W Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

Basics of Mobile
Application Development

OOP and basics of programming techniques

W Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

OOP

Concepts and practice

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Modelling the world

* Principles
» Abstraction

* The properties and parts of the real world are simplified, thus only the
essential parts are considered in order to reach the objective which has
been set.

* One abstracts from the unimportant properties and information and the
important details are highlighted

* Differentiation

* Objects are the entities of the world which have to be modeled.

* Objects are differentiated based on their important properties and
behavior.

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Modelling the world

* Principles

e Classification

* Object are assorted into categories, classes. Objects with similar
properties belong to the same class, and objects with different properties
are in different classes.

* The classes bear the characteristics of the objects in the class. They can be
considered as the templates of the objects.

* Generalization, specialization

* Similarities and differences are sought in order to create general or
special categories and classes.

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& -0
Feg o patt

OOP - principles

* OOP principles (Benjamin C. Pierce)
* Dynamic binding
* In case of an object, if there are several implementations of a method, the executed one is
selected runtime, dynamically.
Encapsulation
* Data and operations are considered as a single unit
* Practically it is consistent with the definition of type
Subtype polymorphism
* Atyped variable can refer to objects with different (other) subtypes
* Subtype

* Atype created by specializing an existing one
Inheritance, or delegation
* ltis possible to create a new class using an existing one
* It has the properties of the original class
* And it also can extend, augment and modify the original class
* Open recursion
* Special variable, which enables a method to access the current instance of the class

09/24/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

OOP - keywords

* Object - * Messaging
* Represents of entities of the real : .
world * Interaction of objects
* Class of objects * Interfaces are defined to
¥ GFOUBPhOf similar objects facilitate the communication
® €navior .
* Structure of ObJeCtS
* Template to create objects e Abstraction
* Method

* A function (procedure) which * Grouping classes

r(;wkz)ljrélgulates the state of an e Hi erarchy
* Field * Design and implementation
* A variable defining a property of tool
an object

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

OOP - Object

* Object
* |ts state is defined, information is stored
* Perform tasks, its state can be changed
« Communicate with another object by messaging
* Can be identified unambiguously

* Lifecycle
* |s born — construction and initialization
* |nitial values

» Tasks executed for initialize
* Setting the type invariant

* Exists — operational phase

* Dies — destruction
* Freeing resources

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

OOP - fields and methods

* Class definition
* Instance variable
* Separate instance exists for different objects

* |[nstance method
* Works on the state of an instance

e Class variable
* Variable for a class

e Class method
* Works on the state of the class

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Operations of objects

* Export operations
* Called by other objects

* Import operations
* Called by the object to provide its defined service

» Operations can be sorted as follows
» Constructor: to create an object
* State modifier
* Selector: to select (except) a part of an object
* Evaluator: to query features of an object
* |terator: to discover (or roam)

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Operations of objects

* Export operations

Constructor

Evaluator, selector

lterator

State modifier

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Client sends a message

message
(request)

Calling a public
Obiject, method Object,
requires a executes tasks
service upon request

09/24/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Client sends message to server

* Client

* Active object, perform operations on other objects, but
operations are not performed on it

* Do not have any export interface
* E.g.: Clock — performs an operation regularly
* Server
* Passive object has only export interface
* Waits for messages, do not require services
* Do no have any import interface

* Agent

* General object, both with import and export interface

09/24/2019 Basics of Mobile Application Development

eW Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

* Separate memory allocation is made for instance variables

* Instance methods are working in this state-space
* However, instance methods are stored only once

* So, how do we know the which one is the actual instance which is
calling a method?

* We need a pointer which refers to the actual instance, in any of the
methods
* The parameter ,this” is used for this purpose

* It means that in case of an object wants to send a message to itself; then it
should call this.message(parameters) form.

* So, in all methods, the reference for the actual instance should use this
variable.

* However, it is the default in several languages

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

OO program

* An OOP program is a set of communicating objects.

* Each object has its purpose, authority and scope of duties.

Message 3

runs Control
object

Message 1 Message 2

Object 1 Object 2
Message 1

09/24/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

OOP - operational expectations

* Encapsulation
* Data and operation performed on them considered a single unit

* Information hiding

* The ,private matters” of an object can only be accessed through
methods

* In case of some language this mechanism can be bypassed (not
recommended)

e Code reuse

* The code can be used to create
* New instance with additional functions
* New class with new, additional function, or to change existing behavior

09/24/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

OOQOP - Inheritance

* Creating a new class based on an existing one

* The existing methods and fields are used to create new
functionality

* Augment (extend) a class
* Override existing methods and field, according to the new
function
* Design level step

* Creating a subtype
* |IS-A type relation
* One can create a HAS-A relation, however, it is not subtype

e Code reuse

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

OOP (and not OOP) - Definition

e Overload

* Two methods with the same name, but different signature
* The number or type of the parameters are different
* int add(int a, int b)
* double add (double a, double b)

* QOverride

* Derived class has a method with the same name and signature
* If and only if dynamic binding occurs as well, otherwise it is hiding
 Some of the languages, you have to use a keyword.

* Objective Pascal: virtual, override

* Hiding
* Derived class has a method with the same name and signature

* But there is no dynamic binding
* Fields and variables can hide each other in a block as well as in a child class

09/24/2019 Basics of Mobile Application Development

W Pazmaény Péter Catholic University
Faculty of Information Technology and Bionics

L
L’
Teg er T

Abstract class

* Design tool
* To generalize
* Subtype relation often requires creating abstract classes

* Abstract class: incomplete class

* There are functions which implementations are not known in the
class

* The implementation is provided by one of the derived classes

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

- -
L’ h
Tex e 1oV

Polymorphism, dynamic binding

* Polymorphism is the capability when a variable can refer to different
type of objects
* Now we consider only the subtype polymorphism

. Tﬁ/pe A is the subtype of type B if the following is true: type A can be used in
all situations where type B'can be used

Static type: defined at declaration
Dynamic type: the type the actual object referred by the variable
The dynamic type can be the static type of any of its derived classes.

The static type is permanent, and set in the source code, while dynamic type
can vary in runtime

* Dynamic binding
* The dynamic call is the event when we call a method of an object allowed by

its stafic type, but the implementation executed which corresponds to the
dynamic type.

* Dynamic binding happens only when the derived class overrides the method
(not hiding)

09/24/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Class definition

« class aclass : public parent_1, public parent 2 {
// Fields
private:
int counter = 0;

public:
aclass();
void add(int howmany);
void print() const;

¥

* aclass::aclass(int start) { counter = start; }

 void aclass::add(int howmany)
{counter += howmany; }

 void aclass ::print const { cout << counter; }

09/24/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Keywords
* Fields

* public - all objects have access (this, children, others)
* protected - this and children objects can access
* private - only this class can access (and friends)
* const - constant variable, its value cannot be changed
» static - class variable (can be accessed without instantiation)

* Methods

* public protected private static
* const - doesnot change the state of the class
* void - when there is no return value
* virtual - functions with dynamic binding (overriding instead of hiding)
* After signature =0; — pure virtual, abstract function
* throw - throwable exception can be listed

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Type and passing parameters

* In C++ regular variables and pointer as passed by value
* Formal parameters are declared as local variables

* They are initialized with the values of the actual parameters
* Regular variable holds the value which is assigned
* In case of a pointer, this is the memory address

* Thus a copy is created of the original variable to an other part of the
memory

* As aresult, the formal and actual parameters are in different places

* In C++ a reference formal parameter declares a (new) reference
to the actual parameter
* The original memory location has a new variable name

* All of the changes performed through the formal parameter (local
variable) effects the original memory location

09/24/2019 Basics of Mobile Application Development

' Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Constant parameters

* It can be avoided that the called function can change the value
of the original value
* Then the parameter is constant
 const int & i

* You can pass large objects without copying them as well as you can
prohibit any of changes

* It works with pointers as well
 void f(int * const p)

* The address is constant (as that is the value of the variable)
 void f(const int * p)

* You cannot change the referred memory
« void f(int const * p) is equivalent

 void f(int const * const p)
* Both address and referred memory is constant

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Inheritance

* The graph representation (directed graph) of the
inheritance relations can be called as class hierarchy

* In C++ multiple inheritance exists.
* Thus the graph is a general directed graph

* Inheritance can be

* public - Visibility modifiers are unchanged, but private
members cannot be accessed in derived classes
* |S-Arelation

» protected - Public functions and fields will be protected
» private - Public functions and fields will be private

* Defaultis private

09/24/2019 Basics of Mobile Application Development

| Pazmény Péter Catholic University

Faculty of Information Technology and Bionics

Multiple inheritance

* A class can inherit (directly) from several other classes

* What happens if there are functions with the same name in
different parents?
* A decision must be made

* Scope operator
* d.Basel::f();
* d.Base2::f();

* Diamond problem

* Virtual inheritance
* class C: public wvirtual Base

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

o -0
#p "
ex gr 1o*

Constructor

e Constructor
* Code, which is executed automatically when the class is instantiated
* [ts name is the same as the class, and it has no return value

* |tis similar to methods, but there are differences (it is not member,
because it cannot be inherited)

All classes has constructors
* If we do not define, the compiler creates
* But only when there is no programmer defined constructor

Several constructors can exist, the can be overridden

The constructor of a derived class called after the constructor of the
base class

In C++11 constructors can be delegated
* Avoid cyclic call

09/24/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Destructor

e Destructor

* Destructor is a code which is responsible to free resources most
of the cases
* Prepare to die
* Classes should have virtual destructors
* If there is no chance to have a derived class it is not necessary

09/24/2019 Basics of Mobile Application Development

N Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Friend

* A function can access to any fields of a class
 Even private
* Encapsulation can be violated
* Keyword £riend have to be used
* A friend can access the private and protected parts of a class

* Typical examples are the input/output stream operators (<<, >>)
friend std::ostream& operator <<
(std::ostream& stream, const Object& z);

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

delete and default functions

» Complier creates a bunch of functions, if they are not
defined manually

* Starting from C++11 this automatism can be controlled.
* To create use default
* To avoid use delete

 class Car {
public:
Car() = default;
Car(const car&) = default;
Car& operator=(const _car&) = delete;

virtual ~C() = default;

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

delete and default functions

* The class-level operators (&, *, ->, new, delete)also
can be controlled.

* Class C {
public: .
void *operator new§51ze_t) = delete;
void *operator new|[](size t) =
?elete;
e int main
C *c(z éew C,;
C *t = new Cf3];
C ¢,
} C “t[10];

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Assignment operator, copy constructor

* They can be used to copy an object

* Assignment operator is called when the variable is assigned
to a new (existing) value

. Cclbpy constructor called when the parameter is passed by
value

* The are declared automatically

* In case of dynamic memory allocation, the automatically
enerated assignment operator and copy constructor cause
shallow copy

* As only the pointer is copied not the referred memory
* As a results they must be declared manually

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
\V Faculty of Information Technology and Bionics

Assignment operator, copy constructor

class A {
A (const A& other);
A& operator= (const A& other);
A (AR& _other); // move constructor
A& operator= (A& _other); // move operator
¥
Ae, f, g;
g(std: :move(f));
e = std::move(g);

* http://en.cppreference.com/w/cpp/language/move constructor
* http://en.cppreference.com/w/cpp/language/move operator

09/24/2019 Basics of Mobile Application Development

http://en.cppreference.com/w/cpp/language/move_constructor
http://en.cppreference.com/w/cpp/language/move_operator

| Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

L +0
L’ h
Teg or 18V

User defined literals

e As of C++11 user can defined new literals

* inline double operator"" deg (long double degree) ({
return degree * 3.14159265 / 180.0;

* 1}
* double rad = 90.0 deg; // degree = 1.570796325

* unsigned operator"" Magic(const char* magic)
unsigned b = 0;
for (unsigned int i = 0; magic[i]; ++1)
b =Db*2 + (magic[i] == '1");

return b;
* }
* int mask = 110011 Magic; // mask = 51

09/24/2019 Basics of Mobile Application Development

| Pazmany Péter Catholic University
Faculty of Information Technology and Bionics

W Pazmany Péter Catholic University
N’f Faculty of Information Technology and Bionics

%t "~ Al

Class definition

public class AClass extends Parent implements Interface

{

private int counter;
public AClass()

counter = 0;

}

public void add(int howmany) throws MyException

{

this.counter += howmany;

¥
public void print()
{
System.out.println(counter);
}

}

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

& 20
‘Deg pp 18>

Keywords

* Class
* public - everyone can access
« final - cannot be derived
* abstract - abstract class, with abstract method(s)
* extends - to provide the parent class
* implements - to list the implemented interfaces

* All of them are optional. The default visibility is package private — it means that the
class is accessible in the package only.

* Fields
* public - everyone can access (this class, derived class, inside and outside of the package)

* protected - can be accessed in this class, derived classes and in the package

* default visibility — package private, can be access inside of the package (this class, and ...)
* private - only this class

« final -its value cannot be changed, constant
* volatile - always committed to the shared memory in case of threading
* static - class variable (can be accessed without instantiation)

09/24/2019 Basics of Mobile Application Development

Keywords

* final - again

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

* What is constant? The value:
* In case of primitives it is the value

* In case of Object it is the reference to the object
* It has no effect on the fields of the referred object

* Methods

* public protected private abstract static

« final - cannot be overridden or hidden

- synchronized — mutual exclusion can be achieved in threading
void - if there is no return value

throws — the throwable exception must be enumerated

09/24/2019

Basics of Mobile Application Development

W Pazmany Péter Catholic University
R’f Faculty of Information Technology and Bionics

Visibility

Package Class public protected no modifier private
default
This X X X X
Inner X X X X
Same
Derived X X X
Other X X X
Derived X X
Other
Other X

09/24/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Types, parameter passing

* In Java parameters always passed by value
* Thus the value is copied

* In case of reference type the value is the memory address, so the address is
copied this the parameter passing seems ,by reference

» However the wrapper counterparts are immutable, as a result the behave as the
primitive ones

* Primitives:
 byte, short, int, long, float, double, char, boolean
* Everything other is reference type, derived from Object class

Primitive — Wrapper pairs
 Byte, Short, Integer, Long, Float, Double, Character,
Boolean

* Immutable — new instance is created once it is changed

Warning! String is immutable

09/24/2019 Basics of Mobile Application Development

§ Pazmaény Péter Catholic University

Faculty of Information Technology and Bionics

Inheritance
* The graph representation (directed graph) of the inheritance
relations can be called as class hierarchy

* InJava there is an universal base class, the Object, everything is
derived from Object

* In Java there is no multiple inheritance, thus the class hierarchy is
represented by a tree

* Implicit extends Object in case of no manual extends given
* Object: pre defined in java. lang

* There are methods required to exist in all objects

09/24/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Initialization of an object

* The order of execution

* Static initialization block of the base class
Static initialization block of the derived class
Initialization block(s) of the base class
Constructor of the base class
Initialization block(s) of the derived class
* Constructor of the derived class

* The constructor of the base class is executed before any constructor
of the derived class
* Evenifitis not called explicitly

* In that case the constructor with same signature is called
« If it does not exist then an Exception is thrown

* The constructor without parameters is created by the compiler if and
only if there is no other constructor is defined

09/24/2019 Basics of Mobile Application Development

™. Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Initialization block

* |nitialization block: Block of statements (instance level and class level
as well) to initialize variables

public class A{
static int i=10;
static int ifact;
static {
ifact=1;
for (int j=2; j<=10; j++){
ifact*=j;
}
int [] array = new int[10];
{
for (int i=0; i<10; i++){
array[i]=(int)Math.random();
}

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Initialization block

* Class level: executed when the class is initialized,
substitutes the class constructor (as they do not exist)

* Object level: executed when the object is instantiated,
augmenting the constructors.

* In case of anonymous classes, it substitutes the constructors
* There may be several initialization blocks in a class

* Execution order is the order of the definition (merged with
the variable initializations)

* Variables defined later cannot be referenced
* return statement is not allowed

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Java — implicit type conversion

* Subtypes
* Subtypes can be handled as general types
e So a derived class can be handled as its ancessors

* The object is not converted

* java.lang.ClassCastException is raised when the type is
not compatible

* Use instanceof operator!

09/24/2019 Basics of Mobile Application Development

Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Interfaces

* Interfaces can be implemented by classes

* Keyword
* public class Apple implements Edible
* If aclass implements an interface then the interface can be used as static type

Static type vs dynamic type:

* Edible apple = new Apple();
Edible pear = new Pear();

* Supposing that

* Apple implements Edible
Pear implements Edible

Interfaces can be inherited
* All the constants and member functions can be inherited from the superclass
* Implementation not, but that cannot be there.

Multiple inheritance is possible!
 Asinterfaces are ,abstract” there is no problem with the inheritance of implementation

09/24/2019 Basics of Mobile Application Development

» Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

& 0
L’ h
Tes pr 10°

Modifiers

* Functions

* Methods are always public abstract.

* These keywords are optional
* Using others is error

e Constants
 All fields are public static final
* Not required

 WWhat are the differences between abstract class and
interfaces?

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

L
L’ h
Teg er 1%

Homework — Deadline: 10/01/18 10.15 am

* Create a C++ program which demonstrates the proper and
improper usage of friend
* Read first!
* Defining friend operators might be appropriate!
* Violating the encapsulation and data hiding is inappropriate!

* Create a Java demonstration where it is a good option to
use default interface methods.

* Read first!
* Also, demonstrate why it should be considered as the last resort!

09/24/2019 Basics of Mobile Application Development

W Pazmany Péter Catholic University

Faculty of Information Technology and Bionics

Programming patterns

Next week

