W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Basics of Mobile
Application Development

Design patterns



Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Design patterns

* Design patterns are description of collaborative objects and classes.

* General patterns can be specialized and implemented in order to solve software
design issues.

* Itis beneficial to use object-oriented programming languages (C++, Java, Smalltalk, ...)
* In case of procedural languages further patterns may be required:
* Inheritance

* Encapsulation
* Polymorphism

* Categories

* Objective
* Creational patterns
* Structural patterns
* Behavioral patterns

* Scope
» Class
* Object

10/01/2019 Basics of Mobile Application Development




» Pazmany Péter Catholic University

* Creational
Abstract Factory
Builder

Factory Method
Prototype
Singleton

* Structural

* Adapter
Bridge
Composite
Decorator
Facade
Flyweight
* Proxy

10/01/2019

Some of patterns

A
R’f Faculty of Information Technology and Bionics

* Behavioral

* Chain of Responsibility
« Command

* Interpreter
 [terator

* Mediator

* Memento

* Observer

e State

* Strategy

* Template Method
e Visitor

Basics of Mobile Application Development



W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Abstract Factory

 Creational Pattern e e [Chnt aris tor e
* Provide an interface e )
) .1 /\
for creating families
Of re]atEd or . | Model3Wheels | Model3Hood | Model3Door
dependent Ob_]ECtS | Model2Wheels | Model2Hood | Model2Door
. .c”. Model1 Wheels Model1Hood Model1 Door
without specifying
th e”. C Oﬂ Cret e CI ass es. +stampWheel() +stampHood() +stampDoor()

* A hierarchy that \ ! yd

encapsulates: many
possible "platforms",

and the construction m
of a suite of

"products".

—

10/01/2019 Basics of Mobile Application Development




W Pazmaény Péter Catholic University
Faculty of Information Technology and Bionics

=
L’
Tes et T

Abstract Factory

* Provide a level of indirection that abstracts the creation of
families of related or dependent objects without directly
specifying their concrete classes.

* The "factory" object has the responsibility for providing creation
services for the entire platform family.

* Clients never create platform objects directly, they ask the
factory to do that for them.

10/01/2019 Basics of Mobile Application Development



Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Abstract Factory

10/01/2019

=interfaces
Class1 AbstractProductOne
ey
|
[ ]
ProductOnePlatformOne ProductOnePlatformTwo
«interfaces
AbstractPlatform
[ | \!/
PlatformOne PlatformTwo «interfaces
AbstractProductTwo
- -4 +makeProductOne()
i | +makeProductTwo() /_’F
[ |
ProductTwoPlatformOne ProductTwoPlatformTwo

return new ProductOnePlatformTwo )7

return new ProductTwoPRlatformTwo )

Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Abstract Factory

abstract class CPU {}

class EmberCPU extends CPU {}
class EnginolaCPU extends CPU {}
abstract class MMU {}

class EmberMMU extends MMU {}
class EnginolaMMU extends MMU {}

class EmberToolkit extends AbstractFactory {
@Override
public CPU createCPUég
return new EmberCPU();

@Override
public MMU createMMU&&
return new EmberMMU();

}

class EnginolaToolkit extends AbstractFactory {
@Override
public CPU createCPU(i é
return new EnginolaCPU();

@Override
public MMU createMMU(i &
return new EnginolaMMU();

}

enum Architecture
ENGINOLA, EMBE

10/01/2019

abstract class AbstractFactory {

private static final EmberToolkit EMBER_TOOLKIT = new
EmberToolkit();

private static final EnginolaToolkit ENGINOLA_TOOLKIT = new
EnginolaToolkit();

static AbstractFactory getFactory(Architecture architecture) {
AbstractFactory factory = null;
switch (architecture) {
case ENGINOLA:
factory = ENGINOLA_TOOLKIT;
break;
case EMBER:
factory = EMBER_TOOLKIT;
break;

return factory;

public abstract CPU createCPU();

public abstract MMU createMMU();

public class Client {
public static void main(String[] args) {
AbstractFactory factory =
AbstractFactory.getFactory(Architecture.EMBER);
CPU cpu = factory.createCPU();

Basics of Mobile Application Development




N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Factory Method

* Creational pattern

* Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses.

* Defining a "virtual" constructor.

InjectionMold

+inject(}

ToyDuckMold ToyCarMold

+inject() +inject()

10/01/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

= 2
i s
Teg et 18V

Factory Method

e A framework needs to standardize the architectural model
for a range of applications

* But allow for individual applications to define their own domain
objects and provide for their instantiation.

* Factory Method is to creating objects as Template Method
is to implementing an algorithm.

* A superclass specifies all standard and generic behavior (using
pure virtual "placeholders" for creation steps)

* Then delegates the creation details to subclasses that are
supplied by the client.

10/01/2019 Basics of Mobile Application Development



Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Factory Method

«interfaces
Framework

+makeFroduct{] | Product

Product ﬁl

I I
ﬁl ApplicationOne ApplicationTwo

ProductTwo ProductOne

+makeProduct{) : Product +makeProduct{} : Product

raturn new ProductOne ) B‘

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Factory Method

interface ImageReader {
DecodedImage getDecodeImage();

class DecodedImage
private String image;

public DecodedImage(String image) {
this.image = image;

@Override
public String toString() é
return image + ": 1s decoded";

}

class GifReader implements ImageReader {
private DecodedImage decodedImage;

public GifReader§String image) {
this.decodedImage = new DecodedImage(image);

@Override
public DecodedImaée getDecodeImage() {
return decodedImage;

10/01/2019

class JpegReader implements ImageReader {
private DecodedImage decodedImage;

public JpegReader(String image) {
decodedImage = new DecodedImage(image);

@0verride
public DecodedImage getDecodeImage() {
return decodedImage;

}

public class FactoryMethodDemo {
public static void main(String[] args) {
DecodedImage decodedImage;
ImageReader reader = null;
String image = args[0];

String format = image.substring(image.indexOf('."') + 1,

(image.length()));
if (format.equals("gif")) {
reader = new GifReader(image);

}
if (format.equals("jpeg")) {
reader = new JpegReader(image);

assert reader != null;
decodedImage = reader.getDecodeImage();
System.out.println(decodedImage);

Basics of Mobile Application Development



N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Singleton
* Creational pattern

* Prohibits to create more than one instance of a class
* Allows to create one and provides an access point to it

* Example
* Only a single file system manager, or window manager is allowed

* Implementation

* A hidden class function can only instantiate the class, ensuring
that only one instance is allowed

* Subclasses may be created

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

Government

+election(): Government

Return unigue instance [\—\1

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Singleton

#include <iostream> class Octal: public Number
#include <string>
#include <stdlib.h> // 6. Inheritance can be supported
using namespace std public:
friend class Number;
class Number void setValue(int in)
{
public: char buf[10];
// 2. Define a public static accessor func sppintg(guf}’"%o", in);
static Number *instance(); sscanf(buf, "%d", &value);
statlc void setType(string t) } ? ? ?
X protected:
deﬁete 1nst Octal(){}

)

inst = 0;
* .o
virtual void setValue(int in) Number *Number: :instance()
- in- if (linst)
value = in; // %. Do "lazy init%alization" in the accessor function
: . if (type == "octal"
virtual int getValue() inst = new Octal();
. else
return value; inst = new Number();
pr\otected return inSt;
int value }
// 4. Define all ctors to be protected i .
Number () int main()
cout << ":ctor: "; // Number myInstance; - error: cannot access protected constructor
//_ 5. Clients may only use the accessor function to manipulate the
// 1. Define a private static attribute Singleton
private: Number::1nstance()—>setVa1ue(42);
static string type; cout << "value is " << Number::instance()->getValue() << endl;
static Number *inst; Number: :setType("octal");
}; Number: 1nstance() >setValue(64);
cout << "value is " << Number::instance()->getValue() << endl;
string Number::type = "decimal"; ¥

Number *Number::inst = 0;

10/01/2019 Basics of Mobile Application Development




W Pazmaény Péter Catholic University
Faculty of Information Technology and Bionics

=
L’
Tes et T

Adapter

* Structural class/object pattern

* An "off the shelf" component offers compelling functionality that
you would like to reuse

* Butits "view of the world" is not compatible with the philosophy
and architecture of the system currently being developed.

10/01/2019 Basics of Mobile Application Development



N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Adapter

* Reuse has always been painful and elusive.

* One reason has been the tribulation of designing something new,
while reusing something old.

* There is always something not quite right between the old and
the new.

* It may be physical dimensions or misalignment. It may be timing
or synchronization.

* It may be unfortunate assumptions or competing standards.

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Adapter

Client

=interfaces
Shape

+displayfin x1, in y1,in x2, in y2)

=adapiees
Rectangle LegacyRectangle
T
P
+display(in x1,iny1, in %2, in y2) +display(in x1,in y1,inw, in h)

Delegate and map to adaptee.

NewApplication Wrapper

_________ theWrappedOne.doThat();
+doThis() PP U HN

J

LegacyComponent

+doThat()

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Adapter

import abc class Adaptee:

class Target(metaclass=abc.ABCMeta): Define an existing interface that needs adapting.

Define the domain-specific interface that Client uses.
def specific_request(self):

def __init_  (self): pass
self. adaptee = Adaptee()

abc.abstractmethod .
ef request(self): def main():
pass adapter = Adapter()

adapter.request()

class Adapter(Target):
Adapt the interface of Adaptee to the Target if name == " main ":
interface. Tmain()

def request(self):
self. adaptee.specific_request()

10/01/2019 Basics of Mobile Application Development




| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Composition

e Structural pattern

* Application needs to manipulate a hierarchical collection of
"primitive" and "composite” objects.
* Processing of a primitive object is handled one way, and processing of a
composite object is handled differently.
* Having to query the "type" of each object before attempting to process it
is not desirable.
* For example in a graphical application, the basic and complex
view components can be treated with the same functions

« Composite elements can be created by grouping objects

10/01/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Composition

* Define an abstract base class (Component) that specifies
the behavior that needs to be exercised uniformly across
all primitive and composite objects.

* Subclass the Primitive and Composite classes off of the
Component class.

* Each Composite object "couples” itself only to the abstract type
Component as it manages its "children’".

* Use this pattern whenever you have "composites that
contain components, each of which could be a composite”.

10/01/2019 Basics of Mobile Application Development



Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Composition

«interface»
Component | _
— ™)
+doThis()
| ]
Leaf Compaosite
-elements
-elements -
. +addElementy()
+doThis() +doThis()
ArithmeticExpression
/¢ Container functicnality ::. ™y
/S for sach element + +{}
elements|i] . daThis ) +
+ ) +
£ ) N

MumericOperand CompositeOperand

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

#include <iostream>
#include <vector>
using namespace std;

class Component

public: .
virtual void traverse() = 9;
class Primitive: public Component

int value,
public:
Pr1m1t1ve(1nt val)

value = val;

void traverse()

cout << value << ;
}s
class Composite: public Component

vector < Component * > children;
int value,

public:
Comp051te(1nt val)

value = val;
void add(Component *c)
children.push_back(c);
void traverse()

cout << value <<
for (int i = 0; i < cﬁlldren size(); i++)
children[i]- >traverse(),

s

class Row: public Composite

public:
// Two different kinds of "con-
Row(int val): Composite(val){}
// tainer" classes. Most of the
void traverse()

// "meat" is in the Composite
cout << "Row"; // base class.
Composite::traverse();

¥
class Column: public Composite
public:
Column(int val): Composite(val){}
void traverse()

cout << "Col";
Composite: :traverse();

¥

int main()
Row first(1); // Rowl
Column second(2); //
Column third(3); // +-- Col2
Row fourth(4); //
Row fifth(5); // +-- 7
first.add(&second); //  +-- Col3
first.add(&third); //
third.add(&fourth); // +-- Row4d
third.add(&fifth); //
first.add(&Primitive(6)); // +-- 9
second.add(&Primitive(7)); // +-- Row5
third.add(&Primitive(8)); //
fourth.add(&Primitive(9)); // +-- 10
fifth.add(&Primitive(10)); // +-- 8
first.traverse(); // +--6

cout << '\n';

10/01/2019 Basics of Mobile Application Development




P

Proxy

e Structural pattern

* To control an object though another object

* You need to support resource-hungry objects, and you do
not want to instantiate such objects unless and until they

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

are actually requested by the client.

10/01/2019

Payment

Basics of Mobile Application Development




| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Design a surrogate, or proxy, object that:

* instantiates the real object the first time the client makes a
request of the proxy

 remembers the identity of this real object
» forwards the instigating request to this real object

* Then all subsequent requests are simply forwarded
directly to the encapsulated real object.

10/01/2019 Basics of Mobile Application Development



eW Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* There are four common situations in which the Proxy pattern is
applicable.

* A virtual proxy is a placeholder for "expensive to create" objects. The real
object is only created when a client first requests/accesses the object.

* A remote proxy provides a local representative for an object that resides in a
differgnt address space. This is what the "stub" code in RPC and CORBA
provides.

* A protective proxy controls access to a sensitive master object. The
"surrogate” object checks that the caller has the access permissions required
prior to forwarding the request.

* A smart proxy interposes additional actions when an object is accessed.
Typical uses include:

* Counting the number of references to the real object so that it can be freed
automatically when there are no more references J(aka smart pointer),

* Loading a persistent object into memory when it's first referenced,

* Checking that the real object is locked before it is accessed to ensure that no other
object can change it.

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

«interfaces
Client = Subject
+doltf)
Proxy RealSubject
-wrapee

£ +doltg) <———=>{ +dolt)

v
[ Opftional functicnality
wrapee-=doli{);
[ Opticnal functionality

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Proxy

interface SocketInterface {
String readlLine(); .
void “writeLine(String str);

void dispose();

class SocketProxy implements SocketInterface {
private Socket socket;
private BufferedReader inj;
private PrintWriter out;

public SocketProxy(String host, int port, boolean wait) {

if (wait)
/] 2. éncapsulate the complexity/overhead of the target in the wrapper
ServerSocket server = new ServerSocket(port);
socket = server.accept();
} else {
socket = new Socket(host, port);

in

new BufferedReader(new IngutStreamReader(socket.getInputStream()));
out = new PrintWriter(socket.getOutputStream(), true);

} catch(IOException e) {

e.printStackTrace();

}

public String readLine() {
String str = null;
try {
str = in.readlLine();
} catch( IOException e ) {
e.printStackTrace();
}

return str;

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

public void writelLine(String str) {
// 4. The wrapper delegates to the target

out.println(str);

}
public void dispose() {
try {
socket.close();
} catch(IOException e) {
e.printStackTrace();
}
}

}

public class ProxyDemo {
public static” void main( Strlnﬁ[% args
// 3. The client deals wit he wraB
ggcketIntﬁrface socket = new Socket roxy( "127.0.0.1", 8080, args[@].equals("first") ? true : false );
ring str;
boolean skip = true;

whlle (true é
(args[ 1. eﬂuals("second") &8& skip) {
ip;

} else {
str = socket.readLine(
System.out. r1ntln§ Recelve - "+ str);
if (str.equals(null)
break;

%ystem out.print( "Send ----
str = new Scanner(System in). nextLlne(),

socket. wrlteLlne( str
if (gtr Equals( 'quit") {
rea

socket.dispose();

10/01/2019 Basics of Mobile Application Development




| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Observer

* Behavioral pattern

* Creates a 1 to N dependency between objects

* When the state of the observed object changes the others are
notified about the event and also can change their state

10/01/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Observer

* Define an object that is the "keeper"” of the data model and/or
business logic (the Subject).

* Delegate all "view" functionality to decoupled and distinct Observer
objects.

* Observers register themselves with the Subject as they are created.

* Whenever the Subject changes, it broadcasts to all registered
Observers that it has changed, and each Observer queries the Subject
for that subset of the Subject’s state that it is responsible for
monitoring.

* This allows the number and "type" of "view" objects to be
configured dynamically, instead of being staticafly specified at
compile-time.

10/01/2019 Basics of Mobile Application Development



Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Observer

Subject vigws b Observer

W

model

+attach(in Observer) = +update()
r - -| +setStatel)
¢ | +getState() | ZIB‘ |
ViewOne ViewTwo
! +Update() +Update()
for each view in views

v.update()

madel getState();

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Observer

interface AlarmListener { class CheckList {
void alarm(); // Template Method design pattern
public void byTheNumbers() {

class SensorSystem { localize();
private Vector listeners = new Vector(); isolate();
identify();

public void register(AlarmListener alarmListener) { }

listeners.addElement(alarmListener);
protected void localize() {

public void soundTheAlarm%) { System.out.println(" establish a perimeter");
hac fgi (En%m?;atlgn e = listeners.elements(); }
e.hasMoreElements();
((Alarmilstener) e.nextElement()).alarm(); protected void isolate() {
} } System.out.println(" isolate the grid");
}
}
class Lighting implements AlarmListener { protected void identify() { , §
public void alarm() i . System.out.println( identify the source");
System.out.printIn("lights up"); }
} }
class Gates implements AlarmListener { /] class inherit.
public void alarm() // type inheritance
System.out.println("gates close"); class Surveillance extends CheckList implements AlarmListener {
public void alarm() {
} System.out.println("Surveillance - by the numbers:");
byTheNumbers();
}
protected void isolate() {
System.out.println(" train the cameras");
}
}

10/01/2019 Basics of Mobile Application Development




N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Delegate

* A specific object do not execute its task, instead of it
delegates the task to another object

* The other can be considered as a helper-object

* The responsibility is also delegated
* It considered as a server, with responsibility

* Implementation
* Through interface classes

* In case of a function call, the implementation refers to an
implementation of other class

10/01/2019 Basics of Mobile Application Development



§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Delegation — Example

class I {
public:
virtual void f = 0;
virtual void = 0;
virtual ~I() %}
class A : public I {
public:
void f cout << "A: doing f()" << endl; 1
void cout << "A: doing g()" <X endl
) ~A() % cout << "A: cleaning up."” << endl; }
class B : public I {
public:
void f cout << "B: doing f()" << endl; 1
void cout << "B: doing g()" << endl
) ~B() % cout << "B: cleaning up."” << endl; }

10/01/2019 Basics of Mobile Application Development



N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Delegation — Example

class C : public I {
public:
C() : i( new A()
virtual ~C() { d
private:
I* 1;
public:
void f i->f();
void i->g(); +. .
void OAE; i delete i; i

eieée}i; }

new A();
new B();

) void toB delete i; i

int ga%p() {
c.fs 5 //A: doing fgg
c.% 5 //A: doing g
c.toB(); //A: cleaning up.
c.fgg; //B: doing f?

) c.g(); //B: doing g

10/01/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Target-Action

* Used in event-driven applications
* Programs with GUI

* The objects of the program are in dynamic connection
with each other
* Target: a specific object that is the target of a message (task)
* Action: what target should execute

ObjectiveC example
[button setTarget: self];
[button setAction: @selector(doSomething)];

10/01/2019 Basics of Mobile Application Development



» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

, 0
Teg et o~

Design paradigms

» Complex structural patterns

* The design of entire structure is governed by these
principles
* Modell-View-Controller
* Modell-View-Presenter

* Modell-View-ViewModell
* Target-Action

10/01/2019 Basics of Mobile Application Development



| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

Input

Controller

IIIIIIIIII>

10/01/2019 Basics of Mobile Application Development




» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

MVC

* The application has three layers
* Model

* The representation of the information stored by the application
* Plain data is augmented with meta data to provide meaning
* Applications use permanent storing procedures to save data
 The data access layer is part of the model, most of the cases
* View
* Visualize the model in the correct form, which is capable of user interaction
* Typicallyitis a Ul element
* Different view for different objective may be exist

o Controller

* Events (mostly user interactions) are processed and appropriate response is
generated

* May change the model

10/01/2019 Basics of Mobile Application Development




| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

Presenter

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* The application has three layers
* Model

* The representation of the information stored by the application
* Plain data is augmented with meta data to provide meaning
* Applications use permanent storing procedures to save data
 The data access layer is part of the model, most of the cases
* View
* Visualize the model in the correct form, which is capable of user interaction
* Accepts the user interaction on View and send to the Presenter

* Passive View: only displays the data, all business logic and transformation is in the Presenter

* Supervisor View: some of the control tasks are here. It simplifies the Presenter by removing
the conversjons, checks, Ul repaint/redraw procedures. Thus in Presenter only the business
logic should be implemented.

* Presenter
» Middle layer, keeps the application in one piece
* Business logic, and process control
* Transforms data and transport between View and Model layer

10/01/2019 Basics of Mobile Application Development




| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

ViewModel

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* This pattern is similar to the MVC pattern

* Designed for event-driven applications
* Model

* The representation of the information stored by the application
* Plain data is augmented with meta data to provide meaning

* Application use permanent storing procedures to save data
 The data access layer is part of the model, most of the cases
* View
* Visualize the model in the correct form, which is capable of user interaction
* Typically it is a Ul element
« Different view for different objective may be exist
* ViewModel
* Model of View

* It can be considered as a special Controller, which converts the information coming from the
Model to View, and the commands coming from the View to the Model

* Public properties, commands and abstract interface are provided

e ltre rlesents the conceptional state of data, instead of the real data which is stored in the
mode

10/01/2019 Basics of Mobile Application Development




=, Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Tests, software design



W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Software design

* Remember / recall
* Basics of Software Technology

* Most important
* Reasoned plan and software
* Even drawings, diagrams, etc.

* Debugging is not trivial
* But not impossible as well

 Emulator / simulator is not perfect
* Some of the functions are missing

* Varying quality of hardware and implementation
* The specifications are not followed precisely

10/01/2019 Basics of Mobile Application Development




| Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
#p "
es pr 10"

Test — Validation

* Verification and validation — objectives:
* To find the errors in the system
* To ascertain about that the system can be used in real situations

Most widespread validation technique

The errors themselves have to be found, not their absence

A test is successful when at least one error is discovered

Testing defects:
» The objective is to discover faults and defects of the system
* Types:
» Component tests: black box, equivalence-classes, structural tests, path-test

* Integration tests: ,top-down/bottom-up”, interface tests, stress-test
* Object oriented tests

Statistical tests

* Testing the performance and reliability, in real situations (with real user input, and
frequency)

10/01/2019 Basics of Mobile Application Development




| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Functional tests

* The program is considered as a black box, the test cases are made
upon specification

* The implementation is not taken into account
* Tests can be designed in early stage if the development
* Special knowledge may be required to design some of the tests

e Structural test

* Tests are designed based on the structure and implementation of the
program
* Equivalence classes can be designed based on the structure and code

* During test design the source code is analyzed to ensure that all
statements are executed at least once

* All execution path cannot be tested in reality

10/01/2019 Basics of Mobile Application Development




eW Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

e OOP test

* Component and integration test can be used in OOP systems
* Differences

* The object as components are larger than simple functions
* White box test can be applied with difficulties

* Obijects are loosely coupled, and the system/subsystem may not have unambigous
bottom/top

* The source of reused components may be inaccessible this we cannot analyze

* Inspection
* The objective of software inspection is to find defects

* Approximately 60% of the errors can be found with the cheaper inspection

* Asingle test is capable of revealing a single error, inspection can find multiple
errors

* Inspection and testing cannot substitute each other

* Inspection should be executed in the early stages of the development, to
reduce the cost of tests

10/01/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

| oad tests

* The systems should be tested with larger load (than designed)

* The load should be increased gradually, until system failure or
performance degradation

e Tasks

* To test the behavior of the system under extreme conditions
* Overload must not cause data loss, or complete service failure
* Such defects can be discovered, which do not happen under normal

conditions.
* Itis especially important in case of distributed systems

* Larger load may cause coordination / load distribution problems
* Thus it may result in increasing and self sustaining overload process

10/01/2019 Basics of Mobile Application Development




™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

=
% s
Tes pr 10°

Test design

* For each program unit tests should be designed
* Unit tests
* Component integration tests

* Tests have to be started to design in parallel with software
design process

10/01/2019 Basics of Mobile Application Development



W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Software life cycle- TDD

* Agile method very popular

High-level
design/architeciure

Detailed design

(t Code

>

Unit test

Test

High-level
design/architeciure

10/01/2019

Unit test

- Code

Refactor

¢

Test

Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Extreme Programming tests

* In the Extreme Programming approach,
» Tests are written before the code itself
* |f code has no automated test case, it is assumed not to work

* A test framework is used so that automated testing can be done after
every small change to the code

* This may be as often as every 5 or 10 minutes
* If a bugis found after development, a test is created to keep the bug
from coming back
* Consequences
* Fewer bugs
* More maintainable code
 Continuous integration

* During development, the program always works
* it may not do everything required, but what it does, it does right

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Two examples

* int max(int a, int b) { * @Test
if (a > b) { void testMax() {
return a; assertEquals(7, max(3, 7));
} else { assertEquals(3, max(3, -7));
return b; }
}
}

* void testMax() {
int x = max(3, 7);
if (x 1=7) {
System.out.println("max(3, 7) gives " + x);
}
X = max(3, -7);

if (x 1= 3) { System.out.println("max(3, -7)
gives " + x);

¥
¥
* public static void main(String[] args) {
new MyClass().testMax();
}

10/01/2019 Basics of Mobile Application Development




§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

JUnit

* JUnit is a framework for writing tests

* JUnit was written by Erich Gamma (of Design Patterns fame) and
Kent Beck (creator of XP methodology)

* JUnit uses Java's reflection capabilities (Java programs can
examine their own code)

* JUnit helps the programmer:

* define and execute tests and test suites

* formalize requirements and clarify architecture

* write and debug code

* integrate code and always be ready to release a working version

* JUnit is not included in SDK, but almost all IDEs include it
* You have to import it to your project

10/01/2019 Basics of Mobile Application Development



= Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Terminology

* A test fixture sets up the data (both objects and primitives) that
are needed to run tests

 Example: If you are testing code that updates an employee record, you
need an employee record to test it on

* A unit test is a test of a single class

* Atest case tests the response of a single method to a particular
set of inputs

* A test suite is a collection of test cases
* A test runner is software that runs tests and reports results

* An integration test is a test of how well classes work together
* JUnit provides some limited support for integration tests

10/01/2019 Basics of Mobile Application Development



» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Test suite

. Olbviously you have to test your code to get it working in the first
place
* You can do ad hoc testing (testing whatever occurs to you at the moment), or
* You can build a test suite (a thorough set of tests that can be run at any time)

* Disadvantages of writing a test suite
* It's a lot of extra programming
* True—Dbut use of a good test framework can help quite a bit

* You don't have time to do all that extra work

* False—Experiments repeatedly show that test suites reduce debugging time more than
the amount spent building the test suite

* Advantages of having a test suite
* Your program will have many fewer bugs

* It will be a lot easier to maintain and modify your program
* This is a huge win for programs that, unlike class assignments, get actual use!

10/01/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Assert methods

* Each assert method has parameters like these:
message, expected-value, actual-value

* Assert methods dealing with floating point numbers get an
additional argument, a tolerance

* Each assert method has an equivalent version that does not
take a message — however, this use is not recommended
because:

* messages helps documents the tests

* messages provide additional information when reading failure
logs

10/01/2019 Basics of Mobile Application Development




| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

More in test classes

* Suppose you want to test a class Counter

* public class CounterTest
extends junit.framework.TestCase {

e This is the unit test for the Counter class
* public CounterTest() { } //Default constructor

* protected void setUp()
 Test fixture creates and initializes instance variables, etc.

* protected void tearDown()
* Releases any system resources used by the test fixture

* public void testincrement(), public void testDecrement()

* These methods contain tests for the Counter methods increment(),
decrement(), etc.

* Note capitalization convention

10/01/2019 Basics of Mobile Application Development



W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& )
Teg gr 8%

JUnit tests for Counter

public class CounterTest extends junit.framework TestCase {
Counter counter1;
public CounterTest(){ } // default constructor

protected void setUp() { // creates a (simple) test fixture
counter1 = new Counter();

public void testincrement() {
assertTrue(counterl.increment
assertTrue(counterl.increment

35

1
2

public void testDecrement() {
assertTrue(counter1.decrement() ==-1);

10/01/2019 Basics of Mobile Application Development




Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

TestSuites

» TestSuites collect a selection of tests to run them as a unit

* Collections automatically use TestSuites, however to specify the order in which tests are run, write your own:
public static Test suite() {
suite.addTest(new TestBowl(“testBowl"));
suite.addTest(new TestBowl("testAdding”));
return suite;

}

. Slllmu}l]d seldom have to write your own TestSuites as each method in your TestCase should be independent of
all others

* Can create TestSuites that test a whole package:
public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTestSuite(TestBowl.class);
suite.addTestSuite(TestFruit.class);
return suite;

10/01/2019 Basics of Mobile Application Development




W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

A simple example

* Suppose that you have a class Arithmetic with methods int multiply(int x,
int y), and’boolean isPositive(int x)

* import org.junit.*;
1mBort static or%.Jun;t.Assert.*;
public class ArithmeticTest {

Test
gublic void testMultiply() {. _
assertEquals§4, Arlthmetlc:multlplyfz, 2));
assertEquals(-15, Arithmetic.multiply(3, -5));

@Test . .

public void testIsPositive() { = .
assertTrue(Arithmetic.1isPositive(5)
assertFalse(Arithmetic.isPositive(-
assertFalse(Arithmetic.isPositive(©

i

10/01/2019 Basics of Mobile Application Development




N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Writing a JUnit test class

* This page is really only for expensive setup, such as when you need
to connect to a database to do your testing

* If you wish, you can declare one method to be executed just once, when the
class is first loaded

@BeforeClass
public static void setUpClass() throws Exception {
// one-time initialization code

* If you wish, you can declare one method to be executed just once, to do
cleanup after all the tests have been completed

@AfterClass
public static void tearDownClass() throws Exception {
// one-time cleanup code

10/01/2019 Basics of Mobile Application Development



N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Special features of @Test

* You can limit how long a method is allowed to take
* This is good protection against infinite loops
* The time limit is specified in milliseconds
* The test fails if the method takes too long
* @Test (timeout=10)
public void greatBig() {
assertTrue%program.ackerman(5, 5)> 10e12);

* Some method calls should throw an exception
* You can specify that a particular exception is expected
* The test will pass if the expected exception is thrown, and fail otherwise

» @Test (expected=Illlegal ArgumentException.class)
public void factorial()gg
program.factorial(-5);

10/01/2019 Basics of Mobile Application Development




§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

lgnoring a test

* The @Ignore annotation says to not run a test

@Ignore("l don't want Dave to know this doesn't work")
@ Test

public void add() {
assertEquals(4, program.sum(2, 2));

}

* You shouldn't use @Ignore unless you have a very good
reason!

10/01/2019 Basics of Mobile Application Development



| Piazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Homework

1. Demonstrate Proxy pattern in C++!
* Create a smart, reference counting pointer to any object!
* Use templates

2. Demonstrate adapter pattern in Java

* Based on a GUI example:
* Two different methods of specifying size and location of Ul elements

3. Create a Java application to demonstrate JUnit
capabilities
* Basic calculations
* Populating an array

10/01/2019 Basics of Mobile Application Development




§ Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Objective-C

Next week



