X " Pazmany Péter Catholic University

Wf Faculty of Information Technology and Bionics

o
Teg et 18V

Basics of Mobile
Application Development

Objective-C

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Reminder

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

OOP - keywords

* Object - * Messaging
* Represents of entities of the real : .
world * Interaction of objects
* Class of objects * Interfaces are defined to
¥ GFOUBPhOf similar objects facilitate the communication
® €navior .
* Structure of ObJeCtS
* Template to create objects e Abstraction
* Method

* A function (procedure) which * Grouping classes

r(;wkz)ljrélgulates the state of an e Hi erarchy
* Field * Design and implementation
* A variable defining a property of tool
an object

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Client sends a message

message
(request)

Calling a public
Obiject, method Object,
requires a executes tasks
service upon request

10/22/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Objective-C

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Basic properties

* Extension of C language
* Thisitnot C++
* Thin layer on the C, which is processed by the preprocessor

* New syntactic elements to create classes and methods
 Smalltalk-style

* Fully object oriented

* The C variables, functions are the same
* All C code can be compiled with the Objective-C compiler

* The iOS framework was Objective-C based originally

* The are existing Objective-C based codes, libraries

* Short history
* Obective-C was developed by the beginning of 1980s
* NeXT bought the license
* Apple acquired Next

10/22/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Data types

* C primitives
* Without explicit type: void
* Integers: (unsigned) short, char, int, long, long long
* Fixsize integers: 1nt8_t,uintl6_t, ...
* Floating-point number: float, double, long double
* Objective-C primitives
* Logical: BOOL (two values: YES and NO)
* Base type of the objects: id

* Data type for instances of meta-classes: Class
* Type for storing selectors (to store functions): SEL

* Types can be used as usual, examples:

e short aShort = 1234;
char aChar = 'A';
BOOL isGood = YES,

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Data types

* Basic objects
* Objects: NSObject
* Superclass most of the objects
* Numbers: NSNumber
* Immutable — the same reasons as in Java
Text: NSString
* Immutable
Fixedpoint numbers: NSDecimalNumber
* Immutable
Collections:
» Set (immutable): NSSet
* Array (immutable): NSArray
* Key-Value pairs (immutable): NSDictionary
Date: NSDate

* Each above can be accessed through pointers
* The instantiation and lifetime will be discussed

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Classes

* The concept of the classes and objects are the same
* However some keywords are used in other way

* Class declaration is separated into:
* .h file — header, which contains the public interface of class/object
* .m file — implementation, which contains the private
implementation

* On the following slides the .h file is on the left side and the
.m file is on the right side

* Remember! New keywords starts with the @ symbol, as the
preprocessor has to find them

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

- 0
i 2

Creating class

Card.H file Card.M file
* A Card class will be created, * Implementation of the same
which is subclass of the class. (You do not have to
NSObject. specify the superclass again)
* The superclass must be * The .h file must be imported.
imported.
#import <Foundation/Foundation.h> #import "Card.h"
@interface Card : NSObject @implementation Card
// Public declarations // Implementation
@end @end

10/22/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

h import
* Previously an element of the framework has been
imported

* To import the entire framework
e @import Foundation;

* To import anything else
e #import "Superclass”

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

@interface and @end

* Between the two keywords you can specify the interface if the class
* The fields and the methods can be specified

* In the .h file the public, int the .m file the private members
* There is no other visibility level

* In case of .m file
 #import "Card.h"

interface Card() |
/ Private declarations
@end

@implementation Card

@end

10/22/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

L
L’ h
Teg er 1%

@interface and @end

* Fields can be part of classes, which can be considered as the
properties of the class/object
* You can declare by using the @property keyword
* The type and variable name must be specified
The declarations of get and set are also there
Members can only be accessed through methods
* Public and private environment as well
Declaration is in the interface
* Example
* @property (strong) NSString *contents;
In this example a pointer refers to an NSString

* If the object is a property, is must be access by using pointers
* This brings the problem of memory management

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

@property

* A property can be strong or weak

» strong: The object that is referred by the]Property, exists while at
least one strong pointer refers to that specitic object. (The number of
reference is greater than zero.)

* Ifyou setit to nil the number of reference is decreased.

 weak: If there is no strong pointer to that instance, then the object can
be destroyed and the memory can be freed up.

* The weak pointer is set to nil in that case.

* A property can be nonatomic as well
* Then the access is not thread safe

* In the other case, the compiler creates locks, and through of them the
parallel access is controlled

* Currently you can used nonatomic

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& o
o, ST

@synthesize

* Behind the property there is a variable, which is declared by the compiler, along
with the get and set functions

* Its name is the name of the property, with an _ before the name
* You can override this behavior by using the @synthesize keyword

* Previous example can be continued: In the @implementation part of the .h file:
* @synthesize contents = _contentsvariable;

* Of course, you can write your own get and set messages

* The code that is created automatically is something like this:
e @synthesize contents = _contents
« - (NSString *)contents

return _contents;

« - (void)setContents:(NSString *)contents

_contents = contents;

10/22/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Further options

A property can not only be an object
* @property (nonatomic) BOOL chosen;
* @property (nonatomic) BOOL matched;
* Here there is no meaning to use strong/weak options, as they are not stored in the heap of the memory.
 Thus they exists till the object exists
* Arbitrary C type can be used, even structs

You can specify the name of the get/set message

Previous example
* -(BOOL)chosen
* Instead of the previous:

. 8poper‘ty §nonatom::Lc, getter=isChosen) BOOL chosen;
poperty (nonatomic, getter=isMatched) BOOL matched;

* Then
+ -(BOOL)isChosen
* The readability of the code is better

* A property also can be readonly as well
* And several others, which are not important at this point

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
#p "
Dex or 1oV

Functions — Messages

* Instead of calling methods/functions, the message sending semantics comes into
foreground

* C++ style approach (traditional)
 foo->bar (parameter);
* Objective-C approach

* [foo bar:parameter];

* Itis determined in runtime whether the target object can or cannot process the
request

* Thus the type checking happens in runtime not in compilation time
* Allways expect NIL as response

 Additional information
* The different parameters are defined through the name of the message
* Traditionally
 -(type)method: (type)paraml :(type)param2;
* Obijective-C
- (type)method: (type)paraml andParam2: (type)param2;

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

%t

Overload!?

* We would like to have two messages with different parameter type
 -(int)doIt:(int)paraml :(int)param2;
e -(int)doIt:(int)paraml :(NSString*)param2;

This is not allowed

But if you include the name (purpose) of the parameter into the name of
the message

* -(int)dolt:(int)paraml withSomeInt:(int)param2;
 -(int)doIt: (int)paraml withSomeString: (NSString*)param2;

In that case the two messages have different names, so it is not overloading
* Overload is not supported by Objective-C
* But you can mimic, by using the id type
* And the implementation decides what to do with the actual parameter
In previous case, the two messages both have two parameters
* Neither one is optional

10/22/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Card example
Card.H file Card.M file

#import <Foundation/Foundation.h> « #import "Card.h"

@interface Card : NSObject @interface Card()

// Private declarations

@property (strong) NSString @end

contents; @implementation Card

@property (nonatomic, %(int)match: (Card *)card

getter=isChosen) BOOL chosen; int score = 9:

@property (nonatomic

getter=isMatched) BOOL matched; // We calculate the score
-(int)match: (Card *)card; } return score;

@end
@end

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
#p "
Tes pr 0v

New message
 -(int)match:(Card *)card
{ int score = 0;

if ([card.contents isEqualToString:self.contents]) {
score = 1;

return score;

}

* Observe
* You send the message as previously mentioned
* Instead of this thereis self
* As everything is an object, you can use . to access members
* The name of the isEqualToString
* The self.contents is the get message, similarly to card. contents

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Comparison

* The == operator compares the value in case of primitives
and objects (pointers) as well

* Unsurprisingly, the memory addresses are compared

* In case of objects you must specify a message, which can
compare the objects based on their properties

* NSString:
 isEqualToString

* NSNumber:
 isEqualToNumber

e Etc.

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Extend the message — NSArray

* The signature of the message is extended
 -(int)match:(NSArray *)othercards;

* Then the implementation will be
. E(int)match:(NSArray *)othercards

int score = 0;

for.$Card *card in othercards% é .
i ([card.cgntents isEqualToString:self.contents]) {
score = 1;

}

return score;

}

* You can observe the for-each loop
* The syntax of the for loop is the well known one

10/22/2019 Basics of Mobile Application Development

A
R’f Faculty of Information Technology and Bionics

A 0
e op 08

Using the class

Deck.H

 #import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard: (Card *)card
atTop(BOOL)atTop;

-(void)addCard: (Card *)card
-(Card *)drawRandomCard;

@end

Pazmany Péter Catholic University

Deck.M

#import "Deck.h"

8interface Deck()
end

@implementation Deck

-(void)addCard: (Card *)card
atTop(BOOL)atTop

// TODO

-(void)addCard: (Card *)card
[self addCard:card atTop:NO];

-(Card *)drawRandomCard
// TODO

@end

10/22/2019 Basics of Mobile Application Development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

In previous code

* There are two versions of addCard message
* If you want to delegate, then you can send the other message

* There is no data structure to store the card data
* And there is no code to manage the data

* NSArray
* [tis immutable, thus it is not feasible
* However there is the NSMutableArray type

» We will send messages to the array
* Indexing => sending a message

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Using the code

* #import "Deck.h"
@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards;
@end
@implementation Deck

-(void)addCard: (Card *)card atTop(BOOL)atTop

if (aTop) {
[self.cards insertObject:card atIndex:0];
} else {
[self.cards addObject:cards];
}
}
@end

10/22/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Using the code

 @property (strong, nonatomic) NSMutableArray *cards;

This line creates the property and the variable of the property

However the object is not initialized, so we have to it, and also, we have to
manage the variable

* Currently we have a problem, as in addCard we access to a NIL pointer

The automatically generated get function:
 -(NSMutableArray *)cards { return _cards; }

It has to be replaced:

* -(NSMutableArray *) cards { .
if (!_cards) _cards = [[NSMutableArray alloc] init];
return _cards;

}

And we are now arriving to the important question of initialization

10/22/2019 Basics of Mobile Application Development

| Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

Initialization of an object

* The memory for the object (of a pointer) has to be allocated and the
object also has to be initialized
* Previously, we used the new operator and we called a constructor

* In Objective-C there are no such things, then we must send two different
messages

* Technically the two messages can be separated, but we should not do that
* Also it is not forbidden to return NIL after initialization

* Initialization with literals
* NSString: @"Hi guys"”;
* NSNumber: @42;
* NSArray: @[@"One", @"Two", @"Three"];
* You do not have to deal with the lifecycle

* Initialization of an object
« [[NSMutableArray alloc] init]

10/22/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

drawRandomCard

-(Card *)drawRandomCard
{
Card *randomCard = nil;
if ([self.cards count]) {
unsigned index = arc4random() % [self.cards count];
randomCard = self.cards[index];
[self.cards removeObjectAtIndex:index];

}

return randomCard;

}
* cards[index] is a message as well!

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

. 0
s up go

Create a subclass
PlayingCard.h PlayingCard.m

 #import "Card.h" * #import "PlayingCard.h"
@implementation PlayingCard
@interface PlayingCard : Card
- (NSString *)contents
@property (strong, nonatomic)

NSString *suit; return

[NSString stringWithFormat:@"%d%@",
self.rank, self.suit];

@property (nonatomic) NSUInteger }
rank;
@end @end

* The get function of the contents is overriden here
* The variable is declared only once, in the superclass

* The string is not allocated, but cretaed by
formatting

10/22/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

& -0
#p "
es pr 10"

Continue

 #import "PlayingCard.h"
@implementation PlayingCard

- (NSString *)contents

{
NSAr‘r\ay *Pankstr\ings = @[Il?ll’@"All)@llzll,@ll3ll, .. .,@lllel')@l'J",@"Q",@"K"];
return [rankStrings[self.rank] stringByAppendingString:self.suit];

}
@end

* Herethe [] and @[] statements are translated to sending messages
* We can create our own get and set messages
« - (NSString *)suit

{

}

return _suit ? _suit : @"?";

10/22/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

L ets continue

* Creating a set message to set the suit of the cards
* However we face a problem, as neither the get and set message is generated automatically
* Thus the property variable will not be synthesized
* We have to do it manually
* The property variable must not be accessed directly outside of the set/get messages
* @synthesize suit = _suit;

* The code

* Remember, you can send a message to any object

* - (void)setSuit:(NSString *)suit

if ([@[@"v",@"+",@"+",@"*"] containsObject:suit]) {
) _suit = suit;

}

10/22/2019 Basics of Mobile Application Development

= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Class members

* Previous members was instance members

* To create class members you have to used the + symbol
* + (NSArray *)validSuits

return @[@"Y",@"¢",@"4",0"+"];

* In this case you have to send the message to the class
. % (void)setSuit: (NSString *)suit
if ([gglayingCard validSuits]

contains _%ect:sgit]) {
_Sult = sult;

¥

* You can create public and private class members as well

10/22/2019 Basics of Mobile Application Development

== Pazmany Péter Catholic University

A
N’f Faculty of Information Technology and Bionics

Current state
PlayingCard.h PlayingCard.m

* #import "Card.h" + #import "PlayingCard.h"
@implementation PlayingCard
. . . @synthesize suit = _suit;
@interface PlayingCard : Card - (NSString *)contents
@property (strong, nonatomic) NSString *suit; NSArray *rankStrings = [PlayingCard rankStrings];
return [rankStrings[self.rank]
@property (nonatomic) NSUInteger rank;) stringByAppendingString:self.suit];
. . + (NSArray *)validSuits
+ (NSArray *)validSuits; {
+ (NSArray *)rankStrings;) return @[@"Y",@"¢",@"4",@"+"];
+ .
(NSUInteger)maxRank; + (NSArray *)rankStrings
{
@end } return @[@u?.-’@..Au,@nzu’@uBu’...,@uleu,@njn,@uQ",@uKu];
- (void)setSuit:(NSString *)suit
{

if ([[PlayingCard validSuits] containsObject:suit]) {
_suit = suit;
}
}
-(NSString *)suit
{

return _suit ? _suit : @"?";

}
+ (NSUInteger)maxRank { return [[self rankStrings] count]-1; }
@end

10/22/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

PlayingCardDeck

* This will contain the PlayingCards

* Based on the Deck class

* There is no extension in the interface part

* Existing cards will be inserted during the initialization
e init

* Unusual — compared to the well-known constructors

* There is a return type — the type of the instance
(instancetype)

* The created instance is assigned to the self variable

* The init, or any alternative have to be called immediately after
the alloc call

* Even if they can be separated technically

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

- 0
g o™

New class

PlayingCardDeck.h PlayingCardDeck.m

e #import "Deck.h" * #import "PlayingCardDeck.h"
@interface PlayingCardDeck : Deck @implementation PlayingCardDeck
@end - (instancetype)init

self = [super init];
if (self) {

return self;

}

@end

* Note
There is a return!
Superclass is initialized first
* It can be resulted in NIL

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

& -0
Deg op ro%

PlayingCardDeck.m

* #import "PlayingCardDeck.h,,
#import "PlayingCard.h"

@implementation PlayingCardDeck
- (instancetype)init

self = [super init];
if (self) {
for (NSString *suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {

PlayingCard *card [[PlayingCard alloc] init];
card.rank = rank;
card.suit = suit;
[self addCard:card];

}
}

return self;

}
@end

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

o -0
#p "
ex gr 1o*

Question
* What does the next line do?

cardA.contents = @[cardB.contents,cardC.contents][[cardB match:@[cardC]] ? 1 : @]

10/22/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

Input

Controller

IIIIIIIIII>

10/22/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

* The application has three layers
* Model

* The representation of the information stored by the application
* Plain data is augmented with meta data to provide meaning

* Many application uses permanent storing procedure to save data
* The data access layer is part of the model, most of the cases

10/22/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

* The application has three layers
* View

* Visualize the model in the correct form, which is capable of user
interaction

* Typically itis a Ul element
* Different view for different objective may be exist

10/22/2019

Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

* The application has three layers

e Controller

* Events (mostly user interactions) are processed and appropriate response
is generated

* May change the model

10/22/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

Controller

10/22/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

» Communication between the components
* Controller communications with View and Model
* View and Model cannot access each other directly

View

Controller

10/22/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

* However View notifies the controller indirectly
* Controllers have to specify Targets
* You can invoke Actions for specific Targets

View

Controller

10/22/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

* In other cases the View has to be synchronized
* Delegates have to be created
* View have to know the structure of the data

e Controller has to be act as a source of data
* Data is transformed by the Controller

View

Controller

10/22/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

* Model also have to notify the Controller
* No direct communication allowed

¢ Broadcast messages are sent
* Controllers, can act on

View

Controller

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

%t "~ Al

Multiple MVCs - rules are obeyed

View

)

Controller

Controller

Controller

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Multiple MVCs - rules are disobeyed

)

Controller Controller

Controller

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Homework — Deadline 11/05 10.15 am

* Create a brief demonstration application

* Have a Storage class, with internal variable to store values in an
array
* Create functions to retrieve
* Value atindex
* Most frequent item
* Smallest/largest item

* Create a main to test your class, with messages

10/22/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

GNUStep setup
* On Windows 10

* Install linux subsystem https://docs.microsoft.com/en-
us/windows/wsl/install-win10

* Continue with next block

On Linux

* Install gcc and extensions:
* sudo apt install gcc gobjc++ gnustep gnustep-devel gnustep-make

* Write your code and compile

gcc -MMD -MP -DGNUSTEP -DGNUSTEP_BASE_LIBRARY=1-DGNU_GUI_LIBRARY=1-DGNU_RUNTIME=1 -
DGNUSTEP_BASE_LIBRARY=1 -fno-strict-aliasing -fexceptions -fobjc-exceptions -D_NATIVE_OBJC_EXCEPTIONS -
pthread -fPIC -Wall -DGSWARN -DGSDIAGNOSE -Wno-import -g -O2 -fgnu-runtime -fconstant-string-
class=NSConstantString -I. -I /usr/include/GNUstep -o a.out main.m -lobjc -Ignustep-base

10/22/2019 Basics of Mobile Application Development

https://docs.microsoft.com/en-us/windows/wsl/install-win10

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Xcode and Android Studio

After the break

