X " Pazmany Péter Catholic University

Wf Faculty of Information Technology and Bionics

o
Teg et 18V

Basics of Mobile
Application Development

Storage

| Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

iOS method

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Core Data

* Core Data
* A framework that you use to manage the model layer

* Provides generalized and automated solutions to common tasks
associated with object life cycle and object graph management,
including persistence

* Essentially an object graph is created, which can be backed
with a DBS

* Often in SQL, but it can be in XML, or memory based DBS as
well

12/03/2019 Basics of Mobile Application Development

Core Data

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Properties

Maintenance of change propagation, including maintaining the consistency of
relationships among objects

Lazy loading of objects, partially materialized futures (faulting), and copy-on-write
data sharing to reduce overhead

Automatic validation of property values

Schema migration tools that simplify schema changes and allow you to perform
efficient in-place schema migration

Grouping, filtering, and organizing data in memory and in the user interface
Automatic support for storing objects in external data repositories

Sophisticated query compilation.

* Instead of writing SQL, you can create complex queries by associating an NSPredicate object
with a fetch request

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Creating a model

* Data Model
* The database entities and the objects are bounded together

* File | New | File

* New file for the data model

e Section
e Core Data

* Template
e Data Model

12/03/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Parts of data model

* Data model uses the following notation
* Entity
* As it has been used in the notation of Database Management

* Attributes
* Name and type

* Relationships
* Between entities

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Parts of data model

* For each entity a class is defined which is a subclass of
NSManagedObject

* Attributes corresponds to the fields of classes

* The attributes can be accessed through the methods of the
NSManagedObject

* You can specify the data model by using a graphical editor

12/03/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

@ ® 7| DataModel 2.xcdatamodel
Bg < Q_MySwiftApp‘ Source) | DataModel.xcd i ES .QP Model 2.xed 4.‘327.'
ENTITIES ¥ Attributes
I3 Building
; Toiie
B Department Attribute . Type
E! Employee B birthDate Date ¢
@ Person color Undefined ¢
e colorData Transformable ¢
firstName String ¢
CONFIGURATIONS [hasDrivingLicense Boolean ¢
@ Default @) hireDate Date ¢
identifier String ¢
lastName String ¢
B manager Boolean ¢
name String ¢
title String ¢
+
¥ Relationships
Relationship A Destination Inverse
[department Department ¢ members ¢

+
¥ Fetched Properties
Fetched Property . Predicate
| + |
- | o .
Outline Style Add Entity Add Attribute Editor Style
Navigator Area Editor Area

12/03/2019

Basics of Mobile Application Development

Data Model inspector

0D @6

Entity
Name Employee
Abstract Entity

Parent Entity No Parent Entity

Class

Name EmployeeMO

Module
Codegen Manual/None
Indexes
No Content
+
Constraints
No Content
R
User Info
Key A Value
-
Versioning
Hash Modifier
Renaming ID
DO

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Entity — example

* Note that the entity name and the
class name are not the same

* The entity structure in the data
model does not need to match the
class hierarchy

* When an entity is abstract then we
cannot create instances of that entity

* Entity inheritance works in a similar
way to class inheritance

12/03/2019 Basics of Mobile Application Development

Entity

Name

Parent Entity

Class
Name
Module

Codegen

Indexes

Constraints

User Info

Key

+ —
Versioning

Hash Modifier

Renaming ID

O ® @

Employee
Abstract Entity

No Parent Entity

EmployeeMO

Manual/None
No Content

+
No Content

+

~ Value

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

® @ 7 DataModel 2.xcdatamodel
89 < > & MySwiftApp) || Source) |7 DataModel.xcdatamodeld) g DataModel 2.xcdatamodel) [Employee 0D ® @
ENTITIES Entity
I3 Building Name Employee
3 pepartment | Abstract Entity
{3 Employee Parent Entity Person
I3 Person Clhce
FETCH REQUESTS Person Name EmployeeMO
¥ Attributes
CONFIGURATIONS dateOfBirth Module V]
(@ Default name Codegen Manual/None
|¥ Relationships
Indexes
Department No Content
Employee V Attributes
¥ Attributes city +
color name
colorData state Constraints
firstName sFreet No Content
hasDrivingLicense zipCode
hireDate ¥ Relationships
identifier building -
lastName members. L L. _
manager User Info
title Key A Value
¥ Relationships
department <<
Building
¥ Attributes + —-
name
| ¥ Relationships Versioning
\departments
Hash Modifier
Renaming ID
=- o © =K
Outline Style Add Entity Add Attribute Editor Style 0D O

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Attributes

* Core Data supports
* String (NSString)
* Date (NSDate)
* Integer (NSNumber)

* An attribute can be optional

* NULL in a database is not equivalent to
an empty string or empty data blob

12/03/2019 Basics of Mobile Application Development

Attribute

Name

Properties

Attribute Type

Advanced

User Info

Key

4 —
Versioning

Hash Modifier

Renaming ID

O ® @

dateOfBirth

| Transient Optional
~ Indexed
Date

| Minimum Date

2/12/1982, 8:00:00 AM v
| Maximum Date

2/12/1982, 8:00:00 AM 5
| Default Date

2/12/1982, 8:00:00 AM v
| Use Scalar Type

Index in Spotlight
| Store in External Record File

~ Value

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Relationship

* Relationships can be defined between entities
* Ctrl + drag
* Basically it is a reference to an other NSObject
* The type of relationship can be 1-N, 1-1 as well

* The relationship is represented in the code as references in a
NSSet

* In case deletion the behavior also can be defined
* E.g.: Nullify means that the reference is set to NULL

12/03/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Relationship

* Core Data supports to-one and
to-many relationships and and
fetched properties

* Fetched properties represent
weak, one-way relationships
* A relationship can be
* Many-to-one type relationship
* Many-to-many type relationship

Relationship

Properties

Destination
Inverse

Delete Rule
Type

Advanced

User Info

Key

4+ —
Versioning

Hash Modifier

Renaming ID

12/03/2019 Basics of Mobile Application Development

Name department

O ® @

| Transient Optional
Department
members
Nullify
To One

| Index in Spotlight

| Store in External Record File
~ Value

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Example

import UIKit
import CoreData
class DataController: NSObject {
var managedObjectContext: NSManagedObjectContext

init(completionClosure: @escaping () -> ()) {
persistentContainer = NSPersistentContainer(name: "DataModel")

persistentContainer.loadPersistentStores() { (description, error) in

if let error = error {
fatalError("Failed to load Core Data stack: \(error)")
}

completionClosure()

12/03/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Example

let psc = NSPersistentStoreCoordinator(managedObjectModel: mom)

managedObjectContext = NSManagedObjectContext(concurrencyType:
NSManagedObjectContextConcurrencyType.mainQueueConcurrencyType)
managedObjectContext.persistentStoreCoordinator = psc

let queue = DispatchQueue.global(qos: DispatchQoS.QoSClass.background)
queue.async {
guard let docURL =
FileManager.default.urls(for: .documentDirectory,
in: .userDomainMask).last
else {
fatalError("Unable to resolve document directory")

}
let storeURL = docURL.appendingPathComponent("DataModel.sqlite")
do {
try psc.addPersistentStore(ofType: NSSQLiteStoreType,
configurationName: nil, at: storeURL, options: nil)

DispatchQueue.main.sync(execute: completionClosure)
} catch {

fatalError("Error migrating store: \(error)")
}

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Example

* Creating an object

let employee = NSEntityDescription
.insertNewObjectForEntityForName("Employee",
inManagedObjectContext: managedObjectContext)
as! AAAEmployeeMO

12/03/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

» Storing an managed object

* Manually
do {
try managedObjectContext.save()
} catch {

fatalError("Failure to save context:

\(error)")
}

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

P

Fetching objects

let moc = managedObjectContext
let employeesFetch = NSFetchRequest(entityName: "Employee")
do {
let fetchedEmployees = try
moc .executeFetchRequest(employeesFetch) as!
[AAAEmployeeMO]
} catch {
fatalError("Failed to fetch employees: \(error)")

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Filtering

let firstName = "Trevor,,

fetchRequest.predicate =
NSPredicate(format: "firstName

firstName)

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Properties of objects

class MyManagedObject: NSManagedObject {
@NSManaged var title: String?
@NSManaged var date: NSDate?

12/03/2019 Basics of Mobile Application Development

= Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

5QLite in iOS

* We can use SQLite as well

sgqlite3_open - Opening, and creating the database
sqlite3_prepare_v2 - Converting the SQL command from string
sqlite3_step - Executing the SQL command
sqlite3_column_count — Number of columns in the response
sqlite3 _column_text - Data of the result table in text
sqlite3 _column_name — Nam of the attributes (column)
sglite3 changes — Number of affected rows
sqlite3 last insert_rowids - ID's of the inserted rows
sqlite3_errmsg - Text message about the last error

sqlite3 finalize - Finalization of the created commands
sqlite3_close - Closing the database, freeing up resources

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Example — Open connection

func openDatabase() -> OpaquePointer? {

var db: OpaquePointer? = nil

if sgqlite3 open(partlDbPath, &db) == SQLITE OK {
print("\(partlDbPath) has been opened")
return db

} else {
print("Unable to open database.")
PlaygroundPage.current.finishExecution()

¥
¥

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

L +0
L’ h
Tex e 1oV

Example — Create table

let createTableString =
CREATE TABLE Contact(Id INT PRIMARY KEY NOT NULL, Name CHAR(255));

func createTable() {
var createTableStatement: OpaquePointer? = nil
if sqlite3 prepare v2(db, createTableString, -1,
&createTableStatement, nil) == SQLITE OK {
if sqlite3 step(createTableStatement) == SQLITE DONE {
print("Contact table created.")

} else {
print("Contact table could not be created.")
}

} else {
print ("CREATE TABLE statement could not be prepared.")

}

sqlite3 finalize(createTableStatement)

}

12/03/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Example — Insert

let insertStatementString = "INSERT INTO Contact (Id, Name) VALUES (?, ?);,,
func insert() {
var insertStatement: OpaquePointer? = nil
if sqlite3 prepare_v2(db, insertStatementString, -1, &insertStatement, nil) ==
SQLITE_OK {
let id: Int32 =1
let name: NSString = "Ray"
sqlite3 bind int(insertStatement, 1, id)
sqlite3 bind text(insertStatement, 2, name.utf8String, -1, nil)
if sqlite3 step(insertStatement) == SQLITE DONE {
print("Successfully inserted row.")
} else {
print("Could not insert row.")

} else {
print ("INSERT statement could not be prepared.")

sqlite3 finalize(insertStatement)

}

12/03/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Android method

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Data storage

* Shared Preferences
* Internal Storage
* External Storage

e SQLite database
* Cloud storage

12/03/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Android partitions

* /boot, /system, /[recovery

* System partitions, here is the kernel, the system image, and recovery
system

e /data

* User storage
* Cannot be accessed directly, however the internal storage is also here

e [cache

* /misc
* Drivers, system settings, ...

e /[sdcard

e (/sd-ext, /radio, lwimax, ...)

12/03/2019 Basics of Mobile Application Development

Shared Preferences

Storing simple data types, key-value pairs
boolean, float, int, long, and string
Stored data is persistent, can be accessed after application restart

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

You may use the PreferenceActivity for storing application preferences
To edit an Editor has to be used

val sharedPref = activity?.getSharedPreferences(
getString(R.string.preference file key), Context.MODE_PRIVATE)

with (sharedPref.edit()) {
putInt(getString(R.string.saved high score_key), newHighScore)
commit()

}

val defaultValue =
resources.getInteger(R.integer.saved high score_default key)

val highScore = sharedPref.getInt(getString(R.string.saved_high_score_key),
defaultValue)

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Files in the APK file

* Project path
* res/raw/directory.

* To open
* openRawResource()
* R.raw.<filename>
« Returns an InputStream, which can be read

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Internal Storage

* Private data
 After uninstall, the data is deleted

* String FILENAME = "hello file";
String string = "hello world!";
FileOutputStream fos =
openFileOutput (FILENAME,
Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

12/03/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Internal Storage

e getFilesDir()
* The absolute path to the storage of the application

e getDir()

* Create and/or open a directory

e deleteFile()
e filelList()

* Returns an array with the file list

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= o
L’ h
es pr 10"

External Storage

* Public storage

* Can be the SD card as well the internal memory (public storage)
* There is no security access

* Example
 Enviroment.getExternalStorageDirectory();
String state = Environment.getExternalStorageState();
if (Environment.MEDIA MOUNTED.equals(state)) {
mExternalStorageAvailable = mExternalStorageWriteable = true;
} else if (Environment.MEDIA MOUNTED READ ONLY.equals(state)) {
mExternalStorageAvailable = true;
mExternalStorageWriteable = false;
} else {
mExternalStorageAvailable = mExternalStorageWriteable = false;

}

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

External Storage

* Further features
« getExternalFilesDir () returns the path to the directoy
» getExternalStoragePublicDirectory()

* There are several pre-defined categories

* Music, Podcasts, Ringtones, Alarms, Notifications, Pictures, Movies,
Download

« getCacheDir()

* Internal storage

» getExternalCacheDir()

* External storage

« getExternalStorageDirectory()
 /Android/data/<package name>/cache/

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Temporary files

* A possible way, combining the well-known Java functions

File outputDir = context.getCacheDir();

File outputFile = File.createTempFile("prefix", "extension", outputDir);

12/03/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Using SQL Database
e SQlLite

* Accessed by name

* Private to the application

* You may use the SQLiteOpenHelper class and override its
onCreate() method

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Using SQL Database

* Example
public class DictionaryOpenHelper extends SQLiteOpenHelper {

private static final int DATABASE VERSION = 2;
private static final String DICTIONARY_ TABLE_NAME =
"dictionary";
private static final Str‘ing DICTIONARY TABLE CREATE =
"CREATE TABLE ™ + DICTIONARY_ TABLE NAME + " (" +
KEY WORD + " TEXT, "+
KEY_DEFINITION + " TEXT);";

DictionaryOpenHelper(Context contexti {
super(context, DATABASE NAME, null, DATABASE VERSION);

@Ooverride .
public void onCreate(SQLiteDatabase db) {
db.execSQL(DICTIONARY_TABLE_CREATE);

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Using SQL Database

* Once itis done, the database can be accessed b)_/Lusin the
etReadableDatabase() and getWriteableDatabase()
unctions
* Both returns an SQLiteDatabase object

* Then you can use the SQLiteDatabase. query(...) function, which returns
a Cursor

. Flor more complex query you may want to used the SQLiteQueryBuilder
class

* Itis a good practice to create a static database handling class, and
then the database access can be hidden (Proxy)

* Two ways can be used
* public static Cursor getAllData()
* Optimal as the Cursor requires less memory
e public static ArraylList<MyData> getAll data
* More elegant

12/03/2019 Basics of Mobile Application Development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Backup service

* You can backup the persistent data of your application to the
Google Cloud services

* After the factory reset of the phone, or on new device, or after reinstall
of the application, these data can be restored

* It is important, that these data are not synchronized
automatically, but the APl provides functions to initiate the
backup and restore

* The process is the following

* BackupManager retrieves the data from the application and
stores/uploads them

* The BackupManager downloads the data and informs the application
to start the restoration process

12/03/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Backup — Purpose

* You should not use this service to synchronize between several
devices

* Although Google do not check abusage
* Application settings, user data can be stored

* The backup and the restore is executed automatically, not by
request

* Itis not guaranteed that it is available on all device/platform
* You cannot rely on the backup, to provide new service

* Other application cannot access the data
» Communication is not necessarily secured

12/03/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Backup in practice
1. Declare in the manifest file

2. Register the application in the backup service

3. Define a backup client, either
* Subclassing from the BackupAgent class, or
* Subclassing from the BackupAgentHelper class

<manifest ... >

éébplication android:label="MyApplication”
~_android:backupAgent="MyBackupAgent">
<activity ... >

</acfi§ity>
</application>
</manifest>

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

= 2
L’ h
Teg op 18%

Backup - registration
http://code.google.com/android/backup/signup.html

<application android:label="MyApplication”
android:backupAgent="MyBackupAgent">

<meta-data android:name="com.google.android.backup.api key"

android:value=" .." />

</application>

12/03/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

& 0
L’ h
Tex e 1oV

BackupAgent

* The onBackup() andonRestore() function have to
be overridden

* You are responsible for the data format, version, coding,

decoding
* You are responsible for selecting the data
e SQLite data also can be saved

e onBackup()
* 3 parameter: oldState, data, newState

12/03/2019 Basics of Mobile Application Development

W Pazmaény Péter Catholic University
Faculty of Information Technology and Bionics

& 0
L’ h
Tex e 1oV

BackupHelper

* Pre-defined backup functions

* You do not have to override the onBackup () and
onRestore()

* SharedPreferencesBackupHelper
¢ ©
* FileBackupHelper

12/03/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Usage

public class MyPrefsBackupAgent extends BackupAgentHelper {
// The name_of the SharedPreferences file
static final String PREFS = "user_ preferences";

// A key to_uniquely identify the set of backup data
static final String PREFS_BACKUP_KEY = "prefs";

// Allocate a helper and add it to the backup agent
@Override
public void onCreate(%
SharedPreferencesBackupHelper helper = new
SharedPreferencesBackue elper(thls, PREFS);
addHelper (PREFS_BACKUP_KEY, helper);

}

* dataChanged() callindicate the change.
» After the signal the onBackup () will be called
* There is no specific time interval or deadline

12/03/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Final Exam!

Next week

