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• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron



Course requirements: Signature requirements

• Mandatory attendance 80% (lectures and practice sessions)

• Short quiz at every practice session.
– You have to reach at least 60% of all points

• Lab report: one can be skipped

• Paper based test: minimum 50%

• Computer-based test: minimum 50%

9/10/2019 P-ITEEA-0011          Lecture 1 3



Course requirements: Lab Reports
• Lab reports are short summaries of the previous practice session
• You will have to work in teams of 3 (talent program alone)
• Submission: on the main page of the course until 4 am the day before the 

next practice session
• Contents:

– Your names, your email addresses, the time and date of the practice session
– A brief description of the new methods/techniques and their mathematical 

background (if applicable) we used
– A general description of the dataset we used (with examples from the dataset) 

(if applicable)
– If we used any new network architectures, a detailed description of that 

specific architecture.

• You may use Internet, however you must cite that source, else your report 
will not be accepted. The same goes for too similar lab reports.
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Course requirements: Midterm project

• Not mandatory in general
– Mandatory for the talent program

• Required to earn an offered grade

• You will need to apply for it after it is announced

• Once you choose a task, nobody else can, so there will be no 
possibility of changing your task, or cancelling your selection

• You will have to submit an acceptable solution,  otherwise 
your final score will be reduced by 20%
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Course requirements: Tests

• Paper-based test
– 15. October
– Theoretic questions and paper based calculations
– In the time and location of the lecture
– You need to score at least 50% to pass

• Computer-based test
– Considered to be a part of the exam
– The test will be held at the end of the semester, it will be 3-4 hours 

long
– The test will be graded on the spot
– You need to score at least 50% to pass
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Course requirements: Exam and grade
• Exam

– Oral exam

• Offered grade
– Only a 4 or 5 can be received 
– Limits on the offered grades:

> 85% of the short quizzes, the closed-room test

– Midterm project required, final grade depends on it

• Early exam
– There will also be an exam in the first of the exam period (before the 

computer-based test) for those students who excelled most during the 
semester. This exam is invite-only by the lecturers, and if you are 
invited, you are excused from the computer-based test
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Detailed description of the requirements
on the webpage of the course:
http://users.itk.ppke.hu/~konso1/neural_networks

http://users.itk.ppke.hu/~konso1/neural_networks


Outline

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron
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Machine learning, machine intelligence
• What is intelligence?

• The ability to acquire and apply knowledge and skills.

• The definition changes continuously
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Machine learning, machine intelligence
• What is intelligence?

• The ability to acquire and apply knowledge and skills.

9/10/2019 P-ITEEA-0011          Lecture 1 10

Intelligence is the ability to adapt to change

„Stephen Hawking”

Providing computers the ability to learn without being 
explicitly programmed:

Involves: programming, Computational statistics, 
mathematical optimization, image processing, natural 
language processing etc...



Conventional approach

• Trivial, or at least analitically
solvable tasks
– Well established mathematical 

solution exist or at least can be 
derived

• Example:
– Finding well defined data 

constellations in a database
– Formal verification of the 

operation is easy  

Machine learning approach

• Complex underspecified tasks
– No exact mathematical solution 

exists, the function to be 
implemented is not known

• Example:
– Searching for “strange” data 

constellations in a database
– Verification of the operation is 

difficult
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In case of very complex problems, verification of the  operation is very difficult. 
Typically done by exhaustive  testing in case of machine learning.
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Machine learning

We consider each task as an input-output problem
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X: scalar, vector, 
array or a 
sequence of these 
(incl. text)

Y: Decision or scalar, 
vector, array or a 
sequence of these 
(incl. text)

size(X) vs size(Y)
Data reduction
Data generation



Conquests of machine learning
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Arthur Samuel coined the term 
„machine learning”

• 1952 Arthur Samuel (IBM): First machine learning program 
playing checkers



Conquests of machine learning
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First match (1996 Nov): 
Kasparov–Deep Blue (4–2)

Second Match (1997 May):  

Deep Blue–Kasparov (3½–2½)

• 1952 Arthur Samuel (IBM): First machine learning program 
playing checkers

• 1997 IBM Deep Blue Beats Kasparov



Conquests of machine learning
• 1952 Arthur Samuel (IBM): First machine learning program 

playing checkers

• 1997 IBM Deep Blue Beats Kasparov

• 2011 IBM Watson:  Beating human champions in Jeopardy
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It's a 4-letter term for a summit; the first 

3 letters mean a type of simian : Apex

4-letter word for a vantage point or a 

belief : View

Music fans wax rhapsodic about this 

Hungarian's "Transcendental Etudes" : 

Franz Liszt



Conquests of machine learning
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Reached 97.35% accuracy
Human performance is around 97%

• 1952 Arthur Samuel (IBM): First machine learning program 
playing checkers

• 1997 IBM Deep Blue Beats Kasparov

• 2011 IBM Watson:  Beating human champions in Jeopardy

• 2014 Deep face algorithm
Facebook



Conquests of machine learning
• 1952 Arthur Samuel (IBM): First machine learning program 

playing checkers

• 1997 IBM Deep Blue Beats Kasparov

• 2011 IBM Watson:  Beating human champions in Jeopardy

• 2014 Deep face algorithm 
Facebook

• 2016 Alpha go: deep learning
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Fan Hui (5-0)
Lee Sedol (4-1)
99.8% win rate against other Go programs



Deep learning - why now?
1. Appearance of machine learning methods and frameworks, 

optimization know-how, new tools for rapid experimentation
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Deep learning - why now?
1. Appearance of machine learning methods and frameworks, 

optimization know-how, new tools for rapid experimentation

2. New architectures are available for computation
– (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz) 

– (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz,  2560 cores)
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Deep learning - why now?
1. Appearance of machine learning methods and frameworks, 

optimization know-how, new tools for rapid experimentation

2. New architectures are available for computation
– (1980: VIC-20 5kb RAM, MOS 6502 CPU 1.02Mhz) 

– (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz,  2560 cores)

3. Vast amount of data is 
available
– Billions of labeled images 

available quasi free
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Outline

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron
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Copying the brain?

Human 

Brain

Neuron 

biological 

model

Artifical

Neuron

Network(Simplification)

Engineering problem

solving in the field of

Information Theory (IT)

The focus of this curse

Feature extraction

Technology (e.g. VLSI)
Far too complex for 

engineering implementation

Human 

Brain

Neuron 

biological 

model

Artifical

Neuron

Network(Simplification)

Engineering problem

solving in the field of

Information Theory (IT)

The focus of this curse

Feature extraction

Technology (e.g. VLSI)
Far too complex for 

engineering implementation

Artifical neural
network

This is the focus of this course



• Artificial neuron model, 40’s (McCulloch-Pitts, J. von Neumann);
• Synaptic connection strenghts increase for usage, 40’s (Hebb)
• Perceptron learning rule, 50’s (Rosenblatt);
• ADALINE, 60’s (Widrow)
• Critical review ,70’s (Minsky)
• Feedforward neural nets, 80’s (Cybenko, Hornik, Stinchcombe..)
• Back propagation learning, 80’s (Sejnowsky,  Grossberg)
• Hopfield net, 80’s (Hopfield, Grossberg);
• Self organizing feature map, 70’s - 80’s (Kohonen)
• CNN, 80’s-90’s (Roska, Chua)
• PCA networks, 90’s (Oja)
• Applications in IT, 90’s - 00’s 
• SVMs, statistical machines 2000-2010’s
• Deep learning, Convolutional Neural Networks 2010-
9/10/2019 32P-ITEEA-0011          Lecture 1

History of the artificial neural networks
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The artificial neuron (McCulloch-Pitts)

• The artificial neuron is an information processing unit that is 
basic constructing element of an artificial neural network. 

• Extracted from the biological model

Soma

Myelin sheath
Schwann 
cell

Nodes 
of 
Ranvier

Dendrite

Nucleus

Axon 
terminal

McCulloch-Pitts model
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• Receives input through its synapsis (xi)

• Synapsis are weighted (wi)

• if wi > 0 :  amplified input from that source (excitatory input)

• if wi < 0 :  attenuated input from that source (inhibitory input)

• A b value biases the sum 
to enable asymmetric behavior

• A weighted sum is calculated

• Activation function shapes the 
output signal

The artificial neuron

xi : input vector
wki : weight coefficient vector  of neuron k
bk : bias value of neuron k
ok : output value of neuron k
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• Output equation:

• Bias can be included as:
w0=b

x0=1

The artificial neuron

xi : input vector (i: 1….m)
wki : weight coefficient vector  of neuron k
bk : bias value of neuron k
ok : output value of neuron k








 



m

i

kikik bxwy
1



)(
0

xw
T

m

i

ikik xwy  







 



P-ITEEA-0011          Lecture 1



9/10/2019. P-ITEEA-0011          Lecture 1 36

Activation functions (1)

• Activation function: ϕ(.) 
• Always a nonlinear function

• Typically it clamps the output (introduces boundaries)

• Monotonic increasing function

• Differentiable
• Important from theoretical point of view

• Or at least continuous (except in simplified cases)
• Sophisticated training algorithms require continuity
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Activation functions (2)

• Sigmoid (or logistic) function is a widely activation function

• where

xw
T

m

i

ii xwu  
0

𝑦 =ϕ(𝑢) =
1

1+𝑒−𝜆𝑢
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Activation functions (3)
soft nonlinearity hard nonlinearity
(continuously differentiable) 

l  0.1

l  0.5

l  1

l  2

l  5

l        

ϕ(𝑢) =
1

1+𝑒−𝜆𝑢

ϕ 𝑢 =
𝑠𝑖𝑔𝑛 𝑢

2
+

1

2

Step (threshold)function

piece-wise linear 
implementation 
of sigmoid function:



Activation function (4)

• Bipolar activation function: 
tanh

• Continuously differentiable

• Monotonic

• Useful, when bipolar output 
is expected

• Hard approximations:
– Piece-wise

– Step-wise
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Elementary set separation by a single neuron (1)

• Let us use ϕ(.) step nonlinear function for siplicity:

• The output of the neuron will be binary: 

DECISION!

𝑦 = ϕ(𝑢) =
𝑠𝑖𝑔𝑛 𝑢

2
+
1

2
= ቊ

1, if 𝑢 ≥ 0
0, else

𝑦 =ϕ 𝑢 =
𝑠𝑖𝑔𝑛 𝒘𝑇𝒙

2
+

1

2
= ቊ

1, if 𝐰𝑇𝒙 ≥ 0
0, else
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Elementary set separation by a single neuron (2)

• in a 2-D input space, 
the hyper plane is a 
straight line. 

• Above the line is 
classified: +1 (C1: yes)

• Below the line is 
classified : 0 (C2: no).
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Elementary set separation by a single neuron (3)

• Neuron with m inputs has an m dimensional input space

• Neuron makes a linear decision for a 2 class problem 

• The decision boundary is a hyperplane 
defined:

0T
w x
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Why it is so important to use set separation by 
hyper plane? (1)

• Most logic functions has this complexity 
(OR, AND)

• There are plenty of mathematical and 
computational task which can be derived 
to a set separation problem by a linear 
hyper plane

• Application of multiple hyper plane 
provides complex decision boundary 
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• The truth table of the 
logical AND function.

• 2-D AND input space and 
decision boundary

Implementation of a single logical function by a single 

neuron (1)

0

+1

1

1

x2

x1

x2x1 x1 x2
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Implementation of a single logical function by a 

single neuron (2)

• We need to figure out the separation surface!

• Mathematically is the following equation:

w0=-1.5;         w1=1;      w2=1;     

• The weight vector is: 

w = (−1.5, 1, 1).

x1

x2

0
+1

1

1

− 1.5 + 𝑥1 + 𝑥2 = 0

xw
T

m

i

ii xwu  
0

𝑦 =
𝑠𝑖𝑔𝑛 𝑢

2
+
1

2
= ቊ

1, if 𝑢 ≥ 0
0, else

x2x1 x1x2

𝑥0 = 1
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Implementation of a single logical function by a 

single neuron (3)

• Furthermore instead of 2D, we can actually come up with the 
R dimensional AND function. 

• The weights corresponding to the inputs are all 1 and 
threshold should be R − 0.5. As a result the actual weights of 
the neuron are the following:

  T 0.5 ,1, ,1  Rw …
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• The truth table of the 
logical OR function.

• 2-D OR input space and 
decision boundary

Implementation of a single logical function by a single 

neuron (4)

w =(−0.5, 1, 1).

x2x1 x1 OR x2

0

+1

1

1

x2

x1
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Implementation of a single logical function by a 

single neuron (5)

• However we cannot implement every logical function by a 
linear hyper plane. 

• Exclusive OR (XOR) cannot be implemented by a single neuron 
(linearly not separable)

x2x1 XOR x2x1

0

+1

1

1

0

x2

x1



Outline

• Administration: requirements of the course

• Machine learning – Machine intelligence

• Artificial neuron

• Perceptron
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Perceptron
• One or a set of neurons sharing the 

same input

• Typically used for decision making

• Multiple decisions from the same data

• Activation function
– Originally step function

– Sigmoid or Tanh or their piece-wise 
linear approximation is used 
nowadays

– Sophisticated training algorithms 
require differentiable or at least 
continuous functions
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Outline 

• Properties of the perceptron
• Input-output pairs
• Perceptron learning method
• Perceptron learning example
• Proof of convergence
• Good material:

http://hagan.okstate.edu/4_Perceptron.pdf
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http://hagan.okstate.edu/4_Perceptron.pdf
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xi : input vector
wki : weight coefficient vector  of neuron k
bk : bias value of neuron k
ok : output value of neuron k

)(
0

xw
T

m

i

ikik xwy  







 



• Receives input through its synapsis (xi)

• Synapsis are weighted (wi)

• A b value biases the sum 
to enable asymmetric behavior

• A weighted sum is calculated

• Activation function applied

The Perceptron

sign() sigm()



Neural Networks

Perceptron is an Input   Output        device
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As opposed to Traditional Computers 
where

- the math of the functionality is known
- the known math should be programmed

At Neural Networks

- the math behind the functionality is unknown 
- the functionality is “illustrated” with examples



Function illustrated by examples
• Given a set of input-output pairs

xj  dj (xj: input vector;    dj: desired output)

• Number of input vectors
– Finite/limited set (e.g. AND function)

– Equivalent with a look-up-table (LUT), math known
– Mathematically it is correct to define a function by listing all the IO pairs

• Goal: generate a simpler than LUT decision making device through learning

– Infinite/open set (customers of a bank asking for a loan)
– Math behind is unknown, cannot be coded directly

• Goal: generate the function through learning
• It should predict well the output of a previously

unknown/untested input (GENERALIZATION)
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X d

# age gender debt salary

1 25 M(1) 25 100 Y(1)

2 22 F(2) 18 80 Y(1)

3 65 M(1) 3000 200 N(0)

. . . . . .

. . . . . .

X d

# X1 X2

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Good news: we can use the same learning/training method!!!



Linear separability

• Today, we assume that the IO sets are linearly separable

• The decision boundary is a hyperplane 
defined:
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0T
w x

• Positive side of the hyperplane is classified: +1 (yes)

• Negative side of the hyperplane is classified : 0 (no).



How would you 
classify this data?

X2

X
1

Which boundary surface to use, if there are 
many?
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How would you 
classify this data?

X2

X
1

Which boundary surface to use, if there are 
many?
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Any of these would 
be fine..

..but which is best?

X2

X
1

Which boundary surface to use, if there are 
many?
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Maximum Margin:
Define the margin
of a linear classifier 
as the width that 
the boundary could 
be increased by 
before hitting a 
data point.

X2

X
1
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Which boundary surface to use, if there are 
many?



X2

X
1
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Which boundary surface to use, if there are 
many?

Maximum Margin:
Define the margin
of a linear classifier 
as the width that 
the boundary could 
be increased by 
before hitting a 
data point.



What does learning mean?
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• Given an annotated dataset    
xj  dj

• Given the parametric  equation of 
the perceptron

• Goal: find the optimal wopt

weights (parameters), where for 
each j

𝑦 = 𝑠𝑖𝑔𝑛(𝐰𝑇𝐱)

𝑑𝑗 = 𝑠𝑖𝑔𝑛(𝐰𝑜𝑝𝑡
𝑇 𝐱𝑗)
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The learning algorithm: Datasets
• Training set

• Set of input – desired output pairs
• Will be used for training

• Test set
• Used, when we have large set of input vectors (not used today)
• Set of input – desired output pairs
• Will be used for testing and scoring the result

• We assumed that X+ and X− must be linearly separable

• We are looking for an optimal parameter set:

 

 

 :  1

 :  1





  

  

X d

X d

x

x

 

 

T

opt

T

opt

 :  0 ,

 :  0 .





 

 

X

X

x w x

x w x

0

>
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• We have to develop a recursive algorithm called learning, 
which can learn the weight step by step, based on observing 
– the (i) input,

– the (ii) weight vector, 

– the (iii) desired output, and 

– the (iv) actual output of the system. 

• This can be described formally as follows:

The learning algorithm: Recursive algorithm 

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘 → 𝐰opt
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The learning algorithm: Perceptron Learning Algorithm

• In a more ambitious way it can be called 
intelligent, because 
• perceptron can learn through examples (adapt),

• even the function parameters are fully hidden.

• Perceptron learning was introduced by 
Frank Rosenblatt 1958
– Built a 20x20 image sensor 

– With analog perceptron

– 400 weights controlled by electromotors
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The learning algorithm:  Recursive steps

1. Initialization. 
Set w(0)=0 or w(0)=rand

2. Activation. 
Select a  xk  dk   pair

3. Computation of actual response

4. Adaptation of the weight vector

5. Continuation
Until all responses of the perceptron are OK

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝑦 𝑘 = 𝑠𝑖𝑔𝑛 𝑤𝑇 𝑘 𝑥 𝑘



Weight update: very simple example

• Given a 3 input vector example

• Assume that bias is zero
(decision boundary will cross the origo)

• Random initialization
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𝐱1 =
1
2
, 𝑑1 = 1;

𝐱2 =
−1
2

, 𝑑2 = 0;

𝐱3 =
0
−1

, 𝑑3 = 0;

𝐰𝑇(1) = 1 −0.8 ;

Remember: the weight vector is orthogonal 
to the decision boundary!!!
Decision boundary:     x1 - 0.8x2 = 0
Its orthogonal vector is:    (1, -0.8)



Weight update: very simple example

• Test with the first input vector

The result is not OK!  Positive misclassification: Instead of 1, the result is 0!!
(The normal vector points to the positive side of the decision boundary.)
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𝐱1 =
1
2
, 𝑑1 = 1;

𝐰𝑇(1) = 1 −0.8 ;

𝑦1(1) = 𝑠𝑖𝑔𝑛 𝑤𝑇 1 𝑥1 = 𝑠𝑖𝑔𝑛 1 −0.8
1
2

= 𝑠𝑖𝑔𝑛 1 − 1.6 = 0

Idea: add the vector pointing to the 
positively misclassified point to the 
orthogonal vector of the decision 
boundary, to rotate it towards the point!
w(k+1)=w(k)+x1

𝐰𝑇 2 = 1 + 1 −0.8 + 2 = 2 1.2 ;

dj-yj > 0  



Weight update: very simple example

• Test with the second input vector

The result is not OK!  Negative misclassification: Instead of 0, the result is 1!!
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𝐱2 =
−1
2

, 𝑑1 = 0;

𝐰𝑇(2) = 2 1.2 ;

Idea: subtract the vector pointing to the 
negatively misclassified point to the 
orthogonal vector of the decision 
boundary, to rotate it away the point!
w(k+2)=w(k+1)-x2

𝐰𝑇 3 = 2 − (−1) 1.2 − 2 = 3 −0.8 ;

𝑦2(2) = 𝑠𝑖𝑔𝑛 𝑤𝑇 2 𝑥2 = 𝑠𝑖𝑔𝑛 2 1.2
−1
2

= 𝑠𝑖𝑔𝑛 −2 + 2.4 = 1

dj-yj < 0  



Weight update: very simple example

• Test with the third input vector

The result is not OK!  Negative misclassification: Instead of 0, the result is 1!!
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𝐰𝑇(3) = 3 −0.8 ;

Again: subtract the vector pointing to the 
negatively misclassified point to the 
orthogonal vector of the decision 
boundary, to rotate it away the point!
w(k+3)=w(k+2)-x3

𝐰𝑇 4 = 3 − 0 −0.8 − (−1) = 3 0.2 ;

𝑦3(3) = 𝑠𝑖𝑔𝑛 𝑤𝑇 3 𝑥3 = 𝑠𝑖𝑔𝑛 3 −0.8
0
−1

= 𝑠𝑖𝑔𝑛 0 + 0.8 = 1

𝐱3 =
0
−1

, 𝑑3 = 0; dj-yj < 0  



Weight update: very simple example

• Start again:
– Test with the again with the first vector

The result is OK!

– Do not modify!!!

– Test with the again with the second vector

The result is OK!
– Do not modify!!!

– Test with the again with the third vector

The result is OK!
– Do not modify!!!

• Since all input vectors are correctly classified: we are ready
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Formalization of the update rules

• Positive misclassification :  ADD
𝜀 = dj-yj = 1                               w(k+1)=w(k)+xj

• Negative misclassification :   SUBTRACT
𝜀 = dj-yj = -1                                  w(k+1)=w(k)-xj

• Correct classification :    DO NOTHING
𝜀 = dj-yj = 0                          w(k+1)=w(k)

• In general:
w(k+1)=w(k)+ 𝜀 xj
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The learning algorithm:   Adaptation

We were looking for a recursive function:

In general:  

where    is the error function

and 
𝜂 is the learning rate   
(𝜂 controls the learning speed and should be positive)

      k d k y k

 
 

 

1 f  belongs to class X
,

1 if  belongs to class X






 



i k
d k

k

x

x

0

𝐰 𝑘 + 1 = 𝛹 𝐱 𝑘 ,𝐰 𝑘 , 𝑑 𝑘 , 𝑦 𝑘

𝐰 𝑘 + 1 = 𝐰 𝑘 + 𝜀𝜂𝒙𝑗



AND
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Weight update strategy

• Apply all the input vectors in one after the others, 
selecting them randomly

• Instance update
– Update the weights after each input

• Batch update
– Add up the modifications
– Update the weights with the sum of the modifications, 

after all the inputs were applied

• Mini batch
– Select a smaller batch of input vectors, and do with that as 

in the batch mode
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Perceptron Convergence theorem (1)

Assumptions:

- w(0)=0
- the input space is linearly separable, therefore  wo (stands

for woptimal) exists:

- Let us denote   ෤𝑥 = −𝑥

For the proof, see also: Simon Haykins: Neural Networks and Learning Machines,  
Section 1.3: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

1:0:   dxwXx T

o

1:0:   dxwXx T

o

1:0~:
~~   dxwXx T

o

0

http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf


Perceptron Convergence theorem (2)
• Idea: 

– During the training, the network will be activated with those input 
vectors (one after the other), where the decision is wrong, hence non 
zero adaptation is needed: 

– Note: The error function is always positive (               )
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1,1,0)()(:)(   dyjxjwXjx T

1,1,0)()(:
~

)(   dyjxjwXjx T

2

0

0

1



Perceptron Convergence theorem (3)
• According to the learning method: 

• w(n+1)=w(0)+ηx(0)+ηx(1) +ηx(2) +ηx(3)+... +ηx(n)

– where

or

– The decision boundary will be:

ηwTx=0     

which means that η is a scaling factor, therefore it can be choosen

for any positive number. 

Let us use η=1,    therefore ηε=1
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1,1,0)()(:)(   dyjxjwXjx T

1,1,0)()(:
~

)(   dyjxjwXjx T



Perceptron Convergence theorem (4)

• We will calculate in two ways, and give an upper
and a lower boundary, and it will turn out that an nmax exists, 
and beyond that the lower boundary is higher than the upper
boundary (squeeze theorem, sandwitch lemma (közrefogási 
elv, rendőr elv))
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Perceptron Convergence theorem (5)
lower limit (1)
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)(...)1()0()0()1( nxxxwnw 

According to the learning method, the presented input vectors are added up:

Multiply it with wo
T from the left:

w(0)=0

)(...)1()0()1( nxwxwxwnww T

o

T

o

T

o

T

o 

nnwwT

o  )1(

)(0 jxwT

o Because each input vector (or its opposite) were
selected that way.

)(min0
}

~
,{)(

nxwT

o
XXnx 





Perceptron Convergence theorem (6)
lower limit (2) 
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nnwwT

o  )1( We apply Cauchy Schwarty inequality
222

baba T

22
222

0 )1()1( nnwwnww T

o

T 

2

0

22
2

)1(
Tw

n
nw




Lower limit:

Lower limit proportional with n2



Perceptron Convergence theorem (7)
upper limit (1)
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)()()1( kxkwkw 

Let us have a different synthetization approach of w(n+1):

Squared Euclidian norm:

for k= 0 … n

Because each input vector (or its opposite) were
selected that way.

)()(2)()()1(
222

kxkwkxkwkw T

0)()( kxkw T

222
)()()1( kxkwkw 

for k= 0 … n
222

)()()1( kxkwkw 



Perceptron Convergence theorem (8)
upper limit (2)
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Note that there is a telescoping sum in the left hand side.

Summing up the upper term: 

222
)()()1( kxkwkw 

  



n

k

n

k

kxkwkw
0

2

0

22
)()()1(





n

k

kxnwwnw
0

2
)()1()0()1(

Upper limit linearly proportional with n

𝑤(𝑛 + 1) 2 − 𝑤(0) 2= 𝑤(𝑛 + 1) 2

Telescoping sum: σ𝑖=1
𝑛 𝑎𝑖+1 − 𝑎𝑖 = 𝑎𝑛+1 − 𝑎1

Example:σ𝑖=1
4 𝑎𝑖+1 − 𝑎𝑖 = 𝑎2 − 𝑎1+

+𝑎3 − 𝑎2 +
+𝑎4 − 𝑎3 +
+𝑎5 − 𝑎4=
= 𝒂𝟓 − 𝒂𝟏

𝑤(0) 2=0

𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽



Perceptron Convergence theorem (9)
comparing upper and lower limits
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Linear upper limit and squared lower limit cannot grow unlimitedly

nmax should exist

2

0

22
2

)1(
Tw

n
nw




n

2
)1( nw

2

2

0

max


 w
n 

𝑤(𝑛 + 1) 2 ≤ (𝑛 + 1)𝛽
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• Receives input through its synapses (xi)

• Synapses are weighted (wi) (including bias)

• A weighted sum is calculated

• Nonlinear activation function

Single-layer Perceptron

xi : input vector
wki : weight coefficient vector
vk : weighted sum
bk : bias value of neuron k
ok : output value of neuron k

)(
0

xw
T

m

i

ikik xwy  







 


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Single-layer perceptron training: Error correction 

Desired 
output
dk

Error

kkk yd 

kw

• Had a training set (known input desired output pairs)

• xi  di
• Apply the input vector (xi)

• Calculate the output

• If output is false

• Modify the weights according to:

• Operation:
• When error is positive 

the contribution of wkixi should 
be increased

• Convergence is proven in case 
of linearly separable task

kkk xw 

Linear separability requirement is a major limitation of the single layer perceptron!



Multilayer perceptron
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• Different names of Multilayer perceptron 
• Feed forward neural networks (FFNN)
• Fully connected neural networks

• Multilayer neural network
– Input layer
– Hidden layers (one or multiple)
– Output layer
– The outputs are the inputs of the next layer
– Many hidden layers  deep network

• Multiple inputs, multiple outputs
• The output is typically not binary 
• Used practically in all deep 

neural networks! Can solve linearly non-separable problems!



Topology and naming
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• Weights:

• Arrives to the lth layer

• Comes from the jth neuron 

from the (l-1)th layer

• Arrives to the ith neuron of the 

lth layer

)(l

ijw

(1)

20w

y1

(1)

10w

(1)

1yx1

x2

(2)

10w(1)

11w

(1)

22w

(1)

21w

(1)

12w (1)

2y

(2)

11w

(2)

12w

0th layer:
input layer

1st layer:
first hidden layer

last layer:
output layer

)(l

ijw
source
neuron

Destination
neuron

destination
layer



• Sigmoid function

• Continuous 

• Continuously differentiable

• It is used in the output layer of 
the fully connected neural 
network

Activation function I

9/24/2019. 7

xe
xS




1

1
)(



Derivative of sigmoid function I
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quotient rule:

This is the correct result, 
but it is not in a nice form.



Derivative of sigmoid function II
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Much nicer form!

reduction

Multiply out



• Hyperbolic tangent function
• Continuous 

• Continuously differentiable

• It is used in the output layer of the 
fully connected neural network

9/24/2019. 10

)tanh()( xx 

1

-a



x

Activation function II

-1

))tanh(1())tanh(1()(tanh1)( 2 xxxx
dx

d




Activation function III

• Rectified Linear Unit (ReLU) 

– Most commonly used 
nonlinearity in hidden layers of 
deep neural networks

• Derivative of ReLU

9/24/2019 11



• Signal flows through the network progresses left to right

• The output of the network:

• Where the weights are matrices at each layer with different sizes

• Different activation functions for different layers

• Number of layers: L, neurons in lth layer: nl

Operation

9/24/2019. 12

𝑁𝑒𝑡 𝐱,𝐖 = 𝜑(𝐿) 𝒘(𝐿)𝜑(𝐿−1) 𝒘(𝐿−1) … 𝜑(2) 𝒘(2)𝜑(1) 𝒘(1)𝒙

𝑾: 𝒘(𝐿), 𝒘(𝐿−1), …𝒘(1)



Forward (signal) propagation
• Calculate the output of the first hidden 

layer

• Calculate the output of the second hidden 
layer using the output of the first hidden 
layer as the input 

• . . . 

• Calculate the output of the output layer 
using the output of the last hidden layer as 
the input 9/24/2019 13

𝒚(1) = 𝜑 𝒘(1)𝒙

𝒚(2) = 𝜑 𝒘(2)𝒚(1) x,y(k) are vectors
w(k) are matrices

𝒚(𝐿) = 𝜑 𝒘(𝐿)𝒚(𝐿−1)



Usage of Multilayer Perceptron
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• Multilayer perceptrons are used for

• Classification

• Supervised learning for classification

• Given inputs and class labels

• Approximation

• Approximate an arbitrary function with arbitrary 
precision



Classification example
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• Classification of the hand written figures
– MNIST data base: 20x20 binary images
– The output is a one of ten code



• When solving engineering task by FFNN 
we are faced with the following theoretical 
questions:

Approximation

9/24/2019. 16

1. Representation
– What kind of functions can be Approximated by an FFNN?

2. Learning
– How to set up the weights to solve a specific task?

3. Generalization
– If only limited knowledge is available about the task which is to be 

solved, then how the FFNN is going to generalize this knowledge?



• Can it approximate all the function? 

• With what precision?

• The notation || || defines a norm used in F space

Approximation (Representation)
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( )
: ( ) ( , )

0

F
F Net 



  
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 

x
w x x w

F

 ( ) ( , ) , N

p
F Net xx   X

x x w dd



• Theorem (Harnik, Stinchambe, White 1989)

• Every function in L
p

can be 
represented arbitrarily closely 
approximation by a neural net

• More precisely for each

• Since it is out of the focus of the course this proof will not be 
presented here

Representation – Theorem 1

18
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• Theorem:

• Proof:
• Using the step functions: S
• From elementary integral theory it is clear every function can be 

approximated by appropriate step function sequence

Representation – Blum and Li theorem
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 
2

( ) ( ,

0,

) , NF Net x x







 

 

 X
x x w dd

w

2( )F x L



• From elementary integral theory 
it is clear every function can be 
approximated by appropriate 
step function sequence

• The step function can have 
arbitrary narrow steps

• For example each step could be 
divided into two sub-steps

• Therefore we can synthetize a 
function with arbitrary precision

Representation – Blum and Li theorem
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1 if 
( )

0 else
I

X
X


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

x
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i

i
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i
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• This construction …
• … has no dimensional limits

• … has no equidistance restrictions on tiles (partitions)

• … can be further fined, and the approximation can be any 
precise

• 2 dimensional example
• The tiles are the top

of the columns for
each approximation
cell

Representation – Blum and Li construction
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Blum and Li – Limitations

• The size of the FFNN constructed via this method is quite big

• Consider the task on the picture, where there are 1000 by 
1000 cell to approximate the function

• General case: 
~2 Million neurons are needed

• Smoother approximation needs more

• The network architecture is synthetized (constracted), the 
weights are generated

• We are after to find a less complicated architectures

9/24/2019. 22



• Nor minimization task neither construction is possible most cases
• Complete information would be needed about F(x), however it is typically 

unknown

• Known in the input-output pairs only (limited positions in input space)

• Weak learning in incomplete environment, instead of using F(x)

• A training set is being constructed of observations

Learning

9/24/2019. 23

    
2 2

opt 1: min F( ) Net min .. F( ) Net ... N, , dx dx   w w
w x x w x x w

    , ; 1,...,
K

k kd k K  x



• Rather than minimizing the error function

• The approximation is the best achievable 
• F function is known in a limited positions (training set)

Learning
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    
opt

2

1

1
: min

K
K
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K 


w

w x w

    
2 2

opt 1: min F( ) Net min .. F( ) Net ... N, , dx dx   w w
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Unknown system
F(.)

FFNN

-

xk dk

yk

εk

desired output

output

input error signal

wopt

    
2 2

opt 1: min F( ) Net min .. F( ) Net ... N, , dx dx   w w
w x x w x x w

Learning



• The questions are the following

• What is the relationship of these optimal weights?

• How this new objective function should be minimized as 
quickly as possible?

Learning
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 
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• Empirical error

• Theoretical error

• Let us have xk random variables subject to uniform 
distribution

Statistical learning theory
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• xk random variable, where d=F(x)

Statistical learning theory
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Because it is ~ constant due to the uniformity



• Therefore

• Where l.i.m. means: lim in mean

Statistical learning theory
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Weak learning is satifactory!



• Learning based on the training set:

• Minimize the empirical error function (Remp)

• Learning is a multivariate optimization task

Learning – in practice
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• The Rosenblatt algorithm is inapplicable, 
• the error and desired output in the hidden layers of the FFNN is unknown

• Someway the error of the whole network has to be distributed 
to the internal neurons, in a feedback way

Learning
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Error signals

Function signals

Forward propagation of 
function signals and 
back-propagation of 

errors signals



• Adapting the weights of the FFNN (recursive algorithm)

• The weights are modified towards the differential of the error 
function (delta rule):

• The elements of the training set adapted by the FFNN 
sequentially 

Sequential back propagation
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Delta (learning) rule
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• If                       than we have to

increas wkj, to get closer to the
minimum. 

• ∆𝑤𝑘𝑗 = −𝜂
𝜕𝑅𝑒𝑚𝑝

𝜕𝑤𝑘𝑗

• If than we have to

decrease wkj, to get closer to the
minimum. 

• ∆𝑤𝑘𝑗 = −𝜂
𝜕𝑅𝑒𝑚𝑝
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Propagation and back propagation

9/24/2019.
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𝛿1
(2)

𝛿2
(2)

𝛿3
(2)

Forward propagation

𝒚(1) = 𝜑 𝒘(1)𝒙

𝒚(2) = 𝜑 𝒘(2)𝒚(1)

𝐵𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐼

𝜹𝑖
(2)

= 𝜑′ 𝑣𝑖
(2)

𝑒𝑖

𝑣1
(2)

𝑣2
(2)

𝑣3
(2)

𝑣1
(1)

𝑣2
(1)

𝑣3
(1)

𝐵𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐼𝐼 𝛿1
(1)

𝛿2
(1)

𝛿3
(1)

𝜹𝑗
(1)

= 𝜑′ 𝑣𝑗
(2)

෍

𝑘

𝛿𝑘
(2)
𝑤𝑘𝑗
2 = 𝜑′ 𝑣𝑗

(2)
𝜹
(2)
𝒘𝑗
2

Weight update:          ∆𝑤𝑗𝑖
(𝐿)

= η𝛿𝑗
(𝐿)
𝑦𝑖
(𝐿−1)



Back-propagation

• Though we showed how to modify the weights 
with back propagation, its most important value 
that it can calculate the gradient

• The weight updates can be calculated with 
different optimization methods, after the 
gradients are calculated

• Various optimization method can drastically
speed up the training (100x, 1000x)
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Conclusion

• For known functions (according to Blum-Li)
– One can define a Neural Network architecture 
– And generate the weights 
– That it can represent the known function with arbitrary precision

• For unknown but existing function defined by IO pairs (according to 
statistic learning)
– One can find a Neural Network architecture 
– And train the network (optimize the weights)
– Reach arbitrary precision with high number of IO pairs
– The trained network will be able to well predict previously unknown IO 

pairs (generalization)
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Implementing Neural Computing

• For a given task

– Find large representative annotated data set

– Find a suitable network architecture

• Number of layers, neurons, activations, interconnection 
patterns

– Find a learning/training method

• Converges in acceptable time

9/24/2019 38



Literature

• Simon Haykin: 
Neural Networks: 
A Comprehensive 
Foundation

• Page 129-141
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Contents

• Recall 
• Single- and multilayer perceptron and its learning method

• Mathematical background

• Simple gradient based optimizers 
• 1st and 2nd order optimizers

• Advanced optimizers
• Momentum

• ADAM
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Recall:  Single layer perceptron

•

• Decision boundary is a hyperplan

• Simple training method

• Convergence of training was proven

• Good for making decision in linearly 
separable cases

• In more complex decision situation
– It turns out to be a toy

9/30/2019 3
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Recall:  Multi-layer perceptron

•
• Can approximate an arbitrary function with 

arbitrary precision
• The same way, it can implement arbitrary 

decision boundary
• It can be trained even if F (or the boundary 

surface) is not known analytically or not even
fully known

– Statistical learning: It is enough to know 
equally distributed input/output pairs 

• The partial gradient of the network can be also 
calculated for each weight coefficient or hidden 
layer neuron (back propagation)

9/30/2019 4
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• Given:
– Definition of the network architecture

• Topology

• Initial weights

• Activation functions (nonlinearities)

• Training set (xi  yi)

What is learning (training)?

• Goal:
– Calculation of the optimal weight composition: Wopt

1. Having a function to approximate

    
2 2

opt 1: min F( ) Net min .. F( ) Net ... N, , dx dx   w w
w x x w x x w

2.    Having a set of observations from a stochastic process

    
opt

2

1

1
: min

K
K

k k

k

d Net ,
K 


w

w x w

Stochastic process is a 
process, where we cannot 
observe the exact values.
In these processes, our
observations are always
corrupted with some 
random noise.

OPTIMIZATION!!!



Optimization

• Function types:

• Quadratic, in case of regression (stochastic process)

• Conditional log-likelihood, in case of classification (classification process)

• The sum of the negative logarithmic likelihood (probability) is 
minimized

9/30/2019. 6

• Given an Objective function to optimize
• Also called: Error function, Cost function, Loss function, Criterion
• Derived from the network topology and the input/output pairs

    
2

1

1 K

emp k k

k

R d Net ,
K 

 w x w

Θ 𝐰 = ෍

𝑘=1

𝐾

−𝑙𝑜𝑔𝑃 𝐲𝐤 𝐱𝐤; 𝐰



Optimizations
• Here we always minimize the objective function

– Parametric equation
• x are the variables
• w are the parameters

• Optimization targets to find the optimal weights

wopt = min f(x, d, Net(x,w))
goals:

– Acceptable error level
– Acceptable computational time assuming reasonable

computational effort

9/30/2019 7



Mathematics behind: Function analysis 

9/30/2019. 8

• Assumptions
• Poor conditioning

• Conditioning number
(Ratio of Eugen values): 

• Applied functions should be Lipschitz 
continuous or have Lipschitz continuous 
derivate

Conditioning refers to how rapidly a 
function changes with respect to 
small changes in its inputs. 
Functions that change rapidly when 
their inputs are perturbed slightly
can be problematic for scientific 
computation because rounding 
errors in the inputs can result in 
large changes in the output. 
(e.g. Matrix inversion)

j

i

ji 



,
max

nnAxAxf   1)(

2
y-xL)()(,,  yfxfyx

(where:
L is the Lipschitz constant)



Basic idea of Gradient Descent

9/30/2019. 9

• There is a function, where

and

• can be calculated at any 
points, but 

• cannot. 

• Therefore the trace of the light blue line is not known. 

• We have to start out from one point (say x1) and with an iterative 
method, we need to go towards the minimum

)(xf

x

0)(  xf

)(xf

)(xf 
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Which way to go?



Basic idea of Gradient Descent
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• We do not know where the 
curve is

• We know the value at

• We know the derivative at x1

• Which way to go?

• Idea: follow the descending 
gradient!

)(xf

x
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)( 1xf

1x

)( 1xf X

)( 1xf 



Optimization goal is to find the                        position.
(Critical or stationary points) 

Basic idea of Gradient Descent
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• Derivative means for small ε

• therefore

• This technique is called 
Gradient Descent 
(Cauchy, 1847).

)()()( xfxfxf  

   )()( xfxfsignxf 

)(xf
)(xf

0)(  xf

x

0)(  xf

0)(  xf

tangents

0)(  xf



Stationary  points
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• Local minimum, where f`(x)=0, and  f(x) is smaller than all 
neighboring points

• Local maximum, where f`(x)=0, and  f(x) is larger than all 
neighboring points

• Saddle points, where f`(x)=0, and neither minimum nor maximum



Local and global minimum

9/30/2019. 13

In neural network parameter optimization we usually settle for finding a 
value of f that is very low, but not necessarily minimal in any formal sense.
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• In case of a vector scalar 
function

• In 2D, directional derivatives 
(slope towards x1 and x2):

2

21 ),(

x

xxf





x1

x2

1

21 ),(

x

xxf





Multidimensional input functions I



Multidimensional input functions II
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• In case of a vector scalar function

• Gradient definition in 2D

A vector in the in the x1 - x2 plane

RRf 2:


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Multidimensional input functions III
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• The gradient defines (hyper) 
plane approximating the 

function infinitesimally at
point x (x1, x2 )
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Multidimensional input functions IV
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• Directional derivative to an arbitrary 
direction u (u is unit vector) is the slope 
of f in that direction at point x (x1, x2 ):

• f decreases the fastest:

• u is opposite to the gradient!!!

)(T
xu f

cos)(min)(min
221,

T

1, TT
xuxu ff

uuuuuu




Not changing with u

minimum at 180 

New points towards steepest descent:
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x1
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Gradient Descent in multidimensional input case
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• Steepest gradient descent iteration

• ε is the learning rate
• Choosing ε:

– Small constant
– Decreases as the iteration goes ahead
– Line search: checked with several values, and the 

one selected, where f(x) is the smallest

• Stopping condition of the gradient descent 
iteration
– When the gradient is zero or close to zero

 )()()1( nfnn xxx  

x1

x2 )(xf



Jacobean Matrix

• Partial derivative of a vector  vector function

• Specifically, if we have a function 

then the Jacobian matrix

of    is defined such that: 
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2nd derivatives

• 2nd derivative determines 
the curvature of a line in 1D

• In nD, it is described by the 
Hessian Matrix

• The Hessian is the Jacobian 
of the gradient.
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2nd order gradient descent method I 

• 2nd derivative in a specific direction:

• Second-order Taylor series approximation to the function f(x) around 
the current point 

• stepping towards the largest gradient:
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g: gradient at x0

H: Hessian at x0
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2nd order gradient descent method II 

• Analyzing:

• When the third term is too large, the gradient descent step can actually 
move uphill. 

• When it is zero or negative, the Taylor series approximation predicts 
that increasing ε forever will decrease f forever. 

• In practice, the Taylor series is unlikely to remain accurate for large ε, so 
one must resort to more heuristic choices of ε in this case. 

• When it is positive, solving for 
the optimal step
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Simplest 2nd order Gradient descent method: Newton Method

• Replacing                              and differentiating it with       , 
assuming that we can jump to a minima, where:
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Newton optimization: 

Constant0 ½ (∆𝑥)2 ′ → ∆𝑥(∆𝑥)′ → 1



Properties of Newton optimization method

• When f is a positive definite quadratic function, Newton’s 
method jumps in a single step to the minimum of the function 
directly.

• Newton’s method can reach the critical point much faster than 
1st order gradient descent.
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Convex and non-convex functions
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Strongly convex 
function: 
1 local minimum

Non-convex function: 
multiple non-touching 
local minima with 
different values

Non-Strongly convex 
function: infinity local 
touching minima with 
the same values



Local optimization in non-convex case

• Optimization is done 
locally in a certain 
domain, where the 
function is assumed to be 
convex

• Multiple local 
optimization is used to 
find global minimum
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Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm
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What are we 
optimizing here?

• Cost function in quadratic case for
one xi di pair:

ℇ𝑖 = 𝐝𝑖 − 𝑁𝑒𝑡 𝐱𝑖 , 𝐰
2

– Error surface is in the w space

– Error surface depends on the
xi di pair

– Moreover, we do not see the 
entire surface, just  

ℇ and the gradients 
𝜕ℰ

𝜕𝑤𝑖𝑗
(𝑙)
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Error surface for xi di
Error surface for xk dk

When and how to 
update the weights?



Update strategies
• Single vector update approach (instant update)

– Weights are updated after each input vector

• Batched update approach

– All the input vectors are applied

• this is actually the correct entire error funtion, which is used by the original 
Gradient Descent Method

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the entire batch is calculated

• Mini batch approach

– When the number of inputs are very high (104-106), batch would be ineffective

– Random selection of m input vectors (m is a few hundred)

– Updates (Δwij) are calculated for each vector, and averaged

– Update is done with the averaged values (Δwij) after the mini batch is calculated

– Works efficiently when far away from minimum, but inaccurate close to minimum

– Requires reducing learning rate10/1/2019 29

Remember, each 
approach optimizes 

different error surfaces!!!



How learning rate effects convergence?

10/1/2019 30



Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

– Nesterov momentum update

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm
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Stochastic Gradient Descent (SGD) algorithm

• Introduced in 1945

• Gradient Descent method, plus:

– Applying mini batches

– Changing the learning rate during the iteration
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• Sufficient conditions to guarantee convergence of 
SGD:

• In practice:

• After iteration τ , it is common to leave ε constant

Learning rate at SGD
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and
𝜖 is the learning 

rate, also marked 
with 𝜂 sometimes



Stochastic Gradient Descent algorithm

where:  L is the cost function

𝜃 is the total set of 𝑤𝑖,𝑗
(𝑙)

(and all other parameters to optimize) 
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Stochastic Gradient Descent algorithm

• This very elongated quadratic
function resembles a long canyon. 

• Gradient descent wastes time 
repeatedly descending canyon 
walls, because they are the 
steepest feature. 

• Because the step size is somewhat
too large, it has a tendency to 
overshoot the bottom of the 
function and thus needs to
descend the opposite canyon wall 
on the next iteration.
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Momentum I

• Introduced in 1964
• Physical analogy
• The idea is to simulate a unity weight mass
• It flows through on the surface of the error 

function
• Follows Newton’s laws of dynamics
• Having v velocity
• Momentum correctly traverses the canyon 

lengthwise, while gradient steps waste 
time moving back and forth across the 
narrow axis of the canyon.
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Momentum II: velocity considerations

9/30/2019 37

Terminal velocity is applied when it finds descending gradient permanently:



Momentum III
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S

Momentum demo
• What does the parameter of the momentum 

method means, and how to set them?
– https://distill.pub/2017/momentum/
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Nesterov momentum update
• It calculates the 

gradient not in the 
current point, but 
in the next point, 
and correct the 
velocity with the 
gradient over there 
(look ahead 
function)

• It does not runs 
through a 
minimum, because 
if there is a hill 
behind a 
minimum, than it 
starts decreasing 
the speed in time. 
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What if we make the 
learning rate adaptive as 
well, not just the velocity? 



Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

– Nesterov momentum update

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm
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AdaGrad algorithm
• The AdaGrad algorithm  (2011) individually adapts the learning rates 

of all model parameters by scaling them inversely proportional to the 
square root of the sum of all of their historical squared values

• The parameters with the largest partial derivative of the loss have a 
correspondingly rapid decrease in their learning rate, while 
parameters with small partial derivatives have a relatively small 
decrease in their learning rate

• The net effect is greater progress in the more gently sloped directions 
of parameter space

• AdaGrad performs well for some but not all deep learning models
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AdaGrad algorithm

9/30/2019 43

Remembers the
entire history
evenly



RMSP algorithm

• The RMSProp algorithm (2012) modifies AdaGrad to perform better in the non-
convex setting by changing the gradient accumulation into an exponentially 
weighted moving average

• In each step AdaGrad reduces the learning rate, therefore after a while it stops 
entirely!

• AdaGrad shrinks the learning rate according to the entire history of the squared 
gradient and may have made the learning rate too small before arriving at such a 
convex structure

• RMSProp uses an exponentially decaying average to discard history from the 
extreme past so that it can converge rapidly after finding a convex bowl, as if it 
were an instance of the AdaGrad algorithm initialized within that bowl
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RMSP algorithm
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The closer parts of the
history are counted more 
strongly.



ADAM algorithm (2014)

• The name “Adam” derives from the phrase “adaptive moments.”

• In the context of the earlier algorithms, it is perhaps best seen as a 
variant on the combination of RMSProp and momentum with a few 
important distinctions.

• in Adam, momentum is incorporated directly as an estimate of the 
first order moment (with exponential weighting) of the gradient.

• Adam includes bias corrections to the estimates of both the first-
order moments (the momentum term) and the (uncentered) 
second-order moments to account for their initialization at the
origin
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ADAM 
algorithm

9/30/2019 47

r estimates the
curvature of the
gradient

s estimates the
gradient from the
history (moment)

Booth of them are
biased to reduce
anomalies at the
initialization



Video comparing adaptive and non-adaptive 
methods• Three optimizer types are 

compared:
– SGD 

– Momentum types 

• Momentum

• Nesterov AG
– Adaptív

• AdaGrad

• AdaDelta

• RmsProp

• Adaptive ones are the fastest

• SGD is very slow (stucked into 
saddle point)

• https://www.youtube.com/wat
ch?v=nhqo0u1a6fw&t=306s
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Most commonly applied gradient descent 
methods

• Algorithms with changing but not adaptive learning rate
– Stochastic Gradient Descent algorithm

– Momentum algorithm

• Algorithms with adaptive learning rate
– AdaGrad algorithm

– RMSProp algorithm

– ADAM algorithm

• 2nd order algorithm
– Newton algorithm
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Newton’s algorithm
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Newton’s algorithm

• Typically not used, due to the computational complexity

• Parameter space much higher than first order (where it is 
already very high)
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Back propagation

• We have seen last time how to calculate the gradient in a 
multilayer fully connected network using back 
propagation

– The introduced method was based on gradient descent method

• However, being able to calculate gradient, we might 
select any of the above methods, which leads to orders 
of magnitude faster convergence
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Contents
• Recall 

• Optimization
• Analysis of the different methods

• Activation functions
• Various ReLUs
• Softmax 

• Error functions
• Cross-entropy
• Negative log-likelihood

• Regularization
• Batch normalization, 
• Weight regularization
•
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• How to construct an Artifitial Neural Network
– Architecture, parameters, signal propagation, recall (inference)

• How to calculate the local gradient from the error function 
– Error back propagation

• Update strategies
– Batch approach: Error function based on all the

training vectors
(K: Number of all the training vectors)

– Instant update: Error function based on one training vector

– Mini batch approach: Error function based on a random subset of 
the training vectors
(𝑚𝑏 ≈ 200)

We discussed…

𝑒 =
1

𝐾
෍

𝑘=1

𝐾

𝑑𝑘 − 𝑁𝑒𝑡(𝑥𝑘 , 𝑤)
2

𝑒 =
1

𝑚𝑏
෍

𝑘=1

𝑚𝑏

𝑑𝑘 − 𝑁𝑒𝑡(𝑥𝑘 , 𝑤)
2

𝑒 = 𝑑𝑘 − 𝑁𝑒𝑡(𝑥𝑘 , 𝑤)
2

Epoch: One Epoch 
is when the ENTIRE 
training set is 
passed forward 
and backward 
through the neural 
network 
only ONCE.

Epoch: time period
(korszak in 
Hungarian)
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• Once the gradient is known, optimization of 
the network parameters can be done

• Gradient Descent Method

– Always uses the total error function 
(all the training samples are used)

• Painfull to calcualte the gradient in case of 
a very large training set

– Easily stucks in saddle points 

– Stucks in local minima

– Very slow!

As we discussed … )(xf
)(xf

0)(  xf

x

0)(  xf

0)(  xf
tangents
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• Stocastic Gradient Descent (SGD) Method
– Uses a random subset of the training vectors 

(mini batches)

• One update is fast to calcualte

– The objective function changes stocastically 
with the minibatch selection
• More fluctuation in the objective function than in 

case of Gradient Descent

• It helps to come out from local minima and saddles

– Decreases the learning rate during the training 
time to reduce overshoot 

– Still very slow!  (Many update steps are 
needed)

• More advanced optimization methods 
required!

As we discussed …



Comparing adaptive and non-adaptive methods
• Three optimizer types are 

compared:
– SGD 

– Momentum types 

• Momentum

• NAG
– Adaptive

• AdaGrad

• AdaDelta

• RmsProp

• Adaptive ones are the fastest

• SGD is very slow

• https://www.youtube.com/wat
ch?v=nhqo0u1a6fw&t=306s

10/8/2019 6

https://www.youtube.com/watch?v=nhqo0u1a6fw&t=306s


Do we have to reach the global minimum?

• Not really

• Global minimum means: 
Overfitting

• Overfitting: The network 
exactly learned the 
training vectors

• However, it loses the 
generalization capabilities

10/8/2019 7



Overfit
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Losing the generalization capabilities!!!

Overfitting occurs when a model with high capacity fits the noise in the 

data instead of the (assumed) underlying relationship



Network complexity vs. capacity

10/8/2019 9

http://cs231n.github.io/neural-networks-1/

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://cs231n.github.io/neural-networks-1/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Network complexity vs. capacity

• In general, the 
more layers we 
have, and the 
more neurons 
there are, the 
larger the capacity. 

• There is no adequate method to 
predict the required complexity.

• Even if a network is capable to learn a 
task, it is not guaranteed that it will.

10/8/2019 10
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• Architecture of the multilayer fully connected 
neural networks

• Operation of these networks 

• Derivation of the parameters

• Arbitrary function can be 
approximated if the neural 
network is complex enough

Now we understand

How to increase complexity
on a smart way?



No-brainer solution: Increase the number of the hidden layers

10/8/2019 12

• Problems: 

– Number of free parameters are exploding

– Numerical problems arises after using too 
many layers (double precision limit)

• Solution: 

– Try to mimic human brain:

– Use hierarchical architectures!

– Reusable components!

D E E PD E E E PD E E E E PD E E E E E PD E E E E E E P
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Hierarchical architecture of a deep neural network

What are the building blocks of a hierarchical deep neural network?



Components and methods

10/8/2019. 14

• Activation functions

• Error (loss) functions

• Regularization

• Batch normalization

• L1 and L2 regularizations



Why do we need nonlinear activation function in the hidden layers?

10/8/2019 15

x

w0

w1 v2

y1

y2

v2=w1y1=w1w0x=wx

If the neuron is linear:  φ(v1)=v1

The two layers can be combined into an 
equivalent single layer network!

v1

x

y

w=w1w0

On the other hand, we 
could not approximate 
arbitrary kinds of functions, 
only linear ones!

v1=w0x (Summing junctions of layer 1)

v2=w1y1 (Summing junctions of layer 2)

y1=φ(v1) (Output of layer 1)

”Repeated matrix multiplications 

interwoven with activation functions.”

(Karpathy)

y1=w0x



Sigmoid function
• Sigmoid function compresses the output
• Used in classification, 

– The network calculates the probability of the 
yes and the no decisions at the same time

𝑁𝑒𝑡 𝐱𝑘 , 𝐰 = 𝜎(𝐰T𝐱) = 𝑃 𝐲𝑘 𝐱𝑘;𝐰

• Probability of yes decision:

𝑃 𝐲𝑘 𝐱𝑘 ; 𝐰 = 𝜎(𝐰T𝐱)

• Probability of no decision:

1 − 𝑃 𝐲𝑘 𝐱𝑘; 𝐰 = 1 − 𝜎 𝐰T𝐱 = 𝜎(−𝐰T𝐱)

• It generates the probability (𝜙) parameter of a 
Bernoulli distribution: 

𝜎 𝑧 + 𝜎 −𝑧 = 1

• When z is large or small, the derivative of the output 
is minimal (compresses the gradient) 
– It significantly slows down the training when quadratic 

loss function is used
10/8/2019
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Bernoulli Distribution is a distribution 
over a single binary random variable.
(like flipping a coin: head or tail)
It is controlled by a single parameter 
𝜙 ∈ [0,1], which gives the probability 
of the random variable being equal to 1
Pobability of head:

Expectation:

Sigmoid 
function: 

𝜎 𝑧

𝑧

x

y

y= 𝜎 (wTx)



ReLU: Rectified Linear Unit

• Very easy to calculate 
– Implementation is a simple sign comparison 

and replacing with 0 if negative

• Also easy to calculate its derivative
• Also called:

– Ramp function
– Half-wave rectifier

• Orders of magnitude learning speed 
advantage
– Due to non-compressed gradient

• Smooth analytic  approximation is the 
Softplus function

• Asymptotically reaches ReLU

10/8/2019 17
Most used in hidden layers in deep neural networks (as of 2019)!

ReLU Softplus



Dying ReLU problem
• During training it happens that the weight 

composition of a neuron got a certain combination in 
a high gradient situation (when large jump happens 
during the optimization), which leads to generate zero 
output from that point on.
– Happens typically with large learning rate
– E.g. a very large negative value appears in the bias 

position

• That neuron will output zero for each input vector 
from that point
– Irreversible 
– No contribution to the decision 
– A usefull neuron selectively fires to a set of input vector 

having the same properties

• In some bad cases, even 40% of the neurons dies in 
coarse of a long training (Vanishing Gradient problem)

10/8/2019 18

Avoid the absolute zero part!
Introduction of Leaky ReLU.

𝐲 𝐿 = 𝑅 (𝐰 𝐿−1 𝑇𝐲
(𝐿−1)

+ 𝑏 𝐿−1 )=R(v)

∆𝑤𝑗𝑖
𝐿 = η𝑅′ 𝑣 𝑒𝑖𝑦𝑖

(𝐿−1)



Leaky ReLU
• No constant zero output
• Neurons do not die
• Parametric ReLU

– Variation of leaky ReLU
– a is a hyper-parameter:

• Tuned during training

• Leaky ReLUs are not necessarily 
superior than normal ReLU

• It is an option, if normal ReLU is not 
performing well

10/8/2019 19

𝑓 𝑥 = max 𝑥, 𝑎𝑥
𝑤ℎ𝑒𝑟𝑒:
𝑎 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟



ELU: Exponential linear units
• Variation of leaky ReLU

– No constant zero output
– Neurons do not die
– Mean activation closer 

to 0 in the negative 
region

• Obtains higher 
classification accuracy 
than ReLU, but requires 
more computations

• a is a hyper-parameter:
– Tuned during training

10/8/2019 20



SELU: Scaled Exponential linear units

• Variation of leaky ELU

• Two fixed parameters

– Not trained, but 
selected to be fixed 

– 𝜆 is the scaling 
parameter

10/8/2019 21



ReLU6• Variation of ReLU
– Capped at 6

– 6 is a choosable parameter

• Shown to learn sparse 
features faster 

• Turned out to be usefull 
in CIFAR-10 

10/8/2019 22



What do we expect from the activation 
functions?

• Strong nonlinearities to support approximation of wide 
range of functions

• To drive (during training) the individual neurons in the 
hidden layers to a parameter zone where it is 
– Silent for a set of input vectors

– Active for another set of input vectors

• Letting the gradient go through them 

• Work together with the loss function (select them in 
synchrony)

10/8/2019 23



Loss functions
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• Loss function determines the training process
• Tells the net, whether an error is big or small, and penalize accordingly

• There can be other errors, not just the difference of the output and 
the desired output

• Most used loss function types:
• Quadratic, in case of regression

• Conditional log-likelihood, in case of classification 
The sum of the negative logarithmic likelihood is minimized

    
2

1

1 K

emp k k

k

R d Net ,
K 

 w x w

𝐶(𝐰) = −
1

𝐾
෍

𝑘=1

𝐾

−𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰



d=0x=1

• In case of classification, the convergence can be very slow
• Consider the following very simple case

• Case A:  Start the learning from w(0)=0.6, b(0)=0.9 
– Loss function decreases quickly

• Case B:  Start the learning from w(0)=2, b(0)=2 
– Loss function decreases very slowly at the beginning

• Why is that?
– Because the ∆𝑤 is proportional with the gradient

10/8/2019 25

Check out the example!
http://neuralnetworksan
ddeeplearning.com/chap
3.html

Case A

Case B

What is the problem with quadratic loss function in classification tasks?

http://neuralnetworksanddeeplearning.com/chap3.html


Calculation of the gradient
• Loss function: 

𝐿 = Τ1 2 𝑑 − 𝑦 2, where y = 𝜎 𝑤𝑥 + 𝑏

• Gradient, using chain rule:
𝜕𝐿

𝜕𝑤
= 𝑦 − 𝑑 𝜎′ 𝑤𝑥 + 𝑏 x = y𝜎′ 𝑤𝑥 + 𝑏 x

• Case A: w(0)=0.6, b(0)=0.9, x=1, d=0 
– Slope of the gradient is fine: 𝑤𝑥 + 𝑏 = 1.5

– Fast convergence

• Case B: w(0)=2, b(0)=2, x=1, d=0 
– Slope of the gradient is very small: 𝑤𝑥 + 𝑏 = 4

– Very slow convergence

10/8/2019 26

Case A
Case B

Sigmoid with quadratic loss
function leads to very small 
gradient even at large error, 
when the argument of the 
sigmoid is a large value. 



Introducing Cross Entropy
• Idea: replace the quadratic Loss function with a more 

appropriate Loss function: Try cross entropy!

• In general: 

• 𝐶(𝐰) = −
1

𝐾
σ𝑘=1
𝐾 𝑑𝑘 𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 + 1 − 𝑑𝑘 𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘, 𝐰

– Is it always positive?
• dk is either 0 or 1 (binary classification)

– Either the first or the second term is zero

• 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 = 𝜎 𝐰𝐱𝑘 + 𝑏

– The probability is the output of the network 

– Due to the sigmoid, it is between 0 and 1

– Therefore, its logarithm is negative

10/8/2019 27http://neuralnetworksanddeeplearning.com/chap3.html

http://neuralnetworksanddeeplearning.com/chap3.html


Introducing Cross Entropy

• Idea: replace the quadratic Loss function with a more 
appropriate Loss function: Try cross entropy!

• 𝐶(𝐰) = −
1

𝐾
σ𝑘=1
𝐾 𝑑𝑘 𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 + 1 − 𝑑𝑘 𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘, 𝐰

– Is it a good loss function?
Good decision (small loss):

• When dk is 0 and  𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close to 0, than −𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~𝟎

• When dk is 1 and  𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close  to 1, than −𝑙𝑜𝑔 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~𝟎

Bad decision (large loss):

• When dk is 0 and  𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close to 1, than −𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~∞

• When dk is 1 and  𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 is close  to 0, than −𝑙𝑜𝑔 𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 ~∞
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Introducing Cross Entropy

• Why is cross entropy good?

• 𝐶(𝐰) = −
1

𝐾
σ𝑘=1
𝐾 𝑑𝑘 𝑙𝑜𝑔𝑃 𝐲𝑘 𝐱𝑘 , 𝐰 + 1 − 𝑑𝑘 𝑙𝑜𝑔 1 − 𝑃 𝐲𝑘 𝐱𝑘, 𝐰

– Because its partial derivative does not contain 𝜎′

𝜕𝐶

𝜕𝑤𝑗
=
1

𝐾
෍

𝑘=1

𝐾

𝑥𝑗 𝜎 𝐰𝐱 + 𝐛 − 𝑑

– The gradient is proportional with 
the value of the sigmoid, and not 
with its derivative!
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𝜎

http://neuralnetworksanddeeplearning.com/chap3.html


• Assume we have annotated 
input vectors with n different 
classes (MNIST data base)

• Expect a probability distribution 
on the output layer!

– 0 ≤ 𝑦𝑖≤ 1 sigmoid OK!

– σ𝑖=1
𝑛 𝑦𝑖 = 1 sigmoid NOT OK!
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Probabilistic decision (n discrete categories)

ReLU ReLU Sigmoid?

Softmax

xi



Softmax
• Mathematically:

– Normalized exponential functions of the
output units

• Probability distribution of n discrete classes:
– One-of-n classes problems

– 0 ≤ 𝑦𝑖 ≤ 1

– σ𝑖=1
𝑛 𝑦𝑖 = 1

• Architectural difference:
– Previously learned  activation functions were 

based on the inputs of one neuron
– Softmax combines a layer of output neurons
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𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣)𝑖

=
𝑒𝑣𝑖

σ𝑗=1
𝑛 𝑒𝑣𝑗

𝒗 = 𝒘𝑇𝒙



Properties of Softmax

• Generalization of sigmoid function for one-of-n 
class

• Squashes a vector of size n between 0 and 1
• Improves the interpretability of the output of a 

Neural Net
• Describes the probability distribution of a certain 

class
– We may use the word ”confidence”

• Winner take all
– exponential function strongly penalize the non-

winners
– Similar to lateral negative feedback in the natural 

neural systems
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𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣)𝑖

=
𝑒𝑣𝑖

σ𝑗=1
𝑛 𝑒𝑣𝑗

𝒗 = 𝒘𝑇𝒙



EXAMPLE

10/8/2019 33https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

vi S(vi)

Input values Probability scoresInput images



EXAMPLE
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vi S(vi)

Input values Probability scoresInput images



EXAMPLE
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vi S(vi)

Input values Probability scoresInput images



Loss function for softmax: Negative log-likelihood

• 𝐿 𝒚 = σ𝑘=1
𝐾 −log(𝑦)

• The negative logarithm of the 
probability of the correct decision 
classes are summed up

• It is small, if the confidence of a 
good decision was high for a 
certain class

• Large, when the confidence is low
• Partial derivative of a softmax 

layer with negative log-likelihood:
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𝜕𝐶

𝜕𝑣𝑗
= 𝑦𝑗 − 1



Example 

10/8/2019 37https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

S(vi)

Probability
scores for

correct classes
(want big
numbers)

Negative log 
for correct

class:
(want small
numbers)



Data regularization techniques

• Modification of the input vectors and internal data and 
internal parameters of the net

• Targeting to perform better in generalization

• Increases the loss during training phase

• Puts the parameters further away from a minimum 
with an expectation of it will find a deeper minimum

• In many cases these are heuristic methods with mostly 
experimental and partial mathematical proof
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Input vector normalization

• When the input vector contains high 
and small mean values in different 
vector positions it is  usefull to 
normalize them

• Squeezes the number to the same 
range

• Speeds up the training process
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𝑥 =
0,45
1589,2
0,00143

Input
vector:

ҧ𝑥 =
0,32
1423,2
0,00132

mean:

𝜎 =
0,11
155,2
0,00042

deviation:

𝑥𝑛𝑜𝑟𝑚𝑒𝑑 =
𝑥 − ҧ𝑥

𝜎
=

1,18
1,06
0,26

normalized 
input vector:



Input Normalization
• Different normalization strategies exists for different input types

• Showing it in two dimension, it shapes the input vector
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Once you trained you net with a normalized training set,
you have to apply normalization when a previously unseen 
vector (a new observation) is appled during inference. 
OK, but how do you know the statistics?



Input normalization ezample
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L1 and L2 regularization

• L1, L2, regularization modifies the weights
– Rather than using MSE cost function
– An extra term, the MSE of the 

weights is added (biases excluded)
– Done on minibatch level

• Can be used with other cost function type as well
• Differenciable: back propagation works 
• Why is it good?

– Network preffers smaller weights
– If a few large weights dominate the decision the network

will lose fine generalization properties
– In case of large weigths, the decisions are less distributed,

the network is less error tolerant

10/8/2019 42

0

L1

L2



Batch normalization

• In very deep networks the distribution of the input vectors changes 
from layer to layer
– The first layer got normalized input
– The second layer somewhat shifts and twists on this normalization
– And it goes on, and the (originally normalized) data propagating 

trough the layers will be lose its normalized properties (called 
„covariance shift”)

– This will shift the neuron out of its zero centered  position, where the 
activation function performs well (where the nonlinearity is)

• Solution: normalization on each layers!
• It also introduce a noise (loss function increase), which helps to 

avoid local minima and avoids overfitting
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Batch Normalization
• Done on layer level like softmax
• Training: 

– Done on minibatch level

• Inferencing: 
– Do the normalization with the pre-

calculated  parameters of the 
entire training set

weights
bias

𝜖: avoid zero

ො𝑥(𝑘) =
𝑥(𝑘) − Ε 𝑥(𝑘)

𝑉𝑎𝑟 𝑥(𝑘)
E: the expectation

Var: the variance

• Batch normalization is 
differenciable via chain rule

– Back propagation can be applied 
for batch normalized layers

• Rewriting the normalization using 
probability  terms:

Faster learning



Dropout

10/8/2019 45

• Idea of dropout method:
– Use mini-batch training approach
– For each minibatch, a random set of 

neurons from one or multiple hidden 
layer(s) (called droppout layers) is 
temporally deactivated 

– Selection and deactivation probability is p
– In testing phase, use all the neurons, but 

multiply all the outputs with p, to account 
for the missing activation during training

• Requires more training steps, but each 
is simpler, due to reduced number of 
neurons

• No computational penalty in testing 
phase

• Use it for fully connected layers
Reduces overfitting, because the 
network is forced to learn the 
functionality in different configurations
using different neural paths.



Reasoning behind dropout

• Dropout can be considered as averaging of 
multiple thinned networks (“ensemble”)

• Dropout avoids training separate models 

– Would be very expensive

• Avoids computatinal penalty in the test phase

• But still gets benefits of ensemble methods
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Intuitive explanation
Imagine that you have a team of workers and the overall goal is to 
learn how to erect a building. When each of the workers is overly 
specialized, if one gets sick or makes a mistake, the whole building will 
be severely affected. The solution proposed by “dropout” technique is 
to pick randomly every week some of the workers and send them to 
business trip. The hope is that the team overall still learns how to build 
the building and thus would be more resilient to noise or workers 
being on vacation.
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Hierarchical architecture of a deep neural network

What are the building blocks of a hierarchical deep neural network?



ReLU: Rectified Linear Unit

• Activation function
• Half-wave rectifier
• Not compressing the gradient

– learns much faster

• ReLU types
– Softmax
– Leaky ReLU
– ELU, SELU Relu6

10/22/2019 3
Most used in hidden layers in deep neural networks (as of 2019)!

ReLU



Probability type loss: Cross Entropy and Softmax
• Mathematically:

– Normalized exponential functions of the units

• Probability distribution of n discrete classes:
– One-of-n classes problems

– 0 < 𝑦𝑖 < 1

– σ𝑖=1
𝑛 𝑦𝑖 = 1

• Architectural difference:
– Previously learned  activation functions were 

based on the inputs of one neuron
– Softmax combines a layer of output neurons

10/22/2019 4

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣)𝑖

=
𝑒𝑣𝑖

σ𝑗=1
𝑛 𝑒𝑣𝑗

𝒗 = 𝒘𝑇𝒙



Data regularization techniques
• Modification of the input vectors or the internal data

composition of the network
– Input normalization

– Batch normalization

• Modification of the cost function
(involving the weight magnitudes)
– L1 and L2 regularization

(weight penalty)

• Temporal Modification of the net
architecture in training phase
– Dropout

10/22/2019 5



Contents

10/22/2019. 6

• Reducing the number of interconnections
• Biological motivations

• Convolution 

• Convolution layers in deep networks

• Pooling

• Regularization methods



No-brainer solution: Increase the number of the hidden layers

10/22/2019 7

• Problems: 

– Not usefull for locally correlated data

– Number of free parameters are exploding

D E E PD E E E PD E E E E PD E E E E E PD E E E E E E P



Locallity

8

• Spatial locallity:

– Data points measured  
physically close to each other

– e.g. image  measured by a 
sensor array

– Measurements, close to each 
other are similar (correlated)

– Local feature: where local 
similarity is broken

uncorrelated correlated



Locallity

9

• Spatial locallity:

– Data points measured  
physically close to each other

– e.g. image  measured by a 
sensor array

– Measurements, close to each 
other are similar (correlated)

– Local feature: where local 
similarity is broken

• Temporal locallity:

– Data point sequence measured  
with the same sensor with small 
time difference

– e.g. voice measured by a 
microphone

– Measurement points, close to 
each other are similar (correlated)

Uncorrelated data
series (noise)

Correlated data
series (continiuous signal)

uncorrelated correlated
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Example: 

1000x1000 image

1M hidden units

Filter size: 10x10

108 parameters

• 10x10 filters finds local 

features (edges)

• Why to apply different 

filters in different location?

• How do I know where to 

expect the edges?

1012 parameters

Example: 

1000x1000 image

1M hidden units

• The low level information on 

an image is local 

• Makes no sense to involve 

distant pixels to the same 

function



No-brainer solution: Increase the number of the hidden layers

10/22/2019 11

• Architecturel problem: 

– Why would be optimal to use one linear arrangement 
using the same data width everywhere?

– Parallel,   loop?

– How human visual system does it?

D E E PD E E E PD E E E E PD E E E E E PD E E E E E E P
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What can we 
learn from Human 

Visual System?
• Hierarchy
– Eyes, LGN, Visual Cortex

• Each organized to 
parallel layers

• Each responsible for 
extracting a different 
feature

• Fraction of the sensed 
data is transferred only
– Image features and 

motions
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Layers and features 
in the retina



Retina cell layers 

• Similar cells are forming layers 
(filter)

• A layer extracts the same local 
feature from the entire sensed 
image with convolution type
operations
– Contrast changes, color differences, 

motion direction, orientation

– Dendritic tree and synapse weights 
defines the captured features

• Outputs are organized in separate 
channels

https://webvision.med.utah.edu/book/part-iii-retinal-circuits/roles-of-amacrine-cells/



Visual cortex 

10/22/2019 15

• Parallel blocks identifying edges with different 
orientation

• Both the retinal and the cortical local feature 
extractors are based on „convolutions” type
operators

• Convolutions defined by dendrit and synapse
patterns



Convolution
• Convolution is a 

mathematical operation 
that 
– does the integral of the 

product of 2 functions
(signals), 

– with one of the signals 
flipped and shifted

• Mathetmatically:

• Convolution is commutative
10/22/2019 16



Visualization in 1D

1. Flipp g signal
2. Slide the flipped g over f
3. Integrate the product in continious space

or Multiply and accumulate it in discrete space with each shift

10/22/2019 17



Discrete convolution
• For continiuous:

• For discrete functions:

10/22/2019 18



1D Numerical example

10/22/2019 19

0

0 1

0 1 1

0 1 1 3

0 1 1 3 5

0 1 1 3 5 2

0 1 1 3 5 2 8

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

(1x0)=0

(1x3)+(-1x2)+(2x1)=3

(1x2)+(-1x1)+(2x0)=1

(1x1)+(-1x0)=1

(-1x4)+(2x3)=2

(1x4)+(-1x3)+(2x2)=5

(2x4)=8

0 1 2 3 4

f function:

1 -1 2

g function:

Shifting the flipped g
function over f

2 -1 1

flipped g function:

𝑓 ∗ 𝑔 = 0 1 1 3 5 2 8



1D Numerical example
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0

0 1

0 1 1

0 1 1 3

0 1 1 3 5

0 1 1 3 5 2

0 1 1 3 5 2 8

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

(1x0)=0

(1x3)+(-1x2)+(2x1)=3

(1x2)+(-1x1)+(2x0)=1

(1x1)+(-1x0)=1

(-1x4)+(2x3)=2

(1x4)+(-1x3)+(2x2)=5

(2x4)=8

0 1 2 3 4

f function:

1 -1 2

g function:

Shifting the flipped g
function over f

2 -1 1

flipped g function:

𝑓 ∗ 𝑔 = 0 1 1 3 5 2 8



Def.: Valid positions:
the flipped g is 

completely inside f
(fully overlapping 

positions)
10/22/2019
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0

0 1

0 1 1

0 1 1 3

0 1 1 3 5

0 1 1 3 5 2

0 1 1 3 5 2 8

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

2 -1 1

(1x0)=0

(1x3)+(-1x2)+(2x1)=3

(1x2)+(-1x1)+(2x0)=1

(1x1)+(-1x0)=1

(-1x4)+(2x3)=2

(1x4)+(-1x3)+(2x2)=5

(2x4)=8

}
}

Def.: Boundary positions:
partially overlapping 

positions

Validity vs Boundary position



Computation graph
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Valid cases



Size of the result
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size(𝑓 ∗ 𝑔) =

𝑛 + 𝑘 − 1 (𝑖𝑓 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
𝑐𝑜𝑢𝑛𝑡𝑒𝑑)

𝑛 − 𝑘 + 1 (𝑖𝑓 𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒𝑠
𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑜𝑛𝑙𝑦)

3 2 2 -1 -2 -3 -1f:

0 2 0-1 -1g:

3 2 2 -1 -2 -3 -1

f ∗ 𝑔

0 2 0-1 -1

4 5 5 3 -5 -5 0-2-3 13

Result is generated at the position 
of the Central element of g

0 2 0-1 -1

0 2 0-1 -1

0 2 0-1 -1

size(f)= n size(g)= k n≥k

• In practice, convolution is 
used as a filter, where 
– f is the measrurement 

data, g is the filter function 
descriptor (kernel)

– size( f) ≫ size(g)

In CNN, we calculate the valid values only!



Padding in 1D
• In many case, we use a sequence 

of convolution filters on the 
measured data blocks

• We do not want size changes on 
the data blocks

• To avoid size changes, we have to 
pad the data block with zeros at 
the boundaries

– k=size(g) is odd: k=2p+1

– k=size(g) is even: k=2p

• Padding is asymmetric:

10/22/2019
24

3 2 2 -1 -2 -3 -1f:

0 2 0-1 -1g:

Padded f: 3 2 2 -1 -2 -3 -1 0 0

0 2 0-1 -1

central
element

side 
elements

g:

00

4 5 5 3 -5 -5 0

Valid 𝑓 ∗ 𝑔 after 
padding:

np p

np p-1



Convolution vs
correlation I

• Cross-
Correlation:

• f* : complex 
conjugate

• When f is 
symmetric,
𝑓 ∗ 𝑔 = 𝑓 ⋆ 𝑔

(otherwise not)
10/22/2019 25



Convolution vs correlation II

• As the only difference is kernel flipping…

• Why convolution rather that correlation?
– Commutativity, Associativity,  Distributivity helps to prove 

mathematical statements

– Since the network learns its own weights, it is invariant whether that 
flip is there or not (just a convention)

– In many cases, correlation is implemented even when it is called 
convolution

10/22/2019 26



2D convolution
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𝑓 ∗ 𝑔
1(-1)+3(0)+0(2)-1(1)=-2

-2

3(-1)+1(0)-1(2)+1(1)=-4

-4

0(-1)-1(0)+2(2)+2(1)=6

6

-1(-1)+1(0)+2(2)-1(1)=4

4
Scanning through the f function 

with the flipped g function



2D convolution: Example 2

10/22/2019 28

𝑔 =
1 0 1
0 1 0
1 0 1

kernel



Padding in 2D
• Works the same way as in 1D

– Boundary layers are added and filled up 
with zeros

– Size g is k x k, 

• where:   k=2p+1

– Padding: p layers of zeros

10/22/2019 29

p

Convolution 
without padding 
(valid results)

Convolution 
with padding 
(size unchanged)



Why use padding?

• Simplifies the execution
code

• No branches

• Do not have to deal
with the different
calculation methods at
the boundaries

• Same code runs in the
entire array

10/22/2019 30

3 2 2 -1 -2 -3

0 2 0-1 -1

0 2 0-1 -1

0 2 0-1 -1

unpadded f:

Padded f: 3 2 2 -1 -2 -3 -1 0 000

Code type for boundary 1

Code type for boundary 2

Code type for central

0 2 0-1 -1

One code for all the array

Though it is more multiply-add operation, but as 
f>>g a branch free simpler code is more efficient



Parameter number and computational load

• Number of trainable free parameters:
– k in 1D convolution  | size(g)= k

– k2 in 2D convolution |  size(g)= k × k

• Operation number
– k*n for a padded 1D convolution | size(f)= n  

– k 2 * n 2 = O(n 2 ) for a padded 2D convolution | size(f)= n × n 

10/22/2019 31



Convolution theorem

• Convolution in the Fourier domain is a multiplication

F  {𝑓 ∗ 𝑔} = F  {𝑓} ⋅ F  {𝑔}
and also:

F  {𝑓 ⋅ 𝑔} = F  {𝑓} ∗F  {𝑔}
where:

F  {𝑓} is the Fourier transform for f 

f can be vector or matrix

⋅ is point-wise multiplication

• Therefore:

𝑓 ∗ 𝑔 = F  -1{ F  {𝑓} ⋅ F  {𝑔}}

𝑓 ⋅ 𝑔 = F  -1 { F  {𝑓} ∗F  {𝑔}}
10/22/2019 32

Convolution can be calculated 
with a Fourier and an inverse 
Fourier transformation and a 
point-wise multiplication. It 
reduces the computational 
complexity 
from O(n2) to O(n ⋅ log n). 

(using FFT, assuming n=2i)



Usage of convolution I : 1D filtering
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Smoothing noisy signal
Data lengths: 80 points

kernel:
1

5
1 1 1 1 1

Signal 
differentiation 

Data lengths: 60 points 𝑑𝑦

𝑑𝑥
kernel: 

1

2
[1 -1] 𝑑2𝑦

𝑑𝑥2
kernel: 

1

4
[-1  2  -1]



2D convolution: image filtering
• What is a digital image?

– One-to-one mapping of a 
matrix and the pixels

– Black-and-white image
• Binary matrix
• 0: black
• 1: white

– Monochrome 
(grayscale)
• Matrix of (typically) 8 

bit numbers 
• Values representing 

the brightness of the 
pixel

– Color image
• 3 matrices (R,G,B)

10/22/2019 34



Usage of convolution II : 2D filtering
Sobel operation

Cameraman

10/22/2019 35

First derivative 
(vertical gradient)

1 2 1
0 0 0
−1 −2 1

First derivative 
(horizontal gradient)

1 0 −1
2 0 −2
1 0 −1

First derivative 
(diagonal gradient)

0 1 2
−1 0 1
−2 −1 0



Usage of convolution 
III : 2D filtering 

7x7 Laplacian of 
Gaussian kernel

10/22/2019 36

Second 
derivative of 

an image

0.02 0.09 0.2 0.3 0.2 0.09 0.02
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.3 0.4 −0.7 −1.3 −0.7 0.4 0.3
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.02 0.09 0.2 0.3 0.2 0.09 0.02



Usage of convolution IV : 2D filtering

10/22/2019 37

• Seeking for a known patter
• Large convolution kernel is applied
• Kernel size is equivalent with the size of the sought pattern

=

Filter responeded with a strong 
white peek in the matching position

• Sensitive for rotation

• Scale variant



Decomposition of large kernels I
• Convolution is associative

𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ

Example:

10/22/2019 38

0.02 0.09 0.2 0.3 0.2 0.09 0.02
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.3 0.4 −0.7 −1.3 −0.7 0.4 0.3
0.2 0.11 −0.3 −0.7 −0.3 0.11 0.2
0.09 0.13 0.11 0.4 0.11 0.13 0.09
0.02 0.09 0.2 0.3 0.2 0.09 0.02

=
0.2 0.5 0.2
0.5 −3.1 0.5
0.2 0.5 0.2

∗

0 0.2 0.3 0.2 0
0.2 0.6 0.8 0.6 0.2
0.3 0.8 1.2 0.8 0.3
0.2 0.6 0.8 0.6 0.2
0 0.2 0.3 0.2 0

Laplacian of Gaussian kernel 𝑔 ∗ ℎ Laplacian 𝑔 Gaussian kernel ℎ

Number of operations:    49*Npix 9*Npix +   25*Npix =   34*Npix

15% reduction of computational demand!!!



Decomposition of large kernels II

• Decomposition is not exact in most cases

– In general case, it approximates the kernels with a limited 
accuracy only

• Neural nets does not sensitive for inaccurate 
decomposition

• Decomposition of larger kernels leads to higher savings!

• Wildly used!
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Stride
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• Stride is the number of pixel 
what we slide the kernel

– Horizontal stride

– Vertical stride

• Down sampling the image

– Size:

𝑛+2𝑝−𝑘

𝑠
+ 1

– where:

Padding:1, stride: 1 Padding:1, stride: 2

size( f )= n, size( g )= k,

p: padding,   s: stride 



What is the role of a convolution?

10/22/2019 41

• Why not fully connected?

– Reduces the number of the
parameters (millions to a few dozens)

– Avoids vanishing gradient problem, 
because one weight is tuned by a 
large number of data pathes

• Since the convolution is space invariant, 
detection will be space invariant also

• The convolution emulates the response of an individual neuron

• Each convolutional neuron processes data only for its receptive field 
– Receptiv field: area covered by the g function

Space invariance means here that the functionality of a 2D function is not changing in space. 
This enables the detection of a certain image feature anywhere on the image.



Pooling
• Pooling summarizes statistically the extracted features from the same

location on a feature map
• Mathematically, it is a local function over 1D or 2D data

– input: 
• Segment of a vector in 1D
• rectangular neighborhood in 2D

– Function 
• Statistical (maximum: max-pool)
• L2 norm
• Weighted average (weights 

proportional of the distance 
of the central element)

• In most cases: stride > 1
– This leads to downsampling

• Pooling introduces some shift invariancy
10/22/2019 42

s = 10



Max pooling
• Max pooling is the 

most used pooling in 
CNN

• Picks the largest 
value from a 
neighborhood

• Non-linear
• Statistical filter
• Downsampling

depends on the stride
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Backpropagation through 
max-pooling layer
• Maximum node acts as a 

router
• The dout gradient is given to 

the input node, which has 
contributed (which was the 
biggest)

• The remaining positions will 
get zero, because they did not 
contributed to the error

10/22/2019

dB=dout, if B>A otherwise 0

dA=dout, if A>B

otherwise 0

dout

out=A (if A>B) 

out=B (if B>A) 

Forward

propagation

The maximum positions are stored



Average pooling

• Similar to max pooling, 
but uses the average
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10/22/2019

• Input
• Parallel feature extractors (convolution layers w. RELU)
• Data reduction (pooling)
• Combination of the features – aggregating information (fully connected layer)
• Decision (fully connected layer with soft-max activation) 47

Architecture of a typical Convolution Neural Network

k: kernel size
F: number of conv. Filters
s: stride
p: zero padding size

convolution
(k=5, F=16, 

s=1, p=2)

max-pool
(k=2, F=1, 
s=2, p=0)

convolution
(k=5, F=2, 
s=1, p=2)

max-pool
(k=2, F=1, 
s=2, p=0)



CNN example for data size reduction
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convolution
(k=9, F=64, 
s=1, p=0)

convolution
(k=9, F=256, 

s=1, p=0)

max-pool
(k=10, F=1, 
s=5, p=0)

𝑠𝑖𝑧𝑒 =
𝑛 + 2𝑝 − 𝑘

𝑠
+ 1

input: 
83x83
n=83

layer1: 
75x75x64

n=75

layer2: 
14x14x64

n=14

layer3: 
6x6x256

n=6

max-pool
(k=6, F=1, s=1, p=0)

output: 
256

k: kernel size
F: number of conv. filters
s: stride
p: zero padding sizelayer4: 

1x1x256
n=1



Number of free parameters
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convolution
(k=9, F=64, 
s=1, p=0)

convolution
(k=9, F=256, 

s=1, p=0)

max-pool
(k=10, F=1, 
s=5, p=0)

input: 
83x83
n=83

layer1: 
75x75x64

n=75

layer2: 
14x14x64

n=14

layer3: 
6x6x256

n=6

layer4: 
1x1x256

n=1

max-pool
(k=6, F=1, s=1, p=0)

output: 
256

number of parameters per convolution

layer: w#=(k2×ni+1)× no 

where: 

ni , no  :number of input /output layers

+1 stands for the bias

w#=(81*1+1)*64=

=5,248

k: kernel size
F: number of conv. filters
s: stride
p: zero padding size

w#=(81*64+1)*256=

=1,327,360

Each feature map 

receives input from each

one from the previous layer



Typical features for the first layers

Individual feature maps gives high response to these patterns
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Combination of features
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• Ultimately, the features
are combined by a fully
connected layer in the
classification part of the
network

• The output of 
multiple feature
maps can be 
combined to a 
feature map in the
next layer with
convolutions

• If 1x1 convolution
kernel is applied, 
this enables
weighted sum of 
multiple maps



Why data size reduction is important?
• Methods of data size reduction

– Pooling 
– Convolution with strides
– Convolution without padding

• Information aggregation
• Reduces the chance of overfitting or 

vanishing gradient
• The distant local features are brought closer

– One filter can cover multiple features from the 
previous layers
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eye
nose

mouth

face



Properties of Convolutional Neural Networks I:   

• Sparsity
– The interconnection weights are just a fraction of the fully connected

NN (the weight matrix between two layers are sparse)
– A few dozen free parameter describes the operation of a layer
– Receptive field organization similar to natural neural vision systems

53

Sparse interconnections

Dense interconnections

A neuron in visual cortex receives
input from the receptive field only, 
which is a small piece of the visual field

Receptive field of 
an artifitial neuron



Properties of Convolutional Neural Networks II:   

• Parameter sharing
– Same parameters everywhere in the layer

– Contribution to the gradient of a weight from many positions

– Reduces the risk of overfitting 

– Reduces the risk of dying RELU (dying cell)
• When it happens, an entire feature extractor on a layer is dying
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Properties of Convolutional Neural Networks III:   
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• Variable input size
– The input image is either resized or padded

Input images are
resized to the same size



Properties of Convolutional Neural Networks IV:   
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• Equivalent representation
– Equvariance to translation

• The output shifts with an input shift

– In a fully connected neural network, each input is a dedicated channel 
for a certain input parameter-therefore the inputs cannot be swapped
• Like bank example, one cannot replace the age input with the salary input

– In CNN, the image can be shifted, because the inputs are not 
dedicated and the features are identified anywhere
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Components of a convolutional neural network (CNN)

One convolutional layer

Feature maps



Contents

• Regularization and normalization methods
• Local response normalization

• Data augmentation

• Early stopping

• Ensembling

• Example CNN: AlexNet

• Segmentation

11/5/2019. 3



Regularization and optimization methods

• Different methods to increase 
the loss in the learning phase, 
but reduce overfitting and 
increase generalization capabilities 
– Local response normalization
– Batch normalization
– Data augmentation 

(Enriching the data set)
– Early stopping
– Ensemble methods

• Network duplication
• Bagging 
• Dropout

11/5/2019 4

Ian Goodfellow: regularization is
“any modification we make to the 
learning algorithm that is intended 
to reduce the generalization error, 
but not its training error”



Local response normalization I

• Implementation of the Lateral inhibition from neurobiology
– If a neuron starts spiking strongly in a layer it inhibits (suppresses) the 

of the neighboring cells
– Winner take all (have a strong decision)
– Balances the asymmetric responses of neurons in different areas of 

the layer 

• Useful when we are dealing with ReLU neurons
– Normalizes the unbounded activation of the ReLU neurons 

• Avoids concentrating and delivering large values through layers

– It enhances high spatial frequencies by suppressing the local neighbors 
of the strongest neuron

11/5/2019 5https://towardsdatascience.com/difference-between-local-
response-normalization-and-batch-normalization-272308c034ac

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac


Local response normalization II

– Intra map normalization 
• 2D normalization within the same 

feature map
• Balancing for different areas
• Winner-take-all for neigbouring

neurons in the same feature map
(strongest response to the same
transformation should win)

Looking from
this side

Which particular
pattern responds the
largest for the same
transformation?

Feature maps 
are facing to us



Local response normalization III

– Inter-map normalization 
• Normalization between the 

neighboring feature maps
• Winner-take-all for the largest

response with different
transformation for the same input 
location

Looking from
this side

Which particular
tranformation
responds the largest
for the same pattern?

Feature maps 
are facing to us



Calculation method of local response normalization
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Local response norm. vs batch norm.

11/5/2019 9

• Normalization either 
through the feature maps 
or within one feature map

• Normalization is done for 
one input image

• Normalization done for all 
the pixels in all the feature
maps within a layer

• Normalization is done for 
the entire batch

Both work within one convolutional layer



Data augmentation 
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• Idea: 
– Increase the generalization capability 

of the net by enlarging the training 
set

• Increase the number of the training 
vector by introducing fake (artificial) 
input-output pairs

• Typical methods
• Translating
• Slight rotation
• Rescaling 
• Adding noise
• Flipping
• Cutting out parts
• Manipulating with pixel values



Early stopping
• Idea:

– Split data into training and test sets
– At the end of each epoch (or, every 

N epochs):
• evaluate the network performance 

on the test set
• if the network outperforms the 

previous best model: save a copy of 
the network parameters at the 
current epoch

11/5/2019 11

– The best suboptimum is selected finally
– Since the error function is not necessarily monotonic, the optimization goes

on, but the suboptima are saved

# of Epochs

Test error

Training error

Desired 
stopEr

ro
r



Ensemble methods

• Idea of ensemble methods:
– Generate multiple copies of your net

• Same or slightly modified architectures

– Train them separately 
• Using different subsets of the training sets
• Different objective functions
• Different optimization methods

– The different trained models have independent error characteristics
– Averaging the results will lead to smaller error

• Requires more computation and memory both in training and 
inferencing (testing) phase

11/5/2019 12



Bagging
• Construct k 

different 
datasets

• Each with a 
subset of the 
data, but 
with 
duplications

• Trains with 
these

• Make result 
averaging

Original dataset

First resampled dataset 

Second resampled dataset Second ensemble member

First ensemble member

First learns the upper loop, the second the lower. When both say yes, it is an 8.



Dropout

11/5/2019 14

• Idea of dropout method:
– Use mini-batch training approach
– For each minibatch, a random set 

of neurons from one or multiple
hidden layer(s) (called droppout
layers) is temporally deactivated 

– Deactivation probability is p
– In testing phase, use all the 

neurons, but multiply all the 
outputs with p, to account for the 
missing activation during training

• Requires more training steps, but 
each is simpler, due to reduced 
number of neurons

• No computational penalty in 
testing phase

• Use it for fully connected layers

Reduces overfitting, because the 
network is forced to learn the 
functionality in different configurations
using different neural paths.



Summary of CNN

• Layers: 
– Convolution, fully connected

• Activation function
– ReLU, SoftMax

• Data aggregation
– Stride convolution, pooling

• Regularization
– Test set, data, parameter, and architecture regularization

11/5/2019 15

See, how it works in practice!



Alexnet
• First fully trained deep convolutional neural network

– Won the ImageNet Large Scale Visual Recognition (ILVSRC) Challenge 
in 2012 (ILVSRC2012) 

11/5/2019 16

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton,
"Imagenet classification with deep convolutional neural networks",
Advances in neural information processing systems, 2012



ImageNet Large Scale Visual Recognition
Challenge I

• ImageNet:
– 15+ million labeled high-resolution images

– 22000 categories

• ILSVRC uses a subset of ImageNet:
– 1000 categories

– ~1000 images per category

– 1.2 million training images | 50 000 validation images | 150 000 testing images

11/5/2019 17



ImageNet Large Scale
Visual Recognition

Challenge II

• Each image should be 
classified
– Probability distribution

• Top 1 error rate:
– What percentage was 

wrongly classified as 
highest probability? 
(38,9%)

• Top 5 error rate:
– What percentage was not 

in the first five? (18.9%)

11/5/2019 18

15%
7%
6%
5%
3%



ILVSRC results
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Teams used GPU in the challenge
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Layer number vs result

11/5/2019 21http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

http://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf


Architecture

11/5/2019 22
5 convolutional layers

3 fully 
connected 
layers

input: 
3 channels of the 
color images

output: 
1000-way 
Softmax



Input normalization and Data augmentation I

11/5/2019 23

Images were down-sampled and cropped to 256×256 pixels and normalized



Data augmentation II
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Activation function
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Softmax
ReLU: 6 times 
faster learning 
rate



Ensembling: duplicating the network I

• Train two architecturally identical copies of the 
network on two GPUs
– Half of the neuron layers are on each GPU

• GPUs communicate only in certain layers

– Improvement (as compared with a net with half as 
many kernels in each convolutional layer trained on 
one GPU):
• Top 1 error rate by 1.7%
• Top 5 error rate by 1.2%

11/5/2019 26



Ensembling: duplicating the network II
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Local Response Normalization I
• ReLUs do not require input normalization to prevent them from saturating

• However, Local Response Normalization aids generalization 

• Lateral inhibition (intra-map)

• Improvement:

– Top error rate by 1.4%

– Top 5 error rate by 1.2%

11/5/2019 28



Local Response Normalization II

11/5/2019 29



Overlapping Pooling I
• Pooling layers summarize the outputs of neighboring 

neurons in the same kernel map.
– Overlapping pooling
– s < k

• Improvement using MaxPooling:
– Top 1 error rate by 0.4%
– Top 5 error rates by 0.3%

11/5/2019 30

s=3 s=2

k=3 k=3



Overlapping Pooling II
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Overall Architecture
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Dropout layers
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Training I
• Stochastic Gradient Descent (with momentum)

– ADAM method was introduced in 2014 only (2 years later)

• Minimizing the negative log-likelihood (cross-entropy) loss function 

• With L2 regularization (weight penalty):

11/5/2019 34



Training II

11/5/2019 35

• SGD + Momentum with a batch size of 128
• Learning rate initialized at 0.01 

– divided by 10 if validation error rate stopped improving

• Update rule for weight 𝑤:

• Training effort:
– ~ 90 epochs  five to six days on two NVIDIA GTX 580 3GB GPUs



Look into the parameters!
• https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

• 3 layer CNN

• Cifar 10 database

• 32x32 sized color images

• 10 classes

• 6000 images per class

11/5/2019 36

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Image understanding 
beyond classification
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• ImageNet challenge:
– One dominant object per image

• Real life problems:
– Multiple objects 

• Same kind of objects

• Different kinds of objects

• Overlapping objects

– Where are the objects?

• Square them!

• Find the boundary  Segmentation

Multiple decisions 
from each image!

Locality information!



Object recognition
• One object per image

– Task: 
• Classify image 
• Classes are known (one-of-n decision)

• Multiple object per image
– Task:

• Find and classify the objects
• Find the bounding boxes

11/5/2019 38



Object detection

• One or Multiple object 
per image

– Task:
• Find the objects

• Identify them with bounding 
boxes

11/5/2019 39

Area or pixel level 
one-of-two decision!



Segmentation 
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• Semantic Segmentation
– Label each pixel in the image with a 

category label

– Don’t differentiate Instances, only care 
about pixels

• Semantic Instance 
Segmentation
– Differentiate 

instances

Pixel level one-of-n 
classification!



Semantic Segmentation Idea I: Sliding Window 
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Problem: Very inefficient doing
it pixel-wise! No reuse of shared 
features between overlapping 
Patches.



Semantic Segmentation Idea II: Fully Convolutional 

42

Problem: convolutions at
original image resolution 
will be very expensive ...
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Semantic Segmentation Idea III: Fully Convolutional 

Downsampling:
Pooling, strided
convolution

Upsampling:
???

H/4 x W/4         

H/8 x W/8

H/16 x W/16 H/32 x W/32

Conv, pool,
nonlinearity

upsampling



Upsampling I:  “Unpooling” 
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Upsampling I:  “Unpooling” 
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Upsampling II:  “transpose convolution” 

11/5/2019 46

1D example

stride: 2



2D transposed convolution
1        1        1

1        1        1

1        1        1

1 2 5        5

3 4 5        5 

5        5        5        5

5        5        5        5

kernel

image

Stride 2: 

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions

3. Summed up 
where overlaps

X X X X

X X X X



2D transposed convolution
1        1        1

1        1        1

1        1        1

kernel

image

Stride 2: 

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions

3. Summed up 
where overlaps

X X X X

X X

1 2 5        5

3 4 5        5 

5        5        5        5

5        5        5        5

X X



2D transposed convolution
1        1        1

1        1        1

1        1        1

kernel

image

Stride 2: 

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions

3. Summed up 
where overlaps

X X X

X X

1        1        1

1        1        1

1        1        1

1 2 5        5

3 4 5        5 

5        5        5        5

5        5        5        5

X X



2D transposed convolution

kernel

image

Stride 2: 

X X X

X X

1        1        1

1        1        1

1        1        1

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions

3. Summed up 
where overlaps

2        2        2

2        2        2

2        2        2

1 2 5        5

3 4 5        5 

5        5        5        5

5        5        5        5

X X



2D transposed convolution

kernel

image

Stride 2: 

X X

X X

1        1        1

1        1        1

1        1        1

2        2        2

2        2        2

2        2        2

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions

3. Summed up 
where overlaps

2        2        2

2        2        2

2        2        2

1 2 5        5

3 4 5        5 

5        5        5        5

5        5        5        5



2D transposed convolution

kernel

image

Stride 2: 

X X

X X

1        1        1

1        1        1

1        1        1

2        2        2

2        2        2

2        2        2

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
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3. Summed up 
where overlaps

3        3        3

3        3        3

3        3        3
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5        5        5        5

5        5        5        5

X X



2D transposed convolution

kernel

image

Stride 2: 

X X

X

1        1        1

1        1        1

1        1        1

2        2        2

2        2        2

2        2        2

3        3        3

3        3        3

3        3        3

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions

3. Summed up 
where overlaps

3        3        3

3        3        3

3        3        3
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3 4 5        5 

5        5        5        5

5        5        5        5

X X



2D transposed convolution

kernel

image

Stride 2: 

X X

X

1        1        1

1        1        1

1        1        1

2        2        2

2        2        2

2        2        2

4        4        4

4        4        4

4        4        4

3        3        3
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1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
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3. Summed up 
where overlaps
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5        5        5        5

X X



2D transposed convolution

kernel

image

Stride 2: 

X X

1        1        1

1        1        1

1        1        1

2        2        2

2        2        2

2        2        2

4        4        4

4        4        4

4        4        4

3        3        3

3        3        3

3        3        3

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
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3. Summed up 
where overlaps

4        4        4
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3 4 5        5 

5        5        5        5

5        5        5        5

X X



2D transposed convolution
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X X

1        1        1

1        1        1

1        1        1

2        2        2

2        2        2

2        2        2

4        4        4

4        4        4
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3        3        3

3        3        3

3        3        3
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with the input 
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2. Placed to the 
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where overlaps
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X X



1        1        1

1        1        1

1        1        1

2D transposed convolution

kernel

image

Stride 2: 

2        2        2

2        2        2

2        2        2

4        4        4

4        4        4

4        4        4

3        3        3

3        3        3

3        3        3

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions
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where overlaps

4        4        4

4        4        4

4        4        4

1 2 5        5

3 4 5        5 

5        5        5        5

5        5        5        5

3

4

3

4 10 6 6
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2D transposed convolution

kernel

image

Stride 2: 

1        1        1

1        1        1

1        1        1

2        2        2

2        2        2

2        2        2

5        5        5

5        5        5

5        5        5

3        3        3

3        3        3

3        3        3

1. Kernel is weighted 
with the input 
pixel value

2. Placed to the 
stride positions

3. Summed up 
where overlaps

4        4        4

4        4        4

4        4        4

1 2 5        5

3 4 5        5 

5        5        5        5

5        5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5
5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5
5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

5        5        5

Note: the
summing
positions are not
homogenious



Transpose convolution artefact: 

Avoiding checkerboard effect
• Non-homgenious transpose

convolution causes
checkerboard patterns

• Balanced stripe and kernel size
can make it homogenious

11/5/2019 59https://distill.pub/2016/deconv-checkerboard/
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Fully Convolutional Network

Downsampling:
Pooling, strided
convolution

Upsampling:
Unpooling or strided
transpose convolution 

H/4 x W/4         

H/8 x W/8

H/16 x W/16 H/32 x W/32

Conv, pool,
nonlinearity

upsampling

• As many output layers as many classes
• Pixel-wise Softmax output function is used with negative log-likelihood 

loss (multi-class cross entropy) function



Increasing spatial resolution in segmentation I 
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Higher resolution layers directly forwarded to transfer finer spatial information

Called “Skipping”. It skips using the coarser (more downsampled) layers

Can be considered of an ensembling of three networks

skip 1

skip 2



Increasing spatial resolution in segmentation II
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Inreasing spatial resolution as higher resolution layers are feed forward

Information content is less squeezed to smaller layer



Deconvnet: Extreme segmentation I
• Fully symmetrical convolutional network

– All convolution and pooling layers are reversed

• Two stage training (first side trained for classification first)
• Takes 6 days to train on titan GPU
• Output probability map same size as input
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Deconvnet: Extreme segmentation II

11/5/2019 64



Neural Networks

(P-ITEEA-0011)

Semantic Segmentation
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Lecture 8

November 12, 2019



Announcement
• Midterm project were taken by many people 
• Midterm project counts for those

– Paper based test result is 5
• Can get offered grade 4 or 5 based on the quality of the midterm project 

solution 

– Paper based test result is 5
• Can get offered grade 3 only if the quality of the midterm project solution is 

satisfactory
• One can go for better grade in exam period

• If somebody changes his/her mind about midterm project after this 
announcement, he or she has to write a letter to Soma Kontar
today!

11/12/2019 2

Short quiz 60% required!



Recap

• Last Lecture we discussed
– How to do image classification 

• Alexnet
• One decision per image (classification)

– Detection and Localization is more complex
• Multiple (few) decision per image 

– Regressions for localization
– Classification for detection

– Pixel level Segmentation
• Very high number of decisions (classification)

per image 

11/12/2019 3



Contents

• Detection and Localization
• PASCAL Database and Competion
• R-CNN 

• Region proposal, Classification
• Support Vector Machine (SVN), Bounding box refinement

• Fast R-CNN
• Faster R-CNN

• Semantic Image Segmentation
• U-Net
• DeConvNet
• SegNet

• Resolution controlling
• Atrous convolutions, sub-pixel image combination

11/12/2019. 4



The PASCAL Object Recognition Database  and 
Challange

• Annotated image database

– Detection (squared objects)

– Segmentation (segmented 
objects)

• Challenge

– The PASCAL Visual Object 
Classes Challenge (PASCAL VOC)

11/12/2019 5



Object detection/localization and classification
• Chicken and egg problem

– You need to know that it is a bicycle 
before able to say that both a wheel 
part and a pipe segment belongs to the 
same object

– You need to know that the red box 
contains an object before you can 
recognize it. (Cannot recognize a 
bicycle if you try it from separated 
parts)

• Our brain does it parallel
• How neural nets can solve it?

– Detection by regression?
– Detection by classification?

11/12/2019 6



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Regression?
(finding bounding box coordinates)

DOG, (x, y, w, h)

CAT, (x, y, w, h)

CAT, (x, y, w, h)

DUCK (x, y, w, h)

= 16 numbers

Lecture 8 - 38 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Regression?
(finding bounding box coordinates)

DOG, (x, y, w, h)

CAT, (x, y, w, h)

= 8 numbers

Lecture 8 - 39 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Regression?
(finding bounding box coordinates)

CAT, (x, y, w, h)

CAT, (x, y, w, h)

….

CAT (x, y, w, h)

= many numbers

Need variable sized outputs

Lecture 8 - 40 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Classification
(classify the content of each bounding boxes)

CAT? NO

DOG? NO

Lecture 8 - 43 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Classification
(classify the content of each bounding boxes)

CAT? YES!

DOG? NO

Lecture 8 - 43 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Detection as Classification
(classify the content of each bounding boxes)

CAT? NO

DOG? NO

Lecture 8 - 43 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Problem: Need to too test many positions and scales,  and use a 

computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Region Proposals
● Find “blobby” image regions that are likely to contain objects

● “Class-agnostic” object detector

● Look for “blob-like” regions

Lecture 8 - 49 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



R-CNN in a Glance

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 14



The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 15



R-CNN: Region Proposal 
• Requirements:

– Propose a large number ( up to 2000) of regions (boxes) with different sizes
– Still much better than exhausting search with multi-scale sliding window 

(brute force)
– Boxes should contain all the candidate objects with high probability

• R-CNN works with various Region proposal methods:
– Objectness
– Constrained Parametric Min-Cuts for Automatic Object Segmentation
– Category Independent Object Proposals
– Randomized Prim
– Selective Search

• Selective Search is the fastest and provides best regions 

11/12/2019 16

http://groups.inf.ed.ac.uk/calvin/objectness/
http://www.maths.lth.se/matematiklth/personal/sminchis/code/cpmc/index.html
http://vision.cs.uiuc.edu/proposals/
http://www.vision.ee.ethz.ch/~smanenfr/rp/index.html
http://koen.me/research/selectivesearch/


R-CNN: Selective Search I
• Graph based segmentation (Felzenszwalb and Huttenlocher

method)
- cannot be used in this form, because one object is covered with multiple 

segments, moreover regions for occluded objects will not be covered

• Idea: oversegment it and apply scaled similarity based merging

11/12/2019 17https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Input image Segmented image Oversegmented image

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/


R-CNN: Selective Search II

11/12/2019 18https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Convert

regions

to boxes

Step-by-step merging regions at multiple scales based on similarities

Original fine scale Step one merging Step n merging

…

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/


Similarity measures I
Color Similarity
• Generate color histogram of each 

segment (descriptor)

– 25 bins/ color channels 

– Descriptor vector (𝑐𝑖
𝑘)size: 3x25=75

• Calculate histogram similarity for 
each region pair

19

𝑠𝑐𝑜𝑙𝑜𝑟 𝑟𝑖 , 𝑟𝑗 = ෍

𝑘=1

75

min 𝑐𝑖
𝑘 , 𝑐𝑗

𝑘

𝑐𝑖
𝑘 is the 

histogram value 

for the kth bin in 

color descriptor

Texture Similarity
• Texture features: Gaussian 

derivatives at 8 orientations in 
each pixel

– 10 bins/color channels

– Descriptor vector (𝑡𝑖
𝑘)size: 

3x10x8=240

• Each region will have a texture 
histogram

• Calculate histogram similarity for 
each region pair

𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑟𝑖 , 𝑟𝑗 = ෍

𝑘=1

240

min 𝑡𝑖
𝑘, 𝑡𝑗

𝑘

𝑡𝑖
𝑘 is the histogram value for the

kth bin in texture descriptor

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

Histogram 
similarity

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/


Similarity measures II

Size Similarity

• Helps merging the smaller sized
objects

• Since we do bottom up merging, 
the small segments will be 
merged first, because their size
similarity score is higher
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𝑠𝑠𝑖𝑧𝑒 𝑟𝑖, 𝑟𝑗 = 1 −
𝑠𝑖𝑧𝑒 𝑟𝑖 + 𝑠𝑖𝑧𝑒 𝑟𝑗

𝑠𝑖𝑧𝑒 𝑖𝑚𝑎𝑔𝑒

𝑠𝑖𝑧𝑒 𝑖𝑚𝑎𝑔𝑒 is the size of the entire image in 

pixels

Shape Similarity
• Measures how well

two regions are fit 
– How close they

are
– How large is the

overlap

𝑠𝑓𝑖𝑙𝑙 𝑟𝑖 , 𝑟𝑗 =

= 1 −
𝑠𝑖𝑧𝑒 𝐵𝐵𝑖𝑗 − 𝑠𝑖𝑧𝑒 𝑟𝑖 − 𝑠𝑖𝑧𝑒 𝑟𝑗

𝑠𝑖𝑧𝑒 𝑖𝑚𝑎𝑔𝑒

𝑠𝑖𝑧𝑒 𝐵𝐵𝑖𝑗 is the size of the bounding box of 

𝑟𝑖 and 𝑟𝑗

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

More 
similar

Less 
similar

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/


Similarity measures III

Final Similarity

• Linear combination 
of the four 
similarities

21

List or proposed region

1. Initial oversegmentation

2. Calculation the similarities

3. Merge the similar regions

4. The formed regions are added to the region list 
(this ensures that there will be smaller and larger 
regions in the list as well)

5. Goto 2 

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

𝑠𝑓𝑖𝑛𝑎𝑙 𝑟𝑖 , 𝑟𝑗 =

𝑎1𝑠𝑐𝑜𝑙𝑜𝑟 𝑟𝑖 , 𝑟𝑗
+𝑎2𝑠𝑡𝑒𝑥𝑡𝑢𝑟𝑒 𝑟𝑖 , 𝑟𝑗
+ 𝑎3𝑠𝑠ℎ𝑎𝑝 𝑟𝑖 , 𝑟𝑗
+ 𝑎4𝑠𝑓𝑖𝑙𝑙 𝑟𝑖 , 𝑟𝑗

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/


Proposed regions

• Few hundreds or few 
thousand boxes

• Includes all the objects 
with high probability

• Number of the boxes 
are much smaller than 
with brute force 
method

• C and python functions 
exist

22https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/

https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/


The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 23



Computing the features of the regions

• Cut the regions one 
after the other

• Resize (warp) the 
regions to the input 
size of the ConvNet

• Calculate the 
features of the 
individual regions

11/12/2019 24



Convolution network 
• Pre-trained AlexNet, later VGGNet

• The decision maker SoftMax layer was cut
– Outputs:

• 4096 long feature vectors from each region

• Last 13x13x256 feature map cube (pool5)  

11/12/2019 25



The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 26



Linear Support Vector Machine
• Idea: Separate the data 

point in the data space 
with a boundary surface 
(hyperplane) with 
maximum margin

• Vectors pointing to the 
data points touching the 
margins are the support 
vectors

• The parameters of the 
optimal hyperplane is 
calculated with 
regression

11/12/2019 27

• Similar to single layer perceptron, but optimized 
for maximum margin

https://towardsdatascience.com/support-vector-machine-
introduction-to-machine-learning-algorithms-934a444fca47

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47


Why SVM?

• Why not use simple the classification output of the AlexNet?

• During the training, the AlexNet/VGGNet is not trained

• Only SVM is trained

• The number of category is much smaller

– Designed for 20-200 categories rather than 1000

11/12/2019 28



Decision with SVM
• As many separate 

SVM as many 
category we have

11/12/2019 29

Feature vector of 
the category to 
be detected
e.g.: Cat

Feature vector of 
all the other 
categories plus 
the background
e.g.: No Cat

The result: Each region is categorized
in every image classes.



The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 30



Ranking, selecting, merging
• Greedy non-maximum suppression 

– Regions with low classification 
probabilities are rejected 

– Regions with high Intersection over 
Union values (within the same 
category) are merged

• Result: localized and classified 
object

11/12/2019 31



The R-CNN algorithm

1. Input image
2. Region proposals
3. Compute CNN features with warped images
4. Classification with Support Vector Machine (SVM)
5. Ranking/selecting/merging  detections
6. Bounding box regression

11/12/2019. 32



Bounding Box Regression

33

Training image regions

Input: 

Cached feature map 

cube (pool5)

Regression targets: 
(dx, dy, dw, dh)
(normalized)

(0, 0, 0, 0)

Proposal is good

(.25, 0, 0, 0)

Proposal too  

far to left

(0, 0, -0.125, 0)

Proposal too  

wide

• Linear regression model

• One per object category

• Input: last feature map cube of the conv net (pool5)

• Output: size and position modification to the bounding box:

– dx, dy, dw, dh 

pool5



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training
Step 1: Take a pretrained Convolutional Neural Network (e.g. AlexNet)

Image

Convolution  

and Pooling

Last conv 

feature map 

layer 

(pool5)

Fully-connected  

layers

Class scores  

1000 classes

Softmax loss

Lecture 8 - 54 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

Reusing a pre-trained network is useful, if there is 
not enough data to train or if it provides good 
enough result. Fine tuning typically needed! 



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training

Image
Convolution  

and Pooling

Last conv 

feature map

layer 

(pool5)

Fully-connected  

layers

Save the feature vector to disk!

This feature vector describes the 
content, and will be used for 
classification

Lecture 8 - 55 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

Save the feature cube to disk!

This feature cube describes the 
relative position information, and 
will be used for bounding box 
regression. (Sometimes this is 
used for classification as well.)

Region Proposals Crop + Warp

Step 2: Extract features

• Go through the data base 

• Use region proposal

• Calculate the features for 

each proposed region



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training
Step 3: Identify which proposed region belongs to which object class

Based on the annotated image

Proposed region overlaps with the 

annotated image segment? (IoU)

cat

dog

Lecture 8 - 57 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

cat
dog

Background 

(belongs none of 

the objects)



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Training
Step 4: Train one SVM per class to classify region features

Positive samples for cat SVM Negative samples for cat SVM

Lecture 8 - 57 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Training image regions

Cached region 

features vectors

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Step 4: Train one SVM per class to classify region features

Training image regions

Negative samples for dog SVM Positive samples for dog SVM

Lecture 8 - 58 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Training

Cached region 

features vectors



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Step 5 (bbox regression): For each class, train a linear regression model to map 

from  cached features cubes to offsets/size of the boxes to fix “slightly wrong”

position proposals

Training image regions

Cached region

feature cube 

(pool5)

Regression targets  

(dx, dy, dw, dh)

Normalized coordinates

(0, 0, 0, 0)

Proposal is good

(.25, 0, 0, 0)

Proposal too  

far to left

(0, 0, -0.125, 0)

Proposal too  

wide

Lecture 8 - 59 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Training



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Wang et al, “Regionlets for Generic Object Detection”, ICCV 2013

Lecture 8 - 62 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Results Big improvement ( ~25%) 

compared  to pre-CNN methods



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Bounding box regression  

helps a bit

Lecture 8 - 64 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Results



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Features from a deeper  

network help a lot

Lecture 8 - 65 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li

R-CNN Results



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Problems

Lecture 8 - 66 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

1. Slow at test-time: need to run full forward pass of  CNN for each region

proposal

• Recalculate the features again-and-again in the overlapping regions

2. SVMs and bbox regressors are post-hoc: 

• CNN features  not updated in response to SVMs and regressors

3. Complex multistage training pipeline

• Calculate the features for all the regions for all the training image first 

• Then train for SVM and bbox regressor separately

Slide Credits: Justin Johnson, Andrej Karpathy, Fei-Fei Li



R-CNN Problem #1:  

Slow at test-time due 

to  independent 

forward  passes of 

the CNN

Solution:
Share computation  

of convolutional  

layers between  

proposals for an  

image

Girschick, “Fast R-CNN”, ICCV 2015

Slide credit: Ross Girschick

https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46

https://towardsdatascience.com/faster-r-cnn-for-object-detection-a-technical-summary-474c5b857b46


Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

R-CNN Problem #2:
Post-hoc training: CNN not  

updated in response to final  

classifiers and regressors

Lecture 8 - 691 Feb 2016
Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

R-CNN Problem #3:

Complex training pipeline

Solution:
Just train the whole system  

end-to-end all at once!

Slide credit: Ross Girschick



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:  

3 x 800 x 600

with region  

proposal

Convolution  

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected  

layers

Lecture 8 - 701 Feb 2016
Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

Problem: Fully-connected  

layers expect low-res conv  

features: C x h x w

Fast R-CNN: Region of Interest Pooling



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN: Region of Interest Pooling

Hi-res input image:  

3 x 800 x 600

with region  

proposal

Convolution  

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected  

layers

Lecture 8 - 711 Feb 2016
Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

Project region proposal  

onto conv feature map

Problem: Fully-connected  

layers expect low-res conv  

features: C x h x w



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:  

3 x 800 x 600

with region  

proposal

Convolution  

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected  

layers

Problem: Fully-connected  

layers expect low-res conv  

features: C x h x w

Divide projected  

region into h x w grid

Lecture 8 - 721 Feb 2016
Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

Fast R-CNN: Region of Interest Pooling



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:  

3 x 800 x 600

with region  

proposal

Convolution  

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected  

layers

Max-pool within

each grid cell

RoI conv features:

C x h x w

for region proposal

Lecture 8 - 731 Feb 2016
Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

Fully-connected layers expect  

low-res conv features:

C x h x w

Fast R-CNN: Region of Interest Pooling



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Hi-res input image:  

3 x 800 x 600

with region  

proposal

Convolution  

and Pooling

Hi-res conv features:

C x H x W

with region proposal

Fully-connected  

layers

Can back propagate

similar to max pooling

RoI conv features:

C x h x w

for region proposal

Lecture 8 - 741 Feb 2016
Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

Fully-connected layers expect  

low-res conv features:

C x h x w

Fast R-CNN: Region of Interest Pooling

Instead of SVM, a SoftMax layer 
makes the decision at Fast R-CNN.



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

Using VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 75 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Faster!

FASTER!

Better!



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Results

Using VGG-16 CNN on Pascal VOC 2007 dataset

Lecture 8 - 77 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Faster!

FASTER!

Better!



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Problem:

Lecture 8 - 78 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN

Test time per image without

Region Proposals

47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image  with

Region Proposals 50 seconds 2 seconds

(Speedup) 1x 25x



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Fast R-CNN Problem Solution:

Lecture 8 - 79 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Test-time speeds don’t include region proposals  

Just make the CNN do region proposals too!

R-CNN Fast R-CNN

Test time per image without

Region Proposals

47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image  with 

Region Proposals 50 seconds 2 seconds

(Speedup) 1x 25x



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN:

Lecture 8 - 80 1 Feb 2016

• Insert a Region Proposal  
Network (RPN) after the last  
convolutional layer
– Reuse the CNN computation

• RPN trained to produce region
proposals directly; no need for
external region proposals!

• After RPN, use RoI Pooling and 
an  upstream classifier and bbox
regressor just like Fast R-CNN

https://towardsdatascience.com/faster-
rcnn-object-detection-f865e5ed7fc4

https://towardsdatascience.com/faster-rcnn-object-detection-f865e5ed7fc4


Faster-RCNN

Shared conv layers

RPN

Fast-RCNN

Region Proposal Networks: 

feature map
sliding window, nxn

nxn conv layer

1x1 conv layer 1x1 conv layer

cls layer reg layer

object or not object
bounding box 
proposal

…

k anchors boxes

2k scores 4k coordinates

Anchors: 
three rectangle 
in three scales.



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Region Proposal Network

Slide a small window on the feature map

(very small computational effort per position)

Lecture 8 - 811 Feb 2016
Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

Build a small network for:
• classifying object or not-object, (Binary decision)
• regressing bbox locations

Position of the sliding window provides 
localization  information with reference to the
image

Box regression provides finer localization 
information  with reference to this sliding
window

1 x 1 conv

1 x 1 conv1 x 1 conv

Slide credit: Kaiming He



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Region Proposal Network
Use N anchor boxes at each

location

Anchors are translation 
invariant: use the  same ones at 
every location

Regression gives offsets from 

anchor boxes

Classification gives the probability 
that each  (regressed) anchor 
shows an object

Lecture 8 - 82 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Training

One network, four losses

- RPN classification (anchor good / bad)

- RPN regression (anchor -> proposal)

- Fast R-CNN classification (over classes)

- Fast R-CNN regression (proposal -> box)

Slide credit: Ross Girschick

Lecture 8 - 83 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 8 - 1 Feb 2016

Faster R-CNN: Results

Lecture 8 - 84 1 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

R-CNN Fast R-CNN Faster R-CNN

Test time per  

image

(with proposals)

50 seconds 2 seconds 0.2 seconds

(Speedup) 1x 25x 250x

mAP (VOC 2007) 66.0 66.9 66.9



Segmentation

• Pixel-wise classification 

– Scene understanding 
• Autonomous driving

– Medical imaging

– Precision agriculture

11/12/2019 61



Segmentation Architecture in General

• Same resolution is needed at the end

11/12/2019 62

Contraction side Expansion side



Segmentation Architecture in General
• Encoder Network: extract image features using deep convolutional 

network 
– Each layer: bank of trainable convolutional filters, followed by 
– ReLUs and max-pooling to downsample image features 

• Decoder Network: upsamples feature map back to image resolution with 
final output having same number of channels as there are pixel classes 
– Deconvolution 
– Network mirrors encoder network 

• Pixel-wise softmax over final feature map and cross-entropy loss function 
for training using some kind of SGD.

11/12/2019 63



U-Net

• Designed for biomedical 
image processing: cell 
segmentation 

• Data augmentation via 
applying elastic 
deformations, 
– Natural since deformation 

is a common variation of 
tissue

– Smaller dataset is enough 

11/12/2019 64



U-Net

11/12/2019 65

• Concatenate features 
from encoder network 
– instead of reusing 

pooling indices 

• Relatively shallow 
network with low 
computational demand
– 3x3 convolution kernel 

size only
– 2x2 max pooling

• No fully connected 
layer in the middle



11/12/2019 66

U-NET

Scaled version of the input or the 
features are concatenated to the 

expansion layers Pixel-wise Softmax at the last 
layer with cross- entropy loss.

Can be train by colored 
segmented image with 
regression loss.



DeconvNet

• Instance-wise segmentation
• Two-stage training: 

– train on easy examples (cropped bounding boxes centered 
on a single object) first and 

– then more difficult examples

11/12/2019 67



SegNet
• 13 convolutional layers from VGG-16

– The original fully connected layers are discarded

• Max pooling indices (locations) are stored  and sent to decoder

• Scene understanding

11/12/2019 68https://towardsdatascience.com/review-segnet-semantic-segmentation-e66f2e30fb96

https://towardsdatascience.com/review-segnet-semantic-segmentation-e66f2e30fb96


Avoiding resolution loss but no high computational load:
Atrous convolution

• How it works?
– Blows up the kernel
– Filling up the holes with zeros

• Atrous means very dark (like 
the wholes between the 
values)

• Properties
– Not doing downsampling
– Not increasing computational 

load
– But reaches larger 

neighborhood
– Combines information from 

larger neighborhood

11/12/2019 69

kernel

rate=1 rate=2 rate=3

Normal 
convolution

Atrous (dilated)
convolution



Depth-to-Space

11/12/2019 70

Atrous convolution goes deeper without further reducing resolution

Normal convolution goes deeper with reducing resolution



Filter size considerations

• Small field-of-view →  accurate localization

• Large field-of-view →  context assimilation 

• Effective filter size increases (enlarge the field-of-view of filter)

𝑛𝑜: 𝑘 × 𝑘 → 𝑛𝑎: 𝑘 + 𝑘 − 1 𝑟 − 1 × 𝑘 + 𝑘 − 1 𝑟 − 1

𝑛𝑜 : original convolution kernel size

𝑛𝑎 : atrous convolution kernel size

r: rate

• However, we take into account only the non-zero filter values:
• Number of filter parameters is the same

• Number of operations per position is the same

11/12/2019. 71



72Chen, Liang-Chieh, et al. "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 
CRFs." arXiv preprint arXiv:1606.00915 (2016).

Standard 
convolution

Atrous
convolution

Padded 
filter

Original filter

Visualizing atrous convolution

https://arxiv.org/pdf/1606.00915v1.pdf


Semantic segmentation 
CNN arrangements  

11/12/2019

Fully conv-net  

Fully conv-net with skip

Conv-net with 
Multi-scale 
atrous
convolutions

• How to solve reduced resolution? 
• Do not downsample !!! 

• Convolution on large images ⥤ Small FOV Enlarge kernel 
• Size O(n2 ) more parameters ⥤ getting close to fully
• Connected layer, slow training, overfitting

• Atrous Convolution. 
• Large FOV with little parameters   Kill two birds with one 

stone!



Neural Networks

(P-ITEEA-0011)

Unsupervised learning techniques

Akos Zarandy

Lecture 9

November 19, 2019



Contents

• Supervised vs unsupervised learning

• Unsupervised learning techniques 
• Curse of dimensionality

• Principal component analysis (PCA)

• t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Autoencoder 

11/19/2019. 2



Typical Machine Learning Types

• Supervised Learning
– Learning from labeled examples 

(for which the answer is known)

• Unsupervised Learning
– Learning from unlabeled 

examples (for which the answer 

is unknown)

• Reinforcement Learning
– Learning by trial and feedback, 

like the “child learning” example

11/19/2019 3



Supervised vs Unsupervised learning

• Supervised learning

– We have prior knowledge 
of the desired output
• Always have data set with 

ground truth (like image 
data sets with labels)

– Typical tasks
• Classification

• Regression 

11/19/2019

• Unsupervised learning
– No prior knowledge of 

the desired output
• Received radio signals from 

deep space

– Typical tasks
• Clustering

• Representation learning

• Density estimation 

We wish to learn the inherent 

structure of (patterns in) our data.
4



Use cases for unsupervised learning

• Exploratory analysis of a large data set

– Clustering by data similarity

– Enables verifying individual hypothesizes after analyzing the clustered data

• Dimensionality reduction

– Represents data with less columns

– Allows to present data with fewer features

– Selects the relevant features

– Enables less power consuming data processing, and/or human analysis

11/19/2019 5



Curse of dimensionality

11/19/2019 6

• What is it?
– A name for various problems that arise when analyzing data in high 

dimensional space.
– Dimensions = independent features in ML

• Input vector size (different measurements, or number of pixels in an image)

– Occurs when d (# dimensions) is large in relation to n (number of 
samples). 

• Real life examples:
– Genomics

• We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.



So what is this curse?

• Sparse data:
– When the dimensionality d increases, the volume of the space increases 

so fast that the available data becomes sparse, i.e. a few points in a large 
space

– Many features are not balanced, or are ‘rarely occur’ – sparse features

• Noisy data: More features can lead to increased noise  it is harder to find 
the true signal

• Less clusters: Neighborhoods with fixed k points are less concentrated as d 
increases.

• Complex features: High dimensional functions tend to have more complex 
features than low-dimensional functions, and hence harder to estimate

11/19/2019 7



Data becomes sparse as dimensions increase
• A sample that maps 10% of the 1x1 squares in 2D represent only 1% 

of the 1x1x1 cubes in 3D

• There is an exponential increase in the search-space

11/19/2019 8



Data sample
number increase to

avoid sparsity

• e.g. 10 observations
/dimension
– 1D:  10 observations

– 2D: 100 observations

– 3D: 1000 observations

– …

11/19/2019 9



Curse of dim - Running complexity

• Many data points (labeled measurements) are needed

• Complexity (running time) increase with dimension d

• A lot of methods have at least O(n*d2) complexity, where n is 
the number of samples

• As d becomes large, this complexity becomes very costly.
– Compute = $

11/19/2019 11



Sparisty increase: More regions with the same
number of data points
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Distances in high dimension

• Assume, we have a unit side (2D) square, 
what we divided to 100 equal small squares
– Calculate the ratio of the largest distance in a small 

square and the largest distance of the big square 
(in 2D)

• Assume, we have a unit side 100D cube, 
what we divided to 100 equal small 100D 
cubes
– Calculate the ratio Ratio of the largest distance in a 

small cube and the largest distance of the big cube
(in 100D)

– The average nearest neighbor distance is 95% of the 
largest distance!!!

– Euclidian distance becomes meaningless, most two 
points are “far” from each others
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D

s

S

d

s2=
2 1

100
= 0.1

S2=1

D2= 2

d2=0.1 2

𝑅2 =
𝑑2

𝐷2

= 0.1

S100=1 s100=
100 1

100
= 0.95

D100= 100 = 10 d100= 100 ∗ 0.952 = 9.5

𝑅100 =
𝑑100

𝐷100

= 0.95



Curse of dim - Some mathematical 
(weird) effects

• Ratio between the volume of a sphere and a cube for d=3: 

• When d tends to infinity the volume of the sphere (this ratio) tends to zero

• Most of the data is in the corner of the cube

– Thus, Euclidian distance becomes meaningless, most two points are “far” from 
each others

• Very problematic for methods such as  k-NN classification or k-means 
clustering because most of the neighbors are equidistant
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(
𝟒
𝟑)𝝅𝒓

𝟑

(𝟐𝒓)𝟑
≈
𝟒𝒓𝟑

𝟖𝒓𝟑
≈ 𝟎. 𝟓

d 3 5 10 20 30 50

ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28



The nearest neighbor problem in a sphere

• Assume randomly distributed points in a sphere with a unit diameter

• The median of the nearest neighbors is l

• As dimension tends to infinity 

– The median of the nearest neighbors 
converges to 1
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“The Curse of Dimensionality” by Raúl Rojas
https://www.inf.fu-berlin.de/inst/ag-
ki/rojas_home/documents/tutorials/dimensionality.pdf 

l



How to calculate dimensionality?

x1 x2 x3 x4

d1 1 2 1 1
d2 2 4 3.5 1
d3 3 6 17 1

• How many dimensions does the data 
intrinsically have here? 
(How many independent coordinates?)

– Two!
• x1 = ½ * x2 (no additional information, correlated, not independent)
• x4 is constant (carries no information at all!)
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How to avoid the curse?

• Reduce dimensions
– Feature selection - Choose only a subset of features
– Use algorithms that transform the data into a lower dimensional space (example – PCA, t-SNE)

*Both methods often result in information loss

• Less is More
– In many cases the information that is lost by discarding variables is made up for by a more 

accurate mapping/sampling in the lower-dimensional space

11/19/2019 17

Classifier 
performance

# of variablesOptimal # of 
variables



Principal component analysis

(PCA)
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Dimensionality reduction goals

• Improve ML performance

• Compress data

• Visualize data (you can’t visualize >3 dimensions)

• Generate new complex features 
– Loosing the meaning of a feature 

– Combining temperature, sound and current to one feature will be meaningless for 
human (non-physical)
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Example – reducing data from 2d to 1d

• X1 and x2 are pretty redundant. We 
can reduce them to 1d along the 
green line

• This is done by projecting the points 
to the line (some information is lost, 
but not much)
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• Despite having  3D data most of it lies close to a plane

• If we were to project the data onto a plane we would have a more 
compact representation

• So how do we find that plane without loosing too much of the variance in 
our data?  PCA

Example – 3D to 2D
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Principal component analysis (PCA)

• Technique for dimensionality reduction

• Invented by Karl Pearson (1901)

• Linear coordinate transformation

– converts a set of observations of possibly correlated variables

– into a set of values of linearly uncorrelated orthogonal variables 
called principal components

• Deterministic algorithm
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance. 
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PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension 

value. This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the
same variance. 

3. Covariance matrix: Calculate the covariance matrix
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Covariance (formal definition)

• Covariance x, x = var x

• Covariance x, 𝑦 = Covariance y, x

Variance(x)=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)2

=
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑥𝑖 − ҧ𝑥)

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)

• Assume that x are random 
variable vectors 

• We have n vectors



Covariance example for 2D

• Positive
covariance 
between the 
two 
dimensions
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𝑥1

𝑦1

ҧ𝑥

ത𝑦

𝑦1 − ത𝑦<0

𝑥1 − ҧ𝑥<0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance example for 2D

• Negative
covariance 
between the 
two 
dimensions
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𝑦1

ത𝑦

𝑦1 − ത𝑦<0

𝑥1ҧ𝑥
𝑥1 − ҧ𝑥>0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance example for 2D

• No covariance 
between the 
two 
dimensions
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𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 <0
𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

𝑥𝑖 − ҧ𝑥 𝑦𝑖 − ത𝑦 >0

Covariance(x, y) =
1

𝑛
σ𝑖=1
𝑛 (𝑥𝑖 − ҧ𝑥)(𝑦𝑖 − ത𝑦)



Covariance matrix
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𝐶𝑜𝑣 σ =

𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑐𝑜𝑣(𝑥𝑚, 𝑥𝑚)

𝐶𝑜𝑣 σ =
1

𝑛
𝑋 − ത𝑋 𝑋 − ത𝑋 𝑇; 𝑤ℎ𝑒𝑟𝑒 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑚

• Diagonal elements 
are variances, i.e. 
Cov(𝑥, 𝑥)=𝑣𝑎𝑟 𝑥
– n is the number 

of the vectors

– m is the 
dimension

• Covariance Matrix 
is symmetric 
– commutative 𝐶𝑜𝑣 σ =

𝑣𝑎𝑟(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑚)

𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑣𝑎𝑟(𝑥2, 𝑥2) ⋯ 𝑐𝑜𝑣(𝑥2, 𝑥𝑚)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥1)
⋮

𝑐𝑜𝑣(𝑥𝑚, 𝑥2)
⋮
⋯

⋮
𝑣𝑎𝑟(𝑥𝑚, 𝑥𝑚)



PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value. 

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance. 

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of 
the data variance on the new axis is the eigenvalue for that eigenvector. 
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x2

x1

PC2
PC1

Principal
components will be 
orthogonal.
Uncorrelated, 
independent!



PCA algorithm
1. Mean normalization: For every value in the data, subtract its mean dimension value. 

This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance. 

3. Covariance matrix: Calculate the covariance matrix

4. Eigenvectors and eigenvalues of the covariance matrix

– Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of 
the data variance on the new axis is the eigenvalue for that eigenvector. 

5. Rank eigenvectors by eigenvalues 

6. Keep top k eigenvectors and stack them to form a feature vector

7. Transform data to PCs: 

– New data =      feature vectors (transposed) *   original data
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Principal Component Analysis (PCA)
• The idea is to project the data onto a subspace which compresses most of 

the variance in as little dimensions as possible.

• Each new dimension is a principle component

• The principle components are ordered according to how much variance in 
the data they capture
– Example:

• PC1 – 55% of variance
• PC2 – 22% of variance
• PC3 – 10% of variance
• PC4 – 7% of variance
• PC5 – 2% of variance
• PC6 – 1% of variance
• PC7 - ….
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We have to choose how many PCs to use from the top



How many 
PCs to use?

• Calculate the proportion of 
variance for each feature

– 𝑝𝑟𝑜𝑝. 𝑜𝑓 𝑣𝑎𝑟. =
𝜆𝑖

σ𝑖=1
𝑛 𝜆𝑖

– 𝜆𝑖 are the eigen values

• Rich a predefined threshold

• Or find the elbow of the 
Scree plot
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Scree plot elbow

Scree plot

Proportion 
of variance

Principal components

Variance
Cumulative variance



PCA Example
• Weekly food 

consumption of the 
four countries
– food types: variables

– countries: observations

• Clustering the 
countries:
– Needs visualization in 

17 dimension

• PCA: reduce 
dimensionality
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http://www.sdss.jhu.edu/~szalay/clas
s/2016-oldold/SignalProcPCA.pdf

http://www.sdss.jhu.edu/~szalay/class/2016-oldold/SignalProcPCA.pdf


PCA Example
• From PC1, two clusters 

are well separable

• Including PC2, the four 
clusters can be well 
separated 
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Coefficients of the Principal Components

Load plot shows the coefficients of the original
feature vectors to the principal components
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t-Distributed Stochastic Neighbor Embedding

(t-SNE)
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

• Introduced by Laurens Van Der Maaten (2008)

• Generates a low dimensional representation of the high dimensional data 
set iteratively

• Aims to minimize the divergence between two distributions

– Pairwise similarity of the points in the higher-dimensional space

– Pairwise similarity of the points in the lower-dimensional space

• Output: original points mapped to a 2D or a 3D data space

– similar objects are modeled by nearby points and 

– dissimilar objects are modeled by distant points with high probability

• Unlike PCA, it is stochastic (probabilistic)
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t-SNE implementation I
Step 1: Generate the points in the low dimensional data set (2D or 3D)

• random initialization 

• First two or three components of PCA
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t-SNE implementation II

The similarity of datapoint
xj to datapoint xi means 
the conditional probability 
pji that xi would pick xj

as its nearest neighbor. 

Step 2: Calculate the pair-wise similarities measures between data pairs 
(probability measure)

Exponential normalization of the 
Euclidian distances are needed due 
to the high dimensionality. 
(Curse of dimensionality)



Step 3: Define the cost function

• Similarity of data points in High dimension:

• Similarity of data points in Low dimension:

• Cost function (called Kullback-Leiber divergence between the two 
distributions):

• Large pji modeled by small qji Large penalty

• Large pji modeled by large qji Small penalty

• Local similarities are preserved
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t-SNE implementation III



t-SNE implementation IV
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Step 4: Minimize the cost function using gradient descent

• Gradient has a surprisingly simple form:

• Optimization can be done using momentum method



Physical analogy
• Our map points are all connected with springs in the low 

dimensional data map

• Stiffness of the springs depends on   pj|i - qj|i

• Let the system evolve according to the laws of physics

– If two map points are far apart while the data points are close, 
they are attracted together

– If they are nearby while the data points are dissimilar, they are 
repelled.

• Illustration (live)

– https://www.oreilly.com/learning/an-illustrated-introduction-to-
the-t-sne-algorithm
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Comparison of PCA and t-SNE on MNIST database
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PCA T-SNE

28x28 (784) dimensions      2 dimensions    



Autoencoder
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Autoencoder
• Neural network used for efficient data coding

• Uses the same vector for the input and the output
– No labelled data set is 

needed 

– Unsupervised learning

• Two parts
– Encoder: reduces data 

dimension

– Decoder: reconstructs 
data

– Middle layer: code
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𝑥2
′

𝑥3
′

𝑥5
′

Operation
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x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

𝑥1
′

Layer 3

a1

a2

a3

net(x)=x’

𝑥1
′

𝑥4
′

𝑥6
′

• The network is 
trained with the 
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy 

• After network is 
trained, remove 
decoder part



Operation

• The network is 
trained with the 
same input-
output pairs

• Loss function:

– MSE

– Cross Entropy 

• After network is 
trained, remove 
decoder part
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x4

x5

x6

Layer 1 Layer 2

x1

x2

x3

a1

a2

a3

New compressed

representation for 

input. 

𝑎1
𝑎2
𝑎3



Example

• Coding MNIST data base
• 28x28 (784 dimensions)      2x5   (10 dimensions)    
• 78 times compression
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Autoencoder vs PCA

• Undercomplete autoencoder with 

– one hidden layer 

– linear output function 

– MSE loss 

• Projects data on subspace of first K principal 
components
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Undercomplete: width
(dimension) of 
hidden layer is smaller than 
width input/output layer



Denoising
• Trick:

– Adding noise to the input

– The desired output is the original input
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MNIST database coding to two dimension

5511/19/2019

Two neurons in 
the coding hidden 
layer



Autoencoder + t-SNE
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Two neurons in 
the coding hidden 
layer



Recurrent Neural Networks

• How to handle sequential signals with Neural Networks?

• General Architecture of the Recurrent Networks
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Static samples vs Data signal flow 

• Though human can 
recognize 
– Single letters
– Single sounds
– Single tunes
– Single pictures

11/19/2019 58

• But in real life we 
handle
– Texts 
– Speech
– Music
– Movies

Can feed-forward neural networks (perceptrons, 
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis 
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.



Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers 

• For storing data temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference
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Recurrent networks (RNN)
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Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural 
networks, the output of the RNN 
depends on the previous inputs 

– State 

• RNN contains feedback 

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in 
execution

– Time steps, delays



Steps towards vectorized data and parameters

• Weights
(multiple
arrows)
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Steps towards vectorized data and parameters

• Weights
(multiple
arrows)
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Steps towards vectorized data and parameters

• Weights
(multiple
arrows) 

replaced
with
vectors
(single
arrows)
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Steps towards vectorized data and parameters

• Single arrows
indicate all 
interconnections 
between layers 

• wij matrix 
matematically



Introducing feedback loop
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ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a 
matrix vector
multiplication.



Activation function in feedback loop

• Activation function of the
hidden layers is 
typically hyperbolic
tangent

• It avoids large positive 
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop 

calculation
– Gain should be smaller 

than 1 in the loop!
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Positive feedback in a loop:
A produces more of B which 
in turn produces more of A.
It leeds to increase beyond 
any limit.

A                   B

x2

x2



Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs 

exist
• State machine

67

input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

.   .   .
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Unrolling
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x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

.  .  .



Unrolling

• Unrolling generates an acyclic 
directed graph from the original 
cyclic directed graph structure

• It generates a final impulse 
response (FIR) filter from the 
original infinite impulse 
response (IIR) filter

• Dynamic behavior 
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…

FIR filters response 
to any finite length 
input with a final 
response.

IIR filters may response to 
any finite length input 
with a infinite (usually 
decaying) response, due 
to their internal loop.



Weight matrix sharing
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x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

.  .  .

RNN re-uses the same weight
matrix in every unrolled steps.
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Static samples vs Data signal flow 

• Though human can 
recognize 
– Single letters
– Single sounds
– Single tunes
– Single pictures

2019-11-25 3

• But in real life we 
handle
– Texts 
– Speech
– Music
– Movies

Can feed forward neural networks (perceptrons, 
conv. nets) solve these problems?

DATA MEMORY

Story

(temporal analysis 
of sequential data)

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

Naturally, we can extend the data dimension with the time, but this leads 
to data size and computational load explosion .



Memory
• Our feed-forward nets had so far

– Program memory (for the weights)

– Registers 

• For store temporally due to implementation and not matematical
resasons

• Registers were not part of the networks

• After each inferences the net was reset
– All registers were deleted

– No information remained in the net after processing an input vector

– Therefore the order of a test sequence made no difference
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Recurrent networks (RNN)
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Feedback loop

Jürgen lives in Berlin.

He speeks ……………..

• Unlike traditional neural 
networks, the output of the RNN 
depends on the previous inputs 

– State 

• RNN contains feedback 

• Theoretically:

– Directed graph with cyclic loops

• From now, time has a role in 
execution

– Time steps, delays



Vectorized presentation of neurons and 
parameters

• Weights
(multiple
arrows)

2019-11-25 6
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Vectorized presentation of neurons and 
parameters

• Weights
(multiple
arrows)
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Vectorized presentation of neurons and 
parameters

• Weights
(multiple
arrows) 

replaced
with
vectors
(single
arrows)
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Vectorized presentation of neurons and 
parameters

• Single arrows
indicate all 
interconnections 
between layers 

• wij matrix 
matematically



Introducing feedback loop

10

ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 = 𝐖𝒉𝑐(1)

ℎ()

𝑦()

𝑥()

ℎ 0 = 0

𝑥(1) =

𝑥1(1).
.
.

𝑥𝑘(1)

ℎ(0) =

ℎ1(0).
.
.

ℎ𝑙(0)
𝑐 1 =

ℎ1(0).
.

ℎ𝑙 0

𝑥1 1
.
.

𝑥𝑘(0)

𝑤: 𝑙 × 𝑘 + 𝑙 𝑠𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥

concatenation

f() can be defined
as a more complex
function not only a 
matrix vector
multiplication.



Activation function in feedback loop

• Activation function of the
hidden layers is 
typically hyperbolic
tangent

• It avoids large positive 
feedback
– Keeps the output between

-1 and +1
– Avoids exploding the loop 

calculation
– Gain should be smaller 

than 1 in the loop!

2019-11-25 11

Positive feedback in a loop:
A produces more of B which 
in turn produces more of A.
It leeds to increase beyond 
any limit.

A                   B

x2

x2



Timing of the RNN
• Discrete time steps are used
• Input vector sequence to apply
• Signals are calculated in a node, when all inputs 

exist
• State machine

12

input

x(1)

x(2)

x(3)

x(4)

…

Time Input State output

t=1 x(1) ℎ 1 = 𝑓 ℎ 0 , 𝑥 1 𝑦 1 = 𝑔 ℎ 1

t=2 x(2) ℎ 2 = 𝑓 ℎ 1 , 𝑥 2 𝑦 2 = 𝑔 ℎ 2

t=3 x(3) ℎ 3 = 𝑓 ℎ 2 , 𝑥 3 𝑦 3 = 𝑔 ℎ 3

t=4 x(4) ℎ 4 = 𝑓 ℎ 3 , 𝑥 4 𝑦 4 = 𝑔 ℎ 4

ℎ()

𝑦()

𝑥()

ℎ 0 = 0How to calculate back propagation?

.   .   .

2019-11-25



Unrolling

2019-11-25 13

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖

𝑦 i = 𝑔 ℎ 𝑖

.  .  .



Unrolling

• Unrolling generates an acyclic 
directed graph from the original 
cyclic directed graph structure

• It generates a final impulse 
response (FIR) filter from the 
original infinite impulse 
response (IIR) filter

• Dynamic behavior 

2019-11-25 14

…

FIR filters response 
to any finite length 
input with a final 
response.

IIR filters may response to 
any finite length input 
with a infinite (usually 
decaying) response, due 
to their internal loop.



Weight matrix sharing

2019-11-25 15

x(1)

h(1)

y(1)

x(2)

h(2)

y(2)

x(3)

h(3)

y(3)

x(4)

h(4)

y(4)

h(0)

x(i)
𝐖𝒉

ℎ 𝑖 = 𝑓 ℎ 𝑖 − 1 , 𝑥 𝑖 =

=𝐖𝒉 𝑐(1)

𝑦 i = 𝑔 ℎ 𝑖 = 𝐖𝒚ℎ 𝑖

𝐖𝒚

.  .  .

RNN re-uses the same weight
matrix in every unrolled steps.
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Simple RNN Training Example: Predicting the next letter

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

One-hot 
encoding
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Simple RNN Training Example: Predicting the next letter

Hidden layer 
weights are 
initialized with 
random values
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Simple RNN Training Example: Predicting the next letter

Output layer 
weights are 
initialized with 
random values
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Simple RNN Training Example: Predicting the next letter
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Simple RNN Training Example: Predicting the next letter
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Simple RNN Training Example: Predicting the next letter
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Simple RNN Training Example: Predicting the next letter

Backpropagation 
can be started 
using negative log 
likelihood cost 
function



Back propagation through time

• Assuming that the length of the 
input vector sequence is limited

• It became a feedforward neural net

• Possible to apply back propagation

• We need multiple vector sequences 
to train!

x(1) x(2) x(3) x(4)
x(1) x(2) x(3) x(4)

y(1) y(2) y(3) y(4)

y(1) y(2) y(3) y(4)

.  .  .

.  .  .

x(n)

y(n)



Backpropagation through time



Truncated Backpropagation through time



Truncated Backpropagation through time

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps! 



Truncated Backpropagation through time



Image captioning example 

2019-11-25 28



Image captioning example
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Image captioning example
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Image captioning example
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Alexnet: scored 5 best guesses



Image captioning example
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Image captioning example
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Image captioning example
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straw



Image captioning example
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straw



Image captioning example
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straw hat



Image captioning example
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straw hat



Image captioning example

2019-11-25 38

straw hat
end



Image captioning example
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straw hat
end
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Image captioning Example: Results
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Image captioning: Failure cases



Problem

• What happens if the input sequence is too 
long?

2019-11-25 42

Vanishing gradient!



Vanishing Gradient Problem
• In case of long

input vector
sequencies, the old 
vectors has a 
strongly fading
effect in inference
phase

• In training phase, 
the stacked
gradient functions
will be very small

2019-11-25 43



Practical problem of long term dependences

• Consider a network 
which predicts the next 
word in a text
– If the information needed 

to predict is close, it can 
be successfully trained

– If required information is 
far, the training will be 
difficult

2019-11-25 44

in

German

Berlin He speeksJürgen lives
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RNN Gradient flow
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RNN Gradient flow

ℎ𝑡+1 = 𝑡𝑎𝑛ℎ 𝑊
ℎ𝑡
𝑥𝑡+1

=𝑡𝑎𝑛ℎ 𝑊 𝑡𝑎𝑛ℎ 𝑊
ℎ𝑡−1
𝑥𝑡

𝑥𝑡+1



2019-11-25 47

RNN Gradient flow
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RNN Gradient flow

Introduction of 
Long Short Term 
Memory (LSTM)



Long Short Term Memory (LSTM)

• Was originally introduced  Hochreiter & 
Schmidhuber (1997)

• Idea:
– To be able to learn long term dependences

– Collects data when the input is considered to be 
relevant

– Keeps it as long as it considers to be important

– Technique: 

• Handle the state as a memory with minor 
modifications

– No matrix multiplication

– No tanh

– Apply memory handling kind signals

» data in, data out, write, enable

2019-11-25 49http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Derivation of LSTM

• Repeating module in 
Normal RNN 

– concatenates the input 
and the state

– A neural network with 
tanh output and repeats 
the result 

• LSTM

– Uses the state as a 
memory

– Uses 4 neural nets to 
control the memory

• Forget_gate, Input_gate,
State_update, 
Output_gate2019-11-25 50



Components of LSTM  I
• All wires represents vector

– Vector transfer
– Vector concatenation
– Vector copy

• Neural nets with (yellow boxes)
– Multi-layer NN with tanh activation 

function used for update value 
calculation

– Multi-layer NN with logistic
activation function (sigmoid)
used for value selection (kind of 
addressing)

• Pointwise operation (pink circles)

– Pointwise multifaction 
– Pointwise addition

2019-11-25 51

Input

Output



Components of LSTM  II
• State of the LSTM

– This is the actual
memory, 

– It can pass the previous
values with or without
update

– Represented by the 
upper black line

– Indicated with Ct

• Old content can be 
removed value-by-value

• New content can be 
added

2019-11-25 52



How LSTM works?

• Step 1
– Combines input and 

previous output 
(concatenation)

– Selects which values to 
forget 
• Sort of addressing

• Done by the 
“Forget Gate” 

• Neural net with sigmoid 
output

2019-11-25 53



Updating state memory  (Example)• Input: “James”

• Forget Neural network figures out:
– Analyzes the concatenated vector 

– Name, Subject of a sentence, Male 

• Selects which values to forget and how much 

– Position and weight

• Task:
– Update gender of the subject (forget the old 

value)

– Gender might be represented with a variable

• c1: value proportional with the probability 
that the subject is a male

• c2: represents weather

– Calculate the forget factor of the gender 
memories

• 0 completely get rid of it 

• 1 keep the previous value

• 0  ..  1  partial forget

• Adressing and suppressing!!! 54

𝐶𝑡−1 =
−0.5
0.2
⋮

𝑓𝑡 =
0.1
1
⋮

James

𝐶𝑡−1
′ =

−0.05
0.2
⋮

c1: subject’s
gender

f1: forget 
factor of c1

c1  value 
after partial 
forget

Not to 
forget c2

𝐶𝑡−1
′



How LSTM works?

• Step 2
– Calculation of the state 

update 
• Done by the 

“Cell Network”

• Not yet the new value, only 
the update value

• Neural Net with tanh

– Selection of the state values 
to be updates (Addressing)
• Done by the “Input Gate” 

• Neural Net with sigmoid

–
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Updating state memory  (Example)• Input: “James”

• Input Gate figures out:
– Analyze the concatenated vector

– Select which values to update  (ENABLE!!!)

– Calculate the update weights

• Cell Network calculates:
– The update values

• Task:
– Update gender of the subject (calculate the update 

value)

– Gender might be represented with a variable

• c1: value proportional with the probability 
that the gender is male

• c2: represents weather

– Calculate the update factor of the gender 
memories 

• 0 not to update

• 1 fully update

• 0  ..  1  partial update

• ADRESSING!!!2019-11-25 56

ሚ𝐶𝑡 =
0.9

−0.75
⋮

𝑖𝑡 =
0.8
0
⋮

James

ሚ𝐶𝑡
′ =

0.72
0
⋮

c1: subject 
gender estimate 
value 

f1: update 
factor of 
c1

c1  update 
value

Not to 
modify c2

ሚ𝐶𝑡
′



How LSTM works?

• Step 3
– Calculation of the state 

update

• The old state 

– With the forgotten 
values in the vector

• And the state update 

– With update vector

• Are added up

2019-11-25 57

𝐶𝑡 = 𝐶𝑡−1
′ + ሚ𝐶𝑡

′ =
−0.05
0.2
⋮

+ 
0.72
0
⋮

= 
0.67
0.2
⋮

c1: subject gender’s
estimate value update 

c2: (weather) unchaged

ሚ𝐶𝑡
′

𝐶𝑡−1
′



How LSTM works?

• Step 4
– Apply activation function to

the output 
• Squeeze the values 

between -1 and +1

• Done by tanh activation 
function

– Selection of the new output 
values (Addressing)
• Done by the “Output Gate” 

• Not all the state value is 
released in each step

• Output Gate decides which
values are relevant in this step
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Output vector can be sparse
• Output gate 

might enables 

– All values  
of Ct

– Fraction of 
Ct (sparse)

– None of Ct

• Ct can be 
sparse

2019-11-25

𝑜𝑡 =

0.01
0.85
0.75
0.1
0.2
0.8
0.1
0.1
0.02
0.9
0.8

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.002
0.83
−0.73
−0.01
0.2
0.64
0.02
0.03
−0.02
0.72
0.63

𝑡𝑎𝑛ℎ 𝐶𝑡 =

0.2
0.98
−0.97
−0.1
0.98
0.8
0.2
0.3

−0.99
0.8
0.7

Enabling factor: 
Enabled values 
are red

Output vector:
Enabled values are red
Disabled values (gray) 
will appear on the 
output, but with 
reduced values

Values are 
bounded



LSTM network

• General form of an 
LSTM network
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Unrolling LSTM network
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Gradient calculation in LSTM 

2019-11-25 62

Input

Forget

Output

Cell Net

Reformulating equations

∗

∗

∗

∗

∗

∗
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Gradient calculation in LSTM 

∗

∗

∗
∗

∗

∗



• Though we multiply the memory content with a smaller than 1 number
• And the W matrix is part of the memory update
• But it still preserves the content for longer time
• As it comes from the name: It is a elongated time short term memory

2019-11-25 64

Gradient calculation in LSTM 

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗



Achevements with LSTM networks
• Record results in natural language text compression

• Unsegmented connected handwriting recognition

• Natural speech recognition

• Smart voice assistants
– Google Translate

– Amazon Alexa

– Microsoft Cortana

– Apple Quicktype

• 95.1% recognition accuracy on the Switchboard corpus, incorporating a 
vocabulary of 165,000 words

– Continuous spontaneous English native speech
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• Introduced by Gers & 
Schmidhuber (2000)

• All the three gates receives 
input from the previous 
state and the input

• Since output can be sparse 
this version has more 
information for gating 

– addressing and weighting

2019-11-25 66

Variants of LSTM I  : Peephole connections 



• Input and forget gates 
has practically the 
same role

• Why not to join them?

2019-11-25 67

Variants of LSTM II  : Joined forget and input
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Gated Recurrent Unit (GRU)

• Another variant of LSTM

• Introduced by  Kyunghyun Cho 
(2014)

• There is no separate State and 
Output

• Only three neural nets

• At GRU the output will not be  
sparse (not gated)

• Similar performance in music 
and speech signal modelling and

• Learns faster for smaller data set
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How GRU works?

• Concatenate ht-1 and xt

• Calculate the Input Gate

• Suppress the values to be 
forgotten in ht-1 
(get sparse memory vector)

• Calculate the joint Forgot and 
output Gates

• Gate ht-1

• Calculate function of the  Cell 
Network

• Gate ෨ℎ𝑡−1

• Calculate the new output (ht)

𝑟𝑡 = 𝜎 𝑊𝑟 ℎ𝑡−1, 𝑥𝑡

𝑧𝑡 = 𝜎 𝑊𝑧 ℎ𝑡−1, 𝑥𝑡
෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡

ℎ𝑡 = 1 − 𝑧𝑡 ∗ ℎ𝑡−1+ 𝑧𝑡 ∗ ෨ℎ𝑡
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PPKE-ITK: Neural Networks – famous architectures

Administrative announcements

•   Replacement paper-based test 17. 12.   9:00, Room 418
• papíros pót ZH - dec. 17 9:00, 418-as terem

•   Early exam 17. 12.  9:00, Room 419 
• The invited students will be emailed acknowledged this week

   Early exam - dec. 17 9:00, 419-es terem,  
érintettek a héten megtudják meg

•   Project presentation - 17. 12.   11:00, Room 418
   Projekt bemutatás - dec. 17 11:00, 418-as terem
•   
•   Computer-based test - 19. 12.   9:00
   Géptermi ZH - dec. 19 9:00
•
•   Computer-based replacement test TBA, early January
   Géptermi pót TBA,  ~január eleje
•
•   Oral Exams are already in the Neptun system
   Vizsgaidőpontok a Neptunban We are considering to create a 

list of the participants, to reduce 
waiting  time for the oral exam.
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Input Image Feature Image

● Input space Feature space

• Classification - decision 
• FNN, SVM – linear classification
•

Is X larger than a limit? X>k?

● Finding a good feature representation:
● Meaningful
● Sparse - low dimensions

● Finding the representation with the help 
of machine learning

● Ensures easy separation

Neural Networks
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• A network of simple processing elements

• Elements:
 

 Pooling
 ReLU

Low layers Middle layers High layers

 Convolution

Thresholding all 
values below 
zero

Selection of the 
maximal 
response in an 
area

Convolutional neural networks
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Convolutional networks

Ok, but how many layers do we need?

How many features should be in each layer?

What should be the network architecture?

Assume, I have a problem to solve.
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Convolutional networks

Ok, but how many layers do we need?

How many features should be in each layer?

What should be the network architecture?

These are called hyper-parameters:

Along with: non-linearity type, batch-norm, dropout etc.

Assume, I have a problem to solve.
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Convolutional networks

Ok, but how many layers do we need?

How many features should be in each layer?

What should be the network architecture?

These are called hyper-parameters:

Along with: non-linearity type, batch-norm, dropout etc.

We can use a network which performed fairly well on an 
other dataset

It will probably work well on our task too

Assume, I have a problem to solve.
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Alexnet
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton  (2012)

Trained whole ImageNet (15 million,22,000 categories)

Used data augmentation (image translations, horizontal reflections, and patch extractions)

Used ReLU for the nonlinearity functions (Decreased training time compared to tanh) - 
Trained on two GTX 580 GPUs for six days

Dropout layers

2012 marked the first year where a CNN was used to achieve a top 5 test error rate of 
15.4% (next best entry was with error of 26.2%)

11x11



14

PPKE-ITK: Neural Networks – famous architectures

VGG  - 16/19
Karen Simonyan and Andrew Zisserman of the University of Oxford, 2014 Visual Geometry Group

As the spatial size of the input volumes at each layer decrease (result of the conv and pool layers), 
the depth of the volumes increase due to the increased number of filters as you go down the 
network. 

Shrinking spatial dimensions but grwoing depth

3x3 filters with stride and pad of 1, along with 2x2 maxpooling layers with stride 2

7.3% error rate

Simple architecture, still the 
swiss knife of deep learning
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• GoogLeNet:
22/42 layers (9 inception_v3 layers)
5 million free parameters
~1.5B operations/evaluations
Demo:https://cloud.google.com/vision/

Google - Inception arhcitecture
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Inception module

9 similar inception_v3 layers
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Inception

Google, Christian Szegedy

2014 with a top 5 error rate of 6.7%

This can be thought of as a “pooling of features” 
because we are reducing the depth of the 
volume, similar to how we reduce the dimensions 
of height and width with normal maxpooling 
layers.  

AlexNet: 60 million parameters

VGGNet: 1800 million

GoogLeNet / Inception-v1: 7 million parameters

Idea:
   Not to introduce different size 
kernels in different layers, but 
introduce 1x1, 3x3, 5x5 in each 
layers, and let the Neural Net 
figure out, what representation is 
the most useful, and use that!

  Parallel multi-scale approach. 

In the retina, different kernel 
sizes operate parallel.
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Rethinking Inception
2016 with a top 5 error rate of 6.7%

Squeezing the number of 
channels for each kernel

With the concatenations, the 
number of features 
increased in each layers, 
which introduced too many 
convolution. 

To reduce these numbers, 
they introduced the 1x1 
layer. 

It can generate e.g. 16 
feature maps from 64 feature 
maps

Max Pooling 
introduces a 
“non-linear” 
winner take all 
function 

1x1 conv. 
Rescale the 
depths
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Rethinking Inception

Larger (5x5) convolutions were substituted by series of 
3x3 convolutions

Advantages: 
1. Reduction of number of parameters,
2. Additional non-linearities (RELUs) can be introduced
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Rethinking Inception

Larger  convolutions were substituted by series 
of 3x3 convolutions

2D convolution were substituted by two 1D 
convolutions

AlexNet: 60 million parameters
VGGNet :180 million parameters
GoogLeNet / Inception-v3: 7 million parameters



21

PPKE-ITK: Neural Networks – famous architectures

Alexnet
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How deep could/should a network be?

History of network depth

 Before 2012: four layers

22
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History of network depth

 Before 2012: four layers

2012: 8layers

23

How deep could/should a network be?
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History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers
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How deep could/should a network be?
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History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers

2016: 19-22 layers

25

How deep could/should a network be?
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History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers

2016: 19-22 layers

Deeper network:

Possibility to approximate more complex functions

Higher number of parameters

26

How deep could/should a network be?
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History of network depth

 Before 2012: four layer

2012: 8layers

2014: 19 layers

2016: 19-22 layers

Deeper network:

Possibility to approximate more complex functions

Higher number of parameters

There are no convolutional networks with more than 30 layers. Why?

The amount of transfered data is decreased from layer to layer

Training becomes difficult 

27

How deep could/should a network be?
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Is a deeper network always better?

A deeper network would have higher 
approximation power

Higher number of parameters (both advantageous 
and disadvantageous)

Difficult to train the network

28



PPKE-ITK: Neural Networks – famous architectures

A deeper  network always has the potential to perform better, but training 
becomes difficult

After a given depth, the same network with the same training on the same data, 
usually performs worse

29

Is a deeper network always better?
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A deeper  network always have the potential to perform better, but training 
becomes difficult

We can not just simply stack convolutional layers to increase accuracy

The backpropagated error will be smaller than the floating point accuracy limit.

 The gradient will be disappear. The information will not pass the first layers, 
because there will be random noises on the weights, and they will not be trained.

30

Is a deeper network always better?
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How deep could a network be?

Residual networks provide an answer to these questions

34
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How could we create deeper networks?

A deeper  network always have the potential to perform better, but training 
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even 
increase it)?

35

Let’s start with a shallow model (18 layers) and 
add some extra layers (which we hope could 
increase accuracy)
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A deeper  network always have the potential to perform better, but training 
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even 
increase it)?

36

Let’s start with a shallow model (18 layers) and 
add some extra layers (which we hope could 
increase accuracy)

Our aim is to add 
“useful” operations H(x)

 The problem is that 
H(x) can ruin our 
accuracy because 
vanishing gradients, 
overfit - extra 
parameters

How could we create deeper networks?
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A deeper  network always have the potential to perform better, but training 
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even 
increase it)?

37

The trick is to use residual connection and as a 
starting point F(x) could be zero, and H(x) 
becomes the dientity mapping
So H(X) will not change 
our performance, 
gradients will remain, 
because the addition of 
x

Our accuracy will no be 
decreased, and might 
even be increased if we 
find a proper F(x)

How could we create deeper networks?
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Residual networks

Results: Deeper residual networks result higher accuracy

38
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Results with ResNets

39
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Results with ResNets

ResNets had the lowest error rate at most competitions since 2015 

1st places in all five main tracks

• ImageNet Classification: “Ultra-deep” 152-layer nets

• ImageNet Detection: 16% better than2nd

• ImageNet Localization: 27% better than2nd

• COCO Detection: 11% better than2nd

• COCO Segmentation: 12% better than2nd

40
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GoogleNet Inception v4 

Inception architecture applied to residual networks 

41
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Efficiency of Neural Networks



43
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Efficiency of Neural Networks

Requirements to use a network

Accuracy
Industry: above 90%

Speed
Self driving car: real-time

IOT:
battery based operation:
low power, cheap hardware
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MobileNet

In this arhcitecture feature depths are squeezed 
before each operation

44

In a squeezed architecture we 
will use downscale the 128 
feature maps to 16, using a 
linear combination (1x1 
convolution)

After the 3x3 covolutions, we 
expanded back to 128 layers 
by 1x1 convolution again

From the linear combination of 
these elements the new maps 
are created

Scaling in feature map depths.
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ResNext

45

● Group convolution:
● Dividing the feature mapes into two groups, and apply 

the convolutions to each groups separately
● The number of convolutions will be halved

● normal convolution block:
●

● c
1
 inputs, c

1
 outputs

● c
1
c

2
number of kernels

● group convolution block:
●

● 2x(c
1
/2) inputs, 2x(c

2
/2) output

● 2x(c
1
/2 c

2
/2 ) = c

1
c

2
/2 number 

of kernels
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ShuffleNet
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SqueezeNet

In this arhcitecture depths are squeezed before each 
operation

The expand is done by the concatenation of the 1x1 and 
the 3x3 convolutions.

Advantage: the expand layer is saved.

47
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SqueezeNet

In this arhcitecture depths are squeezed before each 
operation

48
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SqueezeNext

In this arhcitecture depths are squeezed before each 
operation

49

In a SqueezeNext architecture 
we will use a linear 
approximatine of 128 feature 
maps, using 16 independent 
feature maps 

From the linear combination of 
these elements the new maps 
are created
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Neural networks for regression

Age estimation

The output is not discreet classes or pixels,  but continuous values

The network structure can remain the same but a different loss function 
and differently annotated dataset is needed.

Hard to interpret the error in common tasks.

 E.G: Age estimation on images:

50
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Neural networks for regression
Multiple object detection on a single image

Classification is good for a single object (can be extended for k objects – 
top k candidates)

How could we detect objects in general, when the number of objects is 
unknow

51
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Traditional method

52

Sliding window over the image

We might have objects in different scales

Slidign windowds in different scales, aspect ratios

Resutls a heat map →  detect the objects: non-maximum suppression 
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Object detection as regression

RCNN

Single Shot Object Detector (SSD) (2016 March)

You Only Look Once YOLO (2016 May)

53
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R-CNN

Region proposal CNN network

Separate the problem of object detection and calssification

It consists of three modules. 

The first generates category-independent region proposals. These proposals define the set of 
candidate detection avail-able to detector.

 The second module is a large convolutional neural network that extracts a fixed-length feature vector 
from each region. 

The third module is a set of class- specific linear SVMs

54

.
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Faster R-CNN

Region proposal from a network

Step 3 and 4 are standard CNN implementations

Extra layers for region proposals

Possible region refinement at the end

55
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SSD
Single shot object detector SSD (2016 March)

Has a fixed resultion and the last feature maps (with different scales) can be considered 
as maps of bounding boxes

On these maps each pixel represent a fixed size bounding boxes. (Each feature map 
represents a certain box size.

 A high pixel value represent high probability of the centerpoint of a detected object.

57

Problem: Unlike at R-CNN, the boundix boxes have fixed 
scale and positions, no fine turning in the last step.
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SSD arhcitecture
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YOLO, Detectnet
Models detection as a regression problem:

Divide the image into a grid and each cell can vote
 for the bounding box position of possible object. 
(Four output per cell for the corner positions.)

Boxes can have arbitrary sizes 

Each cell can proposes a bounding box one category 
(more layers, more categories per position).

Non-suppression on the boxes 

No need for scale search, the image is processed once and 
objects in different scales can be detected

61

￭

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
2016.

Handles 
oclusion
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How unified detection works?

confidence scores: reflect how confident is that the box contains an object+how accurate the box 
is .

conditional class probabilities: conditioned on the grid cell containing an object



PPKE-ITK: Neural Networks – famous architectures

How unified detection works?

• At test time,  multiply the conditional class probabilities and the individual box 
confidence predictions

• giving class-specific confidence scores for each box
• Showing  both the probability of that class appearing in the box and how well the 

predicted box fits the object
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Pixel level segmentation
The expected output of the network is not a class, but a map representing the pixels 
belonging to a certain class.

Creation of a labeled dataset (handmade pixel level mask) is a tedious task

More complex architectures are needed (compared to classification)

 Popular architectures (Sharpmask, U-NET ...)

  

 

64

SharpMask: Learning to Refine Object Segments. Pedro O. Pinheiro, 
Tsung-Yi Lin, Ronan Collobert, Piotr Dollàr (ECCV 2016)

SEMANTIC IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL 
NETS AND FULLY CONNECTED CRFS Liang-Chieh Chen et al. ICLR 2015
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Sharpmask

65
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U-net

66
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Mask RCNN, RetinaNet

67

These networks generate bounding boxes and sematnic segmentation maps simultanously

They can be trained on images having lables for only one or both types of output



PPKE-ITK: Neural Networks – famous architectures

Mask RCNN, RetinaNet

68

These networks generate bounding boxes and sematnic segmentation maps simultanously

They can be trained on images having lables for only one or both types of output



PPKE-ITK: Neural Networks – famous architectures

Starting from scratch 
(if you do not want to use one of the famous networks)

69

Neural architecture search:

Networks can be described as a series of operations

As series of words →  text

We can feed a Recurrent network with this data series
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Starting from scratch

70

Neural architecture search:
Networks can be described as a series of 
operations
As series of words →  text

The parameters of each layer can be described 
as numbers The input(s)/outputs(s) of the layer 
can be Ids

The whole network can be described as a graph

layers {
  bottom: "conv1"
  top: "conv1"
  name: "relu0"
  type: RELU
}
layers {
  bottom: "conv1"
  top: "cccp1"
  name: "cccp1"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  convolution_param {
     num_output: 96
     kernel_size: 1
     stride: 1
}
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Starting from scratch

71

Neural architecture search:
Networks can be described as a series of 
operations
As series of words →  text

The parameters of eahc layer can be described 
as numbers The input(s)/outputs(s) of the layer 
can be Ids

The whole network can be described as a graph

We have a problem space where we have text 
as an input and an accuracy number as an 
output

layers {
  bottom: "conv1"
  top: "conv1"
  name: "relu0"
  type: RELU
}
layers {
  bottom: "conv1"
  top: "cccp1"
  name: "cccp1"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  convolution_param {
     num_output: 96
     kernel_size: 1
     stride: 1
}
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Starting from scratch
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Neural architecture search:
Networks can be described as a series of 
operations
As series of words →  text

The parameters of eahc layer can be described 
as numbers The input(s)/outputs(s) of the layer 
can be Ids

The whole network can be described as a graph

We have a problem space where we have text 
as an input and an accuracy number as an 
output

We can train an RNN for regression, which 
approximates the accuracy of a given network

layers {
  bottom: "conv1"
  top: "conv1"
  name: "relu0"
  type: RELU
}
layers {
  bottom: "conv1"
  top: "cccp1"
  name: "cccp1"
  type: CONVOLUTION
  blobs_lr: 1
  blobs_lr: 2
  convolution_param {
     num_output: 96
     kernel_size: 1
     stride: 1
}
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Starting from scratch

73

Neural architecture search:
Networks can be described as a series of 
operations
As series of words →  text

We can turn the problem around:

A recurrent network can be trained with 
reinforcement learning which can train a 
network with predifined accuracy on a given 
dataset.

This recurrent network will understand the effect 
of the elements on this dataset

Test accuracy On CIFAR-10:
96.35%

Best pervious accuraccy:
96.26

This architecture os also 1.05 times faster (less 
computations)
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Starting from scratch
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Neural architecture search:
Networks can be described as a series of 
operations
As series of words →  text

We can turn the problem around:

A recurrent network can be trained with 
reinforcement learning which can train a 
network with predifined accuracy on a given 
dataset.

This recurrent network will understand the effect 
of the elements on this dataset

Test accuracy On CIFAR-10:
96.35%

Best pervious accuraccy:
96.26

This architecture os also 1.05 times faster (less 
computations)

The important in this is that a network
could design another network, and could 
reach as good performance as human.

https://arxiv.org/abs/1603.08695
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EfficientNet (2019)

● Scale the width, the depth, and the resolution uniformly!
● Can be used for any existing architecture, and the efficiency will be significantly 
   better with the same performance

● EfficientNet-B7 achieves stateof-the-art 84.4% top-1 / 97.1% top-5 accuracy on 
ImageNet, while being 8.4x smaller (number of parameters) and 6.1x faster on 
inference than the best existing ConvNet.

● Best performance can be reached by using NN to generate the optimal baseline ConvNet.



PPKE-ITK: Neural Networks – famous architectures

EfficientNet (2019)EfficientNet (2019)EfficientNet (2019)

7 different scaled 
version of EfficientNet. 
(B0, B1, … B7)
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EfficientNet (2019)EfficientNet (2019)EfficientNet (2019)

7 different scaled 
version of EfficientNet. 
(B0, B1, … B7)

EfficientNet-B1 
is 7.6x smaller and
5.7x faster than 
ResNet-152.
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Visualizing the Decision of 
Neural Networks

Soma Kontár & András Horváth

Budapest, 2019.12.10



2

PPKE-ITK: Neural Networks – famous architectures

Administrative details

The replacement paper-based test will be on 17 December

The midterm project code submission deadline is Friday, 13 Dec 23:59 via uploading to a shared 
Google Drive folder (the link will be posted later on the course website)

The midterm project presentations will also be on 17 December

The computer based test will be on 19 December

We will discuss the details of the early exam with the participants in the break
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Disclaimer

The slides are based on the lectures titled visaulizing and understanding Neural Networks at 
Stanford. Created by Justin Johnso, Andrej Karpathy and Fei-Fei Li.



PPKE-ITK: Neural Networks – famous architectures

Input Image Feature Image

Input space Feature space

• Classification - decision 
• FNN, SVM – linear 

classification
Is X larger than a limit? X>k?

• Finding a good feature 
representation:

 Meaningful
 Sparse - low dimensions

Finding the representation with the help 
of machine learning

 Ensures easy separation

Neural Networks
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• A network of simple processing elements

• Elements:
 

 Pooling
 ReLU

Low layers Middle layers High layers

 Convolution

Thresholding 
all values 
below zero

Selection of 
the 
maximal 
response in 
an area

Convolutional neural networks
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Conquest of neural networks

Neural networks work great in various problems

They are capable of solving complex practical tasks

Classification

Segmentation

Reinforcement learning

Image captioning
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Image captioning

“A train is on the tracks at a station”
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Image captioning

“A train is on the tracks at a station”
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MSCOCO

a snowboarder jumping over snow indoors 
with the coca-cola logo in the background.

person on a snow board up in the air 
inside of a building

a man is jumping over two coca cola 
signs.

a room filled with fake white snow under 
stickers.

fake snow inside a snowboarding facility of 
some sort
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MSCOCO

a picture of a computer screen featuring the 
face of a movie actor.

a computer screen on a table showing a 
man's face.

here is actor mark wahlberg on skype with 
someone at a home laptop.

a laptop computer with marky mark on it's 
screen.

a laptop is open and the screen shows 
mark wahlberg.



11

PPKE-ITK: Neural Networks – famous architectures

Neural Network results

https://arxiv.org/pdf/1411.4555.pdf
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Neural Network results

Credits: Fei-Fei Li, andrej Karpathy
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Vinyals, Toshev, Bengio, Erhan (2014), Google research blog
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Vinyals, Toshev, Bengio, Erhan (2014), Google research blog

A refrigerator filled 
with lots of food and 
drinks
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Not so good...

https://arxiv.org/pdf/1411.4555.pdf
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Understanding decisions

If we can understand (or even trace back) network decision we will be able to see if the network managed 
to grasp the important features in the dataset 

 Lisa Anne Hendricks*, Kaylee Burns*, Kate Saenko, Trevor Darrell, Anna Rohrbach:Women 
also Snowboard: Overcoming Bias in Captioning Models
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What is going on inside a convnet?

Filter visualization

Display the filters what the network has learned

Good to display the first layer(s)

The functionality of higher layer kernels is difficult to see
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What is going on inside a convnet?

Filter visualization

Display the filters what the network has learned

Good to display the first layer(s)

The functionality of higher layer kernels is difficult to see

http://users.itk.ppke.hu/~horan/CNN/convnetjs/convnet.html
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Displaying the decision space of the network
In higher layer kernels work in an abstract spaces

We can not really understand functionality just by visualizing the kernels

Unfortunately these kernels are closer, more determining in the decision than the first layers

Really important in 
decision, kernels work in 
an abstract space

Work closer to the image 
space
Kernel visualization is 
good
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Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Kernel visualization is good, because it is input independent. For this we need an input image

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.
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Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Kernel visualization is good, because it is input independent. For this we need an input image

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

Activations should be sparse in a high 
layer

If a neuron is never/always active, it is 
not good
Responses should be specific

The same neuron should fire for similar 
inputs
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024) 
space

Really important in 
decision, kernels work in 
an abstract space
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024) 
space

We can not plot this high-dimensional space, but:

Really important in 
decision, kernels work in 
an abstract space
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Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Tensorboard is a great tool to display activations/weights
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Finding activations

Visualizing activations

Instead of visaulizing the kernels we could visualize activations

Tensorboard is a great tool to display activations/weights
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Displaying the decision space of the network
We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024) 
space

We can not plot this high-dimensional space, but:

We can plot nearest neighbours: Select an input image, and find the closest n image in this space (if 
they are similar the network grasped something important)
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024) 
space

We can not plot this high-dimensional space, but:

We can plot nearest neighbours: Select an input image, and find the closest n image in this space (if 
they are similar the network grasped something important)
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Finding activations

We can find those images in the dataset which will maximize its activation

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.



29

PPKE-ITK: Neural Networks – famous architectures

Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.
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Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015;
reproduced with permission.
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Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

With this method one can easily find the typical element for a class
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Finding activations

We can combine the two previous methods and select a kernel/filter (a neuron representing it)

And find those images in the dataset which will maximize its activation

With this method one can easily find the typical element for a class

Or find those elements where the classifier was “uncertain”
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Displaying the decision space of the network

We focus on the last feature layer (one before the logit layer)

This is usually a non-topographical vector. Every input is a point in a high-dimensional (e.g.: 1024) 
space

We can not plot this high-dimensional space, but:

We could project this data into a lower-dimensional subspace
Really important in 
decision, kernels work in 
an abstract space
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Dimension reduction

PCA/Autoencoder

T-SNE
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Dimension reduction

PCA/LDA/Autoencoder

T-SNE
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Dimension reduction

PCA/LDA/Autoencoder

T-SNE
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T-SNE

T stochastic Nearest Neighbour Embedding
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Dimension reduction

PCA/LDA/Autoencoder

T-SNE

https://cs.stanford.edu/people/karpathy/tsnejs/
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Gépi tanulás – deep learning

Typical examples

We could search in our database and find typical samples. 

It helps, but usually the network is good on this set (train accuracy). We are curious about those images 
which the network has not seen.

Could we generate and ideal image for a given class?
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Gradient Ascent

We could search in our database and find typical samples. 

It helps, but usually the network is good on this set (train accuracy). We are curious about those images 
which the network has not seen.

Could we generate and ideal image for a given class?

Normal training

Expected Label - GivenInput Image - Given
Network parameters - Variables
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Gradient Ascent

We could search in our database and find typical samples. 

It helps, but usually the network is good on this set (train accuracy). We are curious about those images 
which the network has not seen.

Could we generate and ideal image for a given class?

Expected Label - GivenInput Image - Variable
Network parameters - Given

The gradient ascent method



42

PPKE-ITK: Neural Networks – famous architectures

Gradient Ascent – activation maximization

We could search in our database and find typical samples. 

It helps, but usually the network is good on this set (train accuracy). We are curious about those images 
which the network has not seen.

Could we generate and ideal image for a given class?
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Gradient Ascent

Generate a synthetic image that maximizes the response of a neuron.

This image has to be „natural”. The response should not depend on pixels and can not have arbitrary 
values

- Guassian blur on the image

- Clipping image values

- Clipping small gradients to 0
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Gradient Ascent

Intermediate Layers
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Gradient Ascent

Classes
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Gradient Ascent

Using a network which can learn feature inversion

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016;
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Gradient Ascent

Using a network which can learn feature inversion

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
Figure copyright Nguyen et al, 2016;
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Gradient Ascent

Finding the maximizing patterns for each kernel

https://distill.pub/2018/building-blocks/
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Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image
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Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image
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Deep Dream

Deep dream does the same, but uses image transformation.

It amplifies, transforms existing features (noise) on the image
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Gépi tanulás – deep learning

Neural Style Transfer

An interesting application of the gradient ascent method is neural style transfer

Could we use an input image and transform it into the style of an other input image?
 

https://demos.algorithmia.com/deep-style/
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Gépi tanulás – deep learning

Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?

Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves 
features connected to style?
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Gépi tanulás – deep learning

Neural Style Transfer

Style transfer works, but It requires a lot of time, to generate an image.

Many forward and backward passes are needed.

https://tenso.rs/demos/fast-neural-style/
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Gépi tanulás – deep learning

Neural Style Transfer

Style transfer works, but It requires a lot of time, to generate an image.

Many forward and backward passes are needed.

We could train a network that learns the result of this iterative transformation, and tries to 
predict it. Only a single pas is needed.

https://tenso.rs/demos/fast-neural-style/
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Neural Style Transfer

We have a loss function for content:

Can the same objects be found on both images?

Content loss, Perceptual loss: this is a distance between the two embedded image 
vectors in the last features layers

Style loss:

Can the same low level features, edges structures, simple patterns be found on both 
images

Style loss: Distances between lower level representations of the images
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Gépi tanulás – deep learning

Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?

Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves 
features connected to style?
 



Gépi tanulás – deep learning

Neural style transfer with Cycle Consistent GANs
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Gépi tanulás – deep learning

Fast Neural Style Transfer

Could we use an input image and transform it into the style of an other input image?

Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves 
features connected to style?
 



PPKE-ITK: Neural Networks – famous architectures

Adversarial Samples for Neural Networks

Optical Illusions for neural networks
Special, constructed elements, which can not be found in the normal 
input set
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Adversarial attacks

We have a high number of parameters to be optimized

An even higher-dimensional input

The network works well in practice, but can not cover all the possible inputs
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Adversarial attacks

We have a high number of parameters to be optimized

An even higher-dimensional input

The network works well in practice, but can not cover all the possible inputs

One can exploit that there will be regions in the input domain, which were not seen during 
training
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Adversarial noise

I have a working well-trained classifier:

Panda  [Goodfellow,  I.  J .,  Shlens,  J .,  & Szegedy,  C.  (2014).  Explaining  and  harnessing  adversarial
examples. arXiv preprint arXiv:1412.6572



PPKE-ITK: Neural Networks – famous architectures

Adversarial noise

What should I add to the input to cause 
misclassification:

The noise is 
generated by 
gradient descent 
optimization

Panda Gibbon

???

 [Goodfellow,  I.  J .,  Shlens,  J .,  & Szegedy,  C.  (2014).  Explaining  and  harnessing  adversarial
examples. arXiv preprint arXiv:1412.6572
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Adversarial noise

A special, low amplitude additive noise:

Panda Gibbon

The noise is 
generated by 
gradient descent 
optimization

The two images are the same for human perception

 [Goodfellow,  I.  J .,  Shlens,  J .,  & Szegedy,  C.  (2014).  Explaining  and  harnessing  adversarial
examples. arXiv preprint arXiv:1412.6572
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Adversarial noise

Knowing a trained network one can identify modifications (which does not happen 
in real life), which change the network output completely 
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Adversarial noise – does not work in practice

Knowing a trained network one can identify modifications (which does not happen 
in real life), which change the network output completely

Luckily this low amplitude noise is not robust enough in real life (lens distortion and 
other additive noises) 
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High intensity noise concentrated on a small region of the 
input image:

Parameters are the positions (x,y) and size (w,h) of the 
stickers

Cd =N ( I+∑
i=1

k

St i (x i ,y i ,wi ,h i )+∑
j=1

l

St j ( x j ,y j ,w j ,h j ))

Sticker based adversarial attacks

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Song, D., Kohno, T., ... & Tramer, F. (2017). Note on Attacking Object Detectors with Adversarial Stickers. arXiv 
preprint arXiv:1712.08062.
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High intensity noise concentrated on a small region of the 
input image:

Parameters are the positions (x,y) and size (w,h) of the 
stickers

It was shown that these attacks are robust enough to be 
applied in practical applications

Cd =N ( I+∑
i=1

k

St i (x i ,y i ,wi ,h i )+∑
j=1

l

St j ( x j ,y j ,w j ,h j ))

Sticker based adversarial attacks

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv 
preprint arXiv:1707.08945.
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High intensity noise concentrated on a small region of the 
input image:

Parameters are the positions (x,y) and size (w,h) of the 
stickers

It was shown that these attacks are robust enough to be 
applied in practical applications

Does this mean that convolutional neural networks can not 
be used in critical problem in practice anymore?

Cd =N ( I+∑
i=1

k

St i (x i ,y i ,wi ,h i )+∑
j=1

l

St j ( x j ,y j ,w j ,h j ))

Sticker based adversarial attacks

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv 
preprint arXiv:1707.08945.
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Sticker based adversarial attacks

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., ... & Song, D. (2017). Robust physical-world attacks on machine learning models. arXiv 
preprint arXiv:1707.08945.
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Understanding decisions

We might be interested in case of a single sample, what triggered the decision of the network

The network only outputs probabilities. Could we display why the network made this decision?
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Reasoning by occlusion

We might occlude part of the input image.

If the decision does not change → the occluded part was unimportant

If the decision changes → the part was important, The importance of the part is proportional with the 
change
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Reasoning by importance

Occlusion maps are good

Calculating an occlusion map takes a lot of time

Could we calculate the importance of each pixel in the decision?
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Gépi tanulás – deep learning

Reasoning by importance

Could we calculate the importance of each pixel in the decision?

Forward pass: regular computation

Backward pass: Computing the gradient 
of (unnormalized) class score
Taking their absolute value and max over 
RGB channels
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Gépi tanulás – deep learning

Reasoning by importance

Calculating e the importance of each pixel in the decision?

Right for the right reasons
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Gépi tanulás – deep learning

Reasoning by importance

Calculating the importance of each pixel in the decision?

Right for the right reasons



78

Gépi tanulás – deep learning

Reasoning by importance – in practice

It can help people to show them why the network made such a decision

http://physionet.itk.ppke.hu/
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Gépi tanulás – deep learning

Reasoning by importance – in practice

It can help people to show them why the network made such a decision

http://physionet.itk.ppke.hu/
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