured
physically close to each other with the same sensor with small
— e.g.image measured by a time difference
sensor array — e.g.voice measured by a
— Measurements, close to each microphone
other are similar (correlated) — Measurement points, close to

Local feature: where local each other are similar (correlated)

similarity is broken

Tt el e L ast Uncorrelated data
B 7.8 e LA, e T . .
AT et fa s el T series (noise)

A M A ,._:'W"""\'g “'ﬁd‘ Correlated data
A “WE o ta” \ series (continiuous signal)

uncorrelated correlated , v | 9



FULLY CONNECTED NEURAL NET

Example:

The low level information on
an image is local

 Makes no sense to involve
distant pixels to the same
function

10/22/2019

1000x1000 image
1M hidden units . _
10'2 parameters /S

LOCALLY CONNECTED NEURAL NET "

Example:
1000x1000 image
1M hidden units
Filter size: 10x10
() 108 parameters

10x10 filters finds local

features (edges)

*  Why to apply different
filters in different location?

 How do | know where to

expect the edges? o




No-brainer solution: Increase the number of the hidden layers -

DEEEEEEP
input layer hidden layer hidden layer hidden layer hidden layer hidden layer hidden layer

. i
hidden layer

W \“"
RN
‘\\

RO YN s
S SN S AL > e

D
X ¥ 2 Qe

YA NN AN AL SR
P77 >ESINN I />SRN VS IN
72 \"g"_7, 77X\
< >N / . 175< >\
<\ g

* Architecturel problem:

— Why would be optimal to use one linear arrangement
using the same data width everywhere?

— ?
10/22/2019 Parallel, loop~ .
— How human visual system does it?



What can we Left visua Right visual :“::
fiel fiel
learn from Human ''°' ~Q e Y

Visual System? -
e Hierarchy
— Eyes, LGN, Visual Cortex

* Each organized to
parallel layers

e Each responsible for
extracting a different
feature

* Fraction of the sensed
data is transferred only
— Image features and

motions
10/22/2019.

Nasal retina

<—— Optical lens

Temporal Eye

retina

Optic nerve

Optic chiasma

Lateral geniculate
nucleus (LGN)

Primary visual cortex

12
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(@)

Layers and features
in the retina
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Flat Bistratified Spider AB Diffuse-1

Retina cell layers ——— e e

<

* Similar cells are forming layers

(f | ) Broad Diffuse Flag AB Diffuse-2
i ter " F
e aeR e e

* A layer extracts the same local o

feature from the entire sensed Diffuse Bistratified Monostratified Recurving Diffuse

image with convolution type . A= T

operations e e 3":-&;:_

— Contrast changes, color differences,
Asymmetrical Bistratified Wavy Bistratified Fountain

motion direction, orientation

— Dendritic tree and synapse weights n {_ - W - \ l \*'—'—-.,f —
s — =11 r
- R ~ — - S B S ’

defines the captured features S -
’ O Utp UtS areo rga ni ZEd In s€ pa rate AB Broad Diffuse-1 AB Broad Diffuse-2 Diffuse Multistratified
channels B -
o =i B e Tf -

7

L S

https://webvision.med.utah.edu/book/pért-iii-retinaI-circuits/roles-of-amacrine-celIs/



Visual cortex

Parallel blocks identifying edges with different
orientation

Both the retinal and the cortical local feature
extractors are based on ,,convolutions” type
operators

Convolutions defined by dendrit and synapse
patterns

///,
/

x\\\"'/,,_ 4
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Convolution

* Convolutionis a
mathematical operation
that

— does the integral of the
product of 2 functions
(signals),

— with one of the signals
flipped and shifted

 Mathetmatically:
U*muﬁglifhm&—ﬂdr

— [ st ngnyar

* Convolution is commutative
10/22/2019




0.5

Visualization in 1D

10/22/2019

| | | | | | | I I I
I Frea under flooo)
; f(z
: ait-t)
- T T T T I ? .................... I:f*g:li:l
] ] ] I ] ] ] I ]
1.5 1 0.4 1 0.4 1 1.4 2 2.4 3
T &t
1.  Flipp g signal
2.  Slide the flipped g over f
3. Integrate the product in continious space
or Multiply and accumulate it in discrete space with each shift
17




Discrete convolution
e For continiuous:

* For dlscrete functions:

(f *g)[n] = Z flm
= Z fln — mlg[m|

18



1D Numerical example
f function:

g function:

i 1‘ _1‘ 2‘ i

flipped g function:

————————————————————

Shifting the flipped g
function over f




| (1x0)=0 | 1,

(1x1)+(-1x0)=1

0@

(1x2)+(-1x1)+(2x0)=1|

0 1@

|(1x3)+(-1x2)+(2x1)=3|

o 1 5@

|(1x4)+(—1x3)+(2x2)=5|

(-1x4)+(2x3)=2 |

(2x4)=8 |

1) 8 1| [2] 3] 4
1D Numerical example @ 1
f function: 2) 0 1] [2] 3] 4
10| 1) 2] 13) 1A 2| ) (1
) 3) o 1 2 3 4
g function:
e —— 2] -1} 1
1 -1 20
- : 4) o 1 2 3| 4
¥ ¥ ¥
flipped g function: 2 1
2| =) /1) | 5) o 1 2 3 4
Shifting the flipped g 6) 0 1 2 f 3
function over f 2) 1
7 0 1 2 3 4
f*g=0 1 1 3 5 2 8 :
2




3)

4)

5)

6)

7)

? 1 2 3 4 | (1x0)=0 | o
1 Validity vs Boundary position
o 1 2 3 4 (1x1)+(-1x0)=1 '
9 4 o‘@
o] 1] [2] 3] [ (1x2)+(-1x1)+(2x0)=1] Def.: Valid positions:
2] -1 1 0 1A@ the flipped g is
0 } % % 4 |(1x3)+(-1x2)+(2x1)=3] ompletely inSidef

2) 4] & o 1 1(3) (fully overlapping
0 1 2/ 3 4  [([Ldr(13)32x2)5) positions)

2) -1) 12 0 1 1 3
0 1 231 4 [ (Ddapa)2 | Def.: Boundary positions:
2) 1 U partially overlapping
@mEaes (2x4)=8 | positions
R E RO
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Size of the result

f: B EEE EE R
* In practice, convolution is
, g: 10 @ 0 -1

used as a filter, where T

— fis the measrurement Result is generated at the position
data, g is the filter function of the Central element of g
descriptor (kernel) 3 2 2 1 2.3 -
: : 10 2 0 -1

— size( f) > size(g) 1 Tl EE

size(f)l=n size(g)=k n=k

([ n+k-1 (if all values — T

: counted) | \
size(f * g) =1 3 2 4 5 5 3 5 -5 0 3 1

10/22/2019 In CNN, we calculate the valid values only! 23



Padding in 1D

In many case, we use a sequence
of convolution filters on the

measured data blocks f 3 2 2 1 23 14
We do not want size changes on g: uEEEE
the data blocks
To avoid size changes, we have to central side
pad the data block with zeros at 8/eme”E ﬂ elements
the boundaries g: e Q e é

— k=size(g) is odd: k=2p+1 ' 1 1

° " . Padded f: o % i E E -3-\1(; 0

— k=size(g) is even: k=2p
Valid f x g after
padding: 4 S4 54 34 -5 -5 o4

e Padding is asymmetric:

p n p-1

10/22/2019



Convolution vs
correlation |

e Cross-
Correlation:

(fxg)(r) =

- rod

e f*:complex
conjugate
* Whenfis
symmetric,
frxg=f~*g
(otherwise not)
10/22/2019

t+'r

Convolution

1
AN

Cross-correlation

T

Autocorrelation

2l AN

N




Convolution vs correlation Il

* Asthe only difference is kernel flipping...
 Why convolution rather that correlation?

— Commutativity, Associativity, Distributivity helps to prove
mathematical statements

— Since the network learns its own weights, it is invariant whether that
flip is there or not (just a convention)

— In many cases, correlation is implemented even when it is called
convolution

10/22/2019 26



2D convolution 1]3] 1 —
o 1)1 1-1)+3(0140(2)-1(1)=-2 \4
f * g —— e
2| 2 |-1
113 |1
112
0-1]1] sk TS 1| 3(-1)+1(0)-1(2)+1(1)=-4
2 2 | -1 Ok -1| 0 1)1 rresult{v:lid}ﬂ\
input erne 2|2 1 2.4
_ _ 6|4
Scanning through the f function 1131 % y
with the flipped g function 0 |-1] 1 0(-1)-1(0)+2(2)+2(1)=6
flip{kernel) 2|2} -1
110 131
2 |1 0 |-1]1
10/22/2019 2 |2_‘i “11)+1{0)+2(2)-1(1)=4 27




2D convolution: Example 2

1xl 1xl] 1xl 0 0
1 0 1 Oxﬂ 1xl 1xU 1|0 4
g=g;g] 0/0)1,1]1
O(0|1(1(0
kernel ol1l1lolo0
Convolved
Image

Feature



Padding in 2D

 Works the same way as in 1D Convolution

without padding
— Boundary layers are added and filled up  (valid results)

with zeros

— SizegiskxKk,
* where: k=2p+1
— Padding: p layers of zeros

Convolution o
with padding "

10/22/2019




Why use padding?

Simplifies the execution
code

No branches

Do not have to deal
with the different
calculation methods at
the boundaries

Same code runs in the
entire array

10/22/2019

unpaddedf: 3 2 2 -1 -2 -3
Code type for boundary1 -1 0 2 0 -1
Code type for boundary 2 10 2 0 -1

Code type for central -1 0 2 0 -1

Padded f: [o] o] 3 2 2 -1 -2 -3 -1 |0]|O

One code for all the array

Though it is more multiply-add operation, but as

f>>g a branch free simpler code is more efficient
30



Parameter number and computational load

 Number of trainable free parameters:
— kin 1D convolution | size(g)=k
— k?in 2D convolution | size(g)=k x k

 Operation number
— k*n for a padded 1D convolution | size(f)=n
— k?*n?=0(n?) for a padded 2D convolution | size(f)=n xn

10/22/2019 31



Convolution theorem

e Convolution in the Fourier domain is a multiplication

and also:

F{f~g}y=7{f}  7{9}
F{f -9y = 7{f} «#{9}

where:

Z{f} is the Fourier transform for f
f can be vector or matrix

- 1S point-wise multiplication

 Therefore:

frg=7 {7} 7g}}

10/22/2019

f-g=7"{ 7} «7{g}}

Convolution can be calculated
with a Fourier and an inverse
Fourier transformation and a
point-wise multiplication. It
reduces the computational
complexity

from O(n?) to O(n - log n).
(using FFT, assuming n=2/)

32




Usage of convolution | : 1D filtering

Smoothing noisy signal
Data lengths: 80 points

kernel: %[1 1111]

0 2 4 Eli 0 2 4 6
1 1
'1 L
. 0.8+ 05 05
Signal
. . .. 06}
differentiation 0 TN — 0 —"
04+t
0.2+ 0.5 05
0
10 20 30 40 50 60 - 0 20 4:[] G0 . 0 20 4IEI &0
Data lengths: 60 points dy 1 d? 1
10/22/2019 & P e keme'-; [1 -1] d—szl kernel:z[-l 2 -1]



2D convolution: image filtering

 Whatis a digital image?

— One-to-one mapping of a
matrix and the pixels

— Black-and-white image
* Binary matrix
e 0: black
e 1: white

— Monochrome

—t R T R R W o W W ] —

[ () [N IR R I Y Y, TN
adlala|la|lalala|a]|lala]—=

- || || [ | | [ =
B O e I © B
o OO0 O O O O O O

(grayscale)

e Matrix of (typically) 8
bit numbers

23B( BL [255(221) O

13617 [170(119( 68

* Values representing
the brightness of the 0 |238|136| 0 |255
pIX.el 253| BE [170|136(238
— Color image
10/22/2019 170 (11822117 (136




Usage of convolution Il : 2D filtering
Sobel operation

Cameraman

1
1 4
08 1 .
0.6 1

First derivative First derivative First derivative
(horizontal gradient) (vertical gradient)  (diagonal gradient)

1 2 1 0 1 2
[ 0 0 O] -1 0 1
-1 -2 1 -2 -1 0

35
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Usage of convolution

Ill : 2D filtering

7x7 Laplacian of
Gaussian kernel

10/22/2019

70.02
0.09
0.2
0.3
0.2
0.09

L0.02

0.2

0.3

0.4
—-0.7
—1.3
—-0.7

0.4

0.3

0.2
0.11
—0.3
—0.7
—0.3
0.11

0.2

0.09
0.13
0.11
0.4
0.11
0.13
0.09

05

-0.5

Second
derivative of
an image

i

R

20 40 60



Usage of convolution IV : 2D filtering

e Seeking for a known patter
e Large convolution kernel is applied
* Kernel size is equivalent with the size of the sought pattern

Filter responeded with a strong
_ white peek in the matching position
e Scale variant
10/22/2019 37

e Sensitive for rotation



10.02
0.09
0.2
0.3
0.2
0.09
.0.02

Decomposition of large kernels |

Convolution is associative

fx(@xh)=(f*g)*h

Example:
0.09 0.2
0.13 0.11
0.11 -0.3
04 -—-0.7
0.11 -0.3
0.13 0.11
0.09 0.2

0.3
0.4
—0.7
—1.3
—0.7
0.4
0.3

0.2
0.11
—0.3
—0.7
—0.3
0.11

0.2

0.09
0.13
0.11
0.4
0.11
0.13
0.09

0.027
0.09
0.2
0.3
0.2
0.09

0.02-

Laplacian of Gaussian kernel (g * h)

Number of operations: 49*N

10/22/2019

0 0.2

02 05 027 (0.2 0.6

= [0.5 —3.1 0.5] *10.3 0.8
0.2 05 021 (02 06
-0 0.2

Laplacian (g)

0.3
0.8
1.2
0.8
0.3

0.2
0.6
0.8
0.6
0.2

0.2
0.3
0.2

Gaussian kernel (h)

O*N,, + 25*N = 34*N

15% reduction of computational demand!!!

38



Decomposition of large kernels |

* Decomposition is not exact in most cases

— In general case, it approximates the kernels with a limited
accuracy only

e Neural nets does not sensitive for inaccurate
decomposition

 Decomposition of larger kernels leads to higher savings!
* Wildly used!

10/22/2019 39




Stride

e Stride is the number of pixel
what we slide the kernel

— Horizontal stride
— Vertical stride
* Down sampling the image
— Size:
n+2p-—k

S
— where:

+ 1

size(f)=n, size( g )=k,
p: padding, s: stride

10/22/2019 Padding:1, stride: 1 Padding:1, stride: 2



What is the role of a convolution?

 The convolution emulates the response of an individual neuron

* Each convolutional neuron processes data only for its receptive field
— Receptiv field: area covered by the g function

* Why not fully connected?

;! e | %'ﬂ“[ LeNel 5 | peseanrcn
— Reduces the number of the g o _':::: answer: 384

parameters (millions to a few dozens) s
— Avoids vanishing gradient problem, A 231805404

because one weight is tuned by a ' =

large number of data pathes

* Since the convolution is space invariant,
detection will be space invariant also

Space invariance means here that the functionality of a 2D function is not changing in space.
This enables the detection of a certain image feature anywhere on the image.




Pooling

X
* Pooling summarizes statistically the extracted features from the same W
location on a feature map

* Mathematically, it is a local function over 1D or 2D data

— input:
* Segment of a vectorin 1D
e rectangular neighborhood in 2D 1

— Function
e Statistical (maximum: max-pool)
* L2 norm

* Weighted average (weights Convolved Pooled
proportional of the distance

of the central element) feature feature
* |n most cases: stride > 1

— This leads to downsampling

* Pooling introduces some shift invariancy
10/22/2019 42
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Max pooling

Max pooling is the

most used pooling in Single depth slice

CNN .| N 2 | 4

Picks the largest max pool with 2x2 filters

value from a 5| 6 | 7| 8 | andstride2 6 | 8
nelgh!oorhood 3 | 2 I g 3|4
Non-linear

Statistical filter 11234

Downsampling "

depends on the stride y

10/22/2019 43



Backpropagation through

max-pooling layer

e  Maximum node acts as a

router
* Thed,, gradientis given to

the input node, which has

contributed (which was the

biggest)

* The remaining positions will
get zero, because they did not

contributed to the error

Rl 2 | 4
max pool with 2x2 filters
oG 7 | 8 and stride 2
3| 2 N Forward
1 | 2 - propagation
10/22/2019

out=A (if A>B)

out=B (if B>A)
h/\ )

out

dA=d,,, if A>B
otherwise 0

dB=d,,, if B>A otherwise 0

0(0(0 (O
6 8 Backpropagation 0 |dout| () |dout
3| 4 dout | () 0|0

O O | O |dout

The maximum positions are stored



Average pooling Tf/

max pooling
e Similar to max poolin
P & 20|30
but uses the average
112| 37

average pooling

10/22/2019 45



after max pooling

-

input feature map after average pooling digit express of the pooling process

(a) Hlustration of max pooling drawback

after max pooling

input feature map after average pooling digit express of the pooling process

10, (b) Illustration of average pooling drawback 46




Architecture of a typical Convolution Neural Network '
{

conv?2 feature maps

convl feature maps 14x14x32
28x28x16 pool2 feature maps  FC1:128
28x28 input pooll feature maps TX7x32 .
— 14x14x16 OuUT 10
]
| |
_ . " s
convolution max-pool convolution max-pool Full connection Eull connection
(k=5, F=16, (k=2, F=1, (k=5, F=2, (k=2, F=1, )
k: kernel size
s=1, p=2) s=2, p=0) s=1, p=2) s=2, p=0) .
F: number of conv. Filters

* Input s: stride
* Parallel feature extractors (convolution layers w. RELU) p: zero padding size

e Data reduction (pooling)
« Combination of the features — aggregating information (fully connected layer)
* Decision (fully connected layer with soft-max activation) 47




CNN example for data size reduction

k: kernel size
F: number of conv. filters
Size = nt+2p -k +1 layer3: s: stride
S 6x6x256 . . .
n=6 layer4: p: zero padding size
layerl: 1x1x256
75x75x64 layer2: n=1 output:
input: n=75 14x14x64 256

/

convolution
(k=9, F=64,
s=1, p=0)

10/22/2019

n=14

__

max-pool
(k=10, F=1,
5=5, p=0)

convolution
(k=9, F=256,
s=1, p=0)

max-pool
(k=6, F=1, s=1, p=0)

48



k: kernel size

N um be I Of free pa ram Ete 'S F: number of conw. filters

input:
83x83

layer3:
6x6x256

layerl:
75x75x64
n=75

layer2:
14x14x64
n=14

n=6

layer4:
1x1x256

s: stride
p: zero padding size

n=1 output:

max-pool
(k=6, F=1, s=1, p=0)

convolution max-pool convolution
(k=9, F=64, (k=10, F=1, (k=9, F=256,
z/ s=1, p=0) s=5, p=0) s=1, p=0) -
number of parameters per convolution
w,=(81*1+1)*64= | layer: w,=(k?xn+1)x n,
=5,248 where:
n;, N, :number of input /output layers
10/22/2019 +1 stands for the bias

W,=(81*64+1)*256=
=1,327,360
Each feature map
receives input from each
one from the previous*tayer




Individual feature maps gives high response to these patterns

10/22/2019 50



The output of Combination of features

multiple feature
maps can be
combined to a
feature map in the
next layer with
convolutions

If 1x1 convolution
kernel is applied,
this enables
weighted sum of
multiple maps

Ultimately, the features” |
are combined by a fully
connected layer in the
classification part of the
network

6x6x6 2x2x12 Ix1x12

10/22/2019 51



Why data size reduction is important?

 Methods of data size reduction
— Pooling
— Convolution with strides
— Convolution without padding

* Information aggregation

* Reduces the chance of overfitting or
vanishing gradient

 The distant local features are brought closer

— One filter can cover multiple features from the
previous layers




Properties of Convolutional Neural Networks I:

* Sparsity

¥

— The interconnection weights are just a fraction of the fully connected
NN (the weight matrix between two layers are sparse)

— A few dozen free parameter describes the operation of a layer
— Receptive field organization similar to natural neural vision systems

Spa rse mterconnectlons

stimulus presented
on TV screen

@@...

—— |ateral recording ° ° °
geniculate electrode
Adapted from Zeki, 1993

A neuron in visual cortex receives
. - Receptive field of
input from the receptive field only, o

e . . . an artifitial neuron
which is a small piece of the visual field 53




Properties of Convolutional Neural Networks II:

e Parameter sharing

— Same parameters everywhere in the layer

— Contribution to the gradient of a weight from many positions
— Reduces the risk of overfitting

— Reduces the risk of dying RELU (dying cell)

* When it happens, an entire feature extractor on a layer is dying

10/22/2019 54



Properties of Convolutional Neural Networks IlI:

* Variable input size
— The input image is either resized or padded

~
o

v

Input images are
resized to the same size

v

10/22/2019 55



Properties of Convolutional Neural Networks IV:

* Equivalent representation
— Equvariance to translation
* The output shifts with an input shift

— In a fully connected neural network, each input is a dedicated channel
for a certain input parameter-therefore the inputs cannot be swapped

* Like bank example, one cannot replace the age input with the salary input

— In CNN, the image can be shifted, because the inputs are not
dedicated and the features are identified anywhere

10/22/2019 56
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Components of a convolutional neural network (CNN)

Feature maps —
//%2" ] ] ] — CAR
T —

.//

_:(42: ' :l |:| — BICYCLE
| One convolutional layer |

AWV
AN\

-

INPUT CONVOLUTION + RELU POCLING CONVOLUTION + RELU POOQLIMNG FLATTEMN FULLY SOFTMAX

_,)l L CONMECTED
Y

N
Y
I v HIDDEN LAYERS CLASSIFICATION

11/5/2019.




Contents

* Regularization and normalization methods
* Local response normalization
* Data augmentation
* Early stopping
* Ensembling

e Example CNN: AlexNet
* Segmentation

11/5/2019. 3



Regularization and optimization methods

* Different methods to increase lan Goodfellow: regularization is
the loss in the learning phase, b A &
but reduce overfitting and any modification we make to the
increase generalization capabilities learning algorithm that is intended
— Local response normalization to reduce the generalization error,
— Batch normalization but not its training error”

— Data augmentation
(Enriching the data set)

— Early stopping
— Ensemble methods
* Network duplication

* Bagging
* Dropout

11/5/2019 4



Local response normalization | I

s

 Implementation of the Lateral inhibition from neurobiology
— If a neuron starts spiking strongly in a layer it inhibits (suppresses) the
of the neighboring cells
— Winner take all (have a strong decision)
— Balances the asymmetric responses of neurons in different areas of
the layer
e Useful when we are dealing with ReLU neurons
— Normalizes the unbounded activation of the ReLU neurons
* Avoids concentrating and delivering large values through layers

— It enhances high spatial frequencies by suppressing the local neighbors
of the strongest neuron

https://towardsdatascience.com/difference-between-local- 5
11/5/2019 response-normalization-and-batch-normalization-272308c034ac



https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac

Local response normalization Il

A single output channel

KU

Normalized output Looking from

(feature map) B
*/ \ this side
n b

/ Feature maps
- o are facing to us

LRN within channel

— Intra map normalization

e 2D normalization within the same
feature map

* Balancing for different areas

* Winner-take-all for neigbouring
neurons in the same feature map
(strongest response to the same
transformation should win)

™ Which particular
pattern responds the
largest for the same
transformation?



Local response normalization Il

Output channels
(feature maps)

»
N g
o
& &
Q&\ & ® o ‘«\Qrmahzed output
< ./
a 1 \ b,
1 [—
' ay ‘
® o

LRN across channels

— Inter-map normalization
* Normalization between the
neighboring feature maps
* Winner-take-all for the largest

response with different
transformation for the same input

location

« Looking fr
this side

KU

Feature maps
are facing to us

Which particular
tranformation
responds the largest
for the same pattern?




Calculation method of local response normalization

ith kernel ® aixy

a(i—nf.’, X, y) b(i’ X J')
® At the position: (x, y)

Input Feature Map At the position: (x, y) At the position: (x, y)

i Summation of the

| E E i Squares of ;
E E : | Output of ReLU |
® | : ) ! ReLU:max(0,x) |
y ' : : Spatial Convolution 1
Local Receptive Field E ' ® 1 Output of Local Response Normalization
® 5 _ ; o 8
C : Qutput of Spatial Conv. f min(N—1,i+n/2)
onnections : : j ; i \2
® s b;:,y - a?r:,y/ k+a Z (agc,y)
. . 6 j=max(0,i—n/2)
Five Adjacent Conv. Kernels Output of ReLU

11/5/2019 8



Local response norm. vs batch norm.

Both work within one convolutional layer

Normalization either
through the feature maps
or within one feature map

Normalization is done for
one input image

11/5/2019

Normalization done for all
the pixels in all the feature
maps within a layer

Normalization is done for
the entire batch




Data augmentation

Idea:

— Increase the generalization capability
of the net by enlarging the training

set
Increase the number of the training L\ s &. -
vector by introducing fake (artificial) N aas E R S| NG >
input-output pairs RORY S ““5‘ y “5“1 \,J!’*

Typical methods
* Translating
 Slight rotation

* Rescaling ?{.\ 3’?» P
 Adding noise — —
.+ Flipping Enlarge your Dataset

* Cutting out parts
* Manipulating with pixel values

11/5/2019 10



Early stopping

@E{?ﬂ

=4 7

* Idea:
— Split data into training and test sets

— At the end of each epoch (or, every
N epochs):
* evaluate the network performance
on the test set

 if the network outperforms the
previous best model: save a copy of
the network parameters at the

current epoch # of Epoc;s
— The best suboptimum is selected finally

— Since the error function is not necessarily monotonic, the optimization goes
on, but the suboptima are saved

Desired
stop

Erro

Test error

Training error

11/5/2019 11



Ensemble methods

* |dea of ensemble methods:
— Generate multiple copies of your net
e Same or slightly modified architectures

— Train them separately
* Using different subsets of the training sets
* Different objective functions
* Different optimization methods

— The different trained models have independent error characteristics
— Averaging the results will lead to smaller error

* Requires more computation and memory both in training and
inferencing (testing) phase

11/5/2019 12



Bagging
Construct k Original dataset

different
datasets
Each with a

First ensemble member
subset of the First resampled dataset

data, but

with- -

duplications @ + @ + @)
Trains with

these Second resampled dataset Second ensemble member

bt @ @ > @ > @)

First learns the upper loop, the second the lower. When both say yes, it is an 8.




Dropout

* |dea of dropout method:
— Use mini-batch training approach

— For each minibatch, a random set
of neurons from one or multiple
hidden layer(s) (called droppout
layers) is temporally deactivated

— Deactivation probability is p

— In testing phase, use all the
neurons, but multiply all the
outputs with p, to account for the

missing activation during training (o} Btandard Noaral Bet I3 ke apipliitia hopiet.
* Requires more training steps, but
each is simpler, due to reduced Reduces overfitting, because the
number of neurons network is forced to learn the
* No computational penalty in functionality in different configurations

testing phase

e Use it for fully connected layers
11/5/2019 14

using different neural paths.




Summary of CNN

* lLayers:
— Convolution, fully connected
e Activation function
— RelU, SoftMax
* Data aggregation
— Stride convolution, pooling
* Regularization
— Test set, data, parameter, and architecture regularization

See, how it works in practice!

11/5/2019 15



224

77

55

|,

/7
w U
i ¥

Stride

96

Max
pooling

of 4

3

11/5/2019

Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton,

27

256

Alexnet
* First fully trained deep convolutional neural network

— Won the ImageNet Large Scale Visual Recognition (ILVSRC) Challenge
in 2012 (ILVSRC2012)

13

13

13

—
-

384

13 3
3

— —

13

256

\)

dense’

Max
pooling

Max

dense

pooling

"Imagenet classification with deep convolutional neural networks",

Advances in neural information processing systems, 2012

4096

4096

16

Y

1000



ImageNet Large Scale Visual Recognition
Challenge |

* ImageNet:
— 15+ million labeled high-resolution images
— 22000 categories

e |LSVRC uses a subset of ImageNet:
— 1000 categories

— ~1000 images per category
— 1.2 million training images | 50000 validation images | 150000 testing images

11/5/2019 17



ImageNet Large Scale
Visual Recognition
Challenge Il

e Each image should be mte contamer shi motor scooter
er: 15% mite container srip motor scooter
classified 7%  black widow lifeboat go-kart
- L % hibi ed
— Probability distribution I — " Mot S o

3% starfish drilling platform golfcart

* Top 1 error rate:

— What percentage was
wrongly classified as
highest probability?
(38,9%)

* Top 5 error rate:

erry

— What percentage was not S e e i
in the first five? (18.9%) EJJJ grille mushroom grape
pickup jelly fungus elderberry
11/5/2019 beach wagon nf gill fungus |ffordshire bullterrier
fire engine || dead-man's-fingers currant




ILVSRC results

Top 5 Classification Error (%)
large error rate reduction

I uetoDeepCNN
I I i = B

| 2010 2011 . 2012 2013 2014 2015 ' Human
T T

Hand-crafted feature- Deep CNN-based designs
11/ based designs 19




Teams used GPU in the challenge

110

Top 5 Error Rate
# of entries using GPUs

0 0

11/5/2019 2010 2011 2012 2013 2014 20



28.2

Layer number vs result

‘
* /
/

16.4 /

/
/
/
19 Iayers ‘ 22 Iayers I
8ry

8lavers 1 8layers I ___l 3.57

ILSVRC'10  ILSVRC'11 |LSVRC'12  |LSVRC'13 ILSVRC'14 ILSVRC'14  |ILSVRC'15
AlexNet VGG GoogleNet ResNet

11/5/2019  http:/licml.cc/2016/tutorials/icml2016 tutorial deep residual networks kaiminghe.pdf 21



http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

input:

Architecture

3 fully "{%‘4

3 channels of the connected
color images { layers \
3\
NEEENS E ’ Ll 3 ENR - y
¥ 5| E """ / 3|
s | 58 = 192 192 128 2048 \/ 2028 \dense
o> NN 13 \ 13
. 5~ A e 3 ’ x._i\i\\:h 3 -7.,
224 5[" : 3 BEN) h I > L
V- i | - |- A‘_NB ; 13- 13 dense | |dense
11 Tl \ 3 N 1000
1 B 192 192 128 Max L |
224\ Shridd Max 58 Max. pooling 2948 2048
Uof 4 pooling pooling Output.
3 28
\ | 1000-way
\ Softmax

11/5/2019

5 convolutional layers

22



Input normalization and Data augmentation |
U

Images were down-sampled and cropped to 256x256 pixels and normalized

- 1%t : image translations and horizontal reflections
* random 224x224 patches + horizontal reflections from the 256x256 images

* Testing: five 224x224 patches + horizontal reflections = averaging the
predictions over the ten patches

1. No augmentatior

£2,

--

b. Flip augmentation

i! <
-
Crop+Flip augmentatior

23

11/5/2019



Data augmentation |l

@;Y?fn

- 2" : change the intensity of RGB channels

* PCA on the set of RGB pixel values throughout the ImageNet training set
+ To each RGB image pixel Ly, = |1, 1€, 12, ] following is added

[p1, P2, D3]l 2y, ap 25, a3 231" |a;~ N(0,0.1)
* Improvement:

* top-1 error rate by 1%
eigenvalues

eigenvectors

11/5/2019 24



224

Activation function

w

s\ E N

EN r‘*n.;;z \

128

5 27

Stride Max
Uof 4 pooling
3 48

11/5/2019

192

192

13

N

5048 dense

dense

"

7|

1000

7
L~

faster learning
rate

RelLU

2048 2048 /
RelLU: 6 times

Softmax

25



Ensembling: duplicating the network |

* Train two architecturally identical copies of the
network on two GPUs

— Half of the neuron layers are on each GPU
e GPUs communicate only in certain layers
— Improvement (as compared with a net with half as

many kernels in each convolutional layer trained on
one GPU):

e Top 1 error rate by 1.7%
* Top 5 error rate by 1.2%

11/5/2019 26



Ensembling: duplicating the network Il

intra-GPU connections

o ""_’,_.——:;::::::::=”"<;;--~,~hhh~‘ii

dense

13 13 dense | [dense

- 192 192 128 Max
Stride Max 128 Max PO
Uof 4 pooling pooling

3 48

\
\

G PU 2 Inter-GPU connections



Local Response Normalization | I

* RelUs do not require input normalization to prevent them from saturating

* However, Local Response Normalization aids generalization

Activity of a neuron by applying _ n B
kernel i at position (x,y) \ m1n(N—1,t+§) k=2
. , .2 n=
I — Al J
. . =0.75
j=max(0,l—%) B
Output channels
. o o4 . »
e Lateral inhibition (intra-map)
sum runs over n “adjacent” kernel s | s _— [E—
¢ Improvement: maps at the same spatial position o Si
— Top error rate by 1.4% ol
e

— Top 5 error rate by 1.2%

11/5/2019

LRN across channels




Local Response Normalization

e

192 192

EIY M\

128

AVE R 13

13

27 128
\ 5\' 7_ VB‘ = \“\\A‘i:‘_x h
27 3\\ 3

13

N
co
N

dense

1IN 3 T
155 ‘ |-
N 192 53

\ o
224\ \l1Stride Max 128 Max
Uof 4 pooling pooling
3 48

Local Response Normalization

11/5/2019

128

Max ||
pooling

2048

dense

2048

2048

29

dense

1000



Overlapping Pooling |

* Pooling layers summarize the outputs of neighboring
neurons in the same kernel map.

— Overlapping pooling k=3
— s<Kk
* Improvement using MaxPooling: s=3 5=2

— Top 1 error rate by 0.4%
— Top 5 error rates by 0.3%

11/5/2019 30



Y

=

192 192 128 2048 20ag \dense

. ;128
NN\ 13 \ | \13
224 s | 3y BENES L1 > >
. 13 S > e ) d g d e
N j) : S U 13 ense | [dense

27 3N

155 | 1000
1 \ - 192 192 128 Max

Nl = . 2048 2048
22N Stride Max 128 Max pooling
Uof 4 pooling pooling

3 48

Overlapping Pooling
11/5/2019 31



Overall Architecture

256 kernels (5x5x48)

384 kernels (3x3x192) 4096 neurons

Y
\ 4

48 "-'."_,i":,‘»"iji’_l \ 192 192

NN\ 13 \ 13
224 Jﬁ B 3| EENEA 31

' - 13 3. dense| |dense
NI ' P 27 3 Q 3] P s

: = 1000
:|_:|1 ) 192 192 128 Max ||
\

22N Stride Max

Uof 4 pooling pooling
3 48

| { I I

96 kernels (11x11x3) 384 kernels (3x3x256) 256 kernels (3x3x192) 4096 neurons

58 2048 048 \dense

N




RS

11 _
220\||

H1Stride
“of 4

- 55

11/5/2019

) Sl
224 5% B
'\\.‘\ » B

Max
pooling

128

Dropout layers

3\ .
3 EN R . >
- ; -
192 192 128 2048 Joas \dense
13 _ 13
Y
ENER 3 . ‘
3\ 3 ' 13 dense| [dense
1000
192 192 128 Max | ] ||
Max pooling 2048 2048
pooling
Dropout

33



Training |

e Stochastic Gradient Descent (with momentum)
— ADAM method was introduced in 2014 only (2 years later)

* Minimizing the negative log-likelihood (cross-entropy) loss function
 With L2 regularization (weight penalty):

N 1000

L(w) = Z Z i log f.(x) + ellwl]2
i=1 c=

T

predicted probability of class ¢ for image x

indicator that example i has label ¢
11/5/2019 34



Training |l

SGD + Momentum with a batch size of 128

Learning rate initialized at 0.01
— divided by 10 if validation error rate stopped improving

Update rule for weight w:

weight decay learning rate

-~ | far

Vig1 =09 xv; —0.0005 x € xw; — € x| =—

/ ow _V{D,;

momentum Wi"'l T Wi + vi"'l

Gradient of Loss

Training effort:
— ~ 90 epochs = five to six days on two NVIDIA GTX 580 3GB GPUs

11/5/2019 35



Look into the parameters!

* https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

 3layer CNN

e Cifar 10 database

* 32x32 sized color images
* 10 classes

6000 images per class

11/5/2019
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Image understanding
beyond classification

ImageNet challenge:

— One dominant object per image

Real life problems:

— Multiple objects
e Same kind of objects
* Different kinds of objects
* Overlapping objects

container ship

Multiple decisions
from each image!

— Where are the objects?

Locality information!

e Square them!

* Find the boundary - Segmentation

11/5/2019

DOG, DOG, CAT ¥




Object recognition

* One object per image
— Task:
e Classify image
* Classes are known (one-of-n decision)

 Multiple object per image
— Task:

* Find and classify the objects
* Find the bounding boxes

11/5/2019



Object detection

 One or Multiple object
per image
— Task:

* Find the objects

 |dentify them with bounding
boxes

Area or pixel level
one-of-two decision!

11/5/2019 39



Segmentation
Semantic Segmentation

— Label each pixel in the image with a
category label

— Don’t differentiate Instances, only care

about pixels Pixel level one-of-n
classification!

Semantic Instance
Segmentation

— Differentiate
instances

Input Image Semantic Segmentation | Semantic Instance
11/5/2019 Segmentation



Semantic Segmentation ldea I: Sliding Window

Classify center
Extractpatch  ivel with CNN

.
. N A == | :L L
ull Image N\ E NE 8/ B\
A/ e Y = . T = \/ b\ /
\ Nz 3, \ A A
oS \e ) 3 R WAV VA
d : e — A / /
o s e 2 ¥ o B i {
Py % 45 . \ 2

5 —;,» ‘_
NS ﬁ/ﬁ
\\
¥ e — q(-————\ (——\ - /.‘_.
(]‘ ! G’ZW 1, AN

M= -\& 3t !\ _

andey Max A S T -

o

Problem: Very inefficient doing
it pixel-wise! No reuse of shared

features between overlapping
Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
PatCheS. Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Semantic Segmentation Idea II: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv Conv argmax
—_ —_— —_— —_—

Input: N\

J SN
3xHxW Y Scores: Predictions:
: CxHxW HxW
Problem: convolutions at Convolutions:
original image resolution DxHxW

will be very expensive ...

42



Semantic Segmentation Idea llI: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 277?
H/8)<VV/8 fggggggiiizgéggffa
H/4 x W/4 ~ H/16 xW/16 H/32 x W/32
Predictions:
t upsamplmg H x W
Conv, pool,

nonlinearity

43



Upsampling I: “Unpooling”

Nearest Neighbor 11T 51> “Bed of Nails” 11 olalo
112 111|122 T2 o/o0ofjo|o0
3 4 3/3|4)4 34 3,040
3 1 3|4 4 O 0100
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

11/5/2019 44



Upsampling |I: “Unpooling”

Max Unpooling
Use positions from

Max Pooling
Remember which element was max!

2| 6 3 pooling layer 0 ol 2 o0
5121 5| 6 12 0/ 1 00
. eme — 2 2
212 1 7|8 Rest of the network 0 0100
314 8 3,00 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and

upsampling layers
11/5/2019 45




=P

Upsampling Il: “transpose convolution” *if/

1D example Output
InPUt Fl Iter Output contains
dX copies of the filter
// weighted by the
X input, summing at
a / ay where at overlaps in
the output
) stride: 2 [laz HIbX
b Need to crop one
pixel from output to
Z / by make output exactly

2x input
bz

11/5/2019 46



2D transposed convolution

1. Kernelis weighted

with the input Stride 2
pixel value // \
2. Placed to the
stride positions /
3. Summed up X / X

where overlaps




3. Summed up X / X

2D transposed convolution

1. Kernelis weighted

with the input Stride 2

Placed to the
stride positions /

where overlaps




2D transposed convolution

1. Kernel is weighted
with the input Stride 2
pixel value

2. Placed to the

stride positions 1 1 1
3. Summed up 1 1 1 X
where overlaps
1 1 1
X X
|




2D transposed convolution

1. Kernelis weighted
with the input Stride 2
pixel value

2. Placed to the

stride positions 1 1 1
3. Summed up 1 1 ! X X X
where overlaps
1 1 1
X X X X
1




2D transposed convolution

1. Kernel is weighted
with the input Stride 2
pixel value

2. Placed to the
stride positions

3. Summed up X X
where overlaps




2D transposed convolution

1. Kernelis weighted
with the input Stride 2
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps




2D transposed convolution

1. Kernel is weighted
with the input Stride 2
pixel value

2. Placed to the
stride positions

3. Summed up X X
where overlaps

3 |3 |3
3 3 |3 X X X
3 |3 |3




2D transposed convolution

1. Kernelis weighted
with the input Stride 2:
pixel value

2. Placed to the
stride positions

3. Summed up X X
where overlaps

3 |3 |3
3 3 |3 X X X
3 |3 |3




2D transposed convolution

1. Kernel is weighted
with the input
pixel value

Stride 2:

2. Placed to the
stride positions

3. Summed up
where overlaps




2D transposed convolution

1. Kernel is weighted
with the input
pixel value

Stride 2:

2. Placed to the

stride positions 1 1 @ 2 2
(
3. Summed up 1 1 ‘1\9 2 2
here overlaps =~ - — _
where S € (1 </1 2\> AR
3 3/ 3 4/ \4 4
3 3 @ 4 4
3 3 B 3 4 4




2D transposed convolution

1. Kernel is weighted
with the input Stride 2
pixel value

2. Placed to the
stride positions

3. Summed up
where overlaps




2D transposed convolution

1. Kernel is weighted

with the input
pixel value

2. Placed to the

stride positions

3. Summed up

where overlaps

Note: the
summing
positions are not
homogenious

Stride 2:

1 11 [0 2) 2@ 5 [55] 5|5 :¢
1 1 ) 2G 205 G5 55 ¢
N [T (q‘z\> /E‘z\ (s"s\) GE
3 R84\ 4 > 54 \ A5 ¢
33 (s 65 s[5
5\ (5\ /5 5 55 5 (’5 5) 5Y5 ¢
(|3 3 (3 4 5 2)5) \5 5 \5l5 -
5|5 @ 575 5[5 (55 5[5 ¢



Transpose convolution artefact:
Avoiding checkerboard effect

 Non-homgenious transpose =js N
convolution causes ; N ‘
checkerboard patterns

* Balanced stripe and kernel size
can make it homogenious

D stride = 2

‘ ‘ ‘ ‘ ‘ |]size=3

B B B B = . 1
stride =2

11/5/2019 https://distill.pub/2016/deconv-checkerboard/




Fully Convolutional Network

D P . . _ Upsampling:
ownsampling: Design network as a bunch of convolutional layers, with U I trided
Pooling, strided downsampling and upsampling inside the network! NPOOGIINg or Stri e.
: _ transpose convolution
convolution convolution
H/8 x W/8 //
H/4 x W/4 - H/16 x W/16 H/32 x W/32
Input: t Predictions:
3xHxW upsamplmg Hx W
Conv, pool,
nonlinearity

* As many output layers as many classes

e Pixel-wise Softmax output function is used with negative log-likelihood
loss (multi-class cross entropy) function 60



Increasing spatial resolution in segmentation |

Conv1

Conv2

1 Conv3 Conv4 Conv5

it - =] fc7 Upsample
Score 2x
—> > - Upsample
Fuse 2x

L Score Upsample

L skip 1 Fuse 8x
Score

.D skip 2 -

Higher resolution layers directly forwarded to transfer finer spatial information
Called “Skipping”. It skips using the coarser (more downsampled) layers

Can be considered of an ensembling of three networks

11/5/2019 61



Increasing spatial resolution in segmentation |l

ﬂ%’f
input image ground truth stride 32 stride 16 stride 8

no skips 1 skip 2 skips
Inreasing spatial resolution as higher resolution layers are feed forward

Information content is less squeezed to smaller layer

11/5/2019 62



Deconvnet: Extreme segmentation |

e Fully symmetrical convolutional network
— All convolution and pooling layers are reversed
 Two stage training (first side trained for classification first)
* Takes 6 days to train on titan GPU
* OQOutput probability map same size as input

{ 224x224

Unpooling
--L._L_____‘__Enpouling
Unpooling
T 1
~Unpooling
r-"‘. ““




Deconvnet: Extreme segmentation Il g

Input image Ground-truth FCN DeconvNet

T

g




Neural Networks

Semantic Segmentation

(P-ITEEA-0011)

Akos Zarandy
Lecture 8
November 12, 2019



Announcement

* Midterm project were taken by many people ©

 Midterm project counts for those

— Paper based test result is 5

* Can get offered grade 4 or 5 based on the quality of the midterm project
solution

— Paper based test result is 5

e (Can get offered grade 3 only if the quality of the midterm project solution is
satisfactory

* One can go for better grade in exam period

* |f somebody changes his/her mind about midterm project after this
announcement, he or she has to write a letter to Soma Kontar

today!

Short quiz 60% required!
11/12/2019 2



Recap

e |ast Lecture we discussed =\

— How to do image classification
* Alexnet

. . o il fu
. One decision per image (clc1551flcat/on) b

dead-man's-fingers

* Multiple (few) decision per image
— Regressions for localization
— Classification for detection

— Pixel level Segmentation

* Very high number of decisions (classification)
per image

11/12/2019



Contents

e Detection and Localization
* PASCAL Database and Competion
* R-CNN
e Region proposal, Classification
* Support Vector Machine (SVN), Bounding box refinement

e Fast R-CNN
e Faster R-CNN

* Semantic Image Segmentation
* U-Net
* DeConvNet
* SegNet

* Resolution controlling
e Atrous convolutions, sub-pixel image combination

11/12/2019. 4



The PASCAL Object Recognition Database and
Challange

 Annotated image database
— Detection (squared objects)
— Segmentation (segmented
objects)
* Challenge

— The PASCAL Visual Object
Classes Challenge (PASCAL VOC)

11/12/2019




Object detection/localization and classification

Chicken and egg problem

— You need to know that it is a bicycle
before able to say that both a wheel
part and a pipe segment belongs to the
same object

— You need to know that the red box
contains an object before you can
recognize it. (Cannot recognize a
bicycle if you try it from separated
parts)

Our brain does it parallel
How neural nets can solve it?
— Detection by regression?
— Detection by classification?

i

11/12/2019 6



Detection as Regression?
(finding bounding box coordinates)

DOG, (X, Yy, w, h)
CAT, (X, Yy, w, h)
CAT, (X, Yy, w, h)
DUCK (X, y, w, h)

= 16 numbers



Detection as Regression?
(finding bounding box coordinates)

DOG, (X, Yy, w, h)
CAT, (X, Yy, w, h)

= 8 numbers




Detection as Regression?

(finding bounding box coordinates)
s

CAT, (X, y, w, h)
CAT, (X, y, w, h)

CAT (X, y, w, h)

= many numbers

Need variable sized outputs



Detection as Classification
(classify the content of each bounding boxes)

CAT? NO

DOG? NO




Detection as Classification
(classify the content of each bounding boxes)

CAT? YES!

DOG? NO




Detection as Classification
(classify the content of each bounding boxes)

CAT? NO

DOG? NO

Problem: Need to too test many positions and scales, and use a
computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions




Region Proposals

e Find “blobby” image regions that are likely to contain objects
e “Class-agnostic” object detector
e Look for “blob-like” regions




oOueEwWwNPRE

11/12/2019.

R-CNN in a Glance

R-CNN: Regions with CNN features

aeroplane’? no.

tvmomtor" no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
Input image

Region proposals

Compute CNN features with warped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging > detections
Bounding box regression

14
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11/12/2019.

The R-CNN algorithm

R-CNN: Regions with CNN features

aeroplane’? no.

tvmomtor" no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
Input image

Region proposals

Compute CNN features with warped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging > detections
Bounding box regression

15



R-CNN: Region Proposal

* Requirements:
— Propose a large number ( up to 2000) of regions (boxes) with different sizes

— Still much better than exhausting search with multi-scale sliding window
(brute force)

— Boxes should contain all the candidate objects with high probability
* R-CNN works with various Region proposal methods:
— Objectness
— Constrained Parametric Min-Cuts for Automatic Object Segmentation
— Category Independent Object Proposals
— Randomized Prim
— Selective Search
* Selective Search is the fastest and provides best regions

11/12/2019 16


http://groups.inf.ed.ac.uk/calvin/objectness/
http://www.maths.lth.se/matematiklth/personal/sminchis/code/cpmc/index.html
http://vision.cs.uiuc.edu/proposals/
http://www.vision.ee.ethz.ch/~smanenfr/rp/index.html
http://koen.me/research/selectivesearch/

R-CNN: Selective Search |

* Graph based segmentation (Felzenszwalb and Huttenlocher
method)

- cannot be used in this form, because one object is covered with multiple
segments, moreover regions for occluded objects will not be covered

* |dea: oversegment it and apply scaled similarity based merging

Input image Segmented image Oversegmented image

11/12/2019 https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ 17



https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

R-CNN: Selective Search Il

Step-by-step merging regions at multiple scales based on similarities

regions [
to boxes ™

Original fine scale Step one merging Step n merging

11/12/2019 https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ 18



https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Similarity measures |

0.45

0.

=
=]

035

0.

w
=

025
0201
015
010
0.05 |

0.00

Color Similarity
* Generate color histogram of each

segment (descriptor)
— 25 bins/ color channels
— Descriptor vector (c{‘)size: 3x25=75

e Calculate histogram similarity for
each region pair 75

Histogram
similarity

ckis the

histogram value
for the ki bin in
color descriptor

Intersection: 0.66

3 4 5 & 7

scolor(ri,rj) = Z min(c{‘, ;

Texture Similarity

Texture features: Gaussian
derivatives at 8 orientations in
each pixel

— 10 bins/color channels

— Descriptor vector (tf)size:
3x10x8=240

Each region will have a texture
histogram

Calculate histogram similarity for
each region pair 240
Stexture (ri,rj) = Z min(t{‘, t]k
k=1
t¥ is the histogram value for the
kth bin in texture descriptor

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ 19



https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Similarity measures |

Size Similarity Shape Similarity
e Hel in th I ized * Measures how well
e.ps merging the smaller size two regions are fit
objects — How close they
. . are
Since we do bottom u-p merging, — How large is the
the small segments will be overlap
merged first, because their size
similarity score is higher srn(r,m) =
_ _ B size(BB;;) — size(r;) — size(r;)
size(r;) + size (rj) =1- size(image)

Ssize\T;,T7) = 1 — —
size (70.17) size(image)
_ _ o _ size(BB;;) is the size of the bounding box Of
size(image) is the size of the entire image in

r; and 7j

pixels

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ 20



https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Similarity measures ll|

Final Similarity List or proposed region
e Linear combination 1. Initial oversegmentation
of the four 2. Calculation the similarities
similarities 3. Merge the similar regions
4. The formed regions are added to the region list
Sfinal (ri' TJ) = (this ensures that there will be smaller and larger
a1 Scolor (Ti, 1”]) regions in the list as well)
+0a2Stexture (ri, 7}-) 5. Goto?2

+ A3Sshap (ri» T])
+ a4Sfiu(7‘i» 7}')

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ 21



https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Proposed regions

Few hundreds or few
thousand boxes

Includes all the objects
with high probability
Number of the boxes
are much smaller than
with brute force | | |
method : ; —.

C and python functions g
exist

3 - T
2 .

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ 22
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oOueEwWwNPRE

11/12/2019.

The R-CNN algorithm

R-CNN: Regions with CNN features

aeroplane’? no.

tvmomtor" no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
Input image

Region proposals

Compute CNN features with warped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging > detections
Bounding box regression

23



Computing the features of the regions

Cut the regions one
after the other

Resize (warp) the
regions to the input
size of the ConvNet

Calculate the
features of the
individual regions

ConvNet

4

ConvNet

a{ﬁffn

Forward each region
ConvNet through ConvNet

AP Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)




Convolution network
* Pre-trained AlexNet, later VGGNet

* The decision maker SoftMax layer was cut

— Qutputs:
e 4096 long feature vectors from each region

\ e Last 13x13x256 feature map cube (pool5)

55

27
13 13 13

I

= =
=
i
I 77

77
),

\

-+
5 _ - R i 3 _.\.:-7' T
- T+ =t |4a - -~ 13 3 — 2] 13 dense denseg
224 5 < 3 i i 3 -~

55 384 384 256 00

256 . 4096 4096
Max Max pooling
- Stride\| o5 | Po°ling pooling

4\ of 4
3
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The R-CNN algorithm

R-CNN: Regions with CNN features

aeroplane’? no.

tvmomtor" no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
Input image

Region proposals

Compute CNN features with warped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging > detections
Bounding box regression
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Linear Support Vector Machine

Idea: Separate the data
point in the data space oy
with a boundary surface ‘; , i
(hyperplane) with e i |: B o:
maximum margin 0 0 bl o B '-

Vectors pointing to the 0,0 ¥ | 1 g
data points touching the 0 o if|: iy
margins are the support 0 °° 0/ :

vectors

\
\
\
\
%
.

/ \
|

The parameters of the / |
optimal hyperplane is Small Margin Large Margin

calculated with
regression Support Vectors

Similar to single layer perceptron, but optimized

for maximum margin

https://towardsdatascience.com/support-vector-machine-
11/12/2019 introduction-to-machine-learning-algorithms-934a444fcad7



https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

Why SVM?

* Why not use simple the classification output of the AlexNet?
* During the training, the AlexNet/VGGNet is not trained
 Only SVM is trained

e The number of category is much smaller

— Designed for 20-200 categories rather than 1000

11/12/2019 28



Decision with SVM

Feature vector of
the category to
be detected

e.g.: Cat

* As many separate
SVM as many
category we have

Feature vector of
all the other
categories plus
the background
e.g.: No Cat

The result: Each region is categorized
in every image classes.

11/12/2019 29
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The R-CNN algorithm

R-CNN: Regions with CNN features

aeroplane’? no.

tvmomtor" no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
Input image

Region proposals

Compute CNN features with warped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging > detections
Bounding box regression
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Ranking, selecting, merging

* Greedy non-maximum suppression

— Regions with low classification .
probabilities are rejected Tl = b R

Combined Region

— Regions with high Intersection over
Union values (within the same

category) are merged

 Result: localized and classified

object Sample loU scores
0.905 0.532 0.391 0.143 0.0

| [

11/12/2019 SE-
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The R-CNN algorithm

R-CNN: Regions with CNN features

aeroplane’? no.

tvmomtor" no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
Input image

Region proposals

Compute CNN features with warped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging > detections
Bounding box regression

32



Bounding Box Regression

Linear regression model
One per object category i»
Input: last feature map cube of the conv net (pool5)

Output: size and position modification to the bounding box:
— dx, dy, dw, dh

Training image regions

Input:
Cached feature map
cube (pool5)

R i :
(d?(g:je; So'ﬁv” (tja;]r)gets (0,0,0,0) (:25,0,0,0) (0, 0, -0.125, 0)

(normalized) Proposal is good Proposal too Propqsal too
far to left wide 33



R-CNN Training TT?

Step 1: Take a pretrained Convolutional Neural Network (e.g. AlexNet)

Convolution
and Pooling Fully-connected
layers
— H —> || —> Softmaxloss
Last conv Class scores
feature map
Image
J layer 1000 classes
(pool5)

Reusing a pre-trained network is useful, if there is
not enough data to train or if it provides good
enough result. Fine tuning typically needed!

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li



R-CNN Training

Step 2: Extract features

Save the feature cube to disk! Save the feature vector to disk!
* Go through the data base . .
This feature cube describes the This feature vector describes the
. - relative position information, and content, and will be used for
Use region proposal will be used for bounding box classification A

regression. (Sometimes this is

* Calculate the features for used for classification as well.)

each proposed region

- -

Convolution Last conv
Region Proposals  Crop +Warp  and Pooling featuremap  Fully-connected
layer layers
(pool5)

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li



R-CNN Training

Step 3: Identify which proposed region belongs to which object class

Based on the annotated image

Proposed region overlaps with the

annotated image segment? (loU) dog

loU scores
0.905 0.532 0.0

cat

Background

(belongs none of
the objects)




R-CNN Training

Step 4: Train one SVM per class to classify region features

Training image regions

Cached region
features vectors

N y —
'

Positive samples for cat SVM Negative samples for cat SVM

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li



R-CNN Training

Step 4: Train one SVM per class to classify region features

Training image regions

Cached region
features vectors

Negative samples for dog SVM Positive samples for dog SVM

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li



R-CNN Training

Step 5 (bbox regression): For each class, train a linear regression model to map
from cached features cubes to offsets/size of the boxes to fix “slightly wrong”

position proposals

Training image regions

Cached region
feature cube

(pool5)
Regression targets (0,0, 0,0) (.25,0,0,0) (0,0,-0.125,0)
(dx, dy, dw, dh) Proposal is good Proposal too Proposal too
Normalized coordinates far to left wide

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li



R-CNN Results Big improvement ( ~25%)

compared to pre-CNN methods

80 I VVOC 2007

% B VOC 2010
<
& 60
O
B2
3
Al
T 40
()]
>
5
>
< 20
&
3
=

0

DPM (2011)  Regionlets R-CNN R-CNN + R-CNN
(2013) (2014, bbox reg (VGG-16)
AlexNet) (AlexNet)

Wang et al, “Regionlets for Generic Object Detection”, ICCV 2013

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li



R_CN N Resu |ts Bounding box regression

Mean Average Precision (mAP)

helps a bit

80 I VVOC 2007
B VOC 2010

60

40

20

0
DPM (2011) Regionlets R-CNN R-CNN + R-CNN
(2013) (2014, bbox reg (VGG-16)
AlexNet) (AlexNet)

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li




R_C N N Res u |ts Features from a deeper

network help a lot

Mean Average Precision (mAP)

80 I VVOC 2007

Il vOC 2010

60

40

20

0
DPM (2011) Regionlets R-CNN R-CNN + R-CNN
(2013) (2014, bbox reg (VGG-16)
AlexNet) (AlexNet)

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li




R-CNN Problems

)
Slow at test-time: need to run full forward pass of CNN for each region

proposal
 Recalculate the features again-and-again in the overlapping regions

SVMs and bbox regressors are post-hoc:
« CNN features not updated in response to SVMs and regressors

Complex multistage training pipeline
« Calculate the features for all the regions for all the training image first
 Then train for SVM and bbox regressor separately

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Feij Li



Fast R-CNN (test time) R-CNN Problem #1

Slow at test-time due

to independent F”\V
forward passes of

the CNN

FCs Fully-connected layers

Regions of Solution:
Interest (Rols)

from a proposal
method Forward whole image through ConvNet

Share computation
of convolutional
layers between
proposals for an
image

Girschick, “Fast R-CNN”, ICCV 2015

Slide credit: Ross Girschick

https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46


https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46

R-CNN Problem #2:
ask o Post-hoc training: CNN not ﬁ%{?ﬂ
A o updated in response to final

[
(J
- classifiers and regressors

R-CNN Problem #3:
Complex training pipeline

Solution:
Just train the whole system

ConvNet
end-to-end all at once!

= Slide credit: Ross Girschick



Fast R-CNN: Region of Interest Pooling

Convolution
and Pooling
Hi-res input image: Hi-res conv features:
3 x 800 X 600 Cx H x W
with region with region proposal

proposal

Fully-connected
layers

|

Problem: Fully-connected
layers expect low-res conv
features: Cx h xw

\)



Fast R-CNN: Region of Interest Pooling

Project region proposal
onto conv feature map

\)

Convolution Fully-connected
and Pooling layers
L
3 Refs
Hi-res input image: Hi-res conv features: Problem: Fully-connected
3 X.SOO X.600 CxHxW layers expect low-res conv
with region with region proposal features: C x h xw

proposal



Fast R-CNN: Region of Interest Pooling

Divide projected

Convolution
PR i Fully-connected
and Pooling region into h x w grid ylayers
Hi-res input image: Hi-res conv features: Problem: Fully-connected
3 X.SOO X.600 CxHxW layers expect low-res conv
with region with region proposal features: C x h xw

proposal




Fast R-CNN: Region of Interest Pooling

Max-pool within

' each grid cell
Convolution 9 X Fully-connected

and Pooling

layers
Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 x 800 x 600 CxHxW Cxhxw low-res conv features:
with region with region proposal for region proposal Cxhxw

proposal



Fast R-CNN: Region of Interest Pooling

N

Can back propagate

i similar to max poolin
Cong?Iutll_on pooiing Fully-connected
and Pooling layers

Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 x 800 x 600 CxHxW Cxhxw low-res conv features:
with region with region proposal for region proposal Cxhxw
proposal

Instead of SVM, a SoftMax layer
makes the decision at Fast R-CNN.



Fast R-CNN Results

R-CNN Fast R-CNN
Training Time: 84 hours 9.5 hours
Faster (Speedup) 1x 8.8x
Test time per image 47 seconds 0.32 seconds
FASTER: (Speedup) 1x 146x
Better | MAP (VOC 2007) 66.0 66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset



Fast R-CNN Results

R-CNN Fast R-CNN
Training Time: 84 hours 9.5 hours
Faster: (Speedup) 1x 8.8X
Test time per image 47 seconds 0.32 seconds
FASTER! (Speedup) 1x 146x
Better | MAP (VOC 2007) 66.0 66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset



Fast R-CNN Problem:

R-CNN

Test time per image without | 47 seconds
Region Proposals
(Speedup) 1x

Test time per image with
Region Proposals 50 seconds

(Speedup) 1x

Fast R-CNN

0.32 seconds

146x

2 seconds

25X




Fast R-CNN Problem Solution:

Test-time speeds don’t include region proposals
Just make the CNN do region proposals too!

Test time per image without | 47 seconds

Region Proposals
(Speedup)

Test time per image with
Region Proposals

(Speedup)

R-CNN

1x

50 seconds

1x

Fast R-CNN

0.32 seconds

146x

2 seconds

25X



Faster R-CNN:

P classifier

propoy /
[7

Region Proposal Network g4

feature map

I——:

@;\ffﬂ

Insert a Region Proposal
Network (RPN) after the last
convolutional layer

— Reuse the CNN computation

RPN trained to produce region
proposals directly; no need for
external region proposals!

After RPN, use Rol Pooling and
an upstream classifier and bbox
regressor just like Fast R-CNN

https://towardsdatascience.com/faster-

rcnn-object-detection-f865e5ed7fc4
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Faster-RCNN

Region Proposal Networks:

k anchors boxes

2k scores 4k coordinates - [ ]
bi bi bounding box
object or notobject |,
| 1x1 convlayer | 1x1 conv layer |.- PY
cls layer ‘ ’ reg layer
|l nxnconvlayer | .-~ ..~ )

feature map

Objectiistacar 1 Refine BB position

Classificationl Bounding-box

Object or not object
Classification

loss

RPN

1

loss E_\ilf ﬁ regression loss
|

BB proposal
Bounding-box
Rol pooling

regression loss

Region Proposal Network "

Shared conv layers =

feature map Last conv layer

| &

pre-train illlage-net

Anchors:
three rectangle
in three scales.



Faster R-CNN: Region Proposal Network W

Slide a small window on the feature map classify

) . obj./not-obj. box locations
(very small computational effort per position) .
SCOrecs coordinates
Build a small network for: 1 x 1 conv \ f 1 x 1 conv
* classifying object or not-object, (Binary decision)
*regressing bbox locations 256-d
1x1conv

Position of the sliding window provides

localization information with reference to the
image
_ _ _ _ g window

Box regression provides finer localization
information with reference to this sliding convolutional feature. map
window

Slide credit: Kaiming He



Faster R-CNN: Region Proposal Network

Use N anchor boxes at each
location

Anchors are translation
invariant: use the same ones at
every location

Regression gives offsets from
anchor boxes

Classification gives the probability
that each (regressed) anchor
shows an object

n SCOres

4n coordinates

\

/

256-d

t

==

n anchors




Faster R-CNN: Training

‘ Bounding-box

Classification

loss % ﬂ regression loss
Classification | | Bounding-box ‘ )
loss regression loss Rol pooling
One network, four losses XN 1 I

- RPN classification (anchor good / bad) F’p/ o //
- RPN regression (anchor -> proposal) Region Proposal Network

- Fast R-CNN classification (over classes) g
- Fast R-CNN regression (proposal -> box) [ — }

feature map

Slide credit: Ross Girschick



Faster R-CNN: Results

R-CNN Fast R-CNN Faster R-CNN
Test time per 50 seconds 2 seconds 0.2 seconds
image
(with proposals)
(Speedup) 1X 25x 250x

mAP (VOC 2007)  66.0 66.9 66.9



Segmentation “»r.f“%mwmgmm;;&“ "
"

l/« b

v

1!

-

* Pixel-wise classification

— Scene understanding

e Autonomous driving

— Medical imaging

— Precision agriculture

61



Segmentation Architecture in General

e Same resolution is needed at the end

Encoder ‘Network DecoderlNetwork

b ' (1o i | 2.

2D Image Input 2D Label Output

I Convolution & BN RelLU Pooling @ Upsampling @ Softmax
| Layer Layer Layer B Layer Layer Layer

Contraction side Expansion side

11/12/2019 62



Segmentation Architecture in General

Encoder Network: extract image features using deep convolutional {’Wﬁ
network o
— Each layer: bank of trainable convolutional filters, followed by
— RelUs and max-pooling to downsample image features
Decoder Network: upsamples feature map back to image resolution with
final output having same number of channels as there are pixel classes
— Deconvolution
— Network mirrors encoder network

Pixel-wise softmax over final feature map and cross-entropy loss function
for training usmg some kind of SGD.

Encoder Network Decoder Network

' (f -

2D Image Input 2D Label Output

volutiol BN IR elU lP oling IUpsamphn So ftma

11/12/2019 LV pad ol o 63
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* Designed for biomedical
image processing: cell
segmentation

* Data augmentation via
applying elastic

correspondingly deformed d efo rma t I on S'

ANNAEI0S — Natural since deformation
is a common variation of
tissue

— Smaller dataset is enough

64



input
image »
tile

¥

5
570 x 570
568 x 568

11/12/2019

25

o
=]

o
o2

L 3
6 128
:“ Il g|
Q ol o
o — {

512 256 t
A EI
p- -

U-Net

390 x 390 ’

28 64 64 2

output
segmentation
map

388
388 x 388 '

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Concatenate features
from encoder network

— instead of reusing
pooling indices

Relatively shallow
network with low
computational demand

— 3x3 convolution kernel
size only

— 2x2 max pooling

No fully connected
layer in the middle

65



input
image
tile

572 x 572
570 x 570

1 64 64

U N ET 128 64 64 2
- _ ol lo OUtPUL
L segmentation
. . al 2 4 & map

. Scaled version of the input or the NEEE

z features are concatenated to the & Ao

8 expansion layers I Pixel-wise Softmax at the last

¥ 126 126 layer with cross- entropy loss.

256 128

Can be train by colored

AR Sl segmented image with
Sl " regression loss.
512 256
3 ':I';I =» conv 3x3, ReLU
h ¢ S 29 = copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1 66



DeconvNet

x
. . \s
* |nstance-wise segmentatlon o
* Two-stage training:
— train on easy examples (cropped bounding boxes centered
on a single object) first and

— then more difficult examples

( 224x224 224224




SegNet

@
* 13 convolutional layers from VGG-16 j{q
— The original fully connected layers are discarded

 Max pooling indices (locations) are stored and sent to decoder
* Scene understanding

Convolutional Encoder-Decoder

Output

Input

4

Pooling Indices .

S

RGB Image B Conv + Batch Normalisation + RelU Segmentation
I Pooling I Upsampling Softmax

11/12/2019 https://towardsdatascience.com/review-segnet-semantic-segmentation-e66f2e30fb96 68
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Avoiding resolution loss but no high computational load.

Atrous convolution

e How it works?

Blows up the kernel

Filling up the holes with zeros

e Atrous means very dark (like
the wholes between the
values)

* Properties

11/12/2019

Not doing downsampling

Not increasing computational
load

But reaches larger
neighborhood

Combines information from
larger neighborhood

Normal

convolution

Atrous (dilated)
convolution

kernel
[T T T T 1T
e
M| e e
H [ T[T :H:_
rate=1 rate=2 rate=3



Depth-to-Space

Convl

Pooll Block1 Blockz Block3 Block4 Blocks Blocke Block7

fput
Image crge 4 8 16 32 64 128 256 256

Normal convolution goes deeper with reducing resolution

Convl rate=2 rate=4 rate=8 rate=16
+
Poaoll Blockl Block2 Block3 Block4d Block5 Blocké Block7
2o 4 I sl HE
output
Image e 4 8 16 16 16 16 16 16

Atrous convolution goes deeper without further reducing resolution

11/12/2019 70



Filter size considerations

* Small field-of-view - accurate localization
* Large field-of-view - context assimilation
Effective filter size increases (enlarge the field-of-view of filter)

ny: kxk - na:(k+(k—1)(r—1)) X (k+(k—1)(r—1))
n, : original convolution kernel size

n, : atrous convolution kernel size
I': rate

However, we take into account only the non-zero filter values:
* Number of filter parameters is the same
* Number of operations per position is the same

11/12/2019. 71



Visualizing atrous convolution

Original filter
Standard T2
. = e A
convolution &
! e senvene
downsampling convolution upsampling
stride= 2 kernel=7 stride=2
Padded
filter P ..
Atrous - R
: i ~
convolution i ma -
atrou:etrzgg:/:o;uuon ¢ ‘“ .
—
B S ™
stride=1 y

Chen, Liang-Chieh, et al. "Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connectdd”

CRFs." arXiv preprint arXiv:1606.00915 (2016).


https://arxiv.org/pdf/1606.00915v1.pdf

Semantic segmentation S[JH
CNN arrangements —
- h- Conv-net with
L Multi-scale

I—»I—»I—» atrous
I I I convolutions

Fully conv-net
y I Activation layer

Convolutions

| — skip
Fully conv-net with skip & Es —

e How to solve reduced resolution?

Do not downsample !!!
* Convolution on large images = Small FOV Enlarge kernel
* Size O(n? ) more parameters = getting close to fully

I * Connected layer, slow training, overfitting

e Atrous Convolution.

* Large FOV with little parameters = Kill two birds with one

11/12/2019
stone!



Neural Networks

Unsupervised learning techniques

(P-ITEEA-0011)

Akos Zarandy
Lecture 9
November 19, 2019



Contents

e Supervised vs unsupervised learning

* Unsupervised learning techniques
e Curse of dimensionality
* Principal component analysis (PCA)
e t-Distributed Stochastic Neighbor Embedding (t-SNE)

e Autoencoder

11/19/2019. 2



Typical Machine Learning Types

input Data What is Supervised Learning?
‘ \ Ped ction
* Supervised Learning @ Q 00 ED
— Learning from labeled examples -/ ‘
?
(for which the answer is known) ut s Unsuperiet s S &
[ [ /
* Unsupervised Learning g“ Q 5‘5
— Learning from unlabeled o 0®
examples (for which the answer agent envivonment
|S unknown) from state s, take action a

* Reinforcement Learning
— Learning by trial and feedback,

R
like the “child learning” example é?é T\

11/19/2019 get reward R, new state s’



Supervised vs Unsupervised learning

0
* Supervised learning * Unsupervised learning
— We have prior knowledge — No prior knowledge of
of the desired output the desired output
» Always have data set with e Received radio signals from
ground truth (like image <?Ieep Space
data sets with labels) — Typical tasks
— Typical tasks * Clustering

* Representation learning
* Density estimation

e (Classification

* Regression ) :
We wish to learn the inherent

structure of (patterns in) our data.
11/19/2019 4




Use cases for unsupervised learning

* Exploratory analysis of a large data set
— Clustering by data similarity

— Enables verifying individual hypothesizes after analyzing the clustered data

* Dimensionality reduction
— Represents data with less columns
— Allows to present data with fewer features
— Selects the relevant features

— Enables less power consuming data processing, and/or human analysis

11/19/2019 5



Curse of dimensionality

e Whatisit?
— A name for various problems that arise when analyzing data in high
dimensional space.

— Dimensions = independent features in ML
* Input vector size (different measurements, or number of pixels in an image)

— Occurs when d (# dimensions) is large in relation to n (number of
samples).

* Real life examples:

— Genomics
* We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.

11/19/2019 6



So what is this curse? }f{

Sparse data:

— When the dimensionality d increases, the volume of the space increases
so fast that the available data becomes sparse, i.e. a few points in a large
space

— Many features are not balanced, or are ‘rarely occur’ — sparse features

Noisy data: More features can lead to increased noise = it is harder to find
the true signal

Less clusters: Neighborhoods with fixed k points are less concentrated as d
increases.

Complex features: High dimensional functions tend to have more complex
features than low-dimensional functions, and hence harder to estimate

11/19/2019 7



Data becomes sparse as dimensions increase

 Asample that maps 10% of the 1x1 squares in 2D represent only 1%
of the 1x1x1 cubesin 3D

10 — A
o g 4l NG
00 T : >
o I
o8 A "
R .
!,
o ] ::: //
. , ‘\ "I’/
w : N—111
= e
) .t o)
. vaved
o4 ? R
3 A ELEE!
a3 = ] /'1»*“(/ N\
vhs ey \
* ‘/ L PN
. K < &5 ' ‘\,\
o1 T "
o - ol ~
00 — . :,\\ ' ,«’/ﬁfds)‘
00 01 02 G3 O4 O5 00 O7 03 OO 10 TN ' e
x4 2~ s e

* There is an exponential increase in the search-space

11/19/2019 8



Data sample
number increase to
avoid sparsity 2 dimensions

100 positions
®

1 dimension:
10 positions

* e.g. 10 observations
/dimension
— 1D: 10 observations
— 2D: 100 observations
— 3D: 1000 observations

3 dimensions:
> 1000 positions!

11/19/2019



Curse of dim - Running complexity

* Many data points (labeled measurements) are needed
 Complexity (running time) increase with dimension d

* A lot of methods have at least O(n*d?) complexity, where n is
the number of samples

* As dbecomes large, this complexity becomes very costly.
— Compute =S

11/19/2019 11




Sparisty increase: More regions with the same
number of data points J

b) 2D - 16 regions

c) 3D - 64 regions

al 1D - 4 regions
] ] ] EU
®
e®
F 20
®
15 ® ® o ®
e o @ e
® . ]
10 + c.n (10
° ®
5 s o %o e ,
0
@ T— 20
@ @ 00 BOCOD @D ) 0 . —— e
| | | | | |
0 5 10 15 20 0 5 10 15 2 o
12
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Distances in high dimension 5,=1
s 1 o
Assume, we have a unit side (2D) square, D 52=\/% =
what we divided to 100 equal small squares d
— Calculate the ratio of the largest distance in a small D2=\/§
square and the largest distance of the big square
(in 2D) ° R { 4,20.1v2
R, = D—z =0.1 S
Assume, we have a unit side 100D cube, ’
what we divided to 100 equal small 100D oo
cubes S100=1 S100= \/% = 0.95

— Calculate the ratio Ratio of the largest distance in a

small cube and the largest distance of the big cube
(in 100D) D;00=v100 = 10

— The average nearest neighbor distance is 95% of the
largest distance!!!

- : : _ %100 _
— Euclidian distance becomes meaningless, most two Rigo = D_ = 0.95

points are “far” from each others 100
11/19/2019 13
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Curse of dim - Some mathematical
(weird) effects

4
§)n'r3 413

Ratio between the volume of a sphere and a cube for d=3: (273 ~8r3” 0.5

When d tends to infinity the volume of the sphere (this ratio) tends to zero

d 3 5 10 20 30 50
ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28

Most of the data is in the corner of the cube

— Thus, Euclidian distance becomes meaningless, most two points are “far” from
each others

Very problematic for methods such as k-NN classification or k-means
clustering because most of the neighbors are equidistant

11/19/2019 14



The nearest neighbor problem in a sphere

* Assume randomly distributed points in a sphere with a unit diameter

* The median of the nearest neighbors is |

* Asdimension tends to infinity T+ > datapoints
— The median of the nearest neighbors oy
converges to 1 ay
[ [
+ "‘/‘j
+
\ |
\ E*
“The Curse of Dimensionality” by Raul Rojas \ \\ / +
https://www.inf.fu-berlin.de/inst/ag- \ \ y
ki/rojas_home/documents/tutorials/dimensionality.pdf o //’
. R = =
* ____ —

11/19/2019



How to calculate dimensionality?

feature vectors (x)

S
0 X, X, X3 X,
S d, 1 2 1 1
S d, 2 4 3.5 1
()]
g d 3 6 17 1

How many dimensions does the data
intrinsically have here?
(How many independent coordinates?)

— Two!

* x1 =% *x2 (no additional information, correlated, not independent)
* x4 is constant (carries no information at all!)

11/19/2019 16



How to avoid the curse?

ﬁ\vﬂ
Reduce dimensions e

S 4

Feature selection - Choose only a subset of features

Use algorithms that transform the data into a lower dimensional space (example — PCA, t-SNE)
*Both methods often result in information loss

Less is More

In many cases the information that is lost by discarding variables is made up for by a more
accurate mapping/sampling in the lower-dimensional space

"
Classifier

t
performance|| |
I
I
I
I
|

»
Optimal # of # of variables

11/19/2019 variables
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Principal component analysis

(PCA)

11/19/2019 18



Dimensionality reduction goals N/
* Improve ML performance
* Compress data
. Visualize data (you can’t visualize >3 dimensions)

* Generate new complex features

— Loosing the meaning of a feature

— Combining temperature, sound and current to one feature will be meaningless for
human (non-physical)

11/19/2019 19



Example — reducing data from 2d to 1d
A "‘Wfﬂ/

N

X1 and x2 are pretty redundant. We
can reduce them to 1d along the
green line

9 (inches)

 Thisis done by projecting the points
to the line (some information is lost,
but not much)

-~
-

1 (cm)

HK—H—HK—HK KKK —

21
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Example —3D to 2D

* Despite having 3D data most of it lies close to a plane

a:3 v

Bk 3 & &

:131L.

* |f we were to project the data onto a plane we would have a more
compact representation
* So how do we find that plane without loosing too much of the variance in

our data? =2 PCA

11/19/2019
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Principal component analysis (PCA) E’{

* Technique for dimensionality reduction
* |nvented by Karl Pearson (1901)
* Linear coordinate transformation

— converts a set of observations of possibly correlated variables

— into a set of values of linearly uncorrelated orthogonal variables
called principal components

* Deterministic algorithm

11/19/2019 22



PCA algorithm

1. Mean normalization: For every value in the data, subtract its mean dimension
value. This makes the average of each dimension zero.

11/19/2019 23
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension
value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c 24



PCA algorithm

. : : : : P
1. Mean normalization: For every value in the data, subtract its mean dimension W
value. This makes the average of each dimension zero. -

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

3. Covariance matrix: Calculate the covariance matrix

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c 22



Covariance (formal definition) Tf/

Assume that X are random
- . 1 _
variable vectors Vanance(x): ; 7il=1(xl' — x)z

We have n vectors 1

=~ iz (X = ) (x; — %)

. 1 _ _
Covariance(x,y) = =¥, (x; — %) (y; — )

Covariance(x,x) = var(x)

Covariance(x, y) = Covariance(y, x)



Covariance example for 2D

Covariance(x,y) = % im1(xXi —xX)yi—y) 9

* Positive
covariance
between the
two y1 —Yy<0
dimensions

%/_/ x4 — x<0
11/19/2019



Covariance example for 2D

. 1 _ _ B
Covariance(x,y) = ~Xi_;(x; — X)(¥; = ¥)

* Negative 2-
covariance _
between the _ Y >*
y1 —y<0 .
two Vi &
dimensions .

11/19/2019 28



Covariance example for 2D

Covariance(x,y) = 1 i—1(x; = X)(yi — ¥)

n

* No covariance
between the
two
dimensions

11/19/2019
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i =)y —y

(x; - %) (yi - y) >0




* Diagonal elements
are variances, i.e.
Cov(x, x)=var(x)

— nisthe number
of the vectors

— misthe
dimension

e Covariance Matrix
Is symmetric
— commutative

11/19/2019

Covariance matrix

Cov (3) =

Cov (}) = %(X — X)X = X)T; where X =

Cov (}) =

cov(xq,X1)
cov(xy,x1)

Lcov (X, X1)

var(xq,x1)
cov(xy,x1)

cov(xq,X)
cov(xy,X5)

cov (X, X7)

cov(xq,X5)
var(x,,x,)

Llcov(Xy, x1)  cov (X, Xo)

cov (X1, Xm) ]
cov (X9, Xm)

cov (X, Xm )

cov (X1, Xm) ]
cov(Xy, Xm)

var(X,, Xm)
30



PCA algorithm

1. Mean normalization: For every value in the data, subtract its mean dimension value. "{if“
This makes the average of each dimension zero. o

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix

Eigenvectors and eigenvalues of the covariance matrix

—  Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

X .
2 Principal

components will be
PC PC; P
‘ 2 orthogonal.
@ o) Uncorrelated,
" -
& X & independent!
1

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
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PCA algorithm

. : . : . B
1. Mean normalization: For every value in the data, subtract its mean dimension value. "Wf‘%
This makes the average of each dimension zero. W

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix
4. Eigenvectors and eigenvalues of the covariance matrix

—  Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

5. Rank eigenvectors by eigenvalues
6. Keep top k eigenvectors and stack them to form a feature vector
7. Transform data to PCs:

— Newdata= feature vectors (transposed) * original data

11/19/2013 https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c 32



From k original variables: x;,x,,...,x,:
Produce k new variables: y,,y>,....Y:
Yi=apXytaX; .o+ agX

Yo = @pXq F @pXo ¥ .+ X ‘
> Vi 'S are
Principal Components

Vi = 8 Xq + aoXo + .o+ aeXy

{a41,819,...,a4} is 1st Eigenvector of of first principal component
{8,1,8,...,8} is 2nd Eigenvector of of 2nd principal component

{8k1,810,-..,8} IS kth Eigenvector of Of kth principal component

11/19/2019
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Principal Component Analysis (PCA)

* Theideais to project the data onto a subspace which compresses most of
the variance in as little dimensions as possible.

* Each new dimension is a principle component

* The principle components are ordered according to how much variance in
the data they capture

— Example:

* PC1-55% of variance
* PC2-22% of variance
* PC3-10% of variance
* PC4 - 7% of variance
* PC5-2% of variance
* PC6 — 1% of variance
e PC7-...

PC1

We have to choose how many PCs to use from the top
11/19/2019 34
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England | Wales | Scotland | N Ireland

PCA Example Cheese 105 103 103 66
Carcass meat 245 227 242 267

*  Weekly food Other meat 685 803 750 536
consumption of the Fish 147 160 122 93
four countries Fats and oils 193 235 184 209

: o Sugars 156 175 147 139

— food types: variables

, , Fresh potatoes 720 874 566 1033

— countries: observations Fresh Veg 953 265 171 143

* Clustering the Other Veg 488 570 418 355
countries: Processed potatoes 198 203 220 187

_  Needs visualization in Processed Veg 360 365 337 334

17 dimension Fresh fruit 1102 1137 957 674
_ Cereals 1472 1582 1462 1494

’ P_CA' re.duce. Beverages 57 73 53 A7
dimensionality Soft drinks 1374 | 1256 | 1572 1506
Alcoholic drinks 375 475 458 135

http://www.sdss.jhu.edu/~szalay/clas Confectionery 54 64 62 41

s/2016-oldold/SignalProcPCA.pdf

11/19/2019

UK food consumption in 1997 (g/person/week). Source: DEFRA



http://www.sdss.jhu.edu/~szalay/class/2016-oldold/SignalProcPCA.pdf

eigenvalue

-
a

—-
o
T

(6]
T

PCA Example

* From PC1, two clusters
are well separable

* Including PC2, the four
clusters can be well
separated

Figenspectrum

1
3 4

1 2

eigenvector number

11/19/2019

Projections onto first principal component (1-D space)

1
05
OF ] ] L ] ® -
Wal Eng Scot N Irg
-05}
_1 1 1 1 1 1 1 1
-300 -200 -100 0 100 200 300 400 500
PC1

Projections onto first 2 principal components (2-D space)

PC2

400
200 ® Wal
N Iree®

0F ® Eng 4

-200
® Scot

_400 L 1 1 1 1 L 1L

-300 -200 -100 0 100 200 300 400 500

PC1
37



effect(PC2)

Coefficients of the Principal Components

Load plot
1 T T 400
osl Fresh potatoes o0 ® Wal
ol Fresh fruit ,;gtht:ﬁm o} o Eng N lree |
’Mcohoncdﬂgkg
05 -200
*Soft drinks ® Scot
-1 L L a . L L _49%00 —260 -1 (I)O (I) 1 (IJO 260 360 4(I)U 500
-08 -06 -04 -0.2 0 02 0.4 06 PCA
effect(PC1)
Load plot shows the coefficients of the original
feature vectors to the principal components
38
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t-Distributed Stochastic Neighbor Embedding

(t-SNE)

11/19/2019 39



t-Distributed Stochastic Neighbor Embedding (t-SNE)

* Introduced by Laurens Van Der Maaten (2008)

* Generates a low dimensional representation of the high dimensional data
set iteratively

* Aims to minimize the divergence between two distributions
— Pairwise similarity of the points in the higher-dimensional space
— Pairwise similarity of the points in the lower-dimensional space

e OQOutput: original points mapped to a 2D or a 3D data space
— similar objects are modeled by nearby points and

— dissimilar objects are modeled by distant points with high probability
Unlike PCA, it is stochastic (probabilistic)

11/19/2019 40



t-SNE implementation |

Step 1: Generate the points in the low dimensional data set (2D or 3D)

* random initialization

e First two or three components of PCA

High Dim Low Dim
® o o @
- .0:(> C I
O
: O )

11/19/2019 41



t-SNE implementation |l

AP
Step 2: Calculate the pair-wise similarities measures between data pairs j/f
(probability measure)
High Dim ow Dim
e The similarity of datapoint
i X; to datapoint X; means
O O yi J . .
the conditional probability
O => ® @ P;i that X; would pick X;
O O as its nearest neighbor.
= ep(=lixi = x[?/20%) (1+ [y —yl1»)
1y L —
T Yk exp(=1x — x| [?/20?) W a0+ vk -yl

Exponential normalization of the
Euclidian distances are needed due
to the high dimensionality.

(Curse of dimensionality)



t-SNE implementation Il

\)

Step 3: Define the cost function w

_exp(—|lx — x|[*/20%)
>kt &XP(=I|x1 — xk|[2/202)

* Similarity of data points in High dimension: il

* Similarity of data points in Low dimension: . _ L+l —ylH)~
d >kt (L4 lyk = yil?) !
e Cost function (called Kullback-Leiber divergence between the two

distributions): Pij
C=KLP[|@)=) } :Pij’ogq—f
: ij

J

i

* Large p; modeled by small q; > Large penalty

* Large p;; modeled by large q; - Small penalty

e Local similarities are preserved

11/19/2019 44



t-SNE implementation IV

Step 4: Minimize the cost function using gradient descent

* Gradient has a surprisingly simple form:

oC .
=4 (e — )L+ Iy =yl ) i — )
i i

* Optimization can be done using momentum method

11/19/2019 45



Physical analogy

Our map points are all connected with springs in the low
dimensional data map

Stiffness of the springs depends on  p;;; - ) e \?/e '.
Let the system evolve according to the laws of physics !
— If two map points are far apart while the data points are close, . ®/_g
they are attracted together :
— If they are nearby while the data points are dissimilar, they are = |
repelled. - e
By o S
lllustration (live) B A A e
oY RSN O
—  https://www.oreilly.com/learning/an-illustrated-introduction-to- e o RISt ’%'"
the-t-sne-algorithm S
® e
® . .
@
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2 dimensions

9

28x28 (784) dimensions

Comparison of PCA and t-SNE on MINIST database




Autoencoder

11/19/2019 48



Autoencoder

* Neural network used for efficient data coding
e Uses the same vector for the input and the output

— No labelled data set is Input Output
needed N -
— Unsupervised learning VoS P //
* Two parts VoINS~ (Code TN
P \ ! N -~/ \
— Encoder: reduces data v/ NN \J
dimension A A N /\\
/\ / \ / \ / \
— Decoder: reconstructs /N /o <~ \ ro
data // \[ |2~ Sl
: _ - SO
— Middle layer: code /’/// R
w v J . Y _J

11/19/2019 Encoder Decoder 49



Operation

* The network is
trained with the
same input-
output pairs

* Loss function:
— MSE
— Cross Entropy

e After network is
trained, remove

decoder part
11/19/2019




Operation

* The network is
trained with the
same input-
output pairs

* Loss function:
— MSE

— Cross Entro
> New compressed
representation for

input.

* After network is
trained, remove

decoder part
11/19/2019




Example

—» Encoder —>E_> Decoder |

Original
input

Reconstructed
input

Compressed
representation

 Coding MNIST data base
e 28x28 (784 dimensions) 2> 2x5 (10 dimensions)
* 78 times compression

11/19/2019 52



Autoencoder vs PCA

* Undercomplete autoencoder with

— one hidden layer
— linear output function
— MSE loss

Undercomplete: width
(dimension) of

hidden layer is smaller than
width input/output layer

* Projects data on subspace of first K principal

components

11/19/2019
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Denoising

* Trick:
— Adding noise to the input
— The desired output is the original input

—» Encoder Decoder
MNoise

7l2]/jol4l/]7]als]7

MNoisy
Inpu



MNIST database coding to two dimension

label =5 label = 0
_ (+10) T T T ; T T T
1
2
3
40 4
5
H 6
Two neurons in B AR AR R 7
. . L £ I-” N ' 0 e 3 z 8 ]
the coding hidden ?° B P 9
layer . : syl
o
= 0+ -
[ =
Q
£
£ #
g -20 + - R
~N s
40 - ':" o
-60 - e e ' ]
-80 1 1 1 ! 1 ] 1
-80 -60 -40 -20 0 20 40 60 80

1st dimension



Autoencoder + t-SNE
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Recurrent Neural Networks

e How to handle sequential signals with Neural Networks?
* General Architecture of the Recurrent Networks

11/19/2019. 57



Static samples vs Data sighal flow

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

 Though human can  Butinreal life we
recognize handle Story
— Single letters — Texts _
— Single sounds » _ Speech (temporal gnaly5|s
— Single tunes — Music of sequential data)
— Single pictures — Movies

Can feed-forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

11/19/2019 58



Memory
e Qur feed-forward nets had so far

— Program memory (for the weights)

— Registers

* For storing data temporally due to implementation and not matematical
resasons

e Registers were not part of the networks

* After each inferences the net was reset
— All registers were deleted
— No information remained in the net after processing an input vector
— Therefore the order of a test sequence made no difference

11/19/2019 59



Recurrent networks (RNN)

Unlike traditional neural
networks, the output of the RNN

depends on the previous inputs Jirgen lives in Berlin.

_ State He speeks .................
RNN contains feedback
Theoretically: Feedback loop

— Directed graph with cyclic loops

From now, time has a role in
execution @\ <K
y

— Time steps, delays @/
2 ——

—— output layer

input layer \ Y J (class/target)

hidden layers: “deep” if > 1
11/19/2019 60
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Steps towards vectorized data and parameters

* Weights
(multip|e Input value 1
arrows)
Input value 2 Output values
Input value 3
_J I _J
11/19/2019 Input Hidden Output

Layer Layer Layer



Steps towards vectorized data and parameters

Weights
(multiple
arrows)

11/19/2019

Input value 1

Input value 2

Input value 3

\m Output values

Input Hidden Output
Layer Layer Layer



Steps towards vectorized data and parameters

Weights
(multiple
arrows)

replaced

with
vectors nput Vector Output Vector
(single

arrows)

11/19/2019 Input Hidden Output
Laver Laver Laver



Steps towards vectorized data and parameters

Single arrows  input vector Output Vector
indicate all

interconnections
between layers
Wj; matrix
matematically

11/19/2019 Input Hidden Output
Laver Laver Laver



Introducing feedback loop

"hy(0)7
' h1(0)
h(0) = '
| h, (0) 1 concatenation h;(0)
(1) D=y
x(1) = |
(1) 2O g

h(1) = £(h(0),x(1)) = Wxc(1)

w: | X (k+1) sized weight matrix

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

340,

Q
9

x()

h(0) =0

65



Activation function in feedback loop

e Activation function of the
hidden layers is

typically hyperbolic L
tangent

* |t avoids large positive
feedback

— Keeps the output between
-1and +1

- ?&‘]’IC(’:LO:Z teiéﬁlodlng the loop Positive feedback in a loop: X2

_ Gain should be smaller A produces more of B which /\
than 1 in the loop! in turn produces more of A. A B
It leeds to increase beyond u
any limit. X2
11/19/2019 66




Timing of the RNN

Discrete time steps are used
Input vector sequence to apply

Signals are calculated in a node, when all inputs

exist

State machine

m_m L
h(D) = F(h),x())  ¥(D) = g(h(D) CP

x(1)
t=2  x(2)
t=3  x(3)
t=4  x(4)

11/19/2019

340,

h2) = f(h(1),x(2)  y(2) = g(h(2))

h@3) = f(h(2),x3))  y(3) =g(h®3))

h(4) = f(h(3),x(4)) y(4) = g(h(4)) o
X

How to calculate back propagation? h(0) =0

hQ)

x(1)
X(2)
X(3)
X(4)



Unrolling

y(@ = g(h@®) y(1)

# h(0) h(1)
—

<[?(i) = f(h(i — 1), %))

X(1) X(1)

11/19/2019

\)

N

y(2) y(3) y(4)

h(2) h(3) h(4)

X(3) X(4)
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Unrolling

* Unrolling generates an acyclic
directed graph from the original _
cyclic directed graph structure

* |t generates a final impulse
response (FIR) filter from the
original infinite impulse

response (lIR) filter lIR filters may response to FIR filters response
«  Dynamic behavior ar?y fln!te.le.ngth input jco any fl.nlte I-ength
with a infinite (usually input with a final
decaying) response, due response.

to their internal loop.
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Welght matrix Sharing RNN .re-uses the same weight

matrix in every unrolled steps. (’Wq

y(@ = g(h()) = Wyh() YD y(2) y(3) y(4)

. e_o O C
5w moae e

> 4

: W,
Dy = (- Dx@)- O
=Wj c(1)

11/19/2019 70
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Neural Networks

Recurrent Neural networks,
LSTM

(P-ITEEA-0011)

Akos Zarandy
Lecture 10
November 26, 2019



Contents

 How to handle sequential signals with Neural Networks?
 Recurrent Networks

* Training

 Examples

* Vanishing gradient problem

* Long Short Term Memory (LSTM)

e LSTM versions

2019-11-25. 2



Static samples vs Data sighal flow

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

 Though human can  Butinreal life we
recognize handle Story
— Single letters — Texts .
— Single sounds » _ Speech (temporal gnaly5|s
— Single tunes _ Music of sequential data)
— Single pictures — Movies

Can feed forward neural networks (perceptrons,
conv. nets) solve these problems?

Naturally, we can extend the data dimension with the time, but this leads
to data size and computational load explosion .

2019-11-25 DATA MEMORY 3



Memory
e Qur feed-forward nets had so far

— Program memory (for the weights)

— Registers

e For store temporally due to implementation and not matematical
resasons

* Registers were not part of the networks

e After each inferences the net was reset
— All registers were deleted
— No information remained in the net after processing an input vector
— Therefore the order of a test sequence made no difference

2019-11-25 4



Recurrent networks (RNN)

Unlike traditional neural
networks, the output of the RNN

depends on the previous inputs Jirgen lives in Berlin.

_ State He speeks .................
RNN contains feedback
Theoretically: Feedback loop

— Directed graph with cyclic loops

From now, time has a role in
execution @\ <
y

— Time steps, delays @/
2 ——

—— output layer

input layer \ Y J (class/target)

hidden layers: “deep” if > 1
2019-11-25 5
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Vectorized presentation of neurons and

parameters
* Weights
(multip|e Input value 1
arrows)
Input value 2 Output values
Input value 3
_J __J _J
2019-11-25 Input Hidden Output

Layer Layer Layer



Vectorized presentation of neurons and

Weights
(multiple
arrows)

2019-11-25

Input value 1

Input value 2

Input value 3

parameters

\m Output values

Input Hidden Output
Layer Layer Layer



Vectorized presentation of neurons and

pParam eters
Weights
(multiple
arrows)
replaced
with
vectors y Output Vector
(single
arrows)
2019-11-25 Input Hidden Output

Laver Laver Laver



Vectorized presentation of neurons and

a‘fm
para meters E

Single arrows
!ndicate all _ Input Vector Output Vector
interconnections

between layers

W;; matrix
matematically

2019-11-25 Input Hidden Output
Laver Laver Laver



Introducing feedback loop

"hy(0)7
' (hq1(0)
h(0) = '
| h, (0) 1 concatenation h;(0)
(1) =y
x(1) = |
(1) 2O g

h(1) = £(h(0),x(1)) = Wxc(1)

w: | X (k+1) sized weight matrix

f() can be defined
as a more complex
function not only a
matrix vector
multiplication.

340,

Q
9

x()

h(0) =0

10



Activation function in feedback loop

e Activation function of the
hidden layers is

typically hyperbolic L
tangent

* |t avoids large positive
feedback

— Keeps the output between
-1and +1

- ?;/Icéluclg teiéﬁlodlng the loop Positive feedback in a loop: X2

_ Gain should be smaller A produces more of B which /\
than 1 in the loop! in turn produces more of A. A B
It leeds to increase beyond u
any limit. X2
2019-11-25 11




Timing of the RNN

Discrete time steps are used
Input vector sequence to apply

Signals are calculated in a node, when all inputs

exist

State machine

m_m L
h(D) = F(h),x())  ¥(D) = g(h(D) CP

x(1)
t=2  x(2)
t=3  x(3)
t=4  x(4)

2019-11-25

340,

h2) = f(h(1),x(2)  y(2) = g(h(2))

h@3) = f(h(2),x3))  ¥(3) =g(h®3d))

h(4) = f(h(3),x(4)) y(4) = g(h(4)) o
X

How to calculate back propagation? h(0) =0

hQ)

x(1)
X(2)
X(3)
X(4)



Unrolling

y(@ = g(h@®) y(1)

# h(0) h(1)
—

<j[2(1') = f(h(i — 1), %)

X(1) X(1)

2019-11-25

\)

N

y(2) y(3) y(4)

h(2) h(3) h(4)

X(3) x(4)

13



Unrolling

* Unrolling generates an acyclic
directed graph from the original _
cyclic directed graph structure

* |t generates a final impulse
response (FIR) filter from the
original infinite impulse

response (lIR) filter lIR filters may response to FIR filters response
«  Dynamic behavior ar?y fln!te.le.ngth input jco any fl.nlte I-ength
with a infinite (usually input with a final
decaying) response, due response.

to their internal loop.

2019-11-25 14



Welght matrix Sharing RNN .re-uses the same weight

matrix in every unrolled steps. (’Wq

y(@ = g(h()) = Wyh() YD) y(2) y(3) y(4)

. e_o O C
5w moae e e

> 4

: W,
Dy = (- Dx@)- O
=Wj c(1)

2019-11-25 15

X(2) X(3) x(4)




Simple RNN Training Example: Predicting the next letter
@\\Vﬂ

Example:
Character-level
Language Model

Vocabulary: gne-hot

[h,e,l,0] encoding
Example training \

1 0 0 0

- - 0 1 0 0

sequence. input layer 5 5 : :
6

hello” 0 0 0 0

input chars: “p” e y i} I

5019.11.05  http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecturel0.pdf 16



Simple RNN Training Example: Predicting the next letter ==
"7

Example: —
Character-level hi = tanh(Whhhi—1 + Wenzt)

Language Model

Hidden Iayer/ \

. 0.3 1.0 0.1 -0.3
Vocabulary: weights are hidden layer | -0.1 ~ 0.3 - 05 =" 0.9
[h.e,l,0] initialized with = & e =

random values T T I 4\,\, "
. . | -
Example training ] = 3 =
sequence: input layer | 3 : : :
“hello” £ _ i g
input chars:  “h” “e” “I" |

2019-11-25 17



Simple RNN Training Example: Predicting the next letter ==

target chars:

Example: 1.0 05 0.1 0.2

Character-level output layer | Z% e . 28;?

Language Model 4.1 1.2 -1.1 2.2
Output layer T T T FW-“Y

Vocabulary; ~ Weightsare | 0.3 1.0 01 |\ 1l -0.3

initialized with  hidden layer | .0.1 ~ 0.3 -0.5 = 0.9

[h,e,l,o] random values 0.9 0.1 0.3 0.7
Example training I l I lW'Xh

sequence: input ayer | ! : ;

“hello” 0 0 0 0

input chars: “h” g0 e o b

2019-11-25

18



Simple RNN Training Example: Predicting the next letter
(’a\\vﬂ

Example: sample
Character-level 0
Language Model Softmax g
Sampling —
output layer ";%
Vocabulary: 4{
[h.e.l,0] idden ayer | 04 |—
08

At test-time sample T
characters one at a time, — é
feed back to model 2

input chars: “h”

2019-11-25 19



Simple RNN Training Example: Predicting the next letter ==
"7

@\?Vﬂ

Example: SaThle f\
Character-level 0
Language Model Sorimax ¢
Sampling -~
output leyer IS

Vocabulary: 4{
[h,e,l,0] oo |92
0.9

At test-time sample T
characters one at a time, a— 35
0

"

feed back to model

input chars:  “p”

o co-o0

2019-11-25 20



Simple RNN Training Example: Predicting the next letter
@\\Vﬂ

“ " “7

Example: Sample ?,\ ¢

Character-level o |||z

Language Model Sofmax Rl |2

Sampling m |

output layer %% _(:%

4.1 12

Vocabulary: T T

[h,e,l,0] | 03 10
hidden layer | -0.1 03 |-

0.9 0.1

At test-time sample P

characters one at a time, — é 2

feed back to model ot \’0

2019-11-25 21



Simple RNN Training Example: Predicting the next letter ==
"7

Example: Sample f\ A ISl
Character-level . sl as || ] |
Language Model et -1 I - I -
Sampling Backpropagation | el .
can be started ouputiaver | 0 (| |30l | 18] | |3

Vocabulary: lfsin_g negative log 4{ T '1{ Tw_hy
[h el O] I|keI|hood cost > - oL s
o function e S U1 RE]e

At test-time sample | T T Jw_
characters one at a time, wamer | 0 | [ 3] [ 0] |0
feed back to model s T \’0 \; :

2019-11-25 22



Back propagation through time

{%
* Assuming that the length of the W
input vector sequence is limited y(1) y(2) y@) y() y(n)

* It became a feedforward neural net Q Q Q Q

* Possible to apply back propagation

 We need multiple vector sequences

to train!
y) ¥y y@) y@ /

X1) x@2) x@) x4

X(1) x@2) x@3) x(4) x(n)



Forward through entire sequence to

Backpropagation th rough time compute loss, then backward through

entire sequence to compute gradient

__— TN\




Truncated Backpropagation through time

Loss

// [ T \ \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence




Truncated Backpropagation through time

Loss

RN

/ [ [ |

Carry hidden states
forward in time forever,
but only backpropagate

N S S S TR IR O S I S N B | for some smaller

number of steps!







Image captioning example

llhat"

“straw” END

START Mstraw" “hat"

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

2019-11-25 28



Image captioning example
Recurrent Neural Network

“straw” “hat” END

Convolutional Neural Network

2019-11-25 29



test image




conv-128
_conv-128
maxpool

conv-ZSL

conv-256
~_maxpool

conv-512

conv-512

test image

mite

black widow
cockroach
tick

starfish

amphibian
fireboat
drilling platform

Alexnet: scored 5 best guesses



| image | <

conv-64

conv-64
max_pool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

F 0
soigax




_image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096 -
FC-4096 Pl

<START>



 image @ =

conv-64

test image

conv-64
maxpool
conv-128

conv-128 straw
maxpool

conv-256 y0

conv-256
maxpool T

conv-512

conv-512

maxpool £

conv-512

maxpool T h = tanh(WXh * X + Whh * h + Wih * V)

v <START>



image |

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw

y0

hO

x0
<STA
RT>

straw

<START>

sample!

test image



image |

conv-64
conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw hat
y0 y1
hO > h1

T

T

x0
<STA
RT>

straw

<START>

test image



image |

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw hat
y0 y1
hO > h1

T

T

x0
<STA
RT>

straw

hat

<START>

test image

sample!



10.00 X 5.63inch

image | -
conv-64

conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

straw hat
end
y0 y1 y2
hO > h1 h2

T

T

T

x0
<STA
RT>

straw

hat

<START>

test image



 image @ =

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

test image

\ sample

<END> token

straw hat
end
y0 y1 y2
hO > h1 h2

=> finish.

T

T

T

x0
<STA
RT>

straw

hat

<START>



Image captioning Example: Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

2019-11-25 40



lmage captioning:

==~ atree branch
e
\‘\

A woman is holding a
cat in her hand
A manina

baseball uniform
throwing a ball

A woman standing on a
> beach holding a surfboard

A person holding a
computer mouse on a desk




Problem

* What happens if the input sequence is too
long?

Vanishing gradient!

2019-11-25 42



Vanishing Gradient Problem
e @ @ @ O O O O

sequencies, the old
vectors has a
strongly fading —

effect in inference Layer
phase

* Intraining phase,

the stacked
gradient functions Rt O . . . . O
will be very small = . 1 5 i 2 5 =

2019-11-25 43



I——:

Practical problem of long term dependences

\

_ German
Consider a network ®) ")
which predicts the next ? ? (? C? ? (? I
word in a text AA A A AA A
— If the information needed é C;[D C’g é @g

to predict is close, it can Jurgen lives in  Berlin He speeks

be successfully trained

— If required information is (h) (h) (h) &)
far, the training will be T T T T T
difficult A— A A d BN mmd
b & & & &

2019-11-25 44



RNN Gradient flow

W—> — tanh

- sta

L

— h

4

Cax |

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + thxt)

— tanh ((Whh Whe) (h:tr;l)>
— tanh (W (h;j))



Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

[ ]
R N N G ra d I e n t fI OW Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Backpropagation from h,
to h,, multiplies by W
(actually W, T)

4 )
ht — tanh(Whhht_l + th.’lft)

ht_1 I itac:_ &: ht = tanh ((Whh Whe) (h;_tl)>
b ! g = tanh (W (ht—1>)

Lt

he—q
hiy, = tanh (W (xht )) =tanh| W tanh <W< X¢ ))

t+1
Xt+1
2019-11-25 46



RNN Gradient flow

AI

Al

I——:

==

Bengio et al, “Learning long-term dependencies with gradient descent

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

&

~

W—’QZ tanh

> itaTck H\» h

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

.
W—’Q‘—_> tanh
L
> steIck L—» h2
L T )
x2

P

%5

Largest singular value > 1:

Exploding gradients

Largest singular value < 1:

Vanishing gradients

A[

_, Gradient clipping: Scale
gradient if its norm is too big



RNN Gradient flow

AI

e |

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
. TN a N / )
W-—( )= tanh W-—( )= tanh W-—( )= tanh

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

N
Al

w
Al

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Introduction of
Long Short Term
Memory (LSTM)

— Change RNN architecture



Long Short Term Memory (LSTM)

* Was originally introduced Hochreiter &
Schmidhuber (1997)

e |dea:

2019-11-25

To be able to learn long term dependences

Collects data when the input is considered to be
relevant

Keeps it as long as it considers to be important
Technique:

e Handle the state as a memory with minor
modifications

— No matrix multiplication

— No tanh

— Apply memory handling kind signals
» data in, data out, write, enable

2% x n memory

ADRS ouT
DATA

CS

WR

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

49



Derivation of LSTM & h)

6
T
* Repeating module in r ] >
Normal RNN A J A
— concatenates the input |
®)
A

and the state

®
©)

— A neural network with

tanh output and repeats @ @
the result T T
~ ™
¢ LSTM — (R —— >
@
— Uses the state as a A EACI[]B%" ® A
memory N 5 .
S _J/

— Uses 4 neural nets to I

|
control the memory &) (x) &)

* Forget gate, Input_gate,
State_update,
Output_gate

2019-11-25 50



Components of LSTM |

e All wires represents vector

Vector transfer —
Vector concatenation >
Vector copy —l

* Neural nets with (yellow boxes)
— Multi-layer NN with tanh activation

function used for update value
calculation

Multi-layer NN with logistic

activation function (sigmoid)
used for value selection (kind of

tanh

addressing)

* Pointwise operation (pink circles)

2019-11-25

Pointwise multifaction ?
Pointwise addition —_——

*

®Input

51



Components of LSTM I

State of the LSTM
— This is the actual

memory,
— It can pass the previous C
values with or without Ci_1 t

— Represented by the
upper black line

— Indicated with C,

Old content can be —®—

removed value-by-value f

New content can be

added —_—
4 1 0 — > <

2019-11-25 Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy



How LSTM works?

e Step1

— Combines input and
previous output
(concatenation)

— Selects which values to
forget
e Sort of addressing

* Done by the
“Forget Gate”

* Neural net with sigmoid

output fo=0 (Wy-lhi v, 2] + by)

2019-11-25 53



Input: “James” Updating state memory (Example) :

Forget Neural network figures out: - 3
— Analyzes the concatenated vector
— Name, Subject of a sentence, Male Ci—q
Selects which values to forget and how much
— Position and weight f:
Task:
— Update gender of the subject (forget the old L
value)
— Gender might be represented with a variable T
: presenes N fo=o0(Wi-lhior.x + by)
* c,: value proportional with the probability James
that the subject is a male ; 7 oo
. -~ c,: subject’s : forget c1 value
C; represents weather gender factor of c, after partial
— Calculate the forget factor of the gender 4 l forget
memories / N
e 0 completely get rid of it —0.5 0.1 —0.05

— — A
* 1 keep the previous value Ci-1 =102 fe = 1 Cei—1 =] 0.2
* 0 .. 1 partial forget : Not to : :
* Adressing and suppressing!!! forget c, 54




How LSTM works?

e Step 2
— Calculation of the state
update

* Done by the
“Cell Network”

* Notyet the new value, only tanh
the update value t—1

 Neural Net with tanh

— Selection of the state values
to be updates (Addressing)
* Done by the “Input Gate” lt =0 (Wi'[ht—laﬂft] + bz’)

o | ith sigmoid ~
Neural Net with sigmoi C; = tanh(We-[hi—1, 2] + bc)

2019-11-25 55
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Input: “James” Updating state memory (Example) :

Input Gate figures out:
— Analyze the concatenated vector
— Select which values to update (ENABLE!!!)

— Calculate the update weights Ci
Cell Network calculates: e
i
— The update values %
t—1
Task:
— Update gender of the subject (calculate the update xT
value) ¢
— Gender might be represented with a variable James
* ¢,:value proportional with the probability
that the gender is male bioct 7 7
L C,. Subjec :update
C,: represents weather gender estimate factor of
— Calculate the update factor of the gender value c
memories */ 1 l
* 0 not to update 0.9 0.8
* 1fully update C, =|-0.75 i, =10
e 0 .. 1 partial update : Not to :

2019-11-25 ADRESSING!! modify c,

¥

cl update
value |

~’_
Cy =

l

0.72
0

56



How LSTM works?
* Step3 C

t—1 Ce—1
— Calculation of the state cl
update

e The old state

— With the forgotten
values in the vector

* And the state update
— With update vector

* Are added up —__ Cy = fi *Cy1 + 1 x Cy

c,: subject gender’s
, <, O 05 0. 72 0 67 elstimate value update
Ct = Ct 1 + Ct

cz: (weather) unchaged
2019-11-25 57




How LSTM works? o

e Step4
— Apply activation function to
the output

* Squeeze the values
between -1 and +1

* Done by tanh activation
function
— Selection of the new output
values (Addressing)
* Done by the “Output Gate”

* Not all the state value is
released in each step
Ot

* OQOutput Gate decides which
values are relevant in this step

J(Wo [ht—laxi] + bo)
ot * tanh (C})

g
|

2019-11-25 58



Output gate
might enables

— All values
of C,

— Fraction of
C, (sparse)
— None of C,

C,can be

sparse

2019-11-25

Output vector can be sparse

tanh(C;) =

- 0.2 7

0.98
—0.97
—0.1
0.98

0.8
0.2
0.3

—0.99
0.8

L 0.7 -

Values are
bounded

o =1 0.8

10.017
0.85
0.75

0.1
0.2

0.1
0.1
0.02
0.9

L (0.8 A

Enabling factor:

h: = o; * tanh(C;) =

Enabled values

are red

0.83

L 0.63 A

Output vector:
Enabled values are red

—0.73

0.64

0.72

Disabled values (gray)
will appear on the
output, but with
reduced values



LSTM network

e General form of an
LSTM network

9
HRERc

\_J%
®

2019-11-25 60



& ® ®
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+
—q-@-—bo
Q
EREE 2
7Y
>
>
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Gradient calculation in LSTM

Reformulating equations

s N

Ct—1 = ﬂi e 1— e Ct =
- f
e Input 7

W—> _I—> * il Forget ht 1

"'g—'_> i Output| © 33t

ht1 » stack 0 - . — h & CeII Net \9 tanh

NG 4 * t / =f xci_1+ix*g

ht = 0 * tanh(ct)



Gradient calculation in LSTM

t-1 <«

v

\

2019-11-25

Backpropagation from c, to
c,, only elementwise
multiplication by f, no matrix
multiply by W

1 o
f - o W (h‘t—1>
0 o Tt
g tanh
Ct:f *Ct_1+’l:*g

ht = o = tanh(c;)

63



Gradient calculation in LSTM

Uninterrupted gradient flow!

-
C.- == k=i =C——(C, rir = ——C

0 t T T t 3
f f f
i i

- 1L _— _— L
w g_l_. * tainh wW * tafh w g ~ * talnh
—— > stack ——* stack ——* stack
t 0O————————*> x —> htj—b— t? O————————*> %x —*> htj—b— IT O——————*> x —> htj—b—

e Though we multiply the memory content with a smaller than 1 number
 And the W matrix is part of the memory update
e But it still preserves the content for longer time
* Asit comes from the name: It is a elongated time short term memory

2019-11-25




Achevements with LSTM networks

e Record results in natural language text compression %c'\'\/\

* Unsegmented connected handwriting recognition Q‘U’V"‘

* Natural speech recognition a7 Go g|e 2
*  Smart voice assistants Translate

— Google Translate
— Amazon Alexa
— Microsoft Cortana

— Apple Quicktype

* 95.1% recognition accuracy on the Switchboard corpus, incorporating a
vocabulary of 165,000 words

— Continuous spontaneous English native speech

2019-11-25 65



Variants of LSTM | : Peephole connections

* Introduced by Gers &
Schmidhuber (2000)

* All the three gates receives
input from the previous
state and the input

* Since output can be sparse
this version has more i
information for gating

— addressing and weighting
fo =0 Wy [Cer,hi—1, 2] + by)
it = 0 (Wi [Ce—1,he—1,2¢] + b;)
2019-11-25 Ot = O (Wo-[Ct, hi_1, xt] + bo) 66




Variants of LSTM 11 : Joined forget and input

* Input and forget gates

has practically the
same role
* Why not to join them?

Ct:ft*ct—1‘|'(1_ft)*ét

2019-11-25 67



Gated Recurrent Unit (GRU)

Another variant of LSTM h4

Introduced by Kyunghyun Cho
(2014)

he—1

There is no separate State and
Output

Only three neural nets

At GRU the output will not be
sparse (not gated)

Similar performance in music
and speech signal modelling and

Learns faster for smaller data set

2019-11-25 68



How GRU works?

Concatenate h,; and X,

Calculate the Input Gate —

Suppress the values to be
forgotten in h;;
(get sparse memory vector)

Calculate the joint Forgot and
output Gates

Gate h,; ~—

Calculate function of the Cell
Network

1y = o(W,[heoq, x¢])
zy = o(Wylhe_q, x¢])
Calculate the new output (h,) he = tanh(W,.[ry * hy_q, x,])

Gate i~lt_1

2019-11-25 he = (1 —2z) *hy_1+ z; * h;
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PPKE-ITK: Neural Networks — famous architectures

Administrative announcements

Replacement paper-based test 17. 12. 9:00, Room 418
* papiros pot ZH - dec. 17 9:00, 418-as terem

* Early exam 17. 12. 9:00, Room 419
* The invited students will be emailed acknowledged this week
Early exam - dec. 17 9:00, 419-es terem,
érintettek a héten megtudjak meg

* Project presentation - 17. 12. 11:00, Room 418
Projekt bemutatas - dec. 17 11:00, 418-as terem

* Computer-based test - 19. 12. 9:00
Géptermi ZH - dec. 19 9:00

* Computer-based replacement test TBA, early January
Géptermi pot TBA, ~januar eleje

* Oral Exams are already in the Neptun system

Vizsgaiddpontok a Neptunban We are considering to create a
list of the participants, to reduce

waiting time for the oral exam.
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Neural Networks

Classification - decision
FNN, SVM - linear classification

Is X larger than a limit? X>k?

Finding a good feature representation:
* Meaningful
* Sparse - low dimensions

* Ensures easy separation

Feature space

Finding the representation with the help
of machine learning

Convolution
Kemel
-1 =1 =1
-1 8 =1
-1 -1 -1

0
n
W
&
=

100
130
i

Input Image Feature Image
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Convolutional neural networks
* A network of simple processing elements

 Elements:
* Poolin
e Convolution * RelU ¥
. ifer ‘ 1 0 2 3
Convolution
Kemel 4 6 6 8 6 8
-1 =1 -1 3 —)
-1 8 -1 | RN I
1 - 4 n .. 2 4

e Selection of the

maximal
Thresholding all response in an
values below area

Zero

Low layers Middle layers High layers
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Convolutional networks

Assume, | have a problem to solve.

Ok, but how many layers do we need?
How many features should be in each layer?

What should be the network architecture?
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Convolutional networks

Assume, | have a problem to solve.

Ok, but how many layers do we need?
How many features should be in each layer?

What should be the network architecture?

These are called hyper-parameters:

Along with: non-linearity type, batch-norm, dropout etc.
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Convolutional networks

Assume, | have a problem to solve.

Ok, but how many layers do we need?
How many features should be in each layer?

What should be the network architecture?

These are called hyper-parameters:

Along with: non-linearity type, batch-norm, dropout etc.

We can use a network which performed fairly well on an
other dataset

It will probably work well on our task too




Alexnet
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Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton (2012)

Trained whole ImageNet (15 million,22,000 categories)

Used data augmentation (image translations, horizontal reflections, and patch extractions)

Used ReLU for the nonlinearity functions (Decreased training time compared to tanh) -
Trained on two GTX 580 GPUs for six days

Dropout layers

2012 marked the first year where a CNN was used to achieve a top 5 test error rate of
15.4% (next 1t3q1st entry was with error of 26.2%)

Input data Convl

55X 55 X 96

227% 227 % 3

Conv2

27X 27 x 256

Conv3 Conv4
13x13x 384 13x 13 x 384

Convs Spatial pyramid pooling

FC6 FC7 FC8

—E-)—<

13%x 13 x 2565

pool scale 2

Y

_pool scale 3__

4096 4096

class number



As the spatial size of the input volumes at each layer decrease (result of the conv and pool layers),
the depth of the volumes increase due to the increased number of filters as you go down the
network.

Shrinking spatial dimensions but grwoing depth

3x3 filters with stride and pad of 1, along with 2x2 maxpooling layers with stride 2
224 x224x3 224x224x64

7.3% error rate

Simple architecture, still the 112 x 128

swiss knife of deep learning
E 56|X 56 X 256

28 X 28 X512 7TXTXx512

14 x 14 x 512 1x1x%x4096 1x1x1000
£ J £ u s J—

@ convolution+ReLU

@ max pooling
~] fully connected+ReLU

tﬁ softmax
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Google - Inception arhcitecture

&~ - O
2 M
des et (‘3“

X

Labels Text Colors Safe Search JSON Response

Road 94%
* GoogleNet:
22/42 layers (9 inception_v3 layers)
5 million free parameters —
~1.5B operations/evaluations ——
Demo:https://cloud.google.com/vision/

Infrastructure 66%
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Inception module

Convolution
Pooling

9 similar inception_v3 layers

Concat/Normalize|

16
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Inception
|dea:
o Not to introduce different size
Google, Christian Szegedy kernels in different layers, but

introduce 1x1, 3x3, 5x5 in each
layers, and let the Neural Net
This can be thought of as a “pooling of features” figure out, what representation is
because we are reducing the depth of the the most useful, and use that!

volume, similar to how we reduce the dimensions
of height and width with normal maxpooling

2014 with a top 5 error rate of 6.7%

Parallel multi-scale approach.

layers.

number of

filters
AlexNet: 60 million param et

P 1X1 Filter
concatenation
VGGNet: 1800 million /?\
GooglLeNet / Inception-v1 1 3X3 1x1 3x3 5x5
convolutions convolutions convolutions
5x5
In the retina, different kernel Previous layer

sizes operate parallel.

17
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Rethinking Inception

Squeezing the number of
channels for each kernel

With the concatenations, the
number of features
increased in each layers,
which introduced too many
convolution.

To reduce these numbers,
they introduced the 1x1
layer.

It can generate e.g. 16
feature maps from 64 feature
maps

>
1x1 conv.
Rescale the
depths

-

Filter
concatenation

1x1 convolutions

3x3 convolutions

5x5 convolutions

Naive idea of an Inception module

1x1 convolutions

&

Previous layer

Filter
concatenation

e _

3x3 max pooling

Max Pooling
introduces a
“non-linear”
winner take all
function

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

§

[

1x1 convolutions 1x1 convolutions 3x3 max pooling

Full Inception module

Previous layer
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Rethinking Inception

Larger (5x5) convolutions were substituted by series of

3x3 convolutions

Advantages:

1. Reduction of number of parameters,

2. Additional non-linearities (RELUs) can be introduced

Filter Concat

5x5 3x3 1x1
i i i v
1x1 1x1 Pool %

Figure 4. Original Inception module as described in [20].

Base

A [
[/ ] R
/?z’ I )
."'.!Ir{ l\'x \‘\
e | NEENG / /
Vi | NN {
A | LN ] /
/A P /
4 [ [y / y
Filter Concat
3x3
i
3x3 Ix3 1x1
i i 1
121 1x%1 Pool 1x1

Base
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Rethinking Inception

Larger convolutions were substituted by series
of 3x3 convolutions

2D convolution were substituted by two 1D
convolutions

Filter Concat

Pool

1x1

[\
AlexNet: 60 million parameters / // //
VGGNet :180 million parameters
GooglLeNet / Inception-v3: 7 million parameters
Filter Concat
Filter Concat
3x3
5x5 3x3 1x1 T
i i i 3x3 3x3 1x1
1x1 1x1 Pool b i i i
\/ 1x1 1x1 Pool | | 1x1
— “hMHH“mhhh 4E§i::::jlﬂ;ﬁ,ﬂfﬂ‘_ 1x1 1x1

Figure 4. Original Inception module as described in [20].

Base

Base




Revolution of Depth
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/’

X

Engines of
visual recognition

N

J

34

shallow

-—
p—
— -
-— -

HOG, DPM

PASCAL VOC 2007 Object Detection mAP (%)

58

16 layers

-
a—
- -

AlexNet VGG
(RCNN) (RCNN)

21
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How deep could/should a network be?

History of network depth

Before 2012: four layers

22
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How deep could/should a network be?

History of network depth

Before 2012: four layers
2012: 8layers

AlexNet, 8 layers
(ILSVRC 2012)

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

(_

3x3 conv, 384

<

3x3 conv, 384

3x3 conv, 256, pool/2

23
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How deep could/should a network be? Eﬂ
VGG, 19 layers : —— - :
History of network depth (ILSVRC 2014) v

| 3x3 conv, 128 |

-

3x3 conv, 128, pool/2 |

-

3x3 conv, 256 |

Before 2012: four layer
2012: 8layers
2014: 19 layers

-

3x3 conv, 256 |

-

3x3 conv, 256 |

e

3x3 conv, 256, pool/?2 |

<

3x3 conv, 512 |

-

3x3 conv, 512 |

-

3x3 conv, 512 |

3x3 conv, 512, pool/2 |

-

3x3 conv, 512 |

-«

3x3 conv, 512 |

-

3x3 conv, 512 |

-

3x3 conv, 512, pool/2 |

—

O
o
(ap)

—h

D
o
o

-«

= sl s

—+

O
o
o
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How deep could/should a network be?

History of network depth

Before 2012: four layer
2012: 8layers

2014: 19 layers

2016: 19-22 layers
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How deep could/should a network be?

History of network depth

Before 2012: four layer
2012: 8layers
2014: 19 layers
. 2016: 19-22 layers
- Deeper network:
Possibility to approximate more complex functions

Higher number of parameters

26
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How deep could/should a network be?
History of network depth

Before 2012: four layer
2012: 8layers
© 2014: 19 layers
= 2016: 19-22 layers
Deeper network:
Possibility to approximate more complex functions

Higher number of parameters

There are no convolutional networks with more than 30 layers. Why?
The amount of transfered data is decreased from layer to layer

Training becomes difficult

27
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Is a deeper network always better?

A deeper network would have higher
approximation power

Higher number of parameters (both advantageous
and disadvantageous)

Difficult to train the network

28
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Is a deeper network always better?

A deeper network always has the potential to perform better, but training
becomes difficult

After a given depth, the same network with the same training on the same data,

CIFAR-10
train error (%) test error (%)

20r 207
hﬂAf\f 56-layer

56-layer

20-layer
20-layer

0 | 23 4 5 6 0 1 23 4 5 6
iter. (1ed) iter. (1ed)
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Is a deeper network always better?

A deeper network always have the potential to perform better, but training
becomes difficult

We can not just simply stack convolutional layers to increase accuracy
The backpropagated error will be smaller than the floating point accuracy limit.

The gradient will be disappear. The information will not pass the first layers,
because there will be random noises on the weights, and they will not be trained.

ImageNet-1000
56-layer
44-layer 0B —
9 32-layer 9
= g
S < 34-layer
5" 20-layer = 40 / Y
o -~ | |
| e solid: test/val s 13-layer
0 | 2 3 | 5 6 ‘ I 0 10 20 30 40 50
o (1oh) dashed:train e (of
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How deep could a network be?

R —

Ul

Residual networks provide an answer to these questions

, {101 layers }
Revolution of Depth . cestet 2 lovers =

/ (ILSVRC 2015)

/86
Engines of / ;
. - 66 ;l )
visual recognition - y =
/ =
34 / j
B :

‘ 8 layers ’ )

{ shallow \ . — -

HOG, DPM AlexNet VGG ResNet
(RCNN) (RCNN) (Faster RCNN)*

"

RN

b

Ry

R

&

et

il

; e

PASCAL VVOC 2007 Object Detection mAP (%)

—y

RSN

34
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How could we create deeper networks?

A deeper network always have the potential to perform better, but training
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even

increase it)?
a shallower

model

Let’s start with a shallow model (18 layers) and
(18 layers)

add some extra layers (which we hope could
increase accuracy)

35
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How could we create deeper networks?

A deeper network always have the potential to perform better, but training
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even
increase it)?

a shallower
Let’s start with a shallow model (18 layers) and model
add some extra layers (which we hope could (18 layers)

increase accuracy)

'

Our aim is to add ol

“‘useful” operations H(x) t weight layer
_ any two

The problem is that stacked layers l relu

H(x) can ruin our

accuracy because weight layer

vanishing gradients,

overfit - extra l relu
parameters H (JC)

36
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How could we create deeper networks?
A deeper network always have the potential to perform better, but training
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even
increase it)?

The trick is to use residual connection and as a

a shallower
starting point F(x) could be zero, and H(x) model
becomes the dientity mapping (18 layers)

So H(X) will not change

our performance, X
gradients will remain,

because the addition of weight layer
X F(x) l relu
Our accuracy will no be ,
decreased, and might We'ght Iayer

even be increased if we
find a proper F(x) H(x) — F(x) +x

37
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Residual networks

Results: Deeper residual networks result higher accuracy

CIFAR-10 plain nets
S —

/ 56-layer
44-layer
L 32-layer

20-layer

solid: test
dashed: train

CIFAR-10 ResNets
e ———
ResNet-32
== ResNet-44
==ResNet-56
= ResNet-1 1]
20-layer
32-layer
44-layer
56-layer
ks 110-layer
. i ST T £
4 5 b
iter. (1ed)
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Results with ResNets 34-layer residual

image
Revolution of Depth 252
152 Iayers\ '
A
\
\
\
\ 16.4
\
\
\
\ 11.7 Y
’ 22 layers ’ ‘ 19 layers ‘ 7x7 conv, 64, /2
\ 6«7 13 *
l,/2
. 28 T i, 3x3 conv, 64
ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10 Y

ResNet ~ GoogleNet VGG AlexNet 3x3 conv, 64

ImageNet Classification top-5 error (%)
3x3 conv, 64

Y

3x3 conv, 64
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Results with ResNets

ResNets had the lowest error rate at most competitions since 2015

1st places in all five main  tracks

* ImageNet Classification:  “Ultra-deep” 152-layer nets
* ImageNet Detection: 16% better than2nd

* ImageNet Localization: 27% better than2nd

* COCO Detection: 11% better than2nd

» COCO Segmentation: 12% better than2nd

40
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GoogleNet Inception v4

Inception architecture applied to residual networks

Sofirmanx Cralpol: 1002
I Relu activation
o ul fkeen 0.8 Cratpat: 1102
ropa {I ep 0.8) 2
Average Pooling Sk e
| 1x1 Conv
1 Gulzet a2 (2% Limar}
5 x Inception-resnet-C o o
| 3x3 Conv
Cralal: Bxbix! 74 {32}
Reduction-B wlpl: Ealte TH2 o I
(32)
o 3x3 Conv 3x3 Conv
___ 13121 ‘121
Ohuiput RE: - 111 Cunv 1x1 cnﬂv
Reduction-A 2 <
5« Inception-resnet-A uloat: Mot
' Relu activation
Slarm Guloal Mais

Input (2552 5HE)

EFm Iy

a1
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Efficiency of Neural Networks

Inception-v4
= X tion
Inceptiog ceptl
DenseNet-2( ResNet-101 ResNet-152
DehseNet-16 ¥ ResNet-50 ; VGGI10
ey & “DenseNet-121 VGG-16
g ResNet-34
M I 7
— bi eNet vl
R 707 ﬂ ResNet-18
>
© GoogLeNet
= E
§ 65 P fd-MoblleNet
e
Q BN-NIN
i ShuffleNet
60 A 5M 35M 65M 95M 125M 155M
SqueezeNet
~ BN-AlexNet
55 1 AlexNet
50 Y T . T
0 10 20 30 40

Operations [G-Ops]
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Efficiency of Neural Networks

12 - Requirements to use a network

Accuracy
10 Industry: above 90%

8. Speed

Self driving car: real-time

6 1 |OT:
battery based operation:
low power, cheap hardware

Top-1 accuracy density [%/M-Params]

ol wm O

B I R O U PN L Ly
NSNS AN, o &Bﬁ I Oy &
W Qe Qe ((BY ¥ (®
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MobileNet

Scaling in feature map depths.

In this arhcitecture feature depths are squeezed

before each operation

In a squeezed architecture we
will use downscale the 128
feature maps to 16, using a
linear combination (1x1
convolution)

After the 3x3 covolutions, we
expanded back to 128 layers
by 1x1 convolution again

From the linear combination of
these elements the new maps
are created

MobileNetV2 building block

f Transformation

Bottleneck
Input

(=

" Bottleneck

@ Output



PPKE-ITK: Neural Networks — famous architectures

ResNext

* Group convolution:

* Dividing the feature mapes into two groups, and apply
the convolutions to each groups separately

* The number of convolutions will be halved

H

W

C,

¢, filters

h,

Hr";

C, RelU

* normal convolution block:

- C inputs, c_outputs

. c102number of kernels

o N

¢, filters

group convolution block:

2x(c./2) inputs, 2x(c_/2) output
« 2x(c./2 ¢ /2 )=c c/2 number
of kernels

“ifg

*2fg

Rellt

4
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Channel -
Shuffle

ShuffieNet
j——Channels — = Channels — = Channels————
Input
GConv1
Feature
GConv2 | | Lol
Output
(@) (b) (c)
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SqueezeNet

In this arhcitecture depths are squeezed before each
operation

The expand is done by the concatenation of the 1x1 and
the 3x3 convolutions.

Advantage: the expand layer is saved.

e
soueel——
" 1x1 convolution filters \\\
y,

e

lobal awgpool

g
"labrador
retriever

dog"

Figure 2. The SqueezeNet architecture
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SqueezeNet

In this arhcitecture depths are squeezed before each

operation

CoONvi

1
Paoll

Fira8 F';""
I Fired
Firal '“;“

| Fira$

Squeeze Net

mE=

. g

L

86 channels

52
! ! «— Squeeze Layer
-7 e2-2

16
] l | <— Expand Layer

e s

Output
Concat/Eltwise

128

Fire Module

global auwgpool

"labrador
retriever

dog"

Figure 2. The SqueezeNet architecture
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SqueezeNext

In this arhcitecture depths are squeezed before each
operation

In a SqueezeNext architecture
we will use a linear
approximatine of 128 feature
maps, using 16 independent
feature maps

From the linear combination of
these elements the new maps
are created

1x1 Conv
Squeeze

1x1 Conv 3x3 Conv
Expand Expand

Output
Concat/Eltwise

49
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Neural networks for regression

Age estimation
The output is not discreet classes or pixels, but continuous values

The network structure can remain the same but a different loss function
and differently annotated dataset is needed.

Hard to interpret the error in common tasks.

E.G: Age estimation on images:

50
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Neural networks for regression

Multiple object detection on a single image

Classification is good for a single object (can be extended for k objects —
top k candidates)

How could we detect objects in general, when the number of objects is
unknow

Classification Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK
N w

4

N B e R MMiildfimla Aliassntes
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Traditional method

Sliding window over the image

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

We might have objects in different scales

Ny

Slidign windowds in different scales, aspet ratios

Resutls a heat map —» detect the objects: non-maximum suppression

2. Heatmap Result

o —

- I

—_—

e |
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Object detection as regression

RCNN
Single Shot Object Detector (SSD) (2016 March)

You Only Look Once YOLO (2016 May)

Classification Instance
+ Localization

Classification Object Detection

Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK
N w

4

N B e R MMiildfimla Aliassntes
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R-CNN

Region proposal CNN network
Separate the problem of object detection and calssification
It consists of three modules.

The first generates category-independent region proposals. These proposals define the set of
candidate detection avail-able to detector.

The second module is a large convolutional neural network that extracts a fixed-length feature vector
from each region.

The third module is a set of class- specific linear SVMs

R-CNN: Regions with CNN features

warped region P aeroplane? no.
———————————— ]—— A ——,: .
== 5 =& person? yes.
_______________ CNN™ :
V" o=y 1L % Q| tvmonitor? no.
1. Input xtract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions .
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. classifier

- 2k scores 4k coordinates kanchor boxe
Faster R-CNN .. | | | -

cls layer reg layer g

e
proposals / 'V,
: e 7 2N
Region proposal from a network — ' emmeilale ek
fl.iﬂl!]l'r,‘ maps

Region Proposal NetwOrk:’
| L]

conr layer , sliding window
Possible region refinement at the end 4 conv feature map

Step 3 and 4 are standard CNN implementations

Extra layers for region proposals

R-CNN: Regions with CNN features
=] warped region

L

aeroplane? no.

person? yes.

i At

: el - tvmoni.tor? no.
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions
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SSD
Single shot object detector SSD (2016 March)

Has a fixed resultion and the last feature maps (with different scales) can be considered
as maps of bounding boxes

On these maps each pixel represent a fixed size bounding boxes. (Each feature map
represents a certain box size.

A high pixel value represent high probability of the centerpoint of a detected object.

T
- | (e | P
A BHEEEIE
SHERCE

e [ | I i
!:||_JI||: ||I|———Il:!
{__h T T A I_L:_____LPJ

I||[_|||: -,‘)I n

T i o s b

L o= =(F=

Qe Yioc: A(cz. cy. w. h)

S _c::)nf t (c1,¢2, -+, r-p}_

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Problem: Unlike at R-CNN, the boundix boxes have fixed
scale and positions, no fine turning in the last step.
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SSD arhcitecture

Extra Feature Layers
h

f
Classifier | Canv: J3u] 2aiClagsas+4))

Corm
{FOE)

\{i

Classilier © Comy, JxIxEx(Classes+d))

\ B

TConv: 3x3x1024 Conv: 1x1x1024 Conv: 114256  Conv: 1x1x1Z8  Comv: 1x1x12B Ah'uF'uulinu:GIubaﬂ_
Conv: dedx512-52 Conv: Idx256-52 Conv: Ix3n256-52

Goma zE Comd_2

Detectlons: 7308 per Class |

MNon-Maximum Suppression

72.1mAP
S58FPS

(a) Image with GT boxes

J---J-
o i
_|______I—.
== Y o
I —
T 1 "
i =i '’
B Lq::?h '—fr————-}PJ
-— | | _ = 5] e —al R T e HEF |
t ' ""/)I - m . -l
1 o~ A =

|
LI .

Yioc: Alex, ey,
conf : (c1, co,

v, h)

o

(b) 8 x 8 feature map (c) 4 x 4 feature map
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YOLO, Detectnet

Models detection as a regression problem:

Divide the image into a grid and each cell can vote
for the bounding box position of possible object.
(Four output per cell for the corner positions.)

L

Boxes can have arbitrary sizes

5 xS grid on input Final detections

Each cell can proposes a bounding box one category
(more layers, more categories per position).

Class probability map
Non-suppression on the boxes
. _ Handles
No need for scale search, the image is processed once and oclusion

objects in different scales can be detected

i LT A ol T
s L ',: AR LRI T b R -1 —
4 Pl R T RIS 1
Fal - B F
3 « i P EEE -
- 2 A S '
2 :
i, it -k =
L A
i |
Be i - -
anru AL i
.

[
|
: ollx vl : n $
1 |
(k) ! : H
i

I L
1
I ¥
----- |
Resize The Image Divide The Image Train The Network 1st- 20th Channels:  Last 4 Channels:
And bounding boxes fo 448 x 448. Into @ 7 x 7 grid. Assign detections to To predict this grid of class probabilities  Class probabilifies Box coordinafes
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Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognitiore1
2016.
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How unified detection works?

ngd on input ':' ;.‘ r— -. Etec'jﬂm

Class probability map

confidence scores: reflect how confident is that the box contains an object+how accurate the box
is .

Pr (Object) * IOUPHI
conditional class probabilities: conditioned on the grid cell containing an object

Pr(Class;|Object)
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How unified detection works?

5x gd on input

Class probability map

truth

i = Pr(Class;)  IOUSHY

Pr(Class; |Object) * Pr(Object) % IOU pred

* Attest time, multiply the conditional class probabilities and the individual box
confidence predictions

* giving class-specific confidence scores for each box

* Showing both the probability of that class appearing in the box and how well the
predicted box fits the object
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Pixel level segmentation

The expected output of the network is not a class, but a map representing the pixels
belonging to a certain class.

&~ - O
2 M
des et (‘3&

Creation of a labeled dataset (handmade pixel level mask) is a tedious task

More complex architectures are needed (compared to classification)

Popular architectures (Sharpmask, U-NET ...)

Wsky Btree [Wroad [Worass [Pwater lloidg  lmntn  [lfg obj.

SharpMask: Learning to Refine Object Segments. Pedro O. Pinheiro, SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL
Tsung-Yi Lin, Ronan Collobert, Piotr Dollar (ECCV 2016) NETS AND FULLY CONNECTED CRFS Liang-Chieh Chen et al. ICLR 2015
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Sharpmask

(c) proposed network (d) refinement module

SharpMask network architecture

65
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U-net

input
image
tile

572 x 572

64 64
128 64 64 2
output
segmentation
| O o @
al o o & map
o @ e - 4
=l x
O] &
=] ©
g
*L?BLEB
256 128
2l B E
HE EE
oI Uy o 1
' 256 256 512 756

= copy and cro
512 512 1024 512 Py P

bl — $max ool 212
8 2§ i 45 B 4 up-conv 2x2
e

& B = conv 1x1
M
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Mask RCNN, RetinaNet

These networks generate bounding boxes and sematnic segmentation maps simultanously

They can be trained on images having lables for only one or both types of output

Faster R-CNN
class
box
conv L
Instance .

seamentation
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Mask RCNN, RetinaNet

These networks generate bounding boxes and sematnic segmentation maps simultanously

They can be trained on images havmg lables for only one or both types of output

e

ww 1 UD .puloﬂ%‘ésﬂﬁ U%u

umbrelia. 87

persorf giprela.o7 : 00 umbrolla, nsummula 99 gy -"#"”‘}Wm
umbw la.
— L SuTboard1,00: i urfhgar,
SHI8Y o gon.9 & HIIMI-W;. an mrmn'::: A ol o im wu.a.ﬁ_!_ dm_ p-w-

g BB
beckpatk S5 | uaeksack 96 Pcia

hnnlh:ﬂ"

T

baseball bat.E5

bicycie 93

1 baseball bat. 88dog1.00,

Frisbes.00

person.Bo

L3
dining tabie. 78484 "1 |-
chair/@5 _wine olagg,

S eup g1

ghairay chalr.87 o glasa gt
wine glass. 93
‘cup.91

\ pottéd plant.8 - person Biner S T
Delsc;\l\'l.ﬂﬂ ” LR por=n.Ba § ‘1 Joo A
| e = , persanis
persan1go | '

bottle.87

‘ Ll
wine gliss S {
dining tabke 95 wlnuhhmﬁ 'i o

)

Wil glass1.00



PPKE-ITK: Neural Networks — famous architectures

Starting from scratch
(if you do not want to use one of the famous networks)

Neural architecture search:

Networks can be described as a series of operations

As series of words — text
We can feed a Recurrent network with this data series

(1,357 (1357 (1.23] [(1.2.3] [24.3648,64)

Number Filter Filter Stride Stride Number . Filter
“ lof Filters|. | Meight [, | width [, | Height [. | width [. of Filters]. | Height [\

I A A

- “
- II l'i
v . WA
> & ' — &
Layer N-1 Layer N Layer N+ 1

371236

Filter He@b’h’l Filter Width ~ Stride Helghl Stride Width Number of Filters
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Starting from scratch

Neural architecture search:

Networks can be described as a series of
operations

As series of words — text

The parameters of each layer can be described
as numbers The input(s)/outputs(s) of the layer
can be Ids

The whole network can be described as a graph

add

PPKE-ITK: Neural Networks — famous architectures

concat

add

max

3x3

sep
3x3

avg
3x3

iden
tity

layers {
bottom: "conv1”
top: "conv1"
name: "reluQ”
type: RELU
}
layers {
bottom: "conv1”
top: "cccp1”
name: "cccp1”
type: CONVOLUTION
blobs _Ir: 1
blobs_Ir: 2
convolution_param {
num_output: 96
kernel_size: 1
stride: 1

2 M
des et (%&
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Starting from scratch

Neural architecture search:

Networks can be described as a series of
operations

As series of words — text

The parameters of eahc layer can be described
as numbers The input(s)/outputs(s) of the layer
can be Ids

The whole network can be described as a graph
We have a problem space where we have text

as an input and an accuracy number as an
output

add

PPKE-ITK: Neural Networks — famous architectures

concat

add

max

3x3

sep
3x3

avg
3x3

iden
tity

layers {
bottom: "conv1”
top: "conv1"
name: "reluQ”
type: RELU
}
layers {
bottom: "conv1”
top: "cccp1”
name: "cccp1”
type: CONVOLUTION
blobs _Ir: 1
blobs_Ir: 2
convolution_param {
num_output: 96
kernel_size: 1
stride: 1

2 M
des et (%&
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Starting from scratch

Neural architecture search:

Networks can be described as a series of
operations

As series of words — text

The parameters of eahc layer can be described
as numbers The input(s)/outputs(s) of the layer
can be Ids

The whole network can be described as a graph
We have a problem space where we have text

as an input and an accuracy number as an
output

We can train an RNN for regression, which
approximates the accuracy of a given network

add

PPKE-ITK: Neural Networks — famous architecture

concat

add

max

3x3

sep
3x3

avg
3x3

iden
tity

layers {
bottom: "conv1”
top: "conv1"
name: "reluQ”
type: RELU
}
layers {
bottom: "conv1”
top: "cccp1”
name: "cccp1”
type: CONVOLUTION
blobs _Ir: 1
blobs_Ir: 2
convolution_param {
num_output: 96
kernel_size: 1
stride: 1
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Starting from scratch

Neural architecture search:

Networks can be described as a series of
operations

As series of words — text

We can turn the problem around:

HU

A recurrent network can be trained with
reinforcement learning which can train a
network with predifined accuracy on a given
dataset.

This recurrent network will understand the effect = | IBB

of the elements on this dataset 3x3 3x3

Test accuracy On CIFAR-10: /'&

96 : 35 % sep max sep SEep iden SEep s&p max
=7 Jx3 x5 Jx3 fity 3x%3 ox5 3x3

Best pervious accuraccy: & o _/

96.26

This architecture os also 1.05 times faster (less
computations) @

73
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Starting from scratch

Neural architecture search: The important in this is that a network
Networks can be described as a series of could design another network, and could
operations reach as good performance as human.

As series of words — text

We can turn the problem around:

HU

A recurrent network can be trained with
reinforcement learning which can train a
network with predifined accuracy on a given
dataset.

2 M
des et (‘&&

This recurrent network will understand the effect | IBB

of the elements on this dataset 3x3 3x3

Test accuracy On CIFAR-10: /'&

96 : 35 % sep max Sep SEep iden Sep sS&p max
=T Jx3 Hx5 Jx3 tity Jx3 ox5 3x3

Best pervious accuraccy: & o _/

96.26

This architecture os also 1.05 times faster (less
computations) @
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https://arxiv.org/abs/1603.08695

PPKE-ITK: Neural Networks — famous architectures &,i%

EfficientNet (2019) = owider
#channel ! —r—
hends e - | ——

deeper : :
—
deeper
— | | |

B e ——

T 1 higher i _-,--higher
} resolution HXW % . resolution N _+_resolution
(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

* Scale the width, the depth, and the resolution uniformly!

* Can be used for any existing architecture, and the efficiency will be significantly
better with the same performance

* EfficientNet-B7 achieves stateof-the-art 84.4% top-1/ 97.1% top-5 accuracy on
ImageNet, while being 8.4x smaller (number of parameters) and 6.1x faster on
inference than the best existing ConvNet.

* Best performance can be reached by using NN to generate the optimal baseline ConvNet.
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EfficientNet (2019)

EfficientNet-B7
7 different scaled o4 dall- o
version of EfficientNet. A"."OE':E’S_GT A=
. ®
(BO, B1, ... BY) . _27 NASNetA ..+ SENet
2 S
= | [P L7 T
s | I 7 T ResNeXt-101
= "
o o 7 et Inception ResNet-v2
{ , - o*
- v
-8_ ¢~ Xception
=781 [ -
6 I e oResNet-152 TOBI Acc. #Params
= ResNet-152 (He et al., 2016) 77.8% 60M
-, Bb DenseNet =L EfficientNet-B1 79.2% 7.8M
o s ResNeXt-101 (Xie et al., 2017)] 80.9% 84M
£ 761 | EfficientNet-B3 81.7% 12M
| ResNet-50 SENet (Hu et al., 2018) 82.7% 146M
I g NASNet-A (Zoph et al., 2018) | 82.7% 89M
I EfficientNet-B4 83.0% 19M
741 & nceptlon V2 GPipe (Huang et al., 2018) | 84.3% 556M
NASN et A EfficientNet-B7 84.4% 66M
"Not plotted
TFiesNet—[34

0 20 40 60 80 100 120 140 160 180
Number of Parameters (Millions)
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EfficientNet (2019)

EfficientNet-B7
7 different scaled o4 dall- o
version of EfficientNet. A"."OE':E’S_GT A=
. ®
(BO, B1, ... BY) _27 NASNetA ..+ SENet
Q 821 27 et
o | s 0000 L amr e
O R
s | I 7 T ResNeXt-101
EfficientNet-B1 — o 801 ”
. —_§ Ince tion-ResNet-v2
is 7.6x smaller and <~ g
5.7x faster than by
ResNet-152. Qo
6 oResNet-152 TOBI Acc. #Params
= ResNet-152 (He et al., 2016) 77.8% 60M
o B’J Bensoiel2on EfficientNet-B1 79.2% 7.8M
o s I ResNeXt-101 (Xie et al., 2017)] 80.9% 84M
ET761 1 - EfficientNet-B3 81.7% 12M
I - ResNet-50 SENet (Hu et al., 2018) 82.7% 146M
I, NASNet-A (Zoph et al., 2018) | 82.7% 89M
I ; EfficientNet-B4 83.0% 19M
741 & Inception-v2 GPipe (Huang et al., 2018) | 84.3% 556M
NASNet-A EfficientNet-B7 84.4% 66M
) "Not plotted
ResNet-34 . . . . . T
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)
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Visualizing the Decision of
Neural Networks

Soma Kontar & Andrds Horvath

Budapest, 2019.12.10
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Administrative detalls

The replacement paper-based test will be on 17 December

The midterm project code submission deadline is Friday, 13 Dec 23:59 via uploading to a shared
Google Drive folder (the link will be posted later on the course website)

The midterm project presentations will also be on 17 December
The computer based test will be on 19 December

We will discuss the details of the early exam with the participants in the break
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Disclaimer

The slides are based on the lectures titled visaulizing and understanding Neural Networks at
Stanford. Created by Justin Johnso, Andrej Karpathy and Fei-Fei Li.
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Neural Networks

» Classification - decision

* FNN, SVM - linear
classification

Is X larger than a limit? X>k?

* Finding a good feature
representation:
* Meaningful
* Sparse - low dimensions
* Ensures easy separation

Finding the representation with the help Input space Feature space
of machine learning

Convolution
Kemel
-1 =1 =1
-1 8 =1
-1 -1 -1

100
0
120 A
10
G

Input Image Feature Image
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Convolutional neural networks
* A network of simple processing elements

e Elements:
, * Pooling
 Convolution * RelU
| ge 1 0 2 3

Convolution

Kemel 4 6 6 8 6 8
-1 =1 -1 ; _)
-1 8 - | RN I
bk n R

; ;, Selection of

the
Thresholding maximal
all values response in
an area

below zero

Low layers  Middle layers High layers
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Conqguest of neural networks

Neural networks work great in various problems

They are capable of solving complex practical tasks

MR or T I [“l.
e
Sw Wi e My

2 pgpaaiug

Classification R Ry |
7 ox
“ewini
s
i — m KR o
Segmentation i :gf.i;—}sﬁfn
5 L L

Reinforcement learning

Image captioning
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Image captioning

“A train is on the tracks at a station”

— CAR
— TRUCK
— VAN
' ] [] — Bicyete
FULLY
INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU POOLING paten FULLY - sortmax
FEATURE LEARNING CLASSIFICATION
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Image captioning

“A train is on the tracks at a station”

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FL

J
~ e

FEATURE LEARNING

B> @
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MSCOCO

&~ - O
2 M
des et (‘3"

a snowboarder jumping over snow indoors
with the coca-cola logo in the background.

person on a snow board up in the air
inside of a building

a man is jumping over two coca cola
signs.

a room filled with fake white snow under
stickers.

fake snow inside a snowboarding facility of
some sort



-
MSCOCO

G =0
2 )
Q'es et (‘&&

a picture of a computer screen featuring the
face of a movie actor.

a computer screen on a table showing a
man's face.

here is actor mark wahlberg on skype with
someone at a home laptop.

a laptop computer with marky mark on it's
screen.

a laptop is open and the screen shows
mark wahlberg.

10
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Neural Network results

https://arxiv.org/pdf/1411.4555.pdf

Vision Language

Deep CNN Generating
RNN

{6

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

11
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Neural Network results

‘man in black shirt is playing ‘construction worker in orange ‘boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard.”

‘man in blue wetsuit is surfing on
wave."

- B A

“girl in pink dress is jumping in "black and white dog jumps over “young girl in pink shirt is
air." bar.” swinging on swing."

12
Credits: Fei-Fei Li, andrej Karpathy
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A refrigerator filled
with lots of food and
drinks




Not so good...

https://arxiv.org/pdf/1411.4555.pdf

PPKE-ITK: Neural Networks — famous architectures

Vision Language

Deep CNN Generating
RNN

{6

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

15
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Understanding decisions

&~ - O
2 )
des et (‘3"

If we can understand (or even trace back) network decision we will be able to see if the network managed
to grasp the important features in the dataset

Right for the Right
Reasons

Wrong

Baseline: Our Model:
A man sitting at a desk with A woman sitting in front of a
a laptop computer. laptop computer.

Lisa Anne Hendricks*, Kaylee Burns*, Kate Saenko, Trevor Darrell, Anna Rohrbat;thNomen
also Snowboard: Overcoming Bias in Captioning Models
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What is going on inside a convnet?

Filter visualization

Display the filters what the network has learned

B I I
EEREEEEE
I T O

il Elkl- R
"R ANLTI Y

-1 471 E"'

il FE
~HI=FA0 -
RN EELE
1.0l m [

ResNet-18: ResNet-101:
64 x3X7Tx7 64 x3 X7 X7

AlexNet:
64 x 3 x 11 x 11

Good to display the first layer(s)

The functionality of higher layer kernels is difficult to see

DenseNet-121:
64 x3 X7 X7

17
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What is going on inside a convnet?

Filter visualization

Display the filters what the network has learned

1A 1:1 11
EL.aEFEEL.]

i = HA
111=FAI0 rJ-

lLﬂﬁn.:ﬂ

T 'lj'li ]

il |

ResNet-18: ResNet-101:

A 1*I1ﬂ -!ll' -

DenseNet-121:
64 X3 X7TX7 64 X3 X7 X7 64 X3 XT7TXx7
AlexNet:
64 x3x11x 11 http://users.itk.ppke.hu/~horan/CNN/convnetjs/convnet.html

Good to display the first layer(s)

The functionality of higher layer kernels is difficult to see

18
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Displaying the decision space of the network

In higher layer kernels work in an abstract spaces

We can not really understand functionality just by visualizing the kernels

Unfortunately these kernels are closer, more determining in the decision than the first layers

Work closer to the image

space Really important in
Kernel visualization is decision, kernels work in
good an abstract space
XZ& — CAR
— TRUCK
— VAN
" e : 7
' ,,/"" & : . 5
' i L O [] — BicYcLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX

CONNECTED

Y Y

19
FEATURE LEARNING CLASSIFICATION
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Finding activations

Visualizing activations
Instead of visaulizing the kernels we could visualize activations

Kernel visualization is good, because it is input independent. For this we need an input image

convl pl nl1 conv2 p2 n2 conv3 conv4 eomvd p5 fcB fc7 fe8 prot

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. 20
Figure copyright Jason Yosinski, 2014. Reproduced with permission.



.
Finding activations

Visualizing activations
Instead of visaulizing the kernels we could visualize activations

Kernel visualization is good, because it is input independent. For this we need an input image

convl pl nl1 conv2 p2 n2 conv3 conv4 eomvd p5 fcB fc7 fe8 prot
Activations should be sparse in a high
layer

If a neuron is never/always active, it is
not good

Responses should be specific

The same neuron should fire for similar
inputs

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. 21
Figure copyright Jason Yosinski, 2014. Reproduced with permission.
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)

space

INPUT

\
N

|

CONVOLUTION + RELU

POOLING CONVOLUTION + RELU POOLING

FLATTEN

Really important in
decision, kernels work in

an abstract space

— CAR
— TRUCK
— VAN

|:| |:| — BICYCLE

FULLY
CONNECTED i

~

FEATURE LEARNING

R

CLASSIFICATION

22
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)

space

We can not plot this high-dimensional space, but:

INPUT

T

|

CONVOLUTION + RELU

POOLING CONVOLUTION + RELU POOLING

FLATTEN

Really important in
decision, kernels work in

an abstract space

— CAR
— TRUCK
— VAN

|:| |:| — BICYCLE

FULLY
CONNECTED i

~

FEATURE LEARNING

~

CLASSIFICATION

23
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Finding activations

Visualizing activations
Instead of visaulizing the kernels we could visualize activations

Tensorboard is a great tool to display activations/weights

| layer1/activations | layer1/bias | layer1/layer

. 60

-0.008 -0.004 0.000 0.004 0.008 2.0 1.0 0.0 1.0

| layer4/bias | layer4/layer

0.004 -0.002 0.000 0002 0004 0.006 4

layer1/weights

025 -015 -0.05 005 015 025 035

I layer4/weights

2
O

AALL v
=\ \A'—- \/A!
@Q\\‘\!\"} 7,\%
20 AN 7 Y/ V/\Wh\g /\\,,A\\\ 20
60 W\ ! /,/ 7, \’\\\ 60
100 o
0.4 02 00 02 04

24
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Finding activations

Visualizing activations
Instead of visaulizing the kernels we could visualize activations

Tensorboard is a great tool to display activations/weights

Se3

uptlmlser.-'gmdlentsfnurlm'c:i.n’blases 0 |-nptlmm&rfgrnd;&nts.fnmnhfclifwmglm 0 Inptimiseﬁ'gmdiemxhral.n'c:i.fbiases 0
Ca La

l optimizer/variables/norm/cd/biazes_0 | optimiserfvariables/narm/c2 fweights_0 I optirmises/variables/val/cd/biases 0

_—

e

I optimiser/gradients/val/c3/weights_0

—an 1]
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

We can not plot this high-dimensional space, but:

We can plot nearest neighbours: Select an input image, and find the closest n image in this space (if
they are similar the network grasped something important)

Testimage L2 Nearest neighbors in feature space

26
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

We can not plot this high-dimensional space, but:

We can plot nearest neighbours: Select an input image, and find the closest n image in this space (if
they are similar the network grasped something important)

Recall: Nearest neighbors
in pixel space

A= XTINE
) - 5 £ I
= - BB
grdag & »
- ASEE
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Finding activations

We can find those images in the dataset which will maximize its activation

28 128
7
13
W S
sl [ I
| ﬁ 13 dense’
s
128 Max
Max 128 Max pooling

pooling pooling
48

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.

2048

ens

Jgoas \dense

1000

2048

28



H PPKE-ITK: Neural Networks — famous architectures

Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

- .\
' -

—

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 29
reproduced with permission.
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Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)
And find those images in the dataset which will maximize its activation

.A'|

11! TR .l lé

’l‘\ r;q

../A

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 30
reproduced with permission.
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Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)
And find those images in the dataset which will maximize its activation

With this method one can easily find the typical element for a class

0 5 10 15 20 25 0 5 10 15 20 25

0 5 10 15 20 25 0 5 10 15 20 25

31
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Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation
With this method one can easily find the typical element for a class

Or find those elements where the classifier was “uncertain”

60112115 2]A

A ¥

)
e~
—_—
—
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024)
space

We can not plot this high-dimensional space, but:

We could project this data into a lower-dimensional subspace
Really important in
decision, kernels work in
an abstract space

>
ral¥

— TRUCK
— VAN

' A ‘\7 : . .
'// - L] L]
' F o ] [] — BicYcLe
INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU POOLING FLaTeN FULLY - soFtmax

Y Y

FEATURE LEARNING CLASSIFICATION
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Dimension reduction

PCA/Autoencoder

T-SNE
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Dimension reduction

PCA/LDA/Autoencoder

T-SNE
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Dimension reduction

PCA/LDA/Autoencoder

T-SNE
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Dimension reduction

PCA/LDA/Autoencoder

T-SNE

https://cs.stanford.edu/people/karpathy/tsnejs/




-
Typical examples

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?
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Gradient Ascent

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

Normal training

Input Image - Given Expected Label - Given

Network parameters - Variables

— CAR
— TRUCK
— VAN

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COFNL:-EETED SOFTMAX

i Y

FEATURE LEARNING CLASSIFICATION

|j |j — BICYCLE
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Gradient Ascent

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

The gradient ascent method

Input Image - Variable Expected Label - Given

Network parameters - Given

— CAR
— TRUCK
— VAN

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COFNL:-EETED SOFTMAX

i Y

FEATURE LEARNING CLASSIFICATION

|:| |:| — BICYCLE
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Gradient Ascent — activation maximization

We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

0 1 2 3 4
5 6 7 8 9 2
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Gradient Ascent

Generate a synthetic image that maximizes the response of a neuron.

o

This image has to be ,natural’. The response should not depend on pixels and can not have arbitrary
values

- Guassian blur on the image
- Clipping image values

- Clipping small gradients to O

[* = arg max, [f(I)] +|R(I)

Neuron value Natural image reqularizer
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Gradient Ascent

Intermediate Layers

Layer 5

Layer 4

Layer 2 Layer 3

‘ . I ‘=) s
.
. I )&
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Gradient Ascent

Classes

beer bottle

entertainment

lampshade

cardoon

monitor

strawberry

breakwater

golf ball

mosque

orange

breastplate

golfcart

motor scooter

pineapple

pirate

grand piano

planetarium

hourglass

bubble

cinema

sarong

cowboy boot

schooner
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Gradient Ascent

Using a network which can learn feature inversion

lipstick

running shoe water jug pool table ~  broom

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016 46
Figure copyright Nguyen et al, 2016;
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Gradient Ascent

Using a network which can learn feature inversion

Code Image
L : Forward and backward passes
AN N — LQE\._-\QR---\K----}- = candle
. o i ks kot bbb IR 1T = banana
u9 u2 c2 c3 c4 N\ cb - .
ul c == convertible
fc6 upconvolutional convolutional - - fc8
\ . ) fc6 fc7
Deep generator network Y J
(prior) DNN being visualized

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016;
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Gradient Ascent

Finding the maximizing patterns for each kernel

Making sense of these activations is hard because we usually

work with them as abstract vectors:

a,,=[0,0,0,0,31.4,0,0,0,49.0,0,0,0, ...

With Feature visualization, however, we can transform this
abstract vector into a more meaningful "semantic

dictionary".

https://distill.pub/2018/building-blocks/

48



H PPKE-ITK: Neural Networks — famous architectures

Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image

49
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Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image
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Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image

51
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Neural Style Transfer

An interesting application of the gradient ascent method is neural style transfer

Could we use an input image and transform it into the style of an other input image?

https://demos.algorithmia.com/deep-style/
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Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?
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Neural Style Transfer

https://tenso.rs/demos/fast-neural-style/

Style transfer works, but It requires a lot of time, to generate an image.

Many forward and backward passes are needed.

Style
image

Output
image
(Start with
noise)

Content
image

Style Target

Ys

£¢,re1u1_2 £¢,relu2_2 £¢,re1u3_3 E¢>,relu4_3

style style style style
'Y 'Y ) 'Y 'Y

|

|

|

|

I

|

|

|

Loss Network O

________________ I e

LA J
g¢,relu3_3
feat

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and
Super-Resolution”. ECCV 2016. Copvriaht Sprinaer. 2016. Reproduced for educational purposes.
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Neural Style Transfer https://tenso.rs/demos/fast-neural-style/

&~ - O
¢ N
Q'es et (‘L&

Style transfer works, but It requires a lot of time, to generate an image.
Many forward and backward passes are needed.

We could train a network that learns the result of this iterative transformation, and tries to
predict it. Only a single pas is needed.

Style Target £¢,re1u1_2 €¢,relu2_2 gd),reluB_B €¢,relu4

= style style style style
-------------- y S 'Yy ' 'Y Y

. " Loss Network 0)
» eqb,!“e?lu.B_S
Content Target feat

Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016

Figure copyright Springer, 2016. Reproduced for educational purposes.
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Neural Style Transfer

We have a loss function for content:
Can the same objects be found on both images?

Content loss, Perceptual loss: this is a distance between the two embedded image
vectors in the last features layers

Style loss:

Can the same low level features, edges structures, simple patterns be found on both
images

Style loss: Distances between lower level representations of the images

56
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Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

More weight to < > More weigh
content loss style loss
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Neural style transfer with Cycle Consistent GANs

Monet
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Fast Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?

Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves

features connected to style?

Output
image
(Start with
noise)

Content
image

Style Target

Ys

£¢,re1u1_2 £¢,relu2_2 £¢,re1u3_3 E¢>,relu4_3

style style style style
'Y 'Y ) 'Y 'Y

|

|

|

|

I

|

|

|

Loss Network O

________________ I e

LA J
£¢,relu3_3
feat

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and
Super-Resolution”. ECCV 2016. Copvriaht Sprinaer. 2016. Reproduced for educational purposes.
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Adversarial Samples for Neural Networks

Optical lllusions for neural networks
Special, constructed elements, which can not be found in the normal

Input set
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Adversarial attacks

We have a high number of parameters to be optimized

An even higher-dimensional input

The network works well in practice, but can not cover all the possible inputs
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Adversarial attacks

We have a high number of parameters to be optimized

An even higher-dimensional input

The network works well in practice, but can not cover all the possible inputs

One can exploit that there will be regions in the input domain, which were not seen during
training
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Adversarial noise

| have a working well-trained classifier:

Hidden
{ \
Outpn
[ )

VV /[ /777

[INNEENNEA

[Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessi
examples. arXiv preprint arXiv: 1412.6572
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Adversarial noise

What should | add to the input to cause
misclassification:

The noise is
generated by
gradient descent
optimization

VV /[ /777

[INNEENNEA

\ /7]

[ INEEEEEEA

[Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessi
examples. arXiv preprint arXiv: 1412.6572
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Adversarial noise

A special, low amplitude additive noise:

The two images are the same for human perception

4 .007 =

sign(V,J(8,z,y)) Esignl:vz-;[ﬂgmuyﬂ

*gibbon”
99.3 % confidence

The noise is
generated by
gradient descent
optimization

VV /[ /777

[INNNNEEEA
\VNEEEEN |

[ INEEEEEEA

[Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessi
examples. arXiv preprint arXiv: 1412.6572
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Adversarial noise

Knowing a trained network one can identify modifications (which does not happen
in real life), which change the network output completely

correct +distort ostrich
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Adversarial noise - does not work in practice

Knowing a trained network one can identify modifications (which does not happen
in real life), which change the network output completely

Luckily this low amplitude noise is not robust enough in real life (lens distortion and
other additive noises)
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Sticker based adversarial attacks

High intensity noise concentrated on a small region of the
iInput image:

k I
C,;=N I+Z Sti(xi,yi,wi,hl.)+z Stj(xj,yj,wj,hj)
j=1

Parameters are the positions (x,y) and size (w,h) of the
stickers

Eykholt, K., Evtimov, |., Fernandes, E., Li, B., Song, D., Kohno, T., ... & Tramer, F. (2017). Note on Attacking Object Detectors with Adversarial Stickers. arXiv
preprint arXiv:1712.08062.
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Sticker based adversarial attacks

High intensity noise concentrated on a small region of the
input image:

k 1
C,=N I+Z Sti(xi,yi,wi,hi)+z Stj(xj,yj,wj,hj)

i=1 j=1
Parameters are the positions (x,y) and size (w,h) of the
stickers

It was shown that these attacks are robust enough to be
applied in practical applications

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv
preprint arXiv:1707.08945.



|
H PPKE-ITK: Neural Networks — famous architectures

Sticker based adversarial attacks

High intensity noise concentrated on a small region of the
iInput image:

k 1
C,;=N I+Z Sti(xi,yi,wi,hl.)+z Stj(xj,yj,wj,hj)
i=1 j=1
Parameters are the positions (x,y) and size (w,h) of the
stickers

It was shown that these attacks are robust enough to be
applied in practical applications

Does this mean that convolutional neural networks can not
be used in critical problem in practice anymore?

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv
preprint arXiv:1707.08945.
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Sticker based adversarial attacks
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Understanding decisions

We might be interested in case of a single sample, what triggered the decision of the network

The network only outputs probabilities. Could we display why the network made this decision?
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Reasoning by occlusion

We might occlude part of the input image.
If the decision does not change - the occluded part was unimportant

If the decision changes - the part was important, The importance of the part is proportional with the
change

True Label

: Afghan Hound
P W

P
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Reasoning by importance

Occlusion maps are good
Calculating an occlusion map takes a lot of time

Could we calculate the importance of each pixel in the decision?
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Reasoning by importance

Could we calculate the importance of each pixel in the decision?

Forward pass: regular computation

Backward pass: Computing the gradient
of (unnormalized) class score
Taking their absolute value and max over

RGB channels
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Reasoning by importance

Calculating e the importance of each pixel in the decision?

Right for the right reasons

76
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Reasoning by importance

Calculating the importance of each pixel in the decision?

Right for the right reasons

1] 1
25 25
&0 50
75 75
104 100
125 125
150 150
175 175
200 200
0 50 100 150 200 0 S0 100 150 200
hummingbird (94) Grad-CAM
o 0
25 5
50 4 50
75 75
100 100
125 125
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175 175
200 200

0 50 100 150 200
snow leopard (289)

0 50 100 154 200
Grad-CAM

0 0
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1] 50 100 150 200 1] 50 100 150 200
Guided Grad-CAM Saliency Map
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200

175
200

100 150 200
Saliency Map

o 50 100 150 200 ] ]
Guided Grad-CAM
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Reasoning by importance — in practice

It can help people to show them why the network made such a decision

Overall guess: Normal: 50.31, AF: -43.29, Other: -5.65
Ground truth: N

mplitude [mV]
e

Normal rhythm
AF rhythm
Other rhythm

e

http://physionet.itk.ppke.hu/
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Reasoning by importance — in practice

It can help people to show them why the network made such a decision

Overall guess: Normal: -3.62, AF: 6.54, Other: -0.49

Groundltruth: A

0.8
Normal rhythm
AF rhythm
0.6l | Other rhythm
0.4}
S
E
Q
T 0.2}
%_
£
<
ol (IS . %WWM [ MWW
\
—-0.2}

http://physionet.itk.ppke.hu/
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