X " Pazmany Péter Catholic University

Wf Faculty of Information Technology and Bionics

o
Teg et 18V

Basics of Mobile
Application Development

Swift 1.

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Multiple branches - revisited

Intervals
let approximateCount = 62
let countedThings = "moons orbiting Saturn”

let naturalCount: String
switch approximateCount {

case 0:

naturalCount = "no"
case 1..<5:

naturalCount = "a few"
case 5..<12:

naturalCount = "several"
case 12..<100:

naturalCount = "dozens of"
case 100..<1000:

naturalCount = "hundreds of"
default:

naturalCount = "many"
¥

print("There are \(naturalCount) \(countedThings).")

10/15/2019 Basics of Mobile Application Development

Tuples

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Multiple branches - revisited

let somePoint = (1, 1)
switch somePoint {
case (0, 9):

print("\(somePoint) is at the origin")

case (_, 9):

print("\(somePoint) is on the x-axis")

case (0,):

print("\(somePoint) is on the y-axis")

case (-2...2, -2...2):

print("\(somePoint) is inside the box")

default:

10/15/2019

print("\(somePoint) is outside of the box")

Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Control Transfer Statements

* Control transfer statements change the order in which your
code is executed, by transferring control from one piece of
code to another.

* Swift has five control transfer statements:
e continue
* break
 fallthrough
* return
e throw

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Continue

* The continue statement tells a loop to stop what it is doing and start
again at the beginning of the next iteration through the loop

let puzzleInput = "great minds think alike"
var puzzleOQutput = ""

let chaE?ctersToRemove: [Character] = ["a", "e", "i", "oO"
u-,

for character in puzzlelInput {
if charactersToRemove.contains(character) {

J

continue
} else {
puzzleOutput.append(character)
}
}
print(puzzleOutput)

10/15/2019

Basics of Mobile Application Development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Break in a Loop Statement

* When used inside a loop statement, break ends the loop's
execution immediately and transfers control to the code after the
loop's closing brace

* Break in a Switch Statement

* When used inside a switch statement, break causes the switch
statement to end its execution immediately and to transfer
control to the code after the switch statement’s closing brace

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

o0

Fallthrough

* To enable the C-style fallthrough behavior in a switch

let integerToDescribe = 5
var description = "The number \(integerToDescribe) is"
switch integerToDescribe {
case 2, 3, 5, 7, 11, 13, 17, 19:
description += " a prime number, and also"
fallthrough
default:
description +=

an integer."

}

print(description)

10/15/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Function parameter argument label

* Each parameter has a name and argument label
* By default, the argument label is the same as the parameter name
func greet(name: String, day: String) -> String {
return "Hello \(name), today is \(day)."
¥

. I\X/hen alfunction is invoked the argument label has to be specified as it was seen
ast wee

greet(name: "Bob", day: "Tuesday")
* You can also specify you own name

func greet(name sl: String, day s2: String) -> String
* It can be invoked the same way

greet(name: "Bob", day: "Tuesday")
* You also can omit the label: . .

func greet(_ sl1: String, _ s2: String) -> String
* Then

greet("Bob", "Tuesday")

10/15/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Enum

* Enum type

enum Rank: Int {

case Ace =1

case Two, Three, Four, Five, Six, Seven,
Eight, Nine, Ten

case Jack, Queen, King
}

let ace = Rank.Ace
let aceRawValue = ace.rawValue

10/15/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Enum in switch

* A function for the previous enum

func simpleDescription() -> String {

switch self {

case .Ace:
return

case .Jack:
return "jack”

case .Queen:
return "queen”

case .King:
return "king”

default:

} return String(self.rawValue)

ace”

10/15/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

A
\V Faculty of Information Technology and Bionics

Another example

enum Suit {
case Spades, Hearts

case
return
.Diamonds:
return
.Clubs:
return

case

case

¥

10/15/2019

: ~ts, Diamonds, Clubs
func simpleDescription() -> String {
switch self {
case .Spades:
return "spades”
.Hearts:

"hearts"”
"diamonds"

"clubs™

Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Further options

* You can add additional values to the instance of an enum

enum ServerResponse {

case Result(String, String)

case Error(String)
}
let success = ServerResponse.Result("6:00 am", "8:09 pm")
let failure = ServerResponse.Error("Out of cheese.")
switch success {
case let .Result(sunrise, sunset):

let serverResponse = "Timel \(sunrise), time2 \(sunset)."
case let .Error(error):
let serverResponse = "Failure... \(error)”

¥

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Struct

struct Card {
var rank: Rank
var suit: Suit
func simpleDescription() -> String {
return "The \(rank.simpleDescription()) of
\(suit.simpleDescription())"

}

let threeOfSpades = Card(rank: .Three, suit: .Spades)
let threeOfSpadesDescription =
threeOfSpades.simpleDescription()

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

%t "~ Al

Class and struct

* Both classes and structs can have

* Properties to store data
 Get and set functions
Methods to implements functions
Initializer, to set the initial state
Indexer
Extensions to add new capabilities to the default functionalities
The also can implement (match to) protocols, to provide standard functions

* Classes
* There is inheritance between classes
* Type conversion in runtime is possible
* You can deinitialize classes to free up resources

* By using reference counting the life cycle of the classes is handled
automatically

10/15/2019 Basics of Mobile Application Development

| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Differences

* The struct and enum are by value types while the classes
are reference types
* It means that in case of parameter passing the first ones are
copied
* In case of the latter one, the reference is copied thus the instance
is not duplicated

* The built-in String, Array and Dictionary are implemented
as structs

10/15/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Properties — fields

Example

struct FixedLengthRange {
var firstValue: Int
let length: Int

}

var rangeOfThreeltems =
FixedLengthRange(firstvalue: 0, length: 3)
rangeOfThreeItems.firstValue = 6

'l Error

let rangeOfThreeltems =
FixedLengthRange(firstvalue: 0, length: 3)
rangeOfThreeItems.firstValue = 6

10/15/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Properties — fields

Calculated, manipulated value

struct Rect {
var orlgln = Point()
var size Slze(%
var center: Poin {

get
iet centerX = origin.x + (size.width / 2%
let centerY = origin.y + (size.height / 2)
return Point(x: centerX, y: centerY)

}

set(newCenter) {
origin.x = newCenter.x - Esize.width / 2%
origin.y = newCenter.y - (size.height / 2)

}
}
struct Point {
var x = 0.0, y = 0.0

Struct Size { .
var width = 0.0, height = 0.0

10/15/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

= 0
% S
Tes pp ro®

Observing a property

class StepCounter {
var totalSteps: Int = 0 {
willSet(newTotalSteps) {
print("About to set totalSteps to \(newTotalSteps)")

}
didSet {
if totalSteps > oldvalue {
print("Added \(totalSteps - oldValue) steps")
}
}

10/15/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University
\f Faculty of Information Technology and Bionics
| ty gy

Properties — fields

* Class variables are defined with static keyword
* If there is no set function defined then the property is read only

class Counter {
static var maxCount

var count = ©
func incrementCount() {
) count += 1

static func incrementMaxCount(value : Int) {
) maxCount += value
}

Counter.incrementMaxCount(value: 5) // 15

10

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

&
#p
Tes o 1

Changing the state of a class

class Counter {
var count = 0
func increment() {
count += 1
}

func incrementBy(amount: Int) {
count += amount

}

func reset() {
count = ©

}

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

&
#p
Tes o 1

Changing the state of a struct

struct Counter {
var count = 0
mutating func increment() {
count += 1
}

}

* In case of struct the self variable is immutable

10/15/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Initialization — Example

struct Color {
let red, green, blue: Double
init(red: Double, green: Double, blue: Double) {

self.red = red
self.green = green
self.blue = blue

}

init(white: Double) {
red = white
green = white
blue = white

}

10/15/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Inheritance, overriding

class Counter {
var count = ©
func incrementCount() {
) count += 1

}

class ChildCounter : Counter{
override func incrementCount() {
) count += 2

}

var ¢ = ChildCounter()
c.incrementCount()
print(c.count)

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Inheritance, overriding

* Overriding a class function (observe the class keyword)

class Counter {
static var maxCount = 10
var count = 0
func incrementCount() {
++count
}

class func incrementMaxCount(value : Int) {
maxCount += value
}
}

Counter.incrementMaxCount(5) // 15

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Inheritance, overriding

* Overriding a class function (observe the class keyword)
Counter.incrementMaxCount(5) // 15

class SuperCounter : Counter {
override class
func incrementMaxCount(value : Int) {
maxCount += 2*value

¥

SuperCounter.incrementMaxCount(5) // 25
Counter.maxCount

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Preventing the overriding
* Obviously

e final func
e final class func
e final var
 final subscript

* And

* final class

* Without these modifiers, you can override
* Functions
* Properties
* Get and Set functions
* Indexers

10/15/2019 Basics of Mobile Application Development

| Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

Extension — protocol

* Adding a new function to any struct, enum
* Possibilities

New calculated (derived) property

New class/instance function

New initializer

New indexer

New nested type

Existing type can be prepared to implement a new protocol
* Keyword: extension

* Protocol
* It it the well-known conception of interface

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Examples

protocol Animal {
func name() -> String
}

class Dog : Animal {
func name() -> String {
return "Jack”
}

¥

let favorite : Animal = Dog()
favourite.name() // "Jack™

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Examples

class Greyhound : Dog {
override func name() -> String {
return "Bruno”
}

¥

let favourite2 : Animal = Greyhound()
favourite2.name() // "Bruno"

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Extension of a protocol

extension Animal {
func doubleName() -> String {
return name() + " " + name()
}

}
let favourite2 : Greyhound = Greyhound()

favourite2.doubleName() // "Bruno Bruno"
favourite.doubleName() // "Jack Jack"

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Controlling the access

* The visibility of the members can ben controlled with the
common keywords

* public - the public interface of the module, can be accessed
from anywhere)

* internal - can be accessed anywhere in the module (publicin
the module for interoperability)

e private - can be accessed in the environment where it is

defined

10/15/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Serizalization of optionals

class One {
var number: Int?
}

class Simple {
var oneOrNot: One?
}

let optAndSimple: Simple? = Simple()
optAndSimple!.oneOrNot = One()
optAndSimple!.oneOrNot!.number = 5

if let ¢ = optAndSimple?.oneOrNot?.number {
print("The number is \(c)")

} else {
print("No number")

}

10/15/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Homework — Deadline 10/22/2019 10.15 am

* You have to create a demonstration of SWIFT object oriented
capabilities

e Details

* Create a class to represent any cards
» Content, initialization
» Comparison
* Create a class to represent playing cards
* Suit, rank
e Use inheritance
e Use enum

* Create a deck for cards and playing cards as well

* Test your code

10/15/2019 Basics of Mobile Application Development

§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Objective-C

Next week

