Neural Networks - Exam topics

Ekart Csaba, 2019

Ertelemszer(ien az el6adas diakbdl van féleg, ahol az homalyosan fogalmazott, vagy csak egyszeriien tl
nagy kaosz volt, hogy értelmes dolgokat lehessen belble leszlrni (vagy all in all nem volt sz6 benne a témaral)
ott kipotoltam netrdl. Nyilvan nem vallalok felelésséget, meg ne alapozd erre az életed stb stb

Szupcsi vided tutorial sorozat, ami nagyon-nagy atfedésben van az anyaggal:
https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8IjYj-zLfQRF3EO8sYv

Ahol ugy éreztem, hogy van valami csudajé link, ami segithet a dolog megértésében azt belinkeltem.
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1. topic

Local optimization in non-convex cases (reason for non-convexity?)

e |n general a function based on convexity can be:
o Strongly convex function: 1 local minimum
o Non-Strongly convex function: infinity local touching minima, with the same values
o Non-convex function: multiple non-touching local minima with different values

Saarming pr.

fix)

Global minima

i

e Optimization is done locally in a certain domain, where the function is assumed to be convex.
e Multiple local optimization is used to find global minimum

local maxima

Local minima
Global
minimum

e The non-convexity is due to the use of a non-linear activation function in one of the layers.
https://www.quora.com/Why-is-a-neural-network-and-in-general-a-deep-network-non-convex

RMSP optimizer

e Modified AdaGrad optimizer to perform better in the non-convex setting by changing the
gradient accumulation into an exponentially weighted moving average.
In each step AdaGrad reduces the learning rate, therefore after a while it stops entirely.
AdaGrad shrinks the learning rate according to the entire history of the squared gradient and my
have made the learning rate too small before arriving at such a convex structure

e RMSProp uses an exponentially decaying average to discard history from the extreme past, so that it
can converge rapidly after finding a convex bowl, as if it were an instance of the AdaGrad algorithm
initialized within that bowl.


https://www.quora.com/Why-is-a-neural-network-and-in-general-a-deep-network-non-convex

Algorithm The RMSProp algorithm [Se closer parts of the |
Require: Global learning rate €, decay rate p. history are counted more
Require: Initial parameter 6 strongly.

Require: Small constant 6, usually 1079, used to stabilize division by small

numbers.

Initialize accumulation variables » = 0

while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(!), ... &™)} with
corresponding targets y').
Compute gradient: g + ?]_?VQ Y L(f(x®:0),y)
Accumulate squared gradient: r + pr + (1 —p)g© g
Compute parameter update: AQ = — \”OE_H' “©g. (ﬁ applied element-wise)
Apply update: 8 + 0+ A6

end while

Dropout

Use mini-batch training approach
For each minibatch a random set of neurons from hidden layer(s) (called dropout layers) is
temporarily deactivated.

e Selection and deactivation probability is p

e In testing phase use all the neurons, but multiply all the outputs with p to account for the missing
activation during training.
More training steps but each is simpler, due to reduced number of neurons.
Goal: reduce overfitting by forcing the network to use different configurations / neural paths

i
(a) Standard Neural Net (b) After applying dropout.
ResNet
o Residual Network makes it possible to train up to hundred or even thousands of layers and sitill

achieves compelling performance.
It is a very deep neural networks using residual connections.
Why it is exist, and what the problem that it solves?
o A deeper network always have the potential to perform better but training can become
difficult.
o How could we ensure that additional layers will not decrease accuracy (might even increase
it)?
o The trick is to use residual connection and as a starting point F(x) could be zero, and H(x)
becames identity mapping.
So H(x) won’t change the performance, gradient will remain because the addition of x.
Our accuracy won’t be decreased, and might even be increased if we find a proper F(x)
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e ResNets had the lowest error rate as most competitions since 2015. (So it’s very good)

X

i

weight layer
F(x) Freiu
weight layer

Gradient ascent

e Itt a Iényeg, hogy: Talalhatunk igy képeket, amik nagyon jok egy adott klasszhoz. De mi van ha
legeneraltatnank vele, hogy szamara milyen egy tdkéletesen idealis kép.
We could search in our database and find typical samples.
It helps, but usually the network is good on this set (train accuracy). We are curious about those
images which the network has not seen.
Could we generate an ideal image for classes?
Normal training:
o inputimage - given
o network parameters - given
o expected label - given
e Gradient ascent
o inputimage - variable
o network parameters - given
o expected label - given
e Hogyan mikddik ez?
o Generate synthetic image that maximizes the response of a neuron.
o This image has to be “natural”. The response should not depend on pixels and cant have
arbitrary values.
m Gaussian blur on the image
m Clipping image values
m Clipping small gradients to 0.

I* = arg max, [f(I) +R(D)

= \

Neuron value  Natural image reqularizer
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(prior) DNN being visualized

prior: prior knowledge. untrained network: prior means we encode some previous knowledge /
distribution to the network
Maximizing patterns for each kernel
o Making sense of these activations is hard because we usually work with them as abstract
vectors
o With feature visualisation, we can transform this abstract vectors to more meaningful
semantic dictionaries.
Usage: Style transfer



2. topic

Weight update strategies

Apply all the input vectors in one after the others, selecting them randomly
Instance update:
o Update the weights after each input
Batch update:
o Updates are calculated for each vector and averaged
o Update is done with the averaged values, after the entire batch is calculated
Mini batch:
o If the number of inputs are very high (100.000-1.000.000), batch would be ineffective
Select random m input vectors (m is a few hundred)
Updates are calculated for each vector and averaged
Update is done with the averaged values, after the mini batch is calculated
Works efficiently when far away from minimum, but inaccurate close to minimum
o Requires reducing learning rate
Valahogy ezt az updatesdit a back propagationnal is hasznaltuk.
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RelLU and the dying RelLU problem
ReLU definition

Rectified Linear Unit

Widely used activation function in hidden layers.

Very easy to calculate

Also easy to derivate

Smooth analytic approximation is the soft plus function, which asymptotically reaches RelLU
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Dying ReLU problem
e During training it happens that the weight composition of a neuron got a certain combination in a
high gradient situation (large jump happens during optimization), which leads to generate zero
output from that point on.
o Happens typically with large learning rate
o E.g. very large negative value appears in the bias
e That neuron will output zero for each input vector from that point.
o lrreversible
e Solution: Leaky ReLU, ELU, SELU etc.

Leaky ReLU
e No constant zero output, so neurons won'’t die
e Leaky RelLUs are not necessarily superior than normal ones.
f(x) = max(x, ax)

Leaky RellU: v=0.}1

LSTM cell

(igen ez nagyon hosszu, valésziniileg nem kell minden, de szerintem siman belekérdezhet, ezért a teljesség
kedvéért itt vannak, itt meg lehet nézni alaposan, nagyon szépen érthetéen és olvasmanyosan ki van fejtve:
https://colah.qgithub.io/posts/2015-08-Understanding-L STMs/)

e Miért?

o Eleinte voltak a sima rekurrens halok és ezek nekilink teljesen jok voltak. Ezekkel fel tudtunk
ismerni beszédet, nyelvet, videdt stb. Ezt viszont tovabb kellett fejleszteni mert volt velik
egy-két probléma:

o Vanishing gradient

m In case of long input vector sequences the old vectors has a strong fading effect in
inference phase
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m In the training phase the stacked gradient functions will be very small.
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o Practical problem of long term dependencies
m Consider a network which predicts the next word in a text
e |[f the information needed to predict is close, it can be successfully trained
e If required information is far, the training will be difficult.
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e Long Short Term Memory
e Special type of RNN, capable for long term dependencies.
e Standard RNN:
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o Simple architecture, chain structure, single tanh layer.
e LSTM:
o LSTM has the same chain structure, but instead of having a single neural network layer, there
are 4, interacting in a special way.
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e Idea:

o

>

Able to learn long term dependencies

Collects data when the input is considered to be relevant

Keeps it as long as it considers to be important
e Technique:

o

o

o

Handle the state as a memory with minor modification
® no matrix multi.

m ho tanh.
m apply memory handling kind signals (data in, data out, write, enable) etc

Components of LSTM

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate copy
°

State of the LSTM (upper horizontal line in the architecture)

o This is the actual memory

o It can pass the previous values with or without update

o Indicated with C_t
Old content can be removed value-by-value

e New content can be added
[ ]

Sigmoid layer: how much each component should be let through.

Output @
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How LSTM works?
Step 1

e Combines input and previous output (conc.)
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e Selects which values to forget
o Done by: Forget gate layer
o NN with sigmoid output

ft fi = U(Wf-[ht_l,l‘t] + bf)

Tt

Step 2
e What new information we’re going to store in the cell state?
e Selection of state values to be updates
o Which values will be updated
o Done by: Input gate layers
o NN with sigmoid
e Calculation of the state update
o Done by: Cell network
o Not yet the new, only the update value
o NN with tanh

, it =0 (Wi-[hi—1, 2] + b;)
C"t = tanh(WC-[ht_l,:ct] -+ bc)

Step 3
e Update the old cell state
e Calculation of the state update:
o Add the old state and the state up

flT inr'%é Cy = frx Cym1 + iy x Cy

Step 4
e Decide what we’re going to output
e Selection of the new output values
o Sigmoid: what parts of the cell state we are going to output
o Done by: Output gate
o Output gate decides which values are relevant

12



e Apply activation function to the output
o squeeze values between -1 and 1

o tanh
he A\
@QD oy =0 (Wo [hi—1,3¢] + by)
) o] . hy = oy * tanh (Cy)
t—1 ’

A

General form of an LSTM network
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Achievements with LSTM networks
e Record results in natural language text compression
e Unsegmented connected handwriting recognition
e Natural speech recognition
e Smart voice assistants (Google Assistant, Alexa, Cortana, Siri etc.)
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Variants of LSTM networks
e Peephole connections
o Let the gate layers look at the cell state.
o All the three gates receives input from the previous state and the input
o Output can be sparse -> this version has more information for gating

"l 7 o

fi=o (I'I-'rj"[ct—lahf 1, Tt + by)
!;lr = a {[’1—;'[Ct_]_,hf__[,il'r] -1 !’)‘,)
ot =0 (Wy[C¢, hi—1, 2] + bo)

e Joined forget and input
o Input & forget gates : same role
o Why not to join them?
o Instead of separately deciding what to forget and what we should add new information to, we
make those decisions together.
o We only forget when we’re going to input something in its place. We only input new values to
the state when we forget something older.

P

Ci=fi*xCi1+ (1 - fe) *ét

e Gated Recurrent Unit (GRU)

Combines the forget and input gates into a single “update gate.”
Merges the cell state and hidden state, and makes some other changes
Output won’t be sparse

Learns faster on smaller dataset

How it works? (abran)

O O O O
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(get sparse memory vector)

* (Calculate the joint Forgot and
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* (Calculate function of the Cell o
Network 1 = o(Wp[he—1, x¢])
* Gate hy—4 ze = o(W[he—q1,%¢])
* Calculate the new output (h,) h, = tanh(W,[r; = hy_q, x;])

he = (1 —2z) *hy_1+ 2z Ht

Convolution as a mathematical operation in continuous and discrete cases

e Convolution is a mathematical operation that
o does the integral of the product of two functions (signals)
o with one of the signals flipped, and shifted.

e Mathematically:
o Continuous case

(F+g)(H) ™ f f(r)glt — 1) dr
f f(t —7)g(r)dr

o Discrete case

(f*g)[n] = i fim]g[n — m]

==
= ) fln—migm]

e Convolution most important properties: commutativity, associativity, distributivity

15



3. topic

Newton optimization method

Second order method.
When f is a positive definite quadratic function, Newton’s method jumps ins a single step to a minimum
of the function directly.

e The method can reach the critical point much faster than 1st order gradient descent.

Newton optimization:

Ax = —H(f(xo))_IVf(xo) x(n+1) =x(n)—7H(f (x(n))) " V£ (x(n))

Ensemble, bagging

A regularization / optimization method
Ensemble methods: Network duplications, bagging, dropout
Idea of ensemble methods:
o Generate multiple copies of your net (same or slightly modified architectures)
o Train them separately:
m Using different subsets of the training sets
m Different objective functions
m Different optimization functions
o Averaging the result will lead to smaller error
Requires more computation and memory both in training and inferencing (testing) phase

Dropout
e Masik tételben ott van.

Network duplications
e Train two architecturally identical copies of the network on two GPU-s.
e Half of the neuron layers are on each GPU, and they can only communicate on certain layers.

Bagging

Construct k different datasets

Each with subset of the data, but with duplications
Train with these

Make result averaging

Original dataset

@O®

First resampled dataset

®©®>0O>0)

Second ensemble member

First ensemble member

Second resampled dataset

OIOIGELGEIO)
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Comparison of loss functions

Loss function determines the training process
o Tells the net the size of the error, and penalize according to it
o Eddig: difference of the output and the desired output

Quadratic loss function

Mean squared differences between the desired and the actual outputs.

R omp (w)= %i(dk —Net(xk,w))z

k=1

Problem: can be very slow (with sigmoid even at large error) -> slow convergence

Conditional log-likelihood

For classification

Sum of negative logarithmic likelihood

K
C(w) = —%Z(—Eog;"(yklxk,w))
k=1

Cross Entropy

Better loss function (solve slowness of quadratic)

C = _% Z lylna + (1 — y)In(1 — ﬂ)J.

£

C(w) = —isz{:l (dk logP (yy|x,, W) + (1 — dk)f-og(l — P(ylxg, W)))

Penalize heavily the confident, but wrong predictions.

Better, because its partial derivative does not contains sigmoid derivative. The gradient is proportional

with the value of the sigmoid and not with its derivative.

o Z (6(wx + b) — d)
—_— = = Xl wx —
dw; K - :

Negative log-likelihood (nem feltétlendl fontos, de ide tartozik)

L(y) = X5_1 —log(y)

Loss function for softmax

Sum of negative logarithms of the probability of the correct decision classes.

Small, if the confidence of a good decision was high, large when the confidence is low.
Partial derivative of a softmax layer with negative log-likelihood:

ac

av, Wit

https://medium.com/deep-learning-demystified/loss-functions-explained-3098e8ff2b27

Machine learning vs traditional programming

Traditional programming approach Machine learning approach

17



https://medium.com/deep-learning-demystified/loss-functions-explained-3098e8ff2b27

e Trivial, or at least analytically solvable e Complex underspecified tasks
tasks o No exact mathematical solution
o Well established mathematical exists, the function to be implemented
solution exist or at least can be is not known
derived e Example:
e Example: o Searching for “strange” data
o Finding well defined data constellations in a database
constellations in a database o Verification of the operation is difficult
o Formal verification of the operation e |t's very hard to know if you’re program works
easy correctly, have to do massive amount of
testing

e In machine learning each task is an input-output problem.

x |—H ? 85— |

X: scalar, vector, ¥: Decision or scalar,
array or a size(X) vs size(Y) vector, array or a
sequence of these Data reduction sequence of these
(incl. text) Data generation (incl. text)

e The reason why its only became popular in the recent years, is the appearance of new frameworks and
methods, giant amount of data and very powerful hardwares.

e The main three types of learning: Supervised learning (on labeled examples), Unsupervised
learning (unlabeled examples), Reinforcement learning (trial and feedback)

Inception

e Network architecture developed at Google
e Main idea
o Not to introduce different kernels in different layers, but introduce 1x1, 3x3, 5x5 in each
layers, and let the NN figure out, what representation is the most useful, and use that.
o Parallel multiscale approach.

Filter
concatenation
L, ==

.

Il 3 545
| comeolutions convolutions conmeiutions

.

Fresous layer

e “Pooling of features” because we are reducing the depth of the volume, similar to how we reduce the
dimensions of height and width with normal maxpooling layers.

Rethinking Inception (Ezt nem teljesen értem, nem is biztos, hogy kell)
e Squeezing the number of channels for each kernel
e With concatenations the number of features increased in each layers, which introduced too many
convolution

18



To reduce these numbers they introduced the 1x1 layer. It can generate e.g. 16 feature maps from 64
feature maps
Larger (5x5) convolutions were substituted by series of 3x3 convolutions
o Reduction of number of parameters
o Additional non-linearities (ReLU) can be introduced
2D convolutions were substituted by two 1D convolutions

19



4. topic

McCulloch-Pitts model

e The artificial neuron is an information processing unit, that is basic constructing element of an
artificial neural network.

Activation
function

el+) P—»

Summing

junction
Oo—
Synaptic
weights

e x; input vector
e w, : weight coefficient vector of neuron k
o w,>0: excitatory input
o w, <0:inhibitory input
e ). bias the sum to enable asymmetric behaviour
Activation function: shapes the output signal
The output equation:

Ve = @[thxz 4 bk)
i=1

e With included bias:

Ve = Q{Z WX J = go(wrx)

=0

Parameters of convolution - filter, stride, padding, etc.

Egy-két sz6 a konvollciordl in general
e Oké, korabban mar volt a konvolucié képlete, azt azért felpingalnam a papiromra a vizsgan, hogy
latszddjon, hogy tudom mirdl beszélek. Mivel szerintem ez a rész inkabb arrdl szél, hogy érted e a
mokat, ezért itt csak megprobalom elmagyarazni. Nyilvan vizsikén ennyit nem kell leirni, mert ott mar
érteni fogod ugyebar.
e Szoval ugye digjelen jatszottunk mar ilyen 1D-s konvolucidsat. Ennek a Iényege, hogy:
o Van egy fuggvényed, kinek a neve f és igy néz ki:

20
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o Neki pedig ugye van egy baratja g, akivel majd Ggyesen dssze konvulaljuk:

____________________

o [Ezutan pedig ezt a cuccost, az alabbi leirasnak megfeleléen tologatod, és az egymas alatt 1évd
szamokat 6sszeszorzod és 6sszeadod. A kapott eredményeket egymas mogé irod és tada kész

vagy.
1 O N B2 5 | (1x0)=0 |
2 EN Bt
) 0 1 2 3| 4 [ (1x1)+{-1x0)=1 |
0@
3) g ) 2 [(1x2)+(-1x1)+(2x0)=1]
@
4) R LR [(1x3)+(-1x2)+(2x1)=3]
Tro
5) o] 3] 12) 3] & [(1x4)+(-1x3)+(2x2)=5]
o m @
6) l (-1x4)+(2x3)=2 |
el C
7 ol |1 [2x4}8 |

2@

If*_9'=0. i 43 S 2 8_‘

e Van itt két fontos definicio:
o Valid positions: the flipped g is completely inside f (fully overlapping positions) (abran 3-4-5.
Iépés)
o Boundary positions: partially overlapping positions (a tébbi Iépés)
e |n practice convolution is used as a filter, where f is the measurement data and g is the filter
function descriptor (kernel).
e Size of the result
o size(f) >> size(g)
o size(f) = n, size(g) = k, n>=k
o size(f*g) = n + k -1 (ha az 6sszeset szamolod)

Padding
e In CNN, we calculate the valid values only
e We do not want size changes on the data blocks.
e To avoid these size changes, we have to pad the data block with zeros at boundaries (if the kernel
size is odd, the padding is symmetric, and if it's even th padding is asymmetric)
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Persze van akkor ez 2D-ben is, ott egy tablazatot tologatsz egy nagyobb tablazaton.

1/1/1/0]0
101 0 1110 |4
S 2 é 2] Qu Om 1 1)1 Convolution >,
olof1]1]0 with padding "
kernel ol1l1lolo (size unchanged) t".'
I ' Convolved
LS Feature

Why use padding?
o Simplifies the execution code
o Do not have to deal with different calculation methods at the boundaries
o Same code runs in the entire array

Strides

Filter

Stride is the number of pixel what we slide the kernel (horizontal stride, vertical stride)
Can use to down sample the image.
size(f) = n, size(g) = k, p = padding, s = stride
n+2p—-k
s

1

Padding:1, stride: 1 Padding:1, stride: 2

Convolution in the Fourier domain is a multiplication:

F4f * g}y = Fif}- F1g}
Fif~gy—F{f} +Flg}

Therefore:

frg=F'{ F{f} Fig}}
f-g=F"{ F{f)=F{g}}

We can use convolution to filter an image, with these we can find different features, properties on the
images. Different kernels produces different results (edge-detection filter etc.)
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Linear classifier, margin of the classifier

e |n a 2D input space the hyperplane is a straight line.
e Above the line is classified 1
e Below the line is classified 0

decision
2 region for C1

decisio
boundary =
.

decision
region for C2

e The decision boundary is a hyperplane defined:
wx=0
e Why hyperplane?
o Most logic functions has this complexity.
o Common in mathematical and computational tasks
o Using multiple hyperplanes -> more complex decision boundary.

e Two sets are linearly separable if there exists at least one hyperplane in the space with all of the
blue points on one side of the line and all the red points on the other side.

Margin of the classifier
e Maximum margin: Define the margin of a linear classifier as the width that the boundary could be
increased by before hitting a data point.

X1

https://towardsdatascience.com/linear-classifiers-an-overview-€121135bd3bb
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Data augmentation

A regularization / optimization method (increase loss, reduce overfitting)

Idea: Increase the generalization capability of the net by enlarging the training set.

Increase the number of the training vector by introducing fake (artificial) input-output pairs.
Typical methods: translating, slight rotation, scaling, add noise, flipping etc.

U-net példaul hasznalata szépen, mert ott a specifikus téma (orvosi akarmi) kevés a training data.
De az AlexNet-ben is van

YOLO

You Only Look Once
Special network architecture, Unified, Real-Time Object Detection
Model detection as a regression problem:
o Divide the image into a grid and each cell can vote for the bounding box position of
possible object.
o Boxes can have arbitrary sizes
o Each cell can proposes a bounding box one category
o Non-suppression on the boxes
e No need for scale search, the image is processed once and objects in different scales can be
detected

Unified detection

Class probability map
e Confidence scores: reflect how confident is that the box contains an object + how accurate the box is.

Pr(Object) = mu;;;;'g

e Conditional class probabilities: conditioned on the grid cell containing an object
Pr(Class;|Object)

X Lol —_ o ttrutl - trutl
Pr(Class; |Object) * Pr(Object) * ]UUI:?EL[] = Pr(Class; ) » IDUI:}LL{‘

o At test time, multiply the conditional class probabilities and the individual box confidence
predictions.

Giving class-specific confidence scores for each box.

Showing both the probability of that class appearing in the box and how well the predicted box fits
the object

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
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5. topic

Statistical learning theory

e Empirical error
1 K

Ropy (W) = 22 2. (es — Net (x;,w))’

e Theoretical error

||F(x) - Net(x,w)llz = IX I(F(X) — Net(x, W))2 dx,...dx,

e The theorem says that

lim R,,, (“) =R, (W)

K oo
K

lim iZ(dk —Ner(xk,w))z = Jl.j..’.(l:(,x) —Net(X,W))2 L

E—»ox K Py

Various activation functions and their properties

e Activation function: shapes the output signal
o Non-linear function
o Typically clamps the output
o Monotonic increasing
o Differentiable, or at least continuous
Originally it was the step function, but later the needs went higher.
Strong nonlinearities to support approximation of wide range of functions
To drive individual neurons in the hidden layers to a parameter zone, where they are silence for a set of
vectors, and active for a different set.
Letting gradient go through them
Work well with a loss function (select them synchrony)

Sigmoid

e Continuous and continuously differentiable
e Used in the output layer of a fully connected (mostly in probability problems)

S(x)=

—X L | o | L |

l+e -6 -4 -2 0 2 4 6
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Tanh
e Bipolar activation function (useful, when bipolar output is expected)

e Continuous and continuously differentiable

e Used in the output layer of a fully connected
WA

1

ReLU
e Redctified Linear Unit (ReLU)
e Most commonly used nonlinearity in hidden layers of deep neural networks
. ) RelLU
f(z) = max(0, z)

8|

Leaky ReLU
e No constant zero output, so neurons won’t die
e |Leaky RelLUs are not necessarily superior than normal ones.
f(x) = max(x, ax)

Leaky RelU: v=0.0/x

ELU
e Exponential Linear Units
e Variation of leaky ReLU
e Better classification accuracy, but requires more computations
e ais a hyperparameter: tuned during training
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T ife>0
)= {-:;n(f:JT —1) otherwise

a is a hyper-parameter to be tuned and a > () is a constraint.

SELU
e Scaled Exponential Linear Units
e Variation of leaky ELU

SELU activation function

selu(z) = A {ae‘r—a‘ ifz <0

ReLU6
e Learn sparse features faster

Softmax
e Activation function
e Normalized exponential functions of the output unit
e Softmax combines a layer of output neurons
27



e Probability distribution of n class
e Properties

Squashes a vector of size n between 0 and 1

o

Improves interpretability

o

O

e'l);'
Yi = goftmam(ﬂ)z‘ =

cat

dog horse

2?21 €%’

5 4
Forward

propagation
—_— 4 2

_ NEIE

Input images Input values

Autoencoders

e Neural network used for efficient data coding
e Uses the same vector for the input and the output
o No labelled data set is needed
o Unsupervised learning
e Two parts:
o Encoder: reduces data dimension
o Decoder: reconstructs the data
o Middle layer: code

Input

 k
_'.\x\\
L ~
|| \\‘ ;{:h\“ s Code
\ / N
— \;;' — \\ / \
| X ,f<
. '\\ | B !
| ! s
! I ////
[ j "
|/ Ml
J'/”
¥

Encoder

Generalization of sigmoid function for one-of-n class
Exponential function strongly penalize the non-winners

Softmax
function

where v = wlx

cat dog horse
0.71 | 0.26 | 0.04
0.02 | 0.00 | 0.98
0.49 | 0.49 | 0.02

Probability scores

Output

|
-

/ v
— \ / L
L ){\ L]
NS v
"“‘\*_.; -
e X B
x\\;_

Decoder

e The network is trained with the same input-output pairs.

e Loss function: MSE / Cross Entropy

o After the network is trained, remove decoder part
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—> Encoder —>E—> Decoder —+

Original
input

Reconstructed
input

Compressed
representation

e We say that the autoencoder is undercomplete if the width (dimension) of hidden layer is smaller
than width of the input / output layer.
e Can be used for denoising (add noise to the input, the output will be cleaner)

- Encoder Decoder

Original MNoisy Code Ourput
Image Input

Graph unrolling and parameter sharing in recurrent neural networks

Graph unrolling
¢ RNN-hez kapcsolodik
e Unrolling generates an acyclic directed graph from the original graph structure
e |t generates a FIR filter from the original IIR filter

y(@ = g(h(®) (1) 12) ¥(3) 1(4)

- HO) NI AN ANKE) AN
h(i) = f(h(i — 1), x()) \T/ \T/

x(i) x(1) x(2) x(3) x(4)

Parameter sharing
e RNN re-uses the same weight matrix in every unrolled steps.
e We use it to reduce the number of parameters that the model has to learn.
e An example:

o Compare “Yesterday | ate an apple” and “l ate an apple yesterday”. These two sentences
mean the same, but the “l ate an apple” part occurs on different time steps. By sharing
parameters, you only have to learn what that part means once. Otherwise you’'d have to
learn it for every time step, where it could occur in your model.
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y(i) = g(r(D)) = W, h(i) 1) N2) ¥3) 4

> -

" W,
D piy = fG - Dox@)= D
=W, c(1)

x(2) x(3) x(4)

MobileNet

Special network architecture, where feature depths are squeezed before each operation
In a squeezed architecture we will use downscale 128 feature maps to 16, using linear combination
(1x1 convolution)
After the 3x3 convolutions we expanded back to 128 layers by 1x1 convolution again.
From linear combination of these elements the new maps are created.
It uses depthwise separable convolutions which basically means it performs a single
convolution on each colour channel rather than combining all three and flattening it. This has
the effect of filtering the input channels

e reducing computation and model size

e Itis also very low maintenance thus performing quite well with high speed.

https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7ff299
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6. topic

Machine learning problem definition

e |tt én ugyanazt mondanam el, mint a Machine learning vs traditional programming-nal irtam a 3.
topicban.

Newton optimizer

e Topic 3-nal a Newton optimization methodnal leirtam a |ényeget. Még annyi, hogy, van egy csunya
algoritmus hozza, aminek itt a kddja, de szerintem senki se tanulja meg mert nagyon félelmetes:

Algorithm Ne \\lml's method  with  objective J(@)=
& L1 L{f(=";6),39).
Require: Initial parameter 6y
Require: Training set of m examples
while stopping criterion not met do
Compute gradient: g mvg > o ["}'9). y[’:])
Compute Hessian: H « - Vg 3. L 0.0),y")
Compute Hessian inverse: H"
Compute update: A = —H 'g
Apply update: 8 = 8 + AB
end while

e Typically not used due to the computational complexity
e Parameter space much higher than first order (where it is already very high)

Effects and relationship of model capacity and complexity - overfitting,
underfitting

Overfitting and underfitting
e The network exactly learned the training vectors, but lost the generalization capabilities.
e |t's the global minimum
e Overfitting occurs, when a model with high capacity fits the noise in the data instead of the
(assumed) underlying relationship.

A '} X A ___-":

Jo o o/ o ® o
X 0 o X0 " o X"-.._QXB o
'xX"'-. 0O XX_ Xx;___. X0

x X x © o X/ /
X0 x X0 X /%0
> > T TR .

Under Fit -' Appropriate Over Fit
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e Underfitting occurs when a statistical model or machine learning algorithm cannot adequately capture
the underlying structure of the data. It occurs when the model or algorithm does not fit the data enough.
It is often a result of an excessively simple model.

Capacity and complexity
e In general, the more layers we have, the more neurons there are, the larger the capacity.
e There is no adequate method, to predict the required complexity.
e Even if a network is capable to learn a task, it is not guaranteed, that it will.

3 hidden neurons 6 hidden neurons 20 hidden neurons
L ] L L ]
[ ] [ ] [-]
L ] L L ] - [ ] *
L] L] L ] -] e o
o [ ] [ ]
s ° e @ : e @
L ] L ] o
® & r & s r i a 1]
[ ] [ ] [ ]

https://towardsdatascience.com/overfitting-vs-underfitting-ddc80c2fc00d

How to increase complexity in a smart way?
e Increase the number of hidden layers?
o Number of free parameters exploding
o Numerical problems arises after using too many layers
e Solution: hierarchical architecture with reusable components (Residual networks)

t-Distributed Stochastic Neighbor Embedding

t-SNE
Generates a low dimensional representation of the high dimensional data set iteratively
e Aims to minimize the divergence between two distributions:
o Pairwise similarity of the points in the higher-dimensional space
o Pairwise similarity of the points in the lower-dimensional space
e Output: original points mapped to a 2D or 3D space
o similar objects are modeled by nearby points and
o dissimilar objects are modeled by distant points with high probability
e Unlike PCA it is stochastic (probabilistic)

t-SNE implementation
1. Generate the points in the low dimensional data set (2D or 3D)
o Random initialization
o First two or three components of PCA
High Dim Low Dim
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2. Calculate the pairwise similarities measures between data pairs (probability measure).

High Dim ow Dim
- The similarity of datapoint
" _ x; to datapoint x; means
® _ ® g the conditional probability
i, lr/ yi
o 4 o (o ? p;; that x; would pick x;
® o as its nearest neighbor.
= exp(—||x; — Xj|i2/2§‘2) ! o = (11 yill»)~!
Dkt eP(=I1x — xi|[2/202) S a U+ e — i)t

Curse of dimensionality: exponential normalization of the Euclidean distances are needed due to the
high dimensionality.
3. Define the cost function
(Kullback-Leibler divergence of two distr.)
(el6z6bél: Similarity of data points in high dimension (p), similarity in low dimension (q))
Large p_ij and small g_ij -> large penalty
Large p_ij and large qg_ij -> small penalty

C = KL(P||Q) = ZZpU!ong

4. Minimize the cost function using gradient descent
Optimization with momentum method
Form of gradient:
aC

By, 42(:0:‘1 — qi))(1+ |lyi — %il?) " (vi — )
' J#i

Physical analogy
e Map points are all connected with springs in the low dimensional data map.
o Stiffness depends on p_i|j - q_ilj
e Let the system evolve according to the laws of physics
o If two map points are are apart while the data points are close, they are attracted together
o If they are nearby while data points are dissimilar they are repelled

ShuffleNet

e Extremely computation efficient CNN architecture
e To overcome the side effects of group convolutions: shuffle operation
e Enables more feature map channels, which is critical for performance

f&—Channels——— le—Channels—— k—Channels————3|

Input

GConv1
Feature | | ' TD B
] T e G > — - Channel
Y i E~p Y
GConv2 _ 0 Shuffle
QOutput
(a) (b) (c)
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/. topic

Credit approval problem

Ezt nem teljesen tudom, de ez az valodsziniileg:

The last decade has seen an important rise of data gathering, especially in the financial sectors.
Gathering and analyzing this data is a key feature for decision making, particularly in banking sector.
One of the most important and frequent decision banks has to make, is loan approval.

The challenge is to know how to build a proactive, powerful, responsible and ethical exploitation
of personal data, to make loan applicant proposals more relevant and personalized.

e Machine learning is a promising solution to deal with this problem. Therefore, in the last years, many
algorithms based on machine learning have been proposed to solve loan approval issue.

Objective functions in neural networks

e Obijective function or error function, cost function, loss function, criterion is a special function
that we have to minimize for a neural network by modifying its parameters. (optimization)
The loss is calculated from the actual value and the predicted value by the network.
Tells the net the size of the error, and penalize according to it.
3-as topicban mar beszéltlink réla milyen lossok vannak.
Optimization:
o Find the optimal weights:

W, = min flx, d, Net(x,w))

o Stochastic Gradient Descent method (there are more advanced ones)

Nesterov momentum optimizer

e Stimulate a unity weight mass, having v velocity (follow Newton’s laws of dynamics) (Momentum)

Algorithm Stochastic gradient descent (SGD) with momentum

Require: Learning rate €, momentum parameter cv.
Require: Initial parameter 0, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ..., 2™} with
corresponding targets y(*).
Compute gradient estimate: g < Vg 3= L(f(x'";0), y")
Compute velocity update: v < av — €g
Apply update: 8 +— 8 + v
end while

e Nesterov momentum update
o Calculates gradient not in the current point, but in the next, and correct the velocity with the
gradient over there (look ahead function)
o It does not runs through a minimum, because if there is a hill behind a minimum, than it
starts decreasing the speed in time.
o Learning rate is changing but not adaptive.
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Momentum update Nesterov momentum update

actual step
actual step

gradient Nesterov: the only difference
step T
v = pve—1 — €V f(0 1 [+ gy 1)

Derivative over function f

6; — 9.‘ 1 + V¢

+1.61

What if we make the
learning rate adaptive as
well, not just the velocity?

Decomposition of large kernels

e Convolution is associative
fr(g=h)=(f+g)*h
e Reduce the computational complexity

0.02 0.09 0.2 03 02 009 0.02
009 013 011 04 011 013 0.09 0 02 03 02 O

02 011 -03 -0.7 -03 011 0.2 02 05 02] (02 06 08 06 0.2
03 04 -07 -13 -07 04 03|=]05 -31 05/=#(03 08 12 08 03
02 011 -03 -0.7 -03 011 0.2 02 05 021 (0.2 06 08 06 0.2
009 013 011 04 011 013 009 0 02 03 02 O
0.02 009 0.2 0.3 0.2 0.09 0.02
Laplacian of Gaussian kernel (g *= h) Laplacian (g) Gaussian kernel (h)
Number of operations: 49*N__ 9*N,, + 25*N_, = 34*N_,

15% reduction of computational demand!!!

e Not exact in most cases. (approximate the kernels with a limited accuracy only)
o Neural nets however does not sensitive for inaccurate decomposition.
e Decomposition of larger kernels leads to higher savings, so its widely used.

Alexnet + ILSVRC

First fully trained deep (8 layers) convolutional neural network
Motivation: build deeper network, that can learn more complex function
Built from convolutional and max pooling layers, ReLUs, dropout layers, data augmentation.
ILSVRC: ImageNet Large Scale Visual Recognition Challange
o ImageNet: 15+ million labeled, high-resolution images in 22000 categories
o ILSVRC uses a subset of imagenet: 1000 category, ~1000 images per category
o [Each image should be classified.
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o We see a rapid decrease in classification errors since deep CNN-based designs became

popular
Architecture: (ezt nyilvan nem kell, csak hogy kb milyen layerek vannak benne, azért tettem ide)
Input CONV1
L CONV2
CONV3 CONV4 CONV5 FC6 FC7 FC8
55
27 Dense Dense
13 13 13 Dense
224 I
1 ~ S
I S| - 3R~ 3 R —~
f‘>\? 3‘ C |1s .»/>13 t’m
1 5 U 27 347 3L 3
384 384 256
S8 256 1000
MTX 4096 4096
Max pooling
96
224 pooling
Input M?X
image pociing
(RGB)  Stride
of4
| | | 1 |
Image input 5 Convolution layers 3 Fully-connected
layers
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8. topic

Delta learning rule

o |If
oR

- 20
owy,

than we have to increase Wi » to get closer to the minimum

aRemp

Aw,. . = —r,

éR
—2 >0
ow,,

o

than we have to decrease Wy s to get closer to the minimum

Awy; = —np—2
é'wk}-
A
R |
H éR
aRemp .‘lll /r' — enmp 5 0
—<0 LOWy
oWy !P
_ _ L’Positive gradient
Megative gradient 4 {
‘\ r,
o i kgt oR,
mintmum: - P =0
on b
W..
kj

1: learning rate parameter

Batch normalization

Batch normalization

e Why?
o Distribution of the input vectors changes from layer to layer
m First layer got normalized output, then the second layer somewhat shifts and twists on
this norm etc.
m Data propagating through the layers will lose its normalized properties
(covariance shift)
m This can shift the neuron out of its zero-centered position
o Solution?: Normalization on each layers
o Noise to avoid local minima and overfitting
e Layer level
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Training: done on minibatch level
Inferencing: do the normalization with the precalculated parameters of the entire training set.
Batch normalization is differentiable via chain rule: back propagation can be be applied for batch
normalized layers.

e Rewriting the normalization using probability terms:

k k
— w E: the expectation

JVar[x®)] Var: the variance

(k)

Local response normalization vs batch norm.
e Both work within the convolutional layer
e Local response normalization
o Normalization either through the feature maps or within one feature maps
o Normalization is done for one input image
e Batch normalization
o Normalization done for all pixels in all the feature maps within a layer
o Normalization is done for the entire batch
https://www.youtube.com/watch?v=dXB-KQYkzNU

Transposed convolution, atrous convolution

e Oké én itt bevezetésnek elmondanam, hogy itt eleve arrdl volt szd, hogyha te éppen képszegmentalast
akarsz csinalni, akkor van ez a vagyad ugye, hogy az outputod akkora mint az inputod, csak a kildn
objektumok mas szinliek. Erre a legtrivialisabb megoldas ugye, ha csinalsz egy fully convolutional halét
az alabbiak szerint:

4 4

| Conv Conv Conv argmax
— — E—— —
Input: N J ‘ o
3xHxW v Scores: Predictions:
; CxHxW HxW
Problem: convolutions at Convolutione:
original image resolution DxHxW

will be very expensive ...

e De ahogy a mellékelt dbra mutatja ez elég kaksi, mert nagyon nagyon draga igy végezni a
miveleteket, ezért inkabb csinalunk ilyen downsampling meg upsampling részt.
Es akkor azt tudjuk hogy downsamplingnél lehet ugye maxpoolingolni vagy average poolingolni.
A maxpooling ugye ilyen a Iényeget értjuk: nagy matrixbdl picit csinal, reménykedve benne hogy most
megtartotta a fontos informaciot.

12 120 | 30 | O

8 (121 210 2 x 2 Max-Pool | 20 | 30

34|70 | 37| 4 112 | 37

1121100 | 25 | 12
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e Na de akkor ezt hogy lehetett felfelé csinalni? Hat ugy, hogy vannak ilyen unpooling dolgok:

Nearest Neighbor 1] 1 i 2 i 5 “Bed of Nails” 11ol2T0
]1-‘2 1| )& 2 !12 _0'10 o'of
‘ ol [ | o 31314] 4 ‘ 314 3040

3,134/ 4 0 | 0j0]|0 |
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4
::%gn?lggp \?ﬂrhich element was max! 3:: ;‘;ﬁ;ﬁﬁ?ﬂm | |
11218l 3 pooling layer ol 2 ‘ 0
3521 5-‘6- N 100
i, N | ! ‘ 8 | Rest of the network ‘ = . 4.,- 0 _ ¢ -. @ |
7 3|48 |00 |4 |
Input: 4 x 4 Output: 2x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers

e De ugye tudjuk, hogy a lecsdkkentés magiara a convolution is képes, ha a strideokkal meg a
paddinggal jatszunk. Akkor tehat nem lehet egy olyan miivelet, ami tulajdonképpen a konvolucié
parjaként, hasonléan vissza tudja tornazni a méreteket? De, és ez a transpose convolution vagy

deconvolution. Mese vége.

1D example

|

x

Input i [
p Fllte_r —
| ay

a/y
bkz

|
\ | bz

Output

stride: 2 |@Z [+ bx

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in

the output

Need to crop one
pixel from output to
make output exactly

2x input



2D example

2D transposed convolution Hﬁ%
i ; ' 1. Kernel is weighted
111 withshe input Stride 2:
pixel value //| | \
4 ? . 2. Placed to the ! [|
kernel stride positions / |
v'r| L =
@ 2 |5 3. Summed up X / )ﬁ X X
where overlaps :
3 | & | 5 [
; ;
5 5 5 X X X
5 5 5
image
2D transposed convolution +§
3 : 1. Kernel is weighted
1| 3 with the input Stride 2:
pixel value
& 1 2. Placed to the 1 1 1
kernel stride positions
@ 2 |5 3. Summed up 1 1 ) X X X
where overlaps
3 141|s 11 11
5 9 5 X X X X
5 5 5
image
2D transposed convolution *i
. . 1. Kernel is weighted
2 | 2 with the input Stride 2:
pixel value
. . 2. Placed to the T = T3 z "
kernel stride positions
1 @ 5 3. Summed up £k FEh = 2 X X
where overlaps
3 4 5 1 14 12 2 2
5 5 5 X X
5 5 5
image
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2D transposed convolution

$ " ¢ 1. Kernel is weighted
4 4 4 with the input Stride 2:
pixel value '
4 4 4
2. Placed to the
kernel stride positions 1 1 @ 2 2
.
1 2 5 5 | 3. Summed up X 3 2 4 . X X
h PR —
. . . . where overlaps (1 N 7N 7N 75
3 3 (\3 r-’lj) 4 4
5 5 5 5
3 3 G2 a aX X
5 5 5 5
3 3 4 4 4
image @
2D transposed convolution
B 2 2 1. Kernel is weighted
5 5 5 Wilth the input Stride 2:
pixel value
5 5 5
2. Placed to the
[=
kernel stride positions 1 l @ 2@ 5 @ 5.3
7 oy ~ e o
1 2 5 5 |3. summedup 1 1 11 2(5 2)5 5 5 515 3
where overlaps  f=——~ — — —
3|8 |5 |5 P ('1 1 (’1 2“) Y5 2‘@ (’5 5\) @’5 H
JAYAE AU R AAC
5 5 5 5 Note: the
summing 3 3 @ 45 E: 5 5.5) 5 g
5|5 |5 |5 positions are not 5\ (5 (S 5\) 5 (’5 5‘) 5Y5
homogenious 3 3 3 4 5 445 55 515
e P—
mage [& & B3 5[5515 &5 5k

Avoiding checkerboard effect (Transpose convolution artefact)
e Non-homogeneous transpose convolution causes checkerboard patterns.
e Balanced stripe and kernel size can make it homogeneous.

B B BN O . .

! stride = 2

‘ ‘ ‘ ‘ ‘ ~gize=3




Atrous convolution

e How it works?

o Blows up the kernel

o Filling up the holes with zeros

m Atrous means very dark (like the holes between the values)

e Properties

o Not doing downsampling

o Not increasing computational load

o But reaches larger neighborhood

o Combines information from larger neighborhood
e Atrous convolution vs normal convolution:

Normal convolution goes deeper with reducing resolution
Atrous convolution goes deeper without further reducing resolution

Visually:
Original filter
Sta ndard* - - 5 e A-
convolution 29— &
=5 B
downsampling convolution upsampling
stride= 2 kernel=7 stride=2
Padded
filter _ s ;
Atrous - VR L
. Sanet — _ -
convolution i > 2T N
atrous convolution - *
kernel=7 . -
YT -
stride=1 “: -
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e This delivers a wider field of view at the same computational cost. Dilated convolutions are
particularly popular in the field of real-time segmentation. Use them if you need a wide field of
view and cannot afford multiple convolutions or larger kernels.

Filter size considerations
e Small field of view -> accurate localization
e Large field of view -> context assimilation
e Effective filter size increases

nekxk - ng(k+k-D0r-1) x (k+ (k-1 —-1))
n, : original convolution kernel size

n, : atrous convolution kernel size
r: rate

e However we take into account only the non-zero filter values:
o Number of filter parameters is the same
o Number of operations per position is the same
https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

Object classification + localization vs. object detection vs. semantic
segmentation vs. instance segmentation

https://medium.com/analytics-vidhya/image-classification-vs-object-detection-vs-image-segmentation-f36db85f
e81
e Object classification: we make only one decision per image (what's on the picture)
o eg. Alexnet

contalner ship

e Detection and localization is more complex: we make multiple decision per image (regressions for
localization and classification for detection)
o PASCAL object recognition database and challenge
m  Annotated image database
o eg. R-CNN, Fast R-CNN, Faster R-CNN :D
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e Pixel level segmentation: very high number of decisions (classification) per image
o Semantic segmentation: label each pixel in the image with a category label
m Use sliding window, fully convolutional aztan unpooling, transpose conv etc. (ebben a
tételben volt réla szé feljebb)
o Semantic instance segmentation: differentiate instances:
o eg. U-net, DeConvNet, SegNet (atrous convolutiont hasznal)

Input Image Semantic Segmentation Semantic Instance
Segmentation

e Chicken and egg problem:
o You need to know that it is a bicycle before able to say that both a wheel part and a pipe
segment belongs to the same object.
o You need to know that the red box contains an object before you can recognize it. (cannot
recognize a bicycle if you try it from separated parts)
Our brain does it parallel
How neural nets can solve it?
m Detection by regression?
e Bounding boxes
e Region proposals (find “blobby” image regions that are likely to contain objects
m Detection by classification?

Classification  1ooomoat " Opject Detection ¢ Mo noe

+ Localization Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK
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ResNext

ResNet kicsit pimpelve
The model name, ResNeXt, contains Next. It means the next dimension, on top of the ResNet .
This next dimension is called the “cardinality” dimension. And ResNeXt becomes the 1st Runner Up
of ILSVRC classification task.
e Group convolution:
o Dividing feature maps into to groups and apply the convolutions to each groups separately
o The number of convolutions will be halved

+ 2x(c /2) inputs, 2x(c /2) output
H 2 « 2x(c,/2 ¢ /2 ) = ¢,c,/2 number
w of kemels

H . ©, Relu
W ¢ hy

i, filters
ﬁ * group convolution block:
E -

Wy

* normal convolution block:

-
| ¢, filters e
+ ¢, inputs, ¢, outputs ..

. c1c:2number of kernels
*

L & @ » .
€, c; h{ H €2

a " W
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9. topic

ADAM optimizer

The name “Adam” derives from the phrase “adaptive movements”

Combination of RMSProp and momentum with few differences.

Momentum is incorporated directly as an estimate of the first order moment of the gradient.

Includes bias corrections to the estimates of both the first-order moments (momentum term) and the
(uncentered) second-order moments to account for their initialization at the origin.

Algorithm The Adam algorithm

Require: Step size e (Suggested delandt: 0.001)

Require: Exponential decay rates for moment estimates, p; and ps in [0,1).
(Suggested defanlts: 0.9 and 0.999 respectively)

Require: Small constant 4 used for numerical stabilization. (Sugeested delault:
1078

Require: Initial parameters 8
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step £ =0
while stopping criterion not met do

Sample a minibateh of m examples from the training set {z'%) 2™} with
corresponding targets y[’ )

Compute gradient: m\—g > L L f(z'D.0). y'i)

t—t+1

Update biased first moment estimate: 8 <+ ms+ (1 — p1)g

Update biased second moment estimate: ¥ < por + (1 — palg = g
Correct bias in first moment: § +— lTS_
Correct bias in sccond moment: 7 «— —Pr

Compute update: A8 = —e F_—': = (operations applied element-wise)
LT e

Apply update: 8 « 6 + A0
end while

https://www.youtube.com/watch?v=nhqgoQu1a6fw

The softmax function

5. topicban mar volt

R-CNN architectures - R-CNN, Fast R-CNN, Faster R-CNN

R-CNN

R-CNN: Regions w;th CNN features

1 d
%# person‘? yes.

_______________ CNNN 4
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions
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https://www.youtube.com/watch?v=nhqo0u1a6fw

R-CNN in a glance:
1. Input image

Region proposals
Compute CNN features with wrapped images
Classification with Support Vector Machine (SVM)
Ranking/selecting/merging -> detections
. Bounding box regression
(2) Region Proposal

Propose a large number (up to 2000) of regions (boxes) with different sizes

o oA wN

o Still much better than exhausting search with multi-scale sliding window (brute force)
o Boxes should contain all the candidate objects with high probability
o Region proposal methods:

m Randomized prim
m Selective search (fastest and best)
m etc.
o Selective search
m Graph based segmentation
m Idea: oversegment it and apply scaled similarity based merging:

)

Convert g
regions §&
to boxes

Original fine scale Step one merging Step n merging
m Similarity measures:
Color Similarity Texture Similarity U
* Generate color histogram of each s  Texture features: Gaussian
segment (descriptor) derivatives at 8 orientations in
— 25 bins/ color channels each pixel
— Descriptor vector (c{)size: 3x25=75 — 10 bins/color channels
; By eiga:
* Calculate histogram similarity for — Descriptor vector (¢} )size:
g i 75 3x10x8=240
each region pair i el i h
L rj] - Z min(cf, ¢ ) ach region will have a texture
- : =4 histogram
= Histogram 4 | Kisiha * Calculate histogram similarity for
g . i Imppgction 088 | G £ H .
~[similarity | histogram value each region pair 240
' | for the k™ bin in Stexture (T 7)) = z min(tf, ¢
color descriptor k=1
t} is the histogram value for the
" bir in texture descriptor
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Size Similarity
* Helps merging the smaller sized
objects
* Since we do bottom up merging,
the small segments will be
merged first, because their size
similarity score is higher

size(r;) + size(1;)

SSEze(Ti‘ ?}') =il size(image)

size(image) is the size of the enfire image in
pixels

Shape Similarity
*  Measures how well
two regions are fit

— How close they
are

— How large is the
overlap

Sfill {rir]"j:} = ;
i size(BB;;) — size(r;) — size(r;)
- size(image)

size( BB} ) is the size of the bounding box of
Ty and 1y

Final Similarity

* Linear combination
of the four
similarities

Ll o

Sfinal(rf-r}') =
tySeolor (TEJ Tf)
+a25£ﬂxtu?'e(n: 7]) 3.
+a355nap (10 77)
L ﬂ45rm(7’ir"j)

List or proposed region

Initial oversegmentation
Calculation the similarities
Merge the similar regions

The formed regions are added to the region list
(this ensures that there will be smaller and larger
regions in the list as well)

Goto 2

(3) Computing the features of the regions

o Cut the regions one after the other

o Resize (warp) the regions to the input size of the ConvNet
o Calculate features of the individual regions

o Convolutional network:

Forward each region
ConvNet through ComviNet

" Warped image reghons

Reglons of Interest (Rol)
from a proposal method
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m Pre-trained AlexNet, later VGGNet
m The decision maker SoftMax layer was cut
e Outputs:
o 4096 long feature vectors from each region
e (4) Classification with Support Vector Machine (SVM)
o Idea: Separate the data point in the data space with a boundary surface (hyperplane) with
maximum margin
Vectors pointing to the data points touching the margins are the support vectors.
The parameters of the hyperplane is calculated with regression
Similar to single layer perceptron but optimized for maximum margin
Why SVM?
m  Why not simple classification on the output of Alxnet?
m During the training the Alexnet/VGGNet is not trained
m  Only SVM is trained
m  Number of categories is much smaller: 20-200 categories rather than 1000

o O O O

'] | [ ] . 'g ',-..l : h ] "

& [ 5 ll [ {I _ ,’z{ l| ]
’ ] ¢ i ' 1 EJE: a ﬁ/.x./ / 0 ]

B s i} "y AV V(P AL

s % | fo Y o8

’ | _;'; (2 |

.l'-lif ’:{ "/ ::f I

Small Margin j/" Large Margin

Support Vectors

m Decision with SVM
e As many separate SVM as many category we have

Feature vector of
the category to
be detected

e.g.: Cat

Feature vector of
all the other
categories plus
the background
e.g.: No Cat

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444f
cad’
e (5) Ranking / selecting / merging -> detection
o Greedy non-maximum suppression
m Regions with low classification probabilities are rejected
m Regions with high Intersection over Union values (within the same category)
o Result: localized and classified object
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Overlapping Region

leU =

Combined Region

Sample loU scores
0.905 0.532 0.391 0.143 0.0

- I o

(6) Bounding Box Regression

o

@)
O
o

Linear regression model

One per object category

Input: last feature map cube of the convent (pool5)

Output: size and position modification to the bounding box
m dx, dy, dw, dh

Training image regions

Input:

Cached feature map

cube (pool5)

o s ©,0,0.0) (25.0.0,0) (0. 0,-0.125,0)

(normalized) Proposal is good Proposal too Proposal too
far to left wide

RCNN Training steps

(@]

o

Step 1
m Take a pre trained CNN

m Reusing a pre-trained network is useful if there is not enough data to train or if it

provides good enough result. (fine tuning is typically needed)
Step 2
m Extract features
m Go through database
m Use region proposal
m Calculate features for each proposed region
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Save the feature cube fo disk! Save the featura vector to disk!

This fealure cube describes the This feature vector describas the
relative position information, and content, and will be used for
will be used for bounding bax classification

regression. {Sometimes this is
used for classification as well.)

% ——

- L«'-‘;nvulutiun Last cony
Region Proposals  Crop +Warp  and Pooling feature map  Fully-connected
layer layers
{pools)

o Step3
m |dentify which proposed region belongs to which object class

m Based on the annotated image

cat
Background

(belongs none of
the objects)

o Step4
m Train one SVM per class to classify region features

Training image regions

i
o

Cached region
features vectors
Megative samples for dog SVIM Positive samples for dog SVM
o Step5

m (bbox regression): For each class train a linear regression model to map from cached
features cubes to offsets / size of the boxes to fix “slightly wrong” position proposals



Training image regions

Cached region

feature cube

(poolS)
Regression targets (0,0,0 0) (.25,0,0,0) (0,0,-0.125,0)
{dx, dy, dw, dh) Proposal is good Proposal too Proposal too
Marmalized coordinates far to left wide

e RCNN has much better results, and a grate improval to pre-CNN methods. Bounding box regression

can also help.

e Problems with R-CNN
o Slow at test-time: need to run full forward pass of CNN for each region proposal

m Recalculate the features again-and-again in the overlapping regions

m Solution: share computation of convolutional layers between proposals for an image
o SVMs and bbox regressors are post-hoc

m CNN features not updated in response to SVMs and regressors
o Complex multistage training pipeline

m Calculate the features for all the regions for all the training image first

m Then train for SVM and bbox regressor separately

m Solution: just train the whole system end-to-end all at once

Fast R-CNN
e Problem with R-CNN
o It still takes a huge amount of time to train the network as you would have to classify 2000
region proposals per image.
It cannot be implemented real time as it takes around 47 seconds for each test image.
The selective search algorithm is a fixed algorithm. Therefore, no learning is happening at
that stage. This could lead to the generation of bad candidate region proposals.

Can back propagate
Convolution similar to max pooling Fully-connected
and Pooling layers
/’, g
- H
; ,/ ! ."/. 4]
Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 x 800 x 600 CxHxW Cxhxw low-res conv features:
with region with region proposal for region proposal Cxhxw

proposal
Instead of SVM, a SoftMax layer
makes the decision at Fast R-CNN.

e The approach is similar to the R-CNN algorithm. But, instead of feeding the region proposals to the
CNN, we feed the input image to the CNN to generate a convolutional feature map.
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e From the convolutional feature map, we identify the region of proposals and warp them into
squares and by using a Rol pooling layer we reshape them into a fixed size so that it can be fed
into a fully connected layer.

e From the Rol feature vector, we use a softmax layer to predict the class of the proposed region
and also the offset values for the bounding box.

e The reason “Fast R-CNN” is faster than R-CNN is because you don’t have to feed 2000 region
proposals to the convolutional neural network every time. Instead, the convolution operation is
done only once per image and a feature map is generated from it.

Faster R-CNN

e Problem with Fast R-CNN:

o When you look at the performance of Fast R-CNN during testing time, including region
proposals slows down the algorithm significantly when compared to not using region
proposals. Therefore, region proposals become bottlenecks in Fast R-CNN algorithm
affecting its performance.

e Both of the above algorithms(R-CNN & Fast R-CNN) uses selective search to find out the region
proposals. Selective search is a slow and time-consuming process affecting the performance of
the network.

e Therefore we use an object detection algorithm that eliminates the selective search algorithm
and lets the network learn the region proposals.

e Region Proposal Network

o Slide a small window on the feature map

o Build a small network for:

m classifying object or not-object, regressing bbox locations

Positions of the sliding window provides localization information with reference to the image.
Box regression provides finer localization information with reference to this sliding window.
Use N anchor boxes at each location.

Anchors are translation invariant: use the same ones every location.

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object

O O O O O O

».  classifier

proposals j ;
Region Proposal Networkg4

conv layers /
4

o 7 L e 4

e One network, four losses: RPN classification (anchor good / bad), RPN regression (anchor ->
proposal), Fast R-CNN classification (over classes), Fast R-CNN regression (proposal -> box)

https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e



https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e

Supervised vs. unsupervised learning

e 3. topic Machine learning vs traditional programmingban leirva.

EfficientNet

#channels " 2
G | e wider

S — : i I dea:per ﬁ deei er %
% ———— E | p #
*' - n .
u == :

-layer_i

[ |7 resolution HxW

: - | P..r.higher
t __]____i__resalutmn | i resolution

(a) baseline {b) width scaling {c) depth scaling {d) resoclution scaling {e) compound scaling
Recent network architecture
Based on scaling the width, the depth and the resolution uniformly.

Can be used for any existing architecture and the efficiency will be significantly better with the same
performance
e Best performance can be reached by using NN to generate the optimal baseline ConvNet

https://medium.com/@nainaakash012/efficientnet-rethinking-model-scaling-for-convolutional-neural-networks-
92941c5bfb95
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10. topic

Optimization problem of objective functions of neural network

Learning in practice

Learning based on the training set:
T(K) = {(xk,d,l. );k = 1,...,K}

Minimize the empirical error function:
K 1< 2
w'® :minI > (d# — Net(x,,w)) =min R, (W)
ot , 4 w L

W
k=1
i, A

o

Learning is a multivariate optimization task

Objective function

Objective function or error function, cost function, loss function, criterion is a special function
that we have to minimize for a neural network by modifying its parameters. (optimization)
The loss is calculated from the actual value and the predicted value by the network.
Tells the net the size of the error, and penalize according to it.
3-as topicban mar beszéltlink réla milyen lossok vannak.
Optimization:

o Find the optimal weights:

W, = Min flx, d, Net(x,w))

o Stochastic Gradient Descent method (there are more advanced ones)

AdaGrad optimizer

Individually adapts the learning rates of all model parameters by scaling them inversely
proportional to the square root of the sum of all of their historical squared values.

The parameters with the largest partial derivative of the loss have a correspondingly rapid
decrease in their learning rate, while parameters with small partial derivatives have a relatively
small decrease in their learning rate.

AdaGrad performs well for some but not all deep learning models

Algorithm The AdaGrad algorithm Pemeinbers the
Require: Global learning rate ¢ entire history
Require: Initial parameter 6 evenly

Require: Small constant &, perhaps 1077, for numerical stability

Initialize gradient accumulation variable r = 0

while stopping criterion not met do
Sample a minibatch of m examples from the training set {1, ... 2™} with
corresponding targets y'9).
Compute gradient: g < ?lf_\_/'g by L(f(x(D;0), y)
Accumulate squared gradient: r < r+g © g
Compute update: A « —W @ g. (Division and square root applied
clement-wise)
Apply update: 8 < 0 + A8

end while
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RMSP algorithm
¢ Modifies the AdaGrad to perform better in non-convex setting, by changing the gradient
accumulation into an exponentially weighted moving average.
Adagrad reduces the learning rate in each step — After a while it stops.
Adagrad shrinks the learning rate according to the entire history of the squared gradient and may have
made the learning rate too small before arriving at such a convex structure

Algorithm The RMSProp algorithm [ he clorer parts of the |
Require: Global learning rate e, decay rate p. history are counted more
Require: Initial parameter 6 strongly.

Require: Small constant §, usually 107°, used to stabilize division by small
numbers.
Initialize accumulation variables » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z*), ... 2™} with
corresponding targets y'*)
Compute gradient: g + +Vg >, L(f(x®:0),y)
Accumulate squared gradient: v+ pr + (1 —p)g © g
Compute parameter update: AQ = — - ;‘ -0g. (\/% applied element-wise)
Apply update: 8 «+ 6 + A
end while
e RMSProp uses an exponentially decaying average to discard history from the extreme past so
that it can converge rapidly after finding a complex bowl, as if it were an instance of the AdaGrad
algorithm initialized within that bowl.

Input vector normalization

e If the input vector contains high and small values in different vector positions it is useful to
normalize them.

Squeeze the number to the same range
Speeds up training

X=X

Input . mean: ¥ deviation: o Xnormed =
vector: 2

Different normalization strategies exist for different input types
Showing it in two dimension, it shapes the input vector

DeconvNet, U-Net

e Semantic Image Segmentation architectures

DeconvNet

e Instance-wise segmentation

e Two-stage training
o train on easy example (cropped bounding boxes centered on a single object) first and
o then more difficult examples

o Fully symmetrical convolutional network
o All convolution and pooling layers are reversed

e Two stage training (first side trained for classification first)
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e Output probability map same size as input

U-Net
e Designed for biomedical image processing: cell segmentation
e Data augmentation via applying elastic deformations,
o Natural since deformation is a common variation of tissue
o Smaller dataset is enough

e Concatenate features from encoder network (instead of reusing pooling indices)
e Relatively shallow network with low computational demand

o 3x3 convolution kernel size only

o 2x2 max pooling
o No fully connected layer in the middle

1 64 64
128 64 64 2
input

image
tile

output
segmentation
map

]
¥

390 300 ¥
398208 ¥
388x388 W

392 x 392

572 x 572
570 x 570
568 x 568

' 128 128

284
2822
280

2002

]

—
1982
1962

= 4 copy and crop

> 3 -n-am # max pool 2x2

1024 L 4 up-conv 2x2
% =» conv 1x1

512 256
tl % =»conv 3x3, ReLU
% < o o

http://users.itk.ppke.hu/~ekacs/anyagok/felevb/NeurHalok/Lab%20reports/2019-11-14 Evelin  Remeteheqyi 1
Barnabas Benko 2 Csaba Ekart 3 lab_report.pdf

Neural style transfer

e Uses gradient ascend
e Take input image and transform it into the style of an other input image



http://users.itk.ppke.hu/~ekacs/anyagok/felev5/NeurHalok/Lab%20reports/2019-11-14_Evelin_Remetehegyi_1_Barnabas_Benko_2_Csaba_Ekart_3_lab_report.pdf
http://users.itk.ppke.hu/~ekacs/anyagok/felev5/NeurHalok/Lab%20reports/2019-11-14_Evelin_Remetehegyi_1_Barnabas_Benko_2_Csaba_Ekart_3_lab_report.pdf

Gradient ascent transforms the image according to a loss function
Can we find a loss function which would preserve objects and another which preservers features
connected to a style?

Style
image
Styl& Targat !.-c,u-.rllulj Pc,h.relu‘2_2 F.-‘:.rsluaa Fe.rolu&.ﬁ&l
style th.{f- style style
[ b

Output
image
(Start with
noise)

] S H

Loss Network o

. relud.3
Content Target feat

Content
image

Caatn, Eckar, arad Bulhp, Timags @yl e s cormechubonsl naesl natsons . CUPR 2018
P adapes Fom Johreon, Kiahi snd Fe-Fe. Pamephal Lissas or Aosl Time Sy Transler snd

Lot of time to generate an image
Many forward and backward passes are needed
How to fast things up?
o We could train a network that learns the result of this iterative transformation and tries to
predict it. Only a single pas is needed.

St!ﬂe Target “;-,-':.rolul_z Ew.raluz_z Fr,':.relua 3 Fm,relu-
“atyle style ‘miyle style

y T

-------------- 7 LT |
o

o ralud 3
Content Target é?f at

Johmson, Alahl, and Fei-Fel, "Percepiual Losses for Real-Time Style Transfer and Super-Resolution”, ECCW 201
Figure copyright Springer, 2016, Reproduced for s0UCAIONE| PUFPOSES.

Loss function for content
o Can the same objects be found on both images?
o Content loss, perceptual loss
m distance between two embedded image vectors in the last features layers
Style loss
o Can the same low level features, edges, structures, simple patterns be found on both
images?
o Style loss
m distances between lower level representations of the images.

Ny

PR

Y, ", $
N

More weight to o~ More weigh
content loss style loss
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11. topic

Multilayer perceptron

Net(x, W) = 9@ (W(L)q,@—n (W(L—n ¢(2)(w(2)@(1)(w(1)x))))

aka Feed Forward Neural Networks or Fully Connected Neural Networks

Used for: classification and approximation

Built from: ;
o Input layer iy .
o Hidden layer(s) i =
o Output layer

Many hidden layers: deep network

The outputs is typically not binary '

Can solve linearly non-separable problems

H _1]_|l n

destination IR

W(” layer S
Destination " U ) _ g

—source
neuron neuron

e Multilayer perceptrons are used for
o Classification: Supervised learning for classification (input and class labels given)
o Approximation: Approximate an arbitrary function with arbitrary precision

Early stopping

e Regularization and optimization methods
e Idea:
o Split data into training and test sets
o Atthe end of each epoch (or, every N epochs):
m evaluate the network performance on the test set
m if the network outperforms the previous best model: save copy of the network
parameters at the current epoch
o The best sub optimum is selected finally
o Since the error function is not necessarily monotonic the optimization goes on but the
suboptima are saved

F 3

Desired
stop

Error

Test error

Training error

# of Epocils
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Gradient descent (multidimensional cases as well)

Find a function local minimum

We start out from one point (say x, ) and with an iterative method, we need to go towards the
minimum

We follow the descending gradient

For small ¢

J(x+&)= f(x) + £ f'(x)
e therefore

fx—esign(f'(x)))< f(x)

J(x)

i

f(x)>0

ositive gradient

minimum: f'(x)z 0

Y

x
e Stationary points: (f(x) = 0)
o Local minimum: f(x) smaller than all neighbors
o Local maximum: f(x) larger than all neighbors
o Saddle points: neither
Minimum Maximum Saddle point

~ A

e We don't have to find a global minimum, we just need a minimum, that performs very well:

This local minimum
performs nearly as well as
the global one,

s0 it 15 an acceptable
halting point.

Ideally, we would like
to arrive at the global
minimum, but this

might not be possible,

fz)

This local minimum performs
poorly and should be avoided.

Multidimensional input functions
e In case of a vector scalar function
e |n 2D, directional derivatives (slope towards x1 and x2)
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e Definition of gradient:

Ff:R* > R
N
Vf (%, x,) = ax  ox,

e The gradient defines (hyper) plane approximating the function infinitesimally at point x(x1, x2)

AZ — (f?[-(“‘{l’”rz} -Axl S E‘yf(xlwrz) 'AX

OX, OxX,

2

e Directional derivative to arbitrary direction u (u is unit vector) is the slope of f in that direction at point
X(x1, x2)

i
u Vf(x)
e |it keresiink egy olyan u-t amire ez minimalis:

min uTVf(x)

. =1

e Steepest gradient descent:

New points towards steepest descent:

X' =x—&Vf(x)

e Steepest gradient descent iteration:
x(n+1) =x(n) - & Vf(x(n))
e ¢ is the learning rate
o Small constant
o Decreases as the iteration goes ahead

Line search: checked with several values, and the one selected, where f(x) is the smallest
Stop when it's close enough to zero

Jacobian matrix
e Partial derivative of a vector -> vector function
e Specifically if we have a function

r“fN"-sn"
then the Jacobian matrix
J e R
[0f | Oh ]
oxy oz,
of of
J=|— - — ! . :
dxy 0z, : : :
Ofm Ofm
| Oz oz, |
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2nd derivatives
e 2nd derivative determines the curvature of a line in 1D
e In ND itis described by the Hessian Matrix:

H(f(x,)= —f( s
e The Hessian is the Jacobian of the gradient.
Negative curvature No curvature Positive curvature
< & 2 .
LY LY
LY ~

b r

Itt ez van tovabb is, de nem irom le, mert szerintem az egész csak arrél szél, hogy hogyan vezetjik le a
Newton Methodot. Ami szép és j6, de nem is kapcsolodik ide, masrészt meg ugyis csak a szuper okosak
akarjak azt is megtanuini.

Weight regularization (L1, L2)

o Modifies the weights
o Rather than using MSE const function
o Done on minibatch level
o Can be used with other cost functions
Differentiable: back-prop fine
Why?
o Network prefers smaller weights
o If afew large weights dominate the decision, the network will lose fine generalization
properties
o In case of large weights, the decisions are less distributed, the network is less error
tolerant
e Alényeg hogy a cost functionh6z hozzaadunk valamit, amivel blintetni tudjuk a nagy weighteket. A
lambda az egy kis paraméterke, ami megadja ennek az értékét.

1
— %ZHU—GLHZ
Zl\y a*||?+ ;;W'
__ = s . 2
G 2n Z v  2n Zu

https://towardsdatascience.com/|1-and-I2-reqgularization-methods-ce25e7{c831c
https://www.youtube.com/watch?v=iudJqyiS7TBKM
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Pooling

e Pooling summarizes statistically the extracted features from the same location on the feature
map
e Mathematically it is a local function over 1D or 2D data
o Input: segment of a vector in 1D / rectangular neighborhood in 2D
o Function: Statistical (max-pool), L2 norm, weight average etc.
In most cases stride > 1, which leads to downsampling.
Pooling introduces some shift invariance

. 1

Convolved Pooled
feature feature

Max pooling

Most used pooling in CNNs

Pick the largest value from a neighborhood
Non-linear, statistical filter

Downsampling depends on the stride

Single depth slice

X s 2 | 4
max pool with 2x2 filters
5|6 | 7|8 and stride 2 6|8
3 | 2 . 3|4
1 | 2 B
2 ¥ i

e Backpropagation through max pooling layer:
o Store the maximum positions:

[1]1]2]4] S 000 0
5067 8 mmwe ™ [g]s] [6|8] bupopwin | ot | 0 | dous
Pt ' { 3 1 4 . £ .
. 2 . 2 | £ Forward > ! | Fiedl] 0]0/0
|1/2]|3|4 propagation 0|0 | O [dout

Average pooling
e Ugyanaz, mint a max csak atlaggal

Overlapping pooling (nem is biztos, hogy a tételhez tartozik)

e Regularization technique
e Pooling layers summarize the outputs in the same kernel map.

63



SR - k=3

L

Unpooling
e Ez volt kordbban, nem art megemliteni
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12. topic

Perceptron convergence theorem - no proof required

e Assumptions:
o w(0)=0
o input space linearly separable, therefore 3w,

xeX: wx>0:d=1
xe X wjx<0:d:0
o Letusdenote X = —X
FeX : wi>0:d=1

e The perceptron convergence theorem basically states that the perceptron learning algorithm
converges in finite number of steps, given a linearly separable dataset.

2
= M a= min_ w x(n) f= max Hx(k) ’
a’ x(n)e{X* X"} k)X, T

Momentum optimizer

Stimulate a unity weight mass, having v velocity (follow Newton'’s laws of dynamics)
Update rule:

g 0
14—t — €V — Lifiz'":8), 4" | .
1 3] ,-;(I”IZT (flx ] )
88 v
e The v accumulates the gradient elements:

Ve E& S L{f(=;0),¢4)
e The larger o is relative to ¢ the more previous gradients affect the current direction.
e Terminal velocity is applied when it finds descending gradient permanently:

~llgll

1 —

Algorithm Stochastic gradient descent (SGD) with momentum

Require: Learning rate ¢, momentum parameter c.
Require: Initial parameter @, initial velocity v.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(1), ..., 20"} with
corresponding targets yl%).
Compute gradient estimate: g + %VQ ¥ L(f(:[:[-’-):g), y{“)
Compute velocity update: v < av — eg
Apply update: 0 +— 8 + v
end while

https://mlfromscratch.com/optimizers-explained/#/

65


https://mlfromscratch.com/optimizers-explained/#/

Recurrent neural network examples: predicting the next letter, image
captioning

RNN
e Unlike traditional neural networks the output of the RNN depends on previous inputs.
o State
RNN contains feedback
Theoretically: directed graph with cyclic loops
From now time has a role in execution
o Time steps, delays

Feedback loop

LV,

<
()= el
b — output layer

input layer —_— (class/target)
hidden layers: “deep” if > 1

Predicting the next letter
e Character-level Language Model
e Vocabulary: [h, e, |, 0]
e Example training sequence: “hello”

[ 0 0 0

- 0 1 0 0
tl

gt 0 0 1 1

0 0 0 0

input chars: “p" “g” i )

‘ht = tanh(Whhht_1 -+ Wmhmt)‘

Hidden layer m

) 0.3 1.0 0.1 |w phnl 03
weights are hidden layer | 0.1 J 03 e W hhi
initialized with 0.8 0.1 -0.3 07 |

4 $
random values 1|' i | -TW_xh
1 0 0 0
i 0 1 0 0
input |layer 0 0 : :
0 0 0 0
input chars: “p” “e" “—Ir o
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target chars: ‘e” T b

1.0 0.5 0.1 0.2
22 0.3 0.5 15
output leyer 1.0 19 0.1
4.1 12 1.4 2.2
} 1
Output layer I T P
weights are 0.3 1.0 0.1 lw nnl-03
initialized with  hidden layer | -0.1 0.3 05—~ 09
0.9 0.1 0.3 0.7
random values
4
1 foe
1 0 0 0
. 0 1 0 0
I
input layer 0 0 1 1
0 0 0 0
input chars: “p" “g" ‘I i
ue» "l' ..Iu qur
Sample s 4 ' '
03 | 25 A1 11
Softmax o | i o
B4 50 03 -]

; f ¥ f !
Backpropagation 5 e | |
can be started output layer | & iyt 18 o1

& o 4.1 12 -1.1 2.2
using negative log Er y ' b
5 = Yy
likelihood cost 21 L
: 0.3 1.0 01 w kbn| =03
function hidden layer | .4 - 0.3 05" 08
08 0.1 0.3 0.7
i i & Iw_:‘h
1 0 (V] o
Input layer g :JI f 2
o 0 0 o
Input chars: “h" & f'!" e

o At test time sample characters one at a time, feed back to model

Image captioning (itt nem teljesen értem mit kéne mondani)

e A cél az, hogy irjuk le szép kereken tdbb szdoban, hogy mi a lényeg a képen.

e |tt valami olyasmi a Iényeg, hogy tébb komponensbdl all a haldézatunk. Van egy része, ami egy
egyszer(i CNN, ez az ami fel tud ismerni dolgokat és egy RNN ami meg érti a nyelvet. Ok ligyesen
Osszedolgoznak és ki adnak valami értelmeset.

https://www.tensorflow.org/tutorials/text/image_captioning?fbclid=IwAR2AeOV1YPz3EkiOrcJsgDgDLxergh7aV
BXF1UY0OquDxKUIf5kxEsKE2nv0
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Recurrent Neural Network
“straw” “hat” END

START “straw” “hat”

Convolutional Neural Network

h = tanh(Wxh * x + Whh * h + Wih * v)

Properties of convolutional neural networks - sparsity, parameter sharing,
equivariance, invariance to shifting

Sparsity
e The interconnection weights are just a fraction of the fully connected NN. (the weight matrix
between two layers are sparse)
A few dozen free parameter describes the operation layer
Receptive field organization similar to neural neuron vision systems

Sparse interconnections

Parameter sharing
e Same parameters everywhere in the layer
e Contribution to the gradient of a weight from many positions
e Reduces the risk of overfitting
e Reduces the risk of dying RELU
o When it happens, an entire feature extractor on a layer is dying

Variable input size
e The input size is either resized or padded
e Input images are resized to the same size
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Equivariance
e Equivariance to translation
o The output shifts with an input shift
e |n a fully connected neural network each input is a dedicated channel for certain input
parameter-therefore the inputs cannot be swapped.
o Like bank example, one cannot replace the age input with the salary input
e In CNN, the image can be shifted because the inputs are not dedicated and the features are
identified anywhere

Adversarial attacks

Adversarial Samples
e Optical illusions for NNs
e Special constructed elements which can not be found in the normal input set.

Adversarial attacks
e High number of parameters to optimize & higher dimensional input
o Network works well, but can't cover all the possible inputs.
e One can exploit that there will be regions in the input domain, which were not seen during
training.

Adversarial noise
e Alényeg, hogy valami kis amplitidéju gonosz zaj teliesen megvaltoztatja a halé eredményét, pedig
az emberi szemnek még csak nem is lathato.
e Knowing a trained network one can identify modifications (which not happen in real life), which change
the network output completely
e Luckily this low amplitude noise is not robust enough in real life (lens distortion etc.)

Sticker based adversarial attacks
e High intensity noise concentrated on a small region of the input image:
positions: (x,y), size: (w,h) of stickers

. I |
C,; :_I"-."I I—; 5t x; v ,w b, +Z£ St;| XX 1. W .1; |

e These attacks are robust enough to be applied in practical applications.

e Convnet can’'t be used?
Itt egy szép példa ilyen matricas tamadasra:
https://www.youtube.com/watch?v=MIbFvK2S9g8
tok jol latszik benne, hogy ez a kis kép teljesen lathatatlanna tud tenni a halék szamara.
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13. topic

Elementary set separation by a single neuron

(volt mar amugy 4. topicban részben)

Use step function as activation. (binary output)

In a 2D input space the hyperplane is a straight line.
Above the line is classified 1

Below the line is classified 0

decision

X2 region for C1

decnsaor‘/\ .

boundary

decision
region for C2 WX FWoX; +wp=0

e Neuron with m inputs has an m dimensional input space.

Neuron makes a linear decision for a 2 class problem
The decision boundary is a hyperplane defined:
wx=0
e Why hyperplane?
o Most logic functions has this complexity.
o Common in mathematical and computational tasks
o Using multiple hyperplanes -> more complex decision boundary.

e Two sets are linearly separable if there exists at least one hyperplane in the space with all of the
blue points on one side of the line and all the red points on the other side.

Local response normalization

e Implementation of the Lateral inhibition from neurobiology
o If a neuron starts spiking strongly in a layer it inhibits (suppresses) the of the neighboring
cells
o Winner take all (have a strong decision)
o Balances the asymmetric responses in neurons in different areas of the layer
e Useful when we are dealing with ReLU neurons
o Normalizes the unbounded activation of the ReLU neurons
m Avoids concentrating and delivering large values through layers
o It enhances high spatial frequencies by suppressing the local neighbors of the strongest neuron
e Intra map normalization:
o 2D normalization within the same feature map
o Balancing for different areas
o Winner-take-all for neighbouring neurons in the same feature map (strongest response to the
same transformation should win)
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pattern responds the
largest for the same
transformation?

e Inter map normalization:
o Normalization between the neighboring feature maps
o Winner take all for the largest response with different transformation for the same input location

Which particular
tranformation
responds the largest
for the same pattern?

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272
308c034ac

Unpooling

e Upsamplinghez jo.
e Transposed convolution-nél a 8-as topicban volt

Nearest Neighbor 1111212 “Bed of Nails” 1 Tol2Tlo
112 1 |a]z|2 112 ojofjo|o
3| 4 3/3|4]|4 3|4 3|ol4]|0
33|44 o|,o0|]J0]o0

Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

g:;:n‘:ggp :'hich element was max! 3:: p').wja:ﬁi‘::'llsiinfrgom

112Fel 3 pooling layer olo 2] o
<N AR 5|6 | 112  Jofjio|o
| S == _7 i Rest of the network il N JEILIN

7|3|4)|8 3, 0/0|4

Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4
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Corresponding pairs of T L
downsampling and i@

upsampling layers

Representations - Blum and Li theorem, construction

F(x)el’
Ve >0,dw

j-;{-I(F(x)—Nez‘(x,w))z dx,...dx, <&

e Every function in L* can be represented arbitrarily closely approximation by a neural net.
e Proof:
o From elementary integral theory: Every function can be approximated by appropriate step
function sequence.
m The step function can have arbitrary narrow steps
m Eg. each step could be divided into two sub-steps
m Therefore we can synthetize a function with arbitrary precision

N
_ {1 ifxeX
I(X) =
0 else
] S\ F(x) =S F(x)I(x,)
» s(x)

e The construction:

o Has no dimensional limit

o Has no equidistance restrictions on tiles (partitions)

o can be further fined, and the approximation can be any precise.
e Limitations

o The size of the FFNN is quite big

o The network is synthetized, the weights are generated
e Ugy amugy az L” definicioja mellékesen:

L: .- [(F(x))dx,...dxy <
oo [(F(x)) ax,...dx, <o

L7 [ooe [(F(x)) dxpeindi, =
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14. topic

Principal component analysis (PCA)

e Technique for dimensionality reduction
o Goal: improve ML performance, compress data, visualise data etc.
e Linear coordinate transformation
o converts a set of observations of possibly correlated variables
o into a set of values of linearly uncorrelated orthogonal variables: principal components
Deterministic algorithm
The idea is to project the data onto a subspace which compresses most of the variance in as
little dimensions as possible
Each new dimension is a principle component
The principal components are ordered according to how much variance in the data they capture.

Steps of PCA:
1. Mean normalization: For every value in the data, subtract its mean dimension value. This makes the
average of each dimension zero.

2. Standardization (optional): Only if you want to have each features in the same variance

Covariance matrix: Calculate the covariance matrix
Eigenvectors and eigenvalues of the covariance matrix
Rank eigenvectors by eigenvalues
Keep top k eigenvectors and stack them to form a feature vector
Transform data to PCs

New data = feature vectors (transposed) * original data

N Ok

Covariance calculation
1

Variance(x)= - Egf— -f)z
1 - 2
=z i=1(%; — X)(x; — X)

Covariance(x,y) = %Z?zl(xi -xX)yi—¥)

Positive covariance ify _1-y<0and x_1-x <0, negative is >0, or no covariance if its zero.
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|
(x; — )0 — ¥) <0 p o

1
-BDx-H>0 ° .
I 1
% N -4 -2 0 2 4 6
X
Covariance matrix
e Diagonal elements are variances.
e The matrix is symmetric.
e m: dimension, n: number of vectors
cov(xy,x1) cov(xy,x;) o COV(Xy, X))
cov(xy, X = cov(Xy, X
Cov (3) = COU(’fz:xﬂ (_2» 2) ' (.2: 'm)
cov(x,, X1) cov(Xy,Xxy) - cov(X,,, X))

X1

Cov () :%(X—}?)(X—)?)T;where}( — xz

2
Eigenvectors and principal components
From k original variables: x; x, .. x.:

Produce k new variables: y,,y>,..., Vi

YiTapXgtapXy ..o +ayX

Y2 = 81Xy + 8Ky F ... + 8 X .

Vi's are
_ Principal Components
Yi = 8iXq T o + o F a8y

{@11,812,...,a@1} is 1st Eigenvector of of first principal component
{@51,82....,82} is 2nd Eigenvector of of 2nd principal component

{a11,810,...,8} IS kth Eigenvector of of kth principal component

How many PCs to use?

e Proportion of variance for each feature: (where lambda_i are the eigenvalues)

Ai
Z;{lzl Ai

e Reach a predefined threshold
e Or find the elbow of the Scree plot
https://www.youtube.com/watch?v=TJdHG6rPA-TI

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
http://setosa.io/ev/principal-component-analysis/
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Backpropagation through time

e Backpropagation through time (BPTT) is a gradient-based technique for training certain types of
recurrent neural networks

Assuming that the length of the input vector sequence is limited

It became a feedforward neural net

Possible to apply back propagation

We need multiple vector sequences to train!

y1) »2 y3) y4) y(n)

M

1) ¥2) ¥3) »d )/,(

x(1) x2) x3) x(4) (1) x2) x3) x4  xn)

e Forward through entire sequence to compute loss, then backward through entire sequence to
compute gradient.

S

0ttt t ¢ttt ottt ot I&II

P el b e e e e e e e e e e e e e e

TTTTTTTTTTTT?T?.T}TTT

>
e

>

e Truncated backpropagation: Run forward and backward through chunks of the sequence
instead of whole.

Loss
/LN
DOUWNNON RN AN
LLILLIILLIILI%%LILL
iiIiiiIiiIiiIIrfi 1t

|

gl
|
|

https://machinelearningmastery.com/gentle-introduction-backpropagation-time/
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Stochastic gradient descent optimizer

e Gradient descent, with mini-batches and changing learning rate during the iteration
e Decreases learning rate during the training to reduce overshoot.
e Very slow :(
e Sufficient conditions to guarantee convergence of SGD:
€ = 0Q, and ZFf<’)C
k=1 k=1

e |n practice:

er = (1 — a)eg + aer a = Tj‘r

After iteration TAU, it is common to leave the epsilon constant
Let's consider a very elongated quadratic function resembles a long canyon.
Gradient descent wastes time repeatedly descending canyon walls, because they are the
steepest feature.

e Because the step size is somewhat too large, it has a tendency to overshoot the bottom of the
function and thus needs to descend the opposite canyon wall on the next iteration.

—30
—30 -20 —-10 O 10 20

Algorithm Stochastic gradient descent (SGD) update at training iteration k
Require: Learning rate e.
Require: Initial parameter 6

while stopping criterion not met do
Sample a minibatch of m examples from the training set {;B{U._ - ,.’B{m}} with
corresponding targets 4.
Compute gradient estimate: § « +-Vo>, L(f(2";0), y)
Apply update: 8 < 8 —eg
end while

Object detection problem explained

e Object classification: we make only one decision per image (what's on the picture) (eg. Alexnet)




e Detection and localization is more complex: we make multiple decision per image (regressions for
localization and classification for detection)

o PASCAL object recognition database and challenge
m Annotated image database
o eg. R-CNN, Fast R-CNN, Faster R-CNN :D

e The goal of object detection is to detect the presence of object from a certain set of classes,
and locate the exact position in the image.

e We can informally divide all objects into two big groups: things and stuff. Things are objects of certain
size and shape like cars, bicycles, people, animals, planes. We can specify where object is located
in image with a bounding box. Stuff is more likely a region of image which correspond to objects
like road, or grass, or sky, or water. It is easier to specify the location of a sky by marking the
region in an image, not by a bounding box.

e Chicken and egg problem:

o You need to know that it is a bicycle before able to say that both a wheel part and a pipe
segment belongs to the same object.
o You need to know that the red box contains an object before you can recognize it. (cannot
recognize a bicycle if you try it from separated parts)
Our brain does it parallel
How neural nets can solve it?
m Detection by regression?
e Bounding boxes

e Region proposals (find “blobby” image regions that are likely to contain objects)
m Detection by classification?

Effects of filter size on convolution

Filter size considerations
e Small field of view -> accurate localization
e Large field of view -> context assimilation
e Effective filter size increases

Ny kXk — mng (k + (k — 1)(r — 1')) 3 (k + (k—1)(r— 1))
n, : original convolution kernel size

n, : atrous convolution kernel size
r: rate

e However we take into account only the non-zero filter values:
o Number of filter parameters is the same
o Number of operations per position is the same
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15. topic

Rosenblatt perceptron training algorithm

Learning:
e Annotated dataset: x; — d,
e Given the parametric equation of the perceptron: y = sign(w’x)
e Goal: find the optimal w,,
e Trainingset: X = {x: d=+1} X = {x : d=0} (these are linearly separable)
e You can have a test set, which will be used for testing and scoring the result.
X‘“:{x: w! x>0}

opt

= o T
values, where d; = sign(w,,," x;)

sz{x: w! x<0}

opt

The algorithm

1. Initialization
Set w(0) =0 w(0) = rand

> 2. Activation

Select x, — d, pair
3. Computation of actual response

Vi = sign(w’ (k) - x(k))
4. Adaptation of the weight vector

w(k +1) =Y (x(k), w(k), d(k), y(k))
5. Continuation

Until all responses of the perceptron are OK

Back-propagation

Sajnos itt nem teljesen pontosan 100%ig tudom, hogy pontosan mi az amire kivancsiak. :(

Introduction
e Back propagation is a technique to train NN-s, an algorithm, to adjust the program itself, according to
it's past function.
e We calculate the gradient of the loss function at output, as a result we see how much each element
affects the output.
e Backpropagation refers to two things:
o The mathematical method used to calculate derivatives and an application of the derivative
chain rule.
o The training algorithm for updating network weights to minimize error.

The goal of the backpropagation training algorithm is to modify the weights of a neural network in order to
minimize the error of the network outputs compared to some expected output in response to corresponding
inputs.

Hmmm
e The Rosenblatt algorithm is inapplicable,
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o the error and desired output in the hidden layers of the FFNN is unknown
e Someway the error of the whole network has to be distributed to the internal neurons, in a
feedback way

—» Function signals

SRR Error signals

Forward propagation of function signals and back-propagation of errors signals
Sequential back propagation
o Adapting the weights of the FFNN (recursive algorithm)

w (k+1)=w" (k) +Aw'" (k)

(1) —9
AW (k) =
e The weights are modified towards the differential of the error function (delta rule):
Aw(f) o S aRt’.'H‘D
v ow')

e The elements of the training set adapted by the FFNN sequentially:
'Re.'mp m Remp (.y(x)ﬂ d)

Back-propagation
e Tough we showed how to modify the weights with back propagation, its most important value that it
can calculate the gradient.
e The weight updates can be calculated with different optimization methods, after the gradients
are calculates
e These methods can speed up training drastically.
https://www.youtube.com/watch?v=XE3krf3CQls

Curse of dimensionality

e Whatis it?
o A name for various problems that arise when analyzing data in high dimensional space.
o Dimensions = independent features in ML
m Input vector size (different measurements, or number of pixels in an image)
o Occurs when d (# dimensions) is large in relation to n (humber of samples).
o Real life examples:
o Genomics
m  We have ~20k genes, but disease sample size are often in the 100s or 1000s
e Sparse data:
o When dimensionality d increases, the volume of the space increases so fast, that the
available data becomes sparse (i.e. few points in large space)
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(i) 2-D (ii)3-D

e Noisy data:
o More features can lead to increased noise -> it is harder to find the true signal
e Less clusters:
o Neighborhoods with fixed k points are less concentrated as d increases.
e Complex features:
o High dimensional functions tend to have more complex features than low dimensional
functions and hence harder to estimate
e Running complexity:
o Many data points (labeled measurements) are needed
o Complexity (running time) increase with dimension d
o A lot of methods have at least O(n*d"2) complexity), where n is the number of samples
o As d becomes large this complexity becomes very costly
e Distances in high dimensions:
o 2D vs 100D
o Euclidean distance become meaningless, most two points are “far” from each other

Mathematical effects
¢ Ratio between volume of a sphere and a cube

4
Frrd 493

W ~ o =~ 0.5
d 3 5 10 20 30 50
ratio 0.52 0.16 0.0025 2.5E-08 2.0E-14 1.5E-28

e Most of data is in the corner of the cube
o Euclidean distance is meaningless, most two points are “far” from each other
e k-NN classification and k-means becomes problematic, most of the neighbors are equidistant

The nearest neighbor problem in a sphere
e Assume randomly distributed points in a sphere with a unit diameter
e The median of the nearest neighbors is |
e As dimension tends to infinity, the median converges to 1

.. — datapoints

How to calculate dimensionality?
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s feature vectors (x)

g - Xl XQ ){3 )E", :
8 F 1 2 1 4
g d, 2 4 3.5 1
Q

Z2 d 3 6 17 1

e Basically how many independent coordinates. (x1 és x2 fele egymasnak -> kuka, x4 konstans
(semmi infé benne)

How to avoid the curse?
e Reduce dimensions
o Feature selection - Choose only a subset of features
o Use algorithms that transform the data into lower dimensional space (PCA, t-SNE)
e Lessis more
o In many cases the information that is lost by discarding variables is made up by a more
accurate mapping / sampling in the lower dimensional space

3
Classifier

performance

t
I
i
I
I
f
I

»*

Optimal # of # of variables
variables

SqueezeNet

Network architecture

Depths are squeezed before each operation

The expand is done by the concatenation of the 1x1 and 3x3 convolutions.
Advantage: the expand layer is saved.

el e
saues" =
///- 1x1 convolution filters ™

\""\_\__‘ ] ggg ___,,/

1x1 and 3x3 convolution filters

/’/’113 1 ie 1) YO YD
¥ ¥ ¥y b 4 Y 110 15 | 1 15 15 |  Jo Xo |
YOI Y Yy YYDy

-’-!:‘-ll]*

e |n a SqueezeNet architecture we will use a linear approximation of 128 feature maps, using 16
independent feature maps
e From the linear combination of these elements the new maps are created
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Backpropagation and gradient-based optimizers

Backpropagation mar volt.

Optimizerek is: Momentum, AdaGrad, Adam, RMSProp etc.

En azokrél beszélnék sokat szerintem.

The backpropagation algorithm is an instruction set for computing the gradient of a
multivariable function.

The Adam optimizer is a specialized gradient-descent algorithm that uses the computed gradient,
its statistics, and its historical values to take small steps in its opposite direction inside the input
parameter space as a means of minimizing a function. It is used for optimization in neural network
training.

In other words, the Adam optimizer would need to use an algorithm like the backpropagation
algorithm to first compute the gradient of the function. Then the Adam optimizer would use this
computation to perform gradient-descent in a specialized manner
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