W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Basics of Mobile
Application Development

Android Basics in Kotlin

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Applications in Kotlin

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

% Create New Project

H e] I O \X/Or] d Configure your project

* As previously

| Kotlin App

hu.ppke.itk.android.kotlinapp

Save location

FiiKotlinApp
Language
Kotlin v
Empty Actrvity Minimum APl level | API27: Android 8.1 (Oreo) v

@ Vour app will run on approximately 1,1% of devices.

Help me choose

Creates a new empty activity [] This project will suppart instant apps

Use androidx.* artifacts

EEHCE' m

Previous

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Default Activity

package hu.ppke.itk.android.kotlinapp

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle

class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

11/26/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Add some action
e A Button and a TextView

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns: andr01d "http: //schemas.android.com/apk/res/android"
android:layout_width= match _parent”
android: layout_ he1ght 'wrap_content™
android:orientation="vertical">

<TextView

android:id="@+id/textview"
android:layout_ w1dth-"match _parent”
android:layout_height="wrap_content"
android:text="@string/hello" />

<Button
android:id="@+id/button”
android:layout_width="match_parent”
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="@string/button” />
</LinearLayout>

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

= 2
L’ h
T np 7oV

Add some action

* Click action - lambda function

findViewById<Button>(R.id.button).setOnClickListener {
v -> findViewById<TextView>(R.id.textview)
.setText(getString(R.string.clicked)) }

e Click action — conventional
class MainActivity : Activity(), OnClickListener {

protected fun onCreate(savedValues: Bundle) {
val button: Button = findViewById(R.id.button)
button.setOnClickListener(this)

}

fun onClick(v: View) {
findvViewById<TextView>(R.id.textview).setText(getString(R.string.clicked))
}

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Event listeners

* An event listener is an interface in the View class that contains a
single callback method.

* These methods will be called by the Android framework when
the View to which the listener has been registered is triggered
by user interaction with the item in the Ul.

* Included in the event listener interfaces are the following
callback methods:

* onClick()

* From View.OnClickListener.

* This is called when the user either touches the item (when in touch
mode), or focuses upon the item with the navigation-keys or trackball
and presses the suitable "enter” key or presses down on the trackball.

11/26/2019 Basics of Mobile Application Development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Event listeners
* onLongClick()

* From View.OnLongClickListener.

* This is called when the user either touches and holds the item
(when in touch mode), or focuses upon the item with the
navigation-keys or trackball and presses and holds the suitable
"enter" key or presses and holds down on the trackball (for one
second).

* onFocusChange()

* From View.OnFocusChangelListener.

* This is called when the user navigates onto or away from the
item, using the navigation-keys or trackball.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Event listeners
* onKey()

* From View.OnKeylListener.

* This is called when the user is focused on the item and presses or
releases a hardware key on the device.

* onTouch()

* From View.OnTouchListener.

* This is called when the user performs an action qualified as a touch
event, including a press, a release, or any movement gesture on the
screen (within the bounds of the item).

* onCreateContextMenu()
* From View.OnCreateContextMenulListener.

* This is called when a Context Menu is being built (as the result of a
sustained "long click").

11/26/2019 Basics of Mobile Application Development

' Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Event listeners

* Notice that the onClick() callback in the above example has
no return value, but some other event listener methods
must return a boolean.

* The reason depends on the event. Reasons:
* onLongClick()

* This returns a boolean to indicate whether you have consumed the event
and it should not be carried further.

* That s, return true to indicate that you have handled the event and it
should stop here; return false if you have not handled it and/or the event
should continue to any other on-click listeners.

11/26/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Event listeners

e Reasons:
* onKey()

* This returns a boolean to indicate whether you have consumed the event and
it should not be carried further.

* That js, return true to indicate that you have handled the event and it should
stop here; return false if you have not handled it and/or the event should
continue to any other on-key listeners.

 onTouch()

* This returns a boolean to indicate whether your listener consumes this event.

* The important thing is that this event can have multiple actions that follow
each other.

* So, if you return false when the down action event is received, you indicate
that you have not consumed the event and are also not interested in
subsequent actions from this event.

* Thus, you will not be called for any other actions within the event, such as a
finger'gesture, or the eventual up action event.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

More on Activities

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Activity state and ejection from memory

* The system kills processes when it needs to free up RAM

* The likelihood of the system killing a given process depends on
the state of the process at the time.

* Process state, in turn, depends on the state of the activity running
in the process.

* Table shows the correlation among process state, activity state,
and likelihood of the system’s killing the process.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Activity state and ejection from memory

Likelihood of being killed Process state Activity state
Least Foreground (having or about to get Created
focus) Started
Resumed
More Background (lost focus) Paused
Most Background (not visible) Stopped
Empty Destroyed

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Saving state

* The system never kills an activity directly to free up
memory.

* Instead, it kills the process in which the activity runs,
destroying not only the activity but everything else
running in the process, as well.

* When the activity is destroyed due to system constraints,
you should preserve the user’s transient Ul state using a
combination of ViewModel, onSavelnstanceState(), and/or
local storage.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Save simple: onSavelnstanceState()

* As your activity begins to stop, the system calls the
onSavelnstanceState() method so your activity can save
state information to an instance state bundle.

* The default implementation of this method saves transient
information about the state of the activity's view hierarchy

* such as the text in an EditText widget or
* the scroll position of a ListView widget.

* To save additional instance state information for your
activity, you must override onSavelnstanceState()

* and add key-value pairs to the Bundle object that is saved in the
event.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Example
?verride fun onSaveInstanceState(outState:
outState?.run
putInt(STATE SCORE, currentScore
) putInt (STATE LEVEL, currentLevel
) super.onSavelInstanceState(outState)

companion object {
val STATE SCORE

B "playerScore”
val STATE LEVEL

"playerLevel”

¥

Bundle?)

11/26/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Kotlin — Companion object

* If you need a singleton you can declare the class in the
usual way, but use the object keyword instead of class:
object CarFactory {

val cars = mutableListOf<Car>()

fun makeCar(horsepowers: Int): Car {

val car = Car(horsepowers)
cars.add(car)
return car

11/26/2019

Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Kotlin — Companion object

* If you need a function or a property to be tied to a class rather
thgn to instances of it, you can declare it inside a companion
object.

* The companion object is a singleton, and its members can be
accessed directly via the name of the containing class
* although you can also insert the name of the companion object if you
want to be explicit about accessing the companion object

* A companion object is initialized when the class is loaded
(typically the first time it's referenced by other code that is
being executed), in a thread-safe manner.

* You can omit the name, in which case the name defaults to Companion.

* A class can only have one companion object, and companion
objects can not be nested.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Restore activity Ul state

* When your activity is recreated after it was previously
destroyed, you can recover your saved instance state from the
Bundle.

* Both the onCreate() and onRestorelnstanceState() callback
methods receive the same Bundle.

* The onCreate() method is called whether the system is creating
a new instance of your activity or recreating a previous one

* You must check whether the state Bundle is null before you attempt to
read it.

* Ifitis null, then the system is creating a new instance of the activity,
instead of restoring a previous one that was destroyed.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Example

override fun onCreate(savedInstanceState: Bundle?)

{

super.onCreate(savedInstanceState)
if (savedInstanceState != null) {
with(savedInstanceState) {

getInt(STATE SCORE
getInt(STATE LEVEL

currentScore
currentlLevel

} elge {

¥

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& o
o, ST

Kotlin — with

e Detour: let

. le};c can be used to invoke one or more functions on results of call
chains.

* For example, the following code prints the results of two operations on
a collection:
val numbers = mutableListOf("one", "two", "three", "four", "five")
val resultList = numbers.map { it.length }.filter { it > 3 }
println(resultlList)
* Rewrite
numbers.map { it.length }.filter { it > 3 }.let {
println(it)
// and more function calls if needed
}
* Even better
numbers.map { it.length }.filter { it > 3 }.let(::println)

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= 2
e, o

Kotlin — with

* with
* A non-extension function: the context object is passed as an
argument, but inside the lambda, it's available as a receiver (this).
* The return value is the lambda result.

* For calling functions on the context object without providing the
lambda result.

* In the code, with can be read as “with this object, do the following”
val numbers = mutableListOf("one", "two", "three")
with(numbers) {

println("'with' is called with argument $this")

println("It contains $size elements")

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= 2
e, o

Kotlin — with

e Detour: run

* The context object is available as a receiver (this).
* The return value is the lambda result.

* run does the same as with but invokes as let - as an extension
function of the context object.

* run is useful when your lambda contains both the object
initialization and the computation of the return value.
val service = MultiportService("https://example.kotlinlang.org", 80)

val result = service.run {
port = 8080
query(prepareRequest() +

to port $port")

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Kotlin — with
* Detour: apply

* The context object is available as a receiver (this).
* The return value is the object itself.

* Use apply for code blocks that don't return a value and mainly
operate on the members of the receiver object.
* The common case for apply is the object configuration.

* Such calls can be read as “apply the following assignments to the object”
val adam = Person("Adam").apply {

age = 32

city = "London"

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= 2
e, o

Kotlin — with

* Detour: also

* The context object is available as an argument (it).
* The return value is the object itself.
* This is good for performing some actions that take the context object as an argument.
* Use also for additional actions that don't alter the object, such as logging or
printing debug information.
* Usually, you can remove the calls of also from the call chain without breaking
the program logic.
* When you see also in the code, you can read it as “and also do the following”.
» The common case for apply is the object configuration.
* Such calls can be read as “apply the following assignments to the object”
val numbers = mutableListOf("one", "two", "three")

numbers
.also { println("The list elements before adding new one: $it") }

.add("four")

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Configuration change occurs

. T}t\ere are a number of events that can trigger a configuration
change.

* Example:
* Change between portrait and landscape orientations.
* User has the power to rotate the device ©

 Change to language or input device.
* Etc.

* When a conflfuration change occurs, the activity is destroyed
and recreated.

* The original activity instance will have the onPause(), onStop(), and
onDestroy() callbacks triggered.

* A new instance of the activity will be created and have the onCreate(),
onStart(), and onResume() callbacks triggered.

11/26/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Fix screen orientation

e The orientation also can be fixed
* android:screenOrientation="portrait

n

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Bundle

* Bundles are generally used for passing data between
various Android activities.
* It depends on you what type of values you want to pass

* Bundles can hold all types of values and pass them to the new
activity.

11/26/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Fragment

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Fragments

* A Frafgment represents a behavior or a portion of user
interface in a FragmentActivity.

* You can combine multiple fragments in a single activity to
build a multi-pane Ul and reuse a fragment in multiple
activities.

* You can think of a fragment as a modular section of an
activity,
* which has its own lifecycle,
* receives its own input events,

* which you can add or remove while the activity is running
* (sort of like a "sub activity" that you can reuse in different activities).

11/26/2019 Basics of Mobile Application Development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Fragments

* A fragment must always be hosted in an activity

* The fragment's lifecycle is directly affected by the host
activity's lifecycle.
* For example, when the activity is paused, so are all fragments in
it, and when the activity is destroyed, so are all fragments.

* However, while an activity is running (it is in the resumed lifecycle
state), you can manipulate each fragment independently, such as
add or remove them.

11/26/2019 Basics of Mobile Application Development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Reasons

* Android introduced fragments in Android 3.0 primarily to
support more dynamic and flexible Ul designs on large
screens, such as tablets.

* Atablet's screen is much larger than that of a handset, there's
more room to combine and interchange Ul components.

* Fragments allow such designs without the need for you to
manage complex changes to the view hierarchy.

* The activity's appearance can be modified at runtime.

11/26/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

Tablet L Handset

Selecting an item
updates Fragment B

Selecting an item
starts Activity B

e —— e —

o z

Activity A contains
Fragment A and Fragment B

Activity A contains Activity B contains
Fragment A Fragment B

11/26/2019 Basics of Mobile Application Development

_f o Fragment is
W Pazmany Péter Catholic University

A
R’f Faculty of Information Technology and Bionics

= 2
L’ h
g et ToY

onAttach()

oncreste()
Fragment lifecycle .
'
* Functions ——
* onAttach et
* When the fragment has been associated with the onflesume(
activity (the Activity is passed in here). ‘ m:anm \
* onCreate: creating an initialization o
- onCreateView G e
* To create the view hierarchy associated with the T T
fragment. o]
* onActivityCreated: Ry o fagmen
* when the activity's onCreate() method has returned. | eo=tevie Iaﬁfﬁf&nﬂ?e
* onViewStateRestored: state is restored c::mm
v
onDetacn(

11/26/2019 Basics of Mobile Application Development

_f o Fragment is
W Pazmany Péter Catholic University

A
R’f Faculty of Information Technology and Bionics

= 2
L’ h
g et ToY

onAttach()

onCreate()

Fragment lifecycle :

onCreateView() |=— ——

'
* Functions =
* onStart onsan
v
* onResume —
v
* onPause P
* onStop —
+ onDestroyView EIr A
* when the view hierarchy associated with the e
fragment is being removed. onPause
b4
* O n De S t r\oy onStop{) The fragment
* onDetach: o
* when the fragment is being disassociated from the — :
aCtiVity onDestroy()
v
onDetach()

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Fragment lifecycle

* To create a fragment, you must create a subclass of
Fragment (or an existing subclass of it).

* The Fragment class has code that looks a lot like an Activity.

* It contains callback methods similar to an activity, such as
onCreate(), onStart(), onPause(), and onStop().

* In fact, if you're converting an existing Android application to use
fragments, you might simply move code from your activity's
callback methods into the respective callback methods of your

fragment.

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= o
L’ h
Tes er T8

Fragment lifecycle

* onCreate()
* The system calls this when creating the fragment.

* Within your implementation, you should initialize essential components of the
fragmer::lt that you want to retain when the fragment is paused or stopped, then
resumed.

* onCreateView()

* The system calls this when it's time for the fragment to draw its user interface for
the first time.

* Todraw a Ul for]}/our fragment, you must return a View from this method that is
the root of your fragment's layout.

* You can return null if the fragment does not provide a Ul.

» onPause()

* The system calls this method as the first indication that the user is leaving the
fragment (though it doesn't always mean the fragment is being destroyed).

* This is usually where you should commit any changes that should be persisted
beyond the current user session (because the user might not come back).

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

L

Usage

class ExampleFragment : Fragment() {

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?
): View {
// Inflate the layout for this fragment
return inflater.inflate(R.layout.example fragment,
container, false)

¥
}

11/26/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"”
android:layout width="match_parent”
android:layout height="match_parent"”>
<fragment android:name="com.example.news.ArticleListFragment™
android:id="@+id/list"
android:layout weight="1"
android:layout width="edp"
android:layout _height="match_parent" />
<fragment android:name="com.example.news.ArticleReaderFragment"
android:id="@+id/viewer"
android:layout weight="2"
android:layout width="edp"
android:layout _height="match_parent" />
</LinearlLayout>

11/26/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

From code

val fragmentManager = supportFragmentManager
val fragmentTransaction = fragmentManager.beginTransaction()

val fragment = ExampleFragment()
fragmentTransaction.add(R.id.fragment_container, fragment)

fragmentTransaction.commit()

11/26/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Transactions

* For example, here's how you can replace one fragment with

another, and preserve the previous state:

val newFragment = ExampleFragment()

val transaction =
supportFragmentManager.beginTransaction()
transaction.replace(R.id.fragment _container, newFragment)
transaction.addToBackStack(null)

transaction.commit()

11/26/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Communicating with the Activity

* A Fragment is implemented as an object that's
independent from a FragmentActivity and can be used
inside multiple activities

* A given instance of a fragment is directly tied to the activity that
hosts it.

* The fragment can access the FragmentActivity instance with
getActivity() and easily perform tasks such as find a view in the
activity layout

val listView: View? = activity?.findViewById(R.id.list)

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Communicating with the Activity

* Likewise, your activity can call methods in the fragment by
acquiring a reference to the Fragment from
FragmentManager, using findFragmentByld() or
findFragmentByTag().

* For example:

val fragment = supportFragmentManager
.findFragmentById(R.id.example fragment) as ExampleFragment

11/26/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Custom View

| Piazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Custom View

* In some cases you may want to create special Views of
Widgets

* To do so you can explicitely control the drawing of a View

11/26/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

onDraw and onMeasure function

e onDraw()

* During drawing the GUI, when Android arrives to a View it calls the
onDraw method

A Canvas is passed as parameter
* You can draw on the canvas

* Itis protected
* Thus you can override

* What can we do?
* Actually anything
* There are basic drawing functions to create any shape and text, etc.

* onMeasure()
* Tells the expected size of the element to the system
* If you fail to implement this method the size of the View will be zero

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Canvas class
e getWidth, getHeight()

* The size of the Canvas

* Drawing functions

e drawBitmap, drawCircle, drawColor, drawlLine,
drawOval, drawPoint, drawPosText, drawRGB,
drawRect, drawRoundRect, drawText..

11/26/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Toolbar

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

=
i s
Teg et 18V

Toolbar

* Uses material design

Navigation Avplications Title and Action Menu icon
icon PP sub title buttons

Szia vilag!

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Toolbar

* Colors

colorPrimaryDark

A7 @ textColorPrimary 3k Od@ s
Mate?al Demo ;

&)
‘ Szia vilag!

windowsBackground

navigationBarColor

< O

11/26/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Homework — Deadline 12/03 10.15 am

* Create a basic calculator program for Android
* In Kotlin

* Large buttons for

* Numbers

* Basic operations (+ - * /)

* Clearing the input / screen (CE)
* EditText

* Indicate the results
* Indicate the input
* Directinput (on keyboard)
* There is no need to implement Polish notation or such things
* Keep simple as possible focusing on the Ul and events

11/26/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Data Storage

Next week

