Neural Networks exam 2019/20

No. 1 Topic
a. Local optimization in non-convex cases (reason for non-convexity)
b. RMSP optimizer
c. Dropout
d. ResNet
e. Gradient ascent

No. 2 Topic
a. Weight update strategies
b. ReLU and dying ReLU problem
c. LSTM cell
d. Convolution as a mathematical operation in continuous and discrete cases

No. 3 Topic
a. Newton optimization method

b. Ensembling, bagging
c. Comparison of loss functions
d. Machine learning vs traditional programming
e. Inception
No. 4 Topic

a. McCulloch-Pitts model

Parameters of conv - filter, stride, padding, etc
Linear classifier, margin of the classifier

Data augmentation

YOLO

©®ao0o

No. 5 Topic

a. Statistical learning theory
Various activation functions and their properties
Autoencoders
Graph unrolling and parameter sharing in recurrent NN
MobileNet

©®ao0o

No. 6 Topic
a. Machine learning problem definition
Newton optimizer
Effects and relationship of model capacity and complexity - overfitting, underfitting
t-distributed Stochastic Neighbor Embedding
ShuffleNet

©®ao0o



No. 7 Topic

a. Credit approval problem
Objective functions in neural networks
Nesterov momentum optimizer
Decomposition of convolutional kernels
Alexnet + ILSVRC

©ao o

No. 8 Topic
a. Delta learning rule
b. Batch normalization
c. Transposed conv., atrous conv.
d. Obiject classification, localization VS object detection, semantic segmentation VS
instance segmentation
e. ResNext

No. 9 Topic
a. ADAM optimizer

b. The softmax function
c. R-CNN architectures: R-CNN, Fast R-CNN, Faster R-CNN
d. Supervised VS unsupervised learning
e. EfficientNet
No. 10 Topic

a. Optimization problem of objective functions of NN
AdaGrad optimizer

Input vector normalization

DeconvNet, U-Net

Neural style transfer

©ao0 o

No. 11 Topic
Multilayer perceptron
Early stopping
Gradient descent (multidimensional cases as well)
Weight regularization (L1, L2)

Pooling

© a0 oo L

No. 12 Topic
a. Perceptron convergence theorem (no proof)
Momentum optimizer
Properties of CNN: sparsity, parameter sharing, equivariance, invariance to shifting
RNN examples: predicting the next letter, image captioning
Adversarial attacks
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No. 13 Topic

a. Elementary set separation by a single neuron

b. Local response normalization

c. Unpooling

d. Representations: Blum and Li theorem, construction
No. 14 Topic

a. Principal component analysis (PCA)

b. Back-propagation through time

c. Stochastic gradient descent optimizer

d. Obiject detection problem explained

e. Effects of filter size on convolution
No. 15 Topic

a. Rosenblatt perceptron training algorithm

b. Back-propagation

c. Curse of dimensionality

d. SqueezeNet

e. Back-propagation and gradient-based optimizers



No. 1 Topic

fix)

a. Local optimization in non-convex cases (reason for non-convexity)

Local optimization in non-convex case %

Optimization is done

locally in a certain - localmaxima 'y
domain, where the
function is assumed to be
convex ‘
Multiple local
optimization is used to y
find global minimum o Local minima

‘ Global

minimum

Convex and non-convex functions @

X

Strongly convex Non-Strongly convex Non-convex function:

function: function: infinity local multiple non-touching

1 local minimum touching minima with local minima with
o001 the same values different values "

b. RMSP optimizer
RMSP algorithm

* The RMSProp algorithm (2012) modifies AdaGrad to perform better in the non-
convex setting by changing the gradient accumulation into an exponentially
weighted moving average

* In each step AdaGrad reduces the learning rate, therefore after a while it stops
entirely!

* AdaGrad shrinks the learning rate according to the entire history of the squared
gradient and may have made the learning rate too small before arriving at such a
convex structure

* RMSProp uses an exponentially decaying average to discard history from the
extreme past so that it can converge rapidly after finding a convex bowl, as if it
were an instance of the AdaGrad algorithm initialized within that bowl



RMSP algorithm

-

Algorithm The RMSProp algorithm
Require: Global learning rate e, decay rate p.
Require: Initial paramcter 8

The closer parts of the L
history are counted more
strongly.

Require: Small constant 4, usually 107%, used to stabilize division by small

numbers.
Initialize accumulation variables » = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {z(V), ..., z(")} with

corresponding targets y(.

Compute gradient: g + 1Vq 3, L(f(xD;0),y!

J))

Accumulate squared gradient: r < pr + (1 — p)g © g

s pars ster undate: = LU )
Compute parameter update: A8 = 7 ©9-
Apply update: 8 « 0 + A8
end while

(\/d—]? applied clement-wise)

c. Dropout

Dropout

* ldea of dropout method:
— Use mini-batch training approach

— For each minibatch, a random set of
neurons from one or multiple hidden

layer(s) (called droppout layers) is
temporally deactivated

— Selection and deactivation probability is p

— Intesting phase, use all the neurons, but
multiply all the outputs with p, to account
for the missing activation during training

* Requires more training steps, but each
is simpler, due to reduced number of
neurons

* No computational penalty in testing
phase

* Use it for fully connected layers

Reasoning behind dropout

* Dropout can be considered as averaging of
multiple thinned networks (“ensemble”)

* Dropout avoids training separate models

— Would be very expensive
* Avoids computatinal penalty in the test phase
* But still gets benefits of ensemble methods

Reduces overfitting, because the
network is forced to learn the
functionality in different configurations
using different neural paths.




Intuitive explanation

Imagine that you have a team of workers and the overall goal is to
learn how to erect a building. When each of the workers is overly
specialized, if one gets sick or makes a mistake, the whole building will
be severely affected. The solution proposed by “dropout” technique is
to pick randomly every week some of the workers and send them to
business trip. The hope is that the team overall still learns how to build
the building and thus would be more resilient to noise or workers

T § o OFERRYE

Data regularization techniques:

Temporal Modification of the net
architecture in training phase
— Dropout
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d. ResNet

Deep Residual Networks (ResNets)
* “Deep Residual Learning for Image Recognition”. CVPR 2016 |

* Asimple and clean framework of training “very” deep nets

 State-of-the-art performance for

+ Image classification

* Object detection

= Semantic segmentation
* and more...

Deep Residual Learning

* Plaint net

weight layer

weight layer

H(x)

H(x)is any desired mapping,

hope the 2 weight layers fit H(x)

Deep Residual Learning

* Residual net

X

weight layer

F(x)

H(x)is any desired mapping,
he-2 weight e H 0
hope the 2 weight layers fit F(x)
letH(x) =F(x)+x

Deep Residual Learning

* F(x)is a residual mapping w.rt. identity

weight layer

F(x)

= If identity were optimal,
easy to set weights as 0

* If optimal mapping is closer to identity,
easier to find small fluctuations



Static samples vs Data signal flow

AlexNet could recognize 1000s of images.
ResNet could reach better then human performance.

*  Though human can = Butin real life we
recognize handle Story
— Single letters — Texts .
— Single sounds - — Speech (temporal fanal\,rms
— Single tunes — Music of sequential data)
— Single pictures — Movies

Can feed-forward neural networks (perceptrons,
conv. nets) solve these problems?

DATA MEMORY

Naturally, we can extend the data dimension with the time, but this leads to data size and
computational load explosion

Results with ResNets

34-layer residual
image
Revolution of Depth %2
152 layers =

\ Y
22 |ﬂ'r2r5 19 |ﬂ‘f‘er5 I 7x7 conv, 64, /2

ool, /2
35? i I 8 layers | Elavers shallow P

ILSVRC'IS  ILSVRC'14  ILSVRC'14  ILSVRC'I3  ILSVRC'1Z  ILSVRC'11  ILSVRC'10
ResNet  GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

ResNets had the lowest error rate at most competitions since 2015

1st places in all five main  tracks

« ImageNet Classification:  “Ultra-deep” 152-layer nets
« ImageNet Detection: 16% better than2nd

« ImageNet Localization: 27% better than2nd

* COCO Detection: 11% better than2nd

+ COCO Segmentation: 12% better than2nd



How do ResNets address these issues?

. Representation ablllty * No explicit advanta_ge r:m representation
(only re-parameterization), but

+ Allow models to go deeper

. optimization ab”ity * Enable very smooth forward/backward prop
* Greatly ease optimizing deeper models

+ Not explicitly address generalization, but
* Generalization ab|I|ty « Deeper+thinneris good generalization

https:/[towardsdatascience.com/introduction-to-resnets-c0a830a288a4

e. Gradient ascent

Gradient Ascent

Generate a synthetic image that maximizes the response of a neuron.

This image has to be ,natural”. The response should not depend on pixels and can not have arbitrary
values

- Guassian blur on the image
- Clipping image values

- Clipping small gradients to 0

I* = arg max [f(D] +[R(D)]
el \

Neuron value  Natural image regulari;er

Intermediate Layers

w
£
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Layer 4

Layer2 Layer3



https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4

Classes

bell cardoon sllaw[erry pineapple

beer bottle birdhouse breakwater breasiplate broom caldron cinema

entertainment gasmask ga|| ball grand piano ourglass Jack-o-lantern

lampsha monitor mosque motor scooter planetarium

sarang schoaner

Using a network which can learn feature inversion

Code Image
: ! Forward and backward passes

.
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(prior) DNN being visualized

Gradient Ascent

Kty
Finding the maximizing patterns for each kernel

Making sense of these activations is hard because we usually

work with them as abstract vectors:

Q4= [0,0,0,0,31.4,0,0,0,49.0,0,0,0,..]

Wwith Feature visualization, however, we can transform this

abstract vector into a more meaningful "semantic

dictionary".

{ oy = Y
o '




Gradient Ascent

e ex
We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

Normal training

Input Image - Given i Expected Label - Given
Network parameters - Variables

[] = wicre

INBUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATIEN SOFTMAX
S CONNECTED

FEATURE LEARNING CLASSIFICATION

40

The gradient ascent method

Input Image - Variable Expected Label - Given

Network parameters - Given

——
kil N n
FEATURE LEARNING CLASSIFICATION
Gradient Ascent — activation maximization ﬁ

oy
We could search in our database and find typical samples.

It helps, but usually the network is good on this set (train accuracy). We are curious about those images
which the network has not seen.

Could we generate and ideal image for a given class?

0 1 2 3 4
5 6 7 8 9 =
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Neural Style Transfer

Py :
% S
T

An interesting application of the gradient ascent method is neural style transfer

Could we use an input image and transform it into the style of an other input image?

https://demos.algorithmia.com/deep-style/

Neural Style Transfer [

Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

Neural Style Transfer

oY ]
& f
Tes pp o3°

Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

More weight to More weigh
content loss style loss

12



Fast Neural Style Transfer

%
s o1

Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

Style
image
Style Target poxelul 2 pprelu2 yo.relud3 yérelud.3
style ety vie styic
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ool oo o oo 0 ol o
Output : :
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(Start with y : :
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Content
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Gatys, Eckar, and Bathge, “waga style Fansfar using convolutional newral netwerks”, CVPR 2018
Figure adapted from Johnson, Alahi, and FesFol, “Perceptual Losses for Real Time Style Transier s
Super-Resolution”. ECCV 2016, Coovnsht Sorinaer. 20186 Reoroduced for educational curmoses.




No. 2 Topic
a. Weight update strategies

Weight update strategy

fr

* Apply all the input vectors in one after the others,

selecting them randomly
* Instance update

— Update the weights after each input
* Batch update

— Add up the modifications

— Update the weights with the sum of the modifications,

after all the inputs were applied
* Mini batch

— Select a smaller batch of input vectors, and do with that as

in the batch mode o

Weight update: very simple example

1
X = [2]rd1 =1
—1 20 | @
Given a 3 input vector example Xz = [ 2 ].dz =0;

w=[O)a=0 9

* Assume that bias is zero
(decision boundary will cross the origo)

* Random initialization wi(l)=[1 -08];

Remember: the weight vector is orthogonal 20| &
to the decision boundary!!!
Decision boundary:  x, - 0.8x, =0
Its orthogonal vector is: (1, -0.8)

Weight update: very simple example %

) . -1
* Test with the second input vector x, = ,dy =0;
P 2 [ 2 ] 1 © _dy,<0
wi2)=[2 12} N
¥2(2) = sign(w’ (2)x,) = sign ([2 12] [_ZID =sign(-2+24)=1
The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

Idea: subtract the vector pointing to the
1 negatively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+2)=w(k+1)-x,

w'@)=[2-(-1) 12-2]=[3 -08]

Weight update: very simple example

* Start again:
— Test with the again with the first vector
The result is OK!
— Do not modify!!!
— Test with the again with the second vector
The result is OK!
— Do not modify!!!
— Test with the again with the third vector
The result is OK!
— Do not modify!!!

» Since all input vectors are correctly classified: we are ready

* Test with the first input vector

Weight update: very simple example

= If

1
X = [2]-’11 =1L - \dj-yﬁl‘)
wi(l)=[1 -08]; N

¥ (1) = sign(w” (D)x,) = sign([l —0.8] E]) =sign(l—1.6) =0

The result is not OK! Positive misclassification: Instead of 1, the result is 0!!

(The normal vector points to the positive side of the decision boundary.)
Idea: add the vector pointing to the
positively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it towards the point!
wik+1)=wi(k)+x,

wi@=[1+1 -08+2]=[2 12

Weight update: very simple example %

. P _[0 —0-
* Test with the third input vector X3 = [_1] ,d3=0; e \ﬂ',-'y,< 0
wli(3)=[3 -08]; \J
¥5(3) = sign(w’ ()x;) = sign (13 ~08] [ °,]) = sign(0+08) =1

The result is not OK! Negative misclassification: Instead of 0, the result is 1!!

Again: subtract the vector pointing to the
negatively misclassified point to the
orthogonal vector of the decision
boundary, to rotate it away the point!
w(k+3)=w(k+2)-x,

wi(4)=[3-0 -08—-(-1D]=I[3 0.2];

ITEEA-0011

Formalization of the update rules

* Positive misclassification : ADD
e=dy =1 w(k+1)=w(k)+x;

* Negative misclassification : SUBTRACT
e=dry;=-1 w(k+1)=w(k)-x

« Correct classification: DO NOTHING
e=d-y;=0 w(k+1)=w(k)

* Ingeneral:
w(k+1)=w(k)+ & x;



Propagation and back propagation
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i Sequential back propagation
Back-propagation

' ) Adapting the weights of the FFNN (recursive algorithm)
* Though we showed how to modify the weights

with back propagation, its most important value wi (k) = w2 (k) o+ Aw (k)
that it can calculate the gradient Awl (k) =7
* The weight updates can be calculated with The weights are modified towards the differential of the error
different optimization methods, after the function (deftarule): = or,,
gradients are calculated aa aw
. Vamous Optlmlzat|on method can dras“ca”y The E|ement5 of the training set adaptEd b\/ the FFNN
speed up the training (100x, 1000x) sequentially

R, = R, (¥(X),d)

What are we
optimizing here?

« Cost function in quadratic case for
one x, > d, pair:

g = (di — Net(x;, w))z Error surface for x, > d, Error surface for x, = d,
— Error surface is in the w space i T descrnd fom i

hill?!

— Error surface depends on the
x; > d, pair

— Moreover, we do not see the
entire surface, just

When and how to
update the weights?

aE
€ and the gradients —
aw®
ij

15



Update strategies

* Single vector update approach (instant update)
— Weights are updated after each input vector Remember, each

+ Batched update approach _approach optimizes
different error surfaces!!!

— All the input vectors are applied

+ this is actually the correct entire error funtion, which is used by the original
Gradient Descent Method

— Updates (Aw;) are calculated for each vector, and averaged

— Update is done with the averaged values (Aw;) after the entire batch is calculated
* Mini batch approach

— When the number of inputs are very high (104-10¢), batch would be ineffective

— Random selection of m input vectors (m is a few hundred)

— Updates (Aw;) are calculated for each vector, and averaged

— Update is done with the averaged values (Aw;) after the mini batch is calculated

— Works efficiently when far away from minimum, but inaccurate close to minimum
10/1/2649 Requires reducing learning rate 29

b. ReLU and dying ReLU problem

Activation function Il §
. ] . " RelLU
Rectified Linear Unit (ReLU)
f(z) = max(0, z)
f(z) = max(0, z) “
— Most commonly used s
nonlinearity in hidden layers of
deep neural networks ‘
Derivative of ReLU s
1, if .
f’(w) = ! T > q -10 -5 ] 3 o
0, otherwise
. " - =
ReLU: Rectified Linear Unit H
3
*  \Very easy to calculate —Softplus
— Implementation is a simple sign comparison —ReLU
and replacing with 0 if negative 2
* Also easy to calculate its derivative
* Also called: 1
— Ramp function
— Half-wave rectifier 0
* Orders of magnitude learning speed
advantage .
—  Due to non-compressed gradient [ 2 iy 0 1 2 3

* Smooth analytic approximation is the
Softplus function

— (| xr
* Asymptotically reaches RelLU f(:l:) i ma,x({], m) f(:l:) Hiacoa gl
RelLU Softplus
Most used in hidden layers in deep neural networks (as of 2019)!
10/8/2018 17
Activation function
Half-wave rectifier
Not compressing the gradient
— learns much faster
RelU types
— Softmax
— Leaky RelLU
— ELU, SELU Relub



§ reLy

Dying ReLU problem | R(z) =maz(0, )

During training it happens that the weight

composition of a neuron got a certain combination in s
a high gradient situation (when large jump happens
during the optimization), which leads to generate zero .

output from that point on.
— Happens typically with large learning rate 2
— E.g. avery large negative value appears in the bias
position — -
That neuron will output zero for each input vector
from that point o DT oD s (1)
— lIrreversible y“=R(Ww y +bETV)=R(v)
— No contribution to the decision L ot -1
— A usefull neuron selectively fires to a set of input vector Awji =R (W)eyy;
having the same properties
In some bad cases, even 40% of the neurons dies in
coarse of a long training (Vanishing Gradient problem)

Avoid the absolute zero part!
Introduction of Leaky Rell.

injainia

Leaky RelLU

No constant zero output
Neurons do not die
Parametric ReLU
— Variation of leaky ReLU Leaky ReLU: y=0.0ix
— ais a hyper-parameter: %o 12 3
* Tuned during training Parametric ReLU: y=ax
Leaky ReLUs are not necessaril
supe¥ior than normal ReLU [l = max(x ax)
It is an option, if normal RelLU is not a is a small positive number
performing well

ELU: Exponential linear units %

Variation of leaky ReLU
— No constant zero output
— Neurons do not die

— Mean activation closer
to 0in the negative 2
region

Obtains higher
classification accuracy — A

than RelU, but requires =~
more computations )
. T ifz>0
a is a hyper-parameter: flz) = {ﬂ(gz Z 1) otherwise
— Tuned during training

a is a hyper-parameter to be tuned and @ > 0 is a constraint.

SELU: Scaled Exponential linear units

SELU activation function

Variation of leaky ELU  °
Two fixed parameters

— Not trained, but !
selected to be fixed .

— Ais the scaling
parameter

-1

3

-4 -2 2 4

T ifz >0
selu(z) = A {aem—a ifz <0

17



- Variation of RelU ReLU6
CIFAR-10 dataset:
— Capped at6 SR~ o

— 6is achoosable parameter

smane IR - WIS

* Shown to learn sparse PSS EH..E.H.H‘
features faster b Pml EL yEEE

. et Pl s Fel LA™
Tu rned out to be usefull w EEETESEEEE

in CIFAR-10 dog HE<0s0rna®

wo [ N O

rorse i R 5 ) PR B RS RS TR

e R il e PR R
we A INER S E @R

y=0

ReLUs do not require input normalization to prevent them from saturating. However, Local
Response Normalization aids generalization.

c. LSTM cell
Long Short Term Memory (LSTM) C']rD

- if

*  Was originally introduced Hochreiter & I
Schmidhuber (1997)
* Idea:
— To be able to learn long term dependences

— Collects data when the input is considered to be
relevant

— Keeps it as long as it considers to be important
— Technique:

* Handle the state as a memory with minor
modifications

— No matrix multiplication

2%x n memory

ADRS  OUT n

k
—+—{oata -
— Notanh —/—4cs
— Apply memory handling kind signals — WA
» data in, data out, write, enable
2019-11-25 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 43

Derivation of LSTM (3] ® Ef)

* Repeating module in
Normal RNN A & A

— concatenates the input
and the state | |

— A neural network with

tanh output and repeats @ @ @'
T t

the result T
™y '
« LSTM > S »
3 Tanf
— Usesthestateas a A ¥ A
memory | O G (el g R
Dae —
— Uses 4 neural nets to | |
control the memory & ® &)

* Forget_gate, Input_gate,
State_update,

Output_gate =0

18



Components of LSTM | d:i

* All wires represents vector Output @
A
N

— Vector transfer e
— Vector concatenation >
— Vector copy - -
* Neural nets with (yellow boxes)

— Multi-layer NN with tanh activation £ TID
function used for update value | tanh
calculation X (%)
— Multi-layer NN with logistic o] o]

activation function (sigmoid)
used for value selection (kind of | O >

addressing) )

* Pointwise operation (pink circles)

— Pointwise multifaction *:
— Pointwise addition i Xt Input

IN10_11_9C £4

>

®

Components of LSTM I %

* State of the LSTM

— This is the actual
memory,

— It can pass the previous C
values with or without Ci_1 t
update

— Represented by the
upper black line

— Indicated with C,

* Old content can be ==X m—

removed value-by-value *

®
®

* New content can be

added —_——
4 ] 0 — > <X

2019-11-25 Neural Network Pointwise Wector

tenat
Layer Operation Transfer Concatenate Copy

How LSTM works? ﬁ

* Step1l
— Combines input and
previous output
(concatenation)
— Selects which values to
forget
= Sort of addressing

* Done by the
“Forget Gate”

* Neural net with sigmoid

output fe=0(W;s-[hi—1,2¢] + by)




* Input: “James” Updating state memory (Example)
* Forget Neural network figures out:
— Analyzes the concatenated vector
— Name, Subject of a sentence, Male (o
+  Selects which values to forget and how much
— Position and weight

*  Task:
— Update gender of the subject (forget the old
value)
— Gender might be represented with a variable -~ . N .
* ¢,: value proportional with the probability James fr=o Wplh-ssm] + by,
that the subject is a male P i ; Tl
. . Cy- subject’s :jorge cl value
Cy represents weather glena‘er factor of ¢, after partial
— Calculate the forget factor of the gender i forget
memories ,/
* 0 completely get rid of it -05 0.1 , —0.05
* 1keep the previous value C1=(02 fe=) 1 Cia=| 02
* 0 . 1 partial forget : Not to : :
« Adressing and suppressing!!! forgetc, =
How LSTM works?
* Step2
— Calculation of the state
update
* Done by the itf-h.
“Cell Network” C;
* Not yet the new value, only h
the update value t—1 el
* Neural Net with tanh
— Selection of the state values T
to be updates (Addressing

* Done by the “Input Gate” =0 (Wg'[ht_l, :L‘t] + bg)

* Neural Net with sigmoid i
eural Net with sigmoi C: =tanh(We-[hi—1,2¢] + bo)

* Input Gate figures out:
— Analyze the concatenated vector
— Select which values to update (ENABLE!!!)

* Input: “James” Updatlng state memaory (Examp|e) ﬁ

— Calculate the update weights Ct
* Cell Network calculates: i e
—  The update values »
*  Task: —
— Update gender of the subject (calculate the update i [
value) o
James

— Gender might be represented with a variable

* c¢,:value proportional with the probability
that the gender is male

Lo €y subject fi: update cl update
c,: represents weather gender estimate factor of value
— Calculate the update factor of the gender value /
memories ;’i
* 0 not to update 0.9 0.72
« 1 fully update C, =|-0.75 =] 0
= 0 .. 1 partial update : :

ADRESSING!!! .

2019-11-25
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How LSTM works?

Step 3

— Calculation of the state

update
* The old state

— With the forgotten
values in the vector

* And the state update

— With update vector

—0.05]1 [0.72] [0.67
0.2 [+ 0 |=]0.2

* Are added up

G = C£—1+€£ =

2019-11-25

Step 4

|

How LSTM works?

C!,—l

Ci1
®

— Apply activation function to

the output

* Squeeze the values
between -1 and +1

N

Ct

= fixCio1 +iy % Cy

¢, subject gender’s
estimate value update

=

c,: (weather) unchaged ]

57

* Done by tanh activation

function

— Selection of the new output

values (Addressing)

* Done by the “Output Gate”
* Not all the state value is

released in each step

* Output Gate decides which
values are relevant in this step

Output vector can be sparse

0.2 7

*  Qutput gate 0.98
might enables _—06917

— Allvalues 0.98

of C tanh(C,) =| 0.8

" 0.2

— Fraction of 03

C, (sparse) —3.39
— None of C, | 07 |
* (,canbe Values are
sparse bounded

2019-11-25

hi—1

h.t A
— @anhd
oy 0
A

ht

o =0 (W, | hi—1,2¢] + bo)
ht = oy * tanh (Cy)

r0.017
0.85
0.75
0.1
0.2
o,=108
0.1
0.1
0.02
0.9
L 0.8 -

Enabling factor:
Enabled values

are red

he = op * tanh(C,) =| 0.64

Output vector:

will appear on the
output, but with
reduced values

0.83
-0.73

0.72

L 0.63 ]

Enabled values are red
Disabled values (gray)
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LSTM network
 General form of an ® )

LSTM network
l_G anh)
L
(o] [tann] [a]
N v

®
Unrolling LSTM network

v

\ 4

—

| |
®) ® &

Gradient calculation in LSTM ® %
Reformulating equations N - |
@D
® ®
a Y (o] [g] & [o]
Cit 7 ’1‘_* PTG -~ B
f ®
|_L> Input 7 a
W— o 1 Forget | f _ o 7 i1
g_f_" talh Output| © o " ( Tt )
h ——* stack . | CellNet q tanh
t-1 T o] — " % ht/ R IR
X, he = o % tanh(e;)
Gradient calculation in LSTM
Uninterrupted gradient flow!
? = CT *I.__”.__": Cz ?Z*:c
AN AR ]
1 WL:—EQ} . Th _w:l%g} * .T.. _W:[J:Eg} " ;Th
I o *——h[——- [ o *—-h'—- ] o *——h[——-

Though we multiply the memory content with a smaller than 1 number
And the W matrix is part of the memory update

But it still preserves the content for longer time

As it comes from the name: It is a elongated time short term memory

22



Achevements with LSTM networks

Record results in natural language text compression %c-w\
Unsegmented connected handwriting recognition gm_m

Natural speech recognition & Go g|e W
Translate !

Smart voice assistants

— Google Translate
— Amazon Alexa
— Microsoft Cortana

— Apple Quicktype

95.1% recognition accuracy on the Switchboard corpus, incorporating a
vocabulary of 165,000 words

— Continuous spontaneous English native speech

, _ : =+,
Variants of LSTM | : Peephole connections
* Introduced by Gers &
Schmidhuber (2000)
* All the three gates receives
input from the previous
state and the input
* Since output can be sparse
this version has more e
information for gating
— addressing and weighting
ft =a [V[’]f'[ct—].!h't—la:z:t] -+ b!)
iy = 0 (Wi-[Cy—1,he—1, 7] + b;)
2019-11-25 o =0 (If‘Vo‘[Ct, ht_l,xt] + bo) 66

Variants of LSTM II : Joined forget and input

* Input and forget gates

has practically the
same role
*  Why not to join them?

Ctzft*ct—1+(1-ft)*ét

23



d. Convolution as a mathematical operation in continuous and discrete
cases

Convolution |
* Convolutionis a K N ‘

mathematical operation
that

— does the integral of the
product of 2 functions

(signals),

— with one of the signals
flipped and shifted :’

* Mathetmatically:

(f*9) () & f " f(R)glt - ) dr )4
= f_ m. F(t — 7)g(r) dr

* Convolution is commutative \ i

10/22/2019

1.  Flipp g signal
Slide the flipped g over f

3. Integrate the product in continious space
or Multiply and accumulate it in discrete space with each shift

Discrete convolution

* For continiuous:

(Fra)®* [~ frate - r)ar

= : £t — 7)g(r) dr

* For discrete functions:
(fxg)nl= Y flmlgln—m]

= 3 fin - miglm

Convolution vs correlation Il

As the only difference is kernel flipping...

Why convolution rather that correlation?
— Commutativity, Associativity, Distributivity helps to prove
mathematical statements
— Since the network learns its own weights, it is invariant whether that
flip is there or not (just a convention)
— In many cases, correlation is implemented even when it is called
convolution



Convolution vs Convolution Cross-correlation Autocorrelation

correlation | f |—| f I_l f I_I

*  Cross-

Correlation: 9 R 9

N
(frg)(n) ¥ o /) V) o m

=f:f*(t}g(t+r)dt/1—|““||—]/| N ™ [T ‘m
A [ N1 I A 0N

*  f*:complex A i i L
conjugate

. Whenfis. g+f 4 |\' fxg 4 |\ g*g /l\'
Frosfeg DN JEAIREN NERUNNARNIS
(otherwise not) I N I N ) NN N
10/22/2019 :] n _L



No. 3 Topic
a. Newton optimization method
Simplest 2" order Gradient descent method: Newton Method i

J(®) zf("n)"’(X_Xn)va(xn)'l'%(x_XD)TH(f(Xo))(x_Xn)

- Replacing (X~%) > AX an4 differentiating it withAx ,

assuming that we can jump to a minima, where: Vix)=0
6 T l T
O_E[ f(/x0)+Ax ‘Vf(xo)+5Ax H|( f(xﬂ))AxJ—Vf(x0)+H(f(x0))Ax

Constant>0  (Ax)' =1 (%4 (Ax)2) - Ax

Newton optimization:

Ax=-H(f(x,))'Vf(x)) x(n+1)=x(n)—7H(f(x(n))) "V (x(n))

Properties of Newton optimization method

* When fis a positive definite quadratic function, Newton’s
method jumps in a single step to the minimum of the function
directly.

* Newton’s method can reach the critical point much faster than
1st order gradient descent.

Newton optimization:

Ax=-H(f(x))"'Vf(x,)  x(n+1)=x(n)—nH(f (x(n))) ' V/ (x(n))

Newton’s algorithm

Algorithm Newton’s method with  objective  J(@)=
1 7L . i), i
= Lic1 L(F(&;6),y).
Require: Initial parameter 6y
Require: Training set of m examples
while stopping criterion not met do
Compute gradient: g < F]l\_g i L(f(:c“.): 9). y(’).]
Compute Hessian: H < -+ Vg 3. L(f(2";0),y®)

m
Compute Hessian inverse: H

Compute update: A@ = -H g
Apply update: 8 = 8 + A8
end while

Typically not used, due to the computational complexity
Parameter space much higher than first order (where it is already very high)



b. Ensembling, bagging

Ensemble methods:
* Network duplication
» Bagging

* Dropout

Ensemble methods

Idea of ensemble methods:

— Generate multiple copies of your net
* Same or slightly modified architectures

— Train them separately
* Using different subsets of the training sets
= Different objective functions
« Different optimization methods

— The different trained models have independent error characteristics

— Averaging the results will lead to smaller error

Requires more computation and memory both in training and
inferencing (testing) phase

Bagging W
Construct k QOriginal dataset

different
datasets
Each with a

First ensemble member
subset of the First resampled dataset

data, but

s OIOIOELAGEZO)
duplications

Trains with

these Second resampled dataset Second ensemble member

Make feault @ @ > @ TS )

First learns the upper loop, the second the lower. When both say yes, it is an 8.
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Ensembling: duplicating the network |

* Train two architecturally identical copies of the
network on two GPUs
— Half of the neuron layers are on each GPU
* GPUs communicate only in certain layers
— Improvement (as compared with a net with half as

many kernels in each convolutional layer trained on
one GPU):

* Top 1 error rate by 1.7%
* Top 5 error rate by 1.2%

Ensembling: duplicating the network I

intra-GPU connections

GPU 1

«E—J

2!
|

| —

192 192

3
;128

27 3

3

Max 128 Max
pooling pooling

Inter-GPU connections

c. Comparison of loss function

Loss functions

Loss function determines the training process
* Tells the net, whether an error is big or small, and penalize accordingly

* There can be other errors, not just the difference of the output and
the desired output

Most used loss function types:
* Quadratic, in case of regression

R, (W)= %g(dk — Net (x, ,w))z

* Conditional log-likelihood, in case of classification
The sum of the negative logarithmic likelihood is minimized

K
1
Cw) =~ ) (~logP(ilxi,w)
k=1

What is the problem with quadratic loss function in classification tasks?

* In case of classification, the convergence can be very slow
* Consider the following very simple case
g H P Check out the example!

bias b
) http://neuralnetworksan
weight w /7 ™\ ddeeplearning.com/chap
x=1 \__/ d=0 3.html
* Case A: Start the learning from w(0)=0.6, b(0)=0.9 cost
— Loss function decreases quickly

Case A
e (Case B: Start the learning from w(0)=2, b(0)=2

— Loss function decreases very slowly at the beginning
*  Why is that?

— Because the Aw is proportional with the gradient

—ﬁsoo Epoch

Cost|

'\ Case B

M
10/8/2019 ———=—3 Epoch
300
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* Loss function:
=1 (d —y)? where y=o(wx+b)

o8

LY

Calculation of the gradient ﬁ

sigmaoid funetien
o

- -’/‘/ \
Case A "/ Case B

s

g
/

* Gradient, using chain rule:
dL r Il
E:(yfd)a(wx+b)x=ya(wx+b)x //

* Case A: w(0)=0.6, b(0)=0.9, x=1, d=0 T T T T

z

— Slope of the gradient is fine: (wx + b) = 1.5

Sigmoid with quadratic loss
function leads to very small
gradient even at large error,
when the argument of the
sigmoid is a large value.

— Fast convergence
* Case B: w(0)=2, b(0)=2, x=1, d=0
— Slope of the gradient is very small: (wx + b) = 4

— Very slow convergence

Introducing Cross Entropy

* Idea: replace the quadratic Loss function with a more
appropriate Loss function: Try cross entropy!
1
* Ingeneral: ©= —gZ[vlﬂa +(1-y)In(1 —a)]

£

1
©Cw) = — 23k, (di logP(yilxi, w) + (1 = didlog(1 — P(yilxi, w)) )
— Is it always positive?
* d,iseither 0 or 1 (binary classification)
— Either the first or the second term is zero

* P(yrlx, w) = o(wx; + b)
— The probability is the output of the network
— Due to the sigmoid, it is between 0 and 1
— Therefore, its logarithm is negative

10/8/2019 http://neuralnetworksanddeeplearning.com/chap3.html

— Isit a good loss function?
Good decision (small loss):
* When d,is 0 and P(yy|xx, w) is close to 0, than —!ag(l — P(y|xy, w))~0

* Whend,is 1and P(yg|xg, w) isclose to 1, than —Iog(P(yk|xk, w)) ~0
Bad decision (large loss):

* When d,is 0 and P(yy|xy, w) is close to 1, than —!og(l — P(yk|xk,w)) ~00
* Whend,is1and P(yg|x;, w) isclose to 0, than —Iog(P(yk|xk, w)) ~00

Why is cross entropy good?
C(w) = —%Z{f:l (dk logP (yi|xi, w) + (1 — di)log(1 — P(yilxp, w)))

— Because its partial derivative does not contain g’
ac
aWj

sigmoid function

1.0+ S

K
1 -
_ ;Z xj(o(wx +b) — d) T oo //,_
k=1

[

— The gradient is proportional with
the value of the sigmoid, and not
with its derivative! o2

=
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Loss function for softmax: Negative log-likelihood {f§

Range of negative log-likelihood

© L) = Xk, —log(y) "

* The negative logarithm of the
probability of the correct decision
classes are summed up 5

* |tis small, if the confidence of a
good decision was high for a
certain class ? 34

* Large, when the confidence is low
* Partial derivative of a softmax

64

layer with negative log-likelihood: 1
ac 04
5 =y —1 0.0 02 04 0.6 08 10
j x

Probability type loss: Cross Entropy and Softmax @

* Mathematically: yi = softmax(v);
— Normalized exponential functions of the units evi
* Probability distribution of n discrete classes: yn_ eV
— One-of-n classes problems J=1 r
- 0<y <1 v=wx
input layer  hidden layer hidden layer
- =y =1

* Architectural difference:

— Previously learned activation functions were
based on the inputs of one neuron

— Softmax combines a layer of output neurons

10/22/2019

https://medium.com/deep-learning-demystified/loss-functions-explained-3098e
8ff2b27

30


https://medium.com/deep-learning-demystified/loss-functions-explained-3098e8ff2b27
https://medium.com/deep-learning-demystified/loss-functions-explained-3098e8ff2b27

d. Machine learning vs traditional programming

Conventional approach
* Trivial, or at least analitically
solvable tasks

— Well established mathematical
solution exist or at least can be
derived

* Example:

— Finding well defined data
constellations in a database

Formal verification of the
operation is easy

In case of very complex problems,
Typically done by exhaustive testi

Machine learning

We consider each task as an inp

X

X: scalar, vector,
array or a
sequence of these
(incl. text)

size(X) vs size
Data reductio
Data generati

Machine learning approach

Complex underspecified tasks
No exact mathematical solution
exists, the function to be
implemented is not known

Example:

— Searching for “strange” data
constellations in a database

— Verification of the operation is
difficult

verification of the operation is very difficult.
ng in case of machine learning.

ut-output problem

Y: Decision or scalar,
vector, array or a
sequence of these
(incl. text)

(¥)
n
on

Deep learning - why now?

1.
optimization know-how, new tools

Appearance of machine learning methods and frameworks,

for rapid experimentation

2. New architectures are available for computation

—  (1980: VIC-20 Skb RAM, MOS 6502 CPU 1.02Mhz)

—  (2018: NVIDIA GeForce GTX 1080, 8GB RAM, 1733 MHz, 2560 cores)
3. Vast amount of data is

available

Billions of labeled images [
available quasi free

Typical Machine Learnlng Types

Supervised Learning
— Learning from labeled examples
(for which the answer is known)
Unsupervised Learning
— Learning from unlabeled
examples (for which the answer
is unknown)
Reinforcement Learning
— Learning by trial and feedback,
like the “child learning” example

L]

e Din What is Supervised Learning?

e I 11
QT“.

environment

from state s, take action @

i Em

What is intelligence? « The ability to acquire and apply knowledge and skills.

| %_’.\_\!93

Intelligence is the ability to adapt to change “Stephen Hawking”



Providing computers the ability to learn without being explicitly programmed:

Involves: programming, Computational statistics, mathematical optimization, image
processing, natural language processing etc...

As opposed to Traditional Computers At Neural Networks

where
- the math of the functionality is known - the math behind the functionality is unknown
- the known math should be programmed - the functionality is “illustrated” with examples

e. Inception

Inception module:

aifeaa

Convolution
Pooling

9 similar inception_v3 layers

Concat/Normalize

Inception

Idea:
Not to introduce different size

Google, Christian Szegedy kernels in different layers, but

2014 with a top 5 error rate of 6.7% introduce 1x1, 3x3, 5x5 in each
layers, and let the Neural Net

This can be thought of as a “pooling of features” figure out, what representation is

because we are reducing the depth of the the most useful, and use that!

volume, similar to how we reduce the dimensions

of height and width with normal maxpooling Parallel multi-scale approach

layers.
number of
4 filters
AlexNet: 80 million param lxl =
concatenation

VGGNet: 1800 million //'?\
GoogleNet / Inception-vi 3X3 | 1xl ‘ ‘ 3 | ‘ x5 ‘

Emmmss R

n the retina, different kernel

sizes operate parallel.




Rethinking Inception

Squeezing the number of
channels for each kernel

Filter
concatenation

With the concatenations, the
number of features o oA 23 55 T
increased in each layers,
which introduced too many
convolution. .
Max Pooling
To reduce these numbers, Previous foyer Lntrodyces _a
they introduced the 1x1 non-linear
layer. winner take all
Naive idea of an Inception module funchon
It can generate e.g. 16 ‘ FXior ‘
feature maps from 64 feature eon i
maps i
33 56 1x1 convolutions
1x1 [} f
—_— - 1x1 1x1 3x3 max pooling
1x1 conv. -
Rescale the
depths Previous layer
Rethinking Inception
’;”esm
//E\ y
Larger (5x5) convolutions were substituted by series of
3x3 convolutions y
/!
Advantages: i‘w I }( Vr
1. Reduction of number of parameters, fram i AN | ]
2. Additional non-linearities (RELUs) can be introduced F/ !I ,"‘ \Vf [

Filter Concat

Figure 4. Original Inception module as described in (30,

2D convolution were substituted by two 1D
convolutions

AlexNet: 60 million parameters
VGGNet :180 million parameters
GooglLeNet [ Inception-v3: 7 million parameters
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GoogleNet Inception v4

Inception architecture applied to residual networks

Softmax

13

Dropout (keap 0.8)

W

Average Pociing

w

Input {299x2993)

Custpl: MaTInE

¢”¢‘s et
Relu activation
1x1 Conv
(256 Linear)
/_.—-‘!‘ T ————
et 3x3 Conv
e (32)
1x1 Conv i
32) 3x3 Conv 3x3 Conv
32) (32)
I 1
1x1 Conv 1x1 Conv
32) (32)
- S

41
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No. 4 Topic
a. McCulloch-Pitts model

Artificial neuron model, 40’s (McCulloch-Pitts, J. von Neumann);
The artificial neuron (McCulloch-Pitts)

* The artificial neuron is an information processing unit that is
basic constructing element of an artificial neural network.

* Extracted from the biological model

Dendrite Nodes
| of | Axon T, @ [
. Activation
terminal function
! vy Output
Ii'.l... “‘(-} uipu
- Summing
pe Schwann Junetion
Nucleus Myelin sheath cell b T @
Synaptic )
weights McCulloch-Pitts model
* Receives input through its synapsis (x,) w

* Synapsis are weighted (w,)
= if w,>0: amplified input from that source (excitatory input)
= ifw,<0: attenuated input from that source (inhibitory input)

* A bvalue biases the sum Bias

to enable asymmetric behavior ) ._o_,_
* A weighted sum is calculated I Activation
function
* Activation function shapes the ot | 2 Out

¢l) —

output signal signals ")

Summing

X; ! input vector junction

wy, 1 weight coefficient vector of neuron k . @
b, : bias value of neuron k )
Synaptic
o0, : output value of neuron k weights
a/1n/7n1a P TR artiira 1

b. Parameters of conv - filter, stride, padding, etc

Size of the result
f_' 3 2 2 -1 -2 -3 -1
* In practice, convolution is ) . B -
used as a filter, where ' @
— fis the measrurement Result is generated at the position

data, g is the filter function of the Central element of g
descriptor (kernel) B EE E BEE B

— size( f) > size(qg)

size(f)=n size(g)=k n=k

n+k—-1 (Efaitvalues/—\ ' 1.0 i 0o -1

) counted) I |

Slze(f * g, = A A 4 S L S o3 '53 =0 3L
\_/ I

10/22/2018 In CNN, we calculate the valid values only! 23
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Padding in 1D

In many case, we use a sequence
of convolution filters on the
measured data blocks

We do not want size changes on g: 1 0
the data blocks

To avoid size changes, we have to
pad the data block with zeros at
the boundaries

central

2 0

=1

side

elemen / gements
g “‘ .‘; |

— k=size(g) is odd: k=2p+1

-
added f: 3 2 2 1 2 3 1
Ced o ] Padded f
— k=size(g) is even: k=2p
* Padding is asymmetric: Valid f * g after
el o k1 padding: 4, 5, 5. 3. 5 5 0
24
2D convolution ]3] 1
0 |- 1(-1)+3(0)+0(2)-1(1)=-2
‘f N -gl 1 (-1)+3(0)+0(2)-1(1)
2|1
1131 112
0|-1]1] % VU8 1] 3(-1)+1(0)-2(2)+1(1)=-4
221 0 oLt result{valid)
npat kernel 2124 212
. ) 6|4
Scanning through the f function | 1131
with the flipped g function "0 1] 1 0(1)-1(0)+2(2)+2(1)=6
flip{kernel) |2 2]
4|0 131
2|1 -1 11
1N/7247ma 2 ‘1 -1(-1}+1{0}+2{2}-1(1):4 27
10 1 4
g:’U 1 0]
10 1
kernel
| Convolved
mage Feature
Padding in 2D
Convolution

Works the same way as in 1D ) )
without padding
— Boundary layers are added and filled up (valid results)
with zeros
— Sizegiskxk,
* where: k=2p+1

— Padding: p layers of zeros

Convolution

with padding ;
(size unchanged) "

10/22/2019
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Why use padding:
Simplifies the execution unpaddedf: 3 2 2 4 2
code

No branches

Code type for boundary1 -1 0 2 0 -1

Code type for boundary 2 10 2 0 -1
Do not have to deal Code type for central 40 2 ol
with the different
calculation methods at
the boundaries Padded f:[g][@] 3 2 2 1 2 3 - [0][0]
Same code runs in the 102 [0 1
entire array One code for all the array

Though it is more multiply-add operation, but as
f>>g a branch free simpler code is more efficient

Parameter number and computational load

* Number of trainable free parameters:
— kin 1D convolution | size(g)=k
— kZin 2D convolution | size(g)=k x k
* Operation number
— k*n for a padded 1D convolution | size(f)=n

— k2*n2=0(n?)for a padded 2D convolution | size(f)=nxn

Stride

Stride is the number of pixel
what we slide the kernel

— Horizontal stride

— Vertical stride

Down sampling the image
— Size:

n+2p—k

s
— where:

size( f)=n, size( g )=k,
p: padding, s: stride

+1

10/22/2019 Padding:1, stride: 1 Padding:1, stride: 2

c. Linear classifier, margin of the classifier

Linear separability N

* Today, we assume that the 10 sets are linearly separable

* The decision boundary is a hyperplane
defined:

T
wx=0

« Positive side of the hyperplane is classified: +1 (yes)

* Negative side of the hyperplane is classified : 0 (no).

9/17/2019 P-ITEEA-0011 Lecture 2
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Maximum Margin:
Define the margin

« of alinear classifier
as the width that
the boundary could
be increased by
before hitting a
data point.

The learning algorithm: Datasets

Training set
* Set of input — desired output pairs X = {x td = +l}

Will be used for training = {X d=o0 }
Test set
+ Used, when we have large set of input vectors (not used today)
* Set of input — desired output pairs
* Wil be used for testing and scoring the result

We assumed that X* and X~ must be linearly separable
X*:{x Twlox > 0},

We are looking for an optimal parameter set: opt

X7={x: w! x<0}_

opt

Elementary set separation by a single neuron (2) %

in a 2-D input space, decision
the hyper planeis a X2 region for C1
straight line.

decisio —
Above the line is boundary 4 B
classified: +1 (C1: yes) . *

. X
G

Below the line is decision
classified : 0 (C2: no)region for C2 WiXy + WoX, + W, =0

/2010 BTFEA-NN11 lartura 1 47
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d. Data augmentation

Regularization and optimization methods

Different methods to increase lan Goodfellow: regularization i

the loss in the learning phase, f 00 -e 0 N egularization Is

but reduce overfitting and any modification we make to the

increase generalization capabilities learning algorithm that is intended
— Local response normalization to reduce the generalization error,
— Batch normalization but not its training error”

— Data augmentation
(Enriching the data set)

— Early stopping
— Ensemble methods
* Network duplication

* Bagging
* Dropout

Data augmentation g

¢ Idea:

— Increase the generalization capability
of the net by enlarging the training
set

* Increase the number of the training .ﬁ o~
vector by introducing fake (artificial) *r$
input-output pairs _3, as 7

D‘

* Typical methods A . 7z

* Translating “- 2 .

* Slight rotation w." ' &1’

* Rescaling Jl ?ﬁ ‘EQ f‘\""t
A =

* Adding noise
 Flipping Enlarge your Dataset

* Cutting out parts
* Manipulating with pixel values

Input normalization and Data augmentation |

aty

7

‘\

Images were down-sampled and cropped to 256x256 pixels and normalized

* 1% - image translations and horizontal reflections
* random 224x224 patches + horizontal reflections from the 256x256 images

* Testing: five 224x224 patches + horizontal reflections = averaging the
predictions over the ten patches

a. No augmentation

1/5/2019
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Data augmentation Il

+ 2" change the intensity of RGB channels

* PCA on the set of RGB pixel values throughout the ImageNet training set

* To each RGB image pixel Iy, = [Ify, I !fy] following is added

[p1, 02, Palla1dy, @325, a3 A3]T | a;~ N(0,0.1)
* Improvement:

* top-1 error rate by 1% \/
eigenvalues

eigenvectors

Y . * Designed for biomedical
F*  image processing: cell
segmentation
* Data augmentation via
applying elastic

e deformations,
manualabels — Natural since deformation
e ——— is a common variation of
tissue

— Smaller dataset is enough

Alexnet
Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton (2012)

Trained whole ImageNet (15 million,22,000 categories)

Used data augmentation (image translations, horizontal reflections, and patch extractions)

e. YOLO = you only look once (2016 May)

-> Object detection as regression

Classification  Ciassification

j ; Instance
+ Localization CPiect Detection

Segmentation

5B 00 gy

CAT, DOG, DUCK CAT, DOG, DUCK
AR 4
ey

Single objects, Multiple objects
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i
YOLO, Detectnet
Models detection as a regression problem:
Divide the image into a grid and each cell can vote

for the bounding box position of possible object.
(Four output per cell for the corner positions.)

Boxes can have arbitrary sizes

5 x5 grid on input
Each cell can proposes a bounding box one category
(more layers, more categories per position).

Class probability map

Non-suppression on the boxes
) ) Handles
No need for scale search, the image is processed once and oclusion

objects in different scales can be detected

,"l. :------l
e A Y L 3 l
! :- wlw e E
;--l--: :
|
s 1 *lix vl
i1 LT L =
: o ! : E
:llll ITIIIIIIII
AW
Resize The Image Divide The Image Train The Netwerk 1st-20th Channels:  Last 4 Channels:
And bounding boxes b 448 x 448 Into @ 7 2.7 grid. Assign defechionsde  To predict this grid of das probobilies  Closs probobiliies Boa coordinobes
grid cells based on their centers. and baunding box coordinates. Priirplane), PriBike). . Xy, b

Redmon, Joseph, et al. “You only look once: Unified, real-time object deteclion.” Proceedings of the IEEE Confarence on Computer Vision and Pattern Recognitios

How unified detection works?

ey

S xS grid on input

Class probability map
confidence scores: reflect how confident is that the box contains an object+how accurate the box
is.
: truth
Pr(_O_bJectj * I(.’)Umd
conditional class probabilities: conditioned on the grid cell containing an object

Pr(Class;|Object)

truth

h
pred = Pr(Class; ) * jou™

pred

* At test time, multiply the conditional class probabilities and the individual box
confidence predictions

* giving class-specific confidence scores for each box

* Showing both the probability of that class appearing in the box and how well the
predicted box fits the object

Pr(Class; |Object) * Pr(Object) * IOU
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Pixel level segmentation 1

The expected output of the network is not a class, but a map representing the pixels 5=
belonging to a certain class.

Creation of a labeled dataset (handmade pixel level mask) is a tedious task

More complex architectures are needed (compared to classification)

Popular architectures (Sharpmask, U-NET ...)

sy e o Worees Wwoter Wlocs Woren Wiges).

SharpMask: Learning to Refine Obfect Segments. Pedro O. Pinheiro, SEMANTIC IMAGE SEGMENTATION WITH DEEF CONVOLUTIONAL
Tsung-Yi Lin, Ronan Caflobert, Fiotr Dotlar (ECCV 2016) NETS AND FULLY CONNECTED CRFS Liang-Chieh Chen et al. ICLR 2015
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No. 5 Topic
a. Statistical learning theory

Statistical learning theory

* Empirical error
1 & »
Ry (W) = = 22 (s = Net (x,,w))
k=1
* Theoretical error

[FGo— Net (x. w)[* = [ [ (F(0 — Net (x.w))” dx,..dx,

* Let us have x, random variables subject to uniform
distribution

X, random variable, where d=F(x)
. 1 E 2 2
lim = szﬂ‘,(dk — Net(x,,w)) =E(d— Net(x,w)) =
I.}.{.J(F(x)—Net(x,w))z p(X)dx,...dx, =
- Because it is ~ constant due to the uniformity

ﬁT—.:J‘(F(x) —Net(x,w)) dx,...dx, |

- J(FGO—Net(x.w)) dx,..dx,

Therefore
l.i.m. W = W(K)

K—oo opt

Where l.i.m. means: lim in mean
llm Remp (w) = Rﬂx(w)

K-

l_iﬂ%i(dk — Net(x,,w))" = [... [(F(x) = Net(x,w))’ dx,...dx,

Weak learning is satifactory!

Ez mar nem is ide tartozik, de mindu:
Learning — in practice

* Learning based on the training set:
5 = {(x4.dy )ik =1,...K}

* Minimize the empirical error function (R,,,,)

WEITJ :min %i(dk — Net (x, ,w))z =minR,,, (W)
w k=1 ¥
—_—

Ey
* Learning is a multivariate optimization task
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b. Various activation functions and their properties

e Activation function shapes the output signal
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activati
on-functions-right/

Activation function: ¢(.) Activation function

+ Always a nonlinear function — Originally step function
— Sigmoid or Tanh or their piece-wise

* Typically it clamps the output (introduces boundaries) linear approximation is used

* Monotonic increasing function nowadays
. . — Sophisticated training algorithms
* Differentiable require differentiable or at least
« Important from theoretical point of view continuous functions

* Or at least continuous (except in simplified cases)

* Sophisticated training algorithms require continuity

Sigmoid (or logistic) function is a widely activation function

1
y=0) =

* where 1
0.9

m 0.8

T 0.

u=y wx, =w'x i
i=0

0.4
0.3
0.2
0.1

Sigmoid function S(x)= 1
l+e

x

* Continuous
* Continuously differentiable

* Itisused in the output layer of
the fully connected neural

ol network
soft nonlinearity hard nonlinearity \
(continuously differentiable) v
ity piece-wise linear
| I R ISP o T implementation
o(u) = 1+e—iu /’/ of sigmoid function:
] L .
0.75 I,I'l;’f y | 5
0.50- /
A=0.1 Step (threshold}functionv
T sign(u) | 1
— A=1 — = — -
0.25- — A=2 A‘ * Lp(u) 2 2 [—
A=5
loulll _ a
& 3 1] 3 8 E 1 ur
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https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

Derivative of sigmoid function| ri

E : d d 1
Sigmoid(z) = ———— lwal S |
gmoid(z) et de{:x:) der 1+e® /
quotient rule: SR
d (denominator * d‘—inumerator) (numerator % %denominator}
dz’ denominator?
d (1+e72)(0) - (1)(~e)
——5(z) =
dz (14+e2)?
d e’
ES(:B) - (1+e*)2 This is the correct result,

but it is not in a nice form.

Derivative of sigmoid function Il
4 __ e d 1-14+¢®
d S(z) = 1+4+e® 1
dz *= (1+e=)2 B (1+e )2 reduction

d S(g) — 1 1 _
- (z) = AreD — A1e7) Multiply out
d 1 1 1
—S(z) = 1— ] j =
pr (z) Ite?) ( 1+ ez ) Sigmoid(zx) 1+ e2
d
ES(:B) = S(z)(1—5S(z))  Much nicer form!
* Bipolar activation function: O
tanh S
* Continuously differentiable 0'5—/
* Monotonic 2 o
» Useful, when bipolar output
is expected 05k f
* Hard approximations:
— Piece-wise -1 : :
— Step-wise -3 -2 -1 9 1 2 2
Activation function Il PA
1
Hyperbolic tangent function '
* Continuous £ u
* Continuously differentiable x
* Itis used in the output layer of the ! !

fully connected neural network

¢(x) =tanh(x)

%@(x) =1—tanh?(x) = (1 - tanh(x)) (1 + tanh(x))
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Activation function Il

RelLU

f(z) = max(0, z)

* Rectified Linear Unit (ReLU) .

f(z) = max(0, z) E

— Most commonly used 6
nonlinearity in hidden layers of

deep neural networks ‘

* Derivative of ReLU ;

' 1, ifx >0
:B == . -10 -5

fz) { 0, otherwise

[ 3 u

+ other ReLU in No.2 Topic

Probabilistic decision (n discrete categories)

* Assume we have annotated

00
input vectors with n different ;’t .‘,
classes (MNIST data base) 33 2020

. . . Y|

* Expect a probability distribution < ﬂ

on the output layer! b6

— 0<y;<1 sigmoidOK! T

E ¥ =1 sigmoid NOT OK! 71
Softmax

* Mathematically:

— Normalized exponential functions of the
output units

Probability distribution of n discrete classes:
— One-of-n classes problems
0=y <1

i=yi=1

* Architectural difference:
— Previously learned activation functions were
based on the inputs of one neuron
— Softmax combines a layer of output neurons

10/8/2019

Properties of Softmax

Generalization of sigmoid function for one-of-n
class
Squashes a vector of size n between 0 and 1
Improves the interpretability of the output of a
Neural Net
Describes the probability distribution of a certain
class

— We may use the word "confidence”
Winner take all

— exponential function strangly penalize the non-
winners

Similar to lateral negative feedback in the natural
neural systems

400 300/1000

ReLU ReLU W?

Softmax
y; = softmax(v); @

evi
n
}:

v=wx

v
1€/

400 300/1000

20%20

S
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EXAMPLE %

Input pixels, x Feedforward output, v; Softmax output, S(v)

cat dog horse cat dog horse

Y
' 5 4 2 0.71 | 0.26 | 0.04
Forward Softmax

propagation 1 i
ﬁ—> 4 | 2 | 8 |, 1002000008

. 4 4 1 0.49 | 0.49 | 0.02

Input images Input values Probability scores
Example ﬁ
Input pixels, x  Softmax output, S(v,) Loss, L{a)
cat  dog horse NLL
071|026 | 0.04 e
—log(a) at the EREHH s

ﬁ 0.02 | 0.00 | 0.08 correct classes 0.02 Predictor confidence of horse is high.

./ 0.49 | 0.49 | 0.02 0.71

Predictor confidence of dog is low.

The correct class is Total: 1.07 Negative log
Probability highlighted in red for correct
:rcocrteslfor When computing the loss, we can then see that higher class:
correct Classes -, cidence at the correct class leads to lower loss and vice-versa, ~ (want small
(want big numbers)

numbers)

Loss function for softmax: Negative log-likelihood

Range of negative log-likelihood

© L) = Zio, —log(») ’

* The negative logarithm of the 5
probability of the correct decision
classes are summed up 54

* ltis small, if the confidence of a
good decision was high for a
certain class ? 34

* Large, when the confidence is low
+ Partial derivative of a softmax

logix)

layer with negative log-likelihood: 1
ac 04
v =yi—1 0.0 02 04 0.6 o8 10
'r X

c. Autoencoders

* Neural network used for efficient data coding
= Uses the same vector for the input and the output

— No labelled data set is Input Output
— —
needed . ‘ _\\\\ //,J__
— Unsupervised learning | \\ ~ - ;’ ||
>~ Code -~
* Two parts =\ i RN AN
— Encoder: reduces data 1 \f’ \\ / ,/ \Jf ]
dimension ] ?‘\ /<\ />\ /\ ]
— ! \ ! —
— Decoder: reconstructs A /o -~ A R
data A e P ~2 ) \\
L ! -
. rd ~
— Middle layer: code =/ S~ \_
L+ \-n._
11/19/2019 Encoder Decoder
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M 11

Operation

* The network is
trained with the
same input-
output pairs

1

o o
‘ ay /> a3

3

* Loss function:
— MSE

— Cross Entropy

New compressed

representation for
input.

* After network is
trained, remove
decoder part

Layer 1 Layer 2 Layer 1 Layer 2
Example
—> Encoder —»i—» Decoder —>
g;;ginal Iilﬁgﬁzstructed
Compressed

representation

* Coding MNIST data base
28x28 (784 dimensions) > 2x5 (10 dimensions)
* 78 times compression

L]

Autoencoder vs PCA

Undercomplete autoencoder with

— one hidden Iayer Undercomplete: width
. X (dimension) of
— linear output function hidden layer is smaller than
width input/output layer
— MSE loss
* Projects data on subspace of first K principal
components
Denoising z
* Trick: i

— Adding noise to the input
— The desired output is the original input

Encoder Decoder
Noise

Original Noisy Code QOutput
Image Input

48



Autoencoder + t-SNE

AN

label = 5 label = 0

Two neurons in
the coding hidden
layer

O e

s

20

2nd dimension
o

60

d. Graph unrolling and parameter sharing in recurrent NN
Még nézd at az RNN-t kilon, mert ez homaly

Introducing feedback loop

(h1(0)
. [hq(0)]
h(0) = :
.h;t{))_ concatenation hlt{))
'I1€1)- c@ = x(1) Y0
x(1) = j
[ x, (D] i (0)) hQ

f() can be defined
as a more complex
function not only a
matrix vector
multiplication. xQ)

h(1) = f(h(0),x(1)) = Wxe(1)

w: | x (k+1) sized weight matrix

h(0)=0

Timing of the RNN

Discrete time steps are used
Input vector sequence to apply

Signals are calculated in a node, when all inputs
exist y0

State machine

Time Linput [state _________Joutput ____|

r |

=1 1) R = FAOXD) D = g(h@) RO
=2 ) K@) =f(a()x@) @) =g(h@) [ input |
=3 x(3) hQ3)=f(h(2),x?3))  ¥(3) =g(h®3)) 1)
=4 x@)  h(®)=f(r@)x®) ¥ =g(h®) )
L x() x(3)
x(4)

How to calculate back propagation? h(0)=0
11/19/2019
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Unrolling

() = g(h(D)) ¥(1) »2) ¥(3) y4)
- h(0) h(1) h(2) h(3) h(4)
@ = f(rG - 1),x®) \r/ \T/ \T/
x0) x(1) x(2) x(3) x(4)
Unrolling

* Unrolling generates an acyclic
directed graph from the original
cyclic directed graph structure

* It generates a final impulse
response (FIR) filter from the
original infinite impulse
response (lIR) filter

IIR filters may response to FIR filters response
« Dynamic behavior ar_ly fln!te.le_ngth input tco any f{nlte It:ength

with a infinite (usually input with a final

decaying) response, due response.

to their internal loop.

matrix in every unrolled steps.

Welght matrix sharing RNN re-uses the same weight ﬁ

y() = g(h())) = W,h(i) »1) »2) y3) n4

W,
XD i) = f(h(i_l"),x(i)): (1) x(2) x(3) x(4)

=Wpe(1)

Properties of Convolutional Neural Networks I1:

* Parameter sharing
— Same parameters everywhere in the layer
— Contribution to the gradient of a weight from many positions
— Reduces the risk of overfitting

Reduces the risk of dying RELU (dying cell)
+ When it happens, an entire feature extractor on a layer is dying

E ™



Parameter Sharing

Being able to efficiently process sequences of varying length is not the only advantage of parameter
sharing. As you said, you can achieve that with padding. The main purpose of parameter sharing is a
reduction of the parameters that the model has to learn. This is the whole purpose of using a RNN.

If you would learn a different network for each time step and feed the output of the first model to the
second etc. you would end up with a regular feed-forward network. For a number of 20 time steps, you
would have 20 models to learn. In Convolutional Nets, parameters are shared by the Convolutional
Filters because when we can assume that there are similar interesting patterns in different regions of the
picture (for example a simple edge). This drastically reduces the number of parameters we have to
learn. Analogously, in sequence learning we can often assume that there are similar patterns at different
time steps. Compare “Yesterday I ate an apple’ and 'I ate an apple yesterday’' . These two
sentences mean the same, but the 'I ate an apple’ part occurs on different time steps. By sharing
parameters, you only have to learn what that part means once. Otherwise, you'd have to learn it for
every time step, where it could cccur in your model.

There is a drawback to sharing the parameters. Because our model applies the same transformation to
the input at every time step, it now has to learn a transformation that makes sense for all time steps. So,
it has to remember, what word came in which time step, i.e. 'chocolate milk' should not lead to the
same hidden and memory state as 'milk chocolate' . But this drawback is small compared to using a
large feed-forward network.

e. MobileNet

MobileNet

Scaling in feature map depths.

In this arhcitecture feature depths are squeezed

before each operation ST TR

Transformation

In a squeezed architecture we r:' -' n.r
will use downscale the 128

feature maps to 16, using a
linear combination (1x1
convolution)

After the 3x3 covolutions, we
expanded back to 128 layers
by 1x1 convolution again

From the linear combination of
these elements the new maps
are created
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No. 6 Topic
a. Machine learning problem definition
Nem vagom ez alatt mit ért...

Machine learning i

We consider each task as an input-output problem

X y

X: scalar, vector, Y: Decision or scalar,
array or a size(X) vs size(Y) vector, array or a
sequence of these Data reduction sequence of these
(incl. text) Data generation (incl. text)

Machine learning is an application of artificial intelligence (Al) that provides systems the ability
to automatically learn and improve from experience without being explicitly programmed.
Machine learning focuses on the development of computer programs that can access data
and use it learn for themselves.

The process of learning begins with observations or data, such as examples, direct experience,
or instruction, in order to look for patterns in data and make better decisions in the future
based on the examples that we provide. The primary aim is to allow the computers learn
automatically without human intervention or assistance and adjust actions accordingly.

Problem Definition Framework

| use a simple framework when defining a new problem to address with machine learning. The framework helps me to quickly understand
the elements and motivation for the problem and whether machine learning is suitable or not.

The framework involves answering three questions to varying degrees of thoroughness:

+ Step 1: What is the problem? Describe the problem informally and formally and list assumptions and similar problems.

+ Step 2: Why does the problem need to be solve? List your mativation for solving the problem, the benefits a solution provides and
how the solution will be used.

+ Step 3: How would | solve the problem? Describe how the problem would be solved manually to flush domain knowledge.

b. Newton optimizer -> See: No. 3 Topic
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c. Effects and relationship of model capacity and complexity - overfitting,
underfitting
Do we have to reach the global minimum? §

Not really

Global minimum means:
Overfitting

Overfitting: The network
exactly learned the
training vectors

However, it loses the
generalization capabilities

-

L
X

v

v

Under Fit X Appropriate Over Fit

Overfitting occurs when a model with high capacity fits the noise in the
data instead of the (assumed) underlying relationship

Losing the generalization capabilities!!!
Network complexity vs. capacity -

3 hidden neurons 6 hidden neurons 20 hidden neurons

* Ingeneral, the
more layers we
have, and the
more neurons
there are, the
larger the capacity.

* There is no adequate method to
predict the required complexity.

* Even if a network is capable to learn a
task, it is not guaranteed that it will.




Now we understand @

* Architecture of the multilayer fully connected
neural networks
* Qperation of these networks

input layer hidden layer hidden layer hidden layer

* Derivation of the parameters

* Arbitrary function can be
approximated if the neural
network is complex enough

How to increase complexity
on a smart way?

10/8/2019

Semantic segmentation it
CNN arrangements =

Conv-net with

- |_P H_.l sl

convolutions

Fully conv-net e
B Activation layer
Convolutions
—» skip
— Standard
— Atrous/dilated

* How to solve reduced resolution?

* Do not downsample !!!
+ Convolution on large images = Small FOV Enlarge kernel
* Size O(n?) more parameters = getting close to fully
* Connected layer, slow training, uerfikting

* Atrous Convolution.

11/12/2019 - LtargelFOV with little parameters = Kill two birds with one
stone!

Fully conv-net with skip

How could we create deeper networks?

A deeper network always have the potential to perform better, but training
becomes difficult

How could we ensure that additional layers will not decrease accuracy (might even

increase it)?
ashallower =3«

Let's start with a shallow model (18 layers) and model

=]

add some extra layers (which we hope could (18 layers) .
increase accuracy) X —
Our aim is to add ;
“useful” operations H(x) We'ght Iayer

. anytwo e
The problem is that stacked layers relu ==
H(x) can ruin our 3 T
accuracy because weight |ayer
vanishing gradients,
overfit - extra l relu
parameters H (X)




Overfitting in Machine Learning
Qverfitting refers to a model that models the training data too well.

Qverfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance
of the model on new data. This means that the noise or random fluctuations in the training data is picked up and learned as concepts by
the model. The problem is that these concepts do not apply to new data and negatively impact the models ability to generalize.

Qverfitting is more likely with nonparametric and nonlinear models that have more flexibility when learning a target function. As such,
many nonparametric machine learning algorithms also include parameters or techniques to limit and constrain how much detail the model
learns.

For example, decision trees are a nonparametric machine learning algorithm that is very flexible and is subject to overfitting training data.
This problem can be addressed by pruning a tree after it has learned in order to remove some of the detail it has picked up.

Underfitting in Machine Learning
Underfitting refers to a model that can neither model the training data nor generalize to new data.
An underfit machine learning model is not a suitable model and will be obvious as it will have poor performance on the training data.

Underfitting is often not discussed as it is easy to detect given a good performance metric. The remedy is to move on and try alternate
machine learning algorithms. Nevertheless, it does provide a good contrast to the problem of overfitting.

A Good Fit in Machine Learning
Ideally, you want to select a model at the sweet spot between underfitting and overfitting.
This is the goal, but is very difficult to do in practice.

To understand this goal, we can look at the performance of a machine learning algorithm over time as it is learning a training data. We
can plot both the skill on the training data and the skill on a test dataset we have held back from the training process.

Over time, as the algorithm learns, the error for the model on the training data goes down and so does the error on the test dataset. If we
train for too long, the performance on the training dataset may continue to decrease because the model is overfitting and learning the
irelevant detail and noise in the training dataset. At the same time the error for the test set starts to nse again as the model’s ability to
generalize decreases.

The sweet spot is the point just before the error on the test dataset starts to increase where the model has good skill on both the training
dataset and the unseen test dataset.

You can perform this experiment with your favorite machine learning algorithms. This is often not useful technique in practice, because by
choosing the stopping point for training using the skill on the test dataset it means that the testset is no longer “unseen” or a standalone
objective measure. Some knowledge (a lot of useful knowledge) about that data has leaked into the training procedure.

There are two additional techniques you can use to help find the sweet spot in practice: resampling methods and a validation dataset.

How To Limit Overfitting

Both overfitting and underfiting can lead to poor model performance. But by far the most common problem in applied machine learning 1s
overfitting

Overfitting is such a problem because the evaluation of machine learning algorithms on training data is different from the evaluation we
actually care the most about, namely how well the algorithm performs on unseen data.

There are two important techniques that you can use when evaluating machine learning algorithms to limit overfitting:

1. Use a resampling technigue to estimate model accuracy.
2. Hold back a validation dataset.

The most popular resampling technique is k-fold cross validation. It allows you to train and test your model k-times on different subsets of
training data and build up an estimate of the performance of a machine learning model on unseen data.

Avalidation dataset is simply a subset of your training data that you hold back from your machine learning algorithms until the very end of
your project. After you have selected and tuned your machine learning algerithms on your training dataset you can evaluate the learned
models on the validation dataset to get a final objective idea of how the models might perform on unseen data.

Using cross validation is a gold standard in applied machine learning for estimating model accuracy on unseen data. If you have the data,
using a validation dataset is also an excellent practice.
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d. t-distributed Stochastic Neighbor Embedding
Unsupervised learning technique:

t-Distributed Stochastic Neighbor Embedding (t-SNE)

* Introduced by Laurens Van Der Maaten (2008)

* Generates a low dimensional representation of the high dimensional data
set iteratively

* Aims to minimize the divergence between two distributions
— Pairwise similarity of the points in the higher-dimensional space
— Pairwise similarity of the points in the lower-dimensional space

* Qutput: original points mapped to a 2D or a 3D data space
— similar objects are modeled by nearby points and

— dissimilar objects are modeled by distant points with high probability

Unlike PCA, it is stochastic (probabilistic)

Step 1: Generate the points in the low dimensional data set (2D or 3D)
* random initialization
* First two or three components of PCA

High Dim Low Dim
O O L
® ° o — ® O
. o
} @}
Step 2: Calculate the pair-wise similarities measures between data pairs w
(probability measure)
High Dim w Dim
) The similarity of datapoint
x; to datapoint x; means
- the conditional probability
O pj; that x; would pick x;
as its nearest neighbor.
o — exp(=|Ixi — xj|[*/202) N 7
T Xk (=l — x][2/20) G L+ Ny — vl

Exponential normalization of the
Euclidian distances are needed due
to the high dimensionality.

(Curse of dimensionality)
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Step 3: Define the cost function

exp(—||x — x[[*/207)

« Similarity of data points in High dimension: "7~ 2okt &xP(=|lx — xi|[/202)

* Similarity of data points in Low dimension: . _ 1+ lyi —yl»H7?
v 2oL+ Iy — 711

* Cost function (called Kullback-Leiber divergence between the two
distributions): Pii
C = KL(P||Q) = 2:2 Pilog

* Llarge p; modeled by small g, —) arge Qenalty
* largep; modeled by large P -> Small penalty

* Local similarities are preserved

Step 4: Minimize the cost function using gradient descent

* Gradient has a surprisingly simple form:

aC .
oy = 420 — )1+ Ilyi = 1) 7 (i — 59)
11

* Optimization can be done using momentum method

Physical analogy

* Our map points are all connected with springs in the low
dimensional data map

[ ] [ ]
- i H e @
stiffness of the springs depends on p;; - g;; .0
+ Let the system evolve according to the laws of physics V!
— If two map points are far apart while the data points are close, 2R [ SN

they are attracted together

— If they are nearby while the data points are dissimilar, they are
repelled.

+ lllustration (live)

- https:l!www.oreiIIv.com;’learning;’an-iIIustrated-introduction-to.-"5
the-t-sne-algorithm

Comparlson of PCA and t-SNE on MNIST database =2

N 7 IR %
e .':;M:a- 5 ) ~ " @

oo e 5

@’ @.‘. - "g;‘

hd 1 28x28 (784) dimensions > 2 dimensions
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e. ShuffleNet

ShuffleNet
b Channels: = fe Channels: = b Channals——
Input
GConv1
Feature
= = f T Channel
GConv2 LI L Shuffle
QOutput
(a) (b) (c)

Neten talaltam:

We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is
designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPSs). The
new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to
greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification
and MS COCO object detection demonstrate the superior performance of ShuffleNet over other
structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet classification
task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet
achieves ~13x actual speedup over AlexNet while maintaining comparable accuracy.

Maga a cikk:
https://zpascal.net/cvpr2018/Zhang_ShuffleNet An_Extremely CVPR 2018 paper.pdf

...To overcome the side effects brought by group convolutions, we come up with a novel channel
shuffle operation to help the information flowing across feature channels. Based on the two
techniques, we build a highly efficient architecture called ShuffleNet. Compared with popular
structures like [31, 9, 41], for a given computation complexity budget, our ShuffleNet allows more
feature map channels, which helps to encode more information and is especially critical to the
performance of very small networks. We evaluate our models on the challenging ImageNet
classification [4, 30] and MS COCO object detection [24] tasks. A series of controlled experiments
shows the effectiveness of our design principles and the better performance over other
structures. Compared with the state-of-the-art architecture MobileNet [12], ShuffleNet achieves
superior performance by a significant margin, e.g. absolute 7.8% lower ImageNet top-1 error at
level of 40 MFLOPs. We also examine the speedup on real hardware, i.e. an off-the-shelf ARM-based
computing core. The ShuffleNet model achieves ~13x actual speedup over AlexNet [22] while
maintaining comparable accuracy.
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No. 7 Topic
a. Credit approval problem -> na hogy itt mire gondolt a kolt6?7?7?7?

The last decade has seen an important rise of data gathering, especially in the financial
sectors. Banks are indeed one of the biggest producers of big data, as a matter of fact no
other company than the bank has so much data gathered on its customers. Gathering and
analyzing this data is a key feature for decision making, particularly in banking sector. One of
the most important and frequent decision banks has to make, is loan approval. The
challenge is to know how to build a proactive, powerful, responsible and ethical exploitation
of personal data, to make loan applicant proposals more relevant and personalized. Machine
learning is a promising solution to deal with this problem. Therefor, in the last years, many
algorithms based on machine learning have been proposed to solve loan approval issue.
However, these algorithms have not taken into consideration Real-time paradigm during
processing. In this paper, we propose a Real-Time Binary classification model to deal with
loan approval. Our proposed model is based on a deep neural network, and it permits to
classify loan applicant as good or bad risk. Experimental results prove that our proposed
Real-Time model, based on deep neural network, outperforms typical binary classifiers, in
terms of precision recall and accuracy.

https://www.youtube.com/watch?v=HNj8dzw3H_E

1. It is used in Distributed Systems

2. This can be divided into Temporal Credit Assignment Problem (Credit or blame to
Outcome of internal Decisions) and Structural Credit Assignment Problem (Credit or blame
to actions of internal decisions).

3. By these two, we can train the learning machine easily

b. Objective functions in neural networks

Optimization

* Given an Objective function to optimize
* Also called: Error function, Cost function, Loss function, Criterion
* Derived from the network topology and the input/output pairs

* Function types:

* Quadratic, in case of regression (stochastic process)
1 & 2
R, (W)= EZ(dk — Net (x,, w))
k=1

* Conditional log-likelihood, in case of classification (classification process)
* The sum of the negative logarithmic likelihood (probability) is

minimized
K

o(w) = Z —10gP(yi X1 W)

k=1
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Optimizations

* Here we always minimize the objective function

— Parametric equation
* xare the variables
* w are the parameters

* Optimization targets to find the optimal weights

W, = min f(x, d, Net(x,w))
goals:
— Acceptable error level

— Acceptable computational time assuming reasonable

computational effort

As we discussed ...

* Stocastic Gradient Descent (SGD) Method

— Uses arandom subset of the training vectors
(mini batches)
= One update is fast to calcualte
— The objective function changes stocastically
with the minibatch selection

*  More fluctuation in the objective function than in
case of Gradient Descent

« It helps to come out from local minima and saddles
— Decreases the learning rate during the training
time to reduce overshoot
— Still very slow! (Many update steps are
needed)

* More advanced optimization methods
required!

ez talan mar nem is ide tartozik:
Ensemble methods

* Idea of ensemble methods:
— Generate multiple copies of your net
+ Same or slightly modified architectures
— Train them separately
+ Using different subsets of the training sets
+ Different objective functions
+ Different optimization methods

i More Fluctuations in SGD

£

25

20

15

flz)=x"+ 108in(z); Zo =5 =0.1:y=0.9

— The different trained models have independent error characteristics

— Averaging the results will lead to smaller error

* Requires more computation and memory both in training and

inferencing (testing) phase

c. Nesterov momentum optimizer

Momentum |

* Introduced in 1964
* Physical analogy
* The idea is to simulate a unity weight mass

* It flows through on the surface of the error
function

* Follows Newton’s laws of dynamics
* Having v velocity

* Momentum correctly traverses the canyon
lengthwise, while gradient steps waste
time moving back and forth across the
narrow axis of the canyon.

-10

—20
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Momentum ll: velocity considerations

The update rule is given by:

1 m : :
v av—eVy (7_?7 Z L(f(w(');ﬂ),y('))) .

i=1

0+ 6 +wv.

The velocity v accumulates the gradient elements Vg ( Ly, L(f(xz);0),y" ).

T

The larger « is relative to e, the more previous gradients affect the current direction.

Terminal velocity is applied when it finds descending gradient permanently:

c/|g||
11—«

Momentum Il

Algorithm Stochastic gradient descent (SGD) with momentum

Require: Learning rate €, momentum parameter ov.
Require: Initial parameter 8. initial velocity .
while stopping criterion not met do
Sample a minibatch of m examples from the training set {zl!), ... (™)} with
corresponding targets y*).
Compute gradient estimate: g < +Vg 3, L(f(27;0),4")
Compute velocity update: v + av — eg
Apply update: 8 «+ 6 + v
end while

Nesterov Momentum update:

= It calculates the
gradient not in the
current point, but
in the next point, RIS
and correct the step
velocity with the
gradient over there
(look ahead

Momentum update

momentum

step
actual step

function) gradient Nesterov: the only difference..

* It does not runs - v = pvi-1 — €V f(0i—1 )

through a
minimum, because Derivative over function f
if there is a hill At =
- —= +1.61
behind a - -

0: = 01 + v

Nesterov momentum update

“lookahead” gradient
step (bit different than

original)

actual step

minimum, than it
starts decreasing
the speed in time.

What if we make the
learning rate adaptive as
well, not just the velocity?

a0 == dematve dfiiplide

93.30.._,-2”]_9 as & (p.Ap)k (0800 47)
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d. Decomposition of convolutional kernels

Decomposition of large kernels | %

* Convolution is associative

frlgxh)=({*g)*h

Example:
002 009 02 03 02 009 002
0.09 013 011 04 011 013 0.09 0 02 03 02 0
02 011 -03 =07 =03 011 02 02 05 02] |02 06 08 06 0.2
03 04 -07 -13 -07 04 03|=]05 =31 05|+|03 08 12 08 03
02 011 -03 -0.7 -03 011 02 02 05 02 02 06 08 06 02
009 013 011 04 011 013 0.09 0 02 03 02 0
002 009 02 03 02 009 002

Laplacian of Gaussian kernel (g = h) Laplacian (g) Gaussian kernel (h)
Number of operations: 49*N, 9*N,,  + 25%N, = 34*N,,

15% reduction of computational demand!!!

* Decomposition is not exact in most cases

— In general case, it approximates the kernels with a limited
accuracy only

Neural nets does not sensitive for inaccurate
decomposition

* Decomposition of larger kernels leads to higher savings!
Wildly used!

e. Alexnet + ILSVRC
Alexnet: for image classification

* First fully trained deep convolutional neural network w

— Won the ImageNet Large Scale Visual Recognition (ILVSRC) Challenge
in 2012 (ILVSRC2012)

55

27

& 13 13 13 ’7
L 4
5 — s N i\~ S y
1 Y - r = |3 &7 13 3 - =% |13 dense dense
b3 A |- 27 L 3 - \

55 384 384 256 100(
Max
256 0
Wi Max pooling 4096 4096
Stride pooling pooling
96
224 of 4
Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton,
"Imagenet classification with deep convolutional neural networks",
11/5/2019 Advances in neural information processing systems, 2012 16
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ImageNet Large Scale Visual Recognition %

Challenge |
* ImageNet:
— 15+ million labeled high-resolution images
— 22000 categories

* ILSVRC uses a subset of ImageNet:
— 1000 categories
— ~1000 images per category
— 1.2 million training images | 50000 validation images | 150000 testing images

ImageNet Large Scale
Visual Recognition
Challenge Il

* Each image should be
classified
— Probability distribution
* Top 1 error rate:

— What percentage was
wrongly classified as
highest probability?
(38,9%)

e Top 5 error rate:

— What percentage was not
in the first five? (18.9%)

black widow
cockroach

mushreom
jelly fungus
beach wagon glll fungus

fire engl dead-man's-fingers

11/5/2019

ILVSRC results

i Top 5 Classification Error (%)

e Iarge error rate reduction
ue to Deep CNN
20
15
10 I I
p H =B

I 2010 2011 “2012 2013 2014 2015 , Human
T T
Hand-crafted feature- Deep CNN-based designs
based designs

o
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-

Alexnet

Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton (2012) ey

Trained whole ImageNet (15 million,22,000 categories)
Used data augmentation (image translations, horizontal reflections, and patch extractions)

Used ReLU for the nonlinearity functions (Decreased training time compared to tanh) -
Trained on two GTX 580 GPUs for six days

Dropout layers

2012 marked the first year where a CNN was used to achieve a top 5 test error rate of
15.4% (next Rg;st entry was with error of 26.2%)

Input data Convl Conv2 Conv3 Conv4 Convs Spatial pyramid pooling FC6 FCT FCB

ryp o

= P=T= i

- %
13x13% 384 13% 13384 13713 % 256

pool scale 2
27x 27 x 256
class number

55x 55 x 96

ol scale 3

227x 227 x 3 s256 1 la0ot,
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No. 8 Topic

a. Delta learning rule
Sequential back propagation

Adapting the weights of the FFNN (recursive algorithm)
Wi (k +1) = w (k) + AW (k)
AW (k) =2

The weights are modified towards the differential of the error
function (deltarule): OR
Aw, =—n

emp
Il

aw,;’

The elements of the training set adapted by the FFNN

sequentially
Remp = Remp (y(X), d)

Delta (learning) rule %

cR,,
If —=<0 than we have to n

& Remp
increas wy, to get closer to the
minimum. R 5Rmp i
€ny \
dRemp ) E:‘wkj
dwy, J ositive gradient

-

R,
If —>0 than we have to

ki
decrease wy; to get closer to the . —P )
minimum. 5ij
AR om -
o Awp; = —p —22 W,.

1: learning rate parameter

b. Batch normalization

In very deep networks the distribution of the input vectors changes
from layer to layer

— The first layer got normalized input
— The second layer somewhat shifts and twists on this normalization

— And it goes on, and the (originally normalized) data propagating
trough the layers will be lose its normalized properties (called
Lcovariance shift”)

— This will shift the neuron out of its zero centered position, where the
activation function performs well (where the nonlinearity is)

Solution: normalization on each layers!

It also introduce a noise (loss function increase), which helps to
avoid local minima and avoids overfitting
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Batch Normalization

Done on layer level like softmax
*  Training:

— Done on minibatch level
Inferencing:

— Do the normalization with the pre-
calculated parameters of the
entire training set

Batch normalization is
differenciable via chain rule

— Back propagation can be applied
for batch normalized layers

Rewriting the normalization using
probability terms:

x(k] — E[x(k]]

Input: Values of = over a mini-batch: B = {z; .. }.
Parameters to be learned: ~, /3

Output: {y; = BN, g(x;)} T ™~ bias
weights

1 LS o

B — — T / mini-batch mean
m
l LS

o8 - (i — pug)* / mini-batch variance

T; + i /I normalize

7 €: avoid zero
\;‘JSJ + € "

yi + 7Z; + 8 = BN, 5(z;) /I scale and shift

=
- -

-

2(k) — E: the expectation o9 )’ Faster learning
VVar[x®)] Var: the variance 08 l.r e
——— With BN
070K 20k a0k 40K 50K’
Local response norm. vs batch norm.
Both work within one convolutional layer
* Normalization either * Normalization done for all

through the feature maps
or within one feature map

* Normalization is done for .
one input image

the pixels in all the feature
maps within a layer

Normalization is done for
the entire batch

ST

c. Transposed conv., atrous conv.
Upsampling Il: “transpose convolution” §

1D example

Filter =

ay
az

stride: 2

Output

Qutput contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

bx

Need to crop one
pixel from output to
make output exactly

by

2x input

bz
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2D transposed convolution

1 1 1 1. Kernel is weighted
111 :"I'::I L:Tu':p“t stride 2
711\
1 ! ! 2. Placed to the / ‘ i
kernel stride positions / ‘
7 v r
112 |5 |5 |3 Summedup x|/ x‘ X X
where overlaps -
3 4|5 |s |
/ -
5 5 5 5 X X X X
5 5 5 5
image
2D transposed convolution
! ! ! 1. Kernel is weighted
1011 :’I'::I t":u';' put stride 2
7 ‘ A\
! ! ! 2. Placed to the 7 ‘ ‘
kernel stride positions / ‘
7 ] r
@ 2[5 5 |3 Summedup x|/ )ﬁ X X
where overlaps
3 4 5 5 ‘
/ -
5 5 5 5 X X X X
5 5 5 5

2D transposed convolution

1. Kernel is weighted
with the input

1 1 1 . Stride 2:
pixel value
! ! ! 2. Placed to the I 1
kernel stride positions
® 2 | 5|5 |3 Summedup g X X X
where overlaps
3|4 |5 |s 1
5 5 5 5 X X X X
5 5 5 5
image
2D transposed convolution
2 2 2 1. Kernel is weighted
5 5 5 W.Ith the input Stride 2:
pixel value
2 ’ 2 2. Placed to the T 1
kernel stride positions
1 @ 5 | 5 |3. summedup R X X X
where overlaps
34|55 T
5|5 |51|5 X % M X
5 5 5 5
Tage stb.stb. (3x3-assal is)

2D transposed convolution

e 1. Kernel is weighted
4 4 a with the input Stride 2:
pixel value
N 2. Placed to the T ) 5 5
kernel stride positions
7
1 2 5 5 |3. Summedup 1 1 12 2 2 X X

where overlaps
3 a|s5|s 1 (*
3 3

(VO
.
(DN
-

w
w

@@
IS
~

image




2D transposed convolution

<1

5 5 5 1. Kernel is weighted
5 5 5 V\{\th the input Stride 2:
pixel value
5 5 5
2. Placed to the
kernel stride positions 1 1 @ 2 @ 5 @ 5
21

1 2 |5 |5 [3 Summedup 1 1 12 2 Q_; @ 5

where overlaps

3 4 5 5

G =
@ =
oo =
BN
C )
v
& N
(v
vm
o

T 66

5 5 5 5 Note: the
summing
5|5 |5 |5 positions are not
— homogenious

CEE
D
o
& o\
IS =Y >
v n
=

5

wi(v3) :ma w
uff i s

v nfin
nfn n)

v
wn
ol
w|
[

* Semantic Image Segmentation

* U-Net
* DeConvNet
* SegNet

* Resolution controlling
* [Btrous convolutions, sub-pixel image combination

Avoiding resolution loss but no high computational load:

. worksz  Atrous convolution
How it works Normal Atrous (dilated)

— Blows up the kernel convolution convolution
— Filling up the holes with zeros

« Atrous means very dark (like
the wholes between the
values)

* Properties
— Not doing downsampling
— Not increasing computational

load
— But reaches larger
neighborhood NN o i -
— Combines information from HH H -~ = e
larger neighborhood EEEsammE!
11/12/2019 =
/12, rate=1 rate=2 rate=3
Depth-to-Space @
Convl
po:;u Blockl Block2 Block3 Blockd BlockS Blocké Block?
! || O0—o—«
Image e 4 8 16 32 64 128 256 256
Normal convolution goes deeper with reducing resolution
Convl rate=2 rate=4 rate=8 rate=16
Pool Blockl Block2 Block3 Blockd Blocks Blocks [~ Block?
i =N
e
Image a4 8 16 16 16 16 16 16

Atrous convolution goes deeper without further reducing resolution
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Visualizing atrous convolution

Original filter

‘o'
Standard = A‘
. "5::“
convolution
' ——
downsampling convolution upsampling
stride= 2 kemel=7 stride=2
Padded
filter Vo P
Atrous .-.J ».
. - ALK I
convolution at JIVSS -
i atrous convolution 4 "
kemel=7 N ,.
-2 W -
stride=1 - gr—

Semantic segmentation
CNN arrangements

-1

ully conv-net

Fully conv-net with skip .-I

11/12/2019

Conv-net with
Multi-scale
atrous
convolutions

I Activation layer

Convolutions

— skip

—# Standard
_ —PAtmusfdllaIed
* How to solve reduced resolution?

* Do not downsample !!!
+ Convolution on large images = Small FOV Enlarge kernel
* Size O(n? ) more parameters = getting close to fully
* Connected layer, slow training, overfitting

* Atrous Convolution.

+ Large FOV with little parameters = Kill two birds with one
stone!
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d. Object classification, localization VS object detection, semantic
segmentation VS instance segmentation -> ez kicsit megfoghatatlan a
diasor alapjan...

— How to do image classification
* Alexnet
* One decision per image (classification

— Detection and Localization is more complex
* Multiple (few) decision per image
— Regressions for localization
— Classification for detection
— Pixel level Segmentation
* Very high number of decisions (classification)

per image
2/2019 =

Object detection/localization and classification

* Chicken and egg problem

— You need to know that it is a bicycle
before able to say that both a wheel
part and a pipe segment belongs to the
same object

— You need to know that the red box
contains an object before you can
recognize it. (Cannot recognize a
bicycle if you try it from separated
parts)

* Our brain does it parallel

* How neural nets can solve it?
— Detection by regression?
— Detection by classification?

Neural networks for regression W
Multiple object detection on a single image e ex o5

Classification is good for a single object (can be extended for k objects —
top k candidates)

How could we detect objects in general, when the number of objects is
unknow

Classification Instance
+ Localization

Classification Object Detection

Segmentation
2 i3

CAT, DOG, DUCK  CAT, DOG, DUCK

.53 AN /
G ik
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Object classification:

Classification example Approximation

* Classification of the hand written figures

— MNIST data'base: 20x20 binary images *  When solving engineering task by FFNN

— The output is a one of ten code 400 300{71000 we are faced with the following theoretical {
0000006020002 000 questions: )
Ill\l//l/l\l.l\/lmxZo . |’/‘
2222292222222 222 1. Representation S PY
3333333523333333 —  What kind of functions can be Approximated by an FFNN? )
Y4t da9 49 syddoiyy 2. Learning B
$55855%$S5 55565685585 - i ifi ?
ot ot UdeloleZ ez oleielt s Genr:;;itlt;tsieotnup the weights to solve a specific task?
T777177711 7201 2%F777 :
Y3 i BE 3PP RPTES PT — Ifonly limited knowledge is available about the task which is to be
$49949%99104944999 solved, then how the FFNN is going to generalize this knowledge?

https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segm
entation-f36db85fe81

Object detection:

One or Multiple object e

per image y

— Task: i
* Find the objects

* Identify them with bounding
boxes

Area or pixel level
one-of-two decision!

Annotated image database:
- Detection (squared objects)
- Segmentation (segmented objects)

Segmentations:

Segmentation

* Semantic Segmentation
— Label each pixel in the image with a
category label

— Don't differentiate Instances, only care
about pixels Pixel level one-of-n
classification!

* Semantic Instance

Segmentation
— Differentiate
instances
. Input Image Semantic Segmentation Semantic Instance
11/5/2019 Segmentation
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https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segmentation-f36db85fe81
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Semantic Segmentation Idea I: Sliding Window

Classify center
Extract patch pixel with CNN

Problem: Very inefficient doing " <

it pixel-wise! No reuse of shared

features between overlapping

Patches. Pinheiro and Collsbert, o

Farabet et al, “Leaming Hierarchical Features for Scene Labeling,” TPAMI 2013
Neural for Scene Labeling’, |

Semantic Segmentation Idea II: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv argmax
—_— —_— —

Input:

3xHxXxW Y Scores: Predictions:
. ; CxHxW HxW
Problem: convolutions at Convolutions:
original image resolution DxHxW

will be very expensive ...

Semantic Segmentation Idea IlI: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 7?7
convolution convolution
H/8 x W/8 //
H/4 x W/4 H/16 x W/16 H/32 x W/32 t
Input: PP
. Predictions:
IxHxW t upsampling Hx W
Conv, pool,
nonlinearity
Increasing spatial resolution in segmentation |
Convt
Conv2
Corv3 Conva Convs 6 fc Upsample
Score 2x
. Score
Higher resolution layers directly forwarded to transfer finer spatial information 72

Called “Skipping”. It skips using the coarser (more downsampled) layers

11/5/2010 Can be considered of an ensembling of three networks o



Increasing spatial resolution in segmentation
stride 32 stride 16 stride 8

input image ground truth

no skips 1 skip 2 skips
Inreasing spatial resolution as higher resolution layers are feed forward

- Information content is less squeezed to smaller layer

e. ResNext

ResNext

o
0 ]
Tox oy 73

* Dividing the featuré mapes into two groups, and apply
the convolutions to each groups separately
* The number of convolutions will be halved

o, filters
* group convolution block:
* .
H g C, Aey 4 » 2x(c,/2) inputs, 2x(c /2) output
W Y h— H ) * 2x(c /2 ¢/2) = ¢ c,/2 number
“.r
W of kernels

* normal convolution block:

) . v, filters l % Cifa
* c, inputs, c, outputs 11—

. c1cznumher of kernels

H -
W

The model name, ResNeXt, contains Next. It means the next dimension, on top of the
ResNet. This next dimension is called the “cardinality” dimension. And ResNeXt becomes
the 1st Runner Up of ILSVRC classification task.
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No. 9 Topic
a. ADAM optimizer

ADAM algorithm (2014)

* The name “Adam” derives from the phrase “adaptive moments.”

* Inthe context of the earlier algorithms, it is perhaps best seen as a
variant on the combination of RMSProp and momentum with a few

important distinctions.

* in Adam, momentum is incorporated directly as an estimate of the
first order moment (with exponential weighting) of the gradient.

= Adam includes bias corrections to the estimates of both the first-
order moments (the momentum term) and the (uncentered)
second-order moments to account for their initialization at the

origin

Algorithm The Adam algorithm

ADAM Require: Step size ¢ (Suggested default: 0.001)

algorithm

5 estimates the

history (moment)

r estimates the
curvature of the
gradient

Booth of them are
biased to reduce
anomalies at the
initialization

(Suggested defaultz: 0.9 and 0.999 respectively)

10—

gradient from the Require: [nitial parameters 8

Initialize 1st and 2nd moment variables s = 0. 7 =0
Initialize time step & = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a(1)
corresponding targets y(&.
Compute gradient: g + ;—:"vo > L(f(=™;8),y")
L+ 1+4+1
Update biased first moment estimate: s <+ g8+ (1~ )g

Require: Exponential decay rates [or moment estimates, p; and pg in [0,1).

Require: Small constant § used lor numerical stabilization. (Suggested default:

™} with

Update biased second moment estimate: v« par + (1 — pa)g = g
Correct bias in first moment: & < 1 sﬂ!
—F1
Correct bias in second moment: 7+ ﬁ;
Compute update: Af = —e—=—  (operations applied element-wise)
VT4d

Apply update: 8 + 8 + Af

9/30/2019 end while

b. The softmax function -> lasd in No. 5 Topic
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c. R-CNN architectures: R-CNN, Fast R-CNN, Faster R-CNN

Detection and Localization
* PASCAL Database and Competion
* R-CNN
* Region proposal, Classification
* Support Vector Machine (SVN), Bounding box refinement

* Fast R-CNN
* Faster R-CNN

R-CNN in a Glance

R-CNN: Regions with CNN features

>{person? yes. |

1.Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Input image

Region proposals

Compute CNN features with warped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging = detections
Bounding box regression

R-CNN: Region Proposal

Requirements:
— Propose a large number ( up to 2000) of regions (boxes) with different sizes

— Still much better than exhausting search with multi-scale sliding window
(brute force)

— Boxes should contain all the candidate objects with high probability
R-CNN works with various Region proposal methods:

— Objectness
— Constrained Parametric Min-Cuts for Automatic Object Segmentation

— Category Independent Object Proposals
— Randomized Prim
— Selective Search
Selective Search is the fastest and provides best regions

R-CNN: Selective Search |

Graph based segmentation (Felzenszwalb and Huttenlocher
method)

- cannot be used in this form, because one object is covered with multiple
segments, moreover regions for occluded objects will not be covered

Idea: oversegment it and apply scaled similarity based merging

Segmented image Oversegmented image
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R-CNN: Selective Search Il

Step-by-step merging regions at multiple scales based on similarities

Convert &
regions §
to boxes

Original fine scale Step one merging

Step n merging

Similarity measures |

Color Similarity
* Generate color histogram of each

segment (descriptor)
— 25 bins/ color channels
— Descriptor vector [cf‘}size: 3x25=75
* Calculate histogram similarity for
each region pair

Sator (1,7) = Z min(ck, cf)

ck is the

histogram value
for the k" bin in
color descriptor

Intarsection: 0.66

Texture Similarity
* Texture features: Gaussian
derivatives at 8 orientations in
each pixel
— 10 bins/color channels

— Descriptor vector [tf‘ )size:
3x10x8=240

* Each region will have a texture
histogram

* (Calculate histogram similarity for
each region pair 2s0

Stexmre(ru r;) Z mln(tl + &

tk is the histogram value for the
K" bin in texture descriptor

Size Similarity
* Helps merging the smaller sized
objects

* Since we do bottom up merging,
the small segments will be
merged first, because their size
similarity score is higher

size(r;) + size(r;)
size(image)

Ssize (Ti’ 7}) =

size(image) is the size of the entire image in
pixels

Shape Similarity
*  Measures how well
two regions are fit
— How close they

are
— How large is the
overlap
5}’1’!!(7'1':7}) =
SEZQ(BB;';) — size(r;) — sze(f}')

size(image)

size(BBi j) is the size of the bounding box Of
r; andtj




t A3Sshap (Ti! ?})
+ agSpi(1i,17)

Final Similarity List or proposed region
* Linear combination 1. Initial oversegmentation
of the four 2. Calculation the similarities
similarities 3. Merge the similar regions
4. The formed regions are added to the region list
Sﬁnal(ri' r}-) = (this ensures that there will be smaller and larger
a1Scolor (?]', ?}) regions in the list as well)
+a;Stexture (16, 17) 5. Goto2

* Few hundreds or few
thousand boxes

* Includes all the abjects
with high probability

* Number of the boxes
are much smaller than
with brute force
method

e Cand python functions
exist

* Cut the regions one

after the other

. i Forward each region
RES.IZe {warp] t,he , through ConvNet
regions to the input :
size of the ConvNet :

* (Calculate the [ Al Warped image regions
features of the :
individual regions

— Regions of Interest (Rol)
from a proposal method
(~2k)

Input image

Convolution network
* Pre-trained AlexNet, later VGGNet
* The decision maker SoftMax layer was cut

— Outputs:
* 4096 long feature vectors from each region ~
+ Last 13x13x256 feature map cube (pool5) T
[

Max Max
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Linear Support Vector Machine

Idea: Separate the data
point in the data space
with a boundary surface
(hyperplane) with 0
maximum margin

0 1]
Vectors pointing to the 0 °
data points touching the 0 0
margins are the support s
vectors o B ,
The parameters of the / f
optimal hyperplane is Small Margin Large Margin
calculated with
regression Support Vectors

Similar to single layer perceptron, but optimized
for maximum margin

Why SVM? Decision with SVM

As many separate

Why not use simple the classification output of the AlexNet? SVM as many ot
category we have N I LJ
During the training, the AlexNet/VGGNet is not trained R
Only SVM is trained Feature vector of ey O
all the other (
: categories plus
The number of category is much smaller the background
— Designed for 20-200 categories rather than 1000 e.g.: No Cat
The result: Each region is categorized
in every image classes.
Ranking, selecting, merging %

Greedy non-maximum suppression

— Regions with low classification .

probabilities are rejected ) o S
Combined Region

— Regions with high Intersection over
Union values (within the same
category) are merged

Result: localized and classified

object Sample loU scores
object 0.905 0.532 0.391 0.143 0.0

11/12/2019 [‘

Bounding Box Regression

Linear regression model

One per object category i—b

Input: last feature map cube of the conv net (pool5)
Output: size and position modification to the bounding box:
— dx, dy, dw, dh

Training image regions

Input:
Cached feature map
cube (pool5)

Regression targets:

dx, dy, dw, dh (0,0,0,0) (.25,0,0,0) (0,0,-0.125,0)
Enorm{;lized) ) Proposal is good Proposal too Proposal too
far to left wide

78

Feature vector of
the category to
be detected

e.g.: Cat



R-CNN Training ﬁ

Step 1: Take a pretrained Convolutional Neural Network (e.g. AlexNet)

Convolution

and Pooling Fully-connected
layers
@—b— |:|—b —> Softmaxloss
Last conv Class scores
feature map
Image
g layer 1000 classes
(pool5) . . . . .
Reusing a pre-trained network is useful, if there is
not enough data to train or if it provides good
enough result. Fine tuning typically needed!
Step 2: Extract features |
Save the feature cube to disk! Save the feature vector to disk!
* Go thmugh the data base This feature cube describes the This feature vector describes the
i relative position information, and content, and will be used for
*  Use region proposal will be used for bounding box classification

regression. (Sometimes this is
* Calculate the features for used for classification as well.)

each proposed region \

E‘—b —>

_ _ Convolution Last conv
Image Region Proposals  Crop +Warp  and Pooling featuremap  Fully-connected
layer layers
(pool5)
Step 4: Train one SVM per class to classify region features -’

N
Training image regions - i ' ;

= l &
Cached region
features vectors

N J — /
Y '

Positive samples for cat SWVM Negative samples for cat SVM

Step 4: Train one SVM per class to classify region features w

Training image regions

Cached region
features vectors

Negative samples for dog SVM Positive samples for dog SVM



Step 5 (bbox regression): For each class, train a linear regression model to map
from cached features cubes to offsets/size of the boxes to fix “slightly wrong”
position proposals

Training image regions

Cached region
feature cube

(pool5)
Regression targets (0,0,0,0) (.25,0,0,0) (0,0,-0.125,0)
(dx, dy, dw, dh) Proposal is good Proposal too Proposal too
Normalized coordinates far to left wide

R-CNN Problems

1. Slow at test-time: need to run full forward pass of CNN for each region
proposal
* Recalculate the features again-and-again in the overlapping regions

2. SVMs and bbox regressors are post-hoc:
* CNN features not updated in response to SVMs and regressors

3. Complex multistage training pipeline
+ Calculate the features for all the regions for all the training image first
* Then train for SVM and bbox regressor separately

Fast R-CNN (test time)

R-CNN Problem #1:
Slow at test-time due
to independent
forward passes of
the CNN

Fully-connected layers

r Ay 4 4 ™~
Regions of H‘mmﬁ” feature map of image Solution:
Interest (Rols) Share computation
from a proposal i
mathad Forward whole image through ConvNet > of convolutional

- layers between

proposals for an
image

! Input image _/
v

Girschick, "Fast R-CNN", ICCV 2015
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Fast R-CNN R-CNN Problem #2:
(training)

Multi-task loss Post-hoc training: CNN not
updated in response to final
classifiers and regressors

R-CNN Problem #3:
Complex training pipeline
Trainable

Solution:
Just train the whole system
end-to-end all at once!

Slide credit: Ross Girschick

Fast R-CNN: Region of Interest Pooling i

Convolution Fully-connected
and Pooling layers
Hi-res input image: Hi-res conv features: Problem: Fully-connected
3 x 800 x 600 CxHxW layers expect low-res conv
with region with region proposal features: Cx hxw

proposal

Project region proposal ‘
onto conv feature map

Convolution

" Fully-connected
and Pooling

layers
Hi-res inputimage: Hi-res conv features: Problem: Fully-connected
3 x 800 x 600 CxHxW layers expect low-res conv
with region with region proposal features: C x h xw
proposal
COnVOlU“On vwiae pmjemea
ion i i Fully-connected
and Pooling region into h x w grid ylayers
Hi-res input image: Hi-res conv features: Problem: Fully-connected
3x 800 x600 CxHxW layers expect low-res conv
with region with region proposal features: C xhxw
proposal
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Max-pool within

Convolution each grid cell
and Pooling

[

Fully-connected
layers

L

b T

Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 x 800 x_BOG CxHxW Cxhxw low-res conv features:
with region with region proposal for region proposal Cxhxw
proposal
Can back propagate -
Convolution /' similar to max pooling Fully-connected
and Pooling J layers
Hi-res inputimage: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 X 800 kaOU CxHxW Cxhxw low-res convy features:
with region with region proposal for region proposal Cxhxw
proposal

ennyi a lényeg: (training time)
R-CNN -> Fast R-CNN
84 hours -> 9.5 hours

Faster R-CNN:

o classifier

Rol pooling

p | Y

proposalsi . ;

Region Proposal Network

feature map

Instead of SVM, a SoftMax layer
makes the decision at Fast R-CNN.

Insert a Region Proposal %
Network (RPN) after the last
convolutional layer

— Reuse the CNN computation

RPN trained to produce region
proposals directly; no need for
external region proposals!

After RPN, use Rol Pooling and
an upstream classifier and bbox
regressor just like Fast R-CNN

https://towardsdatascience.com/faster-
renn-object-detection-f865e5ed7fc4




Faster-RCNN O R oeiony

Region Proposal Networks: Shscmssotfer | popmal

k anchors boxes

—v\ -i-i-
.
2k scores 4k coordinates 4 E pr‘ms‘m/

) . bounding box
object or not object

I
i

I

I

I

I

I

) p | I

proposs RPM Region Proposal Metwork 2 | "
1x1 conv layer 1x1 conv layer .- !
- Last comv bayer I

I

) I

I

I

i

I

|

I

- feature map

cls layer ‘ ’ reglayer  °
f" ,'-'

nxn conv layer E

' - 1 e | & TN -"‘ | A Fast-RCNN'
= A If ¢ =
. sl | Anchors:
(B e —

¥ three rectangle
in three scales.

Faster R-CNN: Region Proposal Network

Slide a small window on the feature map classify REES

. i . . locati
(very small computational effort per position) rhi h;:::’ B :;i:;t °Ts
Build a small network for: 1 x 1conv ‘ t 1x 1conv
«classifying object or not-object, (Binary decision) :
*regressing bbox locations e 5

' 1x 1 conv

Position of the sliding window provides
localization information with reference to the
image

Box regression provides finer localization
information with reference to this sliding

; convolutional feature map
window

Use N anchor boxes at each -

location
n anchors

| mscores | | 4ncoordinates | ge=n

Anchgrs are translation
invariant: use the same ones at \ ’

every location
i | 256-d | D
Regression gives offsets from t

anchor boxes E

Classification gives the probability .
that each (regressed) anchor
shows an object
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Faster R-CNN: Training

> =
One network, four losses 2 1
- RPN classification (anchor good / bad) e 7

- RPN regression (anchor -> proposal) Region Proposa Network g
- Fast R-CNN classification (over classes) e '“""”
- Fast R-CNN regression (proposal -> box) .
e r 4
s

fe credit: Ross Girschick

R-CNN Fast R-CNN | Faster R-CNN
Test time per 50 seconds 2 seconds | 0.2 seconds
image
(with proposals)
(Speedup) 1% 25x 250x
mAP (VOC 2007)  66.0 66.9 66.9

d. Supervised VS unsupervised learning

* Supervised Learning
— Learning from labeled examples
(for which the answer is known)
* Unsupervised Learning
— Learning from unlabeled
examples (for which the answer
is unknown)
Reinforcement Learning

— Learning by trial and feedback,
like the “child learning” example

* Supervised learning * Unsupervised learning
— We have prior knowledge — No prior knowledge of
of the desired output the desired output
+ Always have data set with * Received radio signals from
ground truth (like image deep space
data sets with labels) — Typical tasks
— Typical tasks * Clustering

* Representation learning
* Density estimation

* Classification
* Regression

We wish to learn the inherent
structure of (patterns in) our data.
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Use cases for unsupervised learning

* Exploratory analysis of a large data set
— Clustering by data similarity

— Enables verifying individual hypothesizes after analyzing the clustered data

* Dimensionality reduction
— Represents data with less columns
— Allows to present data with fewer features
— Selects the relevant features

— Enables less power consuming data processing, and/or human analysis

Unsupervised learning techniques
* Curse of dimensionality
¢ Principal component analysis (PCA)
« t-Distributed Stochastic Neighbor Embedding (t-SNE)
* Autoencoder

e. EfficientNet

— ._.-‘ =
EfficientNet (2019) : TS
#channels i |
pmmmmkmmm S pmpnmm wider S i
- deeper
(——— ——————— -

M. Bl
B} resolution HxW E 1

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling () compound scaling

* Scale the width, the depth, and the resolution uniformly!

* Can be used for any existing architecture, and the efficiency will be significantly
better with the same performance

» EfficientNet-B7 achieves stateof-the-art 84.4% top-1/97.1% top-5 accuracy on
ImageNet, while being 8.4x smaller (number of parameters) and 6.1x faster on
inference than the best existing ConvNet.

* Best performance can be reached by using NN to generate the optimal baseline ConvNet.
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EfficientNet-B7

7 different scaled B in:ugebawet—c
version of EfficientNet. AmOSbaNSLA, o o = ===
.8

(BO, B1, ... B7) _ " NASNet-A  __..-""" SENet

o 82 -

2 i

) L.t i

s """ ResNeXt-101

3

C

EfficientNet-B1 80 P
. # _.*"" Inception-ResMNet-v2
is 7.6x smaller M. P it p

s’
5R.?x Nfaster than N »”" Xception
- ﬂ - -
esNet-152. SR I = > oResNet-152 ,

‘ﬂ-j s 2 (He et al., 2016) ']C:.I'P‘]‘EI H‘:;I:- #me‘::;jf::

= o X ResNet-152 (He et al., 2 d
o B’] . DenseNet-201 EfficientNet-B1 792%  7.8M
L . I - ResNeXt-101 (Xie et al., 2017)| 80.9% B4M
g 76 1 . EfficientNet-B3 81.7% 12M
| - ResNet-50 SENet (Hu et al., 2018) 827%  146M
1y NASNet-A (Zoph ctal., 2018) | 82.7%  89M
| =8 EfficientNet-B4 83.0%  19M
4 Inception-v2 GPipe (Huang etal, 2018) T | 84.3%  556M
“*1 ‘NASNet-A EfficientNet-B7 B4.4%  66M

.Fi S Not plotted
( 20 40 Gl 20 100 120 140 160 180

Number of Parameters (Millions)
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No. 10 Topic
a. Optimization problem of objective functions of NN - tessék??

https://www.youtube.com/watch?v=AoJQS10Ewn4

Optimization problems are commonly written in the form minimize f(x)
Here, f is the objective function

*Objective Function
" The value you are trying to optimize
* Minimized or maximized

- Decision Variables
" The values the optimizer can change
* Also called design or manipulated variables

Learning

* The questions are the following
* What is the relationship of these optimal weights?

?7? X
w_ <> w)

opt opt
1 &
w(r:) :m‘:nzg(afﬁr —}\r’er(xk,w))2

* How this new Bbjégtive function should be minimized as
quickly as possible?

Learning — in practice

* Learning based on the training set:
(K — {(xk,dk )k = 1,...,K}
* Minimize the empirical error function (R,,,,)
wE::) :m}n%g(dk —.?\v"e),‘(x,(,w))2 = rn“i.n R, (w)
[
Ek
* Learning is a multivariate optimization task
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b. AdaGrad optimizer

* The AdaGrad algorithm (2011) individually adapts the learning rates
of all model parameters by scaling them inversely proportional to the
square root of the sum of all of their historical squared values

* The parameters with the largest partial derivative of the loss have a
correspondingly rapid decrease in their learning rate, while
parameters with small partial derivatives have a relatively small
decrease in their learning rate

* The net effect is greater progress in the more gently sloped directions
of parameter space

* AdaGrad performs well for some but not all deep learning models

AdaGrad algorithm =23

Algorithm The AdaGrad algorithm

Remembers the
Require: Global learning rate € entire history
Require: Initial parameter 0 evenly
Require: Small constant 8, perhaps 107, for numerical stability

Initialize gradient accumulation variable r = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {zV) ... 2™} with

corresponding targets y(").
Compute gradient: g + ~Vg > L(f(z";0),y")
Accumulate squared gradient: r <+ r4+g o g
Compute update: A@ « —ﬁ @ g. (Division and square root applied
element-wise)
Apply update: @ «— 68 + AB
end while

RMSP algorithm

= The RMSProp algorithm (2012) modifies AdaGrad to perform better in the non-
convex setting by changing the gradient accumulation into an exponentially
weighted moving average

* Ineach step AdaGrad reduces the learning rate, therefore after a while it stops
entirely!

* AdaGrad shrinks the learning rate according to the entire history of the squared
gradient and may have made the learning rate too small before arriving at such a
convex structure

* RMSProp uses an exponentially decaying average to discard history from the
extreme past so that it can converge rapidly after finding a convex bowl, as if it
were an instance of the AdaGrad algorithm initialized within that bowl|

Video comparing adaptive and non-adaptive:

Three optimizer types are
compared:
- SGD
—  Momentum types

* Momentum

* Nesterov AG
— Adaptiv

* AdaGrad

* AdaDelta

* RmsProp
Adaptive ones are the fastest



c. Input vector normalization

Data regularization techniques

Modification of the input vectors and internal data and
internal parameters of the net

Targeting to perform better in generalization
Increases the loss during training phase

Puts the parameters further away from a minimum
with an expectation of it will find a deeper minimum

In many cases these are heuristic methods with mostly
experimental and partial mathematical proof

Input vector normalization

0,45
When the input vector contains high P4t x = [ 1589,2

. . vector: 000143
and small mean values in different ’

e 0,32
vector posmons it is usefull to mean: % = ( 1423.2 )
normalize them 0,00132
Squeezes the number to the same 011
range de'lﬂ.aﬁon: a =( 155,2 )
. 0,00042

Speeds up the training process

normalized X=X (iég)

i . normed — - ’

input vector: o 0.26

Input Normalization
» Different normalization strategies exists for different input types
* Showing it in two dimension, it shapes the input vector

B Un-normalized Zero-centered Scaled Whitened
50 b 50 e 50 aq
A 1000
G 0100 28 28 28 28
T 0001
c ‘—Olei?l—b 0010 a0 o an 00
A 1000
G 0100 25 -25 -25 -25
c 0010
Once you trained you net with a normalized training set,
you have to apply normalization when a previously unseen
vector (a new observation) is appled during inference.
OK, but how do you know the statistics?
10/8/2019 a0
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Input normalization ezample

15000

10000

1m 180 2 L

_BHEBEEE

nn 150 00 =0

d. DeconvNet, U-Net

Semantic Image Segmentation

* U-Net
* DeConvNet
* SegNet

* Resolution controlling
* Atrous convolutions, sub-pixel image combination

DeconvNet ﬁ
* Instance-wise segmentation

* Two-stage training:
— train on easy examples (cropped bounding boxes centered
on a single object) first and
— then more difficult examples

224x224 224x224
%547 Convolution network Deconvolution network Ligxd)
y 5656
28x28 28x 2
4x1d 5 4 == 14x14
1x1 1x1
" ”
Max
- Unpoal
TR PG e 0 unpmairy - LI
ool = A e . inpocling
ax, paolln.g._r_ —_1 g
2ling ..o —_
s ~npooling
= i
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Deconvnet: Extreme segmentation |

* Fully symmetrical convolutional network
— All convolution and pooling layers are reversed
» Two stage training (first side trained for classification first)
* Takes 6 days to train on titan GPU
* Qutput probability map same size as input

Unpoaling
— Linpoaling
T ——

— Unpoaling
e

Deconvnet: Extreme segmentation Il

Input image Ground-truth FCN DeconvNet

* Designed for biomedical
image processing: cell
segmentation

* Data augmentation via
applying elastic

deformations,
] | N corespondingly deformed . .
P T ST R e — Natural since deformation
:ﬁuﬂ;ﬁ?ﬂm?dn;mmﬁon. no shift, no extrapolation) Its a common va rlatlon Of
Issue

— Smaller dataset is enough
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input
Mage e
tile

ok

U-Net

output
seqgmentation
map

1

I

[ 1t
I.I.! | !'I"I =% conv 3x3, RelU

11/12/2019

input
image o &
tile

copy and crop

Ieliell | Eellend pmaxpooi2z
: 4 [ # up-conv 2x2

- o«
- = cony 1x1

U-NET

Scaled version of the input or the
features are concatenated to the
expansion layers

256 128

H

i JUACH BN}
kH - ik

‘ 512 12 1024
- 1024 . .

Concatenate features ﬁ
from encoder network
— instead of reusing
pooling indices
Relatively shallow
network with low
computational demand
— 3x3 convolution kernel
size only
— 2x2 max pooling

No fully connected
layer in the middle

65

output
. segmentation
1 4 5| map

Pixel-wise Softmax at the last
layer with cross- entropy loss.

Can be train by colored
segmented image with
regression loss.

= conv 3x3, ReLU
copy and crop

% max pool 2x2

4 up-conv 2x2
= conv 1x1 &6

e. Neural style transfer

An interesting application of the gradient ascent method is neural style transfer Could we
use an input image and transform it into the style of an other input image?

T A,
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Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function. Can we find a loss
function, which would preserve objects and another which preserves features connected to

Style transfer works, but It requires a lot of time, to generate an image. Many forward and
backward passes are needed.

We could train a network that learns the result of this iterative transformation, and tries to
predict it. Only a single pas is needed.

"_’, LR
Style ' '
image
Style Target goxelul2 pprelu22 po.relud3 yo.relud.3
“style style “style style
ys — ') 1 'y
o = oo ool il
Output : % 1‘ :
image & i I
(Start with Y- ;
noise) i i
W e G R = ==t 1
! Loss Network o}
T et —— |
Ecb,rslu.'i-B
Content Target feat
Content
image Lz
Gatys, Eckar, and Esihga, “imaga styla Fanslar using convelulional nesral networks”, CVPR 2018

Figure adapted from Johnson, Alahl, and Fe-Fel “Perceptual Losses for Real.Time Style Transter o

We have a loss function for content:

Can the same objects be found on both images? Content loss, Perceptual loss: this is a
distance between the two embedded image vectors in the last features layers

Style loss:

Can the same low level features, edges structures, simple patterns be found on both images
Style loss: Distances between lower level representations of the images

Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function. Can we find a loss
function, which would preserve objects and another which preserves features connected to
style?

More weightto
content loss - " style loss
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Neural style transfer with Cycle Consistent GANs

tput
'm% :
P =P

T Y

Monet Van Gogh Cezanne

Fast Neural Style Transfer

o
e,
5 gy §

Could we use an input image and transform it into the style of an other input image?
Gradient ascent transforms the image according to a loss function.

Can we find a loss function, which would preserve objects and another which preserves
features connected to style?

Style
image
Style Target porelul2 pprelu22 yorelus3  pprelud3
style style style style
yS - A /) I
1] e ol il
Output ! ‘1: 1‘ :
image = i i
(Start with y : !
noise) | i
| W serrromrorlerrarrerrrvn oot v i = F==m e |
I Loss Network o)
yc *quuna T 1 A - = I
]
Et;b,:re-luS.B
Content Target feat
Content
image

‘Gatys, Eckar, and Bathge, “Wage styls Wansfar wsing canvolitional reaiml natwors”, CWPR 2016
Figure adapted from Johnson, Akhi, and Fe-Fel Perceptual Losses for Real-Time Style Transter an
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N

o. 11 Topic
a. Multilayer perceptron

Multilayer perceptron

Different names of Multilayer perceptron
* Feed forward neural networks (FFNN)

* Fully connected neural networks
Multilayer neural network

— Input layer
Hidden layers (one or multiple)

— Output layer

— The outputs are the inputs of the next layer
— Many hidden layers = deep network
Multiple inputs, multiple outputs
The output is typically not binary
Used practically in all deep

Hidden

'

f

v

neural networks!

Weights: Wi
* Arrives to the '™ layer

* Comes from the j* neuron W5,
from the (/-1)™ layer

+ Arrives to the it neuron of the w(l)
th 12
" layer
X, !
destination '. i
o U)f layer oth layer: | i
DESU"aTlO_fl_______--f--y ———source input layer | wg}) '
neuron neuron 1%t layer:
9/24/2019. first hidden layer

Usage of Multilayer Perceptron ..

Multilayer perceptrons are used for

* Classification
* Supervised learning for classification
* Given inputs and class labels

* Approximation

.:_.\-_-/
* Approximate an arbitrary function with arbitrary

precision

last layer:
output layer

Y
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b. Early stopping

Regularization and optimization methods §

Different methods to increase

the loss in the learning phase,

but reduce overfitting and
increase generalization capabilities
— Local response normalization

— Batch normalization

lan Goodfellow: regularization is
“any modification we make to the
learning algorithm that is intended
to reduce the generalization error,
but not its training error”

— Data augmentation
(Enriching the data set)

— Early stopping

— Ensemble methods
* Network duplication
* Bagging
* Dropout

Early stopping

* |dea:
— Split data into training and test sets
— At the end of each epoch (or, every
N epochs):
* evaluate the network performance
on the test set

* if the network outperforms the
previous best model: save a copy of
the network parameters at the
current epoch

Error

Desired
stop

Test error

Training error

# oprod;s

— The best suboptimum is selected finally
— Since the error function is not necessarily monotonic, the optimization goes

on, but the suboptima are saved

c. Gradient descent (multidimensional cases as well)

Basic idea of Qradient Descent

S(x)

* There is a function, where

S (x)
and
J'(x)
* can be calculated at any
points, but

S(x)=0

Negati'\'fe gradient y

=

Which way to go?

minimum:

* cannot.

X

* Therefore the trace of the light blue line is not known.

* We have to start out from one point (say x;) and with an iterative
method, we need to go towards the minimum
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*  We do not know where the
curve is

*  We know the value at f(x;)

* We know the derivative atx,
S'(x)
* Which way to go?
« ldea: follow the descending
gradient!

Derivative means for small &

fx+e)= f(x)+ & f(x)

therefore
fx—zsign(f'(x)) )< f(x)

This technique is called

Xy X
1)
£1(x)<0 J @0

minimum: f'{x) =0

Gradient Descent
(Cauchy, 1847).

Optimization goal is to find the f”(x) =0 position.

(Critical or stationary points)

30/2019.

Stationary points

* Local minimum, where f(x)=0, and f(x) is smaller than all

neighboring points

* Local maximum, where f'(x)=0, and f{x) is larger than all

neighboring points

* Saddle points, where f'(x)=0, and neither minimum nor maximum

Minimum Maximum Saddle point

.

/N

Local and global minimum

2 | Ideally, we would like
= | to arrive at the global
minimum, but this

might not be possible.

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

This local minimum performs
poorly and should be avoided.

T

In neural network parameter optimization we usually settle for finding a
value of f that is very low, but not necessarily minimal in any formal sense.
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Multidimensional input functions | K

* In case of a vector scalar 2
function

* In 2D, directional derivatives
(slope towards x; and x,):

5 of (x,,x,)
g T -
W (% ™ ox, f
axz /// \\\ r}_}./ 4 x;
Jr.-' \ / = = f{
J g /
S . /
r % ,f"" 14

* |n case of a vector scalar function

* Gradient definition in 2D
f:R* >R

4
2
0

-2

|

V/ (%%, = sxi sxi

Avector in the in the x; - x, plane

* The gradient defines (hyper)
plane approximating the
function infinitesimally at
point x (x;, x,)

e
s
“‘"

AR A
o e
v Ry

2
AZ: af(xI:xZ) 'Axl + a.f(x]axl) .sz
ox, ox,

YIRS

* Directional derivative to an arbitrary
direction u (u is unit vector) is the slope
of fin that direction at point x (x;, x, ):

>
u'Vf(x) N
Not changing withu .~ ©
* fdecreases the fastest: / f 2

:,?Ti,,,ril“TVf (x)= 3&111““”2"Vf ()], 00860 < mat 180

* uisopposite to the gradient!!!  [ye i/ ooints towards steepest descent:

x'=x—-¢eVf(x)




Gradient Descent in multidimensional input case &5

4
* Steepest gradient descent iteration .
x(n+1) = x(n)— e Vf(x(n)) n

2

-4

* gisthe learning rate
* Choosing &:
— Small constant

— Decreases as the iteration goes ahead

— Line search: checked with several values, and the 7 X,
one selected, where f(x) is the smallest

* Stopping condition of the gradient descent
iteration

— When the gradient is zero or close to zero

X

Egy kis extra ide:

Jacobean Matrix 2nd derivatives

* Partial derivative of a vector - vector function « 27 derivative determines

Negative curvature  No curvature Positive curvature
. . . . . the curvature of a line in 1D -
* Specifically, if we have a function f:R" - R + I nD, it described by the
then the Jacobian matrix J & R"™" Hessian "gjt”" . : = :
i i H )= = = z c
of f is defined such that: j =axif(x") ) ax,ox, /) ox, x, @) .
- o * The Hessian is the Jacobian
8fi R of the gradient.
Bﬂ'}] aﬂ?n
mlis0h e Ol o
| 8,y Bz, | : E :
Ofm Ofm
9/30/201 Oz, Oz, |

. 2" order gradient descent method Il
2" order gradient descent method | &

2 derivative in a specific direction: uTHu

* Analyzing:  f(x,-£g) zf}xo)—sgig%ﬁ g'Hg

N

Second-order Taylor series approximation to the function f(x) around Original value ::p‘:cze‘:n " Correction due to
the current point X, proveme curvature
where: * When the third term is too large, the gradient descent step can actually

1 i
JX)=[(x)+ (x—xo)Tg+5(x—xo)T H(x-x,) f;ﬁHrad'?"ta: Xo move uphill.
. nessian a
o * Whenitis zero or negative, the Taylor series approximation predicts

stepping towards the largest gradient: that increasing & forever will decrease f forever.

YHoEgEx o X-X, moeg « In practice, the Taylor series is unlikely to remain accurate for large €, so
1 one must resort to more heuristic choices of € in this case.
T 2T
X) = —eg)=f(x,)-cgg+—¢c g H
S~ f(x—eg)~/(x)-c8 8 2 L *  When it is positive, solving for T
the optimal step &= % g
g Hg

a/aniinia ”

(+itt mar folyt a newton opt.)

99



d. Weight regularization (L1, L2)

L1 and L2 regularization
1

* L1, L2, regularization modifies the weights Co= — Z ly — aLHZ
— Rather than using MSE cost function 2n ~
— An extra term, the MSE of the 1 b
weights is added (biases excluded) C= o lly—al|?+ > lw
_ .. 1 9y n 4
Done on minibatch level x

* (Can be used with other cost function type as well

. i i . i 1 A
Differenciable: back propagation works C,= o Z ly — aZ|? + = sz

* Whyis it good?
— Network preffers smaller weights
— If a few large weights dominate the decision the network
will lose fine generalization properties 2020

— In case of large weigths, the decisions are less distributed, 3.
the network is less error tolerant

10/8/2019

Data regularization techniques

* Modification of the input vectors or the internal data
composition of the network
— Input normalization
— Batch normalization

* Modification of the cost function
(involving the weight magnitudes)
— L1and L2 regularization

(weight penalty)

* Temporal Modification of the net

architecture in training phase

— Dropout
10/22/2019

input layer  hidden layer hidden layer

400  300/1000

10
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e. Pooling

Methods of data size reduction:

e Pooling

e Convolution with strides

e Convolution without padding
Data aggregation:

e Stride convolution, pooling

Pooling

* Pooling summarizes statistically the extracted features from the same
location on a feature map

* Mathematically, it is a local function over 1D or 2D data
— input:
* Segment of a vector in 1D
* rectangular neighborhood in 2D 1
— Function
* Statistical (maximum: max-pool)
* L2 norm

* Weighted average (weights Convolved Pooled
proportional of the distance

of the central element) feature feature
* In most cases: stride > 1

— This leads to downsampling s=10
* Pooling introduces some shift invariancy

Max pooling
* Max pooling is the
most used pooling in Single depth slice
CNN . [ 2 | 4
* Picks the largest max pool with 2x2 filters
value from a 5|6 | 7|8 | andstride2 6 | 8
nelghporhood 321110 3| a
* Non-linear
* Statistical filter 112134
* Downsampling
depends on the stride y
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out=A (if A>B)

Backpropagation through .

max-pooling layer <
* Maximum node acts as a dA:d“’”f’ A=B
router otherwise 0
* Thed,, gradientis given to
the input node, which has
contributed (which was the 8
biggest)
* The remaining positions will
get zero, because they did not
contributed to the error

dB=d

out>

/\ out=B (if B>4)
> >

if B>4 otherwise 0

1[1]2]4 0(0/0 0
| i |
516|7|8 | mimez " [gs 6 8 Backpropagation 0 |dout| O | dout
.3 2|10 Forward 'R iwl__o 0]0
1| 2 [EERi propagation |0{0 |0 [dou

Average pooling R

- _ max pooling
Similar to max pooling, 20|30
but uses the average
112| 37
12120130 0
8 (12| 2
34]70| 37/ 4 average pooling
112/100] 25|12 13| 8
79| 20

after max pooling

N

after average pooling digit express of the pooling process

input feature map

(a) lllustration of max pooling drawback

The maximum positions are stored

. after max iooling

input feature map after average pooling digit express of the pooling process

(b) INlustration of average pooling drawback
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Architecture of a typical Convolution Neural Network ﬁ

conv2 feature maps
convl feature maps 14x14x32
28x28x16

pool2 feature maps  FC1:128
Tx7x32

pooll feature maps
14x14x16

28x%28 input OuUT: 10

convolution max-pool convolution max-pool Full cor!nectian Eull annmmn
(k=5, F=16, (k=2, F=1, (k=5, F=2, (k=2, F=1, - -
s=1, p=2) s=2, p=0) s=1,p=2) | | s=2,p=0) | |Kkemelsize
F: number of conv. Filters
*  Input _ s: stride
*  Parallel feat_ure extraFtDrs (convolution layers w. RELU) p: zero padding size
* Data reduction (pooling)

= Combination of the features — aggregating information (fully connected layer)

* Decision (fully connected layer with soft-max activation) o
CNN example for data size reduction : L
k: kernel size
n+2p—k layer3: F: number of conv. filters
size=—+1 ‘ 6x6x25.6 s: stride o
) n=6 layera: p: zero padding size
layerl: 1x1x256
75x75x64 layer2: n=1 output:
input: n=75 14x14x64 256
83x83 n=14

n=83

4
convolution max-pool convolution
(k=9, F=64, (k=10, F=1, (k=9, F=256, max-pool
s=1, p=0) s=5, p=0) s=1, p=0) (k=6, F=1, s=1, p=0)

Overlapping Pooling |

* Pooling layers summarize the outputs of neighboring
neurons in the same kernel map.

i i k=3 k=3
— Overlapping pooling
- s<k m
|
_9‘ ..'\ __/4
* Improvement using MaxPooling: =3 =2

— Top 1 error rate by 0.4%
— Top 5 error rates by 0.3%
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[ Y 1 1 —
192 197 138 208 Soap \dense
7 128 - - —
. . . \13 e, _ Bﬁi . 13
i ky 3 Q 3|\ B 13 dense’| [dense]
N — |
192 192 128 Max L
Max 128 Max pooling 04
pooling pooling
Overlapping Pooling
11/5/20149 11
. 7 . ”
Upsampling I: “Unpooling @
Nearest Neighbor P P I Bed of Nails 1lal2
1]2 101122 112 ojojo
3|4 33|44 3|4 3/0])4
313144 o|0}j0 |0
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4
. . . n
Upsampling I: “Unpooling U
Max Pooling .
. Max Unpooling
Remember which element was max! Use positions from
11218 3 pooling layer olol2 o
35|21 5|6 12 of1/0 0
T 3|4
112121 7|8 Rest of the network ofojojo
7 3|4 ‘ 8 3 0|0 4
Input: 4 x 4 Qutput: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers

11/5/2019

45
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No. 12 Topic

a. Perceptron convergence theorem (no proof) - nem tudom hol kezdodik a

bizonyitas.hahaha

Perceptron Convergence theorem (1)

Assumptions:
- w(0)=0
- the input space is linearly separable, therefore w, (stands

Jor Wptima) €xists: .
xeX: wx>0:d=1

xeX : w:x<0: d=0

- Let us denote ¥ = —x
YeX : wx>0:d=1

For the proof, see also: Simon Haykins: Neural Networks and Learning Machines,
Section 1.3: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf

Perceptron Convergence theorem (2)
* ldea:

— During the training, the network will be activated with those input
vectors (one after the other), where the decision is wrong, hence non

zero adaptation is needed:
x()eX : w(x(j) <0, y=0, d=1
x()eX : w(jx(j) <0, y=0, d=1

— Note: The error function is always positive ( £ = 1)

Perceptron Convergence theorem (3)

* According to the learning method:
o wnt D)=w(0)+nx(0)+nx(1) +nx(2) +nx(3)+... +nx(n)

— where r
x(e X w(jx(j) <0, y=-1,d=1
or
x()eX : w(x() <0, y=-1, d=1
— The decision boundary will be:
wix=0
which means that n is a scaling factor, therefore it can be choosen
for any positive number.

Letususe n=1, therefore ne=1
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« We will calculate [w(z+D)|" in two ways, and give an upper
and a lower boundary, and it will turn out that an n,,,, exists,
and beyond that the lower boundary is higher than the upper
boundary (squeeze theorem, sandwitch lemma (kézrefogadsi
elv, rend6r elv))

lower limit (1) i

According to the learning method, the presented input vectors are added up:
wn+1)=w(0)+x(0)+x(1) +...+ x(n) w(0)=0

Multiply it with w,” from the left:
ww(n+1) = w x(0)+w x(1) + ...+ w' x(n)

0<a<w'x(j) Because each input vector (or its opposite) were
selected that way.

: T
O<a= mn_ w x(n)
x(n)elX X7}

T
ww(n+1)>na

lower limit (2) W

w,w(n+1)>na We apply Cauchy Schwarty inequality ||’ (]’ 2HarbH2

Hng H2 [w(n+ 1)||2 > ijw(n + I)H2 >n’a’

Lower limit: L
HW(HH)HE - ‘;}5‘2 Lower limit proportional with n?
upper limit (1) \
Let us have a different synthetization approach of w(n+1):
w(k +1) = w(k) + x(k) fork=0..n

Squared Euclidian norm:
[wie+ D" = [wio)|” + ||| +2w(k) x(k)

Because each input vector (or its opposite) were

(k) x(k)<0
w(k)” x(k) selected that way.

[wie+ 1) < wik)|” +|xk)|]

s ) s rk=0..n
Ptk + DI = wi)]” < )]
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upper limit (2)

Jwde+ )" ~Jwi)||” < x (o))’ Telescoping sum: Y= (@j+1 — ;) = @ne1 —
Example:¥_, (a4 — a;) =25 — a;+

Summing up the upper term: Hy — 5 +

< 2 2 2 2 >y =05+

3 (ot + O < o )< 3 o) vas —pi-

k=0 k=0 =as; —a;
Note that there is a telescoping sum in the left hand side.
Iw(r + DI = lw(0)II> 0<f= max_[ahf

xik)e{ Xt X7}
/ Ilwn+DI? <+ 1)

[lw(0)|2=0 Upper limit linearly proportional with n

comparing upper and lower limits

— lw+ D2 (n+ 1B

2 2
nao
2

. Iwenf 2

T
n W

0

Linear upper limit and squared lower limit cannot grow unlimitedly

n_. should exist

max

max

_Bwl
2

(24

b. Momentum optimizer

Momentum |

* Introduced in 1964
* Physical analogy

* Theidea is to simulate a unity weight mass

* It flows through on the surface of the error
function

* Follows Newton’s laws of dynamics
* Having v velocity

* Momentum correctly traverses the canyon
lengthwise, while gradient steps waste
time moving back and forth across the

narrow axis of the canyon.
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Momentum II: velocity considerations

The update rule is given by:

1 ™ . .
AR . 3N Ak _ (i). (i)
v av—eVy (”L;L(’f(m :0).y )) 3
0+ 0+,

y vl acite atac L il 2 L] A et 1 ]
The velocity v accumulates the gradient elements Vg (- > "

L(f(x:0),4).

The larger « is relative to e, the more previous gradients affect the current direction.

Terminal velocity is applied when it finds descending gradient permanently:

ellgl|
1l —«

9/30/2014

Algorithm Stochastic gradient descent (SGD) with momentum

Require: Learning rate e, momentum parameter c.
Require: Initial parameter @, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a(!)
corresponding targets y(?).
Compute gradient estimate: g < =V 3. L(f(z'V;0), ")
Compute velocity update: v < av — eg
Apply update: 8 < 8 + v
end while

..... (™)} with

Momentum demo

* What does the parameter of the momentum
method means, and how to set them?

— https://distill.pub/2017/momentum/
Why Momentum Really Works

Algorithms with changing but not adaptive learning rate:
— Stochastic Gradient Descent algorithm

— Momentum algorithm

— Nesterov momentum update

itt tuti van valami hasznos még:
https://mlfromscratch.com/optimizers-explained/#/
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c. Properties of CNN: sparsity, parameter sharing, EliNaliaNceHNvatiance
_ -> mi a kutyafule

Properties of Convolutional Neural Networks I: %
* Sparsity

— The interconnection weights are just a fraction of the fully connected
NN (the weight matrix between two layers are sparse)

— Afew dozen free parameter describes the operation of a layer
— Receptive field organization similar to natural neural vision systems

© ©)
00’000

Sparse interconnections

stimulus presented
on TV screen

_l_ - lateral = reEmdmg
geniculate electrode
+ — I'IUC|EIJS Adapted fom Dek, 1393
A neuron in visual cortex receives
input from the receptive field only,

Receptive field of

an artifitial neuron

Dense interconnections which is a small piece of the visual field 53

* Parameter sharing
— Same parameters everywhere in the layer
— Contribution to the gradient of a weight from many positions
— Reduces the risk of overfitting
— Reduces the risk of dying RELU (dying cell)

* When it happens, an entire feature extractor on a layer is dying

u
—

* Variable input size
— The input image is either resized or padded

Input images are
resized to the same size

Equivalent representation:

e Equvariance to translation
» The output shifts with an input shift

e In a fully connected neural network, each input is a dedicated channel for a certain
input parameter-therefore the inputs cannot be swapped
* Like bank example, one cannot replace the age input with the salary input

e In CNN, the image can be shifted, because the inputs are not dedicated and the
features are identified anywhere
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Space invariance means here that the functionality of a 2D function is not changing in space.
This enables the detection of a certain image feature anywhere on the image.

d. RNN examples: predicting the next letter, image captioning

Recurrent networks (RNN)

* Unlike traditional neural
networks, the output of the RNN

depends on the previous inputs Jurgen lives in Berlin.

— State He speeks ......coueeee
* RNN contains feedback
* Theoretically: Feedback loop

— Directed graph with cyclic loops

*  From now, time has a role in
execution

(<
— Time steps, delays @4
e’

;Y_J'

output layer
(class/target)

\ J

input layer ~
hidden layers: “deep” if > 1

11 /1a/nia R

Simple RNN Training Example: Predicting the next letter
Example:

Character-level
Language Model

Vocabulary: gne.nhot

[h,eil,o] encoding ~___
=2t
Example training — ;
sequence: input layer H ﬂ ﬂ
“hello” 0
input chars: “p” “g” Hi el
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Example:
Character-level

ht = tanh(Whrhe—1 + Wenat)

Language Model

Hidden Iayerm

; 03 10 0.1 -03
Vocabulary: weights are  hiddenayer [N . 01 lw | 03
[h.e,l,0] initialized with s s i i

random values T 'lr TI _lw
Example training 3 - 0 2
sequence: input layer | 2 g g
“hello” g e g g
input chars: “h" ‘g" ol [
E I target chars: “e" i T “o"
Xample: 1.0 0.5 0.1 0.2
Character-level oupitiever | 501 (40| [%s| |01
Language Model =1 - L] 22
Output layer T T| PW_hy
Vocabulary: weights are 03 10 .y o
ih,e,,0] initialized with ~ hiddenlayer | 0.1 - 03 = 0.5 —~ 0.9
A random values i - = o
.

e e W_xh
Example training I l l :
sequence: input layer g {1] ? ?
“hello” 0 0 0 0

input chars: “h" ‘e" I o
Example: Sample
Character-level 5
Softmax i
Language Model K
Sampling o
output kayer 23%
4.1
Vocabulary: f
[h.e,l,0] w1
09

At test-time sample
characters one at a time, e e ﬂ
feed back to model o

input chars:  “k
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Exam ple : Sample &

Character-level o
Softmax k
Language Model -
Sampling 1.In
output layer ?3.?)
Vocabulary: f
[h Ie! | )0] biae ;02
At test-time sample l
characters one at a time, i E
feed back to model _ 0
input chars:  *p~ 8"
Exam ple . Sample «fi ”Tlu
Character-level sl [=
Language Model Sofmax B
Sampling | o
output layer _%% -E'|I::]
4.1 12
Vocabulary: 1 y
[h ,E,I ’0] hidden layer .:uz ;g
i 0
At test-time sample A
characters one at a time, —— g E
feed back to model oo | L

. |||l|

Exam ple . Sample ? 4
Character-level w | |
Language Model Sotmax M| =
Sampling Backpropagation %_ %
can be started outputlayer | 551 | | 55

. o 4.1 12

Vocabulary: using negative log p 3
th.e 0] Yy likelihood cost e
e function hioden layer |04 ||| 03
0.9 01
At test-time sample 1 el Yl
characters one at a time, —— é E
feed back to model L

N1Q-11-75
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Image captioning example
END

F . [

“straw” “hat”

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image captioning example
Recurrent Neural Network

“straw” “hat” END

START “straw” “hat”

Convolutional Neural Network

__image | <
conv-64
conv-64
maxpool

conv-128

test image

FC-1000 Alexnet: scored 5 best guesses
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conv-64
conv-64

conv-128
conv-128

conv-256
conv-256

conv-512
conv-512

conv-512

conv-512

FC-4096
FC-4096

a0
<8TA
RT=

<START>

test image
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Wih

straw

fol
<3TA
RT=

<ST

TART>

conv-64
conv-64

conv-128

conv-128

conv-256
conv-256

conv-512

conv-512

conv-512

conv-512

FC-4096
FC-4096

Ll
=3TA
RT>

siraw

<START>

test image

sample!

h = tanh(Wxh * x + Whh * h + Wih * v)

test image
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conv-64
conv-64

conv-128

conv-128

conv-256
conv-256

conv-512
conv-512

conv-512
conv-512

FC-4096
FC-4096

conv-64
conv-64

conv-128
cony-128

conv-256
conv-256

conv-512
conv-512

conv-512
conw-512

FC-4096
FC-4096

]

straw hat

A
<STA
RT=

slraw

<START>

straw

hat

0
=STA
RT=>

hai

<START>

test image

test image

sample!
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conv-64
conv-64

conv-128

conv-128

conv-256
conv-256

conv-512
conw-512

conv-512
conv-512

FC-4096
FC-4096

conv-64
conv-64

conv-128
conv-128

conv-256
conv-256

conv-512
conv-512

conv-512
conv-512

FC-3096
FC-4096

- test image
straw hat
end
y0 y1 y2
A& Iy i
hO | h1 == h2
A 3 [
Eul
«=3TA wlraw hai
RT=
<START>
N test image
straw hat
end
y0 y1 y2
[ A [ \ sSam ple
<END> token
ho | h1 > h2 => finish.
'y 3 A
w0
tél'_l;ﬁ siraw hat
<START>
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Image captioning Example: Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on

Image captioning: Failure cases =

A bird is perched on
“ atree branch

A woman is holding a
cat in her hand

Amanina
baseball uniform
throwing a ball

A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

e. Adversarial attacks

We have a high number of parameters to be optimized
An even higher-dimensional input
The network works well in practice, but can not cover all the possible inputs

One can exploit that there will be regions in the input domain, which were not seen during
training
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Adversarial noise:
e | have a working well-trained classifier:

The noise is
generated by
gradient descent
optimization

| |

Panda Gibbon e i e
What should | add to the input to cause misclassification:

A special, low amplitude additive noise:

The two images are the same for human perception

+.007 x

e

esign(V.J(8,z,¥))
“oibbon™

99.3 % confidence

sign(V, J(8,z,y))

The noise is
generated by
gradient descent
optimization

H [Goodfellow, 1. |., Shiens, |., & Szegedy, C. (2014). Explaining and harr
Panda GI bbon examnles. arkiv arearint & Xiv 1412 A577

Knowing a trained network one can identify modifications (which does not happen in real
life), which change the network output completely
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Adversarial noise - does not work in practice W

& &
Fex gy 13V

Knowing a trained network one can identify modifications (which does not happen

in real life), which change the network output completely ég%gi
. ) HH
Luckily this low amplitude noise is not robust enough in real life (lens distortion and g%gii
other additive noises) %ﬂr?
Suaif
ol
= Exd
§§~z
it

A

a D

) L

5 3

o _ o _
G = @ =

o <

= =

(=} o

i =]

carrect +distort correct correct +distort

Sticker based adversarial attacks

High intensity noise concentrated on a small region of the
input image:

k ! |
Cy=N I+E St x .y ,w,;,h,-|+z St xj,yj,wj,h'r-|
=1 =1

Parameters are the positions {x,y}' and size (w,h) of the
stickers

It was shown that these attacks are robust enough to be
applied in practical applications

Does this mean that convolutional neural networks can not
be used in critical problem in practice anymore?
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No. 13 Topic

a. Elementary set separation by a single neuron

Elementary set separation by a single neuron (1)
Let us use @(.) step nonlinear function for siplicity:

3 Csign(w) 1 (1, ifu>0
y =0 = 2 +§_{O, else

The output of the neuron will be binary:

Y mo(u) = SonW) 1 { L ifwix >0
2 2 0, else  pECISION!

-w

in a 2-D input space, decision

the hyper plane is a X2 region for C1

straight line.

decisio

Above the line is boundary .. .

classified: +1 (C1: yes) ‘e - .
X

G
Below the line is decision
classified : 0 (C2: no)region for C2 WiX; + WX, + Wo =0

Neuron with m inputs has an m dimensional input space
Neuron makes a linear decision for a 2 class problem

The decision boundary is a hyperplane Y §
defined: - |

Why it is so important to use set separation by %
hyper plane? (1)

F

Most logic functions has this complexity IH:_&{ * +++

(OR, AND) . L
IS +

There are plenty of mathematical and ST ?‘;‘::‘;’:i%x

computational task which can be derived o

to a set separation problem by a linear wma Versicolor |

hyper plane *e Virginica

Wi
Application of multiple hyper plane }f
provides complex decision boundary A

P-ITEEA-DD11 Lecture  R1 R3
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Implementation of a single logical function by a single

AND

Xy Xy | X1X;

neuron (1)
X
\2
N
10 Ne
0™~
~N
\\
¢ : ~ X

0
0
1
1

N O B O
N © O© ©

The truth table of the
logical AND function.

We need to figure out the separation surface! <
Mathematically is the following equation:

* 2-D AND input space and
decision boundary

—15 4+ x, +x,= 0

The weight vector is:

w=(-1.5,1, 1).

sign(u) 1
y= 5

Furthermore instead of 2D, we can actually come up with the
R dimensional AND function.

The weights corresponding to the inputs are all 1 and
threshold should be R - 0.5. As a result the actual weights of
the neuron are the following:

w' =(—=(R-0.5).1,...1)

OR

X; OR x,

L T o S = T - |

1 1 et i 1 ey
e eV e oy

The truth table of the
logical OR function.

v Ty

X2
N
10 Ntle
0™~
© o—<
1 ~ Xy
AND
_JLifu=0 Xy X | XX
2 2 |0, else 0 oilo
1 {4 gl § 0
T
U= WX =WX
; o 150
ecte Xp =1 gl
X, 4
N 1
S
b +1
0
e
1 X;
~
~N
~

* 2-D OR input space and

w =(-0.5, 1, 1).

decision boundary
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* However we cannot implement every logical function by a
linear hyper plane.

* Exclusive OR (XOR) cannot be implemented by a single neuron

(linearly not separable) X
XOR
Ll

X; X; | X; XORx, 1\1. '\_\.
o o| o s osr WO

. N

~ Y
0 1 1 Q . e "
1 0| 1 of ~~.Ls =
1 1| o

b. Local response normalization

* Regularization and normalization methods
* Local response normalization

Regularization and optimization methods §

Data augmentation
Early stopping
Ensembling

Different methods to increase

the loss in the learning phase,

but reduce overfitting and
increase generalization capabilities

— Local response normalization
— Batch normalization

— Data augmentation
(Enriching the data set)

— Early stopping

— Ensemble methods
* Network duplication
* Bagging
* Dropout

Local response normalization |

* Implementation of the Lateral inhibition from neurobiology

— If a neuron starts spiking strongly in a layer it inhibits (suppresses) the
of the neighboring cells

— Winner take all (have a strong decision)
— Balances the asymmetric responses of neurons in different areas of
the layer
* Useful when we are dealing with ReLU neurons
— Normalizes the unbounded activation of the ReLU neurons
* Avoids concentrating and delivering large values through layers

— It enhances high spatial frequencies by suppressing the local neighbors
of the strongest neuron

https://towardsdatascience.com/difference-between-local-

11/5/2019 response-normalization-and-batch-normalization-272308c034ac

lan Goodfellow: regularization is
“any modification we make to the
learning algorithm that is intended
to reduce the generalization error,
but not its training error”
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A single output channel Normalized output
(feature map)

LRN within channel

— Intra map normalization
* 2D normalization within the same
feature map
= Balancing for different areas

*  Winner-take-all for neigbouring
neurons in the same feature map
(strongest response to the same
transformation should win)

Local response normalization Il

Cutput channgls
(feature maps) -

1 ‘..‘

&74

| .

LRMN across channels

— Inter-map normalization
* Normalization between the
neighboring feature maps
*  Winner-take-all for the largest
response with different
transformation for the same input
location

Looking from
this side

Feature maps
are facing to us

Whlch particular
pattern responds the
largest for the same
transformation?

Looking from
this side

Feature maps
are facing to us

Which particular
tranformation
responds the largest
for the same pattern?

—

Local response norm. vs batch norm.

Both work within one convolutional layer

Normalization either
through the feature maps
or within one feature map
Normalization is done for
one input image

Normalization done for all
the pixels in all the feature
maps within a layer
Normalization is done for
the entire batch
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Calculation method of local response normalization

Input Feature Map

L]
Local Receptive Field

i th kernel

Connections

114552019

| Spatial Convolution |

Cuiput of Spatial Comny,

Five Adjacent Conv, Kernels

® aixy

At the position: (x, y)

afi-n2, x, y) byi, x, )

At the position: (x, ¥) At the position: {x, y)

= :
.g ..—-—"’"’F.r.

*

| Summation of the |
i Squares of H
i Output of ReLU

Rel U: max(0, x)

E Outont of Local Response Novmalization

: minf N —1,i+n,/2) A
AR P
6 F=max(0,i—n/2)

Cutpuat of Rel U

c. Unpooling -> lasd No. 11 Topic

d. Representations: Blum and Li theorem, construction

Representation —Blum and Li theorem

«  Theorem: F(x)el
Ve =0 3dw

*  Proof:

a/2a/oma

Using the step functions: S

Ix I(F(x) — Ne[(X,W))2 dx,...dx, <&

From elementary integral theory it is clear every function can be
by appropriate step function sequence
h

approximated

L

/

"N

7&

v

AW

>
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Representation — Blum and Li theorem

From elementary integral theory 4
it is clear every function can be
approximated by appropriate
step function sequence

L

The step function can have >
arbitrary narrow steps

1 ifxeX
For example each step could be I(X) = 0 else
divided into two sub-steps
. Therefore we can synthetize a F(x)= Z F(x)1(x,;)
i

function with arbitrary precision

s(x)

Representation — Blum and Li construction

This construction ...
* ... has no dimensional limits
* .. has no equidistance restrictions on tiles (partitions)
* ... can be further fined, and the approximation can be any
precise
2 dimensional example

* The tiles are the top
of the columns for
each approximation
cell

Blum and Li — Limitations

The size of the FFNN constructed via this method is quite big

Consider the task on the picture, where there are 1000 by
1000 cell to approximate the function

General case:
~2 Million neurons are needed

Smoother approximation needs more

The network architecture is synthetized (constracted) the
weights are generated

We are after to find a less complicated architectures
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No. 14 Topic
a. Principal component analysis (PCA)

Principal component analysis (PCA)

* Technique for dimensionality reduction
* Invented by Karl Pearson (1901)
* Linear coordinate transformation

— converts a set of observations of possibly correlated variables

— into a set of values of linearly uncorrelated orthogonal variables
called principal components

* Deterministic algorithm
PCA algorithm

1.  Mean normalization: For every value in the data, subtract its mean dimension
value. This makes the average of each dimension zero.

o

% Y&de  °

2. Standardization (optional): Do it, if you want to have each of your features the
same variance.

3. Covariance matrix: Calculate the covariance matrix

Covariance (formal definition) N

* Assume that x are random
: . 1 —
variable vectors Variance(x)= — XL (x; — %)?

* We have n vectors 1em
=5 Zi=i (i — X)(x; — x)
A 1 _ _
Covariance(x,y) = —X/,(x; = X) (v = ¥)
« (Covariance(x, x) = var(x)

* Covariance(x,y) = Covariance(y, x)
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Covariance example for 2D

Covariance(x,y) = ~¥1,(x — D)y —¥)

4

* Positive 2|
covariance P
between the J 7%
two V.= y<0 < 2
dimensions 7R S
Covariance example for 2D %

L]
Covariance(x,y) = i (X =0 —y)
J

* Negative 2
covariance - _
between the _ [ y >*

yi=y<0 7
two | 10
dimensions )

Covariance example for 2D

Covariance(x,y) = i i=1(x; — )i — )
B

* No covariance 4 =2 -§) <0
between the
two 2
. . . *
dimensions . o
2
.
-4
o -Dy-p>0 % .
B, 1
11/19/2019 k3 6 -4 2 ] 2 4 6
o *

128



- i

Covariance matrix

Di el t cov(xy,x1)  cov(xy,xz) v COV(Xg, X))
. iagonal elements
. N e cov(Xa, X
are variances, i.e.  Cov (}) = cov(x:z,xl) cov(aiz,xz) . ov( :2 m)
Cov(x, x)=var(x ) i : )
( ’ ) () COV(Xpm, X1)  COV(Xp, X2) -+ COV(Xpy, X))
— nisthe number
of the vectors X1
— misthe 1 xl
dimension Cov (%) = —(X - DX - ;where X = |2
xm_
* Covariance Matrix
is symmetric var(xy,x1) cov(xy,xz) v €ov(Xy,Xpy)
— commutative Cov (%) = Cov(:’fzjxl) Uar(-’fz;xz) cov(x'zfxm)
cov(Xm, X1) COV(XmyX2) -+ VAT (X, Xm)
11/19/2019 30
PCA algorithm

1. Mean normalization: For every value in the data, subtract its mean dimension value.
This makes the average of each dimension zero.

2. Standardization (optional): Do it, if you want to have each of your features the same
variance.

3. Covariance matrix: Calculate the covariance matrix
4.  Eigenvectors and eigenvalues of the covariance matrix

— Note: Each new axis (PC) is an eigenvector of the data. The standard deviation of
the data variance on the new axis is the eigenvalue for that eigenvector.

X -
2 Principal

PC PC, components will be
w - ’ orthogonal.
S Uncorrelated,
9 X1 ﬂ independent!

(%]

Rank eigenvectors by eigenvalues

Keep top k eigenvectors and stack them to form a feature vector
7.  Transform data to PCs:

— Newdata= feature vectors (transposed) * original data

o
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From k original variables: x,,x,,...,x..

Produce k new variables: yy,ys,....Yi:

Vi=auXytapXot ..t agX
Yo = @pXq + @xip T+ agX

Vi = 8Xq ¥ 8o + L+ A

1/'s are
Principal Components

{a11,812.-.-,ay is 1st Eigenvector of of first principal component
{@51,852,---,8} is 2nd Eigenvector of of 2nd principal component

{8k1,8k2.---,8x} is kth Eigenvector of of kth principal component

Principal Component Analysis (PCA) ﬁ

* The ideais to project the data onto a subspace which compresses most of
the variance in as little dimensions as possible.

* Each new dimension is a principle component

* The principle components are ordered according to how much variance in

the data they capture

— Example:

PC1 - 55% of variance
PC2 - 22% of variance
PC3 - 10% of variance
PC4 — 7% of variance
PC5 — 2% of variance
PC6 — 1% of variance
PC7 - ...

E
iy |-

B I
b

We have to choose how many PCs to use from the top

H oW ma ny Proportion A

. 11
of variance

PCs to use?

* Calculate the proportion of

variance for each feature

_ A
— prop.of var.= = y
i=1 ‘11

— A; are the eigen values

[uk:}

08

06

05

‘04

* Rich a predefined threshold i

¢ Or find the elbow of the
Scree plot

11/19/2019

02

01

orr - -

Scree plot

"'*,'*,'"':".Variance o

By ' Cumulative variance '

|

oo

=]
© -
12

e
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England | Wales | Scotland | N Ireland
PCA Exam p le 105 103 103 66
Carcass meat 245 227 242 267
*  Weekly food Other meat 685 803 750 586
consumption of the Fish 147 160 122 93
four countries Fats and oils 193 235 184 209
— food types: variables Sugars 156 175 147 139
—  countries: observations Fresh potatoes 720 874 566 1033
’ Fresh Veg 253 265 171 143
* Clustering the Other Veg 488 570 418 355
countries: Processed potatoes 198 203 220 187
— Needs visualization in Processed Veg 360 365 337 334
17 dimension Fresh fruit 1102 1137 0957 674
Cereals 1472 1582 1462 1494
* PCA:reduce Beverages 57 73 53 47
dimensionality Soft drinks 1374 | 1256 | 1572 1506
Alcoholic drinks 375 475 458 135
http://www.sdss.jhu.edu/~szalay/clas Confectionery 54 64 62 11

s/2016-oldold/SignalProcPCA.pdf

11/19/2019

UK food consumption in 1997 (g/person/week). Source: DEFRA

Projections onto first principal component (1-D space)

1

0s5f

PCA Example

* From PC1, two clusters °f el Eng Seo "
are well separable

-05F

-1 " L L "
-300 100 200 300 400
PC1

=200 =100 0

* Including PC2, the four
clusters can be well

500

Projections onto first 2 principal components (2-D space)

separated w
x10" 200 * Wal
15
N Ires
Eigenspectrum 3 0 ® Eng ]
g
%‘U 4
g -200F
&
¢ 5 ® Scot
—a00 . . N N . .
=300 -200  -100 0 100 200 300 400 500
o PC1
1 2 sigenvector rumbar 3 4
11/19/2019 37

Coefficients of the Principal Components ﬁ

Load plot

1 7 ; : + ¥ : 400 u T T T T T T
osh Fresh potptoes 0l @ Wal ]
g N Ires
L Fresh fruit bth% : Is i -1 ® Eng 1
i ther med '
% “alcoholic dnnms . o
omb )
05 ]
“Soft drinks * Scot
-1 " " . . 1 . -300 -0 100 0 100 200 W0 400 500
08 06 04 0.2 0 0z 0.4 06 PG
effect(PC1)

Load plot shows the coefficients of the original
feature vectors to the principal components
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b. Back-propagation through time -> shit ezt csak most vettem eszre, lent a

megoldas

Learning

The Rosenblatt algorithm is inapplicable,
» the error and desired output in the hidden layers of the FFNN is unknown

Someway the error of the whole network has to be distributed
to the internal neurons, in a feedback way

-———— -~

Forward propagation of

\: ( -
.,—- function signals and

back-propagation of
errors signals

-——— g ———

— +« Function signals

Error signals

Sequential back propagation

Adapting the weights of the FFNN (recursive algorithm)
wi (k +1) = wi (k) + Awi (k)
AW (k) =2

The weights are modified towards the differential of the error
function (delta rule): OR
Aw,) =—n

emp

ow.
The elements of the training set adapted by the FFNN

sequentially
R.,, = R.,,(¥(X),d)
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+1

Back propagation 11

W g0 o)
61 62 63

59 = ¢ (”fm)z sPwE = ¢’ (vj(Z}) s@w?
k

@ 5@ 5@
51 62 53

gy « d;
Xy v d,
o2
R wg O 2R
Eg
: Y ¥ ¥ Y W ¥
Forward propagation w(_L,(J ‘p('iv’{.l
o'() wiy (.
y(l} = (O(W(l)x) < M - < =
< < <« e,
y@ = o(w@y®) =l
- Wg‘;} & ] e,
vy ¥ ¥ Y | Back propagation I

sz) =¢' (vim) e

Weight update: Awj;

L L L-1
) _ 5@y

e Though we showed how to modify the weights with back propagation, its most important

value that it can calculate the gradient

e The weight updates can be calculated with different optimization methods, after the gradients

are calculated

e Various optimization method can drastically speed up the training (100x, 1000x)

Conclusion

e For known functions (according to Blum-Li)

— One can define a Neural Network architecture

— And generate the weights
— That it can represent the known function with arbitrary precision
e For unknown but existing function defined by 10 pairs (according to statistic learning)

— One can find a Neural Network architecture
— And train the network (optimize the weights)

— Reach arbitrary precision with high number of 10 pairs
— The trained network will be able to well predict previously unknown 10 pairs (generalization)

Back propagation

* We have seen last time how to calculate the gradient in a
multilayer fully connected network using back

propagation

— The introduced method was based on gradient descent method

* However, being able to calculate gradient, we might
select any of the above methods, which leads to orders
of magnitude faster convergence
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We discussed...

— Architecture, parameters, signal propagation, recall (inference)

* How to construct an Artifitial Neural Network o % %
* How to calculate the local gradient from the error function

— Errorback propagation
* Update strategies

— Batch approach: Error function based on all the
training vectors 1 )
(K: Number of all the training vectors) e = Ez(dk — Net(x,, w))

k=1

— Instant update: Error function based on one training vector
e = (di — Net(xy, w))?
— Mini batch approach: Error function based on a random subset of

the training vectors
(my, = 200)

10/8/20189.

1 <A
e= —Z(dk — Net(x, w))?
Mo =

Back propagation can be applied for batch normalized layers

Backpropagation through .

p ’fm\

max-pooling layer

*  Maximum node acts as a

router
* Thed,, gradient is given to

the input node, which has

contributed (which was the 8

biggest)

* The remaining positions will

-
dA=d,,, if A>B

otherwise 0

dB=d

get zero, because they did not
contributed to the error

11 2 | 4
max pool with 2x2 filters
5|6 |7 |8 | andstide2
. 3 (2 . Forward
1 | 2[NS propagation

10/22/2019

6|8 6|8 Backpropagation

Epoch: One Epoch
is when the ENTIRE
training set is
passed forward
and backward
through the neural
network

only ONCE.

Epoch: time period
(korszak in
Hungarian)

out=A (if A>B)

outs if B>A otherwise 0

0Ojl0o|0|0

0 |dout| () | dout
dout 0 10 0

0 0 0 dou

The maximum positions are stored

out=B (if B>4) .
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Simple RNN Training Example: Predicting the next letter

Example: sample 3| 1 TV %
Character-level N E
Language Model Sofmanc (NN NS | [ | (S
Sampling Backpropagation S ) S A s ) [
can be started ouputiaer | S84 || 55] | |38 | |33
= - 4.1 12 1.4 22
Vocabulary: using negative log me (as "
Yy likelihood cost SR L s E i
[h,ejlio] function hidden layer _%:: i . ;g LAkl _%15 a1y _g'g
0.8 01 03 07
. T N L] 4
At test-time sample _T L Ll j—*ﬁ
characters one at a time, e é E E §
feed back to model L - fL 0

Back propagation through time

* Assuming that the length of the
input vector sequence is limited W1y »2) »3) y4)

* |t became a feedforward neural net Q

N L

A
<f£ |

x(1)  x(2) x(3) x(4)

Forward through entire sequence to

Backpropagation through time compute loss, then backward througt

entire sequence to compute gradient

4///'/\\\\ i

00 A 3 0 S, 3 o S O S

* Possible to apply back propagation

*  We need multiple vector sequences

to train!
W) ¥ ¥3) ) /

x(1) x(2) x(3) x(4)

¥(n)

x(n)
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Truncated Backpropagation through time

| Loss |

// j j J X\ Run forward and backward
through chunks of the

sequence instead of whole
sequence
A S R O L T,
[ IR R I T
(=S ] w
_______i/lll\l\s_

Carry hidden states
forward in time forever,
but only backpropagate

I I I I I I I I I I I I I for some smaller

number of steps!

Truncated Backpropagation through time q
| loss |
ISP £ S B

IENY Et] (T NN IR 0 (F 0] I 110 YN 0 Ut K O i1

-> en ebbol nem ertettem meg, de azért beraktam a diakat
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c. Stochastic gradient descent optimizer

Stochastic process is a process, where we cannot observe the exact values. In these
processes, our observations are always corrupted with some random noise.

Stochastic Gradient Descent (SGD) algorithm:

* Introduced in 1945

* Gradient Descent method, plus:

— Applying mini batches

— Changing the learning rate during the iteration

Learning rate at SGD ﬁ

» Sufficient conditions to guarantee convergence of
SGD:
ZG;;: o0, and Zei< 0.
1 k=1

* In practice:

€ is the learning
rate, also marked
with n sometimes

er = (1 — a)eg + e, a= é

« Afteriteration t, it is common to leave € constant

Stochastic Gradient Descent algorithm [

Algorithm Stochastic gradient descent (SGD) update at training iteration k
Require: Learning rate €.
Require: Initial parameter @

while stopping criterion not met do
Sample a minibatch of m examples from the training set {:c(-l). e .:c[”‘)} with
corresponding targets y().
Compute gradient estimate: g < +-Vg S, L(f(x'":0),y")
Apply update: 8 «+ 0 —¢g
end while

where: L is the cost function
@ is the total set of w[-(f,-) (and all other parameters to optimize)
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Stochastic Gradient Descent algorithm

* This very elongated quadratic

function resembles a long canyon. 20
* Gradient descent wastes time
repeatedly descending canyon 10
walls, because they are the
steepest feature. a 0
* Because the step size is somewhat
too large, it has a tendency to —10
overshoot the bottom of the
function and thus needs to —920
descend the opposite canyon wall
on the next iteration. —30 f
—30 =20 =10 0 10 20
T
Training |

* Stochastic Gradient Descent (with momentum)
— ADAM method was introduced in 2014 only (2 years later)
* Minimizing the negative log-likelihood (cross-entropy) loss function

* With L2 regularization (weight penalty):

N 1000

Lw) = ) > —yiclog fo(x) + ellwl3

t=1 e=1 \

predicted probability of class c for image x

indicator that example i has label ¢

d. Object detection problem explained -> itt nem tudom mirol maradtam le, de en
ezt se latom a diaban...

Object detection

* One or Multiple object B
per image
— Task:

* Find the objects

* |dentify them with bounding
boxes

Area or pixel level
one-of-two decision!
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Object detection/localization and classification

* Chicken and egg problem
— You need to know that it is a bicycle
before able to say that both a wheel
part and a pipe segment belongs to the
same object
— You need to know that the red box
contains an object before you can
recognize it. (Cannot recognize a
bicycle if you try it from separated
parts)
*  Qur brain does it parallel
* How neural nets can solve it?
— Detection by regression?
— Detection by classification?

Neural networks for regression W
Multiple object detection on a single image ey g 0

Classification is good for a single object (can be extended for k objects —
top k candidates)

How could we detect objects in general, when the number of objects is
unknow

Classification Instance
+ Localization

Classification Object Detection

Segmentation
: ) )

CAT, DOG, DUCK  CAT, DOG, DUCK

3 AN J
~ v

Cinmla abhinnt MiiHinla Ahianste

Object detection as regression

RCNN
Single Shot Object Detector (SSD) (2016 March)

You Only Look Once YOLO (2016 May)

R-CNN

Region proposal CNN network
Separate the problem of object detection and calssification
It consists of three modules.

The first generates category-independent region proposals. These proposals define the set of
candidate detection avail-able to detector.

The second module is a large convolutional neural network that extracts a fixed-length feature vector
from each region.

The third module is a set of class- specific linear SVMs
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Ezek jok lehetnek:
e https://towardsdatascience.com/5-significant-object-detection-challenges-and-solutio
ns-924cb09de9dd
e https://www.coursera.org/lecture/deep-learning-in-computer-vision/object-detection-pr
oblem-tvL Pq
+ aszOvege:
Object detection: probably the key problem in computer vision.
The goal of object detection is to detect the presence of object from a certain set of classes,
and locate the exact position in the image.
We can informally divide all objects into two big groups: things and stuff. Things are objects
of certain size and shape like cars, bicycles, people, animals, planes. We can specify where
object is located in image with a bounding box. Stuff is more likely a region of image which
correspond to objects like road, or grass, or sky, or water. It is easier to specify the location
of a sky by marking the region in an image, not by a bounding box.

Now, we will talk mostly about detection of things. To detect a stuff, it is better to use
semantic image segmentation methods, which we will discuss during week five. Compared
to image classification, output of the detector is structured. Each object is usually marked
with a bounding box and class label. Bounding box is described by position of one of the
corners, and by width and size of the box. Object position and class are annotated in ground
truth data. If only part of this information is annotated, we call it the "weak" annotation.

For example, only the presence of object in image can be annotated without a bounding box.
There is a lot of research into object detection with weak annotation, but performance of
such algorithms is lower compared to algorithms trained to use full annotation. To check
whether the detection is correct, we compare the predicted bounding box with ground truth
bounding box. The metric is intersection over union or loU. It is the ratio of area of
intersection of predicted in ground truth bounding boxes to the area of the union on these
boxes as shown on the slide. Either IoU is larger than the threshold, then the detection is
correct. The larger the threshold, the more precisely detector should localize objects.
Currently, the threshold is usually set to 0.5. The detector output is a set of detection
proposals. Usually, for each proposal the detector also gives a score as a measure of
confidence in the detection. So, we can rank all proposals according to the score. Each
proposal is considered. If loU is larger than the threshold, then it is the true positive
detection. If loU is lower, then it's false positive detection. If some ground truth object is not
detected, then it is marked as misdetection or false negative. On the whole dataset, you can
measure the precision and the recall of the detector. The precision is the ratio between the
number of true detections and the number of all detections. The recall is the ratio of number
of true detection to the number of objects annotated in the ground truth data. By varying
some parameter in the detector, usually the threshold on detection score, you can
simultaneously change precision and recall. Then you can plot the precision-recall curve. To
compare two detectors correctly, you should compare their precision-recall curves. If one
curve is generally higher than the other curve, then the first detector is better than the other.
To measure the overall quality of the detector with one number, we compute average
precision. It is the mean of 11 points on the curve for recalls from zero to one, by 0.1
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intervals. If you have multi-class detector, then you can compute mean average precision by
averaging of average precision across classes. On the plot, we can select the working point,
the precision, and the recall are best suited for the task at hand. Know that for production
algorithm, the point is selected so that precision is closer one by sacrificing the recall.
Sometimes, another charting metric are used to measure the quality of the detector. It is the
plot of a miss rate with false detections per image? The curve is constructed similar to the
precision-recall curve by varying the threshold on the detection score. For the object
detection, the creation of ground truth annotation is very important. It has been
demonstrated in the recent papers that annotations are usually different across datasets and
annotators. This lead to significant error in training of detector and its evaluation. A lot
of objects can be missed in ground truth data. This is especially true for the small objects or
objects with very similar appearance to the target.

Some objects are more important for us than other, so detection of such object
classes as faces, pedestrian, or cars has a lot of practical applications. Thus, a lot of
algorithms has been proposed for the detection of specific class of object. Such detectors
reach top performance on their classes compared to the multi-class detectors. Practical
multi-class detectors repeat only this development of deep learning methods. There are
several peripheral data sets for multi-class detection. ImageNet is the first example of such
data sets. It has objects of 1000 classes same as classification on ImageNet. Each image
has annotation of one class and at least one bounding box. There are 800 training images
per class. Detector should produce five guesses per image. Detection on the is correct if at
least one guess has correct class and the corresponding bounding box is close to correct.

e. Effects of filter size on convolution

Filter size considerations

* Small field-of-view = accurate localization

» Large field-of-view = context assimilation

* Effective filter size increases (enlarge the field-of-view of filter)
ng:kxk - ng(k+(k—-1(r—-1)) x (k+ k-1 -1)
n, : original convolution kernel size

n, : atrous convolution kernel size
r rate

* However, we take into account only the non-zero filter values:
Number of filter parameters is the same
Number of operations per position is the same

141



Size of the result

f: 3 2 2 -1 -2 -3 -1 %
* In practice, convolution is
. g: 10 0 1

used as a filteér, where @

— fis the measrurement Result is generated at the position
data, g is the filter function of the Central element of g

descriptor (kernel)

~ size(f) > size(g) - + 10 2 o0&
size(f)l=n size(g)=k n=>k {1 I EEE
n+k—1 (if all values /—\ ¢ -1 0 T 0o -1
. counted) I \
size(f * g) = 32 4 55 3 5 5 0 3 1

V Ir9

10/22/2019 In CNN, we calculate the valid values only! 23

In many case, we use a sequence
of convolution filters on the

measured data blocks f aEEEEE =
We do not want size changes on g: 400 2 0 4
the data blocks

central side

To avoid size changes, we have to

—7.el t
pad the data block with zeros at e!emen Lo
the boundaries g: e o o o

L ] L J

— k=size(g) is odd: k=2p+1

—
J ~ ] paddedf:@ﬁ 2423 40ME
— k=size(g) is even: k=2p
* Padding is asymmetric: Valid f * g after
1 » P2 padding: 4 '3 54 34 A=A 0

24

Padding in 1D %
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Usage of convolution | : 1D filtering

15 15
1 1
Smoothing noisy signal ve oe
Data lengths: 80 points 'u :
1 0
kernel: E[l 1111] 08 B
4 A
5 2 4 s 5 -] 4 6
1 1
1
. . 0.5
Signal :: e
differentiation 0 0 {—V—/\—v—
04
0.2 05 0.5
0
W 20 30 40 5 6 ' 20 20 % o 20 20 60
. ; d 1 2
10/22/2019 Data lengths: 60 points % keme“;[l -1] % kernel:%[-l 2 -1]

2D convolution: image filtering

*  What is a digital image?

— One-to-one mapping of a
matrix and the pixels
Black-and-white image

* Binary matrix

* 0: black

* 1: white
Monochrome
(grayscale)

= Matrix of (typically) 8
bit numbers

17 |170|119| 68
23B|136| 0 [255

* Values representing
the brightness of the
pixel

Color image

* 3 matrices (R,G,B)
10/22/2019

221| 68 (119|255
119(221( 17 |136

Usage of convolution Il : 2D filtering
Sobel operation %

Cameraman First derivative First derivative First derivative
(horizontal gradient) (vertical gradient)  (diagonal gradient)
o 1] A o 10 -1 1 2 1 0 1 2
I\ B l — [2 0 —2] [u 0 u] [—1 0 1]
o {f \ i — 10 -1 -1 -2 1 -2 -1 0
02 J' \ A5
g | L - 35
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Usage of convolution
Ill : 2D filtering
7x7 Laplacian of
Gaussian kernel

002 0.09 0.2

0.09 013 011
02 011 -03
03 04 =07

02 011 -03
0.09 013 011
0.02 0.09 0.2

Usage of convolution IV : 2D filtering

» Seeking for a known patter
* Large convolution kernel is applied

-0.7

-13

-0.7
0.4
0.3

0.11
0.2

0.09 0.02
0.13 0.09
011 0.2
0.4 03
011 0.2
0.13 0.09
0.09 0.02

* Kernel size is equivalent with the size of the sought pattern

Second
derivative of

an

image

|

]

]

* Sensitive for rotation

* Scale variant

oszinten nem tudom mi kene meg ide..

Filter responeded with a strong
white peek in the matching position
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No. 15 Topic
a. Rosenblatt perceptron training algorithm

The learning algorithm: Recursive a|gor|thm The learning algorithm: Perceptron Learning Algorlthm

* Ina more ambitious way it can be called
intelligent, because
* perceptron can learn through examples (adapt),

We have to develop a recursive algorithm called learning,

which can learn the weight step by step, based on observing
— the (i) input,

the (ii) weight vector,

the (iii) desired output, and * Perceptron learning was introduced by

— the (iv) actual output of the system. Frank Rosenblatt 1958

This can be described formally as follows: — Builta 20x20 image sensor
— With analog perceptron

wk+1) = (P(X(k): w(k), d(k), }’(k)) - Wopt — 400 weights controlled by electromotors

» even the function parameters are fully hidden.

The learning algorithm: Recursive steps

1. Initialization.
Set w(0)=0 or w(0)=rand
—>» 2. Activation.
Selecta x, = d, pair
3. Computation of actual response
y(k) = sign(w” (k)x(k))

4. Adaptation of the weight vector
wk+1)= lP(x(&:),wr(k),r:i(k), y(k))

— 5. C(Continuation
Until all responses of the perceptron are OK

Learning

* The Rosenblatt algorithm is inapplicable,
* the error and desired output in the hidden layers of the FFNN is unknown
* Someway the error of the whole network has to be distributed
to the internal neurons, in a feedback way

Forward propagation of
function signals and
back-propagation of

errors signals

-————

—+ Function signals

wommmmmmmn Error signals
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b. Back-propagation -> tok random lasd No. 14 Topic b.

Batch Normalization

* Done on layer level like softmax
*  Training:

— Done on minibatch level
* Inferencing:

— Do the normalization with the pre-
calculated parameters of the
entire training set

Batch normalization is
differenciable via chain rule
— Back propagation can be applied
for batch normalized layers

Rewriting the normalization using
probability terms:

x(-"'] - E[x(k)]

JVar[x(k)]

2K

Input: Values of = over a mini-batch: B = {x .. };
Parameters to be learned: v, /3

Output: {y; = BN, a(z;)} t "~ bias
weights
1 m
— — Ti // mini-batch mean
- ;J
Lo
2 2 B L
— — T — //' mini-batch variance
of — — ;w ps) v
T; m € avoid zero /f normalize
Ve €
yi ¢ 7T + 8 = BN, s(z;) /1 scale and shift

E: the expectation
Var: the variance 08

1
——m——

b Faster learning

I' = = —Without BN
——— Wiith BN

10K 20K 30K 40K 50K

Back propagation

* We have seen last time how to calculate the gradient in a
multilayer fully connected network using back

propagation

— The introduced method was based on gradient descent method

* However, being able to calculate gradient, we might
select any of the above methods, which leads to orders
of magnitude faster convergence

c. Curse of dimensionality

* Whatisit?

— A name for various problems that arise when analyzing data in high

dimensional space.

— Dimensions = independent features in ML

* Input vector size (different measurements, or number of pixels in an image)
— Occurs when d (# dimensions) is large in relation to n (number of

samples).

* Real life examples:
— Genomics

* We have ~20k genes, but disease sample sizes are often in the 100s or 1000s.
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So what is this curse?

* Sparse data:

— When the dimensionality d increases, the volume of the space increases
so fast that the available data becomes sparse, i.e. a few points in a large
space

— Many features are not balanced, or are ‘rarely occur’ — sparse features

* Noisy data: More features can lead to increased noise - it is harder to find
the true signal

* Less clusters: Neighborhoods with fixed k points are less concentrated as d
increases.

*  Complex features: High dimensional functions tend to have more complex
features than low-dimensional functions, and hence harder to estimate

Data becomes sparse as dimensions increase
* Asample that maps 10% of the 1x1 squares in 2D represent only 1%
of the 1x1x1 cubes in 3D
(i) 2-D (ii)3-D

8

e¥egeqe

8 2R B

* Thereis an exponential increase in the search-space

Data sample
number increase to
avoid sparsity
* e.g. 10 observations
/dimension
— 1D: 10 observations
— 2D: 100 observations
— 3D: 1000 observations

11/19/2019
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Curse of dim - Running complexity
Many data points (labeled measurements) are needed
Complexity (running time) increase with dimension d

A lot of methods have at least O(n*d?) complexity, where n is
the number of samples

As d becomes large, this complexity becomes very costly.
— Compute=S5

Sparisty increase: More regions with the same %
number of data points

a) 1D - 4 regions - b) 2D - 16 regions ) 3D - 64 regions
1%
it ....&
L [ ]
L]
L ]
U] . 1
L]
L ]
5 e o o
@ 00 W o oeow Bp .
‘.lv I.IU 1‘5 20 OD 5 10 1‘5 X
Distances in high dimension $;1 %
5 2 1
Assume, we have a unit side (2D) square, - D 2= To0 — 0.1
what we divided to 100 equal small squares d
— Calculate the ratio of the largest distance in a small Dfﬁ
square and the largest distance of the big square
(in 2D) d - Y d,=0.1v2
&:f:m S
Assume, we have a unit side 100D cube, 2
what we divided to 100 equal small 100D o[ 3
cubes Si=1 Si0= |— = 0.95
100 100 100

— Calculate the ratio Ratio of the largest distance in a

Il cub dthel t dist; fthe bi b
sl cbeand e arges dance o e B CUBE o 105 _ 1 g,,,+T00 G957 = 05

— The average nearest neighbor distance is 95% of the
largest distance!!!

N . _ G40 _
—  Euclidian distance becomes meaningless, most two Ripo = D= 0.95
points are “far” from each others 100
11/19/2019 13
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Curse of dim - Some mathematical
(weird) effects

4
@ 43

* Ratio between the volume of a sphere and a cube for d=3: (2r)3 T

*  Whend tends to infinity the volume of the sphere (this ratio) tends to zero
d 3 5 10 20 30 50
ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28
* Most of the data is in the corner of the cube

— Thus, Euclidian distance becomes meaningless, most two points are “far” from
each others

* Very problematic for methods such as k-NN classification or k-means
clustering because most of the neighbors are equidistant

The nearest neighbor problem in a sphere §

* Assume randomly distributed points in a sphere with a unit diameter
* The median of the nearest neighbors is /
* Asdimension tends to infinity "t ..~ datapoints

— The median of the nearest neighbors * 4
convergesto 1

“The Curse of Dimensionality” by Radl Rojas y +
https://www.inf.fu-berlin.de/inst/ag- b 8
kifrojas_home/documents/tutorials/dimensionality. pdf

11/19/2019

How to calculate dimensionality? %
= feature vectors (x) \\ X3
" X; X, X3 X,
S d; 1 2 1 1
s d, 2 4 35 1
& d, 3 6 17 1
o

How many dimensions does the data
intrinsically have here?
(How many independent coordinates?)

— Two! 1
* x1 =12 * x2 (no additional information, correlated, not independent)
/"io * x4 is constant (carries no information at all!)
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Reduce dimensions

— Feature selection - Choose only a subset of features
— Use algorithms that transform the data into a lower dimensional space (example — PCA, t-SNE)
*Both methods often result in information loss

Less is More

— In many cases the information that is lost by discarding variables is made up for by a more

How to avoid the curse?

accurate mapping/sampling in the lower-dimensional space

Classifier +
performance|[ 1
]
]
]
!
!

11/19/2019

Optimal # of

variables

# of varfaba‘es'

d. SqueezeNet

SqueezeNet

In this arhcitecture depths are squeezed before each

operation

The expand is done by the concatenation of the 1x1 and

the 3x3 convolutions.

Advantage: the expand layer is saved.

s&“eﬂe

1x1 convolution filters

b, B
maxpeali?
h 4

maxpaol /2

=4
4

=

100
global svgpaal

"labrador
ratriever
dog"

Figure 2. The SqueezeNet architecture

AT
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In this arhcitecture depths are squeezed before each

operation

CONYI
Pooll

e
g

'_T_

Hiser,

Squeeze Net Fire Module

SqueezeNext

In this arhcitecture depths are squeezed before each

operation

In a SqueezeNext architecture
we will use a linear
approximatine of 128 feature
maps, using 16 independent
feature maps

From the linear combination of
these elements the new maps
are created

I

82
maxpeali?
12
4

«<— Squeeze Layer
«— Expand Layer

1

=6

56
maxpanlf2

e

1000
global vgpool
"labrador
ratriaver
dog”

}

Figure 2. The SqueezeNet architecture

- 5
g 4
T oy e

1x1 Conv
Squeeze

1x1 Conv 3x3 Conv
Expand Expand

Output
Concat/Eltwise
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e. Back-propagation and gradient-based optimizers

Simple gradient based optimizers:
e 1st and 2nd order optimizers

Quora - TL;DR:
The backpropagation algorithm is an instruction set for computing the gradient of a
multi-variable function.

The Adam optimizer is a specialized gradient-descent algorithm that uses the computed
gradient, its statistics, and its historical values to take small steps in its opposite direction

inside the input parameter space as a means of minimizing a function. It is used for
optimization in neural network training.

In other words, the Adam optimizer would need to use an algorithm like the backpropagation
algorithm to first compute the gradient of the function. Then the Adam optimizer would use

this computation to perform gradient-descent in a specialized manner.

Masik jo oldalka:

https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-an

d-ways-to-optimize-gradient-95ae5d39529f

Optimization Algorithm falls in 2 major categories -

1. First Order Optimization Algorithms — These algorithms minimize or maximize a
Loss function E(x) using its Gradient values with respect to the parameters. Most
widely used First order optimization algorithm is Gradient Descent.The First order
derivative tells us whether the function is decreasing or increasing at a particular

point. First order Derivative basically give us a line which is Tangential to a point on

its Error Surface.

2. Second Order Optimization Algorithms — Second-order methods use the second
order derivative which is also called Hessian to minimize or maximize the Loss
function. The Hessian is a Matrix of Second Order Partial Derivatives. Since the
second derivative is costly to compute, the second order is not used much .The

second order derivative tells us whether the first derivative is increasing or

decreasing which hints at the function’s curvature.Second Order Derivative provide

us with a quadratic surface which touches the curvature of the Error Surface.
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