Name/Code:				

1. (20p)	2. (20 p)	3. (20 p)	4. (20 p)	5. (20 p)	Total (100p)	Grade

I M P O R T A N

- Apart from the test questions (where each correct answer must be indicated by a tick)
 each problem must be worked out on a separate sheet on which your name and code
 must be clearly indicated!
- The notations and conventions you use must be conform with the ones used in the lecture series!
- Each solution requires a compact reasoning. Without this reasoning the answer is not considered to be valid even though the final result is correct.

M P O R T A N T

I

- 1) Given a linear binary code with generator matrix $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$!
 - a.) Give the type of the code (n,k)!
 - b.) Can this be a Hamming code?
 - c.) How many errors can be detected and corrected by this code!
 - d.) Can the error vectors $\mathbf{e}_1 = (10000)$ and $\mathbf{e}_2 = (00001)$ be distinguished? Can these error vectors be group leaders?
 - e.) If this code operates over a BSC with error probability p = 0.2 then what is the probability of these two error vectors occurring?
 - f.) What is the error group belonging to the syndrome vector $\mathbf{s} = (10)$?
 - g.) What is the detected error vector?
 - a) n=5, k=3
 - b) No, because the Hamming bound is not achieved, $n+1 \neq 2^{n-k}$
 - c) the codewords are:

$$(000)\mathbf{G} = (00000); (001)\mathbf{G} = (00111); (010)\mathbf{G} = (01010); (011)\mathbf{G} = (01101);$$

$$(100)\mathbf{G} = (10001); (101)\mathbf{G} = (10110); (110)\mathbf{G} = (11011); (111)\mathbf{G} = (11100)$$

$$w_{\min} = d_{\min} = 2$$

$$l = d_{\min} - 1 = 1 \quad t = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor = 0$$

d) first to compute the syndrome vectors, we need the parity check matrix:

$$\mathbf{H} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}, \text{ then we calculate the syndrome vectors as: } \mathbf{s}^{\mathbf{T}} = \mathbf{H}\mathbf{e}^{T}$$

With $\mathbf{e}_1 = (10000)$ and $\mathbf{e}_2 = (00001)$ we come to the syndrome vector $\mathbf{s}^T = \mathbf{H}\mathbf{e}_1^T = \mathbf{H}\mathbf{e}_2^T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, so the two error vector cannot be distinguished.

e)

Elégtelen	Elégséges	Közepes	Jó	Jeles
0-39 pont	40-53 pont	54-67 pont	68-81 pont	82-100 pont

f) Error group for s = (10)

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \mathbf{s}^{T} = \mathbf{H} \mathbf{e}^{T} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$$

$$\mathbf{e}^{T} \in \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

- g) the detected error vector is the first or the second element of the above mentioned error group
- 2) Given an RS code over GF(8) capable of correcting every single error.
 - a.) What are the parameters of the code?
 - b.) Give the generator polynomial!
 - c.) What is the degree of the parity check polynomial?
 - d.) What HW architecture can implement the encoding?
 - a) The parameters of the code are:

$$n=q-1=8-1=7$$
, RS codes are MDS, so $d_{\min}-1=n-k$, and $t=\left\lfloor \frac{d_{\min}-1}{2}\right\rfloor$, so

$$1 = \left| \frac{7 - k}{2} \right|, k = 5$$

b)
$$g(x) = (x-y)(x-y^2) = x^2 + (y+y^2)x + y \cdot y^2 = x^2 + y^4x + y^3$$

- c) The degree of the parity check polynomial is always k, since $h(x) = \prod_{i=n-k+1}^{n} (x-y^i)$
- d) The encoding can be performed with a LFFSR, since the coding is performed by multiplying the message polynomial with the generator polynomial, c(x) = u(x)g(x), and this operation can be carried out by convolving their coefficients with each other. So a linear filter can carry out the polynomial multiplication
- 3) Determine the value of the following determinant over GF(8)!

$$\det\begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix} = ?$$

	у	у	8	15	22	
	y^2	y^2	9	16	23	
The power table over $GF(2^3)$:	y+1	y^3	10	17	24	
	$y^2 + y$	y^4	11	18	25	
	$y^2 + y + 1$	y^5	12	19	26	
	2 -	6				

1

7 14 21

One can use the power table like $a, b \in GF(2^3), a \mapsto y^m, b \mapsto y^n$ $ab \mapsto y^{m+n}$

Elégtelen	Elégséges	Közepes	Jó	Jeles
0-39 pont	40-53 pont	54-67 pont	68-81 pont	82-100 pont

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei - afh - (bdi - bfg) + cdh - ceg =$$

$$= 2\cdot1\cdot1 - 0 - (1 - 1\cdot2\cdot1) + 0 - 2\cdot1\cdot1 =$$

$$= y\cdot1\cdot1 - 0 - (1 - 1\cdoty\cdot1) + 0 - y\cdot1\cdot1 = y = 2$$

- 4) Given a memoryless source with the following distribution $p_1 = 0.55$; $p_2 = 0.2$; $p_3 = 0.25$.
 - a.) What is the theoretical limit of compression!
 - b.) Compress the source by Huffman coding: give the code and the average codelength!
 - c.) What is the average code-length if we compress the source by Shannon-Fano coding?
 - d.) What block length should be chosen if the theoretical lower bound is to be achieved with $\varepsilon = 0.002$. What is then the size of the code table?

a)
$$H(X) = \mathbb{E} I(x) = \sum_{x} p(x) ld\left(\frac{1}{p(x)}\right) = 0.55 \cdot ld\left(\frac{1}{0.55}\right) + 0.2 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.55}\right) + 0.2 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.55}\right) + 0.2 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.55}\right) + 0.2 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.55}\right) + 0.2 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.55}\right) + 0.2 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.55}\right) + 0.2 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot ld\left(\frac{1}{0.35}\right) = 0.55 \cdot ld\left(\frac{1}{0.2}\right) + 0.35 \cdot l$$

=1.46886

The average codelength is $L = 0.55 \cdot 1 + 0.35 \cdot 2 + 0.2 \cdot 2 = 1.65$

c) the average codelength using SF coding is

$$L = 0.55 \left[ld \left(\frac{1}{0.55} \right) \right] + 0.35 \left[ld \left(\frac{1}{0.35} \right) \right] + 0.2 \left[ld \left(\frac{1}{0.2} \right) \right] = 1.85$$

d)

- 5) Indicate the correct statements! Justify your answer!
 - Having two error vectors belonging to the same syndrome vector, we must decide on the one which has smaller weight than the other. **T**
 - The mutual information of two independent random variables is zero. T
 - Between 0 and 4 values bound the entropy of a source containing 4 symbols. F $0 \le H(x) \le ld(N)$

$$H(x) = ld(N)$$
, if $p(x) = \frac{1}{N}$, $\forall x$

- ☐ The Hamming codes are MDS codes **F**
- \Box The irreducible polynomial can be factorized into the product of two other polynomials. **F**

Elégtelen	Elégséges	Közepes	Jó	Jeles
0-39 pont	40-53 pont	54-67 pont	68-81 pont	82-100 pont