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Core Data

* Core Data
* A framework that you use to manage the model layer

* Provides generalized and automated solutions to common tasks
associated with object life cycle and object graph management,
including persistence

* Essentially an object graph is created, which can be backed
with a DBS

* Often in SQL, but it can be in XML, or memory based DBS as
well

12/03/2019 Basics of Mobile Application Development



Core Data

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Properties

Maintenance of change propagation, including maintaining the consistency of
relationships among objects

Lazy loading of objects, partially materialized futures (faulting), and copy-on-write
data sharing to reduce overhead

Automatic validation of property values

Schema migration tools that simplify schema changes and allow you to perform
efficient in-place schema migration

Grouping, filtering, and organizing data in memory and in the user interface
Automatic support for storing objects in external data repositories

Sophisticated query compilation.

* Instead of writing SQL, you can create complex queries by associating an NSPredicate object
with a fetch request
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Creating a model

* Data Model
* The database entities and the objects are bounded together

* File | New | File

* New file for the data model

e Section
e Core Data

* Template
e Data Model
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Parts of data model

* Data model uses the following notation
* Entity
* As it has been used in the notation of Database Management

* Attributes
* Name and type

* Relationships
* Between entities
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Parts of data model

* For each entity a class is defined which is a subclass of
NSManagedObject

* Attributes corresponds to the fields of classes

* The attributes can be accessed through the methods of the
NSManagedObject

* You can specify the data model by using a graphical editor
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Entity — example

* Note that the entity name and the
class name are not the same

* The entity structure in the data
model does not need to match the
class hierarchy

* When an entity is abstract then we
cannot create instances of that entity

* Entity inheritance works in a similar
way to class inheritance
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Attributes

* Core Data supports
* String (NSString)
* Date (NSDate)
* Integer (NSNumber)

* An attribute can be optional

* NULL in a database is not equivalent to
an empty string or empty data blob
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Relationship

* Relationships can be defined between entities
* Ctrl + drag
* Basically it is a reference to an other NSObject
* The type of relationship can be 1-N, 1-1 as well

* The relationship is represented in the code as references in a
NSSet

* In case deletion the behavior also can be defined
* E.g.: Nullify means that the reference is set to NULL
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Relationship

* Core Data supports to-one and
to-many relationships and and
fetched properties

* Fetched properties represent
weak, one-way relationships
* A relationship can be
* Many-to-one type relationship
* Many-to-many type relationship
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Example

import UIKit
import CoreData
class DataController: NSObject {
var managedObjectContext: NSManagedObjectContext

init(completionClosure: @escaping () -> ()) {
persistentContainer = NSPersistentContainer(name: "DataModel")

persistentContainer.loadPersistentStores() { (description, error) in

if let error = error {
fatalError("Failed to load Core Data stack: \(error)")
}

completionClosure()
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Example

let psc = NSPersistentStoreCoordinator(managedObjectModel: mom)

managedObjectContext = NSManagedObjectContext(concurrencyType:
NSManagedObjectContextConcurrencyType.mainQueueConcurrencyType)
managedObjectContext.persistentStoreCoordinator = psc

let queue = DispatchQueue.global(qos: DispatchQoS.QoSClass.background)
queue.async {
guard let docURL =
FileManager.default.urls(for: .documentDirectory,
in: .userDomainMask).last
else {
fatalError("Unable to resolve document directory")

}
let storeURL = docURL.appendingPathComponent("DataModel.sqlite")
do {
try psc.addPersistentStore(ofType: NSSQLiteStoreType,
configurationName: nil, at: storeURL, options: nil)

DispatchQueue.main.sync(execute: completionClosure)
} catch {

fatalError("Error migrating store: \(error)")
}
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Example

* Creating an object

let employee = NSEntityDescription
.insertNewObjectForEntityForName("Employee",
inManagedObjectContext: managedObjectContext)
as! AAAEmployeeMO
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» Storing an managed object

* Manually
do {
try managedObjectContext.save()
} catch {

fatalError("Failure to save context:

\(error)")
}
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Fetching objects

let moc = managedObjectContext
let employeesFetch = NSFetchRequest(entityName: "Employee")
do {
let fetchedEmployees = try
moc .executeFetchRequest(employeesFetch) as!
[ AAAEmployeeMO]
} catch {
fatalError("Failed to fetch employees: \(error)")
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Filtering

let firstName = "Trevor,,

fetchRequest.predicate =
NSPredicate(format: "firstName

firstName)
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Properties of objects

class MyManagedObject: NSManagedObject {
@NSManaged var title: String?
@NSManaged var date: NSDate?
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5QLite in iOS

* We can use SQLite as well

sgqlite3_open - Opening, and creating the database
sqlite3_prepare_v2 - Converting the SQL command from string
sqlite3_step - Executing the SQL command
sqlite3_column_count — Number of columns in the response
sqlite3 _column_text - Data of the result table in text
sqlite3 _column_name — Nam of the attributes (column)
sglite3 changes — Number of affected rows
sqlite3 last insert_rowids - ID's of the inserted rows
sqlite3_errmsg - Text message about the last error

sqlite3 finalize - Finalization of the created commands
sqlite3_close - Closing the database, freeing up resources
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Example — Open connection

func openDatabase() -> OpaquePointer? {

var db: OpaquePointer? = nil

if sgqlite3 open(partlDbPath, &db) == SQLITE OK {
print("\(partlDbPath) has been opened")
return db

} else {
print("Unable to open database.")
PlaygroundPage.current.finishExecution()

¥
¥
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Example — Create table

let createTableString =
CREATE TABLE Contact(Id INT PRIMARY KEY NOT NULL, Name CHAR(255));

func createTable() {
var createTableStatement: OpaquePointer? = nil
if sqlite3 prepare v2(db, createTableString, -1,
&createTableStatement, nil) == SQLITE OK {
if sqlite3 step(createTableStatement) == SQLITE DONE {
print("Contact table created.")

} else {
print("Contact table could not be created.")
}

} else {
print ("CREATE TABLE statement could not be prepared.")

}

sqlite3 finalize(createTableStatement)

}
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Example — Insert

let insertStatementString = "INSERT INTO Contact (Id, Name) VALUES (?, ?);,,
func insert() {
var insertStatement: OpaquePointer? = nil
if sqlite3 prepare_v2(db, insertStatementString, -1, &insertStatement, nil) ==
SQLITE_OK {
let id: Int32 =1
let name: NSString = "Ray"
sqlite3 bind int(insertStatement, 1, id)
sqlite3 bind text(insertStatement, 2, name.utf8String, -1, nil)
if sqlite3 step(insertStatement) == SQLITE DONE {
print("Successfully inserted row.")
} else {
print("Could not insert row.")

} else {
print ("INSERT statement could not be prepared.")

sqlite3 finalize(insertStatement)

}
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Data storage

* Shared Preferences
* Internal Storage
* External Storage

e SQLite database
* Cloud storage
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Android partitions

* /boot, /system, /[recovery

* System partitions, here is the kernel, the system image, and recovery
system

e /data

* User storage
* Cannot be accessed directly, however the internal storage is also here

e [cache

* /misc
* Drivers, system settings, ...

e /[sdcard

e (/sd-ext, /radio, lwimax, ...)
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Storing simple data types, key-value pairs
boolean, float, int, long, and string
Stored data is persistent, can be accessed after application restart
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You may use the PreferenceActivity for storing application preferences
To edit an Editor has to be used

val sharedPref = activity?.getSharedPreferences(
getString(R.string.preference file key), Context.MODE_PRIVATE)

with (sharedPref.edit()) {
putInt(getString(R.string.saved high score_key), newHighScore)
commit()

}

val defaultValue =
resources.getInteger(R.integer.saved high score_default key)

val highScore = sharedPref.getInt(getString(R.string.saved_high_score_key),
defaultValue)
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Files in the APK file

* Project path
* res/raw/directory.

* To open
* openRawResource()
* R.raw.<filename>
« Returns an InputStream, which can be read
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Internal Storage

* Private data
 After uninstall, the data is deleted

* String FILENAME = "hello file";
String string = "hello world!";
FileOutputStream fos =
openFileOutput (FILENAME,
Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();
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Internal Storage

e getFilesDir()
* The absolute path to the storage of the application

e getDir()

* Create and/or open a directory

e deleteFile()
e filelList()

* Returns an array with the file list
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External Storage

* Public storage

* Can be the SD card as well the internal memory (public storage)
* There is no security access

* Example
 Enviroment.getExternalStorageDirectory();
String state = Environment.getExternalStorageState();
if (Environment.MEDIA MOUNTED.equals(state)) {
mExternalStorageAvailable = mExternalStorageWriteable = true;
} else if (Environment.MEDIA MOUNTED READ ONLY.equals(state)) {
mExternalStorageAvailable = true;
mExternalStorageWriteable = false;
} else {
mExternalStorageAvailable = mExternalStorageWriteable = false;

}
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External Storage

* Further features
« getExternalFilesDir () returns the path to the directoy
» getExternalStoragePublicDirectory()

* There are several pre-defined categories

* Music, Podcasts, Ringtones, Alarms, Notifications, Pictures, Movies,
Download

« getCacheDir()

* Internal storage

» getExternalCacheDir()

* External storage

« getExternalStorageDirectory()
 /Android/data/<package name>/cache/
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Temporary files

* A possible way, combining the well-known Java functions

File outputDir = context.getCacheDir();

File outputFile = File.createTempFile("prefix", "extension", outputDir);
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Using SQL Database
e SQlLite

* Accessed by name

* Private to the application

* You may use the SQLiteOpenHelper class and override its
onCreate() method
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Using SQL Database

* Example
public class DictionaryOpenHelper extends SQLiteOpenHelper {

private static final int DATABASE VERSION = 2;
private static final String DICTIONARY_ TABLE_NAME =
"dictionary";
private static final Str‘ing DICTIONARY TABLE CREATE =
"CREATE TABLE ™ + DICTIONARY_ TABLE NAME + " (" +
KEY WORD + " TEXT, "+
KEY_DEFINITION + " TEXT);";

DictionaryOpenHelper(Context contexti {
super(context, DATABASE NAME, null, DATABASE VERSION);

@Ooverride .
public void onCreate(SQLiteDatabase db) {
db.execSQL(DICTIONARY_TABLE_CREATE);
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Using SQL Database

* Once itis done, the database can be accessed b)_/Lusin the
etReadableDatabase() and getWriteableDatabase()
unctions
* Both returns an SQLiteDatabase object

* Then you can use the SQLiteDatabase. query(...) function, which returns
a Cursor

. Flor more complex query you may want to used the SQLiteQueryBuilder
class

* Itis a good practice to create a static database handling class, and
then the database access can be hidden (Proxy)

* Two ways can be used
* public static Cursor getAllData()
* Optimal as the Cursor requires less memory
e public static ArraylList<MyData> getAll data
* More elegant
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Backup service

* You can backup the persistent data of your application to the
Google Cloud services

* After the factory reset of the phone, or on new device, or after reinstall
of the application, these data can be restored

* It is important, that these data are not synchronized
automatically, but the APl provides functions to initiate the
backup and restore

* The process is the following

* BackupManager retrieves the data from the application and
stores/uploads them

* The BackupManager downloads the data and informs the application
to start the restoration process
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Backup — Purpose

* You should not use this service to synchronize between several
devices

* Although Google do not check abusage
* Application settings, user data can be stored

* The backup and the restore is executed automatically, not by
request

* Itis not guaranteed that it is available on all device/platform
* You cannot rely on the backup, to provide new service

* Other application cannot access the data
» Communication is not necessarily secured
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Backup in practice
1. Declare in the manifest file

2. Register the application in the backup service

3. Define a backup client, either
* Subclassing from the BackupAgent class, or
* Subclassing from the BackupAgentHelper class

<manifest ... >

éébplication android:label="MyApplication”
~_android:backupAgent="MyBackupAgent">
<activity ... >

</acfi§ity>
</application>
</manifest>
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Backup - registration
http://code.google.com/android/backup/signup.html

<application android:label="MyApplication”
android:backupAgent="MyBackupAgent">

<meta-data android:name="com.google.android.backup.api key"

android:value=" .." />

</application>
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BackupAgent

* The onBackup() andonRestore() function have to
be overridden

* You are responsible for the data format, version, coding,

decoding
* You are responsible for selecting the data
e SQLite data also can be saved

e onBackup()
* 3 parameter: oldState, data, newState
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BackupHelper

* Pre-defined backup functions

* You do not have to override the onBackup () and
onRestore()

* SharedPreferencesBackupHelper
¢ ©
* FileBackupHelper
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Usage

public class MyPrefsBackupAgent extends BackupAgentHelper {
// The name_of the SharedPreferences file
static final String PREFS = "user_ preferences";

// A key to_uniquely identify the set of backup data
static final String PREFS_BACKUP_KEY = "prefs";

// Allocate a helper and add it to the backup agent
@Override
public void onCreate(%
SharedPreferencesBackupHelper helper = new
SharedPreferencesBackue elper(thls, PREFS);
addHelper (PREFS_BACKUP_KEY, helper);

}

* dataChanged() callindicate the change.
»  After the signal the onBackup () will be called
*  There is no specific time interval or deadline
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Final Exam!

Next week



