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Default Activity

package hu.ppke.itk.android.kotlinapp

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle

class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)
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Add some action
e A Button and a TextView

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns: andr01d "http: //schemas.android.com/apk/res/android"
android:layout_width= match _parent”
android: layout_ he1ght 'wrap_content™
android:orientation="vertical">

<TextView

android:id="@+id/textview"
android:layout_ w1dth-"match _parent”
android:layout_height="wrap_content"
android:text="@string/hello" />

<Button
android:id="@+id/button”
android:layout_width="match_parent”
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/button” />
</LinearLayout>
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Add some action

* Click action - lambda function

findViewById<Button>(R.id.button).setOnClickListener {
v -> findViewById<TextView>(R.id.textview)
.setText(getString(R.string.clicked)) }

e Click action — conventional
class MainActivity : Activity(), OnClickListener {

protected fun onCreate(savedValues: Bundle) {
val button: Button = findViewById(R.id.button)
button.setOnClickListener(this)

}

fun onClick(v: View) {
findvViewById<TextView>(R.id.textview).setText(getString(R.string.clicked))
}
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Event listeners

* An event listener is an interface in the View class that contains a
single callback method.

* These methods will be called by the Android framework when
the View to which the listener has been registered is triggered
by user interaction with the item in the Ul.

* Included in the event listener interfaces are the following
callback methods:

* onClick()

* From View.OnClickListener.

* This is called when the user either touches the item (when in touch
mode), or focuses upon the item with the navigation-keys or trackball
and presses the suitable "enter” key or presses down on the trackball.
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Event listeners
* onLongClick()

* From View.OnLongClickListener.

* This is called when the user either touches and holds the item
(when in touch mode), or focuses upon the item with the
navigation-keys or trackball and presses and holds the suitable
"enter" key or presses and holds down on the trackball (for one
second).

* onFocusChange()

* From View.OnFocusChangelListener.

* This is called when the user navigates onto or away from the
item, using the navigation-keys or trackball.
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Event listeners
* onKey()

* From View.OnKeylListener.

* This is called when the user is focused on the item and presses or
releases a hardware key on the device.

* onTouch()

* From View.OnTouchListener.

* This is called when the user performs an action qualified as a touch
event, including a press, a release, or any movement gesture on the
screen (within the bounds of the item).

* onCreateContextMenu()
* From View.OnCreateContextMenulListener.

* This is called when a Context Menu is being built (as the result of a
sustained "long click").
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Event listeners

* Notice that the onClick() callback in the above example has
no return value, but some other event listener methods
must return a boolean.

* The reason depends on the event. Reasons:
* onLongClick()

* This returns a boolean to indicate whether you have consumed the event
and it should not be carried further.

* That s, return true to indicate that you have handled the event and it
should stop here; return false if you have not handled it and/or the event
should continue to any other on-click listeners.
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Event listeners

e Reasons:
* onKey()

* This returns a boolean to indicate whether you have consumed the event and
it should not be carried further.

* That js, return true to indicate that you have handled the event and it should
stop here; return false if you have not handled it and/or the event should
continue to any other on-key listeners.

 onTouch()

* This returns a boolean to indicate whether your listener consumes this event.

* The important thing is that this event can have multiple actions that follow
each other.

* So, if you return false when the down action event is received, you indicate
that you have not consumed the event and are also not interested in
subsequent actions from this event.

* Thus, you will not be called for any other actions within the event, such as a
finger'gesture, or the eventual up action event.
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Activity state and ejection from memory

* The system kills processes when it needs to free up RAM

* The likelihood of the system killing a given process depends on
the state of the process at the time.

* Process state, in turn, depends on the state of the activity running
in the process.

* Table shows the correlation among process state, activity state,
and likelihood of the system’s killing the process.
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Activity state and ejection from memory

Likelihood of being killed Process state Activity state
Least Foreground (having or about to get Created
focus) Started
Resumed
More Background (lost focus) Paused
Most Background (not visible) Stopped
Empty Destroyed
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Saving state

* The system never kills an activity directly to free up
memory.

* Instead, it kills the process in which the activity runs,
destroying not only the activity but everything else
running in the process, as well.

* When the activity is destroyed due to system constraints,
you should preserve the user’s transient Ul state using a
combination of ViewModel, onSavelnstanceState(), and/or
local storage.
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Save simple: onSavelnstanceState()

* As your activity begins to stop, the system calls the
onSavelnstanceState() method so your activity can save
state information to an instance state bundle.

* The default implementation of this method saves transient
information about the state of the activity's view hierarchy

* such as the text in an EditText widget or
* the scroll position of a ListView widget.

* To save additional instance state information for your
activity, you must override onSavelnstanceState()

* and add key-value pairs to the Bundle object that is saved in the
event.
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Example
?verride fun onSaveInstanceState(outState:
outState?.run
putInt(STATE SCORE, currentScore
) putInt (STATE LEVEL, currentLevel
) super.onSavelInstanceState(outState)

companion object {
val STATE SCORE

B "playerScore”
val STATE LEVEL

"playerLevel”

¥

Bundle?)
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Kotlin — Companion object

* If you need a singleton you can declare the class in the
usual way, but use the object keyword instead of class:
object CarFactory {

val cars = mutableListOf<Car>()

fun makeCar(horsepowers: Int): Car {

val car = Car(horsepowers)
cars.add(car)
return car
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Kotlin — Companion object

* If you need a function or a property to be tied to a class rather
thgn to instances of it, you can declare it inside a companion
object.

* The companion object is a singleton, and its members can be
accessed directly via the name of the containing class
* although you can also insert the name of the companion object if you
want to be explicit about accessing the companion object

* A companion object is initialized when the class is loaded
(typically the first time it's referenced by other code that is
being executed), in a thread-safe manner.

* You can omit the name, in which case the name defaults to Companion.

* A class can only have one companion object, and companion
objects can not be nested.
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Restore activity Ul state

* When your activity is recreated after it was previously
destroyed, you can recover your saved instance state from the
Bundle.

* Both the onCreate() and onRestorelnstanceState() callback
methods receive the same Bundle.

* The onCreate() method is called whether the system is creating
a new instance of your activity or recreating a previous one

* You must check whether the state Bundle is null before you attempt to
read it.

* Ifitis null, then the system is creating a new instance of the activity,
instead of restoring a previous one that was destroyed.
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Example

override fun onCreate(savedInstanceState: Bundle?)

{

super.onCreate(savedInstanceState)
if (savedInstanceState != null) {
with(savedInstanceState) {

getInt(STATE SCORE
getInt(STATE LEVEL

currentScore
currentlLevel

} elge {

¥

11/26/2019 Basics of Mobile Application Development



W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& o
o, ST

Kotlin — with

e Detour: let

. le};c can be used to invoke one or more functions on results of call
chains.

* For example, the following code prints the results of two operations on
a collection:
val numbers = mutableListOf("one", "two", "three", "four", "five")
val resultList = numbers.map { it.length }.filter { it > 3 }
println(resultlList)
* Rewrite
numbers.map { it.length }.filter { it > 3 }.let {
println(it)
// and more function calls if needed
}
* Even better
numbers.map { it.length }.filter { it > 3 }.let(::println)

11/26/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= 2
e, o

Kotlin — with

* with
* A non-extension function: the context object is passed as an
argument, but inside the lambda, it's available as a receiver (this).
* The return value is the lambda result.

* For calling functions on the context object without providing the
lambda result.

* In the code, with can be read as “with this object, do the following”
val numbers = mutableListOf("one", "two", "three")
with(numbers) {

println("'with' is called with argument $this")

println("It contains $size elements")
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Kotlin — with

e Detour: run

* The context object is available as a receiver (this).
* The return value is the lambda result.

* run does the same as with but invokes as let - as an extension
function of the context object.

* run is useful when your lambda contains both the object
initialization and the computation of the return value.
val service = MultiportService("https://example.kotlinlang.org", 80)

val result = service.run {
port = 8080
query(prepareRequest() +

to port $port")
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Kotlin — with
* Detour: apply

* The context object is available as a receiver (this).
* The return value is the object itself.

* Use apply for code blocks that don't return a value and mainly
operate on the members of the receiver object.
* The common case for apply is the object configuration.

* Such calls can be read as “apply the following assignments to the object”
val adam = Person("Adam").apply {

age = 32

city = "London"
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Kotlin — with

* Detour: also

* The context object is available as an argument (it).
* The return value is the object itself.
* This is good for performing some actions that take the context object as an argument.
* Use also for additional actions that don't alter the object, such as logging or
printing debug information.
* Usually, you can remove the calls of also from the call chain without breaking
the program logic.
* When you see also in the code, you can read it as “and also do the following”.
» The common case for apply is the object configuration.
* Such calls can be read as “apply the following assignments to the object”
val numbers = mutableListOf("one", "two", "three")

numbers
.also { println("The list elements before adding new one: $it") }

.add("four")
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Configuration change occurs

. T}t\ere are a number of events that can trigger a configuration
change.

* Example:
* Change between portrait and landscape orientations.
* User has the power to rotate the device ©

 Change to language or input device.
* Etc.

* When a conflfuration change occurs, the activity is destroyed
and recreated.

* The original activity instance will have the onPause(), onStop(), and
onDestroy() callbacks triggered.

* A new instance of the activity will be created and have the onCreate(),
onStart(), and onResume() callbacks triggered.
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Fix screen orientation

e The orientation also can be fixed
* android:screenOrientation="portrait

n
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Bundle

* Bundles are generally used for passing data between
various Android activities.
* It depends on you what type of values you want to pass

* Bundles can hold all types of values and pass them to the new
activity.
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Fragments

* A Frafgment represents a behavior or a portion of user
interface in a FragmentActivity.

* You can combine multiple fragments in a single activity to
build a multi-pane Ul and reuse a fragment in multiple
activities.

* You can think of a fragment as a modular section of an
activity,
* which has its own lifecycle,
* receives its own input events,

* which you can add or remove while the activity is running
* (sort of like a "sub activity" that you can reuse in different activities).
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Fragments

* A fragment must always be hosted in an activity

* The fragment's lifecycle is directly affected by the host
activity's lifecycle.
* For example, when the activity is paused, so are all fragments in
it, and when the activity is destroyed, so are all fragments.

* However, while an activity is running (it is in the resumed lifecycle
state), you can manipulate each fragment independently, such as
add or remove them.
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Reasons

* Android introduced fragments in Android 3.0 primarily to
support more dynamic and flexible Ul designs on large
screens, such as tablets.

* Atablet's screen is much larger than that of a handset, there's
more room to combine and interchange Ul components.

* Fragments allow such designs without the need for you to
manage complex changes to the view hierarchy.

* The activity's appearance can be modified at runtime.
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Tablet L Handset

Selecting an item
updates Fragment B

Selecting an item
starts Activity B

e —— e —

o z

Activity A contains
Fragment A and Fragment B

Activity A contains Activity B contains
Fragment A Fragment B
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onAttach()

oncreste()
Fragment lifecycle .
'
* Functions ——
* onAttach et
* When the fragment has been associated with the onflesume(
activity (the Activity is passed in here). ‘ m:anm \
* onCreate: creating an initialization o
- onCreateView G e
* To create the view hierarchy associated with the T T
fragment. o]
* onActivityCreated: Ry o fagmen
* when the activity's onCreate() method has returned. | eo=tevie Iaﬁfﬁf&nﬂ?e
* onViewStateRestored: state is restored c::mm
v
onDetacn(
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onAttach()

onCreate()

Fragment lifecycle :

onCreateView() |=— ——

'
* Functions =
* onStart onsan
v
* onResume —
v
* onPause P
* onStop —
+ onDestroyView EIr A
* when the view hierarchy associated with the e
fragment is being removed. onPause
b4
* O n De S t r\oy onStop{) The fragment
* onDetach: o
* when the fragment is being disassociated from the — :
aCtiVity onDestroy()
v
onDetach()
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Fragment lifecycle

* To create a fragment, you must create a subclass of
Fragment (or an existing subclass of it).

* The Fragment class has code that looks a lot like an Activity.

* It contains callback methods similar to an activity, such as
onCreate(), onStart(), onPause(), and onStop().

* In fact, if you're converting an existing Android application to use
fragments, you might simply move code from your activity's
callback methods into the respective callback methods of your

fragment.
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Fragment lifecycle

* onCreate()
* The system calls this when creating the fragment.

* Within your implementation, you should initialize essential components of the
fragmer::lt that you want to retain when the fragment is paused or stopped, then
resumed.

* onCreateView()

* The system calls this when it's time for the fragment to draw its user interface for
the first time.

* Todraw a Ul for ]}/our fragment, you must return a View from this method that is
the root of your fragment's layout.

* You can return null if the fragment does not provide a Ul.

» onPause()

* The system calls this method as the first indication that the user is leaving the
fragment (though it doesn't always mean the fragment is being destroyed).

* This is usually where you should commit any changes that should be persisted
beyond the current user session (because the user might not come back).
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Usage

class ExampleFragment : Fragment() {

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?
): View {
// Inflate the layout for this fragment
return inflater.inflate(R.layout.example fragment,
container, false)

¥
}
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<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"”
android:layout width="match_parent”
android:layout height="match_parent"”>
<fragment android:name="com.example.news.ArticleListFragment™
android:id="@+id/list"
android:layout weight="1"
android:layout width="edp"
android:layout _height="match_parent" />
<fragment android:name="com.example.news.ArticleReaderFragment"
android:id="@+id/viewer"
android:layout weight="2"
android:layout width="edp"
android:layout _height="match_parent" />
</LinearlLayout>

11/26/2019 Basics of Mobile Application Development




| Piazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

From code

val fragmentManager = supportFragmentManager
val fragmentTransaction = fragmentManager.beginTransaction()

val fragment = ExampleFragment()
fragmentTransaction.add(R.id.fragment_container, fragment)

fragmentTransaction.commit()
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Transactions

* For example, here's how you can replace one fragment with

another, and preserve the previous state:

val newFragment = ExampleFragment()

val transaction =
supportFragmentManager.beginTransaction()
transaction.replace(R.id.fragment _container, newFragment)
transaction.addToBackStack(null)

transaction.commit()
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Communicating with the Activity

* A Fragment is implemented as an object that's
independent from a FragmentActivity and can be used
inside multiple activities

* A given instance of a fragment is directly tied to the activity that
hosts it.

* The fragment can access the FragmentActivity instance with
getActivity() and easily perform tasks such as find a view in the
activity layout

val listView: View? = activity?.findViewById(R.id.list)
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Communicating with the Activity

* Likewise, your activity can call methods in the fragment by
acquiring a reference to the Fragment from
FragmentManager, using findFragmentByld() or
findFragmentByTag().

* For example:

val fragment = supportFragmentManager
.findFragmentById(R.id.example fragment) as ExampleFragment
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Custom View

* In some cases you may want to create special Views of
Widgets

* To do so you can explicitely control the drawing of a View
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onDraw and onMeasure function

e onDraw()

* During drawing the GUI, when Android arrives to a View it calls the
onDraw method

A Canvas is passed as parameter
* You can draw on the canvas

* Itis protected
* Thus you can override

* What can we do?
* Actually anything
* There are basic drawing functions to create any shape and text, etc.

* onMeasure()
* Tells the expected size of the element to the system
* If you fail to implement this method the size of the View will be zero

11/26/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Canvas class
e getWidth, getHeight()

* The size of the Canvas

* Drawing functions

e drawBitmap, drawCircle, drawColor, drawlLine,
drawOval, drawPoint, drawPosText, drawRGB,
drawRect, drawRoundRect, drawText..
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Toolbar

* Uses material design

Navigation Avplications Title and Action Menu icon
icon PP sub title buttons

Szia vilag!
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Toolbar

* Colors

colorPrimaryDark

A7 @ textColorPrimary 3k Od@ s
Mate?al Demo ;

& )
‘ Szia vilag!

windowsBackground

navigationBarColor

< O
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Homework — Deadline 12/03 10.15 am

* Create a basic calculator program for Android
* In Kotlin

* Large buttons for

* Numbers

* Basic operations (+ - * /)

* Clearing the input / screen (CE)
* EditText

* Indicate the results
* Indicate the input
* Directinput (on keyboard)
* There is no need to implement Polish notation or such things
* Keep simple as possible focusing on the Ul and events
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Data Storage

Next week



