Neural Networks exam topics

- 1. Topic
 - a. Local optimization in non-convex cases (reason for non-convexity?)
 - b. RMSP optimizer
 - c. Dropout
 - d. ResNet
 - e. Gradient ascent
- 2. Topic
 - a. Weight update strategies
 - b. ReLU and the dying ReLU problem
 - c. LSTM cell
 - d. Convolution as a mathematical operation in continuous and discrete cases
- 3. Topic
 - a. Newton optimization method
 - b. Ensembling, bagging
 - c. Comparison of loss functions
 - d. Machine learning vs. traditional programming
 - e. Inception
- 4. Topic
 - a. McCulloch-Pitts model
 - b. Parameters of convolution filter, stride, padding, etc.
 - c. Linear classifier, margin of the classifier
 - d. Data augmentation
 - e. YOLO
- 5. Topic
 - a. Statistical learning theory
 - b. Various activation functions and their properties
 - c. Autoencoders
 - d. Graph unrolling and parameter sharing in recurrent neural networks
 - e. MobileNet
- 6. Topic
 - a. Machine learning problem definition
 - b. Newton optimizer
 - c. Effects and relationship of model capacity and complexity overfitting, underfitting
 - d. t-Distributed Stochastic Neighbor Embedding
 - e. ShuffleNet
- 7. Topic
 - a. Credit approval problem
 - b. Objective functions in neural networks
 - c. Nesterov momentum optimizer
 - d. Decomposition of convolutional kernels
 - e. Alexnet + ILSVRC

8. Topic

- a. Delta learning rule
- b. Batch normalization
- c. Transposed convolution, atrous convolution
- d. Object classification + localization vs. object detection vs. semantic segmentation vs. instance segmentation
- e. ResNext

9. Topic

- a. ADAM optimizer
- b. The softmax function
- c. R-CNN architectures R-CNN, Fast R-CNN, Faster R-CNN
- d. Supervised vs. unsupervised learning
- e. EfficientNet

10. Topic

- a. Optimization problem of objective functions of neural networks
- b. AdaGrad optimizer
- c. Input vector normalization
- d. DeconvNet, U-Net
- e. Neural style transfer

11. Topic

- a. Multilayer perceptron
- b. Early stopping
- c. Gradient descent (multidimensional cases as well)
- d. Weight regularization (L1, L2)
- e. Pooling

12. Topic

- a. Perceptron convergence theorem no proof required
- b. Momentum optimizer
- c. Properties of convolutional neural networks sparsity, parameter sharing, equivariance, invariance to shifting
- d. Recurrent neural network examples: predicting the next letter, image captioning
- e. Adversarial attacks

13. Topic

- a. Elementary set separation by a single neuron
- b. Local response normalization
- c. Unpooling
- d. Representations Blum and Li theorem, construction

14. Topic

- a. Principal component analysis (PCA)
- b. Back-propagation through time
- c. Stochastic gradient descent optimizer
- d. Object detection problem explained
- e. Effects of filter size on convolution

15. Topic

a. Rosenblatt perceptron training algorithm

- b. Back-propagation
- c. Curse of dimensionality
- d. SqueezeNet
- e. Backpropagation and gradient-based optimizers