X " Pazmany Péter Catholic University

Wf Faculty of Information Technology and Bionics

o
Teg et 18V

Basics of Mobile
Application Development

Kotlin

| Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Kotlin

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

, 0
Teg et o~

History

* The name comes from Kotlin Island, near St. Petersburg.

* July 2011 - JetBrains unveiled Project Kotlin
* One of the stated goals of Kotlin is to compile as quickly as Java.

* February 2012 - JetBrains open sourced the project under
the Apache 2 license

* Kotlin v1.0 was released on February 15, 2016

* At Google I1/0 2017, Google announced first-class support for
Kotlin on Android

* Kotlin v1.2 was released on November 28,2017
* Kotlin v1.3.5 was released on August 22, 2019

11/19/2019 Basics of Mobile Application Development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Features

* Statically typed programming language
* Runs on the Java virtual machine
* can be compiled to JavaScript source

* Syntax is not compatible with Java

* The JVM implementation of the Kotlin standard library interoperates
with’Java code

* Relies on Java code from the existing Java Class Library

* Uses aggressive type inference to determine the types of values and
expressions for which type has been left unstated.

* Kotlin code can run on JVM up to latest Java 11.
* As of Android Studio 3.0, Kotlin is fully supported by

* The Android Kotlin compiler lets the user choose between targeting |ava 6, or
Java 8-compatible bytecode.

11/19/2019 Basics of Mobile Application Development

https://en.wikipedia.org/wiki/Java_language

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Philosophy

Kotlin is designed to be an industrial-strength object-oriented language
* A'"better language" than Java, but still be fully interoperable with Java code

Semicolons are optional as a statement terminator

* in most cases a newline is sufficient for the compiler to deduce that the statement
has ended

Kotlin variable declarations and parameter lists have the data t)lgoe come
after the variable name (and with a colon separator), similar to"Pascal.

Variables in Kotlin can be immutable, declared with the val keyword, or
mutable, declared with the var keyword.

Class members are public by default, and classes themselves are sealed by
default, meaning that creating a derived class is disabled unless the base
class is declared with the open keyword.

In additjon to the classes and methods of object-oriented programming,
Kotlin also supports procedural programming with the use of functions.

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Variables — immutable
* Immediate assignment
eval a: Int =1

* Int type is inferred
eval b = 2

* Type required when no initializer is provided
e val c: Int

* Deferred assignment
*Cc =3

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Variables — mutable

* Int type is inferred
*var x = 5
X +=1

* Value assigment

11/19/2019 Basics of Mobile Application Development

* Numbers are similar as in Java, but not exactly the same.
* There are no implicit widening conversions for numbers, and

Basic types

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

literals are slightly different in some cases.

* Built-in types for numbers
* Double 64 bit

* Float
* Long
* Int

* Short
* Byte

11/19/2019

32 bit
64 bit
32 bit
16 bit
8 bit

Basics of Mobile Application Development

" ' Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Literals

* Decimals: 123
* Longs are tagged by a capital L: 123L

 Hexadecimals: OxOF
e Binaries: 0b00001011

e Underscore
* val oneMillion = 1 000 000
* val hexBytes = OxFF_EC DE 5E

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Basic types

* Characters are represented by the type Char

* The type Boolean represents booleans, and has two
values: true and false

* Arrays are represented by the Array class
* get and set functions
* size property

* Strings are represented by String.

* Immutable

* Elements of a string are characters that can be accessed by the
indexing operation: s[i]

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

String template

* Strings may contain template expressions

* A template expression starts with a dollar sign ($) and consists of
either a simple name:
*val 1 = 10
 println("i = $i") // prints "i = 10"
* val s = "abc"
* printin("Ss.length is $S{s.length}") // prints "abc.length is 3"

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Range

* Defined by ..
val x = 10
val y = 9
if (x in 1..y+1) {
println("fits in range")
}
* Skip numbers
*1..10 step 2

e Reverse
* 9 downTo O step 3

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

= 2
e, e

Collections

e List
e val fruits = 1istO-F("banana", "aVOCadO",
"apple”, "kiwifruit")

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Functions

* Declaring a function (not only as part of a class!)
fun sum(a: Int, b: Int): Int {
return a + b

¥

* As expression
fun sum(a: Int, b: Int) = a + b
* Method
fun printSum(a: Int, b: Int): Unit {
println("sum of $a and $b is ${a + b}")
}

: Unitis optional

11/19/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Nested functions

fun saveUser(user: User) {
fun validate(user: User, value: String, fieldName: String) {
if (value.isEmpty()) {

throw IllegalArgumentException("Can't save user")

}
}

validate(user, user.name, "Name")

validate(user, user.address, "Address")

}

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Named Arguments

* Function parameters can be named when calling functions
fun reformat(str: String,
normalizeCase: Boolean = true,
upperCaseFirstLetter: Boolean = true,

wordSeparator: Char = ' ") {
}
reformat(str)
reformat(str, true, true, ' ')
reformat(str,

normalizeCase = true,
upperCaseFirstLetter = true,
wordSeparator = " '

11/19/2019 Basics of Mobile Application Development

W Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

Infix notation

* Functions marked with the infix keyword can also be called
using the infix notation
infix fun Int.shl(x: Int): Int { ... }

1 shl 2
// 1s the same as
1.sh1(2)

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Control statements

* Conditional statement
if (a > b) {
// do a
} else {
// do b

¥

* You can use if as an expression
fun maxOf(a: Int, b: Int)

if (a > b) a else b

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Control statements

* Conditional statement as an expression
fun maxOf(a: Int, b: Int) if (a > b) a else b

val max = if (a > b) {
print("Choose a")
a

} else {
print("Choose b")
b

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Control statements

* When (instead of switch)
when (x) {
1 -> print("x == 1")
2 -> print("x == 2")
else -> {
print("x is neither 1 nor 2")

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Control statements

* When, multiple cases
when (x) {
O, 1 -> print("x == 0 or x == 1")
else -> print("otherwise")

}
* Expressions
when (x) {
parseInt(s) -> print("s encodes x")
else -> print("s does not encode x")
}

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Control statements

* Intervals
when (x) {
in 1..10 -> print("x is in the range")
in validNumbers -> print("x is valid")
lin 10..20 -> print("x is not in the range")
else -> print("none of the above")

¥

* When and functions
fun hasPrefix(x: Any) = when(x) {
is String -> x.startsWith("prefix")
else -> false

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Control statements

* For loop
for (item in collection) print(item)

for (i in 1..3) {
println(i)

for (i in 6 downTo © step 2) {
println(i)

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Control statements

* While loop
while (x > 0) {
X__

do {
val y = retrieveData()
} while (y != null) // y is visible here!

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Control statements

* Unconditional

* return: By default returns from the nearest enclosing function
or anonymous function.
* break: Terminates the nearest enclosing loop.

* continue: Proceeds to the next step of the nearest enclosing loop.

e Labels

* Any expression in Kotlin may be marked with a label and can be used
with break and continue

loop@ for (i in 1..100) {
for (j in 1..100) {
if (...) break@loop
}

11/19/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

P

Null-safety

* Error:
* var a: String =
*a = null

* Allowed to be null
* var b: String? = "abc
b = null
* print(b)

abc

11/19/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

) i’
#p "
Feg pp 8%

Null-safety

* Checking
eval 1 = if (b != null) b.length else -1
eval 1 = b?.1length ?: -1
 println(b?.length)

* Assertation
eval 1 = b!!.length

e Safe cast
e val aInt: Int? = a as? Int

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Type safety and casts
fun getStringlLength(obj: Any): Int? {
if (obj is String) {
return obj.length
}

return null

11/19/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

 Class declaration
e class Car { ... }

* It can be empty
e class Empty

* Creating an instance
 val car = Car()
 val customer = Customer("Joe Smith")

11/19/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Properties
* Example
class Address {

var name: String = ...
var street: String = ...
var city: String = ...
var state: String? = ...
var zip: String = ...

11/19/2019

Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Get and set

* Defaults

* explicit initializer required, default getter and setter implied
 var allByDefault: Int? // error

* default getter and setter
* var initialized =1

* default getter, must be initialized in constructor
* val simple: Int?

* default getter
 val inferredType =1

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

o A
Teg er 1%

Get and set

* Custom get
val isEmpty: Boolean
get() = this.size ==
* Alternative get
val isEmpty get() = this.size == 0
* Get and set
var stringRepresentation: String
get() = this.toString()

set(value) {
setDataFromString(value)
}

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Fields

* Fields cannot be declared directly in Kotlin classes
* When a property needs a backing field, Kotlin provides it
automatically
* This backing field can be referenced
* The field identifier can only be used in the accessors of the
property.
var counter = ©
set(value) {
if (value >= @) field = value
}

* No backing field

val isEmpty: Boolean
get() = this.size ==

11/19/2019 Basics of Mobile Application Development

' Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Constructors

* Primary constructor (optional)
* Part of the class header
* Cannot contain any code
* Receives parameters that can be used
* For property initialization
* Orinside init blocks
 class Person constructor(firstName: String)
{ ...}

* If the primary constructor does not have any annotations or
visibility modifiers, the constructor keyword can be omitted
 class Person(firstName: String) { ... }

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Initialization

* The primary constructor cannot contain any code.
* Initialization code can be placed in initializer blocks.

* During an instance initialization, the initializer blocks are executed in the
same order as they appear in the class body, interleaved with the property
initializers:

class InitOrderDemo(name: String) {
init {
println("Accessing the field $name")
}

val nameProperty: String

init {
println("Setting to a property")
nameProperty=name

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Primary constructor and initia

ization

* For declaring properties and initializing t
constructor can be used as follows:

class Person(val firstName: Strin
lastName: String, var age: Int)

{ .}

nem the primary

g, val

* Much the same way as regular properties, the properties
declared in the primary constructor can be mutable (var) or

read-only (val).

* Also you can call functions on that parameters

class Customer(name: String) {
val customerKey = name.toUppe

¥

rCase()

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& 20
L’ h
Tes pp 18V

Constructors — Secondary

* Secondary constructor(s)
class Person {
constructor(parent: Person) {
parent.children.add(this)

}
}

* If the class has a primary constructor, each secondary constructor
needs to delegate to the primary constructor

* either directly or indirectly
class Person(val name: String) {
constructor(name: String, parent: Person) : this(name) {
parent.children.add(this)

}

11/19/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Inheritance

* All classes in Kotlin have a common superclass Any
 class Example
* Anyisnot java.lang.Object;
* Members
* equals()
* hashCode()
« toString()

e Classes are ,closed” in default
e Cannot inherit from them
* Thus we need to ,open” to create children classes

11/19/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Inheritance

* Example
« open class Base(p: Int)

e« class Derived(p: Int) : Base(p)

11/19/2019 Basics of Mobile Application Development

' Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Constructor

* If the derived class has a primary constructor, the base class
must be initialized right there

* using the parameters of the primary constructor

* If the class has no primary constructor

* then each secondary constructor has to initialize the base type
using the super keyword

* or to delegate to another constructor which does that
class MyView : View {
constructor(ctx: Context) : super(ctx)
constructor(ctx: Context, attrs: AttributeSet) : super(ctx, attrs)

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Overriding

* Kotlin requires explicit modifiers for overridable members
open class Base {
open fun v() { ... }
fun nv() { ... }
}
class Derived() : Base() {
override fun v() { ... }

11/19/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Overriding

* A member marked override is itself open
* [t may be overridden in subclasses
* If you want to prohibit re-overriding, use final
open class AnotherDerived() : Base() {
final override fun v() { ... }

11/19/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Properties

* Overriding properties works in a similar way to overriding
methods

open class Foo {
open val x: Int get() { ... }

class Barl : Foo() {
override val x: Int =

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Calling the superclass implementation

open class Foo {
open fun f() { println("Foo.f()") }
open val x: Int get() =1
}
class Bar : Foo() {
override fun f() {
super.f()
println("Bar.f()")
}

override val x: Int get() = super.x + 1

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Abstract class

* A class and some of its members may be declared abstract

* An abstract member does not have an implementation in
its class
open class Base {

open fun () {}

abstract class Derived : Base() {
override abstract fun f()

11/19/2019 Basics of Mobile Application Development

W Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

Interfaces

* Interfaces are very similar to Java 8
interface MyInterface {
fun bar()
fun foo() {
// optional body

}
}

* Implementation
class Child : MyInterface {
override fun bar() {

¥

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Properties

* You can declare properties in interfaces.

* A property declared in an interface can either be abstract, or it can provide
implementations for accessors.

* Properties declared in interfaces can't have backing fields, and therefore
accessors declared in interfaces can't reference them
interface MyInterface {
val prop: Int // abstract
val propertyWithImplementation: String

get() = "foo"
fun foo() {
print(prop)

}
}
class Child : MyInterface {
override val prop: Int = 29
}

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Interface inheritance

* An interface can derive from other interfaces and thus
both provide implementations for their members and

declare new functions and properties

interface Named {
val name: String

}

interface Person : Named {
val firstName: String
val lastName: String

override val name: String get() = "$firstName $lastName"

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

Multiple inheritance

interface A { class D : A, B {
fun foo() { print("A") } override fun foo() {
fun bar() super<A>.foo()
} super.foo()
interface B { }
fun foo() { print("B") } override fun bar() {
fun bar() { print("bar") } super.bar()
} }
class C : A { }

override fun bar() {
print("bar")

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Visibility

* Classes, objects, interfaces, constructors, functions,
properties and their setters can have visibility modifiers.

* Getters always have the same visibility as the property.

* There are four visibility modifiers
* private, protected, internal,public

* The default visibility is public.

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Visibility

* Explanation
* If you do not specify any visibility modifier, public is used by
default, which means that your declarations will be visible
everywhere;

* If you mark a declaration private, it will only be visible inside the
file containing the declaration;

* If you mark it internal, it is visible everywhere in the same
module;

* protected is not available for top-level declarations.

11/19/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Visibility

* Classes and Interfaces
* private: visible inside this class only (including all its members);
* protected: same as private + visible in subclasses too;

* internal: any client inside this module who sees the declaring
class sees its internal members;

* public: any client who sees the declaring class sees its public
members

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Packages — Modules

* Packages
* Functions, properties and classes, objects and interfaces can be
declared directly inside a package
package foo
fun baz() { ... }
class Bar { ... }

 Modules

* A set of Kotlin files compiled together:
* an Intelli) IDEA module;
* a Maven project;

* a Gradle source set (with the exception that the test source set can access the
internal declarations of main);

* a set of files compiled with one invocation of the <kotlinc> Ant task

11/19/2019 Basics of Mobile Application Development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Extension

* To extend a class with new functionality without having to
inherit from the class

* Or use any type of design pattern such as Decorator
fun MutablelList<Int>.swap(index1l: Int, index2: Int) {
val tmp = this[index1] // the list
this[index1] = this[index2]
this[index2] = tmp

val 1 = mutableListOf(1, 2, 3)
l.swap(0, 2)

11/19/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Extension

* Extension properties
val <T> List<T>.lastIndex: Int
get() = size - 1

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Data classes

* To create classes whose main purpose is to hold data
* data class User(val name: String, val age: Int)

* The compiler automatically derives the following members
from all properties declared in the primary constructor:
* equals()/hashCode() pair;
* toString() of the form "User(name=John, age=42)";

» componentN() functions corresponding to the properties in
their order of declaration;

* copy() function

11/19/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Data classes

* Data classes have to fulfill the following requirements:
* The primary constructor needs to have at least one parameter;

* All primary constructor parameters need to be marked as val or
var;

* Data classes cannot be abstract, open, sealed or inner.

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Enum

* The most basic usage of enum classes is implementing type-safe
enums:

enum class Direction {
NORTH, SOUTH, WEST, EAST

}
enum class ProtocolState {
WAITING {
override fun signal() = TALKING
}s
TALKING {
override fun signal() = WAITING
}s
abstract fun signal(): ProtocolState
}

11/19/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Delegation

* Supported natively:
* A class Derived can implement an interface Base by delegating all of its
public members to a specified object:

interface Base {
fun print()

}

class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }

}

class Derived(b: Base) : Base by b

fun main() {
val b = BaseImpl(10)
Derived(b).print()

11/19/2019 Basics of Mobile Application Development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Generics

* As in Java, classes in Kotlin may have type parameters:
class Box<T>(t: T) {
var value = t

¥

val box: Box<Int> = Box<Int>(1)

* Functions can have type parameters
fun <T> singletonList(item: T): List<T> {

//

}
val 1 = singletonList<Int>(1)

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Java <-> Kotlin

* Existing Java code can be called from Kotlin in a natural way
import java.util.*

fun demo(source: List<Int>) {
val list = ArraylList<Int>()
// 'for'-loops work for Java collections:
for (item in source) {
list.add(item)
}

// Operator conventions work as well:
for (1 in @..source.size - 1) {

list[i] = source[i] // get and set are called
}

11/19/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Java <-> Kotlin

* Existing Java code can be called from Kotlin in a natural way
* Escaping
foo."is" (bar)

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Java <-> Kotlin

* Kotlin is called in Java (smooth)

* A Kotlin property is compiled to the following Java elements:
* A getter method, with the name calculated by prepending the get prefix;

* A setter method, with the name calculated by prepending the set prefix
(only for var properties);

* A private field, with the same name as the property name (only for
properties with backing fields).

* Package-Level Functions

* All the functions and properties declared in a file example.kt inside a
package org.foo.bar, including extension functions, are compiled into
static methods of a Java class named org.foo.bar.ExampleKt

11/19/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Java <-> Kotlin

* Kotlin is called in Java (smooth)

* The Kotlin visibilities are mapped to Java in the following way:
* private members are compiled to private members;
* private top-level declarations are compiled to package-local declarations;

* protected remains protected (note that Java allows accessing protected
members from other classes in the same package and Kotlin doesn't, so
Java classes will have broader access to the code);

* internal declarations become public in Java;
* public remains public.

11/19/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Homework — Deadline 11/26 10.15 am

* You have to create a demonstration of Kotlin object oriented
capabilities

e Details

* Create a class to represent any cards
» Content, initialization
» Comparison
* Create a class to represent playing cards
* Suit, rank
e Use inheritance
e Use enum

* Create two classes to store deck for cards and playing cards as well

* Test your code

11/19/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Android Kotlin

Next week

