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Preface 

This is intended to be a simple and accessible book on information 
theory. As Einstein said, “Everything should be made as simple as 
possible, but no simpler.” Although we have not verified the quote (first 
found in a fortune cookie), this point of view drives our development 
throughout the book. There are a few key ideas and techniques that, 
when mastered, make the subject appear simple and provide great 
intuition on new questions. 

This book has arisen from over ten years of lectures in a two-quarter 
sequence of a senior and first-year graduate level course in information 
theory, and is intended as an introduction to information theory for 
students of communication theory, computer science and statistics. 

There are two points to be made about the simplicities inherent in 
information theory. First, certain quantities like entropy and mutual 
information arise as the answers to fundamental questions. For exam- 
ple, entropy is the minimum descriptive complexity of a random vari- 
able, and mutual information is the communication rate in the presence 
of noise. Also, as we shall point out, mutual information corresponds to 
the increase in the doubling rate of wealth given side information. 
Second, the answers to information theoretic questions have a natural 
algebraic structure. For example, there is a chain rule for entropies, and 
entropy and mutual information are related. Thus the answers to 
problems in data compression and communication admit extensive 
interpretation. We all know the feeling that follows when one investi- 
gates a problem, goes through a large amount of algebra and finally 
investigates the answer to find that the entire problem is illuminated, 
not by the analysis, but by the inspection of the answer. Perhaps the 
outstanding examples of this in physics are Newton’s laws and 

vii 
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Schrodinger’s wave equation. Who could have foreseen the awesome 
philosophical interpretations of Schrodinger’s wave equation? 

In the text we often investigate properties of the answer before we 
look at the question. For example, in Chapter 2, we define entropy, 
relative entropy and mutual information and study the relationships 
and a few interpretations of them, showing how the answers fit together 
in various ways. Along the way we speculate on the meaning of the 
second law of thermodynamics. Does entropy always increase? The 
answer is yes and no. This is the sort of result that should please 
experts in the area but might be overlooked as standard by the novice. 

In fact, that brings up a point that often occurs in teaching. It is fun 
to find new proofs or slightly new results that no one else knows. When 
one presents these ideas along with the established material in class, 
the response is “sure, sure, sure.” But the excitement of teaching the 
material is greatly enhanced. Thus we have derived great pleasure from 
investigating a number of new ideas in this text book. 

Examples of some of the new material in this text include the chapter 
on the relationship of information theory to gambling, the work on the 
universality of the second law of thermodynamics in the context of 
Markov chains, the joint typicality proofs of the channel capacity 
theorem, the competitive optimality of Huffman codes and the proof of 
Burg’s theorem on maximum entropy spectral density estimation. AIso 
the chapter on Kolmogorov complexity has no counterpart in other 
information theory texts. We have also taken delight in relating Fisher 
information, mutual information, and the Brunn-Minkowski and en- 
tropy power inequalities. To our surprise, many of the classical results 
on determinant inequalities are most easily proved using information 
theory. 

Even though the field of information theory has grown considerably 
since Shannon’s original paper, we have strived to emphasize its coher- 
ence. While it is clear that Shannon was motivated by problems in 
communication theory when he developed information theory, we treat 
information theory as a field of its own with applications to communica- 
tion theory and statistics. 

We were drawn to the field of information theory from backgrounds in 
communication theory, probability theory and statistics, because of the 
apparent impossibility of capturing the intangible concept of infor- 
mation. 

Since most of the results in the book are given as theorems and 
proofs, we expect the elegance of the results to speak for themselves. In 
many cases we actually describe the properties of the solutions before 
introducing the problems. Again, the properties are interesting in them- 
selves and provide a natural rhythm for the proofs that follow. 

One innovation in the presentation is our use of long chains of 
inequalities, with no intervening text, followed immediately by the 
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explanations. By the time the reader comes to many of these proofs, we 
expect that he or she will be able to follow most of these steps without 
any explanation and will be able to pick out the needed explanations. 
These chains of inequalities serve as pop quizzes in which the reader 
can be reassured of having the knowledge needed to prove some im- 
portant theorems. The natural flow of these proofs is so compelling that 
it prompted us to flout one of the cardinal rules of technical writing. And 
the absence of verbiage makes the logical necessity of the ideas evident 
and the key ideas perspicuous. We hope that by the end of the book the 
reader will share our appreciation of the elegance, simplicity and 
naturalness of information theory. 

Throughout the book we use the method of weakly typical sequences, 
which has its origins in Shannon’s original 1948 work but was formally 
developed in the early 1970s. The key idea here is the so-called asymp- 
totic equipartition property, which can be roughly paraphrased as 
“Almost everything is almost equally probable.” 

Chapter 2, which is the true first chapter of the subject, includes the 
basic algebraic relationships of entropy, relative entropy and mutual 
information as well as a discussion of the second law of thermodynamics 
and sufficient statistics. The asymptotic equipartition property (AKP) is 
given central prominence in Chapter 3. This leads us to discuss the 
entropy rates of stochastic processes and data compression in Chapters 
4 and 5. A gambling sojourn is taken in Chapter 6, where the duality of 
data compression and the growth rate of wealth is developed. 

The fundamental idea of Kolmogorov complexity as an intellectual 
foundation for information theory is explored in Chapter 7. Here we 
replace the goal of finding a description that is good on the average with 
the goal of finding the universally shortest description. There is indeed a 
universal notion of the descriptive complexity of an object. Here also the 
wonderful number ti is investigated. This number, which is the binary 
expansion of the probability that a Turing machine will halt, reveals 
many of the secrets of mathematics. 

Channel capacity, which is the fundamental theorem in information 
theory, is established in Chapter 8. The necessary material on differen- 
tial entropy is developed in Chapter 9, laying the groundwork for the 
extension of previous capacity theorems to continuous noise channels. 
The capacity of the fundamental Gaussian channel is investigated in 
Chapter 10. 

The relationship between information theory and statistics, first 
studied by Kullback in the early 195Os, and relatively neglected since, is 
developed in Chapter 12. Rate distortion theory requires a little more 
background than its noiseless data compression counterpart, which 
accounts for its placement as late as Chapter 13 in the text, 

The huge subject of network information theory, which is the study of 
the simultaneously achievable flows of information in the presence of 
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noise and interference, is developed in Chapter 14. Many new ideas 
come into play in network information theory. The primary new ingredi- 
ents are interference and feedback. Chapter 15 considers the stock 
market, which is the generalization of the gambling processes consid- 
ered in Chapter 6, and shows again the close correspondence of informa- 
tion theory and gambling. 

Chapter 16, on inequalities in information theory, gives us a chance 
to recapitulate the interesting inequalities strewn throughout the book, 
put them in a new framework and then add some interesting new 
inequalities on the entropy rates of randomly drawn subsets. The 
beautiful relationship of the Brunn-Minkowski inequality for volumes of 
set sums, the entropy power inequality for the effective variance of the 
sum of independent random variables and the Fisher information 
inequalities are made explicit here. 

We have made an attempt to keep the theory at a consistent level. 
The mathematical level is a reasonably high one, probably senior year or 
first-year graduate level, with a background of at least one good semes- 
ter course in probability and a solid background in mathematics. We 
have, however, been able to avoid the use of measure theory. Measure 
theory comes up only briefly in the proof of the AEP for ergodic 
processes in Chapter 15. This fits in with our belief that the fundamen- 
tals of information theory are orthogonal to the techniques required to 
bring them to their full generalization. 

Each chapter ends with a brief telegraphic summary of the key 
results. These summaries, in equation form, do not include the qualify- 
ing conditions. At the end of each we have included a variety of 
problems followed by brief historical notes describing the origins of the 
main results. The bibliography at the end of the book includes many of 
the key papers in the area and pointers to other books and survey 
papers on the subject. 

The essential vitamins are contained in Chapters 2, 3, 4, 5, 8, 9, 10, 
12, 13 and 14. This subset of chapters can be read without reference to 
the others and makes a good core of understanding. In our opinion, 
Chapter 7 on Kolmogorov complexity is also essential for a deep under- 
standing of information theory. The rest, ranging from gambling to 
inequalities, is part of the terrain illuminated by this coherent and 
beautiful subject. 

Every course has its first lecture, in which a sneak preview and 
overview of ideas is presented. Chapter 1 plays this role. 

TOM COVER 
JOY THOMAS 

Palo Alto, June 1991 
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Chapter 1 

Introduction and Preview 

This “first and last lecture” chapter goes backwards and forwards 
through information theory and its naturally related ideas. The full 
definitions and study of the subject begin in Chapter 2. 

Information theory answers two fundamental questions in 
communication theory: what is the ultimate data compression (answer: 
the entropy H), and what is the ultimate transmission rate of 
communication (answer: the channel capacity C). For this reason some 
consider information theory to be a subset of communication theory. We 
will argue that it is much more. Indeed, it has fundamental 
contributions to make in statistical physics (thermodynamics), computer 
science (Kolmogorov complexity or algorithmic complexity), statistical 
inference (Occam’s Razor: “The simplest explanation is best”) and to 
probability and statistics (error rates for optimal hypothesis testing and 
estimation). 

Figure 1.1 illustrates the relationship of information theory to other 
fields. As the figure suggests, information theory intersects physics 
(statistical mechanics), mathematics (probability theory), electrical en- 
gineering (communication theory) and computer science (algorithmic 
complexity). We now describe the areas of intersection in greater detail: 

Electrical Engineering (Communication Theory). In the early 
194Os, it was thought that increasing the transmission rate of 
information over a communication channel increased the probability of 
error. Shannon surprised the communication theory community by 
proving that this was not true as long as the communication rate was 
below channel capacity. The capacity can be simply computed from the 
noise characteristics of the channel. Shannon further argued that 
random processes such as music and speech have an irreducible 

Elements of Information Theory
Thomas M. Cover, Joy A. Thomas

Copyright  1991 John Wiley & Sons, Inc.
Print ISBN 0-471-06259-6 Online ISBN 0-471-20061-1



INTRODUCTZON AND PREVlEW 
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Mathematics J 

Figure 1.1. The relationship of information theory with other fields. 

complexity below which the signal cannot be compressed. This he named 
the entropy, in deference to the parallel use of this word in 
thermodynamics, and argued that if the entropy of the source is less 
than the capacity of the channel, then asymptotically error free 
communication can be achieved. 

Information theory today represents the extreme points of the set of 
all possible communication schemes, as shown in the fanciful Figure 1.2. 
The data compression minimum 1(X; X) lies at one extreme of the set of 
communication ideas. All data compression schemes require description 
rates at least equal to this minimum. At the other extreme is the data 
transmission maximum 1(X; Y), known as the channel capacity. Thus all 

Data compression 

min ~~~~~~ 

Figure 1.2. Information theoretic extreme points of communication theory. 
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modulation schemes and data compression schemes lie between these 
limits. 

Information theory also suggests means of achieving these ultimate 
limits of communication. However, these theoretically optimal communi- 
cation schemes, beautiful as they are, may turn out to be computational- 
ly impractical. It is only because of the computational feasibility of 
simple modulation and demodulation schemes that we use them rather 
than the random coding and nearest neighbor decoding rule suggested 
by Shannon’s proof of the channel capacity theorem. Progress in integ- 
rated circuits and code design has enabled us to reap some of the gains 
suggested by Shannon’s theory. A good example of an application of the 
ideas of information theory is the use of error correcting codes on 
compact discs. 

Modern work on the communication aspects of information theory has 
concentrated on network information theory: the theory of the simulta- 
neous rates of communication from many senders to many receivers in a 
communication network. Some of the trade-offs of rates between senders 
and receivers are unexpected, and all have a certain mathematical 
simplicity. A unifying theory, however, remains to be found. 

Computer Science (Kolmogorov Complexity). Kolmogorov, Chaitin 
and Solomonoff put forth the idea that the complexity of a string of data 
can be defined by the length of the shortest binary program for 
computing the string. Thus the complexity is the minimal description 
length. This definition of complexity turns out to be universal, that is, 
computer independent, and is of fundamental importance. Thus 
Kolmogorov complexity lays the foundation for the theory of descriptive 
complexity. Gratifyingly, the Kolmogorov complexity K is approximately 
equal to the Shannon entropy H if the sequence is drawn at random 
from a distribution that has entropy H. So the tie-in between 
information theory and Kolmogorov complexity is perfect. Indeed, we 
consider Kolmogorov complexity to be more fundamental than Shannon 
entropy. It is the ultimate data compression and leads to a logically 
consistent procedure for inference. 

There is a pleasing complementary relationship between algorithmic 
complexity and computational complexity. One can think about compu- 
tational complexity (time complexity) and Kolmogorov complexity (pro- 
gram length or descriptive complexity) as two axes corresponding to 
program running time and program length. Kolmogorov complexity 
focuses on minimizing along the second axis, and computational com- 
plexity focuses on minimizing along the first axis. Little work has been 
done on the simultaneous minimization of the two. 

Physics (Thermodynamics). Statistical mechanics is the birthplace 
of entropy and the second law of thermodynamics. Entropy always 
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increases. Among other things, the second law allows one to dismiss any 
claims to perpetual motion machines. We briefly discuss the second law 
in Chapter 2. 

Mathematics (Probability Theory and Statistics). The fundamen- 
tal quantities of information theory-entropy, relative entropy and 
mutual information-are defined as functionals of probability 
distributions. In turn, they characterize the behavior of long sequences 
of random variables and allow us to estimate the probabilities of rare 
events (large deviation theory) and to find the best error exponent in 
hypothesis tests. 

Philosophy of Science (Occam’s Razor). William of Occam said 
“Causes shall not be multiplied beyond necessity,” or to paraphrase it, 
“The simplest explanation is best”. Solomonoff, and later Chaitin, argue 
persuasively that one gets a universally good prediction procedure if one 
takes a weighted combination of all programs that explain the data and 
observes what they print next. Moreover, this inference will work in 
many problems not handled by statistics. For example, this procedure 
will eventually predict the subsequent digits of r. When this procedure 
is applied to coin flips that come up heads with probability 0.7, this too 
will be inferred. When applied to the stock market, the procedure should 
essentially find all the “laws” of the stock market and extrapolate them 
optimally. In principle, such a procedure would have found Newton’s 
laws of physics. Of course, such inference is highly impractical, because 
weeding out all computer programs that fail to generate existing data 
will take impossibly long. We would predict what happens tomorrow a 
hundred years from now. 

Economics (Investment). Repeated investment in a stationary stock 
market results in an exponential growth of wealth. The growth rate of 
the wealth (called the doubling rate) is a dual of the entropy rate of the 
stock market. The parallels between the theory of optimal investment in 
the stock market and information theory are striking. We develop the 
theory of investment to explore this duality. 

Computation vs. Communication. As we build larger computers out 
of smaller components, we encounter both a computation limit and a 
communication limit. Computation is communication limited and 
communication is computation limited. These become intertwined, and 
thus all of the developments in communication theory via information 
theory should have a direct impact on the theory of computation. 
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1.1 PREVIEW OF THE BOOK 

The initial questions treated by information theory were in the areas of 
data compression and transmission. The answers are quantities like 
entropy and mutual information, which are functions of the probability 
distributions that underlie the process of communication. A few 
definitions will aid the initial discussion. We repeat these definitions in 
Chapter 2. 

The entropy of a random variable X with a probability mass function 
p(x) is defined by 

H(X) = - c p(x) log, PW ’ (1.1) 

We will use logarithms to base 2. The entropy will then be measured in 
bits. The entropy is a measure of the average uncertainty in the random 
variable. It is the number of bits on the average required to describe the 
random variable. 

Example 1.1. I: Consider a random variable which has a uniform 
distribution over 32 outcomes. To identify an outcome, we need a label 
that takes on 32 different values. Thus 5-bit strings suffice as labels. 

The entropy of this random variable is 

32 1 1 
H(X)= - 2 p(i)logp(i)= - ST1 32 log32 =log32=5 bits, (1.2) 

i=l 

which agrees with the number of bits needed to describe X. In this case, 
all the outcomes have representations of the same length. 

Now consider an example with a non-uniform distribution. 

Example 1.1.2: Suppose we have a horse race with eight horses taking 
part. Assume that the probabilities of winning for the eight horses are 
( 1 I 1 J- r 1 A L- ). We can calculate the entropy of the horse race 2? 47 87 167 647 647 647 64 

as 
1 1 

H(x~=-~logz-q log i 4-;log;-$ log&-4&o& 

= 2 bits . (1.3) 

Suppose that we wish to send a message to another person indicating 
which horse won the race. One alternative is to send the index of the 
winning horse. This description requires 3 bits for any of the horses. But 
the win probabilities are not uniform. It therefore makes sense to use 
shorter descriptions for the more probable horses, and longer descrip- 
tions for the less probable ones, so that we achieve a lower average 
description length. For example, we could use the following set of bit 
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strings to represent the eight horses-O, 10, 110, 1110, 111100, 111101, 
111110, 111111. The average description length in this case is 2 bits, as 
opposed to 3 bits for the uniform code. Notice that the average descrip- 
tion length in this case is equal to the entropy. In Chapter 5, we show 
that the entropy of a random variable is a lower bound on the average 
number of bits required to represent the random variable and also on 
the average number of questions needed to identify the variable in a 
game of “twenty questions.” We also show how to construct representa- 
tions that have an average length within one bit of the entropy. 

The concept of entropy in information theory is closely connected with 
the concept of entropy in statistical mechanics. If we draw a sequence of 
n independent and identically distributed (i.i.d.1 random variables, we 
will show that the probability of a “typical” sequence is about 2-nH(X) 
and that there are about 2nncX’ such “typical” sequences. This property 
(known as the asymptotic equipartition property, or AEP) is the basis of 
many of the proofs in information theory. We later present other 
problems for which entropy arises as a natural answer (for example, the 
number of fair coin flips needed to generate a random variable). 

The notion of descriptive complexity of a random variable can be 
extended to define the descriptive complexity of a single string. The 
Kolmogorov complexity of a binary string is defined as the length of the 
shortest computer program that prints out the string. It will turn out 
that if the string is indeed random, the Kolmogorov complexity is close 
to the entropy. Kolmogorov complexity is a natural framework in which 
to consider problems of statistical inference and modeling and leads to a 
clearer understanding of Occam’s Razor “The simplest explanation is 
best.” We describe some simple properties of Kolmogorov complexity in 
Chapter 7. 

Entropy is the uncertainty of a single random variable. We can define 
conditional entropy, which is the entropy of a random variable, given 
another random variable. The reduction in uncertainty due to another 
random variable is called the mutual information. For two random 
variables X and Y this reduction is 

Pk Y) 
1(x; Y> = H(X) - H(XIY) = c p(x, y) log p(x)p(y) . 

x, Y 
(1.4) 

The mutual information 1(X; Y> is a measure of the dependence between 
the two random variables. It is symmetric in X and Y and always 
non-negative. 

A communication channel is a system in which the output depends 
probabilistically on its input. It is characterized by a probability 
transition matrix that determines the conditional distribution of the 
output given the input. For a communication channel with input X and 
output Y, we define the capacity C by 
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c = T(y 1(X; Y> . (1.5) 

Later we show that the capacity is the maximum rate at which we can 
send information over the channel and recover the information at the 
output with a vanishingly low probability of error. We illustrate this 
with a few examples. 

Example 1.1.3 (Noiseless binary channel 1: For this channel, the bi- 
nary input is reproduced exactly at the output. This channel is illus- 
trated in Figure 1.3. Here, any transmitted bit is received without error. 
Hence, in each transmission, we can send 1 bit reliably to the receiver, 
and the capacity is 1 bit. We can also calculate the information capacity 
C = max 1(X, Y) = 1 bit. 

Example 1.1.4 (Noisy four-symbol channel): Consider the channel 
shown in Figure 1.4. In this channel, each input letter is received either 
as the same letter with probability l/2 or as the next letter with 
probability l/Z. If we use all four input symbols, then inspection of the 
output would not reveal with certainty which input symbol was sent. If, 
on the other hand, we use only two of the inputs (1 and 3 say), then we 
can immediately tell from the output which input symbol was sent. This 
channel then acts like the noiseless channel of the previous example, 
and we can send 1 bit per transmission over this channel with no errors. 
We can calculate the channel capacity C = max 1(X; Y> in this case, and 
it is equal to 1 bit per transmission, in agreement with the analysis 
above. 

In general, communication channels do not have the simple structure 
of this example, so we cannot always identify a subset of the inputs to 
send information without error. But if we consider a sequence of 
transmissions, then all channels look like this example and we can then 
identify a subset of the input sequences (the codewords) which can be 
used to transmit information over the channel in such a way that the 
sets of possible output sequences associated with each of the codewords 

o-0 

Figure 1.3. Noiseless binary channel. 

1 

2 z 

1 

2 

3 3 

4 4 

Figure 1.4. A noisy channel. 
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are approximately disjoint. We can then look at the output sequence and 
identify the input sequence with a vanishingly low probability of error. 

Example 1.1.6 (Binary symmetric channel): This is the basic example 
of a noisy communication system. The channel is illustrated in 
Figure 1.5. 

The channel has a binary input, and its output is equal to the input 
with probability 1 - p. With probability p, on the other hand, a 0 is 
received as a 1, and vice versa. 

In this case, the capacity of the channel can be calculated to be 
C = 1 + p log p + (1 - p) log (1 - p) bits per transmission. However, it is 
no longer obvious how one can achieve this capacity. If we use the 
channel many times, however, the channel begins to look like the noisy 
four-symbol channel of the previous example, and we can send informa- 
tion at a rate C bits per transmission with an arbitrarily low probability 
of error. 

The ultimate limit on the rate of communication of information over a 
channel is given by the channel capacity. The channel coding theorem 
shows that this limit can be achieved by using codes with a long block 
length. In practical communication systems, there are limitations on the 
complexity of the codes that we can use, and therefore we may not be 
able to achieve capacity. 

Mutual information turns out to be a special case of a more general 
quantity called relative entropy D( p 11 a) which is a measure of the 
“distance” between two probability mass functions p and 4. It is defined 
as 

p(x) D(pllq)=cP(zm~-& - 
x 

(1.6) 

Although relative entropy is not a true metric, it has some of the 
properties of a metric. In particular, it is always non-negative and is 
zero if and only if p = Q. Relative entropy arises as the exponent in the 

1 -P 
0 

1 
1 -P 

Figure 1.5. Binary symmetric channel. 
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probability of error in a hypothesis test between distributions p and 4. 
Relative entropy can be used to define a geometry for probability 
distributions that allows us to interpret many of the results of large 
deviation theory. 

There are a number of parallels between information theory and the 
theory of investment in a stock market. A stock market is defined by a 
random vector X whose elements are non-negative numbers equal to the 
ratio of the price of a stock at the end of a day to the price at the 
beginning of the day. For a stock market with distribution F(x), we can 
define the doubling rate W as 

W= 
b:bi~~i=l I log btx dF(x) . (1.7) 

The doubling rate is the maximum asymptotic exponent in the growth of 
wealth. The doubling rate has a number of properties that parallel the 
properties of entropy. We explore some of these properties in 
Chapter 15. 

The quantities H, I, C, D, K, W arise naturally in the following areas: 
l Data compression. The entropy H of a random variable is a lower 

bound on the average length of the shortest description of the 
random variable. We can construct descriptions with average 
length within one bit of the entropy. 

If we relax the constraint of recovering the source perfectly, we 
can then ask what rates are required to describe the source up to 
distortion D? And what channel capacities are sufficient to enable 
the transmission of this source over the channel and its reconstruc- 
tion with distortion less than or equal to D? This is the subject of 
rate distortion theory. 

When we try to formalize the notion of the shortest description 
for non-random objects, we are led to the definition of Kolmogorov 
complexity K. Later, we will show that Kolmogorov complexity is 
universal and satisfies many of the intuitive requirements for the 
theory of shortest descriptions. 

l Data transmission. We consider the problem of transmitting 
information so that the receiver can decode the message with a 
small probability of error. Essentially, we wish to find codewords 
(sequences of input symbols to a channel) that are mutually far 
apart in the sense that their noisy versions (available at the output 
of the channel) are distinguishable. This is equivalent to sphere 
packing in high dimensional space. For any set of codewords it is 
possible to calculate the probability the receiver will make an 
error, i.e., make an incorrect decision as to which codeword was 
sent. However, in most cases, this calculation is tedious. 
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Using a randomly generated code, Shannon showed that one can 
send information at any rate below the capacity C of the channel 
with an arbitrarily low probability of error. The idea of a randomly 
generated code is very unusual. It provides the basis for a simple 
analysis of a very difficult problem. One of the key ideas in the 
proof is the concept of typical sequences. 

l Network information theory. Each of the topics previously 
mentioned involves a single source or a single channel. What if one 
wishes simultaneously to compress many sources and then put the 
compressed descriptions together into a joint reconstruction of the 
sources? This problem is solved by the Slepian-Wolf theorem. Or 
what if one has many senders independently sending information 
to a common receiver? What is the channel capacity of this 
channel? This is the multiple access channel solved by Liao and 
Ahlswede. Or what if one has one sender and many receivers and 
wishes to simultaneously communicate (perhaps different) 
information to each of the receivers? This is the broadcast channel. 
Finally, what if one has an arbitrary number of senders and 
receivers in an environment of interference and noise. What is the 
capacity region of achievable rates from the various senders to the 
receivers? This is the general network information theory problem. 
AI1 of the preceding problems fall into the general area of multiple- 
user or network information theory. Although hopes for a unified 
theory may be beyond current research techniques, there is still 
some hope that all the answers involve only elaborate forms of 
mutual information and relative entropy. 

l Ergodic theory. The asymptotic equipartition theorem states that 
most sample n-sequences of an ergodic process have probability 
about 2-“H and that there are about 2”H such typical sequences. 

l Hypothesis testing. The relative entropy D arises as the exponent 
in the probability of error in a hypothesis test between two 
distributions. It is a natural measure of distance between 
distributions. 

l Statistical mechanics. The entropy H arises in statistical 
mechanics as a measure of uncertainty or disorganization in a 
physical system. The second law of thermodynamics says that the 
entropy of a closed system cannot decrease. Later we provide some 
interpretations of the second law. 

l Inference. We can use the notion of Kolmogorov complexity K to 
find the shortest description of the data and use that as a model to 
predict what comes next. A model that maximizes the uncertainty 
or entropy yields the maximum entropy approach to inference. 

l Gambling and investment. The optimal exponent in the growth 
rate of wealth is given by the doubling rate W. For a horse race 
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. 

. 

with uniform odds, the sum of the doubling rate W and the entropy 
H is constant. The mutual information I between a horse race and 
some side information is an upper bound on the increase in the 
doubling rate due to the side information. Similar results hold for 
investment in a stock market. 
Probability theory. The asymptotic equipartition property (AEP) 
shows that most sequences are typical in that they have a sample 
entropy close to H. So attention can be restricted to these 
approximately ZnH typical sequences. In large deviation theory, the 
probability of a set is approximately 2-nD, where D is the relative 
entropy distance between the closest element in the set and the 
true distribution. 
CompZexity theory. The Kolmogorov complexity K is a measure of 
the descriptive complexity of an object. It is related to, but different 
from, computational complexity, which measures the time or space 
required for a computation. 

Information theoretic quantities like entropy and relative entropy 
arise again and again as the answers to the fundamental questions in 
communication and statistics. Before studying these questions, we shall 
study some of the properties of the answers. We begin in the next 
chapter with the definitions and the basic properties of entropy, relative 
entropy and mutual information. 



Chapter 2 

Entropy, Relative Entropy 
and Mutual Information 

This chapter introduces most of the basic definitions required for the 
subsequent development of the theory. It is irresistible to play with 
their relationships and interpretations, taking faith in their later utility. 
After defining entropy and mutual information, we establish chain 
rules, the non-negativity of mutual information, the data processing 
inequality, and finally investigate the extent to which the second law of 
thermodynamics holds for Markov processes. 

The concept of information is too broad to be captured completely by a 
single definition. However, for any probability distribution, we define a 
quantity called the entropy, which has many properties that agree with 
the intuitive notion of what a measure of information should be. This 
notion is extended to define mutual information, which is a measure of 
the amount of information one random variable contains about another. 
Entropy then becomes the self-information of a random variable. Mutual 
information is a special case of a more general quantity called relative 
entropy, which is a measure of the distance between two probability 
distributions. All these quantities are closely related and share a 
number of simple properties. We derive some of these properties in this 
chapter. 

In later chapters, we show how these quantities arise as natural 
answers to a number of questions in communication, statistics, complex- 
ity and gambling. That will be the ultimate test of the value of these 
definitions. 

2.1 ENTROPY 

We will first introduce the concept of entropy, which is a measure of 
uncertainty of a random variable. Let X be a discrete random variable 
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with alphabet Z!? and probability mass function p(x) = Pr{X = x}, x E %. 
We denote the probability mass function by p(x) rather than p,(x) for 
convenience. Thus, p(x) and p(y) refer to two different random variables, 
and are in fact different probability mass functions, p*(x) and pY(y) 
respectively. 

Definition; The entropy H(X) of a discrete random variable X is defined 
bY 

H(X) = - c p(d log pm - (2.1) 

We also write H(p) for the above quantity. The log is to the base 2 
and entropy is expressed in bits. For example, the entropy of a fair coin 
toss is 1 bit. We will use the convention that 0 log 0 = 0, which is easily 
justified by continuity since x log x + 0 as x + 0. Thus adding terms of 
zero probability does not change the entropy. 

If the base of the logarithm is b, we will denote the entropy as H,(X). 
If the base of the logarithm is e, then the entropy is measured in nuts. 
Unless otherwise specified, we will take all logarithms to base 2, and 
hence all the entropies will be measured in bits. 

Note that entropy is a functional of the distribution of X. It does not 
depend on the actual values taken by the random variable X, but only 
on the probabilities. 

We shall denote expectation by E. Thus if X - p(x), then the expected 
value of the random variable g(X) is written 

E,g(X) = c g(dP(d > 
XEZ 

w2) 

or more simply as Eg(X) when the probability mass function is under- 
stood from the context. 

We shall take a peculiar interest in the eerily self-referential expecta- 
tion of g(X) under p(x) when g(X) = log &J . 

Remark: The entropy of X can also be interpreted as the expected 
value of log &J, where X is drawn according to probability- mass 
function p(x). Thus 

1 
H(X) = EP log - 

p(X) * 

This definition of entropy is related to the definition of entropy in 
thermodynamics; some of the connections will be explored later. It is 
possible to derive the definition of entropy axiomatically by defining 
certain properties that the entropy of a random variable must satisfy. 
This approach is illustrated in a problem at the end of the chapter. We 
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will not use the axiomatic approach to justify the definition of entropy; 
instead, we will show that it arises as the answer to a number of natural 
questions such as “What is the average length of the shortest descrip- 
tion of the random variable. 3” First, we derive some immediate con- 
sequences of the definition. 

Lemma 2.1.1: H(X) 2 0. 

Proof: 0 <P(x) I 1 implies lOg(llP(x)) 2 0. Cl 

Lemma 2.1.2: H,(X) = (log, a)&(X). 

Proof: log, P = log, a log, P. 0 

The second property of entropy enables us to change the base of the 
logarithm in the definition. Entropy can be changed from one base to 
another by multiplying by the appropriate factor. 

Example 2.1.1; Let 

with probability p , 
with probability 1 - p . (2.4) 

Then 

(2.5) 

In particular, H(X) = 1 bit whenp = 1 / 2. The graph of the function H( P) 
is shown in Figure 2.1. The figure illustrates some of the basic prop- 
erties of entropy-it is a concave function of the distribution and equals 
0 when p = 0 or 1. This makes sense, because when p = 0 or 1, the 
variable is not random and there is no uncertainty. Similarly, the 
uncertainty is maximum when p = g, which also corresponds to the 
maximum value of the entropy. 

Example 2.1.2: Let 

with probability l/2 , 
with probability l/4 , 
with probability l/8 , 
with probability l/8 . 

(2.6) 

The entropy of X is 

1 1 7 
HGy)=-clogs-alog~-~log~-81og8=4bits. (2.7) 
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Figure 2.1. H(p) versus p. 

Suppose we wish to determine the value of X with the minimum number 
of binary questions. An efficient first question is “Is X = a?” This splits 
the probability in half. If the answer to the first question is no, then the 
second question can be “Is X = b?” The third question can be “Is X = c?” 
The resulting expected number of binary questions required is 1.75. 
This turns out to be the minimum expected number of binary questions 
required to determine the value of X. In Chapter 5, we show that the 
minimum expected number of binary questions required to determine X 
lies between H(X) and H(X) + 1. 

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY 

We have defined the entropy of a single random variable in the previous 
section. We now extend the definition to a pair of random variables. 
There is nothing really new in this definition because (X, Y) can be 
considered to be a single vector-valued random variable. 

Definition: The joint entropy H(X, Y) of a pair of discrete random 
variables (X, Y) with a joint distribution p(x, y) is defined as 

MX, Y) = - c c ph, y) log pb, y) , rEZyE4r cm 

which can also be expressed as 

H(x, Y> = -E log p(X, Y) . (2.9) 
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We also define the conditional entropy of a random variable given 
another as the expected value of the entropies of the conditional 
distributions, averaged over the conditioning random variable. 

Definition: If (X, Y) -p(x, y), then the conditional entropy H(YIX) is 
defined as 

H(YIX) = c p(x)H(YIX = xl 
rE2f 

(2.10) 

= - 2 p(x) c P(Yld log P(Y Ix) 
xE% YE3 

(2.11) 

= - c c pb, y) log P(Y Id 
WETYE 

= - qdX,Y~ log p(YIX) * 

(2.12) 

(2.13) 

The naturalness of the definition of joint entropy and conditional 
entropy is exhibited by the fact that the entropy of a pair of random 
variables is the entropy of one plus the conditional entropy of the other. 
This is proved in the-following- theorem. 

Theorem 2.2.1 (Chain rule): 

H(X, Y) = H(X) + H(YJX) . 

Proof: 

-- 

wx, Y) = - c c pb, Y) log pb, y) 
XEXYESl 

= - c c pb, y) log PWP( y 1x1 
XElYE% 

= - c c p(n, y) log pw- c c Ph, Y) log P(YlX) 
WEX YE?? HEEYE 

= - c p(x) log p(x) - c c p(x, Y) log P(Yld 
XEI XEZ”yE9 

= H(X) + H(YlX). 

Equivalently, we can write 

log p(X, Y) = log p(X) + log p(YIX) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

and take the expectation of both sides of the equation to obtain the 
theorem. 0 
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Corollary: 

H(X, YIZ) = H(XIZ) + H(YIX, 2). (2.21) 

Proof: The proof follows along the same lines as the theorem. Cl 

Example 2.2.1: Let (X, Y) have the following joint distribution: 

X Ill Y 1 2 3 4 

1 1 - 1 1 1 
ii 16 32 32 

2 1 1 1 
16 3 ‘32 

- 1 
32 

3 1 1 1 
16 iii 

- 1 
16 16 

4 1 
4 0 0 0 

The marginal distribution of X is ( $, f , i, $ ) and the marginal 
distribution of Y is ( a, a, %, 4 ), and hence H(X) = 7/4 bits and H(Y) = 
2 bits. Also, 

H(X(Y)= f: p(Y=i)H(XIY=i) 
i=l 

=+H(~,~,~,, 1 1 1 1 > +4 &H ( 1 1 1 1 
4’z’g’g > 

(2.22) 

+; H(l,O,O,O) (2.23) 

(2.24) 

11 
= 8 bits. (2.25) 

Similarly H(YIX) = 13/8 bits and H(X, Y) = 27/8 bits. 

Remark: Note that H(YIX) # H(XI Y). However, H(X) - H(XI Y) = 
H(Y) - H(YIX), a property that we shall exploit later. 
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2.3 RELATIVE ENTROPY AND MUTUAL INFORMATION 

The entropy of a random variable is a measure of the uncertainty of the 
random variable; it is a measure of the amount of information required 
on the average to describe the random variable. In this section, we 
introduce two related concepts: relative entropy and mutual infor- 
mation. 

The relative entropy is a measure of the distance between two 
distributions. In statistics, it arises as an expected logarithm of the 
likelihood ratio. The relative entropy D(p 11 a> is a measure of the 
inefficiency of assuming that the distribution is Q when the true dis- 
tribution is p. For example, if we knew the true distribution of the 
random variable, then we could construct a code with average descrip- 
tion length H(p). If, instead, we used the code for a distribution 4, we 
would need H(p) + D( p 11 a> bits on the average to describe the random 
variable. 

Definition: The relative entropy or Kullback Leibler distance between 
two probability mass functions p(x) and q(x) is defined as 

pm 
D(pllq)= c PWlW Q(x) 

xE2f 

p(X) 
=E,log- 

q(X) ’ 

(2.26) 

(2.27) 

In the above definition, we use the convention (based on continuity 
arguments) that 0 log i = 0 and p log 5 = 00. 

We will soon show that relative entropy is always non-negative and is 
zero if and only if p = q. However, it is not a true distance between 
distributions since it is not symmetric and does not satisfy the triangle 
inequality. Nonetheless, it is often useful to think of relative entropy as 
a “distance” between distributions. 

We now introduce mutual information, which is a measure of the 
amount of information that one random variable contains about another 
random variable. It is the reduction in the uncertainty of one random 
variable due to the knowledge of the other. 

Definition: Consider two random variables X and Y with a joint 
probability mass function p(x, y) and marginal probability mass func- 
tions p(x) and p(y). The mutual information I(X;Y) is the relative 
entropy between the joint distribution and the product distribution 
pWp( y>, i.e., 

I(X, Y) = c Ic p(x, y) log Pk Y) 
XEB?YE% pWp(y) 

(2.28) 
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= D(p(x, y)llp(x)p(y)) (2.29) 

= Epcx, y) 1% 
pw, Y) 

pWp(Y) - 
(2.30) 

Example 2.3.1: Let aP = (0, 1) and consider two distributions p and q 
on SF’. Let p(0) = 1 - r, p( 1) = r, and let q(0) = 1 - s, q( 1) = s. Then 

l-r 
D(pllq)=(l-r)log~ +rlogi (2.31) 

and 

l-s 
D(qJlp)=(l-s)logl_r+slog~. (2.32) 

If r=s, then D(p)lq)=D(qllp)=O. If r=1/2, s=1/4, then we can 
calculate 

1 i wld=pgg+2 t 
I log _i = 1 

1 
- log3 = 0.2075 bits, (2.33) 4 4 2 

whereas 

D(qllp)= 3 4 log i + ; log z $ 3 = 
2 2 

4 log 3 - 1 = 0.1887 bits . (2.34) 

Note that D( p II q) z D( q II p) in general. 

2.4 RELATIONSHIP BETWEEN ENTROPY AND MUTUAL 
INFORMATION 

We can rewrite the definition of mutual information 1(X, Y) as 

Pk Y) m Y) = c Pb, Y) log p(x)p(y) 
x, Y 

= c per, Y) log p$$ 
x9 Y 

(2.35) 

(2.36) 

= - c p(x, y) log p(x) + 2 p(x, y) log p(xI y) (2.37) 
x9 Y x3 Y 

= -7 p(x) log P(X) - (-c P(X, Y) log PNY)) (2.38) 
xv Y 

= H(X) - H(XIY) , (2.39) 
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Thus the mutual information 1(X, Y) is the reduction in the uncertainty 
of X due to the knowledge of Y. 

By symmetry, it also follows that 

1(X, Y) = H(Y) - H(YIX). (2.40) 

Thus X says as much about Y as Y says about X. 
Since H(X, Y) = H(X) + H(YIX) as shown in Section 2.2, we have 

1(X, Y) = H(X) + H(Y) - H(X, Y) . 

Finally, we note that 

(2.41) 

WC m = H(X) - H(XIX) = H(X). (2.42) 

Thus the mutual information of a random variable with itself is the 
entropy of the random variable. This is the reason that entropy is 
sometimes referred to as self-information. 

Collecting these results, we have the following theorem. 

Theorem 2.4.1 (Mutual information and entropy): 

Kc Y) = H(X) - H(Xl Y) , 

1(X, Y) = H(Y) - H(YIX), 

1(x; Y) = H(X) + H(Y) - H(X, Y) , 

1(X, Y) = I(y; X) , 

1(X, X) = H(X) . 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

Figure 2.2. Relationship between entropy and mutual information. 
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The relationship between H(X), H(Y), H(X, Y), H(XIY), H(YIX) and 
1(X, Y) is expressed in a Venn diagram (Figure 2.2). Notice that the 
mutual information 1(X; Y) corresponds to the intersection of the infor- 
mation in X with the information in Y. 

Example 2.4.1: For the joint distribution of example 2.2.1, it is easy 
to calculate the mutual information 1(X; Y) = H(X) - H(XIY) = H(Y) - 
H(YIX) = 0.375 bits. 

2.5 CHAIN RULES FOR ENTROPY, RELATIVE ENTROPY AND 
MUTUAL INFORMATION 

We now show that the entropy of a collection of random variables is the 
sum of the conditional entropies. 

Theorem 2.5.1 (Chain rule for entropy): Let X,, X2, . . . , X, be drawn 
according to p(xl, x,, . . . ,x,). Then 

H(x,,x,, - * . , x,1= li H(x,IXi-1,. . . ,x1>. 
i=l 

Proof: By repeated application of the two-variable expansion rule for 
entropies, we have 

H(x,, x2 I= H(x, ) + H(x, Ix, ) , (2.49) 

H(x,,x,, . . .,x,)=H(x,)+H(x,Ix,)+.~.+H(x,IX,-,,...,X,) (2.52) 

= $ H(x,IXi-1, X > . . . . 1 . (2.53) 
i=l 

Alternative Proof: We write p(X1, . . . ,x,)=Il~~, p(XiIXi-1,. . . ,X1) 

and evaluate 

H(x,,x,, . . . ,x,> 
=- c P(X,, x2, ’ ’ ’ ,x,)logP(x,,x,,...,x,) (2.54) 

“19-9,. . . ,x, 
=- c P(X,, x2, ’ ’ ’ 9 x,Jlog fi P(&-~, .  l l ,x1) (2.55) 

Zl,+,&. * * $2, i=l 



22 ENTROPY, RELATNE ENTROPY AND MUTUAL ZNFORMATION 

=- c i p(x1,x2,. . . &log p(qlql,. . . J,) (2.56) 
x1,x2,. . .9x, i=l 

= -2 c p(x1,x2,. . . ,x,)logp(x,lxi-l,. . . ,x1) (2.57) 
i=l +,.3,. + * 9X, 

= -c c p(x1,x2,. . . ,“Jogp(x,~x~-l,~ * - ,xJ (2.58) 
i=l 21’22,. . . ,ri 

(2.59) 

We now define the conditional mutual information as the reduction in 
the uncertainty of X due to knowledge of Y when 2 is given. 

Definition: The conditional mutual information of random variables X 
and Y given 2 is defined by 

1(X, Y(Z) = H(XIZ) - H(XlY, 2) 

= qdx, y, 2) log 
pa, YlZ> 

pwp)pwIz) 

Mutual information also satisfies a chain rule. 

Theorem 2.5.2 (Chain rule for information): 

I&, x2, * * * , x$ y, = i I(xi; ylxi-l, xi-2> 
i=l 

Proof: 

. 

(2.60) 

(2.61) 

,X1). (2.62) 

K&,x,, * * * , x,;Y,=H(x,,x,,...,x,)-H(x,,x, ,..., X,IY) (2.63) 

= ~ H(x,(Xi_l, . . * pxl>- C H(xilxi-l, *. * ,xl, y, 
i=l i=l 

=i I<Xi;YIXl,X,,...,Xi-l)” q 
i=l 

(2.64) 

We define a conditional version of the relative entropy. 

Definition: The conditional relative entropy D( p( y lx>ll q( y lx>> is the 
average of the relative entropies between the conditional probability 
mass functions p( y lx) and q( y Ix) averaged over the probability mass 
function p(x). More precisely, 

P(Y Ix) D(p(ylx)llq(ylx)) = 5 P(x); Pbw 1% g$j (2.65) 



2.6 JENSEN’S 1NEQUALlZY AND ITS CONSEQUENCES 23 

P(YIX) = %x, y) 1% - q(YJX) * 
(2.66) 

The notation for conditional relative entropy is not explicit since it 
omits mention of the distribution p(x) of the conditioning random 
variable. However, it is normally understood from the context. 

The relative entropy between two joint distributions on a pair of 
random variables can be expanded as the sum of a relative entropy and 
a conditional relative entropy. The chain rule for relative entropy will be 
used in Section 2.9 to prove a version of the second law of thermo- 
dynamics. 

Theorem 2.5.3 (Chain rule for relative entropy): 

mph, y>/ qb, y)> = D(p(dll q(x)) + WP(Y 1411 q(y Id> l (2.67) 

Proof: 

Pk, Y) D( p(x, y>ll q(x, yN = c c Pk Y) 1% - 
x Y 4(x, Y) 

(2.68) 

(2.69) 

= c c P(X, ,,logP$ + c c PC% Y)lWP~ @JO) 
x Y x Y 

= ~Cp<dllqW> + D(p( ylx>ll q( yJr)> . •J (2.71) 

2.6 JENSEN’S INEQUALITY AND ITS CONSEQUENCES 

In this section, we shall prove some simple properties of the quantities 
defined earlier. We begin with the properties of convex functions. 

Definition; A function f(x) is said to be convex over an interval (a, b) if 
foreveryx,,x,E(a,b)andO~A~l, 

fchx, + (I- h)x+ A/b,) + Cl- Nf(3Gs). (2.72) 

A function f is said to be strictly convex if equality holds only if A = 0 or 
A= 1. 

Definition: A function f is concave if - f is convex. 

A function is convex if it always lies below any chord. A function is 
concave if it always lies above any chord. 
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Examples of convex functions include x2, IX I, e”, x log x (for x 2 0), etc. 
Examples of concave functions include log x and A& for x 10. Figure 2.3 
shows some examples of convex and concave functions. Note that linear 
functions ax + b are both convex and concave. Convexity underlies many 
of the basic properties of information theoretic quantities like entropy 
and mutual information. Before we prove some of these properties, we 
derive some simple results for convex functions. 

Theorem 2.6.1: If the function f has a second derivative which is 
non-negative (positive) everywhere, then the function is convex (strictly 
convex). 

Proof: We use the Taylor series expansion of the function around x,,, 
i.e., 

where x* lies between x0 and x. By hypothesis, 
last term is always non-negative for all x. 

f(x) = f(xJ + f ‘(x,)(x -x0> + fF(x - xJ2 

f”(x*> 2 0, and thus the 

j(x) = x* 
(a) 

j(x) = ex 

(2.73) 

Figure 2.3. Examples of (a) convex and (b) concave functions. 
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We let X, = Ax, + (1 - h)x, and take x = X, to obtain 

Similarly, taking x = x0, we obtain 

flx2) 2 /lx(-)) + f’(X())M& - x,)1 * (2.75) 

Multiplying (2.74) by A and (2.75) by 1 - A and adding, we obtain (2.72). 
The proof for strict convexity proceeds along the same lines. Cl 

Theorem 2.6.1 allows us to immediately verify the strict convexity of 
x2, er and x logx for x 2 0, and the strict concavity of logx: and ~5 for 
x I 0. 

Let E denote expectation. Thus EX = CxEx p(x)x in the discrete case 
and EX = J xfl~) & in the continuous case. 

The next inequality is one of the most widely used in mathematics 
and one that underlies many of the basic results in information theory. 

Theorem 2.6.2 (Jensen’s inequality): If f is a convex function and X is 
a random variable, then 

EflX) 1 REX). (2.76) 

Moreover, if f is strictly convex, then equality in (2.76) implies that 
X = EX with probability 1, i.e., X is a constant. 

Proof: We prove this for discrete distributions by induction on the 
number of mass points. The proof of conditions for equality when f is 
strictly convex will be left to the reader. 

For a two mass point distribution, the inequality becomes 

(2.77) 

which follows directly from the definition of convex functions. Suppose 
the theorem is true for distributions with k - 1 mass points. Then 
writing p i =pJ(l -pk) for i = 1,2, . . . , k - 1, we have 

2 Piflxi)=pkflxkI+C1 -P,lY plflx,) 
i=l i=l 

(2.78) 

LpkflXk) + (1 -PAIf (‘2’ Plzi) 
i=l 

k-l 

(2.79) 

1 f( PkXk +(l -pk) c pfxi > (2.80) 
i=l 
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= f( li Pixi) 9 
i=l 

(2.81) 

where the first inequality follows from the induction hypothesis and the 
second follows from the definition of convexity. 

The proof can be extended to continuous distributions by continuity 
arguments. Cl 

We now use these results to prove some of the properties of entropy 
and relative entropy. The following theorem is of fundamental impor- 
tance. 

Theorem 2.6.3 (Information inequality): Let p(x), q(x), x E %‘, be two 
probability mass functions. Then 

mp(lqeO (2.82) 

with equality if and only if 

p(x) = q(x) for aZZ x . (2.83) 

Proof: Let A = {x : p(x) > 0} be the support set of p(x). Then 

-D(pllq)= - c p(r)logP~ 
XEA 

= c p(x)log$$ 
XEA 

q(x) 
I log c p(x)- 

XEA pw 

= log c q&c) 
XEA 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

5 log c q(x) 
XEZ 

(2.88) 

= log1 (2.89) 

= 0, (2.90) 

where (2.86) follows from Jensen’s inequality. Since log t is a strictly 
concave function of t, we have equality in (2.86) if and only if q(x)/ 
p(x) = 1 everywhere, i.e., p(x) = q(x). Hence we have D( p 11 q> = 0 if and 
only if p(x) = q(x) for all x. Cl 
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Corollary (Non-negativity of mutual information): For any two ran- 
dom variables, X, Y, 

I(x;YPO, (2.91) 

with equality if and only if X and Y are independent. 

Proof: 1(X, Y) = D( p(;c, y>ll p(x) p(y)) 2 0, with equality if and only if 
p(x, y) = p(x) p(y), i.e., X and Y are independent. Cl 

Corollary: 

D(p( yldll dY 1x1) 10 9 (2.92) 

with equality if and only if p( y Ix) = q( y(x) for all y and x with p(x) > 0. 

Corollary: 

1(X, Y(Z)rO, (2.93) 

with 
2. 

equality if and only if X and Y are conditionally independent given 

We now show that the uniform distribution over the range %’ is the 
maximum entropy distribution over this range. It follows that any 
random variable with this range has an entropy no greater than log I %I. 

Theorem 2.6.4: H(X)5 logl%l, where 1x1 denotes the number of ele- 
ments in the range of X, with equality if and only if X has a uniform 
distribution over 2. 

Proof: Let u(x) = & be the uniform probability mass function over 8, 
and let p(x) be the probability mass function for X. Then 

D(pllu) = c PW log a - p(x) - logliz - H(X). (2.94) 

Hence by the non-negativity of relative entropy, 

osD(pllu)=log12tl -2WL 0 (2.95) 

Theorem 2.6.5 (Conditioning reduces entropy): 

H(Xl Y) 5 H(X) (2.96) 

with equality if and only if X and Y are independent. 
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Proof: 0 5 1(X, Y) = H(X) - H(XIY). Cl 

Intuitively, the theorem says that knowing another random variable 
Y can only reduce the uncertainty in X. Note that this is true only on the 
average. Specifically, H(XIY = y) may be greater than or less than or 
equal to H(X), but on the average H(XIY) = C, p( y)H(XIY = y) I H(X). 
For example, in a court case, specific new evidence might increase 
uncertainty, but on the average evidence decreases uncertainty. 

Example 2.6.1: Let (X, Y) have the following joint distribution: 

Then H(X) = H( i, g ) = 0.544 bits, H(XIY = 1) = 0 bits and H(XIY = 2) = 
1 bit. We calculate H(XIY) = $H(XJY = 1) + $H(XIY = 2) = 0.25 bits. 
Thus the uncertainty in X is increased if Y = 2 is observed and de- 
creased if Y = 1 is observed, but uncertainty decreases on the average. 

Theorem 2.6.6 (Independence bound on entropy): Let Xl, X,, . . , ,X, be 
drawn according to p(x,, x,, . . . , x~>. Then - 

with equality if and only if the Xi are independent. 

Proof: By the chain rule for entropies, 

H(x,,x, ,  .  -  l ,  xn>= 2 H(XiIXi-1, l l l 

i=l 

(2.97) 

9 Xl) (2.98) 

(2.99) 

where the inequality follows directly from the previous theorem. We 
have equality if and only if Xi is independent of Xi- 1, . . . , X1 for all i, i.e., 
if and only if the Xi’s are independent. 0 
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2.7 THE LOG SUM INEQUALITY AND ITS APPLICATIONS 

We now prove a simple consequence of the concavity of the logarithm, 
which will be used to prove some concavity results for the entropy. 

Theorem 2.7.1 (Log sum inequality): For non-negative numbers, a,, 
a,, . . . y a, and b,, b,, . . . , b,, 

i 1 ai 
i=l 

og F 2 (2 ai) log $$ 
i i=l i-l z 

(2.100) 

with equality if and only if 2 = const. I 

We again use the convention that 0 log 0 = 0, a log 8 = 00 if a > 0 and 
0 log 8 = 0. These follow easily from continuity. 

Proof: Assume without loss of generality that ai > 0 and bi > 0. 
The function fct) = t log t is strictly convex, since f”(t) = i log e > 0 for 

all positive t. Hence by Jensen’s inequality, we have 

C &ifitiJ2f(C aiti) (2.101) 

for ai 2 0, Ci (Y~ = 1. Setting pi = bi/~~=1 bj and ti = ailbi, we obtain 

c &log~Bc&logc$--, (2.102) 
j i J J 

which is the log sum inequality. cl 

We now use the log sum inequality to prove various convexity results. 
We begin by reproving Theorem 2.6.3, which states that D(p 11 q> 2 0 
with equality if and only if p(x) = q(x). 

By the log sum inequality, 

p(x) D(pllq) = c PW log i. (2.103) 

(2.104) 

1 
= 1 log 1 = 0 (2.105) 

with equality if and only if p(x)lq(x) = c. Since both p and q are 
probability mass functions, c = 1, and hence we have D(p 11 q) = 0 if and 
only if p(x) = q(x) for all 2. 
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Theorem 2.7.2: DC p 11 q) is conuex in the pair (p, a), i.e., if (ply q1 > and 
(p2, q2) are two pairs of probability mass functions, then 

D(hp, + (1 - h)p,IlAq, + Cl- Nq& mP,Ilq,) + (I- A)D(P2Il%) 

(2.106) 

for alZ OIAsl. 

Proof: We apply the log sum inequality to a term on the left hand 
side of (2.106), i.e., 

Ap,(x) + (1 - h)P,(x) 
(Ap,(d + (1 - Ah(x))log Aq (x) + (1 - A)qZ(x) 

1 

Ap,(x) 
s ‘Pdx) log Aql(x) - + (1 - A)p,(x) log 

(1 - A)&) 
(1 - A)q2(x) ’ 

(2.107) 

Summing this over all x, we obtain the desired property. cl 

Theorem 2.7.3 (Concavity of entropy): H(p) is a concave function of p. 

Proof: 

H(p)=k&+D(pl~u), (2.108) 

where u is the uniform distribution on I%‘I outcomes. The concavity of H 
then follows directly from the convexity of D. 

Alternative Proof: Let XI be a random variable with distribution p1 
taking on values in a set A. Let X, be another random variable with 
distribution pz on the same set. Let 

with probability A 
with probability 1 - A (2.109) 

Let 2 = X0. Then the distribution of 2 is Ap, + (1 - A)p,. Now since 
conditioning reduces entropy, we have 

H(ZkH(Zl@, (2.110) 

or equivalently, 

H(Ap,+(l-A)p,)~AH(p,)+(1-A)H(P2)~ (2.111) 

which proves the concavity of the entropy as a function of the dis- 
tribution. Cl 
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One of the consequences of the concavity of entropy is that mixing 
two gases of equal entropy results in a gas with higher entropy. 

Theorem 2.7.4: Let (X, Y) - p(x, y) = p(x)p( y Ix>. The mutual informa- 
tion I(X; Y) is a concave function of p(x) for fixed p( y 1x) and a convex 
function of p( y Ix) for fixed p(x). 

Proof: To prove the first part, we expand the mutual information 

I(x; Y) = H(Y) - H(YIX) = H(Y) - c p(x)H(YIX = xc). (2.112) 
x 

If p( y IX) is fixed, then p(y) is a linear function of p(x). Hence H(Y), 
which is a concave function of p( y), is a concave function of p(x). The 
second term is a linear function ofp(x). Hence the difference is a concave 
function of p(x). 

To prove the second part, we fix p(x) and consider two different 
conditional distributions pJ ~1%) and pz( y lx). The corresponding joint 
distributions are p&, y) = p(x) pl( ylx) and p&, y) = p(x) p2( ylx), and 
their respective marginals are p(x), pi(y) and p(x), p2(y). Consider a 
conditional distribution 

p,(ylx> = Ap,(yld + (I- h)P,(Yl~) (2.113) 

that is a mixture of pl( ylx) and p2( ylx). The corresponding joint dis- 
tribution is also a mixture of the corresponding joint distributions, 

p*(x, y) = hp,(x, y) + (1 - NP,h Y) 9 (2.114) 

and the distribution of Y is also a mixture 

pn(y) = Ap,(y) + (I- NP,(Y) l (2.115) 

Hence if we let Q&X, y) = p(x)p,( y) be the product of the marginal 
distributions, we have 

q,(x, y) = Aq,(x, y) + (I- A)q&, Y). (2.116) 

Since the mutual information is the relative entropy between the joint 
distribution and the product of the marginals, i.e., 

m n=mP,Ilq,L (2.117) 

and relative entropy D( p II q) is a convex function of (p, q), it follows that 
the mutual information is a convex function of the conditional dis- 
tribution. 0 
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2.8 DATA PROCESSING INEQUALITY 

The data processing inequality can be used to show that no clever 
manipulation of the data can improve the inferences that can be made 
from the data. 

Definition: Random variables X, Y, Z are said to form a Markov chain 
in that order (denoted by X-, Y + 2) if the conditional distribution of 2 
depends only on Y and is conditionally independent of X. Specifically, X, 
Y and 2 form a Markov chain X+ Y+ 2 if the joint probability mass 
function can be written as 

PC5 y,  d = pWp( y ldp(z) y) l (2.118) 

Some simple consequences are as follows: 

l X+ Y+ 2 if and only if X and 2 are conditionally independent 
given Y. Markovity implies conditional independence because 

Pk 4Y) = 
Pk Y, d = Pk Y)P(Z I Y) 

p(y) 
P(Y) 

= p(~ly)p(zly) l 
(2.119) 

This is the characterization of Markov chains that can be extended 
to define Markov fields, which are n-dimensional random processes 
in which the interior and exterior are independent given the values 
on the boundary. 

l X- Y-, 2 implies that 2 --, Y+ X. Thus the condition is some- 
times written X- Y f, 2. 

l If 2 = f(Y), then X-* Y+ 2. 

We can now prove an important and useful theorem demonstrating 
that no processing of Y, deterministic or random, can increase the 
information that Y contains about X. 

Theorem 2.8.1 (Data processing inequality): If X+ Y+ 2, then 
I(X, Y) 1 I(X, 2). 

Proof: By the chain rule, we can expand mutual information in two 
different ways. 

I(X, Y, 2) = I(X, 2) + I(X, YIZ) (2.120) 

= I(X, 2) + I(X, YIZ) . (2.121) 
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Since X and 2 are conditionally independent given Y, we have 
I(X, ZlY) = 0. Since 1(X, YlZ) ~0, we have 

1(x, Y) 1 I(X, 2) . (2.122) 

We have equality if and only if 1(X, YlZ) = 0, i.e., X+2+ Y forms a 
Markov chain. Similarly, one can prove that I(Y; 2) 2 1(X, 2). Cl 

Corollary: In particular, if2 = g(Y), we have I(X, Y) 2 I(X; g(Y)). 

Proof: X+ Y+g(Y) forms a Markov chain. 0 

Thus functions of the data Y cannot increase the information about X. 

Corollary: IfX+ Y+ 2, then I(X, YlZ) I I(X, Y). 

Proof: From (2.120) and (2.121), and using the fact that 1(X, ZIY) = 
0 by Markovity and 1(X, 2) 10, we have 

I(X, YIZ) I I(X, Y) . q (2.123) 

Thus the dependence of X and Y is decreased (or remains unchanged) 
by the observation of a “downstream” random variable 2. 

Note that it is also possible that 1(X, YlZ> > 1(X; Y) when X, Y and 2 
do not form a Markov chain. For example, let X and Y be independent 
fair binary random variables, and let 2 = X + Y. Then 1(X; Y) = 0, but 
1(X; YlZ) = H(XIZ) - H(X(Y, 2) = H(XIZ) = P(Z = 1) H(XIZ = 1) = $ bit. 

2.9 THE SECOND LAW OF THERMODYNAMICS 

One of the basic laws of physics, the second law of thermodynamics, 
states that the entropy of an isolated system is non-decreasing. We now 
explore the relationship between the second law and the entropy func- 
tion that we have defined earlier in this chapter. 

In statistical thermodynamics, entropy is often defined as the log of 
the number of microstates in the system. This corresponds exactly to our 
notion of entropy if all the states are equally likely. But why does the 
entropy increase? 

We model the isolated system as a Markov chain (see Chapter 4) with 
transitions obeying the physical laws governing the system. Implicit in 
this assumption is the notion of an overall state of the system and the 
fact that, knowing the present state, the future of the system is 
independent of the past. In such a system, we can find four different 
interpretations of the second law. It may come as a shock to find that 
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the entropy does not always increase. However, relative entropy always 
decreases. 

1. Relative entropy D( p,,ll&) decreases with n. Let ,u~ and CL:, be two 
probability distributions on the state space of a Markov chain at 
time n, and let pn +1 and & + 1 be the corresponding distributions at 
time n + 1. Let the corresponding joint mass fun&ions be denoted 
by p and q. Thus p(=2,,~,+~)=p(=c,) d~,+lIx,) ad q(+x,+l)= 
q(x, ) dx,, + I Ix,), where r( l I . ) is the probability transition function 
for the Markov chain. Then by the chain rule for relative entropy, 
we have two expansions: 

D(P(x,,x,+,)llq(x,,x,,,)) 

= ~(P(x,)ll&,N + D(p(x,+,Ix,)IIq(Xn+llXn)) 

=~(P(x,+IM&I+1>) + ~(P(x,lx,+l)lIQ(x,IXn+l))’ 

Since both p and q are derived from the Markov chain, the 
conditional probability mass functions p(x, + I lx, ) and q(x, + 1 Ix, ) 
are equal to F(x~+~ Ix,> ad hence D(p(x,+,(x,)((q(x~+lIx,)) = 0. 
Now using the non-negativity of D( p(x, Ix, + 1 ) II q(xn Ix, + 1 )) (Corol- 
lary to Theorem 2.6.3), we have 

or 

Consequently, the distance between the probability mass func- 
tions is decreasing with time n for any Markov chain. 

An example of one interpretation of the preceding inequality is 
to suppose that the tax system for the redistribution of wealth is 
the same in Canada and in England. Then if ccn and & represent 
the distributions of wealth among individuals in the two countries, 
this inequality shows that the relative entropy distance between 
the two distributions decreases with time. The wealth distribu- 
tions in Canada and England will become more similar. 

2. Relative entropy D( pn II p) between a distribution I-L, on the states at 
time n and a stationary distribution JL decreases with n. In 
(2.125), & is any distribution on the states at time n. If we let pk 
be any stationary distribution p, then &+ I is the same stationary 
distribution. Hence 

~kllP)~D(Prl+1lIPL (2.126) 
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which implies that any state distribution gets closer and closer to 
each stationary distribution as time passes. The sequence 
D( pn 11 p) is a monotonically non-increasing non-negative sequence 
and must therefore have a limit. The limit is actually 0 if the 
stationary distribution is unique, but this is more difficult to 
prove. 

3. Entropy increases if the stationary distribution is uniform. In 
general, the fact that the relative entropy decreases does not 
imply that the entropy increases. A simple counterexample is 
provided by any Markov chain with a non-uniform stationary 
distribution. If we start this Markov chain from the uniform 
distribution, which already is the maximum entropy distribution, 
the distribution will tend to the stationary distribution, which has 
a lower entropy than the uniform. Hence the entropy decreases 
with time rather than increases. 

If, however, the stationary distribution is the uniform dis- 
tribution, then we can express the relative entropy as 

In this case the monotonic decrease in relative entropy implies a 
monotonic increase in entropy. This is the explanation that ties in 
most closely with statistical thermodynamics, where all the mi- 
crostates are equally likely. We now characterize processes having 
a uniform stationary distribution. 

Definition: A probability transition matrix [P,], Pti = Pr{X,+, = 
AX, = i} is called doubly stochastic if 

CP,=l, j=l,2,... (2.128) 

and 

CP,=l, i = 1,2,. . . (2.129) 
j 

Remark: The uniform distribution is a stationary distribution 
of P if and only if the probability transition matrix is doubly 
stochastic. See Problem 1 in Chapter 4. 

4. The conditional entropy H(x, IX, ) increases with n for a stationary 
Markov process. If the Markov process is stationary, then H(X, > is 
constant. So the entropy is nonincreasing. However, we will prove 
that H(X,(X,) increases with n. Thus the conditional uncertainty 
of the future increases. We give two alternative proofs of this 
result. First, we use the properties of entropy, 
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H(x, Ix, > 1 H(x, Ix,, x, 1 (conditioning reduces entropy) (2.130) 

= H(x, 1x2 > (by Markovity ) (2.131) 

(by stationarity) . (2.132) 

Alternatively, by an application of the data processing 
to the Markov chain Xl+Xn-pXn, we have 

inequality 

I(xl;xn~,)rI(x~;xn). (2.133) 

Expanding the mutual informations in terms of entropies, we have 

H(X,_,)-H(X,-,Ix~)~H(X,)-H(X,IX,). (2.134) 

By stationarity, H(x, _ I ) = H(x, ), and hence we have 

H(x,-,Ix,)~wxnIx,). (2.135) 

(These techniques can also be used to show that H(x, IX, ) is 
increasing in n for any Markov chain. See problem 35.) 

5. Shuffles increase entropy. If 2’ is a shuffle (permutation) of a deck 
of cards and X is the initial (random) position of the cards in the 
deck and if the choice of the shuffle 2’ is independent of X, then 

mm 2 mm, (2.136) 

where TX is the permutation of the deck induced by the shuffle 2’ 
on the initial permutation X. Problem 31 outlines a proof. 

2.10 SUFFICIENT STATISTICS 

This section is a sidelight showing the power of the data processing 
inequality in clarifying an important idea in statistics. Suppose we have 
a family of probability mass functions { f@(x)} indexed by 6, and let X be 
a sample from a distribution in this family. Let Z’(X) be any statistic 
(function of the sample) like the sample mean or sample variance. Then 
IV+ X+ T(X), and by the data processing inequality, we have 

I@; T(X)> 5 I@; X) (2.137) 

for any distribution on 8. However, if equality holds, no information is 
lost. 
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A statistic T(X) is called sufficient for 8 if it contains all the informa- 
tion in X about 8. 

Definition: A function Z’(X) is said to be a sufficient statistic relative to 
the family { f,(z)} if X is independent of 8 given T(X), i.e., 8 + T(X)+ X 
forms a Markov chain. 

This is the same as the 
inequality, 

condition for equality in the data processing 

I@; X) = I@; T(X)) (2.138) 

for all distributions on 8. Hence sufficient statistics preserve mutual 
information and conversely. 

Here are some examples of sufficient statistics: 

1. LetX,,X, ,..., X,,Xi E{O,l}, b e an independent and identically 
distributed (i.i.d.) sequence of coin tosses of a coin with unknown 
parameter 8 = Pr<X, = 1). Given n, the number of l’s is a sufficient 
statistic for 8. Here Z’(X1, X,, . . . , X, > = C y= 1 Xi. In fact, we can 
show that given T, all sequences having that many l’s are equally 
likely and independent of the parameter 8. Specifically, 

Pr (X1,X, ,..., Xn)=(xl,x2 ,..., 

otherwise . 
(2.139) 

Thus e-tCXi3(X~,X2,... , X, ) forms a Markov chain, and T is a 
sufficient statistic for 8. 

The next two examples involve probability densities instead of prob- 
ability mass functions, but the theory still applies. We define entropy 
and mutual information for continuous random variables in Chapter 9. 

2. If X is normally distributed with mean 8 and variance 1, i.e., if 

1 
fob) = s e -(r43)2/2 = N(@, 1)) (2.140) 

and X1,X,, . . . ,X, are drawn independently according to this 
distribution, then a sufficient statistic for 8 is Xn = E Ey= 1 Xi. It 
can be verified that the conditional distribution of X,, X2, . . . , X, , 
conditioned on & and n does not depend on 8. 
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3. If fe = Uniform@, 8 + l), then a sufficient statistic for 8 is 

T(x,,X,, * - .,XJ=<max{X& ,..., X,},min{X,,X, ,..., X,}>. 

(2.141) 

The proof of this is slightly more complicated, but again one can 
show that the distribution of the data is independent of the 
parameter given the statistic 2’. 

The minimal sufficient statistic is a sufficient statistic that is a 
function of all other sufficient statistics. 

Definition: A statistic T(X) is a minimal sufficient statistic relative to 
{ f,(x)} if it is a function of every other sufficient statistic U. Interpreting 
this in terms of the data processing inequality, this implies that 

8+ T(X)+ U(X)+X. (2.142) 

Hence a minimal sufficient statistic maximally compresses the infor- 
mation about 6 in the sample. Other sufficient statistics may contain 
additional irrelevant information. For example, for a normal distribu- 
tion with mean 6, the pair of functions giving the mean of all odd 
samples and the mean of all even samples is a sufficient statistic, but 
not a minimal sufficient statistic. In the preceding examples, the suffici- 
ent statistics are also minimal. 

2.11 FANO’S INEQUALITY 

Suppose we know a random variable Y and we wish to guess the value of 
a correlated random variable X. Fano’s inequality relates the probability 
of error in guessing the random variable X to its conditional entropy 
H(XIY). It will be crucial in proving the converse to Shannon’s second 
theorem in Chapter 8. From the problems at the end of the chapter, we 
know that the conditional entropy of a random variable X given another 
random variable Y is zero if and only if X is a function of Y. Hence we 
can estimate X from Y with zero probability of error if and only if 
H(X(Y) = 0. 

Extending this argument, we expect to be able to estimate X with a 
low probability of error only if the conditional entropy H(XI Y) is small. 
Fano’s inequality quantifies this idea. 

Suppose we wish to estimate a random variable X with a distribution 
p(x). We observe a random variable Y which is related to X by the 
conditional distribution p( y lx). From Y, we calculate a function g(Y) = 
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X, which is an estimate of X. We wish to bound the probability that 
X # X. We observe that X+ Y+ X forms a Markov chain. Define the 
probability of error 

P,=Pr{~#X}. (2.143) 

Theorem 2.11.1 (Funds inequality): 

~(P~)+P,log(J~I-l)~H(xIy). (2.144) 

This inequality can be weakened to 

l+PelogppH(X~Y) (2.145) 

or 

pe’ 
H(XIY) - 1 

logpq * 
(2.146) 

Remark: Note that P, = 0 implies that H(XIY) = 0, as intuition 
suggests. 

Proof: Define an error random variable, 

E= 
i 

1 ifitzx, 
0 ifx=x. 

(2.147) 

Then, using the chain rule for entropies to expand H(E, XI Y) in two 
different ways, we have 

H(E, XlY) = H(XI Y) + H(E IX, Y) (2.148) \ , 
=o 

= ptfl:) + H(XIE, Y) . (2.149) 
SEW,) SP,log(lBI-l) 

Since conditioning reduces entropy, H(E I Y) zs H(E) = H(P,). Now since 
E is a function of X and g(Y), the conditional entropy H(E IX, Y) is equal 
to 0. Also, since E is a binary-valued random variable, H(E) = H(P, ). 
The remaining term, H(X( E, Y), can be bounded as follows: 

H(XIE,Y)=P~(E=O)HXIY,E=O)+P~(E=~)H(XIY,E=~) 

(2.150) 

~w-Pe)o+Pelog(~~~-l), (2.151) 
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since given E = 0, X = g(Y), and given E = 1, we can upper bound the 
conditional entropy by the log of the number of remaining outcomes 
( IS.?I - 1 if g( Y) E 25, else 1 El ). Combining these results, we obtain Fano’s 
inequality. Cl 

&mark Suppose that there is no knowledge of Y. Thus X must he 
guessed without any information. Let X E { 1,2,. . . , m} and p1 L pz z 
. . . 1 pm. Then the best guess of X is X = 1 and the resulting probability 
of error is P, = 1 - PI. Fano’s inequality becomes 

H(P,)+P,log(m-l)rH(X). (2.152) 

The probability mass function 

(p1,p2,..*,pm)= pt! pt! l-P,,m-*““‘a 
> 

(2.153) 

achieves this hound with equality. Thus Fano’s inequality is sharp. 

The following telegraphic summary omits qualifying conditions. 

SUMMARY OF CHAPTER 2 

Definition: The entmw H(X) of a discrete random variable X is defined by 

H(X)= - Yz p(x) log p(x). - (2.154) 
+E9 

Properties of H: 

1. H(X)rO. 
2. H,(X) = (log, a) H,(X). 
3. (Conditioning reduces entropy) For any two random variables, X and Y, 

we have 

H(XIY) I H(X) (2.155) 

with equality if and only if X and Y are independent. 
4. H(XI, X2, . . . , X, ) I Cy= 1 H(X, ), with equality if and only if the random 

variables Xi are independent. 
5. H(X) I log (%‘I with equality if and only if X is uniformly distributed 

over 8. 
6. H(p) is concave in p. 

Definition: The relative entropy D(pllq) of the probability mass function p 
with respect to the probability mass diction Q is defined by 
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(2.156) 

Definition: The mutual information between two random variables X and Y 
is defined as 

z(x; Y) = 2 
p(=c, Y) 

2 Pk Y) log pop(y) * 
ZEaT YEW 

Alternative expressions: 
1 

H(x) = E, log p(x) 

(2.157) 

(2.158) 

1 
H(x, n = E, log p(x, y) (2.159) 

1 
H(XIY) = E, log - 

p(X(Y) 
PK Y) z(x; n = E, log p(x)p(y) 

Pcx) 
D(Plld = E, h3 m 

(2.160) 

(2.161) 

(2.162) 

Properties of D and I: 

1. Z(X, Y) = H(X) - ZZ(XIY) = H(Y) - H(YIX) = H(X) + H(Y) - NX, Y). 
2. D(p 11 q) L 0 with equality if and only if p(x) = q(x), for all x E kf’ . 
3. Z(X, Y) = D( p(x, y)II p(x)p(y)) 2 0, with equality if and only if p(x, y) = 

p(x)p(y), i.e., X and Y are independent. 
4. of I%pI = m, and u is the uniform distribution over 8, then D(plJu) = 

log m - H(p). 
5. D( p 114) is convex in the pair (p, q). 

Chain rules 

Entropy: H(x,,X,, . . .v X,1= Cy=l HVr,(Xi-1, *a * ,X1)* 
Mutual 

information: ZcX,,X,, . . . ,X,; Y)= Cy-,, Z(Xi; YJxl,X2, + * * ,Xi-1). 
Relative entropy: D(p(x, y)IIqCx, yN = D(p(n)l(q(xN + D(p(y(x)((q(y(x)h 

Jensen’s inequality: If f is a convex function, then EflX) 1 f(EX). 

Log sum inequality: For n positive numbers, a,, a,, . . . , a,, and b,, 
b 2, ***, b p&P 

$ Ui10gz2($ U,)lOgw 
i=l 8 i=l r=l i 

(2.163) 

I with equality if and only if a&b, = constant. I 
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Data processing inequality: If X+ Y+ 2 forms a Markov chain, then 
Z(X, Y) 2 Z(x; 2) 

Second law of thermodynamics: For a Markov chain, 

1. Relative entropy D( p, 11 CL;) decreases with time. 
2. Relative entropy D( ~~11 CL) between a distribution and the stationary 

distribution decreases with time. 
3. Entropy H(X,) increases if the stationary distribution is uniform. 
4. The conditional entropy H(X, IX, ) increases with time for a stationary 

Markov chain. 
5. The conditional entropy H(X,jX,) of the initial condition X0 increases 

for any Markov chain. 

Suffkient statistic: T(X) is sticient relative to {f,(z)} if and only if 
1(0; X) = I(@; Z’(X)) for all distributions on 8. 

Fano’s inequality: Let P, = Fr{ g(Y) #X}, where g is any function of Y. 
Then 

H(P,)+P,log(l~“(-l)rH(XIY). (2.164) 

PROBLEMS FOR CHAPTER 2 

1. Coin flips. A fair coin is flipped until the first head occurs. Let X 
denote the number of flips required. 
(a) Find the entropy H(X) in bits. The following expressions may be 

useful: 
m 03 
c 

r rn = - c nrn 
n=l l-r’ n=l 

=&* 

(b) A random variable X is drawn according to this distribution. Find 
an “efficient” sequence of yes-no questions of the form, “Is X 
contained in the set S?” Compare H(X) to the expected number of 
questions required to determine X. 

Entropy of f uncfions. Let X be a random variable taking on a finite 
number of values. What is the (general) inequality relationship of 
H(X) and H(Y) if 
(a) Y = 2x? 
(b) Y = cos X? 

Minimum entropy. What is the minimum value of Np,, . . . , p, > = 
H(p) as p ranges over the set of n-dimensional probability vectors? 
Find all p’s which achieve this minimum. 

Axiomafic definition of entropy. If we assume certain axioms for our 
measure of information, then we will be forced to use a logarithmic 
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measure like entropy. Shannon used this to justify his initial defini- 
tion of entropy. In this book, we will rely more on the other properties 
of entropy rather than its axiomatic derivation to justify its use. The 
following problem is considerably more difficult than the other prob- 
lems in this section. 

If a sequence of symmetric functions H,( pl, pz, . . . , p, ) satisfies 
the following properties, 

l Normalization: H2 ( 3, i > = 1, 
l Continuity: H,( p, 1 - p) is a continuous function of p, 

l Grouping: WP,, ~2,. . -7 p,) = H,-,(P, + ~2, ~3,. . -3 P,) + 

(P, + ~2) H,((&, (+G2 1, 

prove that H, must be of the form 

H,Jp,, ~2,. - - 3 pm)= - 2 PilWPi, m = 2,3, . , . . 
i=l 

(2.165) 

There are various other axiomatic formulations which also result in 
the same definition of entropy. See, for example, the book by Csiszar 
and Korner [83]. 

5. Entropy of functions of a random variable. Let X be a discrete random 
variable. Show that the entropy of a function of X is less than or 
equal to the entropy of X by justifying the following steps: 

H(X, g(X)> z’H(X) + H(g(X)(X) (2.166) 

(b) 
= H(X); (2.167) 

H(x, g(X)> ~H(g(xN + HW(gWN (2.168) 

Cd) 
2 H(g(XN . (2.169) 

Thus H(g(X)) 5 H(X). 

6. Zero conditional entropy. Show that if H(YJX) = 0, then Y is a function 
of X, i.e., for all x with p(x) > 0, there is only one possible value of y 
with p(x, y) > 0. 

7. Pure randomness and bent coins. Let X1,X2, . . . , Xn denote the out- 
comes of independent flips of a bent coin. Thus Pr{X, = 1) = p, 
Pr{Xi = 0} = 1 - p, where p is unknown. We wish to obtain a se- 
quence Z,, Z,, . . . , ZK of fair coin flips from X1, X2, . . . , X,. Toward 
this end let f : En + {O,l}* (where {O,l}* = {A, 0, 1, 00, 01,. . . } is 
the set of all finite length binary sequences) be a mapping 
flJLx2, * * . , X, 1 = (Z,, Z,, . . . , Z,), where Zi - Bernoulli ( fr 1, and K 
may depend on (X1, . . . ,X,). In order that the sequence Z,, Z,, . . . 
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appear to be fair coin flips, the map f from bent coin flips to fair flips 
must have the property that all 2A sequences (2, , Z,, . . . , Zk ) of a 
given length k have equal probability (possibly 0), for k = 1,2, . . . . 
For example, for n = 2, the map flO1) = 0, fll0) = 1, flO0) = f(l1) = A 
(the null string), has the property that Pr{Z, = 11X= l} = Pr{Z, = 
OIK= l} = 4. 
Give reasons for the following inequalities: 

(a) 
nH(p) =H(XI, . . . ,X,,) 

(b) 
rH(Z,, Z,, . . . ,&,K) 

Cc) 

= H(K) + H(Z,, . . . , Z,IK) 

(d) 
= H(K) + E(K) 

(e) 

rEK. 

Thus no more than nH(p) fair coin tosses can be derived from (X1, 
. , X, ), on the average. 

ii) Exhibit a good map f on sequences of length 4. 

8. World Series. The World Series is a seven-game series that terminates 
as soon as either team wins four games. Let X be the random variable 
that represents the outcome of a World Series between teams A and 
B; possible values of X are AA& BABABAB, and BBBAAAA. Let Y 
be the number of games played, which ranges from 4 to 7. Assuming 
that A and B are equally matched and that the games are indepen- 
dent, calculate H(X), H(Y), H(YIX), and H(X)Y). 

9. Znfinite entropy. This problem shows that the entropy of a discrete 
random variable can be infinite. Let A = CI=, (n log2 n)-‘. (It is easy 
to show that A is finite by bounding the infinite sum by the integral of 
(x log2 x)- ‘.) Sh ow that the integer-valued random variable X defined 
by Pr(X = n) = (An log’ n)-’ for n = 2,3, . . . has H(X) = + 00. 

10. Conditional mutual information vs. unconditional mutual information. 
Give examples of joint random variables X, Y and 2 such that 

(a> 1(X; YIPI> < 1(X, Y), 
(b) 1(X; YIZ) > 1(X, Y). 

11. Average entropy. Let H(p) = -p log, p - (1 - p) log,(l - p) be the bi- 
nary entropy function. 
(a) Evaluate H( l/4) using the fact that log 2 3 = 1.584. Hint: Con- 

sider an experiment with four equally likely outcomes, one of 
which is more interesting than the others. 

(b) Calculate the average entropy H(p) when the probability p is 
chosen uniformly in the range 0 I p I 1. 
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(c) (Optional) Calculate the average entropy H(p,, pz, p3) where 
( pl, pz, pa) is a uniformly distributed probability vector. General- 
ize to dimension n. 

12. Venn diug~ums. Using Venn diagrams, we can see that the mutual 
information common to three random variables X, Y and 2 should be 
defined by 

1(x; y; 2) = 1(X, Y) - 1(x; Yp?) . 

This quantity is symmetric in X, Y and 2, despite the preceding 
asymmetric definition. Unfortunately, 1(X, Y, 2) is not necessarily 
nonnegative. Find X, Y and 2 such that 1(X, Y, 2) < 0, and prove the 
following two identities: 

1(X, y; 2) = H(X, Y, 2) - H(X) - H(Y) - H(Z) + 1(X; Y) + I(y; 2) 

+ I(Z; X) 

1(X, Y, 2) = H(X, Y, 2) - H(X, Y) - H(Y, 2) - H(Z, X) 

+ H(X) + H(Y) + H(Z) 

The first identity can be understood using the Venn 
for entropy and mutual information. The second 
easily from the first. 

diagram analogy 
identity follows 

13. Coin weighing. Suppose one has n coins, among which there may or 
may not be one counterfeit coin. If there is a counterfeit coin, it may 
be either heavier or lighter than the other coins. The coins are to be 
weighed by a balance. 
(a) Find an upper bound on the number of coins n so that k weighings 

will find the counterfeit coin (if any) and correctly declare it to be 
heavier or lighter. 

(b) (Difficult) What is th e coin weighing strategy for k = 3 weighings 
and 12 coins? 

14. Drawing with and without replacement. An urn contains r red, w white, 
and b black balls. Which has higher entropy, drawing k ~2 balls from 
the urn with replacement or without replacement? Set it up and show 
why. (There is both a hard way and a relatively simple way to do 
this.) 

15. A metric. A function p(x, y) is a metric if for all x, y, 

l p(x, y) 2 0 

l p(x, y) = dy, xl 

l p(x,y)=O if and only ifx=y 
l PC& y) + dy, 2) 2 p(x, 2). 
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(a) Show that p(X, Y) = H(XIY) + H(YIX) satisfies the first, second 
and fourth properties above. If we say that X = Y if there is a 
one-to-one function mapping X to Y, then the third property is 
also satisfied, and p(X, Y) is a metric. 

(b) Verify that p(X, Y) can also be expressed as 

PK Y)=H(X)+H(Y)-21(X,Y) (2.170) 

= mx, Y) - 1(X, Y) (2.171) 

=2H(X,Y)--H(X)--H(Y). (2.172) 

16. Example of joint entropy. Let p(x, y) be given by 

Find 
(a) H(X), WY). 
(b) HWIY), HWIX). 
cc> H(x, Y). 
(d) HO’) - IWJX). 
(4 1(X; Y). 
(f) Draw a Venn diagram for the quantities in (a) through (e). 

17. Inequality. Show In x L 1 - $ for x > 0. 
18. Entropy of a sum. Let X and Y be random variables that take on 

values x,, x2, . . . , x, andy,, yz, . . . , y,, respectively. Let 2 = X + Y. 
(a) Show that H(ZIX) = H(YIX). Argue that if X, Y are independent, 

then H(Y)sH(Z) and H(X)rH(Z). Thus the addition of in- 
dependent random variables adds uncertainty. 

(b) Give an example (of necessarily dependent random variables) in 
which H(X) > H(Z) and H(Y) > H(Z). 

(c) Under what conditions does H(Z) = H(X) + H(Y)? 

19. Entropy of a disjoint mixture. Let X1 and Xz be discrete random 
variables drawn according to probability mass functions pl(. ) and 
p2( * ) over the respective alphabets %I = {1,2, . . . , m} and 
ft& = (m + 1,. . . , n). Let 

x = 
X1, with probability a , 
Xz, with probability 1 - (Y . 

(a) Find H(X) in terms of If(X, ) and H(X,) and CY. 
(b) Maximize over cy to show that 2H’X’ % 2H(X1) + 2wCxz’ and interpret 

using the notion that 2HW) is the effective alphabet size. 
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20. 

21. 

22. 

23. 

24. 

25. 

26. 

A measure of correlation. Let X1 and Xz be identically distributed, but 
not necessarily independent. Let 

wx2 Ix, 1 
P’l- H(X) - 

1 

(a) Show p = 1(X,; X,)IH(x,). 
(b) Show Olpsl. 
(c) When is p = O? 
(d) When is p = l? 

Data processing. Let X1 + Xz +X3 + - - - + X,, form a Markov chain in 
this order; i.e., let 

Pk, x2, * ’ ’ , x,) =p(lcJp(x21x& * - p(x,Ix,-,) * 

Reduce 1(X1; X2, . . . , Xn ) to its simplest form. 

Bottleneck. Suppose a (non-stationary) Markov chain starts in one of 
n states, necks down to A < n states, and then fans back to m > k 
states. Thus X1-*X2-+X,, X,~{1,2,. . . , n}, X,E{1,2,. . . , k}, 
x3 E {1,2,. . . , m}. 
(a) Show that the dependence of X1 and X3 is limited by the bottle- 

neck by proving that 1(X,; X3) 5 log k. 
(b) Evaluate 1(X1; X,) for k = 1, and conclude that no dependence can 

survive such a bottleneck. 

Run length coding. Let Xl, X2, . . . , X, be (possibly dependent) binary 
random variables. Suppose one calculates the run lengths R = 
(Rl, 4,. . . ) of this sequence (in order as they occur). For example, 
the sequence x = 0001100100 yields run lengths R = (3,2,2,1,2). 
Compare H(X,, X2, . . . , X,, ), H(R) and H(X,, R). Show all equalities 
and inequalities, and bound all the differences. 

Markov’s inequality for probabilities. Let p(x) be a probability mass 
function. Prove, for all d L 0, 

Pr{ p(X) 5 d} log ( 1 $ (H(X). (2.173) 

Logical order of ideas. Ideas have been developed in order of need, and 
then generalized if necessary. Reorder the following ideas, strongest 
first, implications following: 
(a) Chain rule for 1(X,, . . . ,X,; Y) , chain rule for D(p(x,, . . . , 

%JI&,, x2, - * * , x, )), and chain rule for H(X, , X2, . . . , X, ). 
(b) D( fll g) L 0, Jensen’s inequality, 1(X, Y) L 0. 

Second law of thermodynamics. Let X1, X2, X3 . . . be a stationary first- 
order Markov chain. In Section 2.9, it was shown that H(X,IX, ) L 
H(Xndl(Xl) for n =2,3,. . . . Thus conditional uncertainty about the 
future grows with time. This is true although the unconditional 
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uncertainty H(X,) remains constant. However, show by example 
H(x, IX1 = x 1 ) does not necessarily grow with n for every x,. 

that 

27. Condifional mutual information. Consider a sequence of n binary ran- 
dom variables XI, XZ, . . . , X,. Each sequence with an even number of 
l’s has probability 2-(n-1’ and each sequence with an odd number of 
l’s has probability 0. Find the mutual informations 

m1;x2>, r<x,;x,Ix,), - -. ,Icx,-,;x,Ix,, . * * ,x,-2> * 

28. Mixing increases entropy. Show that the entropy of the probability 
distribution, (pl, . . . , pi, . . . , Pj, . . . , p, ), is less than the entropy of 

P. +P 

the distribution (pl, . . . , r 
P. +P 

. . . , r p,). Show that in 
general any transfer of problbiiity that 2malks’the distribution more 
uniform increases the entropy. 

29. Inequalities. Let X, Y and 2 be joint random variables. Prove the 
following inequalities and find conditions for equality. 
(a) H(X, YIZ) 2 MXIZ). 
(b) 1(X, y; 2) 2 1(X, 2). 
(c) H(X, Y,Z)-H(X, Y)sH(X,Z)-H(X). 
(d) 1(X, Z(Y) 2 I(Z; YIX) - I(Z; Y) + 1(X, 2). 

30. Maximum entropy. Find the probability mass function p(x) that max- 
imizes the entropy H(X) of a non-negative integer-valued random 
variable X subject to the constraint 

EX= c np(n)=A 
n=O 

for a fixed value A > 0. Evaluate this maximum H(X). 

31. Shuffles increase entropy. Argue that for any distribution on shuffles T 
and any distribution on card positions X that 

HVX) 2 H(TxJT) (2.174) 

= H(PTxIT) (2.175) 

= H(X(T) (2.176) 

= H(X), (2.177) 

if X and 2’ are independent. 

32. Conditional entropy. Under what conditions does H(Xlg(Y)) = HCXIY)? 

33. Fano’s inequalify. Let pr(X = i) = pi, i = 1, 2, . . . , m and let p1 zp2 1 
+I ’ - - ‘p,. The minimal probability of error predictor of X is 
X = 1, with resulting probability of error P, = 1 - pl. Maximize H(p) 
subject to the constraint 1 - p1 = P, to find a bound on P, in terms of 
H. This is Fano’s inequality in the absence of conditioning. 
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34. Monotonic convergence of the empirical distribution. Let 6, denote the 
empirical probability mass function corresponding to Xi, XZ, . , . , Xn 
i.i.d. -p(x), x E %. Specifically, 

(2.178) 

is the proportion of times that Xi = x in the first n samples, where I is 
an indicator function. 
(a) Show for %’ binary that 

(2.179) 

Thus the expected relative entropy “distance” from the empirical 
distribution to the true distribution decreases with sample size. 
Hint: Write ljzn = i rj, + ifi: and use the convexity of D. 

(b) Show for an arbitrary discrete Z!? that 

35. Entropy of initial conditions. Prove that H(X,(X,) is non-decreasing 
with n for any Markov chain. 

HISTORICAL NOTES 

The concept of entropy was first introduced in thermodynamics, where it was 
used to provide a statement of the second law of thermodynamics. Later, 
statistical mechanics provided a connection between the macroscopic property of 
entropy and the microscopic state of the system. This work was the crowning 
achievement of Boltzmann, who had the equation S = k In W inscribed as the 
epitaph on his gravestone. 

In the 193Os, Hartley introduced a logarithmic measure of information for 
communication. His measure was essentially the logarithm of the alphabet size. 
Shannon [238] was the first to define entropy and mutual information as defined 
in this chapter. Relative entropy was first defined by Kullback and Leibler [167]. 
It is known under a variety of names, including the Kullback Leibler distance, 
cross entropy, information divergence and information for discrimination, and 
has been studied in detail by Csiszar [78] and Amari [lo]. 

Many of the simple properties of these quantities were developed by Shan- 
non. Fano’s inequality was proved in Fano [105]. The notion of sufficient statistic 
was defined by Fisher [ill], and the notion of the minimal sufficient statistic was 
introduced by Lehmann and Scheffe [174]. The relationship of mutual informa- 
tion and sufficiency is due to Kullback [165]. 

The relationship between information theory and thermodynamics has been 
discussed extensively by Brillouin [46] and Jaynes [143]. Although the basic 
theorems of information theory were originally derived for a communication 
system, attempts have been made to compare these theorems with the fundamen- 
tal laws of physics. There have also been attempts to determine whether there are 
any fundamental physical limits to computation, including work by Bennett [24] 
and Bennett and Landauer [25]. 



Chapter 3 

The Asymptotic Equipartition 
Property 

In information theory, the analog of the law of large numbers is the 
Asymptotic Equipartition Property (AEP). It is a direct consequence of 
the weak law of large numbers. The law of large numbers states that for 
independent, identically distributed (i.i.d.) random variables, i C r= 1 Xi is 
close to its expected value EX for large values of n. The AEP states that 
4 log p(x,, x,f, , x,j is close to the entropy H, where X, , X, , . . . , X, are i.i.d. 
random variables and p(X,, X,, . . . , XJ is the probability of observing 
the sequence X1, X,, . . . , X,. Thus the probability p(X1, X,, . . . ,X,) as- 
signed to an observed sequence will be close to 2-“? 

This enables us to divide the set of all sequences into two sets, the 
typical set, where the sample entropy is close to the true entropy, and 
the non-typical set, which contains the other sequences. Most of our 
attention will be on the typical sequences. Any property that is proved 
for the typical sequences will then be true with high probability and will 
determine the average behavior of a large sample. 

First, an example. Let the random variable X E (0, l} have a prob- 
ability mass function defined by p( 1) = p and p(O) = q. If X1, X,, . . . ,X, 
are i.i.d. according to p(x), then the probability of a sequence 
x1,x2,.**, x, is l-l:=, p(~i). For example, the probability of the sequence 
(1, 0, 1, 1, 0,l) is pzxiqnmxxi =p4q2. Clearly, it is not true that all 2” 
sequences of length n have the same probability. 

However, we might be able to predict the probability of the sequence 
that we actually observe. We ask for the probability p(Xl, X2, . . . , XJ of 
the outcomes X1, X2, . . . , X,, where X1, X2, . . . are i.i.d. - p(x). This is 
insidiously self-referential, but well defined nonetheless. Apparently, we 
are asking for the probability of an event drawn according to the same 
probability distribution. Here it turns out that p<x,, X2, . . . , X, ) is close 
to 2-nH with high probability. 
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We summarize this by saying, “Almost all events are almost equally 
surprising.” This is a way of saying that 

fi{(x, 9 x,, . . . . X,):p(X,,X, ,... ,Xn)=2-n(Hkc))=1, (3.1) 

if X,, X,, . . . ,X, are i.i.d. -p(x). 
In the example just given, where p<x,, X,, . . . , X, ) = pc xi q”-’ x’, we 

are simply saying that the number of l’s in the sequence is close to np 
(with high probability), and all such sequences have (roughly) the same 
probability 2 -nH(p ‘. 

3.1 THE AEP 

The asymptotic 
theorem: 

equipartition Property is formalized in the following 

Theorem 3.1.1 (AEP): If XI, X,, . . . are Lid. --p(x), then 

-~logp(X,,X,,... ,XJ+H(x) in probability. (3.2) 

Proof: Functions of independent random variables are also indepen- 
dent random variables. Thus, since the Xi are i.i.d., so are log p<x, ). 
Hence by the weak law of large numbers, 

-i logp(x,,X,, . . .,X,)=-L Clogp(X) 
n i 

i (3.3) 

+ - E log p(X) in probability (3.4) 

= H(x), (3.5) 

which proves the theorem. cl 

Definition: The typical set A:’ with respect to p(x) is the set of 
sequences (x 1, x2, . . . , x,) E Z?” with the following property: 

2- nW(X)+r) Ip(xp x2, . . . , xn) I 2-ncHcX)-E) . (3.6) 

As a consequence of the AEP, we can show that the set A:’ has the 
following properties: 

Theorem 3.1.2: 

1. If (xl,xZ ,..., x,)EA~), then H(X)-ES -ftlogp(+ x2 ,..., 
w,)rH(X)+e. 
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2. Pr{Ar’) > 1 - e for n sufficiently large. 
3. IA:‘1 5 gn(H(X)+O, where IAl denotes the number of elements in the 

set A. 
4. IA:’ 1~ (1 - •)2~(~~)-‘) for n sufficiently large. 

Thus the typical set has probability nearly 1, all elements of the 
typical set are nearly equiprobable, and the number of elements in the 
typical set is nearly 2”r 

Proof: The proof of property (1) is immediate from the definition of 
A:‘. The second property follows directly from Theorem 3.1.1, since the 
probability of the event (XI, X,, . . . , X,J E A:’ tends to 1 as n + 00. Thus 
for any 8 > 0, there exists an no, such that for all n 2 It,, we have 

Pr 
{I 

- ; logp(x,,X,, . . .,X,)-H(X) CE =-l-S. 
I I 

(3.7) 

Setting S = E, we obtain the second part of the theorem. Note that we 
are using E for two purposes rather than using both E and 6. The 
identification of 6 = E will conveniently simplify notation later. 

To prove property (3), we write 

1= 2 p(x) (3.8) 
XEXn 

(3.9) 
XEAS”’ 

n(H(X)+r) (3.10) 

n(H(X)+c) (n) IA I 6 9 (3.11) 

where the second inequality follows from (3.6). Hence 

IA:)1 s 2n(H(X)+e) . (3.12) 

Finally, for sufficiently large n, Pr{Ay’} > 1 - E, so that 

1- c <Pr{Ar’} (3.13) 

(3.14) 

where the second inequality follows from (3.6). Hence 
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IAl”’ 1 (1 - E)2n(H(X)-t) , 
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(3.16) 

which completes the proof of the properties of A%‘. 0 

3.2 CONSEQUENCES OF THE AEP: DATA COMPRESSION 

Let x1,x,, . . . , X, be independent identically distributed random vari- 
ables drawn from the probability mass function p(x). We wish to find 
short descriptions for such sequences of random variables. We divide all 
sequences in 2” into two sets: the typical set A:’ and its complement, as 
shown in Figure 3.1. 

We order all elements in each set according to some order (say 
lexicographic order). Then we can represent each sequence of A:’ by 
giving the index of the sequence in the set. Since there are ~2~(~+‘) 
sequences in A:‘, the indexing requires no more than n(H + E) + 1 bits. 
(The extra bit may be necessary because n(H + E) may not be an 
integer.) We prefix all these sequences by a 0, giving a total length of 
5 n(H + E) + 2 bits to represent each sequence in A:‘. See Figure 3.2. 

Similarly, we can index each sequence not in A:’ by using not more 
than n log I%l+ 1 bits. Prefixing these indices by 1, we have a code for 
all the sequences in Z’. 

Note the following features of the above coding scheme. 

l The code is one-to-one and easily decodable. The initial bit acts as a 
flag bit to indicate the length of the codeword that follows. 

l We have used a brute force enumeration of the atypical set A:” 
without taking into account the fact that the number of elements in 
A:” is less than the number of elements in BY. Surprisingly, this is 
good enough to yield an efficient description. 

l The typical sequences have short descriptions of length = nH. 

xn : 1x1” elements 

Non -typical set 

Typical set 
A $f) : 2”tH + r ) elements 

Figure 3.1. Typical sets and source coding. 
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E[;l(X+H(x)+e, (3.23) 

for n sufficiently large. 

Thus we can represent sequences X” using nH(X) bits on the average. 

3.3 HIGH PROBABILITY SETS AND THE TYPICAL SET 

From the definition of A:‘, it is clear that A:’ is a fairly small set that 
contains most of the probability. But from the definition it is not clear 
whether it is the smallest such set. We will prove that the typical set 
has essentially the same number of elements as the smallest set, to first 
order in the exponent. 

Definition: For each n = 1,2, . . . , let Br’ C S?‘” be any set with 

Pr{Br’}Zl-6. (3.24) 

We argue that Bf’ must have significant intersection with A:’ and 
therefore must have about as many elements. In problem 7, we outline 
the proof of the following theorem: 

Theorem 3.3.1: Let Xl, X,, . . . , X, be i.i.d. h p(x). For 6 -C i and any 
6’>0, if Pr(Bp’}> l-6, then 

1 
; log(B’$( > H - 6’ for n sufficiently large . (3.25) 

Thus Br’ must have at least 2”H elements, to first order in the 
exponent. But A:’ has 2n(Hrr) elements. Therefore, A:’ is about the 
same size as the smallest high probability set. 

We will now define some new notation to express equality to first 
order in the exponent. 

Definition: The notation a, A b, means 

1 
lim - log 2 = 0. 
n--r= n n 

(3.26) 

Thus a, k b, implies that a, and b, are equal to the first order in the 
exponent. 
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We can now restate the above results as 

I&‘+IAS”‘le2”H. (3.27) 

To illustrate the difference between AT’ and Br’, let us consider a 
Bernoulli sequence XI, X2, . . . , X, with parameter p = 0.9. (A 
Bernoulli(B) random variable is a binary random variable with takes on 
the value 1 with probability 0.) The typical sequences in this case are the 
sequences in which the proportion of l’s is close to 0.9. However, this 
does not include the most likely single sequence, which is the sequence 
of all 1’s. The set Bf’ includes all the most probable sequences, and 
therefore includes the sequence of all 1’s. Theorem 3.3.1 implies that A:’ 
and Br’ must both contain the sequences that have about 90% l’s and 
the two sets are almost equal in size. 

S-Y OF CJMPTER 3 

AEP (“Almost all events are almost equally surprising”): Specifically, if 
X1, Xz, . . . are Cd. -p(x), then 

+ogpar,,x,,.. . , X, )+ H(X) in probability . (3.28) 

Definition: The typical set A:’ is the set of sequences x,, x,, . . . , xn satis- 
fying: 

2- n(H(X)+t) sp(x1, x,, . . . ,x,) I 2-n(H(x)-e) . (3.29) 

Properties of the typical set: 

1. If (x1, x,, . . . ,x,)~Ar’, thenp(x,, x,, . . . ,x,1= 2-n(H*c). 
2. Pr{Ar’} > 1 - e, for n sufficiently large. 
3. IAs”’ 5 2n(HtX)+.), where IAl denotes the number of elements in set A. 

Definition: a, + b, means 4 log 2 + 0 as n-m. 

Definition: Let BF’ C %“” be the smallest set such that Pr{Br’) 11 - S, 
where X1, Xz, . . . , Xn are Cd. -p(x). 

Smallest probable set: For S < 4, 

pb”‘pp. (3.30) 
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PROBLEMS FOR CHAPTER 3 

1. Markov’s inequality and Chebyshev’s inequality. 
(a) (il4urkou’s inequality) For any non-negative random variable X and 

any 6 > 0, show that 

(3.31) 

Exhibit a random variable that achieves this inequality with 
equality. 

(b) (Chebyshe u’s inequality) Let Y be a random variable with mean p 
and variance u2. By letting X = (Y - pJ2, show that for any E > 0, 

Pr(lY-pi>c)‘$. (3.32) 

(c) (The weak law of large numbers) Let Z,, Z,, . . , , 2, be a sequence 
of i.i.d. random variables with mean ~1 and variance 0”. Let 
z, = k Cy= 1 Zi be the sample mean. Show that 

(3.33) 

Thus Pr{l& - pI > e}+O as n+a. This is known as the weak law of 
large numbers. 

2. An AEP-like limit. Let XI, X2, . . . be i.i.d. drawn according to probabili- 
ty mass function p(x) . Find 

;z [p(X,,X,, . . . ,X”V’” . 

3. 

4. 

The AEP and source coding. A discrete memoryless source emits a 
sequence of statistically independent binary digits with probabilities 
p( 1) = 0.005 and p(O) = 0.995. The digits are taken 100 at a time and a 
binary codeword is provided for every sequence of 100 digits contain- 
ing three or fewer ones. 
(a) Assuming that all codewords are the same length, find the mini- 

mum length required to provide codewords for all sequences with 
three or fewer ones. 

(b) Calculate the probability of observing a source sequence for which 
no codeword has been assigned. 

(cl Use Cheb ys h ev’s inequality to bound the probability of observing a 
source sequence for which no codeword has been assigned. Com- 
pare this bound with the actual probability computed in part (b). 

Products. Let 
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I 
1, i 

x= 2, a 
3, t 

Let x1, x2, . . . be drawn i.i.d. according to this distribution. Find the 
limiting behavior of the product 

(x,X2 . . . xyn . 

5. AEP. Let Xl, X2,. . . be independent identically distributed random 
variables drawn according to the probability mass function p(x), x E 
{1,2,. . . , m}. Thus p(x1,x2,. . . , x,) = IIyZI p(xi). We know that 
4 logp(X,,X,, . *. , Xn )-, H(X) in probability. Let q&, x,, . . . , x, ) = 
II:+ q(=ci), where q is another probability mass function on { 1,2, . . . , 
4. 
(a) Evaluate lim - A log q(X, , XZ, . . . , X, ), where XI, X2, . . . are i.i.d. 

- pw. ,x ) 
(b) Now evaluate the limit of the log likelihood ratio k log z>’ ::I, x”, 

when X,, X2, . . . are i.i.d. -p(x). Thus the odds favoring’q a& 
exponentially small when p is true. 

6. Random box size. An n-dimensional rectangular box with sides XI, X2, 
x3, ‘**, Xn is to be constructed. The volume is V, = IIyEt=, Xi. The edge 
length I of a n-cube with the same volume as the random box is 
1 = vyn . Let XI, XZ, . . . be i.i.d. uniform random variables over the 
unit interval [0, 11 . Find lim,_t,aVk’n, and compare to (Ev,)l’“. Clearly 
the expected edge length does not capture the idea of the volume of the 
box. 

7. Proof of Theorem 3.3.1. Let XI, X2, . . . , X,, be i.i.d. -p(x). Let Br’ C %“” 
such that Pr(Br’)> 1 - 6. Fix E < &. 
(a) Given any two sets A, B such that Pr(A) > 1 - e1 and Pr@ > > 1 - l Z, 

showthatPr(AnB)>l-e,-+HencePr(A~’nB~’)rl--e-6. 
(b) Justify th e s t eps in the chain of inequalities 

1- E - S sPr(Acn’ n&n)) E 6 (3.34) 

= z pw 
AwnB(“) c 6 

(3.35) 

5 c 2-n(H-S) (3.36) 
Ar’ClBli”) 

= IAI”’ ,-, B;’ [2-nW-d (3.37) 

I ~$n’[~-n(H-c) . (3.38) 

(c) Complete the proof of the theorem. 
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HISTORICAL NOTES 

The Asymptotic Equipartition Property (AEP) was first stated by Shannon in his 
original 1948 paper [238], where he proved the result for i.i.d. processes and 
stated the result for stationary ergodic processes. McMillan [192] and Breiman [44] 
proved the AEP for ergodic finite alphabet sources. Chung [57] extended the 
theorem to the case of countable alphabets and Moy [197], Perez [208] and Kieffer 
[154] proved the 3, convergence when {X,} is continuous valued and ergodic. 
Barron [18] and Orey [202] proved almost sure convergence for continuous valued 
ergodic processes; a simple sandwich argument (Algoet and Cover [S]) will be 
used in Section 15.7 to prove the general AEP. 



Chapter 4 

Entropy Rates of a Stochastic 
Process 

The asymptotic equipartition property in Chapter 3 establishes that 
nH(X) bits suffice on the average to describe n independent and 
identically distributed random variables. But what if the random 
variables are dependent? In particular, what if the random variables 
form a stationary process? We will show, just as in the i.i.d. case, that 
the entropy H(X,, X,, . . . ,X,> grows (asymptotically) linearly with n at 
a rate H(g), which we will call the entropy rate of the process. The 
interpretation of H(Z) as the best achievable data compression will 
await the analysis in Chapter 5. 

4.1 MARKOV CHAINS 

A stochastic process is an indexed sequence of random variables. 
In general, there can be an arbitrary dependence among the ran- 
dom variables. The process is characterized by the joint probability 
massfunctionsPr{(X,,X, ,..., Xn)=(x1,x2 ,..., x,)}=p(zl,xz ,..., x,1, 
(x1, x2, * ’ l 9 

x,)EZ?forn=1,2,.... 

Definition: A stochastic process is said to be stationary if the joint 
distribution of any subset of the sequence of random variables is 
invariant with respect to shifts in the time index, i.e., 

Pr{X, =x1,X2 =x2,. . . ,X, =x,} 

=Pr{X1+I=x1,X2+1=x2,...,X,.1=x,} (4.1) 

for every shift I and for all x,, x2, . . . , x, E Z. 
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A simple example of a stochastic process with dependence is one in 
which each random variable depends on the one preceding it and is 
conditionally independent of all the other preceding random variables. 
Such a process is said to be Markov. 

Definition: A discrete stochastic process X1, X,, . . . is said to be a 
Markov chain or a Markov process if, for n = 1,2, . . . , 

= AX+, = z,+lIxn =x,1 (4.2) 

for all x,, x2,. . . ,q,Xn+l E 8% 

In this case, the joint probability mass function of the random 
variables can be written as 

Ph *2, - * * , xn) = P(~l)P(~,lX,)P(=c,IX,). * l P&IX,-1). (4.3) 

Definition: The Markov chain is said to be time invariant if the 
conditional probability p(x, + 1 Ix,> does not depend on n, i.e., for n = 
1,2,. . . 

Pr{X,+,=b~X,=a}=Pr{X,=b~X,=u}, foralla,bCZ’. (4.4) 

We will assume that the Markov chain is time invariant unless 
otherwise stated. 

If {Xi} is a Markov chain, then X,, is called the state at time n. A time 
invariant Markov chain is characterized by its initial state and a 
probability transition matrix P = [PO], i, j E {1,2, . . . , m), where PO = 
W&+, = jJX, = i). 

If it is possible to go with positive probability from any state of the 
Markov chain to any other state in a finite number of steps, then the 
Markov chain is said to be irreducible. 

If the probability mass function of the random variable at time n is 
p(x,), then the probability mass function at time n + 1 is 

A distribution on the states such that the distribution at time n + 1 is 
the same as the distribution at time n is called a stationary distribution. 
The stationary distribution is so called because if the initial state of a 
Markov chain is drawn according to a stationary distribution, then the 
Markov chain forms a stationary process. 
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If the finite state Markov chain is irreducible and aperiodic, then the 
stationary distribution is unique, and from any starting distribution, the 
distribution of X, tends to the stationary distribution as n + 00. 

Example 4.1 .I: Consider a two-state Markov chain with a probability 
transition matrix 

1-a p= p [ 1:p 1 (4.6) 

as shown in Figure 4.1. 
Let the stationary distribution be represented by a vector p whose 

components are the stationary probabilities of state 1 and state 2, 
respectively. Then the stationary probability can be found by solving the 
equation pP = p or, more simply, by balancing probabilities. For the 
stationary distribution, the net probability flow across any cut-set in the 
state transition graph is 0. Applying this to Figure 4.1, we obtain 

Since p1 + p2 = 1, the stationary distribution is 

P Q! 
Pl 

=- 
a!+p9 Pi?=- 

Ct+p 

(4.7) 

(4.8) 

If the Markov chain has an initial state drawn according to the station- 
ary distribution, the resulting process will be stationary. The entropy of 
the state X, at time n is 

H(X,)=H(- “). 
cr+p’a+p (4.9) 

However, this is not the rate at which entropy grows for H(X,, X2, 
. . . , X,). The dependence among the Xi’s will take a steady toll. 

Figure 4.1. Two-state Markov chain. 
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4.2 ENTROPY RATE 

If we have a sequence of n random variables, a natural question to ask 
is “how does the entropy of the sequence grow with n.” We define the 
entropy rate as this rate of growth as follows. 

Definition: The entropy rate of a stochastic process {Xi} is defined by 

(4.10) 

when the limit exists. 

We now consider some simple examples of stochastic processes and 
their 

1. 

2. 

3. 

corresponding entropy rates. 

Typewriter. Consider the case of a typewriter that has m equally 
likely output letters. The typewriter can produce mn sequences of 
length n, all of them equally likely. Hence H(X1, X,, . . . , X, ) = 
log m” and the entropy rate is H(E) = log m bits per symbol. 

Xl, x2, * - - are i.i.d. random variables. Then 

H(Z) = lim 
W&,&,, . . . ,X,1 =lim nW&) 

n 
- =23(X,), (4.11) 

n 

which is what one would expect for the entropy rate per symbol. 

Sequence of independent, but not identically distributed random 
variables. In this case, 

but the H(x, )‘s are all not equal. We can choose 
distributions on X, , X,, . . . such that the limit of 4 C 

a sequence of 
H(X,) does not 1 

exist. An example of such a sequence is a random binary sequence 
where pi = P(Xi = 1) is not constant, but a function of i, chosen 
carefully so that the limit in (4.10) does not exist. For example, let 

(4.12) 

1 0.5 if2k< loglogiS2k+l, 
Pi= () if2k+l<loglogir2k+2 (4.13) 

for k = 0, 1,2, . . . . Then there are arbitrarily long stretches where 
H(x, ) = 1, followed by exponentially longer segments where 
H(Xi ) = 0. Hence the running average of the H(x, ) will oscillate 
between 0 and 1 and will not have a limit. Thus H(S) is not 
defined for this process. 



64 ENTROPY RATES OF A STOCHASTIC PROCESS 

We can also define a related quantity for entropy rate: 

(4.14) 

when the limit exists. 
The two quantities E?(g) and H’(E) correspond to two different 

notions of entropy rate. The first is the per symbol entropy of the n 
random variables, and the second is the conditional entropy of the last 
random variable given the past. We will now prove the important result 
that for stationary processes both the limits exist and are equal. 

Theorem 4.2.1: For a stationary stochastic process, the limits in (4.10) 
and (4.14) exist and are equal, i.e., 

H(E) = H’(2Y). (4.15) 

We will first prove that lim H(x, IX, -1, . . . , X, ) exists. 

Theorem 4.2.2: For a stationary stochastic process, H(X,, IX,., _ 1, . . . , XI ) 
is decreasing in n and has a limit H’(8). 

=H(xnlXn-l,. . . ,X1>, 

where the inequality follows from the fact that conditioning reduces 
entropy and the equality follows from the stationarity of the process. 
Since H(X, IX,+ . . . , XI ) is a decreasing sequence of non-negative num- 
bers, it has a limit, H’(g). 0 

We now use the following simple result from analysis. 

Theorem 4.2.3 (Cesdro mean): If a,, + a and b, = A Cy=, ai, then 
b,+a. 

Proof (Informal outline): Since most of the terms in the sequence 
{ ak} are eventually close to a, then b, , which is the average of the first n 
terms, is also eventually close to a. 

Formal proof: Since a,, + a, there exists a number N(E) such that 
I aI8 - al 5 e for all n 1 N(E). Hence 

lb I 
1 n 

tt -aI = - C (ai - a) n i=l 
(4.18) 
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‘” a I- c I( n i=l 
i - a)( (4.19) 

1 
N(c) 

I- El CZi -al + 
n - N(4) 

c 
n i-1 n 

1 
N(c) 

I- CI n i=l 
ai - aI+6 

(4.20) 

(4.21) 

for all n 2 N(E). Since the first term goes to 0 as n + *, we can make 
lb n --I I 2~ by taking n large enough. Hence b, + a as n + 00. Cl 

Proof of Theorem 4.2.1: By the chain rule, 

H(XJ~,...,x,) 1 n 
(4.22) 

n 
=- C H(xilxi~l,~**,xl), 

n i=l 

i.e., the entropy rate is the time average of the conditional entropies. 
But we know that the conditional entropies tend to a limit H’(E). 
Hence, by Theorem 4.2.3, their running average has a limit, which is 
equal to the limit I#‘(%‘) of the terms. 

Thus, by Theorem 4.2.2., 

H(g) = lim 
H(x,,x, ,  -  l *  ,x,1 

n 
= lim Hcx,IX,-I, . . . ,X,)=H’(zr). cl 

(4.23) 

The significance of the entropy rate of a stochastic process arises from 
the AEP for a stationary ergodic process. We will prove the general AEIP 
in Section 15.7, where we will show that for any stationary ergodic 
process, 

1 
-,logp(X,,X,,...,X,)~H(I), (4.24) 

with probability 1. Using this, the theorems of Chapter 3 can be easily 
extended to a general stationary ergodic process. We can define a typical 
set in the same way as we did for the i.i.d. case in Chapter 3. By the 
same arguments, we can show that the typical set has a probability 
close to 1, and that there are about 2nH(*) typical sequences of length n, 
each with probability about 2-“H“? We can therefore represent the 
typical sequences of length n using approximately nH(Z) bits. This 
shows the significance of the entropy rate as the average description 
length for a stationary ergodic process. 

The entropy rate is well defined for all stationary processes. The 
entropy rate is particularly easy to calculate for Markov chains. 

Markov Chains: For a stationary Marhov chain, the entropy rate is 
given by 
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H(Z) = H’(S?) = limH(X,IX,-,, . . .,X~)=limH(X,IX,_,)=H(X,IX,), 
(4.25) 

where the conditional entropy is calculated using the given stationary 
distribution. We express this result explicitly in the following theorem: 

Theorem 4.2.4: Let (Xi~ be a stationary Markov chain with stationary 
distribution p and transition matrix P. Then the entropy rate is 

H(~) = -C LLiPij log plj 
ij 

(4.26) 

PrOOf: H(~) = H(x,IX,) = Ci r-Li(Cj - Pij 1Ogpii). 0 

Example 4.2.1 (Two-state Markov chain): The entropy rate of the 
two-state Markov chain in Figure 4.1 is 

Mm = H(x,(X,) = --& H(a) + --& H(p). (4.27) 

Remark: If the Markov chain is irreducible and aperiodic, then it 
has a unique stationary distribution on the states, and any initial 
distribution tends to the stationary distribution as n + 00. In this case, 
even though the initial distribution is not the stationary distribution, 
the entropy rate, which is defined in terms of long term behavior, is 
H(Z) as defined in (4.25) and (4.26). 

4.3 EXAMPLE: ENTROPY RATE OF A RANDOM WALK ON A 
WEIGHTED GRAPH 

As an example of a stochastic process, let us consider a random walk on 
a connected graph (Figure 4.2). Consider a graph with m nodes labeled 
-3,2, * * - 9 m}, with weight WU ~0 on the edge joining node i to node j. 

Figure 4.2. Random walk on a graph. 
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(The graph is assumed to be undirected, SO that Wii = Wji. We set Wij = 0 
if the pair of nodes i and j are not connected.) 

A particle randomly walks from node to node in this graph. The 
random walk {X,}, X, E {1,2, . . . , m} is a sequence of vertices of the 
graph. Given X, = i, the next vertex j is chosen from among the nodes 
connected to node i with a probability proportional to the weight of the 
edge connecting i to j. Thus Pii = W,/ Ilk Wi, . 

In this case, the stationary distribution has a surprisingly simple 
form which we will guess and verify. The stationary distribution for this 
Markov chain assigns probability to node i proportional to the total 
weight of the edges emanating from node i. Let 

Wi=~~~ (4.28) 

be the total weight of edges emanating from node i and let 

w= c wu 
i,j:j>i 

be the sum of the weights of all the edges. Then Ci Wi = 2W. 
We now guess that the stationary distribution is 

wi =- 
Pi 2W’ 

(4.29) 

(4.30) 

We verify that this is the stationary distribution by checking that 
I,CP = p. Here 

(4.31) 

(4.32) 

4 =- 
2w 

(4.33) 

= CLj .  (4.34) 

Thus the stationary probability of state i is proportional to the weight of 
edges emanating from node i. This stationary distribution has an 
interesting property of locality: it depends only on the total weight and 
the weight of edges connected to the node and hence does not change if 
the weights in some other part of the graph are changed while keeping 
the total weight constant. 

We can now calculate the entropy rate as 

(4.35) 
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(4.36) 

(4.37) 

(4.38) 

(4.39) 

w.. 
=H( . . . . 6 ,... > ( 

W. 
-H . . . . & ,... . > (4.40) 

If all the edges have equal weight, the stationary distribution puts 
weight Ei/2E on node i, where Ei is the number of edges emanating 
from node i and E is the total number of edges in the graph. In this case, 
the entropy rate of the random walk is 

HL%‘,=log(zB,-H($g,...,$) (4.41) 

This answer for the entropy X, ;e is so simple that it is almost 
misleading. Apparently, the entro,; rate, which is the average transi- 
tion entropy, depends only on the entropy of the stationary distribution 
and the total number of edges. 

Example 4.3.1 (Random walk on a chessboard ): Let a king move at 
random on an 8 x 8 chessboard. The king has 8 moves in the interior, 5 
moves at the edges and 3 moves at the corners. Using this and the 
preceding results, the stationary probabilities are respectively &, , & 
and & , and the entropy rate is 0.92 log 8. The factor of 0.92 is due to 
edge effects; we would have an entropy rate of log8 on an infinite 
chessboard. 

Similarly, we can find the entropy rate of rooks (log 14 bits, since the 
rook always has 14 possible moves), bishops and queens. The queen 
combines the moves of a rook and a bishop. Does the queen have more or 
less freedom than the pair? 

Remark: It is easy to see that a stationary random walk on a graph 
is time-reversible, that is, the probability of any sequence of states is the 
same forward or backward: 

Pr(Xi=x,,X,=x,,..., xn=xn)=Pr(x,=x,,x,~,=x2,...,x~=x,). 

(4.42) 
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Rather surprisingly, the converse is also true, that is, any time-revers- 
ible Markov chain can be represented as a random walk on an undi- 
rected weighted graph. 

4.4 HIDDEN MARKOV MODELS 

Here is an example that can be very di&ult if done the wrong way. It 
illustrates the power of the techniques developed so far. Let X,, 
x2 ,..., x, ,... be a stationary Markov chain, and let Yi = 4(Xi ) be a 
process, each term of which is a function of the corresponding state in 
the Markov chain. Such functions of Markov chains occur often in 
practice. In many situations, one has only partial information about the 
state of the system. It would simplify matters greatly if Y1, Yz, . . . , Y, 
also formed a Markov chain, but in many cases this is not true. 
However, since the Markov chain is stationary, so is Y1, Yz, . . . , Y,, and 
the entropy rate is well defined. However, if we wish to compute H(3), 
we might compute H(Y, 1 Y, -I, . . . ,Y1 ) for each n and find the limit. 
Since the convergence can be arbitrarily slow, we will never know how 
close we are to the limit; we will not know when to stop. (We can’t look 
at the change between the values at n and n + 1, since this difference 
may be small even when we are far away from the limit-consider, for 
example, C t .) 

It would be useful computationally to have upper and lower bounds 
converging to the limit from above and below. We can halt the computa- 
tion when the difference between the upper bound and the lower bound 
is small, and we will then have a good estimate of the limit. 

We already know that H(Y,(Y,_,, . . . , Y, > converges monotonically to 
H(3) from above. For a lower bound, we will use H(Y, 1 Y, _ 1, . . . , Y2, X1 ). 
This is a neat trick based on the idea that X1 contains as much 
information about Y, as Y1, Y,, Y+ . . . . 

Lemma 4.4.1: 

H(Y,(Y,-,, l l l ,  Y,,X,)~H(W 
(4.43) 

Proof: We have, for k = 1,2, . . . , 

(2) H(Y,IYn”..,, * 4 6, Y~,X,,X,,X,, “‘X-k) (4.46) 

2 H(Y,IY,,,, . (6, Y,,X,,X,,X&,, 6 I. ,X-k, Y,, 4 * ’ , Y-J (4.46) 
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%(Y,IY,-1, . . a, Yl, Y,,  l l l ,  Y-,)  (4.47) 

= MYn+A+lIYn+L, l .  l ,  y , ) ,  
(4.48) 

where (a) follows from that fact that YI is a function of XI, and (b) 
follows from the Markovity of X, (c) from the fact that Yi is a function of 
Xi, (d) from the fact that conditioning reduces entropy, and (e) by 
stationarity. Since the inequality is true for all k, it is true in the limit. 
Thus 

H(yJY,-1, * - *, Yl,Xl)~li~H(Y~+L+llYn+*r. l .  ,  Y,> (4.49) 

=H(%). 0 (4.50) 

The next lemma shows that the interval between the upper and the -- 
lower bounds decreases in length. 

Lemma 4.4.2: 

H(Y,IY,-, ,... ,Y,)-H(Y”IY,_,,...,Y,,X,)jo. (4.51) 

Proofi The interval length can be rewritten as 

H(Y,IY,-1, -  -  l ,  YJ -  MY,IY,+. *  -  ,  Y,,X,> = I (x , ;Y, (Y, -1 ,  Jl). 
(4.52) 

By the properties of mutual information, 

Z&; Yl, Yz, * * a, yJ=H(x,), 

and hence 

(4.53) 

bIiIZ(X1; Yl, Y2, . . , , Y,) 5 H(X,) . (4.54) 

By the chain rule, 

pr ztx1; Yl, Yg, . . . , y~)=~~~~~lz~X~;y,Iy,-~,~...Y,) (4*55) 

= ~ Z(Xl; YilYi_1,. . , ) Yl). (4.56) 
i-l 
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Since this infinite sum is finite and the terms are non-negative, the 
terms must tend to 0, i.e., 

lim 1(X1; Y,(Y,+ . . . , Y,) = 0, (4.57) 

which proves the lemma. Cl 

Combining the previous two lemmas, we have the following theorem: 

Theorem 4.4.1: If X,, X2, . . . ,X, form a stationary Markov chain, and 
Yi = I, then 

H(Y,JY,-,, * * a, Y,,X,)IH(~)SH(Y,IY,_,, * * *, Y,> (4.58) 

and 

limH(Y,IY,.,, . . . , Y,,X1> = H(3) = limH(Y,IY,-,, . . . , Y,). (4.59) 

SUMMARY OF CHAPTER 4 

Entropy rate: Two definitions of entropy rate for a stochastic process are 

H(a,=~*li +(x1,x, ,..., XJ, (4.60) 

H’(8) = pn H(x,Ix,-,,x,~,, *. . ,x,> . (4.61) 

For a stationary stochastic process, 

H(s?) = H’(aP) . (4.62) 

Entropy rate of a stationary Markov chain: 

zw”) = -z & log P, . (4.63) 
u 

Functions of a Markov chain: If X1, X2, . . . , Xn form a Markov chain and 
Yi = &Xi), then 

WY,IY,_,, . - - , Y,,X,)IH(~)~H(Y,IY,_,, -  l - ,  Y,> (4.64) 

and 

lim H(Y,/Y,-,, . . . , Y,,X,)=H(W= li.iH(Y,IY,_,,. . . ,Y,>. (4.65) 
n-m 
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PROBLEMS FOR CHAPTER 4 

1. Doubly stochastic matrices. An n x n matrix P = [P,] is said to be 
doubly stochastic if Pij I 0 and Cj P, = 1 for all i and Ci P, = 1 for all 
j. An n x n matrix P is said to be a permutation matrix if it is doubly 
stochastic and there is precisely one Pti = 1 in each row and each 
column. 

It can be shown that every doubly stochastic matrix can be written 
as the convex combination of permutation matrices. 
(a) Let at = (a,, u2, . . . , a,), ui L 0, C ui = 1, be a probability vector. 

Let b = aP, where P is doubly stochastic. Show that b is a 
probability vector and that H(b,, b,, . . . , b,) 2 H(u,, a,, . . . , a,>. 
Thus stochastic mixing increases entropy. 

(b) Show th t a a stationary distribution p for a doubly stochastic 
matrix P is the uniform distribution. 

(c) Conversely, prove that if the uniform distribution is a stationary 
distribution for a Markov transition matrix P, then P is doubly 
stochastic. 

2. Time’s arrow. Let {Xi}~zo=_m be a stationary stochastic process. Prove 
that 

H(X,JX_,,X~, ,‘.., x~,)=H(x,Jx,,x, ,..., XJ. 

In other words, the present has a conditional entropy given the past 
equal to the conditional entropy given the future. 

This is true even though it is quite easy to concoct stationary 
random processes for which the flow into the future looks quite 
different from the flow into the past. That is to say, one can de- 
termine the direction of time by looking at a sample function of the 
process. Nonetheless, given the present state, the conditional uncer- 
tainty of the next symbol in the future is equal to the conditional 
uncertainty of the previous symbol in the past. 

3. Entropy of a random tree. Consider the following method of generating 
a random tree with n nodes. First expand the root node: 

Then expand one of the two terminal nodes at random: 

At time k, choose one of the k - 1 terminal nodes according to a 
uniform distribution and expand it. Continue until n terminal nodes 
have been generated. Thus a sequence leading to a five node tree 
might look like this: 
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Surprisingly, the following method of generating random trees yields 
the same probability distribution on trees with n terminal nodes. 
First choose an integer NI uniformly distributed on { 1,2, . . . , n - l}. 
We then have the picture. 

Nl n- NI 

Then choose an integer N, uniformly distributed over { 1,2, . . . , 
NI - l}, and independently choose another integer N3 uniformly over 
{1,2, . . . , (n -N,) - 1). The picture is now: 

N2 NI - N2 N3 n-N1 -N3 

Continue the process until no further subdivision can be made. (The 
equivalence of these two tree generation schemes follows, for exam- 
ple, from Polya’s urn model.) 

Now let T, denote a random n-node tree generated as described. 
The probability distribution on such trees seems difficult to describe, 
but we can find the entropy of this distribution in recursive form. 

First some examples. For n = 2, we have only one tree. Thus 
H(T,) = 0. For n = 3, we have two equally probable trees: 

Thus H(T,) = log 2. For n = 4, we have five possible trees, with 
probabilities l/3, l/6, l/6, l/6, l/6. 

Now for the recurrence relation. Let N,(T,) denote the number of 
terminal nodes of Z’, in the right half of the tree. Justify each of the 
steps in the following: 

(a) 
HU’,)= EWl, T,J (4.66) 

'2 H(N, > + H(T, 1 N, > (4.67) 



74 ENTROPY RATES OF A STOCHASTIC PROCESS 

4. 

5. 

2 log(n - 1) + H(TJv,) (4.68) 

‘2 log(n - 1) + (4.69) 

= log(n - 1) + -& nzl H(T, > * 
k-l 

= log(n - 1) + -& $’ Hk . 
k-l 

(4.70) 

(4.71) 

(f) Use this to show that 

(n - l)H,, = nH,-, +(n-l)log(n--1)-(n-2)10&z-2), 

(4.72) 
or 

H K-l R= -+c,, (4.73) 
n n-l 

for appropriately defined c,. Since Cc, = c c 00, you have proved that 
kH(T,) converges to a constant. Thus the expected number of bits 
necessary to describe the random tree T, grows linearly with n. 

Monotonicity of entropy per element. For a stationary stochastic pro- 
cess X,, X2, . . . ,X,, show that 

(a> 

(b) 

HW,,X,, . . . , X,) < H(X1,X2,. . . ,X,-,> 
- . (4.74) 

H(X,,X:,...,X > 
n-l 

n 2 H(X,IX,-,, . . . ,X1>. (4.75) 
n 

Entropy rates of Markov chains. 

(a) Find the entropy rate of the two-state Markov chain with transi- 
tion matrix 

p- I--PO1 
[ 

PO1 - 
PlO I l-P10 * 

(b) What val ues of p,,l,plo maximize the rate of part (a)? 
(c) Find the entropy rate of the two-state Markov chain with transi- 

tion matrix 

P=[l;P po1. 

(d) Find the m aximum value of the entropy rate of the Markov chain 
of part (c). We expect that the maximizing value of p should be 
less than l/2, since the 0 state permits more information to be 
generated than the 1 state. 

(e) Let N(t) be the number of allowable state sequences of length t for 
the Markov chain of part (c). Find N(t) and calculate 
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Hint: Find a linear recurrence that expresses N(t) in terms of 
iV(t - 1) and N(t - 2). Why is H,, an upper bound on the entropy 
rate of the Markov chain? Compare H,, with the maximum en- 
tropy found in part (d). 

6. Maximum entropy process. A discrete memoryless source has alphabet 
{ 1,2} where the symbol 1 has duration 1 and the symbol 2 has 
duration 2. The probabilities of 1 and 2 are p1 and p2, respectively. 
Find the value ofp, that maximizes the source entropy per unit time 
H(X)IEZ,. What is the maximum value H? 

7. Initial conditions. Show, for a Markov chain, that 

Thus initial conditions X0 become more difficult to recover as the 
future X,, unfolds. 

8. Pair-wise independence. Let X1, X2, . . . , X, _ 1 be i.i.d. random variables 
taking values in (0, l}, with Pr{X, = 1) = f . Let X, = 1 if Cyit Xi is 
odd and X, = 0 otherwise. Let n 2 3. 

(a) Show that Xi and Xj are independent, for i #j, i, j E { 1,2, . . . , n}. 

(b) Find H(X,, Xj), for i #j. 

(c) Find H(X,, X2, . . . , X, ). Is this equal to nH(X, )? 

9. Stationary processes. Let . . . , X-,, X,,, X1, . . . be a stationary (not 
necessarily Markov) stochastic process. Which of the following state- 
ments are true? State true or false. Then either prove or provide a 
counterexample. Warning: At least one answer is false. 
(a> H(x, IX, ) = HK R IX,, > . 
(b) H(X&,) 2 H(X,-,1X,,) . 
(c) H(X, IX; - ‘, X, + 1 ) is nonincreasing in n. 

10. The entropy rate of II dog looking for II bone. A dog walks on the 
integers, possibly reversing direction at each step with probability 
p=.l. LetX,-,=O. Th e rs s ep is equally likely to be positive or fi t t 
negative. A typical walk might look like this: 

<&,X1, * * * )=(0,-1,-2,-3,-4,-3,-2,-l, O,l,. . . ). 

(a) Find H(X,, X2, . . . , X, ). 

(b) Find the entropy rate of this browsing dog. 

(cl What is the expected 
reversing direction? 

number of steps the dog takes before 

11. Random walk on chessboard. Find the entropy rate of the Markov 
chain associated with a random walk of a king on the 3 x 3 chess- 
board 
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12. 

13. 
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What about the entropy rate of rooks, bishops and queens? There 
are two types of bishops. 

Entropy rate. Let {Xi} be a discrete stationary stochastic process with 
entropy rate H(Z’). Show 

+cy,, . . . ,XIIX,,,X-l,. . . ,Xk)-,HW), (4.76) 

for k = 1,2, . . . . 

Entropy rate of constrained sequences. In magnetic recording, the mech- 
anism of recording and reading the bits imposes constraints on the 
sequences of bits that can be recorded. For example, to ensure proper 
synchronization, it is often necessary to limit the length of runs of O’s 
between two 1’s. Also to reduce intersymbol interference, it may be 
necessary to require at least one 0 between any two 1’s. We will 
consider a simple example of such a constraint. 

Suppose that we are required to have at least one 0 and at most 
two O’s between any pair of l’s in a sequences. Thus, sequences like 
101001 and 0101001 are valid sequences, but 0110010 and 0000101 
are not. We wish to calculate the number of valid sequences of length 
n. 
(a) Show that the set of constrained sequences is the same as the set 

of allowed paths on the following state diagram: 

w 2 3 

(b) Let X,(n) be th e number of valid paths of length n ending at state 
i. Argue that X(n) = [X,(n) X,(n) XJn)lT satisfies the following 
recursion: 

[$!$!I-[% p j[$~~_II]=AXCn-1) (4.77) 

with initial conditions X(1) = [l lo]‘. 
(c) Then we have by induction 

X(n)=AX(n-1)=A2X(n-2)=...=A”-‘X(1). (4.78) 

Using the eigenvalue decomposition of A for the case of distinct 
eigenvalues, we can write A = U” AU, where A is the diagonal 
matrix of eigenvalues. Then A”- ’ = U - ’ An- ’ U. Show that we 
can write 



HZSTORZCAL NOTES 77 

X(n) = A:-‘Y, + A;-lY, + ApY,, 

where Y,, Y,, Y, do not depend on n. For large n, this sum is 
dominated by the largest term. Therefore argue that for i = 1,2,3, 
we have 

i logX&z)-, log A, (4.80) 

where A is the largest (positive) eigenvalue. Thus the number of 
sequences of length n grows as A" for large n. Calculate A for the 
matrix A above. (The case when the eigenvalues are not distinct 
can be handled in a similar manner.) 

(d) We will now take a different approach. Consider a Markov chain 
whose state diagram is the one given in part (a), but with 
arbitrary transition probabilities. Therefore the probability tran- 
sition matrix of this Markov chain is 

(4.81) 

Show that the stationary distribution of this Markov chain is 

[ 
1 1 l-aT 

P --- = 3-cu’3-a’3-a 1 * (4.82) 

(e) Maximize the entropy rate of the Markov chain over choices of cy. 
What is the maximum entropy rate of the chain? 

(f) Compare the maximum entropy rate in part (e) with log A in part 
(c). Why are the two answers the same? 

14. Waiting times are insensitive to distributions. Let X0,X,, Xz, . . . be 
drawn i.i.d. -p(x), x E i?T = {1,2, * . . , m} and let N be the waiting 
time to the next occurrence of X0, where N = min, {X, = X0}. 
(a) Show that EN = m. 

(b) Show that E log N 5 H(X). 
(c) (Optional) Prove part (a) for {Xi} stationary and ergodic. 

HISTORICAL NOTES 

The entropy rate of a stochastic process was introduced by Shannon [238], who 
also explored some of the connections between the entropy rate of the process 
and the number of possible sequences generated by the process. Since Shannon, 
there have been a number of results extending the basic theorems of information 
theory to general stochastic processes. 
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Data Compression 

We now put content in the definition of entropy by establishing the 
fundamental limit for the compression of information. Data compression 
can be achieved by assigning short descriptions to the most frequent 
outcomes of the data source and necessarily longer descriptions to the 
less frequent outcomes. For example, in Morse code, the most frequent 
symbol is represented by a single dot. In this chapter we find the 
shortest average description length of a random variable. 

We first define the notion of an instantaneous code and then prove 
the important Kraft inequality, which asserts that the exponentiated 
codeword length assignments must look like a probability mass func- 
tion. Simple calculus then shows that the expected description length 
must be greater than or equal to the entropy, the first main result. Then 
Shannon’s simple construction shows that the expected description 
length can achieve this bound asymptotically for repeated descriptions. 
This establishes the entropy as a natural measure of efficient descrip- 
tion length. Th.e famous Huffman coding procedure for finding minimum 
expected description length assignments is provided. Finally, we show 
that Huffman codes are competitively optimal and that it requires 
roughly H fair coin flips to generate a sample of a random variable 
having entropy H. 
Thus the entropy is the data compression limit as well as the number of 
bits needed in random number generation. And codes achieving H turn 
out to be optimal from many points of view. 
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5.1 EXAMPLES OF CODES 

Definition: A source code C for a random variable X is a mapping from 
%‘, the range ofX, to 9*, the set of finite length strings of symbols from a 
D-ary alphabet. Let C(x) denote the codeword corresponding to x and let 
Z(x) denote the length of C(z). 

For example, C(Red) = 00, C( Blue) = 11 is a source code for %’ = {Red, 
Blue} with alphabet 9 = (0, 1). 

Dejkitiont The expected length L(C) of a source code C(x) for a random 
variable X with probability mass function p(=c) is given by 

UC) = It* pww , (5.1) 

where Z(x) is the length of the codeword associated with x. 

Without loss of generality, we can assume that the D-ary alphabet is 
9 = {O,l,. . . , D - 1). 

Some examples of codes follow. 

Example 6.1 .l: Let X be a random variable with the following dis- 
tribution and codeword assignment: 

Pr(X=1)=1/2, codeword C( 1) = 0 
Pr(X=2)=1/4, codeword C(2) = 10 
Pr(X=3)=1/8, codeword C( 3) = 110 (5.2) 

Pr(X=4)=1/8, codeword C(4) = 111. 

The entropy H(X) of X is 1.75 bits, and the expected length L(C) = EZ(X) 
of this code is also 1.75 bits. Here we have a code that has the same 
average length as the entropy. We note that any sequence of bits can be 
uniquely decoded into a sequence of symbols of X. For example, the bit 
string 0110111100110 is decoded as 134213. 

Example 6.1.2: Consider another simple example of a code for a 
random variable: 

Pr(X=1)=1/3, codeword C(l)=0 
Pr(X = 2) = l/3, codeword C(2) = 10 
Pr(X= 3) = l/3, codeword C(3) = 11. 

(5.3) 

Just as in the previous case, the code is uniquely decodable. However, in 
this case the entropy is log 3 = 1.58 bits, while the average length of the 
encoding is 1.66 bits. Here EZ(X) > H(X). 
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Example 5.1.3 (Morse code): The Morse code is a reasonably efficient 
code for the English alphabet using an alphabet of four symbols: a dot, a 
dash, a letter space and a word space. Short sequences represent 
frequent letters (e.g., a single dot represents E) and long sequences 
represent infrequent letters (e.g., Q is represented by “dash, dash, dot, 
dash”). This is not the optimal representation for the alphabet in four 
symbols-in fact, many possible codewords are not utilized because the 
codewords for letters do not contain spaces except for a letter space at 
the end of every codeword and no space can follow another space. It is 
an interesting problem to calculate the number of sequences that can be 
constructed under these constraints. The problem was solved by Shan- 
non in his original 1948 paper. The problem is also related to coding for 
magnetic recording, where long strings of O’s are prohibited [2], [184]. 

We now define increasingly more stringent conditions on codes. Let xn 
denote (x1, x2, . . . , x,). 

Definition: A code is said to be non-singular if every element of the 
range of X maps into a different string in G@ *, i.e., 

Xi#X~~C(Xi)#C(X~). (5.4) 

Non-singularity suffices for an unambiguous description of a single 
value of X. But we usually wish to send a sequence of values of X. In 
such cases, we can ensure decodability by adding a special symbol (a 
“comma”) between any two codewords. But this is an inefficient use of 
the special symbol; we can do better by developing the idea of self- 
punctuating or instantaneous codes. Motivated by the necessity to send 
sequences of symbols X, we define the extension of a code as follows: 

Definition: The extension C* of a code C is the mapping from finite 
length strings of %’ to finite length strings of 9, defined by 

where C(x,)C(x,) l l * C(x, ) indicates concatenation of the corresponding 
codewords. 

Example 5.1.4: If C(x,) = 00 and C(xz) = 11, then C(x,x,) = 0011. 

Definition: A code is called uniquely decodable if its extension is 
non-singular. 

In other words, any encoded string in a uniquely decodable code has 
only one possible source string producing it. However, one may have to 
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look at the entire string to determine even the first symbol in the 
corresponding source string. 

Definition: A code is called a prefix code or an instantaneous code if no 
codeword is a prefix of any other codeword. 

An instantaneous code can be decoded without reference to the future 
codewords since the end of a codeword is immediately recognizable. 
Hence, for an instantaneous code, the symbol xi can be decoded as soon 
as we come to the end of the codeword corresponding to it. We need not 
wait to see the codewords that come later. An instantaneous code is a 
“self-punctuating” code; we can look down the sequence of code symbols 
and add the commas to separate the codewords without looking at later 
symbols. For example, the binary string 01011111010 produced by the 
code of Example 5.1.1 is parsed as 0, 10, 111, 110,lO. 

The nesting of these definitions is shown in Figure 5.1. To illustrate 
the differences between the various kinds of codes, consider the follow- 
ing examples of codeword assignments C(X) to x E 8?’ in Table 5.1. 

For the non-singular code, the code string 010 has three possible 
source sequences: 2 or 14 or 31, and hence the code is not uniquely 
decodable. 

The uniquely decodable code is not prefix free and is hence not 
instantaneous. To see that it is uniquely decodable, take any code string 
and start from the beginning. If the first two bits are 00 or 10, they can 
be decoded immediately. If the first two bits are 11, then we must look 
at the following bits. If the next bit is a 1, then the first source symbol is 
a 3. If the length of the string of O’s immediately following the 11 is odd, 
then the first codeword must be 110 and the first source symbol must be 

Figure 5.1. Classes of codes. 
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TABLE 5.1. Classes of Codes 

DATA COMPRESSION 

Non-singular, but not Uniquely decodable, but 
X Singular uniquely decodable not instantaneous Instantaneous 

1 0 0 10 0 
2 0 010 00 10 
3 0 01 11 110 
4 0 10 110 111 

4; if the length of the string of O’s is even, then the first source symbol is 
a 3. By repeating this argument, we can see that this code is uniquely 
decodable. Sardinas and Patterson have devised a finite test for unique 
decodability, which involves forming sets of possible sufkes to the 
codewords and systematically eliminating them. The test is described 
more fully in Problem 24 at the end of the chapter. 

The fact that the last code in Table 5.1 is instantaneous is obvious 
since no codeword is a prefix of any other. 

5.2 KRAFT INEQUALITY 

We wish to construct instantaneous codes of minimum expected length 
to describe a given source. It is clear that we cannot assign short 
codewords to all source symbols and still be prefix free. The set of 
codeword lengths possible for instantaneous codes is limited by the 
following inequality: 

Theorem 5.2.1 (Kraft inequality): For any instantaneous code (prefi 
code) over an alphabet of size D, the codeword lengths I,, I,, . . . , I, must 
satisfy the inequality 

CD -lill. 6.6) 

Conversely, given a set of codeword lengths that satisfy this inequality, 
there exists an instantaneous code with these word lengths. 

Proof: Consider a D-ary tree in which each node has D children. Let 
the branches of the tree represent the symbols of the codeword. For 
example, the D branches arising from the root node represent the D 
possible values of the first symbol of the codeword. Then each codeword 
is represented by a leaf on the tree. The path from the root traces out 
the symbols of the codeword. A binary example of such a tree is shown 
in Figure 5.2. 
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Root 

Figure 5.2. Code tree for the Krafi inequality. 

The prefix condition on the codewords implies that no codeword is an 
ancestor of any other codeword on the tree. Hence, each codeword 
eliminates its descendants as possible codewords. 

Let Lla* be the length of the longest codeword of the set of codewords. 
Consider all nodes of the tree at level I,,,. Some of them are codewords, 
some are descendants of codewords, and some are neither. A codeword 
at level li has Dlmaxvzi descendants at level I,,,. Each of these de- 
scendant sets must be disjoint. Also, the total number of nodes in these 
sets must be less than or equal to Dlmax. Hence, summing over all the 
codewords, we have 

or 

CD 
1 mar- ‘i 5 D ‘ma, (5.7) 

CD -li ( 
-1, (5.8) 

which is the Kraft inequality. 
Conversely, given any set of codeword lengths Z 1, I,, . . . , I, which 

satisfy the Kraft inequality, we can always construct a tree like the one 
in Figure 5.2. Label the first node (lexicographically) of depth Z, as 
codeword 1, and remove its descendants from the tree. Then label the 
first remaining node of depth I, as codeword 2, etc. Proceeding this way, 
we construct a prefix code with the specified I,, I,, . . . , Z,. Cl 

We now show that an infinite prefix code also satisfies the Kraft 
inequality. 
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Theorem 5.2.2 (Extended Kraft Inequality): For any countably infinite 
set of codewords that form a prefix code, the codeword lengths satisfy the 
extended Kraft inequality, 

cc 

CD 
-‘i ( -1. 

i=l 
(5.9) 

Conversely, given any l,, I,, . . . satisfying the extended Kraft inequality, 
we can construct a prefix code with these codeword lengths. 

Proof: Let the D-ary alphabet be (0, 1, . . . , D - l}. Consider the ith 
codeword y1y2 . . . yli. Let O.y,y, * * . yli be the real number given by the 
D-ary expansion 

li 

O’YlY2 - - .yl,= C yjD-‘. 
j=l 

This codeword corresponds to the interval 

(5.10) 

(5.11) 

the set of all real numbers whose D-ary expansion begins with 
O.YlY, - * * yl.. This is a subinterval of the unit interval [0, 11. By the 
prefix condition, these intervals are disjoint. Hence the sum of their 
lengths has to be less than or equal to 1. 

This proves that 

m 

CD 
-li < -1. 

i=l 
(5.12) 

Just as in the finite case, we can reverse the proof to construct the code 
for a given I,, I,, . . . that satisfies the Kraft inequality. First reorder the 
indexing so that 1 1 11,~ . . . . Then simply assign the intervals in order 
from the low end of the unit interval. Cl 

In Section 5.5, we will show that the lengths of codewords for a 
uniquely decodable code also satisfy the Kraft inequality. Before we do 
that, we consider the problem of finding the shortest instantaneous 

5.3 OPTIMAL CODES 

In the previous section, we proved that any codeword set that satisfies 
the prefix condition has to satisfy the Kraft inequality and that the 
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Kraft inequality is a sufficient condition for the existence of a codeword 
set with the specified set of codeword lengths. We now consider the 
problem of finding the pref?ix code with the minimum expected length. 
From the results of the previous section, this is equivalent to finding the 
set of lengths I,, I,, . . . , I, satisfying the Kraft inequality and whose 
expected length L = C PiZi is less than the expected length of any other 
prefix code. This is a standard optimization problem: Minimize 

L = C pizi (5.13) 

over all integers 1, , I,, . . . , 1, satisfying 

CD -Ii ( -1. (5.14) 

A simple analysis by calculus suggests the form of the minimizing IT. 
We neglect the integer constraint on Zi and assume equality in the 
constraint. Hence, we can write the constrained minimization using 
Lagrange multipliers as the minimization of 

J = c piZi + A@ D-li> . 

Differentiating with respect to Zi, we obtain 

iIJ 
al=pi-AD-“lOg,D. 

1 

Setting the derivative to 0, we obtain 

D-1, - pi 
A log, D ’ 

(5.15) 

(5.17) 

Substituting this in the constraint to find A, we find A = l/log, D and 
hence 

pi = D-II , (5.18) 

yielding optimal codelengths 

/* = 1 -log* Pi * (5.19) 

This non-integer 
length 

choice of codeword lengths yields expected codeword 

(5.20) 
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But since the Zi must be integers, we will not always be able to set the 
codeword lengths as in (5.19). Instead, we should choose a set of 
codeword lengths Zi “close” to the optimal set. Rather than demonstrate 
by calculus that Zy = -log, pi is a global minimum, we will verify 
optimality directly in the proof of the following theorem. 

Theorem 5.3.1: The expected length L of any instantaneous D-ary code 
for a random variable X is greater than or equal to the entropy H,(X), 
i.e., 

L I H,(X) (5.21) 

with equality iff D-Ii = pi. 

Proof: We can write the difference between the expected length and 
the entropy as 

1 L - H,(X) = C pili - C Pi ‘Og,P 
i 

(5.22) 

= -c pi log, D-l’ + CPi log, Pi ’ (5.23) 

Letting ri = D --li/Cj D -G and c = C D -li, we obtain 

= D(pllrl + log, i (5.25) 

20 (5.26) 

by the non-negativity of relative entropy and the fact (Kraft inequality) 
that c 5 1. Hence L 2 H with equality iff pi = D -Ii, i.e., iff -log, pi is an 
integer for all i. Cl 

Definition: A probability distribution is called D-adic with respect to D 
if each of the probabilities is equal to D-” for some n. 

Thus we have equality in the theorem if and only if the distribution of 
X is D-adic. 

The preceding proof also indicates a procedure for finding an optimal 
code: find the D-adic distribution that is closest (in the relative entropy 
sense) to the distribution of X. This distribution provides the set of 
codeword lengths. Construct the code by choosing the first available 
node as in the proof of the Kraft inequality. We then have an optimal 
code for X. 
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However, this procedure is not easy, since the search for the closest 
D-adic distribution is not obvious. In the next section, we give a good 
suboptimal procedure (Shannon-Fano coding). In Section 5.6, we de- 
scribe a simple procedure (Huffman coding) for actually flnding the 
optimal code. 

5.4 BOUNDS ON THE OPTIMAL CODELENGTH 

We now demonstrate a code that achieves an expected description 
length L within 1 bit of the lower bound, that is, 

H(X)sLcH(X)+l. (5.27) 

Recall the setup of the last section: we wish to minimize L = C PiZi 
subject to the constraint that I,, I,, . . . , I, are integers and C D-Ii 5 1. 
We proved that the optimal codeword lengths can be found by finding 
the D-adic probability distribution closest to the distribution of X in 
relative entropy i.e., finding the D-adic r (ri = D-“lCj D-5) minimizing 

L-H,= D(pllr) - log( c D -li) 2 0 . (5.28) 

The choice of word lengths Zi = log, & yields L = H. Since logD & may 
not equal an integer, we round it up to give integer word length 
assignments, 

li = [lOgD( $)I ’ 
i 

(5.29) 

where [xl is the smallest integer LX. These lengths satisfy the Kraft 
inequality since 

This choice of codeword lengths satisfies 

1 
hh - 

1 

Pi 
Izi<log,-++l* 

Pi 

(5.30) 

(5.31) 

Multiplying by pi and summing over i, we obtain 

H,(X) 5 L < H,(X) + 1. (5.32) 

Since the optimal code can only be better than this code, we have the 
following theorem: 
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Theorem 6.4.1: Let I* I* 1, 2, . . . ,I: be the optimal codeword lengths for a 
source distribution p and a D-ary alphabet, and let L* be the associated 
expected length of the optimal CO& (L* = C pilT>. Then 

H,(X) 5 L* <H,(X) + 1. (5.333 

Proof: Let Zi = [log, &I . Then Zi satisfies the Kraft inequality and 
from (5.32) we have 

H,(X) 5 L = C pili CHD(x) + ’ * (5.34) 

But since L *, the expected length of the optimal code, is less than 
L = C pili, and since L* LH, from Theorem 53.1, we have the 
theorem. Cl 

In the preceding theorem, there is an overhead which is at most 1 bit, 
due to the fact that log & is not always an integer. We can reduce the 
overhead per symbol by spreading it out over many symbols. With this 
in mind, let us consider a system in which we send a sequence of n 
symbols from X. The symbols are assumed to be drawn i.i.d. according to 
p(x). We can consider these n symbols to be a supersymbol from the 
alphabet E”. 

Define L, to be the expected codeword length per input symbol, i.e., if 
I(+, x2, . . . , x, ) is the length of the codeword associated with 
(x1,x,, . . . ,x,J, then 

Ln l =- 
n 

CpCx,,x, ,..., .1G,Y(x+p,...,Q= ~EZCY,,X, ,... ,x,>. 

(5.35) 

We can now apply the bounds derived above to the code: 

mx1, x,, * * .,Xn)ri?3Z(X1,X2 ,..., X,)<H(X,,X, ,..., X,)+1. 

(5.36) 

Since X1,X,, . . . , X, are i.i.d., H(x,, X,, . . . , X, ) = C H(x, ) = nH(X). Di- 
viding (5.36) by n, we obtain 

1 
H(X)IL,cH(X)+;. (5.37) 

Hence by using large block lengths we can achieve an expected 
codelength per symbol arbitrarily close to the entropy. 

We can also use the same argument for a sequence of symbols from a 
stochastic process that is not necessarily i.i.d. In this case, we still have 
the bound 
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H(x,,x,, . .I’, xn)rzzz(xl,x2 ,..., X,><H(x,,x,,...,x,)+l. 

(5.38) 

Dividing by n again and defining L, to be the expected description 
length per symbol, we obtain 

H~&,X2,...,x,)IL 
n 

<H(x,,x,,...,x,) + 1 
-. (5.39) 

n n n 

If the stochastic process is stationary, then H(Xl, X,, . . . , X,Jln + H(Z), 
and the expected description length tends to the entropy rate as n + 00. 
Thus we have the following theorem: 

Theorem 5.4.2: The minimum expected codeword length per symbol 
satisfies 

Moreover, if Xl, X2, . . . ,X, is a stationary stochastic process, 

L:-+H(a”), (5.41) 

where H(Z) is the entropy rate of the process. 

This theorem provides another justification for the definition of 
entropy rate-it is the expected number of bits per symbol required to 
describe the process. 

Finally, we a,sk what happens to the expected description length if 
the code is designed for the wrong distribution. For example, the wrong 
distribution may be the best estimate that we can make of the unknown 
true distribution. 

We consider the Shannon code assignment Z(X) = [ log &1 designed 
for the probability mass function q(z). Suppose the true probability mass 
function is p(x). Thus we will not achieve expected length L = H(p) = 
- C p(x) log p(x). We now show that the increase in expected description 
length due to the incorrect distribution is the relative entropy D( p 11 q). 
Thus D( p 11 a) has a concrete interpretation as the increase in descriptive 
complexity due to incorrect information. 

Theorem 5.4.3: The expected length under p(x) of the code assignment 
l(x) = [log &l satisfies 

H(p)+D(pllq)rE,1(X)<H(p)+D(pllq)+l. (5.42) 
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Proof: The expected codelength is 

ICI(X) = c pO[log &)l x 
< c p(x) ( 1 

log - + 1 
x q(x) > 

p(x) 1 
=~P(z)lwqopo+l 

x 

(5.43) 

(5.45) 

(5.46) 

=D(p))q)+H(p)+l. (5.47) 

The lower bound can be derived similarly. q 

Thus using the wrong distribution incurs a penalty of D( p 11 q) in the 
average description length. 

5.5 KRAFT INEQUALITY FOR UNIQUELY DECODABLE CODES 

We have proved that any instantaneous code must satisfy the Kraft 
inequality. The class of uniquely decodable codes is larger than the class 
of instantaneous codes, so one expects to achieve a lower expected 
codeword length if L is minimized over all uniquely decodable codes. In 
this section, we prove that the class of uniquely decodable codes does not 
offer any further possibilities for the set of codeword lengths than do 
instantaneous codes. We now give Karush’s elegant proof of the follow- 
ing theorem. 

Theorem 5.5.1 (McMilZan): The codeword lengths of any uniquely de- 
codable code must satisfy the Kraft inequality 

CD -4 51, (5.48) 

Conversely, given a set of codeword lengths that satisfy this inequality, it 
is possible to construct a uniquely decodable code with these codeword 
lengths. 

Proof: Consider Ck, the kth extension of the code, i.e., the code 
formed by the concatenation of k repetitions of the given uniquely 
decodable code C. By the definition of unique decodability, the kth 
extension of the code is non-singular. Since there are only D” different 
D-ary strings of length n, unique decodability implies that the number 
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of code sequences of length n in the Mh extension of the code must be no 
greater than D”. We now use this observation to prove the Kraft 
inequality. 

Let the codeword lengths of the symbols x E 2 be denoted by Z(X). For 
the extension code, the length of the code-sequence is 

The inequality that we wish to prove is 

CD --lCx) 5 1 . 
xE% 

(5.49) 

(5.50) 

The trick is to consider the lath power of this quantity. Thus 

= c D-l(X1)D-kC2). . . D-lb,) (5.52) 
,X2’. . . ,x&e-k 

=“c D - l(xk ) 
, (5.53) 

XkEBPk 

by (5.49). We now gather the terms by word lengths to obtain 

2 D-hk) = “5’ a(m)D-” , 

XkEFk m=l 

(5.54) 

where I,,, is the maximum codeword length and a(m) is the number of 
source sequences xk mapping into codewords of length m. But the code is 
uniquely decodable, so there is at most one sequence mapping into each 
code m-sequence and there are at most D” code m-sequences. Thus 
a(m) ID”, and we have 

(5.55) 

( ‘2X DmD-m (5.56) 
m=l 

= wnax (5.57) 

and hence 

c D-5 5 (kl,..$” . 
j 

(5.58) 
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Since this inequality is true for all k, it is true in the limit as k+m. 
Since (kl,,,) “‘+ 1, we have 

CD -5 51, (5.59) 

which is the Kraft inequality. 
Conversely, given any set of I,, I,, . . . , 1, satisfying the Kraft 

inequality, we can construct an instantaneous code as proved in Section 
5.2. Since every instantaneous code is uniquely decodable, we have also 
constructed a uniquely decodable code. Cl 

Corollary: 14 uniquely decodable code for an infinite source alphabet 
2 also satisfies the Kraft inequality. 

Proof: The point at which the preceding proof breaks down for 
infinite I%j is at (5.58), since for an infinite code I,,, is infinite. But 
there is a simple fix to the proof. Any subset of a uniquely decodable 
code is also uniquely decodable; hence, any finite subset of the infinite 
set of codewords satisfies the Kraft inequality. Hence, 

P 

CD -‘i = lim 2 D-Ii 5 1 . 
i=l N~oc i=l 

(5.60) 

Given a set of word lengths I,, I,, . . . that satisfy the Kraft inequality, 
we can construct an instantaneous code as in the last section. Since 
instantaneous codes are uniquely decodable, we have constructed a 
uniquely decodable code with an infinite number of codewords. So the 
McMillan theorem also applies to infinite alphabets. Cl 

The theorem implies a rather surprising result-that the class of 
uniquely decodable codes does not offer any further choices for the set of 
codeword lengths than the class of prefix codes. The set of achievable 
codeword lengths is the same for uniquely decodable and instantaneous 
codes. Hence the bounds derived on the optimal codeword lengths 
continue to hold even when we expand the class of allowed codes to the 
class of all uniquely decodable codes. 

5.6 HUFFMAN CODES 

An optimal (shortest expected length) prefix code for a given distri- 
bution can be constructed by a simple algorithm discovered by 
Huffman [1381. ‘We will prove that any other code for the same alphabet 
cannot have a lower expected length than the code constructed by the 
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algorithm. Before we give any formal proofs, let us introduce Huffman 
codes with some examples: 

Example 6.6.1: Consider a random variable X taking values in the set 
8Y = { 1,2,3,4,5} with probabilities 0.25, 0.25,0.2, 0.15,0.15, respective- 
ly. We expect the optimal binary code for X to have the longest 
codewords assigned to the symbols 4 and 5. Both these lengths must be 
equal, since otherwise we can delete a bit from the longer codeword and 
still have a prefix code, but with a shorter expected length. In general, 
we can construct a code in which the two longest codewords differ only 
in the last bit. For this code, we can combine the symbols 4 and 5 
together into a single source symbol, with a probability assignment 0.30. 
Proceeding this way, combining the two least likely symbols into one 
symbol, until we are finally left with only one symbol, and then 
assigning codewords to the symbols, we obtain the following table: 

Codeword 
length Codeword X Probability 

2 01 1 0.55 1 
2 10 2 0.45 7 
2 11 3 
3 000 4 
3 001 5 

This code has average length 2.3 bits. 

Example 5.6.2: Consider a ternary code for the same random variable. 
Now we combine the three least likely symbols into one supersymbol 
and obtain the following table: 

Codeword X Probability 

1 1 1 
2 2 
00 3 
01 4 
02 5 

This code has an average length of 1.5 ternary digits. 

Example 5.6.3: If D 2 3, we may not have a sufficient number of 
symbols so that we can combine them D at a time. In such a case, we 
add dummy symbols to the end of the set of symbols. The dummy 
symbols have probability 0 and are inserted to fill the tree. Since at each 
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stage of the reduction, the number of symbols is reduced by D - 1, we 
want the total number of symbols to be 1 + k(D - l), where k is the 
number of levels in the tree. Hence, we add enough dummy symbols so 
that the total number of symbols is of this form. For example: 

Codeword X Probability 

1 1.0 
2 
01 
02 
000 
001 
002 

This code has an average length of 1.7 ternary digits. 

A proof of the optimality of Huffman coding will be given in Section 5.8. 

5.7 SOME COMMENTS ON HUFFMAN CODES 

1. Equivalence of source coding and 20 questions. We now 
digress to show the equivalence of coding and the game of 20 
questions. 

Supposing we wish to find the most efficient series of yes-no 
questions to determine an object from a class of objects. Assuming 
we know the probability distribution on the objects, can we find 
the most efficient sequence of questions? 

We first show that a sequence of questions is equivalent to a 
code for the object. Any question depends only on the answers to 
the questions before it. Since the sequence of answers uniquely 
determines the object, each object has a different sequence of 
answers, and if we represent the yes-no answers by O’s and l’s, we 
have a binary code for the set of objects. The average length of this 
code is the average number of questions for the questioning 
scheme. 

Also, from a binary code for the set of objects, we can find a 
sequence of questions that correspond to the code, with the aver- 
age number of questions equal to the expected codeword length of 
the code. The first question in this scheme becomes “Is the first bit 
equal to 1 in the object’s codeword?” 

Since the Huffman code is the best source code for a random 
variable, the optimal series of questions is that determined by the 
Huffman code. In Example 5.6.1, the optimal first question is “Is X 
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equal to 2 or 3?” The answer to this determines the first bit of the 
Huffman code. Assuming the answer to the first question is ‘Yes,” 
the next question should be “Is X equal to 3?” which determines 
the second bit. However, we need not wait for the answer to the 
first question to ask the second. We can ask as our second question 
“Is X equal to 1 or 3?” determining the second bit of the Huffman 
code independently of the first. 

The expected number of questions EQ in this optimal scheme 
satisfies 

H(X)sEQcH(X)+l. (5.61) 

2. Huffman coding for weighted codewords. Huffman’s al- 
gorithm for minimizing C piZi can be applied to any set of numbers 
pi L 0, regardless of C pi. In this case, the Huffman code minimizes 
the sum of weighted codelengths C WiZi rather than the average 
codelength. 

Example 6.7.1: We perform the weighted minimization using the 
same algorithm. 

X Codeword Weights 

In this case the code minimizes the weighted sum of the codeword 
lengths, and the minimum weighted sum is 36. 

3. Huffban coding and “slice” questions. We have described the 
equivalence of source coding with the game of 20 questions. The 
optimal sequence of questions corresponds to an optimal source 
code for the random variable. However, Huffman codes ask arbi- 
trary questions of the form “Is X E A?” for any set A c 
(1,2, . . . , m). 

Now we consider the game of 20 questions with a restricted set 
of questions. Specifically, we assume that the elements of 8F = 
(192, l *  l Y 

m} are ordered so that p1 2pz 2 . . . “pm and that the 
only questions allowed are of the form “Is X > a?” for some a. 

The Huffman code constructed by the Huffman algorithm may 
not correspond to “slices” (sets of the form {x :x c a} ). If we take 
the codeword lengths (I, 5 I, I l l l I I,, by Lemma 5.8.1) derived 
from the Huffman code and use them to assign the symbols to the 



96 DATA COMPRESSlON 

code tree by taking the first available node at the corresponding 
level, we will construct another optimal code. However, unlike the 
Huffman code itself, this code is a “slice” code, since each question 
(each bit of the code) splits the tree into sets of the form {x :x > a} 
and {x:x <a}. 

We illustrate this with an example. 

Example 6.7.2: Consider the first example of Section 5.6. The 
code that was constructed by the Huffman coding procedure is not 
a “slice” code. But using the codeword lengths from the Huffman 
procedure, namely, {2,2,2,3,3}, and assigning the symbols to the 
first available node on the tree, we obtain the following code for 
this random variable: 

l-+00, 2-+01, 3-+10, 4-+110, 5+111 

It can be verified that this code is a “slice” code. These “slice” 
codes are known as alphabetic codes because the codewords are 
alphabetically ordered. 

4. Huffman codes and Shannon codes. Using codeword lengths of 
[log $1 (which is called Shannon coding) may be much worse than 
the oitimal code for some particular symbol. For example, consider 
two symbols, one of which occurs with probability 0.9999 and the 
other with probability 0.0001. Then using codeword lengths of 
[log & 1 implies using codeword lengths of 1 bit and 14 bits 
respectively. The optimal codeword length is obviously 1 bit for 
both symbols. Hence, the code for the infrequent symbol is much 
longer in the Shannon code than in the optimal code. 

Is it true that the codeword lengths for an optimal code are 
always less than [log & I? The following example illustrates that 
this is not always true. 

Example 6.7.3: Consider a random variable X with a distribution 
( Q, +,I, & ). The Huffman coding procedure results in codeword 
lengths of (2,2,2,2) or (1,2,3,3) (depending on where one puts 
the merged probabilities, as the reader can verify). Both these 
codes achieve the same expected codeword length. In the second 
code, the third symbol has length 3, which is greater than [log & 1. 
Thus the codeword length for a Shannon code could be less than 
the codeword length of the corresponding symbol of an optimal 
(Huffman) code. 

This example also illustrates the fact that the set of codeword 
lengths for an optimal code is not unique (there may be more than 
one set of lengths with the same expected value). 
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Although either the Shannon code or the Huffman code can be 
shorter for individual symbols, the Huffman code is shorter on the 
average. Also, the Shannon code and the Huffman code differ by 
less than one bit in expected codelength (since both lie between H 
and H + 1.) 

5. Fano codes. Fano proposed a suboptimal procedure for construct- 
ing a source code, which is similar to the idea of slice codes. In his 
method, we first order the probabilities in decreasing order. Then 
we choose k such that 1 Cf= 1 pi - Cy’!, + 1 pi 1 is minimized. This 
point divides the source symbols into two sets of almost equal 
probability. Assign 0 for the first bit of the upper set and 1 for the 
lower set. Repeat this process for each subset. By this recursive 
procedure, ‘we obtain a code for each source symbol. This scheme, 
though not optimal in general, achieves L(C) 5 H(X) + 2. (See 
n371.1 

5.8 OPTIMALITY OF HUFFMAN CODES 

We prove by induction that the binary Huffman code is optimal. It is 
important to remember that there are many optimal codes: inverting all 
the bits or exchanging two codewords of the same length will give 
another optimal code. The Huffman procedure constructs one such 
optimal code. To prove the optimality of Huffman codes, we first prove 
some properties of a particular optimal code. 

Without loss of generality, we will assume that the probability 
masses are ordered, so that p1 L pz 1. l * up,. Recall that a code is 
optimal if Z PiZi is minimal. 

Lemma 5.8.1: For any distribution, there exists an optimal instanta- 
neous code (with minimum expected length) that satisfies the following 
properties: 

1. Ifpj>p,, then lj(l,. 
2. The two longest codewords have the same length. 
3. The two longest codewords differ only in the last bit and corre- 

spond to the two least likely symbols. 

Proof: The proof amounts to swapping, trimming and rearranging, 
as shown in Figure 5.3. Consider an optimal code C,: 

l If pj >pk, then Zj 5 I,. Here we swap codewords. 
Consider Ck , 

Then 
with the codewords j and k of C, interchanged. 
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Figure 5.3. Properties of optimal codes. We will assume that p1 z-p2 2 - - - 1 p,. A possible 
instantaneous code is given in (a). By trimming branches without siblings, we improve the 
code to (Z-J 1. We now rearrange the tree as shown in (c) so that the word lengths are ordered 
by increasing length from top to bottom. Finally, we swap probability assignments to 
improve the expected depth of the tree as shown in (d). Thus every optimal code can be 
rearranged and swapped into the canonical form (d). Note that E, I I, I - - * I I,, that 
1 m-l = Z,, and the last two codewords differ only in the last bit. 

L(CA) - L(C, ) = c p,z; - c Pi4 (5.62) 

= Pjzk + Phzj - Pjlj - Pk’k (5.63) 

= (Pj -pk)(zh -  lj> l (5.64) 

But pj -pk > 0, and since C, is optimal, UC;) - UC,) 2 0. 
Hence we must have I, 1 Zj. Thus C, itself satisfies property 1. 

l The two Zongest codewords are of the same Length. Here we trim the 
codewords. 

If the two longest codewords are not of the same length, then one 
can delete the last bit of the longer one, preserving the prefix 
property and achieving lower expected codeword length. Hence the 
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two longest codewords must have the same length. By property 1, 
the longest codewords must belong to the least probable source 
symbols. 

l The two longest codewords differ only in the last bit and correspond 
to the two least likely symbols. Not all optimal codes satisfy this 
property, but by rearranging, we can find a code that does. 

If there is a maximal length codeword without a sibling, then we 
can delete the last bit of the codeword and still satisfy the prefix 
property. This reduces the average codeword length and contradicts 
the optimality of the code. Hence every maximal length codeword in 
any optimal code has a sibling. 

Now we can exchange the longest length codewords so the two 
lowest probability source symbols are associated with two siblings 
on the tree. This does not change the expected length C pili. Thus 
the codewords for the two lowest probability source symbols have 
maximal length and agree in all but the last bit. 

Summarizing, we have shown that if p1 2p2 2 - l l rpn, then there 
exists an optimal code with 1 1 5 1, I - - - Ed 1, -1 = I,, and codewords 
C(X, _ 1 ) and C(X,) that differ only in the last bit. Cl 

Thus we have shown that there exists an optimal code satisfying the 
properties of the lemma. We can now restrict our search to codes that 
satisfy these properties. 

For a code C, satisfying the properties of the lemma, we now define a 
“merged” code C,- 1 for m - 1 symbols as follows: take the common 
prefix of the two longest codewords 
symbols), and allot it to a symbol 
other codewords remain the same. 
following: 

(corresponding to the two least likely 
with probability p, -I + p,. All the 
The correspondence is shown in the 

Pl 
P2 

. 

. . 

cn-1 cl 
w; 1; w, = w; 1, = 1; 
wa 16 w, = w; 1, = 1; 

. . . . 

. . . . 

. . . . (5.65) 

pm-2 w;-2 IA-2 w,-2 = WA-2 L-2 = IA-2 

p,-1 +p, WA-1 Q-1 w,-I= WA-,o I,-, = IA-1 + 1 

Wnl = w;-J kn = lAmI + 1 

where w  denotes a binary codeword and 1 denotes its length. The 
expected length of the code C, is 

L(C,)= 2 Pi’i 
i=l 

(5.66) 
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m-2 

= 2 pi/?: +p,-l(Z~.-l + 1) +Pm(zL-l + ‘1 

i=l 

m-l 

= Ld Pil: + Pm-1 +Pm -s 

i=l 

=.L(C,-1) +Pm-1 +Pm * 

(5.67) 

(5.68) 

Thus the expected length of the code Cm differs from the expected length 
of Cm -1 by a fixed amount independent of Cmbl. Thus minimizing the 
expected length L( Cm> is equivalent to minimizing UC, _ l). Thus we 
have reduced the problem to one with m - 1 symbols and probability 
masses (pl, p2>. . . , pm -2, pm -1 + pm). This step is illustrated in Figure 
5.4. We again look for a code which satisfies the properties of Lemma 
5.8.1 for these m - 1 symbols and then reduce the problem to finding the 
optimal code for m - 2 symbols with the appropriate probability masses 
obtained by merging the two lowest probabilities on the previous 
merged list. Proceeding this way, we finally reduce the problem to two 
symbols, for which the solution is obvious, i.e., allot 0 for one of the 
symbols and 1 for the other. Since we have maintained optimality at 

(4 (b) 

0 l 
PI 

0 
p4 + P5 

1 

‘c 

0 
1 p2 

1 p3 

Figure 5.4. Induction step for Huffman coding. Let p1 zpl 2 * * * ‘ps. A canonical optimal 
code is illustrated in (a). Combining the two lowest probabilities, we obtain the code in (b 1. 
Rearranging the probabilities in decreasing order, we obtain the canonical code in (c) for 
m - 1 symbols. 
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every stage in the reduction, the code constructed for m symbols is 
optimal. Thus we have proved the following theorem for binary al- 
phabets. 

Theorem 6.8.1: Huffman coding is optimal, i.e., if C* is the Huffman 
code and C’ is any other code, then L(C*) 5 L(C’). 

Although we have proved the theorem for a binary alphabet, the proof 
can be extended to establishing optimality of the Huffman coding 
algorithm for a D-ary alphabet as well. Incidentally, we should remark 
that Huffman coding is a “greedy” algorithm in that it coalesces the two 
least likely symbols at each stage. The above proof shows that this local 
optimality ensures a global optimality of the final code. 

5.9 SHANNON-FANO-ELIAS CODING 

In Section 5.4, we showed that the set of lengths Z(X) = [log &I satisfies 
the Kraft inequality and can therefore be used to construct a uniquely 
decodable code for the source. In this section, we describe a simple 
constructive procedure which uses the cumulative distribution function 
to allot codewords. 

Without loss of generality we can take %’ = { 1,2, . . . , m}. Assume 
p(x) > 0 for all X. The cumulative distribution function F(X) is defined as 

F(x) = C p(a) . 

05X 

(5.70) 

This function is illustrated in Figure 5.5. Consider the modified cumula- 
tive distribution function 

Figure 5.5. Cumulative distribution function and Shannon-Fano-Elias coding. 



102 DATA COMPRESSION 

1 
F(x)= c p(a)+ yj p(x), 

a<x 

(5.71) 

where F(x) denotes the sum of the probabilities of all symbols less than x 
plus half the probability of the symbol X. Since the random variable is 
discrete, the cumulative distribution function consists of steps of size 
P(X). The value of the function F(X) is the midpoint of the step corre- 
sponding to X. 

Since all the probabilities are positive, F(a) # F(b) if a # b, and hence 
we can determine x if we know F(X). Merely look at the graph of the 
cumulative distribution function and find the corresponding X. Thus the 
value of 2%) can be used as a code for x. 

But in general F(X) is a real number expressible only by an- infinite 
number of bits. So it is not efficient to use the exact value of F(X) as a 
code for X. If we use an approximate value, what is the required 
accuracy? 

Assume that we round off&) to Z(X) bits (denoted by [&)l I(x)). Thus 
we use the first Z(X) bits of F(X) as a code for X. By definition of rounding 
off, we have 

1 

If Z(X) = [log & 1 + 1, then 

‘<Ply 
21’“’ = F(x) - F(x - 1)) (5.73) 

and therefore &>J ICX) lies within the step corresponding to X. Thus Z(X) 
bits suffice to describe x. 

In addition to requiring that the codeword identify the corresponding 
symbol, we also require the set of codewords to be prefix-free. To check 
whether the code is prefix-free, we consider each codeword zlza . . . zI to 
represent not a point but the interval [O.z,z, . . . zl, O.z,z, . . . z1 + $1. 
The code is prefix-free if and only if the intervals corresponding to 
codewords are disjoint. 

We now verify that the code above is prefix-free. The interval corre- 
sponding to any codeword has length 2-‘““‘, which is less than half the 
height of the step corresponding to x by (5.73). The lower end of the 
interval is in the lower half of the step. Thus the upper end of the 
interval lies below the top of the step, and the interval corresponding to 
any codeword lies entirely within the step corresponding to that symbol 
in the cumulative distribution function. Therefore the intervals corre- 
sponding to different codewords are disjoint and the code is prefix-free. 

Note that this procedure does not require the symbols to be ordered 
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in terms of probability. Another procedure that uses the ordered prob- 
abilities is described in Problem 25 at the end of the chapter. 

Since we use Z(x) = [log &l + 1 bits to represent x, the expected 
length of this code is 

L = c p(x)Z(x) = 2 p(x)( [log --&I + 1) < H(X) + 2 ’ (5.74) x x 

Thus this coding scheme achieves an average codeword length that is 
within two bits Iof the entropy. 

Example 6.9.1: We first consider an example where all the prob- 
abilities are dyadic. We construct the code in the following table: 

x p(x) F(x) Rx> F(x) in binary l(x) = [log ,&l + 1 Codeword 

1 0.25 0.25 0.125 0.001 3 001 

2 0.5 0.75 0.5 0.10 2 10 
3 0.125 0.875 0.8125 0.1101 4 1101 

4 0.125 1.0 0.9375 0.1111 4 1111 

In this case, the average codeword length is 2.75 bits while the entropy 
is 1.75 bits. The Huffman code for this case achieves the entropy bound. 
Looking at the codewords, it is obvious that there is some inefficiency- 
for example, the last bit of the last two codewords can be omitted. But if 
we remove the last bit from all the codewords, the code is no longer 
prefix free. 

Example 5.9.2: We now give another example for the construction for 
the Shannon-Fano-Elias code. In this case, since the distribution is not 
dyadic, the representation of F(x) in binary may have an infinite number 
of bits. We denote 0.01010101 . . . by 0.01. 

We construct the code in the following table: 

X p(x) F(x) m F(x) in binary I(x)= [log--&] + 1 Codeword 

1 0.25 0.25 0.125 0.001 3 001 
2 0.25 0.5 0.375 0.011 3 011 
3 0.2 0.7 0.6 0.10011 4 1001 
4 0.15 0.85 0.775 0.1100011 4 1100 
5 0.15 1.0 0.925 0.1110110 4 1110 

The above code is 1.2 bits longer on the average than the Huffman code 
for this source (Example 5.6.1). 

In the next section, we extend the concept of Shannon-Fano-Elias 
coding and describe a computationally efficient algorithm for encoding 
and decoding called arithmetic coding. 



104 DATA COMPRESSION 

5.10 ARITHMETIC CODING 

From the discussion of the previous sections, it is apparent that using a 
codeword length of log Pi for the codeword corresponding to x is nearly 
optimal in that it has an expected length within 1 bit of the entropy. The 
optimal codes are Huffman codes, and these can be constructed by the 
procedure described in Section 5.6. 

For small source alphabets, though, we have efficient coding only if 
we use long blocks of source symbols. For example, if the source is 
binary, and we code each symbol separately, we must use 1 bit per 
symbol irrespective of the entropy of the source. If we use long blocks, 
we can achieve an expected length per symbol close to the entropy rate 
of the source. 

It is therefore desirable to have an efficient coding procedure that 
works for long blocks of source symbols. Htiman coding is not ideal for 
this situation, since it is a bottom-up procedure that requires the 
calculation of the probabilities of all source sequences of a particular 
block length and the construction of the corresponding complete code 
tree. We are then limited to using that block length. A better scheme is 
one which can be easily extended to longer block lengths without having 
to redo all the calculations. Arithmetic coding, a direct extension of the 
Shannon-Fano-Elias coding scheme of the last section, achieves this 
goal. 

The essential idea of arithmetic coding is to efficiently calculate the 
probability mass function p(x” ) and the cumulative distribution function 
F(x”) for the source sequence xn. Using the ideas of Shannon-Fano-Elias 
coding, we can use a number in the interval (F(x”> - p(x”), F(x”)] as the 
code for xn. For example, expressing F(x”) to an accuracy of [log A1 
will give us a code for the source. Using the same arguments as in the 
discussion of the Shannon-Fano-Elias code, it follows that the codeword 
corresponding to any sequence lies within the step in the cumulative 
distribution function (Figure 5.5) corresponding to that sequence, So the 
codewords for different sequences of length n are different. However, the 
procedure does not guarantee that the se! of codewords is prefix-free. We 
can construct a prefix-free set by using F(x) rounded off to [log &1 + 1 
bits as in Section 5.9. In the algorithm described below, we will keep 
track of both F(x” ) and p(x” ) in the course of the algorithm, so we can 
calculate F(x) easily at any stage. 

We now describe a simplified version of the arithmetic coding al- 
gorithm to illustrate some of the important ideas. We assume that we 
have a fixed block length n that is known to both the encoder and the 
decoder. With a small loss of generality, we will assume that the source 
alphabet is binary. We assume that we have a simple procedure to 
calculate p(xl, x2, . . . , xn) for any string x1, x2, . . . , x,. We will use the 
natural lexicographic order on strings, so that a string x is greater than 
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a string y if xi 7 1, yi = 0 for the first i such that xi # yi. Equivalently, 
x > y if Ci ~~2~” > Ci yi2-l, i.e., if the corresponding binary numbers 
satisfy 0.x > 0.~. We can arrange the strings as the leaves of a tree of 
depth n, where each level of the tree corresponds to one bit. Such a tree 
is illustrated in Figure 5.6. In this figure, the ordering x > y corresponds 
to the fact that x is to the right of y on the same level of the tree. 

From the discussion of the last section, it appears that we need to 
find p( y” ) for all yn I xn and use that to calculate F(x” ). Looking at the 
tree, we might suspect that we need to calculate the probabilities of all 
the leaves to the left of xn to find F(x” ). The sum of these probabilities is 
the sum of the probabilities of all the subtrees to the left of xn. Let 
T 

Xl%2 
. . .rk- ,0 be a subtree starting with x,x, - - . xk _ ,O. The probability of 

this subtree is 

and hence can be calculated easily. Therefore we can rewrite F(P) as 

Figure 5.6. Tree of strings for arithmetic coding. 
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m”)= c p(f) (5.77) 
ynl;xn 

= c p(T) (5.78) 
T : Tia to the left of xn 

(5.79) 

Thus we can calculate F(xn) quickly from pkx” >. 

Example S.lO.1: If X,, X2, . . . , X, are Bernoulli(B) in Figure 5.6, then 

F(O1llO)=p(T1)+p(T,)+p(T,)=p(OO)+p(O1O)+p(O1lO) (5.80) 

= (I- ej2 + e(i - ej2 + e2(i - ej2 . (5.81) 

Note that these terms can be calculated recursively. For example, 
e3(i - ej3 = (e2(i - e)2)e(i - e). 

To encode the next bit of the source sequence, we need only calculate 
p(x’q + 1 > and update F(x”x, + 1 ) using the above scheme. Encoding can 
therefore be done sequentially, by looking at the bits as they come in. 

To decode the sequence, we use the same procedure to calculate the 
cumulative distribution function and check whether it exceeds the value 
corresponding to the codeword. We then use the tree in Figure 5.6 as a 
decision tree. At the top node, we check to see if the received codeword 
F(x” > is greater than p(0). If it is, then the subtree starting with 0 is to 
the left of P and hence x, = 1. Continuing this process down the tree, we 
can decode the bits in sequence. Thus we can compress and decompress 
a source sequence in a sequential manner. 

The above procedure depends on a model for which we can easily 
compute p(C). Two examples of such models are i.i.d. sources, where 

(5.82) 

and Markov sources, where 

(5.83) 

In both cases, we can easily calculate p(x”x, +1) from p(x” ). 
Note that it is not essential that the probabilities used in the 

encoding be equal to the true distribution of the source. In some cases, 
such as in image compression, it is difficult to describe a “true” dis- 
tribution for the source. Even then, it is possible to apply the above 
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arithmetic coding procedure. The procedure will be efficient only if the 
model distribution is close to the empirical distribution of the source 
(Theorem 5.4.3). A more sophisticated use of arithmetic coding is to 
change the model dynamically to adapt to the source. Adaptive models 
work well for large classes of sources. The adaptive version of arithmetic 
coding is a simple example of a universal code, that is, a code that is 
designed to work with an arbitrary source distribution. Another exam- 
ple is the Lempel-Ziv code, which is discussed in Section 12.10. 

The foregoing discussion of arithmetic coding has avoided discussion 
of the difficult implementation issues of computational accuracy, buffer 
sizes, etc. An introduction to some of these issues can be found in the 
tutorial introduction to arithmetic coding by Langdon [170]. 

5.11 COMPETITIVE OPTIMALITY OF THE SHANNON CODE 

We have shown that Huffman coding is optimal in that it has minimum 
expected length. But what does that say about its performance on any 
particular sequence? For example, is it always better than any other 
code for all sequences? Obviously not, since there are codes which assign 
short codewords to infrequent source symbols. Such codes will be better 
than the Huffman code on those source symbols. 

To formalize the question of competitive optimality, consider the 
following two-person zero sum game: Two people are given a probability 
distribution and are asked to design an instantaneous code for the 
distribution. Then a source symbol is drawn from this distribution and 
the payoff to player A is 1 or -1 depending on whether the codeword of 
player A is shorter or longer than the codeword of player B. The payoff 
is 0 for ties. 

Dealing with Htiman codelengths is difficult, since there is no 
explicit expression for the codeword lengths. Instead, we will consider 
the Shannon code with codeword lengths Z(x) = [log & 1. In this case, we 
have the following theorem: 

Theorem 5.11.1: Let Z(x) be the codeword lengths associated with the 
Shannon code and let l’(x) be the codeword lengths associated with any 
other code. Then 

1 
Pr(Z(X) 2 I ‘(X) + c) 5 2c-l . (5.84) 

Thus, for example, the probability that Z’(X) is 5 or more bits shorter 
than Z(X) is less than $. 
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Proof: 

Pr(Z(X) 1 Z’(X) + c) = Pr ([ -&l rZ’O+c) (5.85) log 

5 Pr 
1 

bp(X) --+Z’(X)+c-1 (5.86) 

= pr(p(X) 5 g-“~‘-‘+l) (5.87) 

= c p(x) (5.88) 
x : p(le)s2 -I’(z)-c+l 

22 c 2 -I'(x)-(c-1) 

2 :  &&)92 -I’(x)-c+l 

I c p(z)cp-l) (5.90) 
x 

12 -(c-l) 
9 (5.91) 

since C 2-1’(“) 5 1 by the Kraft inequality. 0 

Hence, no other code can do much better than the Shannon code most 
of the time. 

We now strengthen this result in two ways. First, there is the term 
+ 1 that has been added, which makes the result non-symmetric. Also, 
in a game theoretic setting, one would like to ensure that Z(x) < Z’(x) 
more often than Z(x) > Z’(x). The fact that Z(x) 5 Z’(x) + 1 with probability 
L f does not ensure this. We now show that even under this stricter 
criterion, Shannon coding is optimal. Recall that the probability mass 
function p(x) is dyadic if log &J is an integer for all x. 

Theorem 5.11.2: For a dyadic probability mass function p(x), let Z(x) = 
log & be the word lengths of the binary Shannon code for the source, 
and let Z’(x) be the Lengths of any other uniquely decodable binary code 
for the source. Then 

Pr(Z(X) C Z ‘(X)) 2 Pr(Z(X) > Z ‘(X)) , (5.92) 

with equality iff Z’(x) = Z(x) for all x. Thus the code length assignment 
Z(x) = log &j is uniquely competitiveZy optimal. 

Proof: Define the function sgn(t) as follows: 

1 if t>O 
sgnw = 0 ift=O. 

-1 if t<O 

Then it is easy to see from Figure 5.7 that 

(5.93) 
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Figure 5.7. The sgn function and a bound. 

sgn(t) 5 2t - 1 for t = 0, kl, *2, . . . . (5.94) 

Note that though this inequality is not satisfied for all t, it is satisfied at 
all integer values of t. 

We can now write 

W’(X) < Z(X)) - Pr(Z’W > Z(X)) = C p(x) - 2 p(x) (5.95) 
x : Z’(X)CZ(X) x : Z’(x)>Z(x) 

= c p(x) sgrdw - Z’(d) (5.96) 
x 

= E sgn(Z(X) - Z'(X)> (5.97) 

0 c p(x)(p’-“~d - 1) (5.98) 

=c (2 
2 2- 

Z(x) Z(x)-Z'(x) 
-1) (5.99) 

= c 
x 2-Z”“’ _ 2 2-z’“’ 

(5.100) 
X 

= 22 
-Z’(x) _ 1 

X 
(5.101) 

(b) 
I l-l (5.102) 

= 0, (5.103) 
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where (a) follows from the bound on sgn(x) and (b) follows from the fact 
that Z’(x) satisfies the Kraft inequality. 

We have equality in the above chain only if we have equality in (a) 
and (b). We have equality in the bound for sgn(t) only if t is 0 or 1, i.e., 
Z(x) = I ‘(x) or Z(x) = I ‘(x) + 1. Equality in (b) implies that Z ‘(x) satisfy the 
Kraft inequality with equality. Combining these two facts implies that 
Z’(x) = Z(x) for all x. Cl 

CoroUaxy: For non-dyadic probability mass functions, 

Esgn(Z(X)-Z’(X)-1)sO (5.104) 

where Z(x) = [log & 1 and Z’(x) is any other code for the source. 

Proof: Along the same lines as the preceding proof. Cl 

Hence we have shown that Shannon coding is optimal under a variety 
of criteria; it is robust with respect to the payoff function. In particular, 
for dyadic p, E(Z - I’) I 0, E sgn(Z - I’) 5 0, and by use of inequality 
(5.94), Ef(Z - I’) 5 0, for any function f satisfying f(t) I 2t - 1, t = 0, + 1, 
*2 , . . . . 

5.12 GENERATION OF DISCRETE DISTRIBUTIONS FROM FAIR 
COINS 

In the early sections of this chapter, we considered the problem of 
representing a random variable by a sequence of bits such that the 
expected length of the representation was minimized. It can be argued 
(Problem 26) that the encoded sequence is essentially incompressible, 
and therefore has an entropy rate close to 1 bit per symbol. Therefore 
the bits of the encoded sequence are essentially fair coin flips. 

In this section, we will take a slight detour from our discussion of 
source coding and consider the dual question. How many fair coin flips 
does it take to generate a random variable X drawn according to some 
specified probability mass function p? We first consider a simple ex- 
ample: 

Example 6.12.1: Given a sequence of fair coin tosses (fair bits), sup- 
pose we wish to generate a random variable X with distribution 

a with probability i , 
X = b with probability $ , (5.105) 

c with probability a . 
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It is easy to guess the answer. If the first bit is 0, we let X = a. If the 
first two bits are 10, we let X = b. If we see 11, we let X = c. It is clear 
that X has the desired distribution. 

We calculate the average number of fair bits required for generating 
the random variable in this case as i 1 + $2 + $2 = 1.5 bits. This is also 
the entropy of the distribution. Is this unusual? No, as the results of this 
section indicate. 

The general problem can now be formulated as follows. We are given 
a sequence of fair coin tosses Z,, Z,, . . . , and we wish to generate a 
discrete random variable X E %’ = { 1,2, . . . , m} with probability mass 
function p = (pl, p2, . . . , p,). Let the random variable 2’ denote the 
number of coin flips used in the algorithm. 

We can describe the algorithm mapping strings of bits Z,, Z,, . . . , to 
possible outcomes X by a binary tree. The leaves of the tree are marked 
by output symbols X and the path to the leaves is given by the sequence 
of bits produced by the fair coin. For example, the tree for the dis- 
tribution ( $, f , a ) is shown in Figure 5.8. 

The tree representing the algorithm must satisfy certain properties: 

1. The tree should be complete, i.e., every node is either a leaf or has 
two descendants in the tree. The tree may be infinite, as we will 
see in some examples. 

2. The probability of a leaf at depth k is 2? Many leaves may be 
labeled with the same output symbol-the total probability of all 
these leaves should equal the desired probability of the output 
symbol. 

3. The expected number of fair bits ET required to generate X is 
equal to the expected depth of this tree. 

There are many possible algorithms that generate the same output 
distribution. For example, the mapping: OO+ a, 01 + b, lo+ c, 11 --) a 
also yields the distribution ( 5, i, a ). However, this algorithm uses two 
fair bits to generate each sample, and is therefore not as efficient as the 
mapping given earlier, which used only 1.5 bits per sample. This brings 
up the question: What is the most efficient algorithm to generate a given 
distribution and how is this related to the entropy of the distribution? 

a 

Figure 5.8. Tree for generation of the distribution (I, i, I). 
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We expect that we need at least as much randomness in the fair bits 
as we produce in the output samples. Since entropy is a measure of 
randomness, and each fair bit has an entropy of 1 bit, we expect that the 
number of fair bits used will be at least equal to the entropy of the 
output. This is proved in the following theorem. 

We will need a simple lemma about trees in the proof of the theorem. 
Let 9 denote the set of leaves of a complete tree. Consider a distribution 
on the leaves, such that the probability of a leaf at depth k on the tree is 
2? Let Y be a random variable with this distribution. Then we have the 
following lemma: 

Lemma 5.12.x: For any complete tree, consider a probability dis- 
tribution on the leaves, such that the probability of a leaf at depth k is 
2-k. Then the expected depth of the tree is equal to the entropy of this 
distribution. 

Proof: The expected depth of the tree 

ET = 2 k(y)2-k’Y’ 
YE% 

and the entropy of the distribution of Y is 

H(Y)=-2 
YE9 

&%& 

(5.106) 

(5.107) 

= 2 k(y)2-k(y) > (5.108) 
YE9 

where k(y) denotes the depth of leafy. Thus 

H(Y)=ET. Cl (5.109) 

Theorem 5.12.1: For any algorithm generating X, the expected number 
of fair bits used is greater than the entropy H(X), i.e., 

ET 2 H(X). (5.110) 

Proof: Any algorithm generating X from fair bits can be represented 
by a binary tree. Label all the leaves of this tree by distinct symbols 
y E 9 = {1,2,. . . }. If the tree is infinite, the alphabet 3 is also infinite. 

Now consider the random variable Y defined on the leaves of the tree, 
such that for any leafy at depth k, the probability that Y = y is 2-k. By 
Lemma 5.12.1, the expected depth of this tree is equal to the entropy of 
Y, i.e., 

ET = H(Y). (5.111) 

Now the random variable X is a function of Y (one or more leaves map 



5.12 GENERATlON OF DlSCRETE DISTRlBUTlONS FROM FAlR COINS 313 

onto an output symbol), and hence by the result of Problem 5 in Chapter 
2, we have 

H(X) 5 H(Y) . (5.112) 

Thus for any algorithm generating the random variable X, we have 

H(X)sET. cl (5.113) 

The same argument answers the question of optimality for a dyadic 
distribution. 

Theorem 5.12.2: Let the random variable X have a dyadic distribution. 
The optimal algorithm to generate X from fair coin flips requires an 
expected number of coin tosses precisely equal to the entropy, i.e., 

ET = H(X). (5.114) 

Proof: The previous theorem shows that we need at least H(X) bits 
to generate X. 

For the constructive part, we use the Huffman code tree for X as the 
tree to generate the random variable. For a dyadic distribution, the 
Huffman code is the same as the Shannon code and achieves the entropy 
bound. For any x E BY, the depth of the leaf in the code tree correspond- 
ing to x is the length of the corresponding codeword, which is log p~. 
Hence when this code tree is used to generate X, the leaf will have a 
probability 2- log (1’p(x)) = p(x). 

The expected number of coin flips is the expected depth of the tree, 
which is equal to the entropy (because the distribution is dyadic). Hence 
for a dyadic distribution, the optimal generating algorithm achieves 

ET=H(X). 0 (5.115) 

What if the distribution is not dyadic? In this case, we cannot use the 
same idea, since the code tree for the Huffman code will generate a 
dyadic distribution on the leaves, not the distribution with which we 
started. Since all the leaves of the tree have probabilities of the form 
2-&, it follows that we should split any probability pi that is not of this 
form into atoms of this form. We can then allot these atoms to leaves on 
the tree. 

To minimize the expected depth of the tree, we should use atoms with 
as large a probability as possible. So given a probability pi, we find the 
largest atom of the form 2-& that is less than pi, and allot this atom to 
the tree. Then we calculate the remainder and find that largest atom 
that will fit in the remainder. Continuing this process, we can split all 
the probabilities into dyadic atoms. This process is equivalent to finding 
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the binary expansions of the probabilities. Let the binary expansion of 
the probability pi be 

pi = c pij’ , 
j21 

(5.116) 

where plj’ = 2-j or 0. Then the atoms of the expansion are the {pi” : i = 
1,2, . . . , na,jLl). 

Since Ci pi = 1, the sum of the probabilities of these atoms is 1. We 
will allot an atom of probability 2--’ to a leaf at depth j on the tree. The 
depths of the atoms satisfy the Kraft inequality, and hence by Theorem 
5.2.1, we can always construct such a tree with all the atoms at the 
right depths. 

We illustrate this procedure with an example: 

Example 6.12.2: Let X have the distribution 

x = a with probability 8 , 
b with probability Q . (5.117) 

We find the binary expansions of these probabilities: 

2 
~=0.10101010..., (5.118) 

1 
3 = 0.01010101. . .2 (5.119) 

Hence the atoms for the expansion are 

(5.120) 

(5.121) 

These can be allotted to a tree as shown in Figure 5.9. 

This procedure yields a tree that generates the random variable X. 
We have argued that this procedure is optimal (gives a tree of minimum 

a 

Figure 5.9. Tree to generate a ( f , & ) distribution. 
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expected depth), but we will not give a formal proof. Instead, we bound 
the expected depth of the tree generated by this procedure. 

Theorem 5.123: The expected number of fair bits required by the 
optimal algorithm to generate a random variable X lies between H(X) 
and H(X) + 2, i.e., 

H(X&ET<H(X)+2. (5.122) 

Proof: The lower bound on the expected number of coin tosses is 
proved in Theorem 512.1. 

For the upper bound, we write down an explicit expression for the 
expected number of coin tosses required for the procedure described 
above. We split all the probabilities ( pI, pa, . . . , p, ) into dyadic atoms, 
e.g., 

(1) (2) 
P1+(P1 ,Pl 7-J, (5.123) 

etc. Using these atoms (which form a dyadic distribution), we construct 
a tree with leaves corresponding to each of these atoms. The number of 
coin tosses required to generate each atom is its depth in the tree, and 
therefore the expected number of coin tosses is the expected depth of the 
tree, which is equal to the entropy of the dyadic distribution of the 
atoms. Hence 

ET = H(Y), (5.124) 

(1) where Y has the distribution, (py),py), . . . ,p2 ,pf), . . . , PE’, PE’, - - a 1. 
Now since X is a function of Y, we have 

H(Y) = H(Y, X) = H(X) + H(YIX), (5.125) 

and our objective is to show that H(YIX) < 2. We now give an algebraic 
proof of this result. Expanding the entropy of Y, we have 

H(Y) = - 2 c p;j’ log pij’ 
i=ljzl 

(5.126) 

= 2 C j2-j) 

i=l + 
j:pi (‘) >o 

(5.127) 

since each of the atoms is either 0 or 2-” for some k. Now consider the 
term in the expansion corresponding to each i, which we shall call Ti, 
i.e., 

Ti= C j2-‘. (5.128) 
j:Pi (j) >o 

We can find an n such that 2-(“-l) > pi 2 2’“, or 
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(5.129) 

Then it follows that py’ > 0 only ifj 2 n, so that we can rewrite (5.128) 
as 

Ti= 2 j2-‘. (5.130) 
j:jZn, py) >0 

We use the definition of the atom to write pi as 

Pi = c 
j 

Cj) ,02- 
. (5.131) 

j: jrn, pi 

In order to prove the upper bound, we first show that 7’i < -pi Iog pi + 
2pi. Consider the difference 

(5.132) 

= Ti - (n - 1 + 2)pi (5.133) 

= c W’ -b+l) C 2-j (5.134) 
j: jrn, pi Cj) ,. j: jzn, plj’ >O 

= C (j-n-1)2-j (5.135) 
j: jrn, pi Cj) ,. 

=-2-“+o+ c <j - n - 1)2-j (5.136) 
j: jrn+2 py’ >O , 

(b) 
= -2-n + 

c 
k2-(k+n+l) (5.137) 

k .kzl p!k+n+l) * ‘I >O 

62) I _ 2-n + c &-pk+n+l) (5.138) 
k:k ~1 

= -2-n + 2-h+19 
(5.139) 

=0, (5.140) 

where (a) follows from (5.129), (b) from a change of variables for the 
summation and (c) from increasing the range of the summation. Hence 
we have shown that 

Ti < -pi log pi + 2Pi * (5.141) 

Since ET = Ci Ti, it follows immediately that 

ET<-CPi10gPi”CPi=H’X”2 
i i 

(5.142) 

completing the proof of the theorem. Cl 
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SUMMARY OF CHAPTER 5 

Kr& inequality: Instantaneous codes e C Deli 5 1 

McMillan inequality: Uniquely decodable codes @ C Da”’ 5 1 

Entropy bound on data compression (Lozuer bound): 

L ~ ~ pili 1: H,(X). (5.143) 

Shannon code: 

li = [log, $1 
, 

LcH,(X)+l. 

(5.144) 

(5.145) 

H&an code: 

L*= min 
Z D%l 

C Pili ’ 

H,(X) 5 L” <H,(X) + 1. 

(5.146) 

(5.147) 

Wrong code: X - p(x), Z(x) = [log & 1, L = C p(x)Z(x): 

H(p)+D(p(lq)=L<H(p)+D(pl(q)+l. (5.148) 

Stochastic processes: 

H(x,,X, ,... ,X,> <L - n 
<H(x,,& ,..., XJ + 1 -. 

n n n 

Stationary proceeses: 

L,-,HW). 

(5.149) 

(5.160) 

Competitive optimality: Z(x) = [log ,4;i 1 (Shannon code) versus any other 
code I ‘(x): 

Pr(Z(X) 2 Z’(X) + c) 5 & . (6.151) 

Generation of random variables: 

H(X)sdKh~(X)+24 (6.152) 



118 DATA COMPRESSlON 

PROBLEMS FOR CHAPTER 5 

1. Uniquely decodable and instantaneous codes. Let L = Cy=“=, pilrO’ be the 
expected value of the 100th power of the word lengths associated with 
an encoding of the random variable X. Let L, = min L over all 
instantaneous codes; and let L, = min L over all uniquely decodable 
codes. What inequality relationship exists between L, and L,? 

2. How many fingers has a Martian? Let 

s= p:;“’ p . ( 
S &?I 

-a*, m 1 

The S,‘s are encoded into strings from a D-symbol output alphabet in 
a uniquely decodable manner. If m = 6 and the codeword lengths are 
(I,, z,, * - * , I,) = (1, 1,2,3,2,3), find a good lower bound on D. You 
may wish to explain the title of the problem. 

3. Slackness in the Kraft inequality. An instantaneous code has word 
lengths I,, I,, . . . , I, which satisfy the strict inequality 

2 D-“<I . 
i=l 

The code alphabet is 9 = (0, 1,2, . . . , D - 1). Show that there exist 
arbitrarily long sequences of code symbols in 9* which cannot be 
decoded into sequences of codewords: 

4. Huffman coding. Consider the random variable 

(a) Find a binary Huffman code for X. 
(b) Find the expected codelength for this encoding. 
(c) Find a ternary Huffman code for X. 

5. More Huffman codes. Find the binary Huffman code for the source 
with probabilities (l/3, l/5, l/5, 2/15, 2/E). Argue that this code is 
also optimal for the source with probabilities (l/5,1/5,1/5, l/5, l/5). 

6. Bad codes. Which of these codes cannot be Huffman codes for any 
probability assignment? 

(4 (0, 10,11}. 
(b) {OO,Ol, 10,110). 

Cc) {01,10}. 

7. Huffman 20 Questions. Consider a set of n objects. Let Xi = 1 or 0 
accordingly as the i-th object is good or defective. Let X1, Xz, . . . , X, 
beindependent withPr{X,=l}=pi; andp,>p,> . . . >p,>1/2. 
We are asked to determine the set of all defective objects. Any yes-no 
question you can think of is admissible. 
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(a) Give a good lower bound on the minimum average number of 
questions required. 

(b) If the longest sequence of questions is required by nature’s 
answers to our questions, what (in words) is the last question we 
should ask? And what two sets are we distinguishing with this 
question? Assume a compact (minimum average length) sequence 
of questions. 

(c) Give an upper bound (within 1 question) on the minimum average 
number of questions required. 

8. Simple optimum compression of a Markov source. Consider the S-state 
Markov process U1, U2, . . . having transition matrix 

Sl l/2 l/4 l/4 
s, l/4 l/2 l/4 
s3 0 l/2 l/2 

Thus the probability that S, follows S, is equal to zero. Design 3 
codes C,, C,, C, (one for each state S,, S,, S, ), each code mapping 
elements of the set of S,‘s into sequences of O’s and l’s, such that this 
Markov process can be sent with maximal compression by the follow- 
ing scheme: 
(a) Note the present symbol Si. 
(b) Select code Ci. 
(c) Note the next symbol S’ and send the codeword in Ci correspond- 

ing to Sj. 
(d) Repeat for the next symbol. 
What is the average message length of the next symbol conditioned 
on the previous state S = Si using this coding scheme? What is the 
unconditional average number of bits per source symbol? Relate this 
to the entropy rate H(% ) of the Markov chain. 

9. Optimal code lengths that require one bit above entropy. The source 
coding theorem shows that the optimal code for a random variable X 
has an expected length less than H(X) + 1. Give an example of a 
random variable for which the expected length of the optimal code is 
close to H(X) + 1, i.e., for any E > 0, construct a distribution for which 
the optimal code has L > H(X) + 1 - e. 

10. Ternary codes that achieve the entropy bound. A random variable X 
takes on m values and has entropy H(X). An instantaneous ternary 
code is found for this source, with average length 
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(a) Show that each symbol of X has a probability of the form 3-i for 
some i. 

(b) Show that m is odd. 

11. Suffix condition. Consider codes that satisfy the suf6x condition, 
which says that no codeword is a suffix of any other codeword. Show 
that a suffix condition code is uniquely decodable, and show that the 
minimum average length over all codes satisfying the suffix condition 
is the same as the average length of the Huffman code for that 
random variable. 

12. Shannon codes and Huffman codes. Consider a random variable X 
which takes on four values with probabilities ( i, 4, a, & >. 
(a) Construct a Huffman code for this random variable. 
(b) Show that th ere exist two different sets of optimal lengths for the 

codewords, namely, show that codeword length assignments 
(1,2,3,3) and (2,2,2,2) are both optimal. 

(c) Conclude that there are optimal codes with codeword lengths for 
some symbols that exceed the Shannon code length [log ,&I. 

13. Twenty questions. Player A chooses some object in the universe, and 
player B attempts to identify the object with a series of yes-no 
questions. Suppose that player B is clever enough to use the code 
achieving the minimal expected length with respect to player A’s 
distribution. We observe that player B requires an average of 38.5 
questions to determine the object. Find a rough lower bound to the 
number of objects in the universe. 

14. Huffman code. Find the (a) binary and (b) ternary Huffman codes for 
the random variable X with probabilities 

(c) Calculate L = C pili in each case. 

15. Classes of codes. Consider the code (0, 01} 
(a) Is it instantaneous? 
(b) Is it uniquely decodable? 
(c) Is it nonsingular? 

16. The game of Hi-Lo. 
(a) A computer generates a number X according to a known prob- 

ability mass function p(x), x E { 1,2, . . . , lOO} . The player asks a 
question, “Is X = i ?” and is told ‘Yes”, ‘You’re too high,” or 
‘You’re too low.” He continues for a total of six questions. If he is 
right (i.e. he receives the answer ‘Yes”) during this sequence, he 
receives a prize of value v(X) . How should the player proceed to 
maximize his expected winnings? 

(b) The above doesn’t have much to do with information theory. 
Consider the following variation: X-p(x), prize = u(x), p(x) 



PROBLEMS FOR CHAPTER 5 121 

17. 

18. 

19. 

20. 

21. 

known, as before. But arbitrary Yes-No questions are asked 
sequentially until X is determined. (“Determined” doesn’t mean 
that a “Yes” answer is received.) Questions cost one unit each. 
How should the player proceed? What is his expected return? 

(c) Continuing (b), what if u(x) is fixed, but p(x) can be chosen by the 
computer (and then announced to the player)? The computer 
wishes to minimize the player’s expected return. What should&) 
be? What is the expected return to the player? 

Huffman cocZes with costs. Words like Run! Help! and Fire! are short, 
not because they are frequently used, but perhaps because time is 
precious in the situations in which these words are required. Suppose 
that X = i with probability pi, i = 1,2, . . . , m. Let Zi be the number of 
binary symbols in the codeword associated with X = i, and let ci 
denote the cost per letter of the codeword when X = i. Thus the 
average cost C of the description of X is C = Cy=“,, piciZi. 
(a) Minimize C over all I,, I,, . . . , I, such that C 2-l’ I 1. Ignore any 

implied integer constraints on Zi. Exhibit the minimizing 
z;, z;, . . . ) ZL and the associated minimum value C*. 

(b) How would you use the Huffman code procedure to minimize C 
over all uniquely decodable codes? Let CHuffman denote this 
minimum. 

(c) Can you show that 

c*sc Huffman 5 C* + I? PiCi? 
i=l 

Conditions for unique decodability. Prove that a code C is uniquely 
decodable if (and only if) the extension 

Cbl, x,, - * . ,x,) = C(X1)C(Xz)~ * * ax,) 

is a one-to-one mapping from 8!? to D* for every k 2 1. (The only if 
part is obvious.) 

Average length of an optima2 code. Prove that Up,, . . . , p, 1, the 
average codeword length for an optimal D-ary prefix code for prob- 
abilities { pl, . . . , p, }, is a continuous function of pl, . . . , p, . This is 
true even though the optimal code changes discontinuously as the 
probabilities vary. 

Unused code sequences. Let C be a variable length code that satisfies 
the Kraft inequality with equality but does not satisfy the prefix 
condition. 
(a) Prove that some finite sequence of code alphabet symbols is not 

the prefix of any sequence of codewords. 
(b) (Optional) Prove or disprove: C has infinite decoding delay. 

Optima2 codes for uniform distributions. Consider a random variable 
with m equiprobable outcomes. The entropy of this information 
source is obviously log,m bits. 
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(a) Describe the optimal instantaneous binary code for this source 
and compute the average codeword length L,. 

(b) For what al v ues of m does the average codeword length L, equal 
the entropy H = log, m? 

(c) We know that L <H + 1 for any probability distribution. The 
redundancy of a variable length code is defined to be p = L - H. 
For what value(s) of m, where 2’ 5 m 5 2k+1, is the redundancy of 
the code maximized? What is the limiting value of this worst case 
redundancy as m + m? 

22. Optimal codeword lengths. Although the codeword lengths of an opti- 
mal variable length code are complicated functions of the message 
probabilities {pl, pz, . . . , p,}, it can be said that less probable 
symbols are encoded into longer codewords. Suppose that the mes- 
sage probabilities are given in decreasing order pI > p2 2 * . . 1 p,. 
(a) Prove that f or any binary Huffman code, if the most probable 

message symbol has probability p1 > 2/5, then that symbol must 
be assigned a codeword of length 1. 

(b) Prove that f or any binary Huffman code, if the most probable 
message symbol has probability p1 < l/3, then that symbol must 
be assigned a codeword of length 2 2. 

23. Merges. Companies with values WI, Wz, . . . , W, are merged as fol- 
lows. The two least valuable companies are merged, thus forming a 
list of m - 1 companies. The value of the merge is the sum of the 
values of the two merged companies. This continues until one super- 
company remains. Let V equal the sum of the values of the merges. 
Thus V represents the total reported dollar volume of the merges. 
For example, if W= (3,3,2,2), the merges yield (3,3,2,2)-+ 
(4,3,3)+ (6,4)+ (lo), and V= 4 + 6 + 10 = 20. 
(a) Argue that V is the minimum volume achievable by sequences of 

pair-wise merges terminating in one supercompany. (Hint: Com- 
pare to Huffman coding.) 

(b) Let W = C Wi, tii = Wi/W, and show that the minimum merge 
volume V satisfies 

WH(ik) I V = WH&) + W . (5.154) 

24. The Sardinas-Patterson test for unique decodability. A code is not unique- 
ly decodable iff there exists a finite sequence of code symbols which 
can be resolved in two different ways into sequences of codewords. 
That is, a situation such as 

I Al I A, I 43 m-0 A, I 
I 4 I 4 I 4 . . . 4 I 
must occur where each A; and each B, is a codeword, Note that B, 
must be a prefk of A, with some resulting “dangling suffix,” Each 
dangling sufBx must in turn be either a prefix of a codeword or have 
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another codeword as its prefix, resulting in another dangling suEix. 
Finally, the last dangling suffix in the sequence must also be a 
codeword. Thus one can set up a test for unique decodability (which is 
essentially the Sardinas-Patterson test [2281) in the following way: 
Construct a set S of all possible dangling suffixes. The code is 
uniquely decodable iff S contains no codeword. 
(a) State the precise rules for building the set S. 
(b) Suppose the codeword lengths are Z,, i = 1,2, . . . , m. Find a good 

upper bound on the number of elements in the set S. 
(c) Determine which of the following codes is uniquely decodable: 

i. {O,lO, 11). 
ii. {O,Ol, 11). 
iii. {O,Ol, 10). 
iv. (0, Ol}. 
v. {OO,Ol, 10, ll}. 

vi. (110, 11, lo}. 
vii. { 110, 11, 100, 00, lo}. 

(d) For each uniquely decodable code in part (c), construct, if possible, 
an infinite encoded sequence with a known starting point, such 
that it can be resolved into codewords in two different ways. (This 
illustrates that unique decodability does not imply finite de- 
codability.) Prove that such a sequence cannot arise in a prefix 
code. 

25. Shannon code. Consider the following method for generating a code 
for a random variable X which takes on m values { 1,2, . . . , m} with 
probabilities pl, pa, . . . , p,. Assume that the probabilities are or- 
dered so that p1 2 pz 2 - - * 2 p,. Define 

i-l 

Fi = E Pi 3 
k=l 

(5.155) 

the sum of the probabilities of all symbols less than i. Then the 
codeword for i is the number Fi E 10, 1 J rounded off to Zi bits, where 
Zi= rlOg~]. 

(a) Show that the code constructed by this process is prefix-free and 
the average length satisfies 

WX&LcH(X)+l. (5.156) 

(b) Construct the code for the probability distribution (0.5, 0.25, 
0.125, 0.125). 

26. Optimal codes for dyadic distributions. For a Huffman code tree, define 
the probability of a node as the sum of the probabilities of all the 
leaves under that node. Let the random variable X be drawn from a 
dyadic distribution, i.e., p(x) = 2-‘, for some i, for all x E %‘. Now 
consider a binary Huffman code for this distribution. 
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(a) Argue that f or any node in the tree, the probability of the left 
child is equal to the probability of the right child. 

04 Let&X,,..., Xn be drawn i.i.d. -p(x). Using the Huffman code 
for p(x), we map Xl, X2, . . . , Xn to a sequence of bits Yl , Yz, . . . , 
Y kCX,,X,,.. .,X,Y (The length of this sequence will depend on the 
outcome X1, Xz, . . . , X,.) Use part (a) to argue that the sequence 
Yl, yz, - * * , forms a sequence of fair coin flips, i.e., that Pr{ Yi = 0) 
= Pr{ Yi = 1) = 4, independent of Yr, Yz, . . . , Yi-r. 
Thus the entropy rate of the coded sequence is 1 bit/symbol. 

(c) Give a heuristic argument why the encoded sequence of bits for 
any code that achieves the entropy bound cannot be compressible 
and therefore should have an entropy rate of 1 bit per symbol. 

HISTORICAL NOTES 

The foundations for the material in this chapter can be found in Shannon’s 
original paper [238], in which Shannon stated the source coding theorem and 
gave simple examples of codes. He described a simple code construction proce- 
dure (described in Problem 25), which he attributed to Fano. This method is now 
called the Shannon-Fan0 code construction procedure. 

The Kraft inequality for uniquely decodable codes was first proved by 
McMillan (1931; the proof given here is due to Karush (1491. The Huffman coding 
procedure was first exhibited and proved to be optimal by Huffman [138]. 

In recent years, there has been considerable interest in designing source codes 
that are matched to particular applications such as magnetic recording. In these 
cases, the objective is to design codes so that the output sequences satisfy certain 
properties. Some of the results for this problem are described by Franaszek [116], 
Adler, Coppersmith and Hassner [2] and Marcus [184]. 

The arithmetic coding procedure has its roots in the Shannon-Fan0 code 
developed by Elias (unpublished), which was analyzed by Jelinek [146]. The 
procedure for the construction of a prefix-free code described in the text is due to 
Gilbert and Moore (121). Arithmetic coding itself was developed by Rissanen 
[217] and Pasco [207]; it was generalized by Rissanen and Langdon [171]. See also 
the enumerative methods in Cover [61]. Tutorial introductions to arithmetic 
coding can be found in Langdon [170] and Witten, Neal and Cleary [275]. We will 
discuss universal source coding algorithms in Chapter 12, where we will describe 
the popular Lempel-Ziv algorithm. 

Section 5.12 on the generation of discrete distributions from fair coin flips 
follows the work of Knuth and Yao [155]. 



Chapter 6 

Gambling and Data 
Compression 

At first sight, information theory and gambling seem to be unrelated. 
But as we shall see, there is strong duality between the growth rate of 
investment in a horse race and the entropy rate of the horse race. 
Indeed the sum of the growth rate and the entropy rate is a constant. In 
the process of proving this, we shall argue that the financial value of 
side information is equal to the mutual information between the horse 
race and the side information. 

We also show how to use a pair of identical gamblers to compress a 
sequence of random variables by an amount equal to the growth rate of 
wealth on that sequence. Finally, we use these gambling techniques to 
estimate the entropy rate of English. 

The horse race is a special case of investment in the stock market, 
studied in Chapter 15. 

6.1 THE HORSE RACE 

Assume that m horses run in a race. Let the ith horse win with 
probability p,. If horse i wins, the payoff is oi for 1, i.e., an investment of 
one dollar on horse i results in oi dollars if horse i wins and 0 dollars if 
horse i loses. 

There are two ways of describing odds: a-for-l and b-to-l. The first 
refers to an exchange that takes place before the race-the gambler puts 
down one dollar before the race and at a-for-l odds will receive a dollars 
after the race if his horse wins, and will receive nothing otherwise. The 
second refers to an exchange after the race-at b-to-l odds, the gambler 
will pay one dollar after the race if his horse loses and will pick up b 
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dollars after the race if his horse wins. Thus a bet at b-to-l odds is 
equivalent to a bet at u-for-l odds if b = a - 1. 

We assume that the gambler distributes all of his wealth across the 
horses. Let bi be the fraction of the gambler’s wealth invested in horse i, 
where bi 2 0 and C bi = 1. Then if horse i wins the race, the gambler will 
receive oi times the amount of wealth bet on horse i. All the other bets 
are lost. Thus at the end of the race, the gambler will have multiplied 
his wealth by a factor bioi if horse i wins, and this will happen with 
probability pi. For notational convenience, we use b(i ) and bi inter- 
changeably throughout this chapter. 

The wealth at the end of the race is a random variable, and the 
gambler wishes to “maximize” the value of this random variable. It is 
tempting to bet everything on the horse that has the maximum expected 
return, i.e., the one with the maximum pioi. But this is clearly risky, 
since all the money could be lost. 

Some clarity results from considering repeated gambles on this race. 
Now since the gambler can reinvest his money, his wealth is the product 
of the gains for each race. Let S, be the gambler’s wealth after n races. 
Then 

S,=fi s<xi>, 
i=l 

(6.1) 

where S(X) = b(X)o(X) is the factor by which the gambler’s wealth is 
multiplied when horse X wins. 

Definition: The wealth relative S(X) = b(X)o(X) is the factor by which 
the gambler’s wealth grows if horse X wins the race. 

Definition: The doubling rate of a horse race is 

W(b, p) = E(log s(x)) = htI Pk 1% ho, a (6.2) 

The definition of doubling rate is justified by the following theorem. 

Theorem 6.1.1: Let the race outcomes Xl, X2, . . . , X, be i.i.d. - p(x). 
Then the wealth of the gambler using betting strategy b grows exponen- 
tially at rate W(b, p), i.e., 

nW(b,p) s,52 l 

Proof: Functions of independent random variables are also indepen- 
dent, and hence log SCX, 1, log S<x,>, . . . , log SCX, ) are i.i.d. Then, by the 
weak law of large numbers, 
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ilogS,= 1 i log S(X, >+ E(log S(X)) in probability . (6.4) 
IL 

Thus 

n i=l 

Now since the gambler’s wealth grows as 2nW(bV “‘, we seek to maxim- 
ize the exponent W(b, p) over all choices of the portfolio b. 

Definition: The optimum doubling rate W*(p) is the maximum dou- 

s/2 nW(b, p) . cl (6.5) 

bling rate over all choices of the portfolio b, i.e., 

W*(p) = rnbax Wtb, p) = 2 p log bioi * b:~i~~~bi=l i=l i 

We maximize W(b, p) as a function of b subject to the constraint 
C bi = 1. Writing the functional with a Lagrange multiplier, we have 

J(b) = C pi log bioi + A C bi. 6.7) 

Differentiating this with respect to bi yields 

aJ p. 
---4+A, 

s - bi 
i = 1,2, . . . , m . 

Setting the partial derivative equal to 0 for a maximum, we have 

Substituting this in the constraint C bi = 1 yields A = -1 and bi = pi. 
Hence, we can conclude that b = p is a stationary point of the function 
J(b). To prove that this is actually a maximum is tedious if we take 
second derivatives. Instead, we use a method that works for many such 
problems: guess and verify. We verify that proportional gambling b = p 
is optimal in the following theorem. 

Theorem 6.1.2 (Proportional gambling is log-optimal): The optimum 
doubling rate is given by 

W*(p) = C pi log Oi - H(p) (6.10) 

and is achieved by the proportional gambling scheme b* = p. 

Proof: We rewrite the function W(b, p) in a form in which the 
maximum is obvious: 



128 GAMBLING AND DATA COMPRESSlON 

Wtb, PI = C Pi 1% bioi (6.11) 

=EPi l”g(:Pioi) (6.12) 

= C pi log oi - H(p) - D(pllb) (6.13) 

rCpilOgOi-H(p), (6.14) 

with equality iff p = b, i.e., the gambler bets on each horse in proportion 
to its probability of winning. Cl 

Example 6.1 .l: Consider a case with two horses, where horse 1 wins 
with probability p1 and horse 2 wins with probability pg. Assume even 
odds (a-for-1 on both horses). Then the optimal bet is proportional 
betting, i.e., b, = pl, b, = pz. The optimal doubling rate is W*(p) = 
C pi log Oi - H(p) = 1 - H(p), and the resulting wealth POWS to infinity 
at this rate, i.e., 

n(l-H(p)) s,*2 . (6.15) 

Thus, we have shown that proportional betting is growth rate optimal 
for a sequence of i.i.d. horse races if the gambler can reinvest his wealth 
and if there is no alternative of keeping some of the wealth in cash. 

We now consider a special case when the odds are fair with respect to 
some distribution, i.e., there is no track take and C 4 = 1. In this case, 
we write ri = $, where ri can be interpreted as a probability mass 
function over the horses. (This is the bookie’s estimate of the win 
probabilities.) With this definition, we can write the doubling rate as 

W(b, p) = C Pi log bioi (6.16) 

= C pi lOg(~ ~) 
i 1 

(6.17) 

= D(pl(d - Wp((W . (6.18) 

This equation gives another interpretation for the relative entropy 
“distance”: the doubling rate is the difference between the distance of 
the bookie’s estimate from the true distribution and the distance of the 
gambler’s estimate from the true distribution. Hence the gambler can 
make money only if his estimate (as expressed by b) is better than the 
bookie’s, 

An even more special case is when the odds are m-for-l on each 
horse. In this case, the odds are fair with respect to the uniform 
distribution and the optimum doubling rate is 
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w*(p) = D(pll$) = log 112 - H(p). (6.19) 

In this case we can clearly see the duality between data compression 
and the doubling rate: 

Theorem 6.1.3 (Conservation theorem): For uniform fair odds, 

W*(p) + H(p) = log m . (6.20) 

Thus the sum of the doubling rate and the entropy rate is a constant. 

Every bit of entropy decrease doubles the gambler’s wealth. Low entropy 
races are the most profitable. 

In the above analysis, we assumed that the gambler was fully 
invested. In general, we should allow the gambler the option of retaining 
some of his wealth as cash. Let b(0) be the proportion of wealth held out 
as cash, and b(l), b(2), . . . , b(m) be the proportions bet on the various 
horses. Then at the end of a race, the ratio of final wealth to initial 
wealth (the weaZth relative) is 

S(X) = b(0) + b(X)o(X) . (6.21) 

Now the optimum strategy may depend on the odds and will not 
necessarily have the simple form of proportional gambling. We dis- 
tinguish three subcases: 

1. Fair odds with respect to some distribution. C & = 1. For fair odds, 
the option of withholding cash does not change the analysis. This 
is because we can get the effect of withholding cash by betting 
bi = c!, on the ith horse, i = 1,2, . . . , m. Then S(X) = 1 irrespective 
of which horse wins. Thus whatever money the gambler keeps 
aside as cash can equally well be distributed over the horses, and 
the assumption that the gambler must invest all his money does 
not change the analysis. Proportional betting is optimal. 

2. Superfair odds. C $ < 1. In this case, the odds are even better 
than fair odds, so one would always want to put all one’s wealth 
into the race rather than leave it as cash. In this race too the 
optimum strategy is proportional betting. However, it is possible to 
choose b so as to form a “Dutch book” by choosing bi = 6, to get 
oibi = 1 irrespective of which horse wins. With this allotment, 
there will be 1 - C 4 left over as cash, so that at the end of the 
race, one has wealth 1 + (1 - C 6 > > 1 with probability 1, i.e., no 
risk. Needless to say, one seldom finds such odds in real life. 
Incidentally, a Dutch book, though risk-free, does not optimize the 
doubling rate. 
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3. Subfair odds C 6 > 1. This is more representative of real life. The 
organizers of the race track take a cut of all the bets. In this case, 
it is usually desirable to bet only some of the money and leave the 
rest aside as cash. Proportional gambling is no longer log-optimal. 

6.2 GAMBLING AND SIDE INFORMATION 

Suppose the gambler has some information that is relevant to the 
outcome of the gamble. For example, the gambler may have some 
information about the performance of the horses in previous races. What 
is the value of this side information? 

One definition of the financial value of such information is the 
increase in wealth that results from that information. In the setting 
described in the previous section, the measure of the value of informa- 
tion is the increase in the doubling rate due to that information. We will 
now derive a connection between mutual information and the increase 
in the doubling rate. 

To formalize the notion, let horse X E { 1,2, . . . , m} win the race with 
probability p(x) and pay odds of o(x) for 1. Let (X, Y) have joint 
probability mass function p(q y). Let b&l y) ~0, C, b(xl y) = 1 be an 
arbitrary conditional betting strategy depending on the side information 
Y, where b(x ( y) is the proportion of wealth bet on horse x when y is 
observed. As before, let b(x) 2 0, C b(x) = 1 denote the unconditional 
betting scheme. 

Let the unconditional and the conditional doubling rates be 

W*(X) = ~(y c p(d log WoW , (6.22) 
x 

and let 

(6.23) 

AW= W*(XIY) - W*(x), (6.24) 

We observe that for (Xi, Yi) i.i.d. horse races, wealth grows like 2nW*(X’Y) 
with side information and like 2nW*(X) without side information. 

Theorem 6.2.1: The increase AW in doubling rate due to side informa- 
tion Y for a horse race X is 

AW = 1(X, Y) . (6.25) 

Proof: With side information, the maximum value of W*(XlY) with 
side information Y is achieved by conditionally proportional gambling, 
i.e., b*(xlu) = p(xly). Thus 
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w*(m) = ~x~E[log Sl = e*z c pb, y) log 0wb(3t(y) (6.26) 

= c p(x, y) log O(X)Pb I Y) (6.27) 

= 2 p(x) log o(x) - MXI Y) . (6.28) 

Without side information, the optimal doubling rate is 

w*(x) = c p(x) log o(x) - ffw * (6.29) 

Thus the increase in doubling rate due to the presence of side informa- 
tion Y is 

AW= w*(xl y> - W*(X) = H(X) - H(XIY) = I(X, Y) . 0 (6.30) 

Hence the increase in doubling rate is equal to the mutual informa- 
tion between the side information and the horse race. Not surprisingly, 
independent side information does not increase the doubling rate. 

This relationship can also be extended to the general stock market 
(Chapter 15). In this case, however, one can only show the inequality 
AW 5 I, with equality if and only if the market is a horse race. 

6.3 DEPENDENT HORSE RACES AND ENTROPY RATE 

The most common example of side information for a horse race is the 
past performance of the horses. If the horse races are independent, this 
information will be useless. If we assume that there is dependence 
among the races, we can calculate the effective doubling rate if we are 
allowed to use the results of the previous races to determine the 
strategy for the next race. 

Suppose the sequence {Xk} of horse race outcomes forms a stochastic 
process. Let the strategy for each race depend on the results of the 
previous races. In this case, the optimal doubling rate for uniform fair 
odds is 

= max 
b(.IX,-,,X,-,,...,X,) 

E[logS(XK)IX~-,,X,-,, . . . , 

=logm-H(X,(x~~,,x~-, ,“., X,), (6.31) 

which is achieved by MAXI+. . . ,xl)=p(xkIxk+. . . ,x1). 
At the end of n races, the gambler’s wealth is 
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s,=l?s(x~), (6.32) 
i=l 

and the exponent in the growth rate (assuming m for 1 odds) is 

(6.33) 

= i C (logm -H(xilXi-l,Xi-2,. . . ,X1)) (6.34) 

= log m - 
m&,x,, ’ * * ,x,1 

. 
n 

(6.35) 

The quantity kH(X,,X,, . . . , X,) is the average entropy >er race. For a 
stationary process with entropy rate H(g), the limit in (6.35) yields 

lim &logS,+H(P)=logm. 
n-30 n 

(6.36) 

Again, we have the result that the entropy rate plus the doubling rate is 
a constant. 

The expectation in (6.36) can be removed if the process is ergodic. It 
will be shown in Chapter 15 that for an ergodic sequence of horse races, 

Sn-2nw, with probability 1, (6.37) 

where W = log m - H(g) and 

H(%)=lim+(X,,X, ,..., X,>. (6.38) 

Example 6.3.1 (Red and Black): In this example, cards replace horses 
and the outcomes become more predictable as time goes on. 

Consider the case of betting on the color of the next card in a deck of 
26 red and 26 black cards. Bets are placed on whether the next card will 
be red or black, as we go through the deck. We also assume the game 
pays a-for-l, that is, the gambler gets back twice what he bets on the 
right color. These are fair odds if red and black are equally probable. 

We consider two alternative betting schemes: 

1. If we bet sequentially, we can calculate the conditional probability 
of the next card and bet proportionally. Thus we should bet ( i, & > 
on (red, black) for the first card, and ( 3, 2) for the second card, if 
the first card is black, etc. 

2. Alternatively, we can bet on the entire sequence of 52 cards at 
once. There are ( ii > possible sequences of 26 red and 26 black 
cards, all of them equally likely. Thus proportional betting implies 
that we put l/( gz > of our money on each of these sequences and let 
each bet “ride.” 
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We will argue that these procedures are equivalent. For example, half 
the sequences of 52 cards start with red, and so the proportion of money 
bet on sequences that start with red in scheme 2 is also one half, 
agreeing with the proportion used in the first scheme. In general, we can 
verify that betting l/( ii ) of the money on each of the possible outcomes 
will at each stage give bets that are proportional to the probability of red 
and black at that stage. Since we bet l/( xi > of the wealth on each 
possible outtut sequence, and a bet on a sequence increases wealth by a 
factor of 26 on the observed sequence and 0 on all the others, the 
resulting wealth is 

(6.39) 

Rather interestingly, the return does not depend on the actual sequence. 
This is like the AEP in that the return is the same for all sequences. AI1 
sequences are typical in this sense. 

6.4 THE ENTROPY OF ENGLISH 

An important example of an information source is English text. It is not 
immediately obvious whether English is a stationary ergodic process. 
Probably not! Nonetheless, we will be interested in the entropy rate of 
English. We will discuss various stochastic approximations to English. 
As we increase the complexity of the model, we can generate text that 
looks like English. The stochastic models can be used to compress 
English text. The better the stochastic approximation, the better the 
compression. 

For the purposes of discussion, we will assume that the alphabet of 
English consists of 26 letters and the space symbol. We therefore ignore 
punctuation and the difference between upper and lower case letters. 
We construct models for English using empirical distributions collected 
from samples of text. The frequency of letters in English is far from 
uniform. The most common letter E has a frequency of about 13% while 
the least common letters, Q and Z, occur with a frequency of about 0.1%. 
The letter E is so common that it is rare to find a sentence of any length 
that does not contain the letter. (A surprising exception to this is the 
267 page novel, “Gadsby”, by Ernest Vincent Wright, in which the 
author deliberately makes no use of the letter E.) 

The frequency of pairs of letters is also far from uniform. For 
example, the letter Q is always followed by a U. The most frequent pair 
is TH, which occurs normally with a frequency of about 3.7%. We can 
use the frequency of the pairs to estimate the probability that a letter 
follows any other letter. Proceeding this way, we can also estimate 
higher order conditional probabilities and build more complex models 
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for the language. However, we soon run out of data. For example, to 
build a third order Markov approximation, we must estimate the values 
of p(~ilxi-1xi-2xi-3). There are ‘274 = 531441 entries in this table, and 
we would need to process millions of letters to make accurate estimates 
of these probabilities. 

The conditional probability estimates can be used to generate random 
samples of letters drawn according to these distributions (using a 
random number generator). But there is a simpler method to simulate 
randomness using a sample of text (a book, say). For example, to 
construct the second order model, open the book at random and choose a 
letter at random on the page. This will be the first letter. For the next 
letter, again open the book at random and starting at a random point, 
read until the first letter is encountered again. Then take the letter after 
that as the second letter. We repeat this process by opening to another 
page, searching for the second letter, and taking the letter after that as 
the third letter. Proceeding this way, we can generate text that simu- 
lates the second-order statistics of the English text. 

Here are some examples of Markov approximations to English from 
Shannon’s original paper [ 1383: 

1. Zero-order approximation. (The symbols are independent and 
equiprobable.) 

XFOMLRXKHRJFFJUJ ZLPWCFWKCYJ 

FFJEYVKCQSGXYDQPAAMKBZAACIBZLHJQD 

2. First-order approximation. (The symbols 
quency of letters matches English text.) 

are independent. Fre- 

OCROHLIRGWRNMIELWIS EULLNBNESEBYATHEEI 

ALHENHTTPAOOBTTVANAHBRL 

3. Sticond-order approximation. (The frequency of pairs of letters 
matches English text.) 

ON IEANTSOUTINYSARE T INCTORE STBE S DEAMY 

ACHIND ILONASIVE TUCOOWEATTEASONARE FUSO 

TIZINANDYTOBE SEACECTISBE 

4. Third-order approximation. (The frequency of triplets of letters 
matches English text.) 

INN0 ISTLATWHEYCRATICTFROURE BERS GROCID 

PONDENOME OFDEMONSTURES OFTHEREPTAGIN IS 

REGOACTIONAOFCRE 
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5. Fourth-order approximation. (The frequency of quadruplets of let- 
ters matches English text. Each letter depends on the previous 
three letters. This sentence is from Lucky’s book, Silicon Dreams 
m331.) 

THEGENERATED JOB PROVIDUAL BETTERTRAND THE 

DISPLAYED CODE, ABOVERYUPONDULTSWELL THE 

CODERST INTHESTICAL ITDOHOCKBOTHEMERG. 

(INSTATES CONS ERATION. NEVERANYOFPUBLEANDTO 

THEORY. EVENTIAL CALLEGANDTOELASTBENERATED IN 

WITHPIESAS ISWITHTHE) 

Instead of continuing with the letter models, we jump to word 
models. 

6. First-order word model. (The words are chosen independently but 
with frequencies as in English.) 

REPRESENTINGAND SPEEDILY IS ANGOODAPT ORCOME 

CANDIFFERENTNATURALHEREHE THEA IN CAME THE TO 

OFTOEXPERTGRAYCOMETOFURNISHES THELINE 

MESSAGEHADBETHESE. 

7. Second-order word model. (The word transition probabilities 
match English text.) 

THE HEAD AND IN FRONTALATTACKONAN ENGLISH 

WRITERTHATTHECHARACTEROFTHIS POINT IS 

THEREFOREANOTHERMETHOD FORTHELETTERS THAT THE 

TIME OFWHOEVERTOLD THE PROBLEMFORAN 

UNEXPECTED 

The approximations get closer and closer to resembling English. For 
example, long phrases of the last approximation could have easily 
occurred in a real English sentence. It appears that we could get a very 
good approximation by using a more complex model. 

These approximations can be used to estimate the entropy of English. 
For example, the entropy of the zeroth-order model is log 27 = 4.76 bits 
per letter. As we increase the complexity of e model, we capture more 
of the structure of English and the conditional uncertainty of the next 
letter is reduced. The first-order model gives an estimate of the entropy 
of 4.03 bits per letter, while the fourth-order model gives an estimate of 
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2.8 bits per letter. But even the fourth-order model does not capture all 
the structure of English. In Section 6.6, we describe alternative methods 
for estimating the entropy of English. 

The statistics of English are useful in decoding encrypted English 
text. For example, a simple substitution cipher (where each letter is 
replaced by some other letter) can be solved by looking for the most 
frequent letter and guessing that it is the substitute for E, etc. The 
redundancy in English can be used to fill in some of the missing letters 
after the other letters are decrypted. For example, 

TH,R,- S -NLY -N,W,YT- F,LL,NTH-V-W-LS-NTH-S S-NT-NC-. 

Some of the inspiration for Shannon’s original work on information 
theory came out of his work in cryptography during World War II. The 
mathematical theory of cryptography and its relationship to the entropy 
of language is developed in Shannon [241]. 

Stochastic models of language also play a key role in some speech 
recognition systems. A commonly used model is the trigram (second- 
order Markov) word model, which estimates the probability of the next 
word given the previous two words. The information from the speech 
signal is combined with the model to produce an estimate of the most 
likely word that could have produced the observed speech. Random 
models do surprisingly well in speech recognition, even when they do 
not explicitly incorporate the complex rules of grammar that govern 
natural languages like English. 

We can apply the techniques of this section to estimate the entropy 
rate of other information sources like speech and images. A fascinating 
non-technical introduction to these issues can be found in the book by 
Lucky [ 1831. 

6.5 DATA COMPRESSION AND GAMBLING 

We now show a direct connection between gambling and data compres- 
sion, by showing that a good gambler is also a good data compressor. 
Any sequence on which a gambler makes a large amount of money is 
also a sequence that can be compressed by a large factor. 

The idea of using the gambler as a data compressor is based on the 
fact that the gambler’s bets can be considered to be his estimate of the 
probability distribution of the data. A good gambler will make a good 
estimate of the probability distribution. We can use this estimate of the 
distribution to do arithmetic coding (Section 5.10). This is the essential 
idea of the scheme described below. 

We assume that the gambler has a mechanically identical twin, who 
will be used for the data decompression. The identical twin will place 
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the same bets on possible sequences of outcomes as the original gambler 
(and will therefore make the same amount of money). The cumulative 
amount of money that the gambler would have made on all sequences 
that are lexicographically less than the given sequence will be used as a 
code for the sequence. The decoder will use the identical twin to gamble 
on all sequences, and look for the sequence for which the same cumula- 
tive amount of money is made. This sequence will be chosen as the 
decoded sequence. 

Let XI, X,, . . . , X, be a sequence of random variables that we wish to 
compress. Without loss of generality, we will assume that the random 
variables are binary. Gambling on this sequence will be defined by a 
sequence of bets 

where b(x,+,Ix,, x2, . . . , x, ) is the proportion of money bet at time k on 
the event that XK+l = x~+~ given the observed past x1, x2, . . . , xk. Bets 
are paid at uniform odds (a-for-l). Thus the wealth S, at the end of the 
sequence is given by 

& = 2” fi b&k 1x1, . . . , Xk-l) 
k-l 

=2%(xl,x2 ,..., x,), 

where 

bcq, x2, l .  .  ,x , )= fi &kIXk-1,. .  
4 , ) .  

k=l 

(6.41) 

(6.43) 

So sequential gambling can also be considered as an assignment of 
probabilities (or bets) b(x,, x2, . . . , x,) 2 0, Cxl , . . . , lc, b(x,, . . . , x, > = 1, on 
the 2” possible sequences. 

This gambling elicits both an estimate of the true probability of the 
text sequence ( fi(x, , . . . , xJ = SJ2”) as well as an estimate of the 
entropy (H = - A log fi) of the text from which the sequence was drawn. 
We now wish to show that high values of wealth S, lead to high data 
compression. Specifically, we shall argue that if the text in question 
results in wealth S,, then log S, bits can be saved in a naturally 
associated deterministic data compression scheme. We shall further 
assert that if the gambling is log optimal, then the data compression 
achieves the Shannon limit H. 

Consider the following data compression algorithm that maps the 
text x=x,x, . . .x, E (O,l}” into a code sequences c1c2 . . . ck, ci E (0, 1). 
Both the compressor and the decompressor know n. Let the 2” text 
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sequences be arranged in lexicographical order. Thus, for example, 
0100101 <OlOllOl. The encoder observes the sequence X” = 
(%,X2, - * . , x, ). He then calculates what his wealth S#(n)) would have 
been on all sequences x’(n) 5 x(n) and calculates F(&z)) = C,, (n)5x(n) 
2~“s,@‘(n)). Clearly, Z+(n)) E [0, 11. Let k = [n - log $,(x(n))]. Now 
express F(z(n)) as a binary decimal to k place accuracy: [F(&z))J = 
.c1c2 . . . Ck. The sequence c(k) = (c,, c,, . . . , c, ) is transmitted to the 
decoder. 

The decoder twin can calculate the precise value S@‘(n)) associated 
with each of the 2” sequences x’(n). He thus knows the cumulative sum 
of 2-“S(x’(n)) up through any sequence x(n). He tediously calculates this 
sum until it first exceeds .c(k). The first sequence x(n) such that the 
cumulative sum falls in the interval [.c, . . . ck, .cl . . . ck + ( 1/2)k] is 
uniquely defined, and the size of S(x(n))/2” guarantees that this se- 
quence will be precisely the encoded x(n). 

Thus the twin uniquely recovers x(n). The number of bits required is 
k= In- log $(x(n))1 . The number of bits saved is n - k = [log S(x(n))J . 
For proportional gambiing, S(x(n)) = B”p(x(n)). Thus the expected num- 
ber of bits is Ek = C p(x(n))[--log p(x(n))] I H(X,, . . . ,X,) + 1. 

We see that if the betting operation is deterministic and is known 
both to the encoder and the decoder, then the number of bits necessary 
to encode x1, . . . , x, is less than n - log S, + 1. Moreover, if p(x) is 
known, and if proportional gambling is used, then the expected descrip- 
tion length is E(n - log S,) 5 H(x,, . . . , X,> + 1. Thus the gambling 
results correspond precisely to the data compression that would have 
been achieved by the given human encoder-decoder identical twin pair. 

The data compression scheme using a gambler is similar to the idea 
of arithmetic coding (Section 5.10) using a distribution b(x,, x2, . . . , xn> 
rather than the true distribution. The above procedure brings out the 
duality between gambling and data compression. Both involve estima- 
tion of the true distribution. The better the estimate, the greater the 
growth rate of the gambler’s wealth and the better the data com- 
pression. 

6.6 GAMBLING ESTIMATE OF THE ENTROPY OF ENGLISH 

We now estimate the entropy rate for English using a human gambler to 
estimate probabilities. We assume that English consists of 27 characters 
(26 letters and a space symbol). We therefore ignore punctuation and 
case of letters. Two different approaches have been proposed to estimate 
the entropy of English. 

1. Shannon guessing game. In this approach, the human subject is 
given a sample of English text and asked to guess the next letter. 
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An optimal subject will estimate the probabilities of the next letter 
and guess the most probable letter first, then the second most 
probable letter next, etc. The experimenter records the number of 
guesses required to guess the next letter. The subject proceeds this 
way through a fairly large sample of text. We can then calculate 
the empirical frequency distribution of the number of guesses 
required to guess the next letter. Many of the letters will require 
only one guess; but a large number of guesses will usually be 
needed at the beginning of words or sentences. 

Now let us assume that the subject can be modeled as a 
computer making a deterministic choice of guesses given the past 
text. Then if we have the same machine, and the sequence of guess 
numbers, we can reconstruct the English text. Just let the ma- 
chine run, and if the number of guesses at any position is k, choose 
the kth guess of the machine as the next letter. Hence the amount 
of information in the sequence of guess numbers is the same as the 
English text. The entropy of the guess sequence is the entropy of 
English text. We can bound the entropy of the guess sequence by 
assuming that the samples are independent. Hence the entropy of 
the guess sequence is bounded above by the entropy of the histo- 
gram in the experiment. 

The experiment was conducted by Shannon [242] in 1950, who 
obtained a value of 1.3 bits per symbol for the entropy of English. 

2. Gambling estimate. In this approach, we let a human subject 
gamble on the next letter in a sample of English text. This allows 
finer gradations of judgement than does guessing. As in the case of 
a horse race, the optimal bet is proportional to the conditional 
probability of the next letter. The payoff is 27-for-1 on the correct 
letter. 

Since sequential betting is equivalent to betting on the entire 
sequence, we can write the payoff after n letters as 

S, = (27)“b(X,,X,, . . . ,X,> . (6.44) 

Thus after n rounds of betting, the expected log wealth satisfies 

1 1 
E -$ogS,=log27+nElogb(X,,X,,...,X,) (6.45) 

1 
= log27 + ; c pW) log WY 

xn 
(6.46) 

=log27- 6 l c p(=z”) log Ps + ; c P(X” > log P(sc” 1 
r ” xn 

(6.47) 
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= log 27 - ; o(p(3tn)p$xn)) - i H(x,,&, ’ - ’ Jn) 

(6.48) 

I log27 -+(x,,x,,...,x,) 

5 log 27 - HW) , (6.50) 

where H(Z) is the entropy rate of English, Thus log 27 - 
E k log S, is an upper bound on the entropy rate of English. The 
upper bound estimate, H = log 27 - i log S, converges to H with 
probability one if English is ergodic and the gambler uses b(P) = 
pw 1. 

An experiment [72] with 12 subjects and a sample of 75 letters 
from the book Jefferson the Virginian by Dumas Malone (the same 
source used by Shannon) resulted in an estimate of 1.34 bits per 
letter for the entropy of English. 

SUMMARY OF CHAPTER 6 

Doubling rate: W(b, p> = E( log S(X)> = ckm,l pk 1% bkOk. 

Optimal doubling rate: W*(p) = max, W(b, p). 

Proportional gambling is log-optimal: 

W*(p) = rnfx W(b, p) = 2 pi log Oi - H(P) (6.51) 

1 is achieved by b* = p. 

Growth rate: Wealth grows as S, k 2”w*‘p! 

Conservation law: For uniform fair odds, 

H(p) + W*(p) = log m . (6.52) 

Side information: In a horse race X, the increase AW in doubling rate due 
to side information Y is 

AW = 1(X; Y) . (6.53) 
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PROBLEMS FOR CHAPTER 6 

1. Horse race. Three horses run a race. A gambler offers 3-for-l odds on 
each of the horses. These are fair odds under the assumption that all 
horses are equally likely to win the race. The true win probabilities are 
known to be 

(6.54) 

Let b= (b,, b,, b,), bi 20, C bi = 1, be the amount invested on each of 
the horses. The expected log wealth is thus 

W(b) = t$l Pi log3bi * (6.55) 

(a) Maximize this over b to find b* and W*. Thus the wealth achieved 
in repeated horse races should grow to infinity like 2”w* with 
probability one. 

(b) Show that if instead we put all of our money on horse 1, the most 
likely winner, we will eventually go broke with probability one. 

2. Horse race with unfair odds. If the odds are bad (due to a track take) the 
gambler may wish to keep money in his pocket. Let b(0) be the amount 
in his pocket and let b(l), b( 2), . . . , b(m) be the amount bet on horses 
192 , . . . , m, with odds o(l), o(2), . . . , o(m), and win probabilities 
p(l), pm - * - , p(m). Thus the resulting wealth is S(x) = b(0) + 
b(x)o(x), with probability p(x), x = 1,2, . . . , m. 
(a) Find b* maximizing E log S if C 1 lo(i ) < 1. 
(b) Discuss b* if C 1 lo(i ) > 1. (There isn’t an easy closed form solution 

in this case, but a “water-filling” solution results from the applica- 
tion of the Kuhn-Tucker conditions.) 

3. Cards. An ordinary deck of cards containing 26 red cards and 26 black 
cards is shuffled and dealt out one card at at time without replace- 
ment. Let Xi be the color of the ith card. 
(a) Determine H(XI ). 
(b) Determine H(X, ). 
(c) Does H(X, 1X1, X2, . . . , Xksl ) increase or decrease? 
(d) Determine H(X1, XZ, . . . , X,,). 

4. Beating the public odds. Consider a 3 horse race with win probabilities 

(PI, P2, PA= (;,;>;) 

and fair odds with respect to the (false) distribution 

(T1, r2, r,) = (;,g). 
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(01, o,, 03) = (4,4,2) * 

(a) What is the entropy of the race? 
(b) Find the set of bets (b,, b,, b,) such that the compounded wealth 

in repeated plays will grow to infinity. 

A 3 horse race has win probabilities p = ( pl, pz, p3 1, and odds o = 
(1, 1,l). The gambler places bets b = (b,, b,, b,), bi 10, C bj = 1, where 
b, denotes the proportion on wealth bet on horse i. These odds are very 
bad. The gambler gets his money back on the winning horse and loses 
the other bets. Thus the wealth S, at time n resulting from indepen- 
dent gambles goes exponentially to zero. 
(a) Find the exponent. 
(b) Find the optimal gambling scheme b. 
(c) Assuming b is chosen as in (b), what distribution p causes S, to go 

to zero at the fastest rate? 

Gambling. Suppose one gambles sequentially on the card outcomes in 
Problem 3. Even odds of 2-for-l are paid. Thus the wealth S, at time n 
is S, = 2”b(x,, It,, . . . , x, ), where b(x,, x,, . . . , z, ) is the proportion of 
wealth bet on x,, x,, . . . , it,,. Find maxb,.) E log S,,. 

The St. Petersburg paradox. Many years ago in St. Petersburg the 
following gambling proposition caused great consternation. For an 
entry fee of c units, a gambler receives a payoff of 2’ units with 
probability 2-‘, k = 1,2, . . . . 

(a) 

(b) 

Show that the expected payoff for this game is infinite. For this 
reason, it was argued that c = 03 was a “fair” price to pay to play 
this game. Most people find this answer absurd. 
Suppose that the gambler can buy a share of the game. For 
example, if he invests c/2 units in the game, he receives l/2 a 
share and a return X/2, where Pr(X = 2k) = 2-‘, k = 1,2, . . . . Sup- 
pose X1,X2,. . . are i.i.d. according to this distribution and the 
gambler reinvests all his wealth each time. Thus his wealth S, at 
time n is given by 

n x. 
S,=l-p. 

,-;I c 
(6.56) 

Show that this limit is 00 or 0, with probability one, accordingly as 
c < c* or c > c*. Identify the “fair” entry fee c*. 

More realistically, the gambler should be allowed to keep a proportion 
6 = 1 - b of his money in his pocket and invest the rest in the St. 
Petersburg game. His wealth at time n is then 

s, = ii (6 + b$) ( 
I -= 1 

(6.57) 
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Let 

343 

W(b,c)= c 2?og . (6.58) 
&=l 

We have 

nW(b, c) S,A2 . (6.59) 

Let 

w*w = o.b.i$l Mb, c) . (6.60) 

8. 

Here are some questions about W*(c). 

(c) For what value of the entry fee c does the optimizing value b* drop 
below l? 

(d) How does b * vary with c? 
(e) How does W*(c) fall off with c? 
Note that since W*(c) > 0, for all c , we can conclude that any entry fee 

c is fair. 

Super St. Petersburg. Finally, we have the super St. Petersburg para- 
dox, where Pr(X = 22L) = 2-‘, k = 1,2, . . . . Here the expected log 
wealth is infinite for all b > 0, for all c, and the gambler’s wealth 
grows to infinity faster than exponentially for any b > 0. But that 
doesn’t mean all investment ratios b are equally good. To see this, 
we wish to maximize the relative growth rate with respect to some 
other portfolio, say, b = ( 4, t ). Show that there exists a unique b 
maximizing 

E ln 6 + bX/c) 
($i + ix/c> 

and interpret the answer. 

HISTORICAL NOTES 

The original treatment of gambling on a horse race is due to Kelly [150], who 
found AW = 1. Log optimal portfolios go back to the work of Bernoulli, Kelly [150] 
and Latane [172,173]. Proportional gambling is sometimes referred to as the Kelly 
gambling scheme. 

Shannon studied stochastic models for English in his original paper [238]. His 
guessing game for estimating the entropy rate of English is described in [242]. 
Cover and King [72] described the gambling estimate for the entropy of English. 
The analysis of the St. Petersburg paradox is from Bell and Cover [20]. An 
alternative analysis can be found in Feller [llO]. 



Chapter 7 

Kolmogorov Complexity 

The great mathematican Kolmogorov culminated a lifetime of research 
in mathematics, complexity and information theory with his definition 
in 1965 of the intrinsic descriptive complexity of an object. In our 
treatment so far, the object X has been a random variable drawn 
according to a probability mass function p(x). If X is random, there is a 
sense in which the descriptive complexity of the event X = x is log & , 
because [log &l is the number of bits required to describe x by a 
Shannon code. One notes immediately that the descriptive complexity of 
such an object depends on the probability distribution. 

Kolmogorov went further. He defined the algorithmic (descriptive) 
complexity of an object to be the length of the shortest binary computer 
program that describes the object. (Apparently a computer, the most 
general form of data decompressor, will use this description to exhibit 
the described object after a finite amount of computation.) Thus the 
Kolmogorov complexity of an object dispenses with the probability 
distribution. Kolmogorov made the crucial observation that the defini- 
tion of complexity is essentially computer independent. It is an amazing 
fact that the expected length of the shortest binary computer description 
of a random variable is approximately equal to its entropy. Thus the 
shortest computer description acts as a universal code which is uniform- 
ly good for all probability distributions. In this sense, algorithmic 
complexity is a conceptual precursor to entropy. 

This chapter is intellectually more demanding than the others in this 
book, and indeed, it can be omitted in a first course on information 
theory. Perhaps a proper point of view of the role of this chapter is to 
consider Kolmogorov complexity as a way to think. One does not use the 
shortest computer program in practice because it may take infinitely 
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long to find such a minimal program. But one can use very short, not 
necessarily minimal, programs in practice. And the idea of finding such 
short programs leads to universal codes, a good basis for inductive 
inference, a formalization of Occam’s Razor (“The simplest explanation 
is best”) and to clarity of thought in physics, computer science, and 
communication theory. 

Before formalizing the notion of Kolmogorov complexity, let us give 
three strings as examples. They are 

1. 0101010101010101010101010101010101010101010101010101010- 
101010101 

2. 0110101000001001111001100110011111110011101111001100100- 
100001000 

3. 1101111001110101111101101111101110101101111000101110010- 
100111011 

What are the shortest binary computer programs for each of these 
sequences? The first sequence is definitely simple. It consists of thirty- 
two 01’s. The second sequence looks random and passes most tests for 
randomness, but it is in fact the binary expansion of fi - 1. Again, this 
is a simple sequence. The third again looks random, except that the 
proportion of l’s is not near l/2. We shall assume that it is otherwise 
random. It turns out that by describing the number k of l’s in the 
sequence, then giving the index of the sequence in a lexicographic 
ordering of those with this number of l’s, one can give a description of 
the sequence in roughly log n + nH( k > bits. This again is substantially 
less than the n bits in the sequence. Again, we conclude that the 
sequence, random though it is, is simple. In this case, however, it is not 
as simple as the other two sequences, which have constant length 
programs. In fact, its complexity is proportional to n. Finally, we can 
imagine a truly random sequence generated by pure coin flips. There are 
2” such sequences and they are all equally probable. It is highly likely 
that such a random sequence cannot be compressed, i.e., there is no 
better program for such a sequence than simply saying “Print the 
following: 0101100111010.. . 0.” The reason for this is that there are not 
enough short programs to go around. Thus the descriptive complexity of 
a truly random binary sequence is as long as the sequence itself. 

These are the basic ideas. It will remain to be shown that this notion 
of intrinsic complexity is computer independent, i.e., that the length of 
the shortest program does not depend on the computer. At first, this 
seems like nonsense. But it turns out to be true, up to an additive 
constant. And for long sequences of high complexity, this additive 
constant (which is the length of the pre-program that allows one 
computer to mimic the other) is negligible. 
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7.1 MODELS OF COMPUTATION 

To formalize the notions of algorithmic complexity, we first discuss 
acceptable models for computers. All but the most trivial computers are 
universal, in the sense that they can mimic the actions of other 
computers. We will briefly touch on a certain canonical universal compu- 
ter, the universal Turing machine. The universal Turing machine is the 
conceptually simplest universal computer. 

In 1936, Turing was obsessed with the question of whether the 
thoughts in a living brain could equally well be held by a collection of 
inanimate parts. In short, could a machine think? By analyzing the 
human computational process, he posited some constraints on such a 
computer. Apparently, a human thinks, writes, thinks some more, 
writes, and so on. Consider a computer as a finite state machine 
operating on a finite symbol set. (The symbols in an infinite symbol set 
cannot be distinguished in finite space.) A program tape, on which a 
binary program is written, is fed left to right into this finite state 
machine. At each unit of time, the machine inspects the program tape, 
writes some symbols on a work tape, changes its state according to its 
transition table and calls for more program. The operations of such a 
machine can be described by a finite list of transitions. Turing argued 
that this machine could mimic the computational ability of a human 
being. 

After Turing’s work, it turned out that every new computational 
system could be reduced to a Turing machine, and conversely. In 
particular, the familiar digital computer with its CPU, memory and 
input output devices could be simulated by and could simulate a Turing 
machine. This led Church to state what is now known as Church’s 
thesis, which states that all (sufficiently complex) computational models 
are equivalent in the sense that they can compute the same family of 
functions. The class of functions they can compute agrees with our 
intuitive notion of effectively computable functions, that is, functions for 
which there is a finite prescription or program that will lead in a finite 
number of mechanically specified computational steps to the desired 
computational result. 

We shall have in mind throughout this chapter the computer illus- 
trated in Figure 7.1. At each step of the computation, the computer 
reads a symbol from the input tape, changes state according to its state 
transition table, possibly writes something on the work tape or output 
tape, and moves the program read head to the next cell of the program 
read tape. This machine reads the program from right to left only, never 
going back, and therefore the programs form a prefix-free set. No 
program leading to a halting computation can be the prefix of another 
such program. The restriction to prefix-free programs leads immediately 
to a theory of Kolmogorov complexity which is formally analogous to 
information theory. 



7.2 KOLMOGOROV COMPLEXITY: DEFZNZTZONS AND EXAMPLES 147 

Input tape Output tape 
Finite 
state XI x2 x3 l a* 

machine ’ 

Work tape 

Figure 7.1. A Turing machine. 

We can view the Turing machine as a map from a set of finite length 
binary strings to the set of finite or infinite length binary strings. 
In some cases, the computation does not halt, and in such cases the 
value of the function is said to be undefined. The set of functions 
f: (0, l}*+ (0, l}” u (0, I}” computable by Turing machines is called 
the set of partial recursive functions. 

7.2 KOLMOGOROV COMPLEXITY: DEFINITIONS AND 
EXAMPLES 

Let x be a finite length binary string and let Ou be a universal computer. 
Let Z(x) denote the length of the string x. Let Q(p) denote the output of 
the computer % when presented with a program p. 

We define the Kolmogorov (or algorithmic) complexity of a string x as 
the minimal description length of x. 

Definition: The Kolmogorov complexity K,(x) of a string x with respect 
to a universal computer % is defined as 

the minimum length over all programs that print x and halt. Thus K,(x) 
is the shortest description length of x over all descriptions interpreted 
by computer %. 

An important technique for thinking about Kolmogorov complexity is 
the following-if one person can describe a sequence to another person 
in such a manner as to lead unambiguously to a computation of that 
sequence in a finite amount of time, then the number of bits in that 
communication is an upper bound on the Kolmogorov complexity. For 
example, one can say “Print out the first 1,239,875,981,825,931 bits of 
the square root of e.” Allowing 8 bits per character (ASCII), we see that 
the above unambiguous 73 symbol program demonstrates that the 
Kolmogorov complexity of this huge number is no greater than (8)( 73) = 
584 bits. Most numbers of this length have a Kolmogorov complexity of 



148 KOLMOGOROV COMPLEXITY 

1,239,875,981,825,931 bits. The fact that there is a simple algorithm to 
calculate the square root of e provides the saving in descriptive com- 
plexity. 

In the above definition, we have not mentioned anything about the 
length of x. If we assume that the computer already knows the length of 
x, then we can define the conditional Kolmogorov complexity knowing 
Z(x) as 

This is the shortest description length if the computer % has the length 
of x made available to it. 

It should be noted that K,(xl y) is usually defined as K,(xI y, y*), 
where y* is the shortest program for y. This is to avoid certain slight 
asymmetries in chain rules like K(x, y) = K(x) + K( y lx) = K( y> + K(xI y), 
but we will not use this definition here. 

We first prove some of the basic properties of Kolmogorov complexity 
and then consider various examples. 

Theorem 7.2.1 (Universality of Kolmogorov complexity): If 021 is a 
universal computer, then for any other computer S& 

K&x) 5 K&) + c, (7.3) 

for all strings x E (0, l}*, where the constant cd does not depend on x. 

Proof: Assume that we have a program pge for computer ~4 to print x. 
Thus 4 psa ) = x. We can precede this program by a simulation program 
s, which tells computer % how to simulate computer .sL The computer % 
will then interpret the instructions in the program for ~4, perform the 
corresponding calculations and print out x. The program for 021 is 
p = s&pa and its length is 

(7.4) 

where cd is the length of the simulation program. Hence, 

for all strings x. 0 

The constant cd in the theorem may be very large. For example, & 
may be a large computer with a large number of functions built into the 
system. The computer 011 can be a simple microprocessor. The simulation 
program will contain the details of the implementation of all these 
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functions, in fact, all the software available on the large computer. The 
crucial point is that the length of this simulation program is indepen- 
dent of the length of x, the string to be compressed. For sufficiently long 
X, the length of this simulation program can be neglected, and we can 
discuss Kolmogorov complexity without talking about the constants. 

If .J# and % are both universal, then we have 

I&(x) - K&q < c (7.6) 

for all X. Hence we will drop all mention of 021 in all further definitions. 
We will assume that the unspecified computer 011 is a fixed universal 
computer. 

Theorem 7.2.2 (Conditional complexity is less than the length of the 
sequence): 

K(xlZ(x)) 5 Z(x) + c . (7.7) 

Proof: We can exhibit the string x in the program. The program is 
self-delimiting because Z(x) is provided and the end of the program is 
thus clearly defined. A program for printing x is 

Print the following Z-bit sequence: x1x2.. . x~~~). 

Note that no bits are required 
this program is Z(x) + c. Cl 

to describe I? since 1 is given. The length of 

Without knowledge of the length of the string, we will need an 
additional stop symbol or we can use a self-punctuating scheme like the 
one described in the proof of the next theorem. 

Theorem 7.2.3 (Upper bound on Kolmogorov complexity): 

K(x) 5 K(xIZ(x)) + 2 log Z(x) + c . (7.8) 

Proof: If the computer does not know Z(x), the method of Theorem 
7.2.2 does not apply. We must have some way of informing the computer 
when it has come to the end of the string of bits that describes the 
sequence. We describe a simple but inefficient method which uses a 
sequence 01 as a “comma.” 

Suppose Z(x) = n. To describe Z(x), repeat every bit of the binary 
expansion of n twice; then end the description with a 01 so that the 
computer knows that it has come to the end of the description of n. For 
example, the number 5 (binary 101) will be described as 11001101. This 
description requires 2 [log nl + 2 bits. 
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Thus, inclusion of the binary representation of Z(x) does not add more 
than 2 log Z(x) + c bits to the length of the program, and we have the 
bound in the theorem. Cl 

A more efficient method for describing n is to do so recursively. We 
first specify the number (log n) of bits in the binary representation of n, 
and then specify the actual bits of n. To specify log n, the length of 
the binary representation of n, we can use the inefficient method 
(2 log log n) or the efficient method (log log n + l l 0). If we use the effi- 
cient method at each level, until we have a small number to specify, we 
can describe n in log n + log log n + log log log n + * * . bits, where we 
continue the sum until the last positive term. This sum of iterated 
logarithms is sometimes written log* n. Thus Theorem 7.2.3 can be 
improved to 

K(x) 5 K(x)Z(x)) + log* Z(x) + c . (7.9) 

We now prove that there are very few sequences with low complexity. 

Theorem 7.2.4 (Lower bound on Kolmogorov complexity): The number 
of strings x with complexity K(x) < k satisfies 

I{x E {O,l}*:K(x)< k}l<2”. (7.10) 

Proof: There are not very many short programs. If we list all the 
programs of length < k, we have 

k-l 

A, 0, 1, OO,Ol, 10, 11, . . . , WV’ ; i-1 ,i . . ( . . . 
12 4 2k-1 

and the total number of such programs is 

(7.11) 

(7.12) 

Since each program can produce only one possible output sequence, the 
number of sequences with complexity < k is less than 2”. Cl 

To avoid confusion and to facilitate exposition in the rest of this 
chapter, we shall need to introduce a special notation for the binary 
entropy function 

H,(p) = -plogp-Cl-p)logu--PL (7.13) 

Thus, when we write H,($ CyC1 Xi), we will mean -2, logX, - (l- 
2,) log(I - &) and not the entropy of random variable &. When there 
is no confusion, we shall simply write H(p) for H,(p). 
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Now let us consider various examples of Kolmogorov complexity. The 
complexity will depend on the computer, but only up to an additive 
constant. To be specific, we consider a computer that can accept un- 
ambiguous commands in English (with numbers given in binary nota- 
tion). We will assume the inequality 

1 
-2 nH(jt) ( -;52 , ( > 

nH(i) 
n+l 

(7.14) 

which can be easily proved using Stirling’s formula [llO]. An alternative 
proof can be found in Example 12.1.3. 

Example 7.2.1 (A sequence of n zeroes): If we assume that 
ter knows n, then a short program to print this string is 

the compu- 

Print the specifiednumberof zeroes. 

The length of this program is a constant number of bits. This program 
length does not depend on n. Hence the Kolmogorov complexity of this 
sequence is c, and 

K(OO0 . . . 0172) = c for all n . (7.15) 

Example 7.2.2 (KoZmogorov complexity of 7~): The first n bits of 7~ can 
be calculated using a simple series expression. This program has a small 
constant length, if the computer already knows n. Hence 

K(qTg...qJn)=c. (7.16) 

Example 7.2.3 (Gbtham weather): Suppose we want the computer to 
print out the weather in Gotham for n days. We can write a program 
that contains the entire sequence x = X,X, . . . x,, where xi = 1 indicates 
rain on day i. But this is inefficient, since the weather is quite depen- 
dent. We can devise various coding schemes for the sequence to take the 
dependence into account. A simple one is to find a Markov model to 
approximate the sequence (using the empirical transition probabilities) 
and then code the sequence using the Shannon code for this probability 
distribution. We can describe the empirical Markov transitions in 
O( log n) bits, and then use log & bits to describe x, where p is the 
specified Markov probability. Assuming that the entropy of the weather 
is l/5 bits per day, we can describe the weather for n days using about 
n/5 bits, and hence 

K(Gotham weatherin) = i + O(log n) + c . (7.17) 
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Example 7.2.4 (A repeating sequence of the form 01010101 . . . 01): A 
short program suffices. Simply print the specified number of 01 pairs. 
Hence 

K(010101010.. . 01112) = c . (7.18) 

Example 7.2.6 (A f&&al): The fractal on the cover is part of the 
Mandelbrot set, and is generated by a simple computer program. For 
different points c in the complex plane, one calculates the number of 
iterations of the map z,+~ = zi + c (starting with z0 = 0) needed for lzl to 
cross a particular threshold. The point c is then colored according to the 
number of iterations needed. 

Thus the fractal is an example of an object that looks very complex 
but is essentially very simple. Its Kolmogorov complexity is nearly zero. 

Example 7.2.6 (The Mona Lisa): We can make use of the many 
structures and dependencies in the painting. We can probably compress 
the image by a factor of 3 or so by using some existing easily described 
image compression algorithm. Hence, if n is the number of pixels in the 
image of the Mona Lisa, 

K(Mona LisaIn) i + c . (7.19) 

Example 7.2.7 (An integer n): If the computer knows the number of 
bits in the binary representation of the integer, then we need only 
provide the values of these bits. This program will have length c + log n. 

In general the computer will not know the length of the binary 
representation of the integer. So we must inform the computer in some 
way when the description ends. Using the method to describe integers 
used to derive (7.91, we see that the Kolmogorov complexity of an 
integer is bounded by 

K(n)5 log*n++. (7.20) 

Example 7.2.8 (A sequence of n bits with k ones): Can we compress a 
sequence of n bits with k ones? 

Our first guess is no, since we have a series of bits that must be 
reproduced exactly. But consider the following program: 

Generate, in lexi cographic 
0 f these sequences 

0 rder , all sequences wi 
prin t the ith sequence 

thk ones; 

This program will print out the required sequence. The only variables in 
the program are k (with range (0, 1, . . . , n}) and i (with conditional 
range (z )). The total length of this program is 
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Zlogk log ; ( > 
Z(p)=c+ - + - 

to express k to express i 

zzc+Zlogk+nH, 

(7.21) 

(7.22) 

since ( i ) I ZnHo 0 h 
by (7.14). We have used 2 log k + 2 bits to represent k 

by the inefficient method described in the proof of Theorem 7.2.3. Thus 
if Cy=, xi = It, then 

K&,x2 ,..., x,ln)~nH (7.23) 

We can summarize the last example in the following theorem: 

Theorem 7.2.5: The Kolmogorov complexity of a binary string x is 
bounded by 

K(x,x, . . . x~~n)~nHO(~ :,xi)+210gn+c. (7.24) 

Proof: Use the program described in the last example. Cl 

Remark: Let x E { 0, l}* be the data we wish to compress, and 
consider the program p to be the compressed data. We will have 
succeeded in compressing the data only if Z(p) < Z(x), or 

K(x) < Z(x) . (7.25) 

In general, when the length Z(x) of the sequence x is small, the constants 
that appear in the expressions for the Kolmogorov complexity will 
overwhelm the contributions due to Z(x). Hence the theory is useful 
primarily when Z(x) is very large. In such cases, we can safely neglect 
the constants that do not depend on Z(x). 

7.3 KOLMOGOROV COMPLEXITY AND ENTROPY 

We now consider the relationship between the Kolmogorov complexity of 
a sequence of random variables and its entropy. In general, we show 
that the expected value of the Kolmogorov complexity of a random 
sequence is close to the Shannon entropy. First, we prove that the 
program length8 satisfy the ICraft inequality: 
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Lemma 7.3.1: For any computer %, 

.:.&dt. 2-z(p)s la 
Proof: If the computer halts on any program, it does not look any 

further for input. Hence, there cannot be any other halting program 
with this program as a prefix. Thus the halting programs form a 
prefix-free set, and their lengths satisfy the Kraft inequality (Theorem 
5.2.1). cl 

We now show that AEK(X” 1 n) = H(X) for i.i.d. processes with a finite 
alphabet. 

Theorem 7.3.1 (Relationship of Kolmogorov complexity and en- 
tropy): Let the stochastic process {Xi} be drawn Cd. according to the 
probability mass function fix), x E E, where 2’ is a finite alphabet. Let 
RX")= Ily=, f(xi). Then th ere exists a constant c such that 

H(X)5 i 2 flx”)K(x”[n)(H(X)+ ‘8’10gn + c (7.27) 
n x” n n 

for all n. Thus 

E k K(X”ln)+H(X). (7.28) 

Proof: Consider the lower bound. The allowed programs satisfy the 
prefix property, and thus their lengths satisfy the Kraft inequality. We 
assign to each xn the length of the shortest program p such that 
%(p, n) = XI These shortest programs also satisfy the Kraft inequality. 
We know from the theory of source coding that the expected codeword 
length must be greater than the entropy. Hence 

~flx”>K(x”~n)~H(X,,X, ,..., X,)=nH(X). (7.29) 
xn 

We first prove the upper bound when %’ is binary, i.e., X1, X,, . . . , X, are 
i.i.d. - Bernoulli(B). Using the method of Theorem 7.2.5, we can bound 
the complexity of a binary string by 

K(x,x, . . . xnln)Q2HO(i z1xJ+210gn+e. (7.30) 

Hence 

EK(X,x, . . . Xn~n)~nEH,-,(~ g1Xi)+210gn+c (7.31) 
z 
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~nH~(~~~EXi)+2Logn+c (7.32) 

=nH,(8)+2logn+c, (7.33) 

where (a) follows from Jensen’s inequality and the concavity of the 
entropy. Thus we have proved the upper bound in the theorem for 
binary processes. 

We can use the same technique for the case of a non-binary finite 
alphabet. We first describe the type of the sequence (the empirical 
frequency of occurrence of each of the alphabet symbols as defined in 
Section 12.1) using I8!?I log n bits. Then we describe the index of the 
sequence within the set of all sequences having the same type. The type 
class has less than anHcPx”) elements (where P,,, is the type of the 
sequence xn), and therefore the two-stage description of a string xn has 
length 

K(~~~n)~nH(P~,)+~~)logn+c. (7.34) 

Again, taking the expectation 
binary case, we obtain 

and applying Jensen’s inequality as in the 

EK(Xflln)~nH(X)+IS?Ilogn+c. (7.35) 

Dividing this by n yields the upper bound of the theorem. Cl 

7.4 KOLMOGOROV COMPLEXITY OF INTEGERS 

In the last section, we defined the Kolmogorov complexity of a binary 
string as the length of the shortest program for a universal computer 
that prints out that string. We can extend that definition to define the 
Kolmogorov complexity of an integer to be the Kolmogorov complexity of 
the corresponding binary string. 

Definition: The Kolmogorov complexity of an integer n is defined as 

K(n) = min Z(p). 
p : %(p)=n 

(7.36) 

The properties of the Kolmogorov complexity of integers are very 
similar to those of the Kolmogorov complexity of bit strings. The 
following properties are immediate consequences of the corresponding 
properties for strings. 

Theorem 7.4.1: For universal computers A?’ and %, 



156 KOLMOGOROV COMPLEXZTY 

Also, since any number can 
have the following theorem. 

K&a) 5 Kd(n> + c, . 

be specified by its binary expansion, we 

(7.37) 

Theorem 7.4.2: 

K(n)5 log*n+cc. (7.38) 

Theorem 7.4.3: There are an infinite number of integers n such that 
K(n) > log n. 

Proof: We know from Lemma 7.3.1 that 

and 

c 
n 2- 

Wn) ( 1 9 (7.39) 

But if K(n) < log n for all n > n,, then 

co 
c 2- K(n) > i pgn = 00, 

(7.40) 

(7.41) 
n=no 

which is a contradiction. 

n=no 

cl 

7.5 ALGORITHMICALLY RANDOM AND INCOMPRESSIBLE 
SEQUENCES 

From the examples in Section 7.2, it is clear that there are some long 
sequences that are simple to describe, like the first million bits of 7~. By 
the same token, there are also large integers that are simple to describe, 
such as 

or (loo!)!. 
We now show that although there are some simple sequences, most 

sequences do not have simple descriptions. Similarly, most integers are 
not simple. Hence if we draw a sequence at random, we are likely to 
draw a complex sequence. The next theorem shows that the probability 
that a sequence can be compressed by more than k bits is no greater 
than 2-! 
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Theorem 7.5.1: Let XI, X2, . . . ,X, be drawn according to a Ber- 
noulli( i ) process. Then 

P(K(X,X, . * .X,In)<n - k)<2-k. 

Proof: 

P(K(X,x, . . .X,ln)<n-k) 

= c 2-” (7.44) 
x1, x2,. . . , x,,:K(zl x2. . . x,ln)<n-k 

= x1,x2,..., I{ x, :K(x,xG, . . .x,In)<n - k}12-” 

< 2n-k 2-” (by Theorem 7.2.4) (7.45) 

=2-Y cl 

Thus most sequences have a complexity close to their length. For 
example, the fraction of sequences of length n that have complexity less 
than n - 5 is less than l/32. This motivates the following definition: 

Definition: A sequence x,, x,, . . . ,x, is said to be algorithmically ran- 
dom if 

K(x1x2...x,In)32. (7.47) 

Note that by the counting argument, there exists, for each n, at least 
one sequence xn such that 

K(xnIn) 2 n . (7.48) 

Definition: We call an infinite string x incompressible if 

(7.49) 

Theorem 7.5.2 (Strong law of large numbers for incompressible se- 
quences): If a string x1x2 . . . is incompressible, then it satisfies the law of 
large numbers in the sense that 

l nx+l - c -. 
n i=l i 2 

(7.50) 

Hence the proportions of O’s and l’s in any incompressible string are 
almost equal. 
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Proof: Let 8, = ; Cr=, xi denote the proportion of l’s in xi, x2, . . . , x,. 
Then using the method of Example 7.2 of Section 7.2, one can write a 
program of length n&,(0,) + 2 log <no, ) + c to print Y. By the incompres- 
sibility assumption, we also have the lower bound, 

n-c,~~(~“ln)cnH,(8,)+2logn+c’. (7.51) 

where c,ln+ 0 and c’ does not depend on n. Thus 

H,(8,Dl- 
2logn +c, +c’ 

. 
n 

(7.52) 

Inspection of the graph of H,(p) (Figure 7.2) shows that 0, is close to fr 
for large n. Specifically, the above inequality implies that 

where an is chosen so that 

0.8 

0.7 

0.3 

0.2 

(7.53) 

i 0.6 0.7 0.8 0.9 1 

Figure 7.2. H,(p) versus p. 
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which implies that an ~Oasnj03.ThustCxij~asn~03. Cl 

We have now proved that incompressible sequences look random in 
the sense that the proportion of O’s and l’s are almost equal. In general, 
we can show that if a sequence is incompressible, it will satisfy all 
computable statistical tests for randomness. (Otherwise, identification 
of the test that x fails will reduce the descriptive complexity of x, 
yielding a contradiction.) In this sense, the algorithmic test for random- 
ness is the ultimate test, including within it all other computable tests 
for randomness. 

We now prove a related law of large numbers for the Kolmogorov 
complexity of Bernoulli( 6) sequences. The Kolmogorov complexity of a 
sequence of binary random variables drawn i.i.d. according to a 
Bernoulli(B) process is close to the entropy H,,(8). 

Theorem 7.5.3: Let XI, X,, . . . , X, be drawn i.i.d. - Bernoulli@). Then 

;K(XI,Xz,... , Xnln)+ H,(B) in probability. (7.55) 

Proof: Let X, = A C Xi be the proportion of l’s in X1, X,, . . . , X,. 
Then using the method described in (7.23), we have 

K(x,,x , ,  .  l .  ,X,ln)snH,(X,)+2logn+c, (7.56) 

and since by the weak law of large numbers, X,, + 8 in probability, we 
have 

1 
;K(X,,X,,...,X,ln)-H,,(e)ze -*O. 

Conversely, we can bound the number of sequences with complexity 
significantly lower than the entropy. From the AEP, we can divide the 
set of sequences into the typical set and the non-typical set. There are at 
least (1 - •)2~(~~(‘)-~) sequences in the typical set. At most 2n(Ho(e)-c) of 
these typical sequences can have a complexity less than n(H,@) - c). 
The probability that the complexity of the random sequence is less than 
n(H,W - C) is 

NW” In> < n(H,,@) - cl) 
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SE+ c pw 1 
x”~Ar), K(x”ln)<nWO(B)-c) 

(7.58) 

SE+ c 2- nw*(eb-r) (7.59) 
r”~Ay), K(xRln)<nWob9)--c) 

re+2 nvf&J j-c) 2- nvfo(e)--E) (7.60) 

= E + 2-44, (7.61) 

which is arbitrarily small for appropriate choice of E, n and c. Hence 
with high probability, the Kolmogorov complexity of the random se- 
quence is close to the entropy, and we have 

K(x,,X,, . . . ,&Jn> 3 H,(6) in probability. q (7.62) 
n 

7.6 UNIVERSAL PROBABILITY 

Suppose that a computer is fed a random program. Imagine a monkey 
sitting at a keyboard and typing the keys at random. Equivalently, feed 
a series of fair coin flips into a universal Turing machine. In either case, 
most strings will not make sense to the computer. If a person sits at a 
terminal and types keys at random, he will probably get an error 
message, i.e., the computer will print the null string and halt. But with 
a certain probability he will hit on something that makes sense. The 
computer will then print out something meaningful. Will this output 
sequence look random? 

From our earlier discussions, it is clear that most sequences of length 
n have complexity close to n. Since the probability of an input program p 
is 2-“P’, shorter programs are much more probable than longer ones. 
And shorter programs, when they produce long strings, do not produce 
random strings; they produce strings with simply described structure. 

The probability distribution on the output strings is far from uniform. 
Under the computer induced distribution, simple strings are more likely 
than complicated strings of the same length. This motivates us to define 
a universal probability distribution on strings as follows: 

Definition: The universal probability of a string x is 

P,(x) = C 2-lCp’ = Pr(%(p) = x) , (7.63) 
p : %(p)=x 

which is the probability that a program randomly drawn as a sequence 
of fair coin flips pl, pa, . . . will print out the string x. 
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This probability is universal in many senses. We can consider it as the 
probability of observing such a string in nature; the implicit belief is 
that simpler strings are more likely than complicated strings. For 
example, if we wish to describe the laws of physics, we might consider 
the simplest string describing the laws as the most likely. This principle 
is known as “Occam’s Razor”, and has been a general principle guiding 
scientific research for centuries-if there are many explanations consis- 
tent with the observed data, choose the simplest. In our framework, 
Occam’s Razor is equivalent to choosing the shortest program that 
produces a given string. 

This probability mass function is called universal because of the 
following theorem: 

Theorem 7.6.1: For every computer &, 

(7.64) 

for every string x E (0, I)*, where the constant CA depends only on % and 
d. 

Proof: From the discussion of Section 7.2, we recall that for every 
program p’ for d that prints x, there exists a program p for % of length 
not more than I( p’) + cd produced by prefixing a simulation program for 
d. Hence 

P,(x) = c 2-l’%- 
p : Wp)=r 

p, :z,1Cx 2-l(“)-‘& = c;PJx> . Cl (7.65) 

Any sequence drawn according to a computable probability mass 
function on binary strings can be considered to be produced by some 
computer & acting on a random input (via the probability inverse 
transformation acting on a random input). Hence the universal prob- 
ability distribution includes a mixture of all computable probability 
distributions. 

Remark (Bounded likelihood ratio): In particular, Theorem 7.6.1 
guarantees that a likelihood ratio test of the hypothesis that X is drawn 
according to P, versus the hypothesis that it is drawn according to P& 
will have bounded likelihood ratio. If (3% and & are universal, then 
P&x)/P&(x) is bounded away from zero and infinity for all x. This is in 
contrast to other simple hypothesis testing problems (like Bernoulli@ > 
versus Bernoulli(B,)) where the likelihood ratio goes to 0 or 00 as the 
sample size goes to infinity. Apparently P, can never be completely 
rejected as the true distribution of any data drawn according to some 
computable probability distribution. In that sense, we cannot reject the 
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possibility that the universe is the output of monkeys typing at a 
computer. 

In Section 7.11 we will prove that 

P,(x) = P’“’ , (7.66) 

thus showing that K(X) and log & have equal status as universal 
algorithmic complexity measures. 

We will conclude this section with an example of a monkey at a 
typewriter vs. a monkey at a computer keyboard. If the monkey types at 
random on a typewriter, the probability that it types out all the works of 
Shakespeare (assuming the text is 1 million bits long) is 2-1~ooo~ooo. If the 
monkey sits at a computer terminal, however, the probability that it 
types out Shakespeare is now 2-K(Shakespeare) = 2-250*ooo, which though 
extremely small is still exponentially more likely than when the monkey 
sits at a dumb typewriter. 

The example indicates that a random input to a computer is much 
more likely to produce “interesting” outputs than a random input to a 
typewriter. We all know that a computer is an intelligence amplifier. 
Apparently it creates sense from nonsense as well. 

7.7 THE HALTING PROBLEM AND THE NON-COMPUTABILITY 
OF KOLMOGOROV COMPLEXITY 

Consider the following paradoxical statement: 

This statement is false. 

This paradox is sometimes stated in a two-statement form: 

Thenext statement is false. 

The preceding statement is true. 

These paradoxes are versions of what is called the Epimenides Liar 
Paradox, and it illustrates the pitfalls involved in self-reference. In 
1931, Godel used this idea of self-reference to show that any interesting 
system of mathematics is not complete; there are statements in the 
system that are true but which cannot be proved within the system. To 
accomplish this, he translated theorems and proofs into integers, and 
constructed a statement of the above form, which can therefore not be 
proved true or false. 

The halting problem in computer science is very closely connected 
with Godel’s incompleteness theorem. In essence, it states that for any 
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computational model, there is no general algorithm to decide whether a 
program will halt or not (go on forever). Note that it is not a statement 
about any specific program. Quite clearly, there are many programs that 
can be easily shown to halt or go on forever. The halting problem says 
that we cannot answer this question for all programs. The reason for 
this is again the idea of self-reference. 

To a practical person, the halting problem may not be of any immedi- 
ate significance, but it has great theoretical importance as the dividing 
line between things that can be done on a computer (given unbounded 
memory and time) and things that cannot be done at all (such as proving 
all true statements in number theory). Godel’s incompleteness theorem 
is one of the most important mathematical results of this century, and 
its consequences are still being explored. The halting problem is an 
essential example of Godel’s incompleteness theorem. 

One of the consequences of the non-existence of an algorithm for the 
halting problem is the non-computability of Kolmogorov complexity. The 
only way to find the shortest program in general is to try all short 
programs and see which of them can do the job. However, at any time 
some of the short programs may not have halted and there is no 
effective (finite mechanical) way to tell whether they will halt or not and 
what they will print out. Hence, there is no effective way to find the 
shortest program to print a given string. 

The non-computability of Kolmogorov complexity is an example of the 
Berry paradox. The Berry paradox asks for “the shortest number not 
nameable in under ten words.” No number like 1,101,121 can be a 
solution since the defining expression itself is less than ten words long. 
This illustrates the problems with the terms nameable and describable; 
they are too powerful to be used without a strict meaning. If we restrict 
ourselves to the meaning “can be described for printing out on a 
computer,” then we can resolve Berry’s paradox by saying that the 
smallest number not describable in less than ten words exists, but is not 
computable. This so-called “description” is not a program for computing 
the number. E. F. Beckenbach pointed out a similar problem in the 
classification of numbers as dull or interesting; the smallest dull num- 
ber must be interesting. 

As stated at the beginning of the chapter, one does not really 
anticipate that practitioners will find the shortest computer program for 
a given string. The shortest program is not computable, although as 
more and more programs are shown to produce the string, the estimates 
from above of the Kolmogorov complexity converge to the true Kol- 
mogorov complexity. (The problem, of course, is that one may have 
found the shortest program and never know that no shorter program 
exists.) Even though Kolmogorov complexity is not computable, it pro- 
vides a framework within which to consider questions of randomness 
and inference. 
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In this section, we introduce Chaitin’s mystical, magical number a, 
which has some extremely interesting properties. 

Definition: 

a= 
p : %&-dt. 2-1(p) ’ 

(7.67) 

Note that a= Pr(%( p) halts), the probability that the given universal 
computer halts when the input to the computer is a binary string drawn 
according to a Bernoulli( i ) process. 

Since the programs that halt are prefix-free, their lengths satisfy the 
Kraft inequality, and hence the above sum is always between 0 and 1. 
Let fi, = .olwz . . . wn denote the first n bits of a. 

Properties of Cl: 

1. fl is non-computable. There is no effective (finite, mechanical) way 
to check whether arbitrary programs halt (the halting problem), so 
there is no effective way to compute a. 

2. Let is a “Philosopher’s Stone”. Knowing fl to an accuracy of n bits 
will enable us to decide the truth of any provable or finitely 
refutable mathematical theorem that can be written in less than n 
bits. Actually all that this means is that given n bits of IR, there is 
an effective procedure to decide the truth of n-bit theorems; the 
procedure may take an arbitrarily long (but finite) time. Of course, 
without knowing a, it is not possible to check the truth or falsity of 
every theorem by an effective procedure (Godel’s incompleteness 
theorem). 

The basic idea of the procedure using n bits of Q is simple: we 
run all programs until the sum of the masses 2-1’p’ contributed by 
programs that halt equals or exceeds a,, the truncated version of 
n that we are given. Then, since 

n-3$2-“, (7.68) 

we know that the length of all further contributions of the form 
2-“” to n from programs that halt must also be less than 2-Y 
This implies that no program of length In that has not yet halted 
will ever halt, which enables us to decide the halting or non- 
halting of all programs of length 5-n. 

To complete the proof, we must show that it is possible for a 
computer to run all possible programs in “parallel” in such a way 
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that any program that halts will eventually be found to halt. First, 
list all possible programs, starting with the null program, A: 

A, 0, 1, OO,Ol, 10, 11,000,001,010,011,. . . (7.69) 

Then let the computer execute one clock cycle of A for the first 
cycle. In the next cycle, let the computer execute two clock cycles of 
A and two clock cycles of the program 0. In the third cycle, let it 
execute three clock cycles of each of the first three programs, and 
so on. In this way, the computer will eventually run all possible 
programs and run them for longer and longer times, so that if any 
program halts, it will eventually be discovered to halt. The compu- 
ter keeps track of which program is being executed and the cycle 
number so that it can produce a list of all the programs that halt. 
This enables the computer to find any proof of the theorem or a 
counterexample to the theorem if the theorem can be stated in less 
than n bits. Knowledge of fl turns previously unprovable theorems 
into provable theorems. Here R acts as an oracle. 

Though R seems magical in this respect, there are other num- 
bers that carry the same information. For example, if we take the 
list of programs and construct a real number in which the ith bit 
indicates whether program i halts, then this number also can be 
used to decide any finitely refutable question in mathematics. This 
number is very dilute (in information content) because one needs 
approximately 2” bits of this indicator function to decide whether 
an n-bit program halts or not. Given 2” bits, one can tell immedi- 
ately without any computation whether any program of length less 
than n halts or not. However, 0 is the most compact representa- 
tion of this information since it is algorithmically random and 
incompressible. 

What are some of the questions that we can resolve using a? 
Many of the interesting problems in number theory can be stated 
as a search for a counterexample. For example, it is straightfor- 
ward to write a program that searches over the integers x, y, z and 
n and halts only if it finds a counterexample to Fermat’s last 
theorem, which states that 

xn+yn=zn (7.70) 

has no solution in integers for n 2 3. Another example is Gold- 
bath’s conjecture, which states that any even number is a sum of 
two primes. Our program would search through all the even 
numbers starting with 2, check all prime numbers less than it and 
find a decomposition as a sum of two primes, It will halt if it comes 
across an even number that does not have such a decomposition. 
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Knowing whether this program halts is equivalent to knowing the 
truth of Goldbach’s conjecture. 

We can also design a program that searches through all proofs 
and halts only when it finds a proof of the required theorem. This 
program will eventually halt if the theorem has a finite proof. 
Hence knowing n bits of Q we can find the truth or falsity of all 
theorems that have a finite proof or are finitely refutable and 
which can be stated in less than n bits. 

3. Ccz is algorithmically random. 

Theorem 7.8.1: R cannot be compressed 
there exists a constant c such that 

by more than a constant, i.e., 

K(y02...~,)Zv2-c, for all n . (7.71) 

Proof: We know that if we are given n bits of R, we can deter- 
mine whether or not any program of length sn halts. Using 
K(w,o,... O, ) bits, we can calculate n bits of a, and then we can 
generate a list of all programs of length In that halt, together with 
their corresponding outputs. We find the first string x,, that is not on 
this list. The string x0 is then the shortest string with Kolmogorov 
complexity K(rxO) > n. The complexity of this program to print x0 is 
K(LR, ) + c, which must be at least as long as the shortest program for x,,. 
Consequently, 

K(~,)+c~K(x,)>n, (7.72) 

for all n. Thus K(w,o, . . . o,) > n - c, and a cannot be compressed by 
more than a constant. 

7.9 UNIVERSAL GAMBLING 

Suppose a gambler is asked to gamble sequentially on sequences x E 
{ 0, l}*. He has no idea of the origin of the sequence. He is given fair 
odds (a-for-l) on each bit. How should he gamble? 

If he knew the distribution of the elements of the string, then he 
might use proportional betting because of its optimal growth-rate prop- 
erties, as shown in Chapter 6. If he believes that the string occurred 
naturally, then it seems intuitive that simpler strings are more likely 
than complex ones. Hence, if he were to extend the idea of proportional 
betting, he might bet according to the universal probability of the string. 
For reference, note that if the gambler knows the string x in advance, 
then he can increase his wealth by a factor of 2”“’ simply by betting all 
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his wealth each time on the next symbol of x. Let the wealth S(x) 
associated with betting scheme b(x), C b(x) = 1, be given by 

S(x) = 2z’“‘b(x) . (7.73) 

Suppose the gambler bets b(x) = 2-K(y) on a string x. This betting 
strategy can be called universal gambling. We note that the sum of the 
bets 

2 b(x) = 2 2-K’*’ -C - 
x X 

(7.74) 

and he will not have used all his money. For simplicity, let us assume 
that he throws the rest away. For example, the amount of wealth 
resulting from a bet b( 0110) on a sequence x = 0110 is 2”“‘b(x) = 
24b(O110) plus the amount won on all bets b(O1lO.. . > on sequences 
consistent with x. 

Then we have the following theorem: 

Theorem 7.9.1: The logarithm of the amount of money a gambler 
achieves on a sequence using universal gambling plus the complexity of 
the sequence is no smaller than the length of the sequence, or 

log S(x) + K(x) 1 Z(x) . (7.75) 

Remark: This is the counterpart of the gambling conservation 
theorem W* + H = log m from Chapter 6. 

Proof: The proof follows directly from the universal gambling 
scheme, b(x) = 2-“‘, since 

S(x) = c 2zL”“b(x’) 2 2z’x“J-K’“’ , 

X’JX 
(7.76) 

where x ’ 7 x means that x is a prefix of x ‘. Taking logarithms establishes 
the theorem. 0 

The result can be understood in many ways. For sequences with finite 
Kolmogorov complexity, 

&yx) ~2ZwuX) = 2zw-c (7.77) 

for all x. Since 2”“’ is the most that can be won in Z(x) gambles at fair 
odds, this scheme does asymptotically as well as the scheme based 
on knowing the sequence in advance. Thus, for example, if x = 
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7rl7T2.. . 7rn.. . , the digits in the expansion of 7~, then the wealth at time 
n will be S, = S(P) 2 ~2”~” for all n. 

If the string is actually generated by a Bernoulli process with 
parameter p, then 

S(X, . . . 
X,) > ~“-nHo(Xn)-2 logn-c ~ 2 n(l-,,,,-2*-3 

, (7.78) 

which is the same to first order as the rate achieved when the gambler 
knows the distribution in advance, as in Chapter 6. 

From the examples, we see that the universal gambling scheme on a 
random sequence does asymptotically as well as a scheme which uses 
prior knowledge of the true distribution. 

7.10 OCCAM’S RAZOR 

In many areas of scientific research, it is important to choose among 
various explanations of observed data. And after choosing the explana- 
tion, we wish to assign a confidence level to the predictions that ensue 
from the laws that have been deduced. 

For example, Laplace considered the probability that the sun will rise 
again tomorrow, given that it has risen every day in recorded history. 
Laplace’s solution was to assume that the rising of the sun was a 
Bernoulli@) process with unknown parameter 6. He assumed that 8 was 
uniformly distributed on the unit interval. Using the observed data, he 
calculated the posterior probability that the sun will rise again tomo- 
rrow and found that it was 

PK+1 =11x, = 1,x,-, = 1,. . . ,x1 = 1) 

ml+, =1,x,=1,x,-,=1 ,..., x,=1> 
= 

P(x~=1,x,~,=1,..., x1=1> 

I 

1 

8 n+l de 
0 = 
fl 
I 8” do 

0 

n+l =- 
U-2 

(7.79) 

(7.80) 

which he put forward as the probability that the sun will rise on day 
n + 1 given that it has risen on days 1 through n. 

Using the ideas of Kolmogorov complexity and universal probability, 
we can provide an alternative approach to the problem. Under the 
universal probability, let us calculate the probability of seeing a 1 next 
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after having observed n l’s in the sequence so far. The conditional 
probability that the next symbol is a 1 is the ratio of the probability of 
all sequences with initial segment 1” and next bit equal to 1 to the 
probability of all sequences with initial segment 1”. The simplest pro- 
grams carry most of the probability, hence we can approximate the 
probability that the next bit is a 1 with the probability of the program 
that says “Print l’s forever”. Thus 

cp(l”ly)=J4l”)=c>o. (7.81) 
Y 

Estimating the probability that the next bit is 0 is more difficult. Since 
any program that prints 1”O . . . yields a description of n, its length 
should at least be K(n), which for most n is about log n + O(log log n), 
and hence ignoring second-order terms, we have 

2 p(l”Oy)zp(ln0)~2-lo~n x J 
Y n’ 

Hence the conditional probability of observing a 0 next is 

p(op”) = 
p(l”O) 1 

p(l”0) +p(1") = cn 
(7.83) 

which is similar to the result ~(011") = ll(n + 1) derived by Laplace. 
This type of argument is a special case of “Occam’s Razor”, which is a 

general principle governing scientific research, weighting possible expla- 
nations by their complexity. William of Occam said “Nunquam ponenda 
est pluralitas sine necesitate”, i.e., explanations should not be multip- 
lied beyond necessity [259]. In the end, we choose the simplest explana- 
tion that is consistent with the observed data. For example, it is easier 
to accept the general theory of relativity than it is to accept a correction 
factor of c/r3 to the gravitational law to explain the precession of the 
perihelion of Mercury, since the general theory explains more with 
fewer assumptions than does a “patched” Newtonian theory. 

7.11 KOLMOGOROV COMPLEXITY AND UNIVERSAL 
PROBABILITY 

We now prove an equivalence between Kolmogorov complexity and 
universal probability. We begin by repeating the basic definitions. 

K(x) = min Z(p) . p : Q(p)=x 
(7.84) 

P,(x)= 2 2-Y 
p : Q(p)=x 

(7.85) 
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Theorem 7.11.1 (Equivalence of K(x) and log & ): There exists a 
constant c, independent of x, such that 

2- K(Jc) 5 P,(x) I c2 -K(x) (7.86) 

for all strings x. Thus the universal probability of a string x is essentially 
determined by its Kolmogorov complexity. 

Remark: This implies that K(x) and log & have equal status as 
universal complexity measures, since 

1 
K(x)--c’s logp,o~K(x). (7.87) 

Recall that the complexity defined with respect to two different compu- 
ters Kgl and K,, are essentially equivalent complexity measures if 
lK%(x) - K,,(x)1 is bounded. Theorem 7.11.1 shows that K,(x) and 
log & are essentially equivalent complexity measures. 

Notice the striking similarity between the relationship of K(x) and 
log J&J in Kolmogorov complexity and the relationship of H(X) and 
log &J in information theory. The Shannon code length assignment 
l(x) = [log A1 achieves an average description length H(X), while in 
Kolmogorov complexity theory, log &J is almost equal to K(x). Thus 
log & is the natural notion of descriptive complexity of x in algorithmic 
as well as probabilistic settings. 

The upper bound in (7.87) is obvious from the definitions, but the 
lower bound is more difficult to prove. The result is very surprising, 
since there are an infinite number of programs that print x. From any 
program, it is possible to produce longer programs by padding the 
program with irrelevant instructions. The theorem proves that although 
there are an infinite number of such programs, the universal probability 
is essentially determined by the largest term, which is 2 -? If P%(x) is 
large, then K(x) is small, and vice versa. 

However, there is another way to look at the upper bound that makes 
it less surprising. Consider any computable probability mass function on 
strings p(x). Using this mass function, we can construct a Shannon-Fan0 
code (Section 5.9) for the source, and then describe each string by the 
corresponding codeword, which will have length log P&. Hence for any 
computable distribution, we can construct a description of a string using 
not more than log P& + c bits, which is an upper bound on the Kol- 
mogorov complexity K(x). Even though P%(x) is not a computable prob- 
ability mass function, we are able to finesse the problem using the 
rather involved tree construction procedure described below. 
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Proof (of Theorem 7.11.1): The first inequality is simple. Let p* be 
the shortest program for X. Then 

as we wished to show. 
We can rewrite the second inequality as 

1 
K(x) 5 log pou(x) + c ’ (7.89) 

Our objective in the proof is to find a short program to describe the 
strings that have high P%(x). 

An obvious idea is some kind of Huffman coding based on P%(x), but 
P,(x) cannot be effectively calculated, and hence a procedure using 
Huffman coding is not implementable on a computer. Similarly the 
process using the Shannon-Fan0 code also cannot be implemented. 
However, if we have the Shannon-Fan0 code tree, we can reconstruct 
the string by looking for the corresponding node in the tree. This is the 
basis for the following tree construction procedure. 

To overcome the problem of non-computability of P,(x), we use a 
modified approach, trying to construct a code tree directly. Unlike 
Huffman coding, this approach is not optimal in terms of minimum 
expected codeword length. However, it is good enough for us to derive a 
code for which each codeword for x has a length that is within a constant 
of 1% z&J. 

Before we get into the details of the proof, let us outline our approach. 
We want to construct a code tree in such a way that strings with high 
probability have low depth. Since we cannot calculate the probability of 
a string, we do not know a priori the depth of the string on the tree. 
Instead, we successively assign x to the nodes of the tree, assigning x to 
nodes closer and closer to the root as our estimate of P,(x) improves. We 
want the computer to be able to recreate the tree and use the lowest 
depth node corresponding to the string x to reconstruct the string. 

We now consider the set of programs and their corresponding outputs 
{<p,d}. We try t o assign these pairs to the tree. But we immediately 
come across a problem-there are an infinite number of programs for a 
given string, and we do not have enough nodes of low depth. However, 
as we shall show, if we trim the list of program-output pairs, we will be 
able to define a more manageable list that can be assigned to the tree. 

We now demonstrate the existence of programs for x of length 
1% F&P 

Tree construction procedure. For the universal computer %, we simulate 
all programs using the technique explained in Section 7.8. We list all 
binary programs: 
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A, 0, l,OO, 01, 10, 11,000,001,010,011,. . . (7.90) 

Then let the computer execute one clock cycle of A for the first stage. In 
the next stage, let the computer execute two clock cycles of A and two 
clock cycles of the program 0. In the third stage, let the computer 
execute three clock cycles of each of the first three programs, and so on. 
In this way, the computer will eventually run all possible programs and 
run them for longer and longer times, so that if any program halts, it 
will be discovered to halt eventually. We use this method to produce a 
list of all programs that halt in the order in which they halt together 
with their associated outputs. For each program and its corresponding 
output, ( pK, zK), we calculate nk, which is chosen so that it corresponds 
to the current estimate of P,(x). Specifically, 

nk = 1 1 
log 7 1 

R&J ’ 

where 

(7.91) 

(7.92) 

Note that i),(~, > T P,(x) on the subsequence of times k such that xK = x. 
We are now ready to construct a tree. As we add to the list of triplets, 
( pk, xlz, nk), of programs that halt, we map some of them onto nodes of a 
binary tree. For the purposes of the construction, we must ensure that 
all the ni’s corresponding to a particular zk are distinct. To ensure this, 
we remove from the list all triplets that have the same x and n as some 
previous triplet. This will ensure that there is at most one node at each 
level of the tree that corresponds to a given x. 

Let {(&xi, ni):i = 1,2,3,. . . } denote the new list. On the win- 
nowed list, we assign the triplet (pi, 11~;) n;> to the first available node at 
level ni + 1. As soon as a node is assigned, all of its descendants become 
unavailable for assignment. (This keeps the assignment prefix-free.) 

We illustrate this by means of an example: 

(pl,q, n,) = (10111,1110,5), n, = 6 because [%(x1) L 2-““) = 2-’ 
(p2, x,, n,> = (11,W a, n, = 2 because t%(x,) 2 2-“p2’ = 2-2 
(p,, xs, ns) = (0, 1110, 11, n, = 1 because Pw(x8) h 2-“ps’ + 2-““I’ = 2-’ + 2-l 

2 2-l 
(p,, x4, n,) = (1010,1111,4), n,=4becausefi (x ) ZZ~-‘(‘~)= 
(pa, x,, n,) = (101101,1110, l), n, = 1 because @“(x4) ~2~’ + 2-“i42- 6 6 

rp1 6 
22-l 

(Pa, X6, n,) = (100, 1,3), n, = 3 because p%kr,) 2 2-“p6’ = 2-’ 

(7.93) 
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We note that the stringx = (1110) appears in positions 1,3 and 5 in the 
list, but n3 = n5. The estimate of the probability P, (1110) has not 
jumped sufficiently for ( p5, x5, n5) to survive the cut. Thus the win- 
nowed list becomes 

(P ;, xi, 7-h;) = (10111,1110,5), 
(p&, n;) = (11, l&2), 
(p;, a& n;) = (0, 1110, I), 
(pi, xi, n;> = (1010,1111,4), 
(p;, $, n;) = (100, 1,3), 

(7.94) 

The assignment of the winnowed list to nodes of the tree is illustrated in 
Figure 7.3. In the example, we are able to find nodes at level nk + 1 to 
which we can assign the triplets. Now we shall prove that there are 
always enough nodes so that the assignment can be completed. We can 
perform the assignment of triplets to nodes if and only if the Kraft 
inequality is satisfied. 

We now drop the primes and deal only with the winnowed list 
illustrated in (7.94). We start with the infinite sum in the Kraft 
inequality corresponding to (7.94) and split it according to the output 
strings: 

m 

22 -(nk+l) = c 2 2-%+1). 
k=l xe{O, l}* k:xk =x 

(7.95) 

Xl = 1110 

111 

Figure 7.3. Assignment of nodes. 
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We then write the inner sum as 

(nk+l) 4-l c 2-k (7.96) 
k :Xk=X 

5232 
~logP,(x)J + 2 ~logP&)l -1 + 2 llogP&)J -2 + . . .) 

(7.97) 

(7.98) 

(7.99) 

-,(x), (7.100) 

where (7.97) is true because there is at most one node at each level that 
prints out a particular X. More precisely, the nk’s on the winnowed list 
for a particular output string x are all different integers. Hence 

c 
k 2- 

(nk+l) (7.101) 

and we can construct a tree with the nodes labeled by the triplets. 
If we are given the tree constructed above, then it is easy to identify a 

given x by the path to the lowest depth node that prints x. Call this node 
i. (By construction, I( log & + 2.) To use this tree in a program to 
print x, we specify p” and ask the computer to execute the above 
simulation of all programs. Then the computer will construct the tree as 
described above, and wait for the particular node p” to be assigned. Since 
the computer executes the same construction as the sender, eventually 
the node p” will be assigned. At this point, the computer will halt and 
print out the x assigned to that node. 

This is an effective (finite, mechanical) procedure for the computer to 
reconstruct x. However, there is no effective procedure to find the lowest 
depth node corresponding to x. All that we have proved is that there is 
an (infinite) tree with a node corresponding to x at level [log &J 1 + 1. 
But this accomplishes our purpose. 

With reference to the example, the description of x = 1110 is the path 
to the node (p3, x,, n3), i.e., 01, and the description of x = 1111 is the 
path 00001. If we wish to describe the string 1110, we ask the computer 
to perform the (simulation) tree construction until node 01 is assigned. 
Then we ask the computer to execute the program corresponding to node 
01, i.e., p3. The output of this program is the desired string, x = 1110. 

The length of the program to reconstruct x is essentially the length of 
the description of the position of the lowest depth node p”-corresponding 
to x in the tree. The length of this program for x is I( p”> + c, where 
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1 1 
Z(p”) 5 1% p,(x) - +l, 1 

and hence the complexity of 31: satisfies 
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(7.102) 

(7.103) 

Thus we have proved the theorem. 0 

7.12 THE KOLMOGOROV SUFFICIENT STATISTIC 

Suppose we are given a sample sequence from a Bernoulli(B) process. 
What are the regularities or deviations from randomness in this se- 
quence? One way to address the question is to find the Kolmogorov 
complexity K(P 1 n), which we discover to be roughly nH,(9) + log n + c. 
Since, for 8 # i, this is much less than n, we conclude that xn has 
structure and is not randomly drawn Bernoulli(~). But what is the 
structure? The first attempt to find the structure is to investigate the 
shortest program p * for xn. But the shortest description of p * is about as 
long as p* itself; otherwise, we could further compress the description of 
P, contradicting the minimality of p*. So this attempt is fruitless. 

A hint at a good approach comes from examination of the way in 
which p* describes xn. The program “The sequence has k l’s; of such 
sequences, it is the ith” is optimal to first order for Bernoulli(B) 
sequences. We note that it is a two-stage description, and all of the 
structure of the sequence is captured in the first stage. Moreover, xn is 
maximally complex given the first stage of the description. The first 
stage, the description of k, requires log(n + 1) bits and defines a set 
S = {x E (0, l}” : C xi = k}. The second stage requires log ISl= log( E ) = 
nH,(Z,) = nH,(O) bits and reveals nothing extraordinary about xn. 

We mimic this process for general sequences by looking for a simple 
set S that contains x”. We then follow it with a brute force description of 
xn in S using logIS 1 bits. 

We begin with a definition of the smallest set containing xn that is 
describable in no more than k bits. 

Definition: The Kolrnogorov structure function Kk(xn In) of a binary 
string x E (0, l}” is defined as 

Kk(XnId = p m& loglsl 
Qi,, n)=S 

nnEs~{O,l)n 

(7.104) 
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The set S is the smallest set which can be described with no more 
than k bits and which includes x”. By %(p, n) = S, we mean that 
running the program p with data n on the universal computer % will 
print out the indicator function of the set S. 

Definition: For a given small constant c, let k* be the least k such that 

K,(x”In)+ksK(x”1n)+c. (7.105) 

Let S** be the corresponding set and let p** be the program that prints 
out the indicator function of S**. Then we shall say that p** is a 
Kolmogorov minimal sufficient statistic for xn. 

Consider the programs p* describing sets S* such that 

KK(xnln) + k = K(x”In) . (7.106) 

All the programs p* are “sufficient statistics” in that the complexity of 
xn given S* is maximal. But the minimal sufficient statistic is the 
shortest “sufficient statistic.” 

The equality in the above definition is up to a large constant depend- 
ing on the computer U. Then k* corresponds to the least k for which the 
two-stage description of xn is as good as the best single stage description 
of xn. The second stage of the description merely provides the index of xn 
within the set S**; this takes Kk(xn In) bits if xn is conditionally 
maximally complex given the set S **. Hence the set S** captures all the 
structure within xn. The remaining description of xn within S** is 
essentially the description of the randomness within the string. Hence 
S** or p** is called the Kolmogorov sufficient statistic for xn. 

This is parallel to the definition of a sufhcient statistic in mathemati- 
cal statistics. A statistic 2’ is said to be sufficient for a parameter 8 if the 
distribution of the sample given the sufficient statistic is independent of 
the parameter, i.e., 

e-+ T(xb+x (7.107) 

forms a Markov chain in that order. For the Kolmogorov sticient 
statistic, the program p** is sufficient for the “structure” of the string 
x”; the remainder of the description of xn is essentially independent of 
the “structure” of xn. In particular, xn is maximally complex given S**. 

A typical graph of the structure function is illustrated in Figure 7.4. 
When k = 0, the only set that can be described is the entire set (0, l}“, so 
that the corresponding log set size is n. As we increase k, the size of the 
set drops rapidly until 

k + K,(x”ln> = K(x”ln) . (7.108) 
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Figure 7.4. Kolmogorov sufficient statistic. 

After this, each additional bit of k reduces the set by half, and we 
proceed along the line of slope - 1 until k = K(x” 1 n). For k L K(x” 1 n), the 
smallest set that can be described that includes xn is the singleton {x”}, 
and hence Kk(3tn 1 n) = 0. 

We will now illustrate the concept with a few examples. 

1. Bernoulli(B) sequence. Consider a sample of length n from a Ber- 
noulli sequence with an unknown parameter 8. In this case, the 
best two-stage description consists of giving the number of l’s in 
the sequence first and then giving the index of the given sequence 
in the set of all sequences having the same number of 1’s. This 
two-stage description clearly corresponds to p** and the corre- 
sponding k** = log n. (See Figure 7.5.) Note, however, if 8 is a 
special number like $ or e/?r2, then p** is a description of 6, and 
k**cc . 

n 

log n nH&) + logn 
- 

k 

Figure 7.5. Kolmogorov sufficient statistic for a Bernoulli sequence. 



178 KOLMOGOROV COMPLEXlTY 

I I 
Figure 7.6. Mona Lisa. 

2. Sample from a Markov chain. In the same vein as the preceding 
example, consider a sample from a first-order binary Markov 
chain. In this case again, p** will correspond to describing the 
Markov type of the sequence (the number of occurrences of 00’s, 
01’s, 10’s and 11’s in the sequence); this conveys all the structure 
in the sequence. The remainder of the description will be the index 
of the sequence in the set of all sequences of this Markov type. 
Hence in this case, k* = 2 log n, corresponding to describing two 
elements of the conditional joint type. (The other elements of the 
conditional joint type can be determined from these two.) 

3. Mona Lisa. Consider an image which consists of a gray circle on a 
white background. The circle is not uniformly gray but Bernoulli 
with parameter 8. This is illustrated in Figure 7.6. 

In this case, the best two-stage description is to first describe 
the size and position of the circle and its average gray level and 
then to describe the index of the circle among all the circles with 
the same gray level. In this case, p** corresponds to a program 
that gives the position and size of the circle and the average gray 
level, requiring about log n bits for each quantity. Hence k* = 
3 log n in this case. 

SUMMARY OF CHAPTER 7 

Definition: The Kolmogorov complexity K(x) of a string x is 

K(x) = p :!g=* z(p) ’ (7.109) 

K(xlZ(xN = p : cu~iLh w - (7.110) 

Universality of Kolmogorov complexity: There exists a universal compu- 
ter %, such that for any other computer d, 

K,(x) 5 K,(x) + c, , (7.111) 
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for any string x, where the constant c, does not depend on x. If 011 and & are 
universal, IX,(x) - K,(x)1 I c for all x. 

Upper bound on Kolmogorov complexity: 

K(x 1 Z(x)) 5 Z(x) + c . (7.112) 

K(x) 5 K(xIZ(x)) + 2 log Z(x) + c (7.113) 

Kolmogorov complexity and entropy: If X1, X2, . . . are i.i.d. integer 
valued random variables with entropy H, then there exists a constant c, such 
that for all n, 

(7.114) 

Lower bound on Kolmogorov complexity: There are no more than 2k 
strings x with complexity K(x) < k. If X1, Xz, . . . , X, are drawn according to a 
Bernoulli( i ) process, then 

Pr(K(X,X, . . . X,ln)ln - k)12-k. (7.115) 

Definition: A sequence x,, x,, . . . , x, is said to be incompressible if 
K(x,,x,, . . . ,x,(n)ln+ 1. 

Strong law of large numbers for incompressible sequences: 

mx,, x,, * * * 3 x,) 

n 
,l~~~xi-~. 

i 1 
(7.116) 

Definition: The universal probability of a string x is 

P,(x) = x 2-z’p’ = Pr(%(p) = x) . 
p: Up)=2 

(7.117) 

Universality of P%(x): For every computer S& 

P,(x) 22 c,P&) (7.118) 

for every string x E (0, l}*, where the constant CA depends only on % and J& 

Deflnition: Cn = C, : LplCPj halts 2- l(P) = Pr(%( p) halts) is the probability that the 
computer halts when the input p to the computer is a binary string drawn 
according to a Bernoulli( ‘2) process. 

Properties of 0: 

1. fl is not computable. 
2. 0 is a “Philosopher’s Stone”. 
3. 0 is algorithmically random (incompressible). 
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Equivalence of K(x) and log +: There exists a constant c, independent of 
x, such that 

1 
log P,(x) 

- -K(x) 5 c , (7.119) 

for all strings x. Thus the universal probability of a string x is essentially 
determined by its Kolmogorov complexity. 

Definition: The Kolmogorou structure function K,(x”ln) of a binary string 
x E (0, l}” is defined as 

II (7.120) 

Definition: Let k* be the least k such that 

K,,(x”ln> + k* = KWIn) . (7.121) 

Let S** be the corresponding set and let p ** be the program that prints out 
the indicator function of S**. Then p** is the Kolmogorov minimal suficient 
statistic for 3~. 

PROBLEMS FOR CHAPTER 7 

1. Kolmogorov complexity of two sequences. Let x, y E (0, l}*. Argue that 
K(x, y) I K(n) + K(y) + c. 

2. Complexity of the sum. 
(a) Argue that K(n) I log n + 2 log log n + c. 
(b) Argue that K( n, +n,>~K(n,)+K(n,)+c. 
(c) Give an example in which n, and n, are complex but the sum is 
relatively simple. 

3. Images. Consider an n x n array x of O’s and l’s . Thus x has n2 bits. 

Find the Kolmogorov complexity K(x In) (to first order) if 
(a) x is a horizontal line. 
(b) x is a square. 
(c) x is the union of two lines, each line being vertical or horizontal. 
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4. Monkeys on IZ computer. Suppose a random program is typed into a 
computer. Give a rough estimate of the probability that the computer 
prints the following sequence: 
(a) 0” followed by any arbitrary sequence. 
(b) w~v,... v,, followed by any arbitrary sequence, where ri is the 

ith bit in the expansion of 7~. 
(c) O”1 followed by any arbitrary sequence. 
(d) wloz... o, followed by any arbitrary sequence. 
(e) (Optional) A proof of the 4-color theorem. 

5. Kolmogorov complexity and ternary programs. Suppose that the input 
programs for a universal computer % are sequences in { 0, 1,2} * 
(ternary inputs). Also, suppose 0% prints ternary outputs. Let 
X(x11(=2)) = min,,,, I(rjj=x Z(p). Show that 
(a) K(xnl,)l~+c. 
(b) #{x” E (0, l}*:K(x”ln)< k} < 3! 

6. Do computers reduce entropy? Let X = %(P), where P is a Bernoulli 
(l/2) sequence. Here the binary sequence X is either undefined or is 
in (0, l}*. Let H(X) be the Shannon entropy of X. Argue that 
H(X) = 00. Thus although the computer turns nonsense into sense, the 
output entropy is still infinite. 

7. A law of large numbers. Using ternary inputs and outputs as in 
Problem 5, outline an argument demonstrating that if a sequence 3t is 
algorithmically random, i.e., if K(xIZ(x)) = Z(x), then the proportion of 
O’s, l’s, and 2’s in x must each be near l/3. You may wish to use 
Stirling’s approximation n! = (n/e)“. 

8. huge complexity. Consider two binary subsets A and 23 (of an n x n 
grid). For example, 

Find general upper and lower bounds, in terms of K(A(n) and K(B In), 
for 
(a> KW In). 
(b) K(A u BJn). 

(c) K(A n Bin). 

9. Random program. Suppose that a random program (symbols i.i.d. 
uniform over the symbol set) is fed into the nearest available com- 
puter. 

To our surprise the first n bits of the binary expansion of l/fl are 
printed out. Roughly what would you say the probability is that the 
next output bit will agree with the corresponding bit in the expansion 
of l/ID! 
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10. The face vase illusion. 

(a) What is an upper bound on the complexity of a pattern on an 
m x m grid that has mirror image symmetry about a vertical axis 
through the center of the grid and consists of horizontal line 
segments? 

(b) What is th e complexity K if the image differs in one cell from the 
pattern described above? 

HISTORICAL NOTES 

The original ideas of Kolmogorov complexity were put forth independently and 
almost simultaneously by Kolmogorov [159,158], Solomonoff [256] and Chaitin 
[50]. These ideas were developed further by students of Kolmogorov like Martin- 
Lijf [187], who defined the notion of algorithmically random sequences and 
algorithmic tests for randomness, and by Gacs and Levin [177], who explored the 
ideas of universal probability and its relationship to complexity. A series of 
papers by Chaitin [53,51,52] develop the relationship between Kolmogorov 
complexity and mathematical proofs. C. l? Schnorr studied the universal notion 
of randomness in [234,235,236]. 

The concept of the Kolmogorov structure function was defined by Kolmogorov 
at a talk at the Tallin conference in 1973, but these results were not published. 
V’yugin (2671 has shown that there are some very strange sequences X” that 
reveal their structure arbitrarily slowly in the sense that &(x”(n) = n - k, k < 
K(x”( n). Zurek [293,292,294] addresses the fundamental questions of Maxwell’s 
demon and the second law of thermodynamics by establishing the physical 
consequences of Kolmogorov complexity. 

Rissanen’s minimum description length (MDL) principle is very close in spirit 
to the Kolmogorov sufficient statistic. Rissanen [221,222] finds a low complexity 
model that yields a high likelihood of the data. 

A non-technical introduction to the different measures of complexity can be 
found in the thought-provoking book by Pagels [206]. Additional references to 
work in the area can be found in the paper by Cover, G&s and Gray [70] on 
Kolmogorov’s contributions to information theory and algorithmic complexity. 



Chapter 8 

Channel Capacity 

What do we mean when we say that A communicates with B? We mean 
that the physical acts of A have induced a desired physical state in B. 
This transfer of information is a physical process and therefore is 
subject to the uncontrollable ambient noise and imperfections of the 
physical signalling process itself. The communication is successful if the 
receiver B and the transmitter A agree on what was sent. 

In this chapter we find the maximum number of distinguishable 
signals for n uses of a communication channel. This number grows 
exponentially with n, and the exponent is known as the channel 
capacity. The channel capacity theorem is the central and most famous 
success of information theory. 

The mathematical analog of a physical signalling system is shown in 
Fig. 8.1. Source symbols from some finite alphabet are mapped into 
some sequence of channel symbols, which then produces the output 
sequence of the channel. The output sequence is random but has a 
distribution that depends on the input sequence. From the output 
sequence, we attempt to recover the transmitted message. 

Each of the possible input sequences induces a probability 
distribution on the output sequences. Since two different input 
sequences may give rise to the same output sequence, the inputs are 
confusable. In the next few sections, we will show that we can choose a 
“non-confusable” subset of input sequences so that with high 
probability, there is only one highly likely input that could have caused 
the particular output. We can then reconstruct the input sequences at 
the output with negligible probability of error. By mapping the source 
into the appropriate “widely spaced” input sequences to the channel, we 
can transmit a message with very low probability of error and 
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Figure 8.1. A communication system. 

reconstruct the source message at the output. The maximum 
which this can be done is called the capacity of the channel. 

rate at 

Definition: We define a discrete channel to be a system consisting of an 
input alphabet Z and output alphabet 9 and a probability transition 
matrix p( ~13~) that expresses the probability of observing the output 
symbol y given that we send the symbol X. The channel is said to be 
memoryless if the probability distribution of the output depends only on 
the input at that time and is conditionally independent of previous 
channel inputs or outputs. 

Definition: We define the “information” channel capacity of a discrete 
memoryless channel as 

c = y” ax; Y) , (8.1) 

where the maximum is taken over all possible input distributions p(x). 

We shall soon give an operational definition of channel capacity as the 
highest rate in bits per channel use at which information can be sent 
with arbitrarily low probability of error. Shannon’s second theorem 
establishes that the “information” channel capacity is equal to the 
“operational” channel capacity. Thus we drop the word “information” in 
most discussions of channel capacity. 

There is a duality between the problems of data compression and 
data transmission. During compression, we remove all the redundancy 
in the data to form the most compressed version possible, whereas 
during data transmission, we add redundancy in a controlled fashion to 
combat errors in the channel. In the last section of this chapter, we show 
that a general communication system can be broken into two parts and 
that the problems of data compression and data transmission can be 
considered separately. 

8.1 EXAMPLES OF CHANNEL CAPACITY 

8.1.1 Noiseless Binary Channel 

Suppose we have a channel whose the binary input is reproduced 
exactly at the output. This channel is illustrated in Figure 8.2. In this 
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0-o 

1-1 

Figure 8.2. Noiseless binary channel. 

case, any transmitted bit is received without error. Hence, 1 error-free 
bit can be transmitted per use of the channel, and the capacity is 1 bit. 
We can also calculate the information capacity C = max 1(X, Y) = 1 bit, 
which is achieved by using p(z) = ( i, i >. 

8.1.2 Noisy Channel with Nonoverlapping Outputs 

This channel has two possible outputs corresponding to each of the two 
inputs, as illustrated in Figure 8.3. The channel appears to be noisy, but 
really is not. 

Even though the output of the channel is a random consequence of 
the input, the input can be determined from the output, and hence every 
transmitted bit can be recovered without error. The capacity of this 
channel is also 1 bit per transmission. We can also calculate the 
information capacity C = max 1(X, Y) = 1 bit, which is achieved by using 
pO=(&, 4). 

8.1.3 Noisy Typewriter 

In this case, the channel input is either received unchanged at the 
output with probability i or is transformed into the next letter with 
probability 4 (Figure 8.4). If the input has 26 symbols and we use every 
alternate input symbol, then we can transmit 13 symbols without error 
with each transmission. Hence the capacity of this channel is log 13 bits 
per transmission. We can also calculate the information capacity C = 

o< 1 

1 
z 

2 

3 l< 3 

z 
3 4 

Figure 8.3. Noisy channel with nonoverlapping outputs. 
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Noisy channel Noiseless 
subset of inputs 

Figure 8.4. Noisy typewriter. 

max 1(X, Y) = max[H(Y) - H(YIX)] = max H(Y) - 1 = log 26 - 1 = log 13, 
achieved by using p(x) uniformly distributed over all the inputs. 

8.1.4 Binary Symmetric Channel 

Consider the binary symmetric channel (BSC), which is shown in Figure 
8.5. This is a binary channel in which the input symbols are com- 
plemented with probability p. This is the simplest model of a channel 
with errors; yet it captures most of the complexity of the general 
problem. 

When an error occurs, a 0 is received as a 1 and vice versa. The 
received bits do not reveal where the errors have occurred. In a sense, 
all the received bits are unreliable. Later we show that we can still use 
such a communication channel to send information at a non-zero rate 
with an arbitrarily small probability of error. 
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1-P 

1-P 

Figure 8.5. Binary symmetric channel. 

We bound the mutual information by 

1(X, Y) = H(Y) - H(Y(X) 

= H(Y) - c p(x)H(YIX = x) 

= H(Y) - &ddWp) 

= H(Y) - H(p) 

51--H(p), 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

where the last inequality follows because Y is a binary random variable. 
Equality is achieved when the input distribution is uniform. Hence the 
information capacity of a binary symmetric channel with parameter p is 

C=l-H(p)bits. (8.7) 

8.1.5 Binary Erasure Channel 

The analog of the binary symmetric channel in which some bits are lost 
(rather than corrupted) is called the binary erasure channel. In the 
binary erasure channel, a fraction a! of the bits are erased. The receiver 
knows which bits have been erased. The binary erasure channel has two 
inputs and three outputs as shown in Figure 8.6. 

We calculate the capacity of the binary erasure channel as follows: 

c = y(y 1(x; Y) 03.8) 

= map(Y) - H(YIX)) (8.9) 

=InyH(Y)-Wa)* (8.10) 
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e 

Figure 8.6. Binary erasure channel. 

The first guess for the maximum of H(Y) would be log 3, but we cannot 
achieve this by any choice of input distribution p(x). Letting E be the 
event {Y = e}, using the expansion 

H(Y) = H(Y, E) = H(E) + H(Y(E), (8.11) 

and letting Pr(X = 1) = q we have 

H(Y) = H((1 - 7r)(l- a), cy, 7r(l- ar)) = H(cw) + (l- cu)HW. 

(8.12) 

Hence 

c = Iny H(Y) - H(a) (8.13) 

= m,ax( 1 - cr>H( 7~) + H( (w) - H(Q) (8.14) 

= m,ax(l - a)H(7r) (8.15) 

=1--a, (8.16) 

where capacity is achieved by 7~ = %. 
The expression for the capacity has some intuitive meaning: since a 

proportion a! of the bits are lost in the channel, we can recover (at most) 
a proportion 1 - Q of the bits. Hence the capacity is at most 1 - G. It is 
not immediately obvious that it is possible to achieve this rate. This will 
follow from Shannon’s second theorem. 
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In many practical channels, the sender receives some feedback from 
the receiver. If feedback is available for the binary erasure channel, it is 
very clear what to do: if a bit is lost, retransmit it until it gets through. 
Since the bits get through with probability 1 - (Y, the effective rate of 
transmission is 1 - cy. In this way we are easily able to achieve a 
capacity of 1 - a! with feedback. 

Later in the chapter, we will prove that the rate 1 - (Y is the best that 
can be achieved both with and without feedback. This is one of the 
consequences of the surprising fact that feedback does not increase the 
capacity of discrete memoryless channels. 

8.2 SYMMETRIC CHANNELS 

The capacity of the binary symmetric channel is C = 1 - H(p) bits per 
transmission and the capacity of the binary erasure channel is C = 
l- (Y bits per transmission. 

Now consider the channel with transmission matrix: 

Here the entry in the xth row and the yth column denotes the condition- 
al probabilityp( y(x) that y is received when x is sent. In this channel, all 
the rows of the probability transition matrix are permutations of each 
other and so are the columns. Such a channel is said to be symmetric. 
Another example of a symmetric channel is one of the form 

Y=X+Z (mod& (8.18) 

where 2 has some distribution on the integers (0, 1,2, . . . , c - l}, and X 
has the same alphabet as 2, and 2 is independent of X. 

In both these cases, we can easily fmd an explicit expression for the 
capacity of the channel. Letting r be a row of the transition matrix, we 
have 

w Y) = H(Y) - H(YIX) (8.19) 

= H(Y) - H(r) (8.20) 

52 log1 3 1 - H(r) (8.21) 

with equality if the output distribution is uniform. But p(x) = l/l %‘I 
achieves a uniform distribution on Y, as seen from 
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p(y) = c p(y ]dpW = - ,;, c p(y,d = c $j = 6 , u3.22) XEl 
where c is the sum of the entries in one column of the probability 
transition matrix. 

Thus the channel in (8.17) has capacity 

c=~(~1(X,Y)=10g3-H(0.5,0.3,0.2), (8.23) 

and C is achieved by a uniform distribution on the input. 
The transition matrix of the symmetric channel defined above is 

doubly stochastic. In the computation of the capacity, we used the facts 
that the rows were permutations of one another and that all the column 
sums were equal. 

Considering these properties, we can define a generalization of the 
concept of a symmetric channel as follows: 

Definition: A channel is said to be symmetric if the rows of the channel 
transition matrix p( y 1~) are permutations of each other, and the col- 
umns are permutations of each other. A channel is said to be weakly 
symmetric if every row of the transition matrix p( l 1~) is a permutation 
of every other row, and all the column sums C, p( y lr) are equal. 

For example, the channel with transition matrix 

1 
s 
1 
z 

1 
z 
1 
s I 

(8.24) 

is weakly symmetric but not symmetric. 
The above derivation for symmetric channels carries over to weakly 

symmetric channels as well. We have the following theorem for weakly 
symmetric channels: 

Theorem 8.2.1: For a weakly symmetric channel, 

C=log19(-H( row of transition matrix), (8.25) 

and this is achieved by a uniform distribution on the input alphabet. 

8.3 PROPERTIES OF CHANNEL CAPACITY 

1. C 2: 0, since 1(X, Y) L 0. 

2. CrlogjZl since C=maxI(X, Y)ImaxH(X)=loglS!$ 
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3. C 4 log1 91 for the same reason. 
4. 1(X; Y) is a continuous function of p(x). 
5. 1(X, Y) is a concave function of p(x) (Theorem 2.7.4). 

Since 1(X, Y) is a concave function over a closed convex set, a local 
maximum is a global maximum. From properties (2) and (3), the 
maximum is finite, and we are justified in using the term maximum, 
rather than supremum in the definition of capacity. 

The maximum can then be found by standard nonlinear optimization 
techniques like gradient search. Some of the methods that can be used 
include the following: 

l Constrained maximization using calculus and the Kuhn-Tucker 
conditions. 

. The Frank-Wolfe gradient search algorithm. 
l An iterative algorithm developed by Arimoto [ll] and Blahut [37]. 

We will describe the algorithm in Section 13.8. 

In general, there is no closed form solution for the capacity. But for 
many simple channels it is possible to calculate the capacity using 
properties like symmetry. Some of the examples considered earlier are 
of this form. 

8.4 PREVIEW OF THE CHANNEL CODING THEOREM 

So far, we have defined the information capacity of a discrete memory- 
less channel. In the next section, we prove Shannon’s second theorem, 
which gives an operational meaning to the definition of capacity as the 
number of bits we can transmit reliably over the channel. 

But first we will try to give an intuitive idea as to why we can 
transmit C bits of information over a channel. The basic idea is that, for 
large block lengths, every channel looks like the noisy typewriter 
channel (Figure 8.4) and the channel has a subset of inputs that 
produce essentially disjoint sequences at the output. 

For each (typical) input n-sequence, there are approximately 2nH(Y’X) 
possible Y sequences, all of them equally likely (Figure 8.7). We wish to 
ensure that no two X sequences produce the same Y output sequence. 
Otherwise, we will not be able to decide which X sequence was sent. 

The total number of possible (typical) Y sequences is = 2”H’Y! This 
set has to be divided into sets of size 2nH(YJX) corresponding to the 
different input X sequences. The total number of disjoint sets is less 
than or equal to 2 n(H(Y)-H(YIX)) = 2n1cX; “. Hence we can send at most 
= 2 nz(X; ‘) distinguishable sequences of length n. 
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Figure 8.7. Channels after n uses. 

Although the above derivation outlines an upper bound on the 
capacity, a stronger version of the above argument will be used in the 
next section to prove that this rate I is achievable, with an arbitrarily 
low probability of error. 

Before we proceed to the proof of Shannon’s second theorem, we need 
a few definitions. 

8.5 DEFINITIONS 

We analyze a communication system as shown in Figure 8.8. 
A message W, drawn from the index set { 1,2, . . . , M}, results in the 

signal X”(W), which is received as a random sequence Y” - p(y” 1~“) by 
the receiver. The receiver then guesses the index W by an-appropriate 
decoding rule W = g( Y” ). The receiver makes an error if W is not the 
same as the index W that was transmitted. 

We now define these ideas formally. 

Definition: A discrete channel, denoted by (%‘, p( y lx), 3 ), consists of 
two finite sets 2 and 91 and a collection of probability mass functions 
p( y(x), one for each x E %‘, such that for every x and y, p( y Ix> 2 0, and for 
every x, C, p( y Ix) = 1, with the interpretation that X is the input and Y 
is the output of the channel. 

W P 
> Encoder 

+ Channel . P I$ 
> Decoder L f 

Message PCVIX) 
4 Estimate 

of message 
Figure 8.8. A communication channel. 
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Definition: The nth extension of the discrete memoryless channel 
(DMC) is the channel (S!?“, p(ynIxn), %“), where 

P(Y#, yk-‘) =P(Yklx,), k = 1,2, . . . , n . (8.26) 

Remark: If the channel is used without feedback, i.e., if the input 
symbols do not depend on the past output symbols, namely, 
p(x,Ixk-l, yk-‘) =p(xkIXk-l ), then the channel transition function for the 
n-th extension of the discrete memoryless channel reduces to 

p(yn)xn) = ii P(YilXi) * (8.27) 
i=l 

When we refer to the discrete memoryless channel, we shall mean the 
discrete memoryless channel without feedback, unless we explicitly 
state otherwise. 

Definition: An (M, n) code for the channel (2, p(ylx), 9) consists of the 
following: 

1. An index set { 1,2, . . . , M}. 
2. An encoding function X” : { 1,2, . . . , M} + Zn, yielding codewords 

X”(l),X”(2), . . . ,X”(M). The set of codewords is called the 
codebook. 

3. A decoding function 

g:$“-+{1,2,. . . ,M}, (8.28) 

which is a deterministic rule which assigns a guess to each 
possible received vector. 

Definition (Probability of error): Let 

hi = Pr(g(Y”) # ilX” =X”(i)) = 2 p( y”lx”(i))l(g( y”) # i> (8.29) 
Yn 

be the conditional probability of error given that index i was sent, where 
I( * ) is the indicator function. 

Definition: The maximal probability of error ACn’ for an (M, n) code is 
defined as 

A(n) = max hi . (8.30) 
iE{l, 2,. . . ,M} 
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Definition: The (arithmetic) average probability of error PI(“) for an 
04, n) code is defined as 

p(n) l 
A4 

=- e 
M  i=l Ai l 

c 

(8.31) 

Note that 

Pp’ = Pr(I #g(Y”)) (8.32) 

if the index I is chosen uniformly on the set { 1,2, . . . , M}. Also obvi- 
ously 

p?) ( p . (8.33) 

One would expect the maximal probability of error to behave quite 
differently from the average probability. But in the next section, we will 
prove that a small average probability of error implies a small maximal 
probability of error at essentially the same rate. 

Definition: The rate R of an (M, n) code is 

log M 
R=- 

n 
bits per transmission . (8.34) 

Definition: A rate R is said to be achievable if there exists a sequence 
of ( [2”R1, n) codes such that the maximal probability of error ACn’ tends 
to 0 as n+m 

Later, we will write (25 n) codes to mean ( [2”R1, n) codes. This will 
simplify the notation. 

Definition: The capacity of a discrete memoryless channel is the sup- 
remum of all achievable rates. 

Thus rates less than capacity yield arbitrarily small probability of 
error for sufficiently large block lengths. 

8.6 JOINTLY TYPICAL SEQUENCES 

Roughly speaking, we will decode a channel output Y” as the ith index if 
the codeword X”( i ) is “jointly typical” with the received signal Y”. We 
now define the important idea of joint typicality and find the probability 
of joint typicality when X”(i) is the true cause of Y” and when it is not. 
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Definition: The set A:’ of jointly typical sequences {W, y” )} with 
respect to the distribution p(x, y) is the set of n-sequences with empiri- 
cal entropies e-close to the true entropies, i.e., 

A(n) = 
c (x”, y”)E iv” x w: (8.35) 

1 
- ; log p(x”) - H(x) (8.36) 

1 
- ; log p( y”) - H(Y) 

1 

(8.37) 

- ; log p(xn, y”) - HW, Y) < E 
I I > (8.38) 

where 

p(x”, y” )  = I? PC& Yi) l (8.39) 

i=l 

Theorem 8.6.1 (Joint AEP): Let (X”, Y”) be sequences of length n 
drawn i.i.d. according to p(xn, yn) = ll~=, p(xi, yi ). Then 

1. Pr((X”, Y”)EA~‘)+~ as n+a. 
2. IAI”‘I I 24H(X, Y)+d. 

3. If (z”, f” ) N p(x” )p< y” ), i.e., 2 and P” are independent with the 
same marginals as p(xn, y” ), then 

pr((gn 
9 

kn) E Ah)) ( 2-n(zw; Y)-3e) 
c - . (8.40) 

Also, for sufficiently large n, 

pr((e, p) E Al”‘) 2 (1 - ,)2-““w; Y)+3r) , (8.41) 

Proof: By the weak law of large numbers, 

1 
- ; log p(x” ) + -E[log p(X)] = H(X) in probability. (8.42) 

Hence, given E > 0, there exists n,, such that for all n > n,, 

Pr (I-;logp(y”)-H(X)i+;. (8.43) 

Similarly, by the weak law, 

-; log p(Y”)+ -E[log p(Y)] = H(Y) in probability, (8.44) 
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-i log p(X”, Y”) + - E[log p(X, Y)l = H(X, Y 1 in probability , 

(8.45) 

and there exist It2 and ng such that for all n 2 n2, 

Pr 
(I 

(8.46) 

and for all n I n,, 

Pr 
(I 

-+ogp(X”,Y^)-H(X,Yji>e)<;. (8.47) 

Choosing n > max{ n,, It,, n3}, the probability of the union of the sets in 
(8.431, (8.46) and (8.47) must be less than E. Hence for n sufficiently 
large, the probability of the set A:' 
the first part of the theorem. 

is greater than 1 - E, establishing 

To prove the second part of the theorem, we have 

1=&(x”, Y”) (8.48) 

1 c pw, Y”) (8.49) 
A(n) c 

I 144 I2-“‘H’X, Y)+E) , (8.50) 

and hence 

IAS"' . nu-ox, Y)+E) (8.51) 

For sufficiently large n, Pr(Ar’ ) 2 1 - E, and therefore 

l-ES c pW,y”) (8.52) 
w', y'%A:) 

and 

I IAr’(2-“‘N’x, Y)-c) , 

(8.53) 

IA;‘1 2 (1 - &4H”Y, Y)-E) . (8.54) 

Now if p and Yn are independent but have the same marginals as X” 
and Y”, then 
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PI-(@, ?)EA~‘)= c pWp(y”) (8.55) 
Ir” , y”EAS”) 

12 nwx, Y)+c) 2- nvz(X)-r) 2- nw(Y)-E) (8.56) 

=2- n(Z(X; Y)-3c) 
. 

By similar arguments, we can also show that 

(8.57) 

Pr@‘, ?%A’:‘)= c p(x”)p(y”) (8.58) 
Ah) c 

L (1 _ ,)2”‘H’X, Y)-r)2-n(H(X)+c)2-n(H(Y)+r) (8.59) 

= (1 - 42 -n(Z(X; Y)+3r) 
. (8.60) 

This completes the proof of the theorem. Cl 

The jointly typical set is illustrated in Figure 8.9. There are about 
2nH(X) typical X sequences, and about 2nH(Y) typical Y sequences. How- 
ever, since there are only 2nH(Xp ‘) jointly typical sequences, not all pairs 
of typical X” and typical Y” are also jointly typical. The probability that 
any randomly chosen pair is jointly typical is about 2-nz(x’ ‘! Hence, for 
a fixed Y”, we can consider about 2nzcX’ ‘) such pairs before we are likely 
to come across a jointly typical pair. This suggests that there are about 
2 nzfX’ ‘) distinguishable signals X”. 

\y” 2nH(n typical u” sequences 

x” 

0 0 0 0 

0 0 0 0 

@WI 
typical 

x” sequences 0 0 0 

jointly typical 
(9, YT Pairs 

Figure 8.9. Jointly typical sequences. 



198 CHANNEL CAPACl7-Y 

8.7 THE CHANNEL CODING THEOREM 

We now prove what is perhaps the basic theorem of information theory, 
the achievability of channel capacity. The basic argument was first 
stated by Shannon in his original 1948 paper. The result is rather 
counterintuitive; if the channel introduces errors, how can one correct 
them all? Any correction process is also subject to error, ad infinitum. 

Shannon used a number of new ideas in order to prove that informa- 
tion can be sent reliably over a channel at all rates up to the channel 
capacity. These ideas include 

l Allowing an arbitrarily small but non-zero probability of error, 
l Using the channel many times in succession, so that the law of 

large numbers comes into effect, and 
l Calculating the average of the probability of error over a random 

choice of codebooks, which symmetrizes the probability, and which 
can then be used to show the existence of at least one good code. 

Shannon’s outline of the proof was based on the idea of typical 
sequences, but the proof was not made rigorous until much later. The 
proof given below makes use of the properties of typical sequences and is 
probably the simplest of the proofs developed so far. As in all the proofs, 
we use the same essential ideas-random code selection, calculation of 
the average probability of error for a random choice of codewords, etc. 
The main difference is in the decoding rule. In the proof, we decode by 
joint typicality; we look for a codeword that is jointly typical with the 
received sequence. If we find a unique codeword satisfying this property, 
we declare that word to be the transmitted codeword. By the properties 
of joint typicality stated previously, with high probability the trans- 
mitted codeword and the received sequence are jointly typical, since 
they are probabilistically related. Also, the probability that any other 
codeword looks jointly typical with the received sequence is 2-“‘. Hence, 
if we have fewer then 2”’ codewords, then with high probability, there 
will be no other codewords that can be confused with the transmitted 
codeword, and the probability of error is small. 

Although jointly typical decoding is suboptimal, it is simple to ana- 
lyze and still achieves all rates below capacity. 

We shall now give the complete statement and proof of Shannon’s 
second theorem: 

Theorem 8.7.1 (The channel coding theorem): All rates below capacity 
C are achievable. Specifically, for every rate R c C, there exists a se- 
quence of <2”“, n) codes with maximum probability of error hen’+ 0. 

Conversely, any sequence of <2”“, n) codes with Afn’ + 0 must have 
R I C. 
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Proof: We prove that rates R < C are achievable and postpone the 
proof of the converse to Section 8.9. 

Achievability: Fix p(x). Generate a (2”R, n) code at random according to 
the distribution p(x). Specifically, we independently generate 2nR 
codewords according to the distribution, 

p(x”) = ii p(q) - (8.61) 
i=l 

We exhibit the 2nR codewords as the rows of a matrix: 

x,(l) . . . x,(1) 
; *. i. 

X,(2nR) . .: 1 (8.62) 
xn(2nR) 

Each entry in this matrix is generated i.i.d. according to p(x). Thus the 
probability that we generate a particular code % is 

ZnR n 

Pr(%) = n n p(xi(w)). 
w=l i=l 

(8.63) 

Consider the following sequence of events: 

1. A random code % is generated as described in (8.63) according to 
p(x). 

2. The code % is then revealed to both sender and receiver. Both 
sender and receiver are also assumed to know the channel transi- 
tion matrix p( y(x) for the channel. 

3. A message W is chosen according to a uniform distribution 

Pr( W = w) = 2-nR, w  = 1,2, . . . ) 2nR. (8.64) 

4. The wth codeword X”(w), corresponding to the wth row of %‘, is 
sent over the channel. 

5. The receiver receives a sequence Y” according to the distribution: 

P( Yn IX”(W)) = fi p(yi Ixi(w)) ’ 
i=l 

(8.65) 

6. The receiver guesses which message was sent. (The optimum 
procedure to minimize probability of error is maximum likelihood 
decoding, i.e., the receiver should choose the a posteriori most 
likely message. But this procedure is difficult to analyze. Instead, 
we will use typical set decoding, which is described below. Typical 
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set decoding is easier to analyze and is asymptotically optimal.) 
The receiver declares that the index W was sent if the following 
conditions are satisfied: 

l (XVV), Y”) i 8 jointly typical. 
l There is no other index k, such that (X”(k), Y” ) E A:‘. 

If no such I@ exists or if there is more than one such, then an error 
is declared. (We may assume that the receiver outputs a dummy 
index such as 0 in this case.) 

7. There is a decoding error if I@ # W. Let 5E be the event {I@ # W}. 

Analysis of the probability of error 

Outline: We first outline the analysis. 

Instead of calculating the probability of error for a single code, we 
calculate the average over all codes generated at random according to 
the distribution (8.63). By the symmetry of the code construction, the 
average probability of error does not depend on the particular index that 
was sent. For a typical codeword, there are two different sources of error 
when we use typical set decoding: either the output Y” is not jointly 
typical with the transmitted codeword or there is some other codeword 
that is jointly typical with Y”. The probability that the transmitted 
codeword and the received sequence are jointly typical goes to one as 
shown by the joint AEZ For any rival codeword, the probability that it 
is jointly typical with the received sequence is approximately 2-nz, and 
hence we can use about 2”’ codewords and still have low probability of 
error. We will later extend the argument to find a code with low 
maximal probability of error. 

Detailed calculation of the probability of error: We will calculate the 
average probability of error, averaged over all codewords in the 
codebook, and averaged over all codebooks, i.e., we calculate 

(8.66) 

(8.67) 

(8.68) 

where Pr’( Ce ) is defined for typical set decoding. 
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By the symmetry of the code construction, the average probability of 
error averaged over all codes does not depend on the particular index 
that was sent, i.e., C, P(V)&,(%) does not depend on w. Thus we can 
assume without loss of generality that the message W = 1 was sent, 
since 

(8.69) 

(8.70) 

(8.71) 

Define the following events: 

Ei = {(X”(i), Y”) is in A:‘}, i E {1,2, 4 I  .  .  9 znR1 9 (8.72) 

where Ei is the event that the ith codeword and Y” are jointly typical. 
Recall that Y” is the result of sending the first codeword X”(1) over the 
channel. 

Then an error occurs in the decoding scheme if either E”, occurs (when 
the transmitted codeword and the received sequence are not jointly 
typical) or E, U E, U l l l U E+ occurs (when a wrong codeword is jointly 
typical with the received sequence). Hence, letting P( %’ ) denote 
Pr{%‘lW= l}, we have 

(8.73) 

anR 

sP(E”,)+ C REi), (8.74) 
i=2 

by the union of events bound for probabilities. Now, by the joint UP, 
P(E”,)+ 0, and hence 

P(E”l)r l , for n sufficiently large . (8.75) 

Since by the code generation process, X”(1) and X”(i) are independent, 
so are Y” and X”( i ), i # 1. Hence, the probability that X”(i) and Y” are 
jointly typical is I 2-nczcX’ y)-3E) by the joint AEP. Consequently, 

2”R 

p(~)=P(81W=1)1P(E”,)+ C P(Ei) 
i=2 

(8.76) 

I l + C 2-n(ZW; Y)-3~) (8.77) 
i=2 
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= E + (cp _ 1)2-“(z”x; Y)-SC) (8.78) 

s e + 23nc2-n(ZlX; Y)-RI (8.79) 

52E (8.80) 

if n is sufficiently large and R < 1(X, Y) - 3~. 
Hence, if R < 1(X; Y), we can choose E and n so that the average 

probability of error, averaged over codebooks and codewords, is less than 
2E. 

To finish the proof, we will strengthen this conclusion by a series of 
code 

1. 

2. 

3. 

selections. 

Choose p(x) in the proof to be p”(x), the distribution on X that 
achieves capacity. Then the condition R < 1(X; Y) can be replaced 
by the achievability condition R < C. 
Get rid of the average over codebooks. Since the average probabili- 
ty of error over codebooks is small ( 5 2~), there exists at least one 
codebook %* with a small average probability of error. Thus 
P:< Ce *) 5 2~. Determination of %‘* can be achieved by an exhaus- 
tive search over all (2nR, n) codes. 
Throw away the worst half of the codewords in the best codebook 
%*. Since the average probability of error for this code is less then 
2q we have 

2E 2 f c Ai( (8.81) 

which implies that at least half the indices i and their associated 
codewords X”(i) must have conditional probability of error hi less 
than 4~ (otherwise, these codewords themselves would contribute 
more than 2~ to the sum). Hence the best half of the codewords 
have a maximal probability of error less than 4~. If we reindex 
these codewords, we have 2nR-1 codewords. Throwing out half the 
codewords has changed the rate from R to R - A, which is neglig- 
ible for large n. 

Combining all these improvements, we have constructed a code of rate 
R&R- i, with maximal probability of error A(“’ 5 4~. This proves the 
achievability of any rate below capacity. 0 

Random coding is the method of proof for the above theorem, not the 
method of signalling. Codes are selected at random in the proof merely 
to symmetrize the mathematics and to show the existence of a good 
deterministic code. We proved that the average over all codes of block 
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length n has small probability of error. We can find the best code within 
this set by an exhaustive search. Incidentally, this shows that the 
Kolmogorov complexity of the best code is a small constant. This means 
that the revelation (in step 2) to the sender and receiver of the best code 
%* requires no channel. The sender and receiver merely agree to use the 
best (2”R, n) code for the channel. 

Although the theorem shows that there exist good codes with ex- 
ponentially small probability of error for long block lengths, it does not 
provide a way of constructing the best codes. If we used the scheme 
suggested by the proof and generate a code at random with the appro- 
priate distribution, the code constructed is likely to be good for long 
block lengths. However, without some structure in the code, it is very 
difficult to decode (the simple scheme of table lookup requires an 
exponentially large table). Hence the theorem does not provide a practi- 
cal coding scheme. Ever since Shannon’s original paper on information 
theory, researchers have tried to develop structured codes that are easy 
to encode and decode. So far, they have developed many codes with 
interesting and useful structures, but the asymptotic rates of these 
codes are not yet near capacity. 

8.8 ZERO-ERROR CODES 

The outline of the proof of the converse is most clearly motivated by 
going through the argument when absolutely no errors are allowed. We 
will now prove that Pp’ = 0 implies R 5 C. 

Assume that we have a (2”R, n) code with zero probability of error, 
i.e., the decoder output g(Y”) is equal to the input index W with 
probability 1. Then the input index W is determined by the output 
sequence, i.e., H( WI Y” ) = 0. Now, to obtain a strong bound, we arbitrari- 
ly assume that W is uniformly distributed over { 1,2, . . . , 2”R}. Thus 
H(W) = nR. We can now write the string of inequalities: 

nR = H(W)= H(WIY”)+ I(W, Y”) (8.82) 

-0 

= I(w; Y") (8.83) 

(a) 
5 I(X”; Y”) (8.84) 

~~ I(Xi;Y) i (8.85) 
i=l 

Cc) 

InC, (8.86) 
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where (a) follows from the data processing inequality (since 
W+ X”(W)+ Y” forms a Markov chain), (b) will be proved in Lemma 
8.9.2 using the discrete memoryless assumption, and (c) follows from the 
definition of (information) capacity. 

Hence, for any zero-error (2"R, n) code, for all n, 

RsC. (8.87) 

8.9 FANO’S INEQUALITY AND THE CONVERSE TO THE 
CODING THEOREM 

We now extend the proof that was derived for zero-error codes to the 
case of codes with very small probabilities of error. The new ingredient 
will be Fano’s inequality, which gives a lower bound on the probability 
of error in terms of the conditional entropy. Recall the proof of Fano’s 
inequality, which is repeated here in a new context for reference. 

Let us define the setup under consideration. The index W is uniformly 
distributed on the set ?V = { 1,2, . . . , 2nR}, and the sequence Y” is 
probabilistically related to W. From Y”, we estimate the index W that 
was sent. Let the estimate be W = g(Y” ). Define the probability of error 

Ptn) = Pr(W# W). e (8.88) 

Define 

(8.89) 

Then using the chain rule for entropies to expand H(E, W 1 Y” ) in two 
different ways, we have 

H(E, WIY”) = H(WIY”) + H(E(W, Y”) (8.90) 

= H(EIY") + H(WIE, Y"). (8.91) 

Now’ since E is a function of W and g(Y” ), it follows that H(E I W, Y”) = 0. 
Also, H(E) 5 1, since E is a binary valued random variable. The remain- 
ing term, H( W I E, Y" ), can be bounded as follows: 

H(WIE,Y")=P(E=O)H(WIY",E=O)+P(E=I)H(W(Y~,E=I) (8.92) 

22 (1 - P?))O + P?) log((sy’l - 1) (8.93) 

-Z P%R - e 9 (8.94) 



8.9 FANO’S 1NEQUALITY 205 

since given E = 0, W = g(Y”), and when E = 1, we can upper bound the 
conditional entropy by the logarithm of the number of outcomes. Com- 
bining these results, we obtain Fano’s inequality: 

H(W(Y”)S 1+ Pr’nR. (8.95) 

Since for a fixed code X”(W) is a function of W, 

H(X”(W)IY”>r H(WIY”). (8.96) 

Then we have the following lemma. 

Lemma 8.9.1 (Fano’s inequality): For a discrete memoryless channel 
with a co&book % and the input messages uniformly distributed, let 
Pr’ = Pr( W # g( Y” )). Then 

H(X”IY”)Il+Pr’nR. (8.97) 

We will now prove a lemma which shows that the capacity per 
transmission is not increased if we use a discrete memoryless channel 
many times. 

Lemma 8.9.2: Let Y” be the result of passing X” through a discrete 
memoryless channel. Then 

1(X”; Y” ) I nC, for all p(x” ) . (8.98) 

Proof: 

1(X”; Y”) = H(Y”) - H(Y”IX”) (8.99) 

=H(Y”)- SI H(Y,IYlp a a s 9 Yi-l,Xn) (8.100) 
i=l 

=H(Y”)-- 2 H(y,&), 
i=l 

(8.101) 

since by the definition of a discrete memoryless channel, Yi depends only 
on Xi and is conditionally independent of everything else. Continuing 
the series of inequalities, we have 

I(X”; Y”)= H(Y”)- ~ H(YilXi) (8.102) 
i=l 

I ~ H(Y,) - ~ H(Yi(Xi) (8.103) 
i=l i=l 
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=~ I(Xi;Y) i (8.104) 
i=l 

InC, (8.105) 

where (8.103) follows from the fact that the entropy of a collection of 
random variables is less than the sum of their individual entropies, and 
(8.105) follows from the definition of capacity. Thus we have proved that 
using the channel many times does not increase the information capaci- 
ty in bits per transmission. 0 

We are now in a position to prove the converse to the channel coding 
theorem. 

Proof: Converse to Theorem 8.7.1, (the channel coding theorem): We 
have to show that any sequence of (2”R, n) codes with ACn’+ 0 must have 
RS C. 

If the maximal probability of error tends to zero, then the average 
probability of error for the sequence of codes also goes to zero, i.e., 
ACn) + 0 implies Pp’ + 0, where Pr’ is defined in (8.31). For each n, let W 
be drawn according to a uniform distribution over { 1,2, . . . , 2nR}. Since 
W has a uniform distribution, P$’ = Pr( @ # W). Hence 

nR = H(W) = H(W(Y”) + I(W; Y”) (8.106) 

~H(w~Yn)+I(x”(w); n 

I 1 + Pr’nR + I(X”( W); Y”) 

I I+ P’“‘nR + nC e (8.109) 

by Lemma 8.9.1 and Lemma 8.9.2. Dividing by n, we obtain 

RsP;‘R+ ;+C. (8.110) 

Now letting n -+ M, we see that the first two terms on the right hand side 
tend to 0, and hence 

We can rewrite (8.110) as 

c 1 p~‘rl----- 
R nR’ 

(8.112) 
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Rate of code 

Figure 8.10. Lower bound on the probability of error. 

This equation shows that if R > C, the probability of error is bounded 
away from 0 for sufEciently large n (and hence for all n, since if Pr’ = 0 
for small n, we can construct codes for large n with Pr’ = 0 by con- 
catenating these codes). Hence we cannot achieve an arbitrarily low 
probability of error at rates above capacity. This inequality is illustrated 
graphically in Figure 8.10. 0 

This converse is sometimes called the weak converse to the channel 
coding theorem. It is also possible to prove a strong converse, which 
states that for rates above capacity, the probability of error goes 
exponentially to 1. Hence, the capacity is a very clear dividing point-at 
rates below capacity, Pr’ 
Pp’ + 1 exponentially. 

* 0 exponentially, and at rates above capacity, 

8.10 EQUALITY IN THE CONVERSE TO THE CHANNEL CODING 
THEOREM 

We have proved the channel coding theorem and its converse. In 
essence, these theorems state that when R < C, it is possible to send 
information with an arbitrarily low probability of error, and when 
R > C, the probability of error is bounded away from zero. 

It is interesting and rewarding to examine the consequences of 
equality in the converse; hopefully, it will give some ideas as to the kind 
of codes that achieve capacity. Repeating the steps of the converse in the 
case when P, = 0, we have 

nR = H(W) (8.113) 

2 H(X”(W)) (8.114) 



= H(X"IY") +1(X"; Y") 
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(8.115) 
= 0, &ceP, = 0 

=I(X”;Y”) (8.116) 

= H(Y") - H(Y"lX") (8.117) 

=H(Y")- ~ H(YilXi) ( since channel is a DMC) (8.118) 
i=l 

~ ~ H(Yi)- ~ H(YilXi) 
i=l i=l 

(8.119) 

n 

= C I(Xi; Y’) 1 (8.120) 
i=l 

(cl 

5 nC. (8.121) 

We have equality in (a) only if all the codewords are distinct. We have 
equality in (b) only if the Yi’S are independent, and equality in (c) only if 
the distribution of Xi is p*(x), the distribution on X that achieves 
capacity. We have equality in the converse only if these conditions are 
satisfied. This indicates that for an efficient code that achieves capacity, 
the codewords are distinct and the distribution of the Yi’s looks i.i.d. 
according to 

p*(y) = c p*wP(YId 9 (8.122) 
x 

the distribution on Y induced by the optimum distribution on X. The 
distribution referred to in the converse is the empirical distribution onX 
and Y induced by a uniform distribution over codewords, i.e., 

(8.123) 

We can check this result in examples of codes which achieve capacity: 

1. Noisy typewriter. In this case, we have an input alphabet of 26 
letters, and each letter is either printed out correctly or changed to 
the next letter with probability &. A simple code that achieves 
capacity (log 13) for this channel is to use every alternate input 
letter so that no two letters can be confused. In this case, there are 
13 codewords of blocklength 1. If we choose the codewords i.i.d. 
according to a uniform distribution on { 1,3,5,7, . . . ,25}, then the 
output of the channel is also i.i.d. and uniformly distributed on 
{1,2,. . . ,26}, as expected. 
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2. Binary symmetric channel. Since given any input sequence, every 
possible output sequence has some positive probability, it will not 
be possible to distinguish even two codewords with zero probability 
of error. Hence the zero-error capacity of the BSC is zero. 

However, even in this case, we can draw some useful conclu- 
sions. The efficient codes will still induce a distribution on Y that 
looks i.i.d. - Bernoulli( i). Also, from the arguments that lead up 
to the converse, we can see that at rates close to capacity, we have 
almost entirely covered the set of possible output sequences with 
decoding sets corresponding to the codewords. At rates above 
capacity, the decoding sets begin to overlap, and the probability of 
error can no longer be made arbitrarily small. 

8.11 HAMMING CODES 

The channel coding theorem promises the existence of block codes that 
will allow us to transmit information at rates below capacity with an 
arbitrarily small probability of error if the block length is large enough. 
Ever since the appearance of Shannon’s original paper, people have 
searched for such codes. In addition to achieving low probabilities of 
error, useful codes should be “simple” so that they can be encoded and 
decoded efficiently. 

The search for simple good codes has come a long way since the 
publication of Shannon’s original paper in 1948. The entire field of 
coding theory has been developed during this search. We will not be able 
to describe the many elegant and intricate coding schemes that have 
been developed since 1948. We will only describe the simplest such 
scheme developed by Hamming [129]. It illustrates some of the basic 
ideas underlying most codes. 

The object of coding is to introduce redundancy so that even if some of 
the information is lost or corrupted, it will still be possible to recover the 
message at the receiver. The most obvious coding scheme is to repeat 
information. For example, to send a 1, we send 11111, and to send a 0, 
we send 00000. This scheme uses 5 symbols to sent 1 bit, and therefore 
has a rate of i bits per symbol. If this code is used on a binary 
symmetric channel, the optimum decoding scheme is to take the majori- 
ty vote of each block of 5 received bits. If 3 or more bits are 1, we decode 
the block as a 1, otherwise we decode it as 0. An error occurs if and only 
if more than 3 of the bits are changed. By using longer repetition codes, 
we can achieve an arbitrarily low probability of error. But the rate of the 
code also goes to zero with block length, and so even though the code is 
“simple,” it is really not a very useful code. 

Instead of simply repeating the bits, we can combine the bits in some 
intelligent fashion so that each extra bit checks whether there is an 
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error in some subset of the information bits. A simple example of this is 
a parity check code. Starting with a block of n - 1 information bits, we 
choose the n-th bit so that the parity of the entire block is 0 (the number 
of l’s in the block is even). Then if there is an odd number of errors 
during the transmission, the receiver will notice that the parity has 
changed and detect the error. This is the simplest example of an error 
detecting code. The code does not detect an even number of errors and 
does not give any information about how to correct the errors that occur. 

We can extend the idea of parity checks to allow for more than one 
parity check bit and to allow the parity checks to depend on various 
subsets of the information bits. The Hamming code that we describe 
below is an example of a parity check code. We describe it using some 
simple ideas from linear algebra. 

To illustrate the principles of Hamming codes, we consider a binary 
code of block length 7. All operations will be done modulo 2. Consider 
the set of all non-zero binary vectors of length 3. Arrange them in 
columns to form a matrix, 

0001111 
H= 0110011. 1 (8.124) 

1010101 

Consider the set of vectors of length 7 in the null space of H (the vectors 
which when multiplied by H give 000). From the theory of linear spaces, 
since H has rank 3, we expect the null space of H to have dimension 4. 
We list these 24 codewords in Table 8.1. 

Since the set of codewords is the null-space of a matrix, it is linear in 
the sense that the sum of any two codewords is also a codeword. The set 
of codewords therefore forms a linear subspace of dimension 4 in the 
vector space of dimension 7. 

Looking at the codewords, we notice that other than the all 0 
codeword, the minimum number of l’s in any codeword is 3. This is 
called the minimum weight of the code. We can see that the minimum 
weight of a code has to be at least 3 since all the columns of H are 
different and so no two columns can add to 000. The fact that the 
minimum distance is exactly 3 can be seen from the fact that the sum of 
any two columns must be one of the columns of the matrix. 

Table 8.1. The Hamming (7,4) Code 

0000000 0100101 1000011 1100110 
0001111 0101010 1001100 1101001 
0010110 0110011 1010101 1110000 
0011001 0111100 1011010 1111111 
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Since the code is linear, the difference between any two codewords is 
also a codeword, and hence any two codewords differ in at least 3 places. 
The minimum number of places in which two codewords differ is called 
the minimum distance of the code. The minimum distance of the code is 
a measure of how far apart the codewords are and will determine how 
distinguishable the codewords will be at the output of the channel. The 
minimum distance is equal to the minimum weight for a linear code. We 
aim to develop codes that have a large minimum distance. 

For the code described above, the minimum distance is 3. Hence if a 
codeword c is corrupted in only one place, it will differ from any other 
codeword in at least two places, and therefore be closer to c than to any 
other codeword. But can we discover which is the closest codeword 
without searching over all the codewords? 

The answer is yes. We can use the structure of the matrix H for 
decoding. The matrix H is called the parity check matrix and has the 
property that for every codeword c, Hc = 0. Let e, be a vector with a 1 in 
the ith position and O’s elsewhere. If the codeword is corrupted at 
position i, then the received vector r = c + ei. If we multiply this 
received vector by the matrix H, we obtain 

Hr=H(C+e,)=HC+Hei=Hei, (8.125) 

which is the vector corresponding to the ith column of H. Hence looking 
at Hr, we can find which position of the received vector was corrupted. 
Reversing this bit will give us a codeword. 

This yields a simple procedure for correcting one error in the received 
sequence. We have constructed a codebook with 16 codewords of block 
length 7, which can correct up to one error. This code is called a 
Hamming code. 

We have not yet identified a simple encoding procedure; we could use 
any mapping from a set of 16 messages into the codewords. But if we 
examine the first 4 bits of the codewords in the table, we observe that 
they cycle through all 2* combinations of 4 bits. Thus we could use these 
4 bits to be the 4 bits of the message we want to send; the other 3 bits 
are then determined by the code. In general, it is possible to modify a 
linear code so that the mapping is explicit, so that the first k bits in each 
codeword represent the message, and the last n - k bits are parity check 
bits. Such a code is called a systematic code. The code is often identified 
by its block length n, the number of information bits k and the minimum 
distance d. For example, the above code is called a (7,4,3) Hamming 
code, i.e., n = 7, k = 4 and d = 3. 

We can easily generalize this procedure to construct larger matrices 
H. In general, if we use I rows in H, then the code that we obtain will 
have block length n = 2’ - 1, k = 2l- I - 1, and minimum distance 3. AI1 
these codes are called Hamming codes and can correct one error. 
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Hamming codes are the simplest examples of linear parity check codes. 
They demonstrate the principle that underlies the construction of other 
linear codes. But with large block lengths it is likely that there will be 
more than one error in the block. In the early 1950’s, Reed and Solomon 
found a class of multiple error correcting codes for non-binary channels. 
In the late 1950’s, Bose and Chaudhuri [42] and Hocquenghem [134] 
generalized the ideas of Hamming codes using Galois field theory to 
construct t-error correcting codes (called BCH codes) for any t. Since 
then various authors have developed other codes and also developed 
efficient decoding algorithms for these codes. With the advent of integ- 
rated circuits, it has become feasible to implement fairly complex codes 
in hardware and realize some of the error correcting performance 
promised by Shannon’s channel capacity theorem. For example, all 
compact disc players include error correction circuitry based on two 
interleaved (32, 28,5) and (28,24,5) Reed-Solomon codes that allow the 
decoder to correct bursts of up to 4000 errors. 

AI1 the codes described above are block codes-they map a block of 
information bits onto a channel codeword and there is no dependence on 
past information bits. It is also possible to design codes where each 
output block depends not only on the current input block, but also on 
some of the past inputs as well. A highly structured form of such a code 
is called a convolutional code. The theory of convolutional codes has 
developed considerably over the last 25 years. We will not go into the 
details, but refer the interested reader to textbooks on coding theory 
[411, Wm. 

Although there has been much progress in the design of good codes 
for the binary symmetric channel, it is still not possible to design codes 
that meet the bounds suggested by Shannon’s channel capacity theorem. 
For a binary symmetric channel with crossover probability p, we would 
need a code that could correct up to np errors in a block of length n and 
have n(1 - H(p)) information bits. None of the codes known so far 
achieve this performance. For example, the repetition code suggested 
earlier corrects up to n/2 errors in a block of length n, but its rate goes 
to 0 with n. Until 1972, all known codes that could correct na errors for 
block length n had asymptotic rate 0. In 1972, Justesen [147] described 
a class of codes with positive asymptotic rate and positive asymptotic 
minimum distance as a fraction of the block length. However, these 
codes are good only for long block lengths. 

8.12 FEEDBACK CAPACITY 

The channel with feedback is illustrated in Figure 8.11. We assume that 
all the received symbols are sent back immediately and noiselessly to 
the transmitter, which can then use them to decide which symbol to 
send next. 
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Figure 8.11. Discrete memoryless channel with feedback. 

Can we do better with feedback? The surprising answer is no, which 
we shall now prove. We define a (2”R, 12) fee&a& code as a sequence of 
mappings jti( W, Y”-l), where each xi is a function only of W and the 
previous received values, YI, Yz, . . . , Yiel, and a sequence of decoding 
functions g: 3” + { 1,2, . . . , 2nR}. Thus 

Pp’ = Pr{g(Y”) # W} , (8.126) 

when W is uniformly distributed over { 1,2, . . . , 2nR}. 

Definition: The capacity with feedback, C,,, of a discrete memoryless 
channel is the supremum of all rates achievable by feedback codes. 

Theorem 8.12.1 (Feedback capacity): 

C,,=C=y$I(x;Y). (8.127) 

Proof: Since a non-feedback code is a special case of a feedback code, 
any rate that can be achieved without feedback can be achieved with 
feedback, and hence 

Proving the inequality the other way is slightly more tricky. We cannot 
use the same proof that we used for the converse to the coding theorem 
without feedback. Lemma 8.9.2 is no longer true, since Xi depends on 
the past received symbols, and it is no longer true that Yi depends only 
on Xi and is conditionally independent of the future X’s in (8.101). 

There is a simple change that will make the method work; instead of 
using X”, we will use the index W and prove a similar series of 
inequalities. Let W be uniformly distributed over { 1,2, . . . , 2nR}. Then 

nR=H(w)=H(wIYn)+z(w;Yn) (8.129) 

5 1+ P+R + Z(w; Y”) (8.130) 

by Fano’s inequality. 
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Now we can bound I( W, Y” ) as follows: 

I(W, Y") = H(Y") - H(Y"IW) (8.131) 

= H(yn) - ~ H(yiIyl, Yz, . . . ) Yi_1, W) (8.132) 
i=l 

=H(Y”)- 2 H(YJYl, Y& l * .  )  q-1, w,xi) (8.133) 
i=l 

= H(Y") - ~ H(YilXi) 
i=l 

(8.134) 

since Xi is a function of Yl, . . . , Yi -1 and W, and conditional on Xi, Yi is 
independent of W and past samples of Y. Then using the entropy bound, 
we have 

I(W; Y") = H(Y") - ~ H(YilXi) 
i=l 

(8.135) 

5~ H(Yi)-~ H(Y,lXi) (8.136) 
i=l i=l 

=~ I(x,;Y) i (8.137) 
i=l 

SnC (8.138) 

from the definition of capacity for a discrete memoryless channel. 
Putting these together, we obtain 

nR -Z Pcn’nR + 1 + nC - e ? (8.139) 

and dividing by n and letting n + 00, we conclude 

RIG. (8.140) 

Thus we cannot achieve any higher rates with feedback than we can 
without feedback, and 

c FB=c. cl (8.141) 

As we have seen in the example of the binary erasure channel, 
feedback can help enormously in simplifying encoding and decoding. 
However, it cannot increase the capacity of the channel. 
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8.13 THE JOINT SOURCE CHANNEL CODING THEOREM 

It is now time to combine the two main results that we have proved so 
far: data compression (R > H: Theorem 5.4.2) and data transmission 
(R < C: Theorem 8.7.1). Is the condition H c C necessary and sufficient 
for sending a source over a channel? 

For example, consider sending digitized speech or music over a 
discrete memoryless channel. We could design a code to map the 
sequence of speech samples directly into the input of the channel, or we 
could compress the speech into its most efficient representation, then 
use the appropriate channel code to send it over the channel. It is not 
immediately clear that we are not losing something by using the 
two-stage method, since the data compression does not depend on the 
channel and the channel coding does not depend on the source dis- 
tribution. 

We will prove in this section that the two-stage method is as good as 
any other method of transmitting information over a noisy channel. This 
result has some important practical implications. It implies that we can 
consider the design of a communication system as a combination of two 
parts, source coding and channel coding. We can design source codes for 
the most efficient representation of the data. We can separately and 
independently design channel codes appropriate for the channel. The 
combination will be as efficient as anything we could design by consider- 
ing both problems together. 

The common representation for random data uses a binary alphabet. 
Most modern communication systems are digital, and data is reduced to 
a binary representation for transmission over the common channel. This 
offers an enormous reduction in complexity. A system like ISDN (Integ- 
rated Services Digital Network) uses the common binary representation 
to allow speech and digital data to use the same communication 
channel. 

The result that a two-stage process is as good as any one stage 
process seems so obvious that it may be appropriate to point out that it 
is not always true. There are examples of multiuser channels where the 
decomposition breaks down. 

We will also consider two simple situations where the theorem 
appears to be misleading. A simple example is that of sending English 
text over an erasure channel. We can look for the most efficient binary 
representation of the text and send it over the channel. But the errors 
will be very diMicult to decode. If however we send the English text 
directly over the channel, we can lose up to about half the letters and 
yet be able to make sense out of the message. Similarly, the human ear 
has some unusual properties that enable it to distinguish speech under 
very high noise levels if the noise is white. In such cases, it may be 
appropriate to send the uncompressed speech over the noisy channel 
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rather than the compressed version. Apparently the redundancy in the 
source is suited to the channel. 

Let us define the setup under consideration. We have a source V, that 
generates symbols from an alphabet ‘V. We will not make any assump- 
tions about the kind of stochastic process produced by V other than that 
it is from a finite alphabet and satisfies the AEP Examples of such 
processes include a sequence of i.i.d. random variables and the sequence 
of states of a stationary irreducible Markov chain. Any stationary 
ergodic source satisfies the AEP, as will be shown in Section 15.7. 

We want to send the sequence of symbols V” = V, , V,, . . . , V’ over the 
channel so that the receiver can reconstruct the sequence. To do this, we 
map the sequence onto a codeword X”(V”) and send the codeword over 
the channel. The receiver looks at his received sequence Y” and makes 
an estimate p of the sequence V” that was sent. The receiver makes an 
error if V” f ?. We define the probability of error P%’ as 

Pp’ = Pr(V” #P) = c 2 p(u”)p(y”(x”(u”))l(g(y”) # u”), 
yn vn 

(8.142) 

where I is the indicator function and g( y”) is the decoding function. The 
system is illustrated in Figure 8.12. 

We can now state the joint source channel coding theorem: 

Theorem 8.13.1 (Source-channel coding theorem): If V’, V,, . . . , V, is a 
finite alphabet stochastic process that satisfies the AEP, then there exists 
a source channel code with Pr’ + 0 if H(Y) c C. 

Conversely, for any stationary stochastic process, if H(v) > C, the 
probability of error is bounded away from zero, and it is not possible to 
send the process over the channel with arbitrarily low probability of 
error. 

Proof: 

Achievability: The essence of the forward part of the proof is the 
two-stage encoding described earlier. Since we have assumed that the 
stochastic process satisfies the AEP, it implies that there exists a typical 
set A:’ of size I 2n(H(S’)+f) which contains most of the probability. We 

v” x”(W - Channel r b 
5 Encoder 

PCVIX) 
* Decoder 

Figure 8.12. Joint source and channel coding. 
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will encode only the source sequences belonging to the typical set; all 
other sequences will result in an error. This will contribute at most E to 
the probability of error. 

We index all the sequences belonging to A:‘. Since there are at most 
2 n(H+C) such sequences, n(H + E) bits sufhce to index them. We can 
transmit the desired index to the receiver with probability of error less 
than E if 

H(v)+E=R<C. (8.143) 

The receiver can reconstruct V” by enumerating the typical set A:’ and 
choosing the sequence corresponding to the estimated index. This se- 
quence will agree with the transmitted sequence with high probability. 
To be precise, 

Pr’ = P(V” #P, (8.144) 

I P(V” $A’:‘) + P( g(Y”) # V” (V” E Al”’ ) (8.145) 

sE+E=2E (8.146) 

for n sufficiently large. Hence, we can reconstruct the sequence with low 
probability of error for n sufficiently large if 

H(“cr)<C. (8.147) 

Converse: We wish to show that Pr’ + 0 implies that H( ‘V) I C for any 
sequence of source-channel codes 

X”(V): v+ ii!?“, (8.148) 

g,(Y”): w+ 7r”. (8.149) 

By Fano’s inequality, we must have 

H(V” Ivy I 1+ P;) log1 V 1 = 1 + PF’n logI VI . 

Hence for the code, 

(=I H(V,, v,, . . . , V,) 
H(T)5 

n 

_ HW”) 
n 

= ; H(Vnlp)+ ; I(V”;p) 

(8.150) 

(8.151) 

(8.152) 

(8.153) 
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where (a) follows from the definition of entropy rate of a stationary 
process, (b) follows from Fano’s inequality, (c) from the data processing 
inequality (since V” + X” + Y” + p forms a Markov chain) and (d) 
from the memorylessness of the channel. Now letting n + 00, we have 
Pp’ + 0 and hence 

H(“y)sC. 0 (8.157) 

Hence we can transmit a stationary ergodic source over a channel if 
and only if its entropy rate is less than the capacity of the channel. 

With this result, we have tied together the two basic theorems of 
information theory: data compression and data transmission. We will 
try to summarize the proofs of the two results in a few words. The data 
compression theorem is a consequence of the AEP, which shows that 
there exists a “small” subset (of size 2nH) of all possible source sequences 
that contain most of the probability and that we can therefore represent 
the source with a small probability of error using H bits per symbol. The 
data transmission theorem is based on the joint AEP; it uses the fact 
that for long block lengths, the output sequence of the channel is very 
likely to be jointly typical with the input codeword, while any other 
codeword is jointly typical with probability = 2-“‘. Hence we can use 
about 2”’ codewords and still have negligible probability of error. The 
source channel separation theorem shows that we can design the source 
code and the channel code separately and combine the results to achieve 
optimal performance. 

S-Y OF CHAPTER 8 

Information capacity: C = maxp(xj Z(X, Y). 

Examples: 

l Binary symmetric channel: C = 1 - H(p). 
l Binary erasure channel: C = 1 - (Y. 
l Symmetric channel: C = log1 3 1 - H(row of transition matrix). 
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Properties of C: 
1. 0 5 C 5 min{loglWPj, logl%I}. 

2. 1(X, Y) is a continuous concave function of p(x). 

Definition: The set A:’ of jointly typical sequences {(x”, y” )} with respect to 
the distribution p(x, y) is given by 

(n) 
4 = w, y”)E lr x c!P: { 

- ~logp(x”)-HO(cr, 

- i logp(y”HrRY)~ CE, 

-~logp(x”,y”)-H(X,Y) CC , 
I I 

where PW, yn I= l-l:= 1 phi 9 yi )* 

(8.158) 

(8.159) 

(8.160) 

(8.161) 

Joint AEP: Let (X”, Y”) be sequences of length n drawn i.i.d. according to 
pW, y” ) = lly= 1 phi, yi 1. Then 

1. Pr((X: Y”)EA~‘)+ 1 as n-m. 
2. (A:“‘1 I ‘-~d’,(x. Y)+C! 

3. If (2: ?) -p(d’)p( y”), then Pr&‘, ?“) E A:‘) I 2-“c’cx’ y)-3c! 

The channel coding theorem: AI1 rates below capacity C are achievable, 
that is, for every E > 0 and rate R < C, there exists a sequence of (2”q n) 
codes with maximum probability of error 

A(“) I c , 

for n sufficiently large. Conversely, if hen’+ 0, then R I C. 

(8.162) 

Feedback capacity: Feedback does not increase capacity for discrete me- 
moryless channels, i.e., CFB = C. 

Source channel theorem: A stochastic process with entropy rate H(V) 
cannot be sent reliably over a discrete memoryless channel if H(V) > C. 
Conversely, if the process satisfies the AEP, then the source can be trans- 
mitted reliably if H( ‘V ) < C. 
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PROBLEMS FOR CHAPTER 8 

1. Preprocessing the output. One is given a communication channel with 
transition probabilities p( y(x) and channel capacity C = 
max,,z ) 1(X; Y). A helpful statistician preprocesses the output by 
forming Y = g(Y). He claims that this will strictly improve the 
capacity. 
(a) Show that he is wrong. 
(b) Under what conditions does he not strictly decrease the capacity? 

2. Maximum likelihood decoding. A source produces independent, equally 
probable symbols from an alphabet (a,, a,) at a rate of one symbol 
every 3 seconds. These symbols are transmitted over a binary sym- 
metric channel which is used once each second by encoding the source 
symbol a 1 as 000 and the source symbol a, as 111. If in the 
corresponding 3 second interval of the channel output, any of the 
sequences 000,001,010,100 is received, a, is decoded; otherwise, a2 is 
decoded. Let E < t be the channel crossover probability. 
(a) For each possible received 3-bit sequence in the interval corre- 

sponding to a given source letter, find the probability that a, 
came out of the source given that received sequence. 

(b) Using part (a), show that the above 
probability of an incorrect decision. 

decoding rule minimizes the 

(c) Find the probability of an incorrect decision (using part (a) is not 
the easy way here). 

(d) If the source is slowed down to produce one letter every 2n + 1 
seconds, a, being encoded by 2n + 1 O’s and a, being encoded by 
2n + 1 1’s. What decision rule minimizes the probability of error 
at the decoder? Find the probability of error as n+ 00. 

3. An additive noise channel. Find the channel capacity of the following 
discrete memoryless channel: 

z 

X- --L + Y 

where Pr{Z = 0) = Pr{Z = a} = 3. The alphabet for x is E = (0, 1). 
Assume that 2 is independent of X. 

Observe that the channel capacity depends on the value of a. 

4. Channels with memory have higher capacity. Consider a binary sym- 
metric channel with Yi = Xi $ Zi, where $ is mod 2 addition, and 
Xi, Yi E {O,l}. 

Suppose that {Zi} has constant marginal probabilities ~{Zi = 1) 
= p = 1 - Pr{ Zi = 0}, but that Z,, Z,, . . , , 2, are not necessarily in- 
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dependent. Assume that 2” is independent of the input X”. Let 
C=l-Wp,l-p). Show that mq,~xl,x2 ,..., x,j I<X,,X, ,..., X,; 
Y,,Y, ,..* ,Y,)rnC. 

5. Channel capacity. Consider the discrete memoryless channel Y = 
X + 2 (mod ll), where 

( 1, 2, 3 
z= l/3, l/3, l/3 ) 

andXE{O,l,... , lo}. Assume that 2 is independent of X. 
(a) Find the capacity. 
(b) What is the maximizing p*(x)? 

6. Using two channels at once. Consider two discrete memoryless 
channels (gl, p(yllx,), ?V1) and Wz, p(yzlxz), 9~~) with capacities C, 
and C, respectively. A new channel (gl x 5!&, p(y,lx,) xp(y,lx,), 

5, x 9z) is formed in which x, E %‘1 and x, E Tz, are simultaneously 
sent, resulting in yl, y2. Find the capacity of this channel. 

7. 

8. 

Noisy typewriter. Consider a 26-key typewriter. 
(a) If pushing a key results in printing the associated letter, what is 

the capacity C in bits? 
(b) Now suppose that pushing a key results in printing that letter or 

the next (with equal probability). Thus A+ A or B, . . . , Z+ 2 or 
A. What is the capacity? 

(c) What is the highest rate code with block length one that you can 
find that achieves zero probability of error for the channel in part 
09. 

Cascade of binary symmetric channels. 
cal binary symmetric channels, 

Show that a cascade of n identi- 

BSC#l jX1+...+Xn-l+ 

each with raw error probability p, is equivalent to a single BSC with 
error probability $ (1 - (1 - 2~)” ) and hence that lim,,, 1(X,; Xn ) = 0 
if p # 0,l. No encoding or decoding takes place at the intermediate 
terminals X1, . . . , Xn- 1. Thus the capacity of the cascade tends to 
zero. 

9. The Z channel. The 2 channel has binary input and output alphabets 
and transition probabilities p( y lx) given by the following matrix: 

Q [ 
1 0 

= l/2 l/2 1 x, Y E {O, 11 
Find the capacity of the Z channel and the maximizing input prob- 
ability distribution. 

10. Suboptimal codes. For the Z channel of the previous problem, assume 
that we choose a (2”“, n) code at random, where each codeword is a 
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12. 
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sequence of fair coin tosses. This will not achieve capacity. Find the 
maximum rate R such that the probability of error Pp’, averaged 
over the randomly generated codes, tends to zero as the block length 
n tends to infinity. 

Zero-error capacity. A channel with alphabet (0, 1,2,3,4} has transi- 
tion probabilities of the form 

P(~,xI={~/2 ify=x+lmod5 
otherwise. 

(a) Compute the capacity of this channel in bits. 
(b) The zero-error capacity of a channel is the number of bits per 

channel use that can be transmitted with zero probability of 
error. Clearly, the zero-error capacity of this pentagonal channel 
is at least 1 bit (transmit 0 or 1 with probability l/2). Find a 
block code that shows that the zero-error capacity is greater than 
1 bit. Can you estimate the exact value of the zero-error 
capacity? 

(Hint: Consider codes of length 2 for this channel.) 
The zero-error capacity of this channel was found by Lovasz [182]. 

Time-vu ying channels. Consider a time-varying discrete memoryless 
channel. Let YI , Y2, . . . , Y, be conditionally independent given 
Xl&, * * * J,, with conditional distribution given by p( ~1x1 = 
nycl pityi Ixi )* 

0 

1 -Pi 

Let X = (X1, Xz, . . . ,X,, ), Y = <Y,, Y2, . . . , Y, 1. Find max,,,, 1(X; Y). 

HISTORICAL NOTES 

The idea of mutual information and its relationship to channel capacity was first 
developed by Shannon in his original paper (2381. In this paper, he stated the 
channel capacity theorem and outlined the proof using typical sequences in an 
argument similar to the one described here. The first rigorous proof was due to 
Feinstein [107], who used a painstaking “cookie-cutting” argument to find the 
number of codewords that can be sent with a low probability of error. A simpler 
proof using a random coding exponent was developed by Gallager [118]. Our 
proof is based on Cover [62] and on Fomey’s unpublished course notes [115]. 
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The converse was proved by Fano [105], who used the inequality bearing his 
name. The strong converse was first proved by Wolfowitz [276], using techniques 
that are closely related to typical sequences. An iterative algorithm to calculate 
the channel capacity was developed independently by Arimoto [ll] and Blahut 
[371. 

The idea of the zero-error capacity was developed by Shannon [239]; in the 
same paper, he also proved that feedback does not increase the capacity of a 
discrete memoryless channel. The problem of finding the zero-error capacity is 
essentially combinatorial; the first important result in this area is due to Lovasz 
[182]. 



Chapter 9 

Differential Entropy 

We now introduce the concept of differential entropy, which is the 
entropy of a continuous random variable. Differential entropy is also 
related to the shortest description length, and is similar in many ways 
to the entropy of a discrete random variable. But there are some 
important differences, and there is need for some care in using the 
concept. 

9.1 DEFINITIONS 

Definition: Let X be a random variable with cumulative distribution 
function F(x) = Pr(X I x). If F(x) is continuous, the random variable is 
said to be continuous. Let fix) = F’(x) when the derivative is defined. If 
J”co fb> = 1, th en fl 1 x is called the probability density function for X. The 
set where f(x) > 0 is called the support set of X. 

Definition: The differential entropy h(X) of a continuous random vari- 
able X with a density fix) is defined as 

h(X) = - f(x) log f(x) dx , 

where S is the support set of the random variable. 

(9.1) 

As in the discrete case, the differential entropy depends only on the 
probability density of the random variable, and hence the differential 
entropy is sometimes written as h(f) rather than h(X). 
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Remark: As in every example involving an integral, or even a 
density, we should include the statement if it exists. It is easy to 
construct examples of random variables for which a density function 
does not exist or for which the above integral does not exist. 

Example 9.1.1 (Uniform distribution): Consider a random variable 
distributed uniformly from 0 to a, so that its density is l/a from 0 to a 
and 0 elsewhere. Then its differential entropy is 

Mx)=-~~log+= loga. (9.2) 

Note: For a < 1, log a < 0, and the differential entropy is negative. 
Hence, unlike discrete entropy, differential entropy can be negative. 
However, 2 h(X) = 21°ga = a is the volume of the support set, which is 
always non-negative, as we expect. 

Example 9.1.2 (Normal distribution): Let X- 4(x) = (ln/27ru2) x 
-r=/2a= e . Then calculating the differential entropy in nats, we obtain 

(9.3) 

=- -lnVZZ] (9.4 

EX2 
=- 202 + i ln2*c2 2 

(9.5) 

1 1 
= 5 + 2 ln2?ra2 (9.6) 

1 1 
=21ne+$n2.rr(T2 (9.7) 

1 
= 2 In 27rea2 nats . (9.8) 

Changing the base of the logarithm, we have 

h(4) = 
1 
2 log 2rea2 bits . (9.9) 

9.2 THE AEP FOR CONTINUOUS RANDOM VARIABLES 

One of the important roles of the entropy for discrete random variables 
is in the AEP, which states that for a sequence of i.i.d. random variables, 
PK,X2, * l l 

, X, ) is close to 2-nHU) with high probability. This enables 
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us to define the typical set and characterize the behavior of typical 
sequences. 

We can do the same for a continuous random variable. 

Theorem 9.2.1: Let XI, X,, . . . , X,, be a sequence of random variables 
drawn i.i.d. according to the density fix). Then 

-;logflxl,x,,.. . , X,)4 E[ -log fcX>] = h(X) in probability . 

(9.10) 

Proof: The proof follows directly from the weak law of large num- 
bers. Cl 

This leads to the following definition of the typical set. 

Definition: For E > 0 and any n, we define the typical set A:’ with 
respect to f(x) as follows: 

ACn’ = 
l 

(x 
1 

x 1, 2?“‘, x,)EP: -,logflx,,x, ,..., z,)-h(X) 

(9.11) 

where fix,, x2, . . . ,Xn)=rlyzl f(xJ 

The properties of the typical set for continuous random variables 
parallel those for discrete random variables. The analog of the cardinali- 
ty of the typical set for the discrete case is the volume of the typical set 
in the continuous case. 

Definition: The volume Vol(A) of a set A E % n is defined as 

VoltA) = I chl dx2 - - - c&x,. (9.12) 

Theorem 9.2.2: The typical set A:’ has the following properties: 

1. Pr(Ar’) > 1 - E for n sufficiently large. 
2. Vol(AF’) I 2n(h(X)+c) for all n. 

3. Vol(A’(“‘) ~(1 - •)2~(~(~)-‘) for n sufficiently large. 

Proof: By the AEP, -ilogf’(x,,x,,...,x,)=-AClogf(xi)+h(X) 
in probability, establishing property 1. 

Also, 
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1 = Sn f-xX1, x2, - - ., xn) dx, & . * ’ Q& 
I 

(9.13) 

(9.14) 

L 
I A(n) 2- nu2(X)+r) &, di, * . . dx, (9.15) 

c 

=2- n(h(X)+e) 
I *(n) hl h2 * * * d&a (9.16) 

c 
=2- dh(X)+c) Vol(AF’) . (9.17) 

Hence we have property 2. 
We argue further that the volume of the typical set is at least this 

large. If n is suffkiently large so that property 1 is satisfied, then 

l--E5 A(“)f(3C1,X2,..*,Xn)~l~2...~, 
I 

(9.18) 
45 

5 I p 2- n(h(X)-c) dx, dx, . . . dx, (9.19) 
c 

= 2 -n(h(X)-E) 
J *CR) 6 h2 l * ’ &l 

E 

=2- n(h(x)-f) Vol(A~‘) , 

establishing property 3. Thus for n sufficiently large, we have 

(1 - 42n(h(X)-c) 5 Vol(AI”‘) 5 2n(hCX)+r) . f-J 

(9.20) 

(9.22) 

Theorem 9.2.3: The set A:’ is the smallest volume set with probability 
2 1 - E, to first order in the exponent. 

Proof: Same as in the discrete case. q 

This theorem indicates that the volume of the smallest set that 
contains most of the probability is approximately 2”h. This is an n- 
dimensional volume, so the corresponding side length is (anh)‘ln = 2h. 
This provides an interpretation of the differential entropy: it is the 
logarithm of the equivalent side length of the smallest set that contains 
most of the probability. Hence low entropy implies that the random 
variable is confined to a small effective volume and high entropy 
indicates that the random variable is widely dispersed. 

Note: Just as the entropy is related to the volume of the typical set, 
there is a quantity called Fisher information which is related to the 
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surface area of the typical set. We will say more about this in Section 
16.7. 

9.3 RELATION OF DIFFERENTIAL ENTROPY TO DISCRETE 
ENTROPY 

Consider a random variable X with density f(x) illustrated in Figure 9.1. 
Suppose we divide the range of X into bins of length A. Let us assume 

that the density is continuous within the bins. Then by the mean value 
theorem, there exists a value xi within each bin such that 

Consider the quantized random variable X*, which 

X*=Xi) if iAsX<(i + 1)A 

Then the probability that X* = Xi is 

Pi = f<X) ~ = f(xi)A . 

The entropy of the quantized version is 

H(X*) = -i pi log Pi 
--m 

= -~ f(3ti)A lOg( f(Xi )A) 
-ca 

(9.23) 

is defined by 

(9.24) 

(9.25) 

(9.26) 

(9.27) 

Figure 9.1. Quantization of a continuous random variable. 
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= -~Af(xi)log~(xi)-~ flxi)AlogA (9.28) 

=-&%i)logflxi)- logA, (9.29) 

since C &)A = s f(x) = 1. If fix) log fix) is Riemann integrable (a condi- 
tion to ensure the limit is well defined [272]), then the first term 
approaches the integral of -fix) log f(x) by definition of Riemann integ- 
rability. This proves the following. 

Theorem 9.3.1: If the density f(x) of the random variable X is Riemann 
integrable, then 

H(X*)+logA+h(f)=h(X), as A-,0. (9.30) 

Thus the entropy of an n-bit quantization of a continuous random 
variable X is approximately h(X) + n. 

Examples: 

1. If X has a uniform distribution on [0, 11, and we let A = 2-“, then 
h = 0, H(X*) = n and n bits suffice to describe X to n bit accuracy. 

2. If X is uniformly distributed on [0, $1, then the first 3 bits to the 
right of the decimal point must be 0. To describe X to n bit 
accuracy requires only n - 3 bits, which agrees with h(X) = -3. 

In the above two examples, every value of X requires the same 
number of bits to describe. In general, however h(X) + n is the number 
of bits on the average required to describe X to n bit accuracy. 

The differential entropy of a discrete random variable can be consid- 
ered to be ---co. Note that 2-” = 0, agreeing with the idea that the volume 
of the support set of a discrete random variable is zero. 

9.4 JOINT AND CONDITIONAL DIFFERENTIAL ENTROPY 

As in the discrete case, we can extend the definition of differential 
entropy of a single random variable to several random variables. 

Definition: The differential entropy of a set X1, X2,. . . ,X, of random 
variables with density flxl, x,, . . . , x, ) is defined as 

h(X,,&, . . . ,X,> 

= - f(xl, x2, . . . , x,)log flxl, x2, . . . , x,J dx, dx, . . , dx, . (9.31) 
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Definition: If X, Y have a joint density function f(;lt, y), we can define 
the conditional differential entropy h(XIY) as 

h(XIY) = -1 fix, y) log flxly) dx dy . (9.32) 

Since in general flxlu) = fix, y)lfly), we can also write 

h(X(Y) = h(X, Y) - h(Y), (9.33) 

But we must be careful if any of the differential entropies are infinite. 
The next entropy evaluation is frequently used in the text. 

Theorem 9.4.1 (Entropy of a multivariate normal distribution): Let 
Xl, x2, ’ - . , X, have a multivariate normal distribution with mean p and 
covariance matrix K. (We use .Nn( E.C, K) or N( p, K) to denote this dis- 
tribution.) Then 

h(X,, X2, . . . ,X,) = h(cN;,@, K)) = f log(a?re)“lK( bits, 

where IKI denotes the determinant of K. 

Proof: The probability density function of X1, Xz, . . . , X, is 

Then 

h(f I= -1 fW[ - i (x - ~)~K-l(x - p) - ln(G)“lK11’2] dx 

= i E[z (xi - &(KS1)Jxj - @] + i ln(2r)“IKI . . I 

= i E[i (xi - ELi)(X~ - 4)(K-‘),] + i ln(27$IKI . 

=$( x.i . . - ~j)(xi - pi)l(K-‘)u + k ln(2n)nlKl 

= a i x&$,(K-‘), + $ln(27$lKl . . 

= i ;: (KK’), + i ln(27r)“lKI 
j 

= a XI, + i ln(2m)“IKI 
i 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

(9.38) 

(9.39) 

(9.40) 

(9.41) 

(9.42) 
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=- 1 + f ln(27r)“IK( 

1 
= 2 ln(27re)“lKl nats 

1 
= 2 log(2ve)” IX1 bits . 0 
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(9.43) 

(9.44) 

(9.45) 

9.5 RELATIVE ENTROPY AND MUTUAL INFORMATION 

We now extend the definition of two familiar quantities, D( f 11 g) and 
1(X, Y), to probability densities. 

Definition: The relative entropy (or K&back Leibler distance) D( f llg) 
between two densities f and g is defined by 

(9.46) 

Note that D( f 11 g) is finite only if the support set off is contained in 
the support set of g. (Motivated by continuity, we set 0 log 8 = 0.) 

Definition: The mutual information I(X, Y) between two random vari- 
ables with joint density fix, y) is defined as 

(9.47) 

From the definition it is clear that 

1(x; Y) = h(X) - h(XIY) = h(Y) - h(Y(X) (9.48) 

and 

I(& Y) = D< fb, y>ll fldfl y)) . (9.49) 

The properties of D( f llg) and 1(X, Y) are the same as in the discrete 
case. In particular, the mutual information between two random vari- 
ables is the limit of the mutual information between their quantized 
versions, since 

I(XA; Y”) = IIf - H(XAIYA) (9.50) 

= h(X) - log A - (h(XI Y) - log A) (9.51) 

= I(X, Y) , (9.52) 
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Certain authors (e.g., Gallager [120]) prefer to define the mutual 
information between two continuous random variables directly as the 
above limit, and not consider differential entropies at all. 

9.6 PROPERTIES OF DIFFERENTIAL ENTROPY, RELATIVE 
ENTROPY AND MUTUAL INFORMATION 

Theorem 9.6.1: 

with equality iff f = g almost everywhere (a.e.). 

Proof: Let S be the support set of fi Then 

I log (by Jensen’s inequality) 

(9.53) 

(9.55) 

(9.56) 

4ogl=O. (9.57) 

We have equality iff we have equality in Jensen’s inequality, which 
occurs iff f = g a.e, Cl 

Corollary: Z(X, Y) ~0 with equality iff X and Y are independent. 

Corollary: h(X(Y) zs h(X) with equality iff X and Y are independent. 

Theorem 9.6.2= Chain rule for differential entropy: 

h(X,, X2,. . .p X,>= i h(XiJX,,Xz, * * * ,Xi-1) 
i=l 

(9.58) 

Proof: Follows directly from the definitions. Cl 

Corollary: 

h(X,,&, . . . , X,)lZ h(X,), (9.59) 

with equality iff XI, X2, . . . , X, are independent. 
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Proof: Follows directly from Theorem 9.6.2 and the corollary to 
Theorem 9.6.1. El 

Application (Hadumard’s inequality): If we let X - N(0, K) be a multi- 
variate normal random variable, then substituting the definitions of 
entropy in the above inequality gives us 

(9.60) 

which is Hadamard’s inequality. A number of determinant inequalities 
can be derived from information theoretic inequalities in this fashion 
(Chapter 16). 

Theorem 9.6.3: 

h(X + c) = h(X) . (9.61) 

Translation does not change the differential entropy. 

Proof: Follows directly from the definition of differential en- 
tropy. Cl 

Theorem 9.6.4: 

h(aX) = h(X) + logla 1 . (9.62) 

Proof: Let Y=aX. Then&(y)= h&(Z), and 

h(aX) = - 
I fu(Y) 1% fu(Y) dY (9.63) 

= -( j$ fx($%(~ fx(s>) dY (9.64) 

=- fx(x) log f,(d + h&l (9.65) 

= h(X) + loglal y (9.66) 

after a change of variables in the integral. Cl 

Similarly we can prove the following corollary for vector-valued 
random variables: 
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coroIIary: 

h(AX) = h(X) + loglA1, (9.67) 

where IAl is the absolute value of the determinant. 

We will now show that the multivariate normal distribution maxi- 
mizes the entropy over all distributions with the same covariance. 

Theorem 9.6.5: Let the random vector XE R” have zero man and 
covariance K = EXX’, i.e., KU = EXiXj, 1 I i, j I n. Then h(X) I 
$ log(27re)“(KI, with equality iff X- N(O, K). 

proof: Let g(X) be any density satisfying J g<n>=cixj dx = KU, for all 
i, j. Let & be the density of a NO, K) vector as given in 9.35, where we 
set p = 0. Note that log #K(~) is a quadratic form and J Xixj4Kcx> dx = 
KU. Then 

O~m?ll~K) (9.68) 

= g log(g/+K) (9.69) 

=-h(g)-- glog& I (9.70) 

(9.71) 

= -h(g) + h(#+& 9 (9.72) 

where the substitution j’ g log & = J’ & log & follows from the fact that 
g and & yield the same moments of the quadratic form log &(x). El 

9.7 DIFFERENTIAL ENTROPY BOUND ON DISCRETE ENTROPY 

Of all distributions with the same variance, the normal maximizes the 
entropy. So the entropy of the normal gives a good bound on the 
differential entropy in terms of the variance of the random variable. We 
will use this bound to give a bound on the discrete entropy of a random 
variable. It will not be in terms of the variance of the random variable 
itself, since a discrete random variable can have arbitrarily small 
variance and still have high discrete entropy. Instead, the bound is in 
terms of an integer-valued random variable with the same probabilities 
(and hence the same entropy). 
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Let X be a discrete random variable on the set SY = {a 1, u2, . . . } with 

Pr(X= a,> =pi . (9.73) 

Theorem 9.7.1: 

mp,, Pz, * * J 5 i log(2ve) i p i2 (i-, i - (IgPJ” + &). (9-W 

Moreover, for every permutation u, 

Proof: Define two new random variables. The first, X0, is an integer- 
valued discrete random variable with the distribution 

Pr(X, = i> =pi . (9.76) 

Let U be a random variable uniformly distributed on the r_ange [0, 11, 
independent of X0. Define the continuous random variable X by 

2=X,+& (9.77) 

The distribution of the r.v. X is shown in Figure 9.2. 
It is clear that H(X) = H(X,), since discrete entropy depends only on 

the probabilities and not on the values of the outcomes. Now 

H(Xfj) = m&Z1 Pi log Pi (9.78) 

Figure 9.2. Distribution of 2. 
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= h(g), 

since f%(x) = pi for i 5 X < i + 1. 
Hence we have the following chain of inequalities: 

H(X) = m&J 

= h(g) 

I f log(27re)Var&) 

= a log(2ve)(Var(X,) + VaGJ)) 

=- i log(27re) 2 p (i=l ii2e($liPi)2+ A)* q 

(9.79) 

(9.80) 

(9.81) 

(9.82) 

(9.83) 

(9.84) 

(9.85) 

(9.86) 

(9.87) 

Since entropy is invariant with respect to permutation of pl, p2, . . . , 
we can also obtain a bound by a permutation of the pi’s, We conjecture 
that a good bound on the variance will be achieved when the high 
probabilities are close together, i.e, by the assignment . . . , p5, 

P3, PI, P29 P49 * l l 
forp, Zp2L’*-. 

How good is this bound? Let X be a Bernoulli random variable with 
parameter 3, which implies that H(X) = 1. The corresponding random 
variable X0 has variance 2, so the bound is 

H(X) 5 i log(2qe) = 1.255 bits. (9.88) 

SUMMARY OF CHAPTER 9 

h(X) = h(f) = - 
I s f(x) log fld dx . 

RX”) h aenhcX) , a.e. 

Vol(A’“‘) & gnh(X) 
I? . 

(9.89) 

(9.90) 

(9.91) 
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H([Xl,-,) = h(X) + n . (9.92) 

h(N(0, a2)) = L 2 log2rrea2 . 

h(Jlr,( p, K)) = i log(27re)” IX1 . 

D(fllg)=~flog~‘o. 

M&,X,, * - * , xn)= i h(xilxl,x2, * * * ,xi-l) * 
i=l 

h(XIY) 5 h(X). 

(9.93) 

(9.94) 

(9.95) 

(9.96) 

(9.97) 

h(ux) = h(X) + loglal . (9.98) 

Icy;y)=I Ax, y)log#) 20. 

max h(X) = k log(2re)“IKI . 
EXX’=K 

(9.100) 

2 H(X) is the effective alphabet size for a discrete random variable. 
2 h(X) is the effective support set size for a continuous random variable. 
2c is the effective alphabet size of a channel of capacity C. 

PROBLEMS FOR CHAPTER 9 

I. Differential entropy. Evaluate the differential entropy h(X) = -s f ln f 
for the following: 
(a) The exponential density, fcx) = he-“: z 2 0. 
(b) The Lap1 ace density, fix) = fr AeeA’“! 
(c) The sum of XI and X2, where XI and X2 are independent normal 

random variables with means CLi and variances a;, i = 1,2. 

2. Concavity of determinants. Let XI and X2 be two symmetric nonnega- 
tive definite n x n matrices. Prove the result of Ky Fan [103]: 

IhK,+~~21rIK,IAJK,I’, forOSASl,h=l-A, 

where IX1 denotes the determinant of K. 
Hint: Let Z = X,, where X, - N(0, K,), X2 - N(0, X2) and 8 = Ber- 

noulli( A). Then use H(ZlO) I H(Z). 

3. Mutual information for correlated normals. Find the mutual information 
1(X, Y), where 
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4. 

Evaluate 1(X; Y) for p = 1, p = 0, and p = -1, and comment. 

Uniformly distributed noise. Let the input random variable X for a 
channel be uniformly distributed over the interval -l/2 5 x I + l/2. 
Let the output of the channel be Y = X + 2, where the noise random 
variable is uniformly distributed over the interval -a/2 I z I + a/2. 
(a) Find 1(X, Y) as a function of a. 
(b) For a = 1 find th e capacity of the channel when the input X is 

peak-limited; that is, the range of X is limited to -l/2 I x 5 + l/2. 
What probability distribution on X maximizes the mutual inforrna- 
tion 1(X; Y)? 

(c) (Optional) Find the capacity of the channel for all values of 
a, again assuming that the range of X is limited to - l/2 I x I 
+1/2. 

5. Quantized random variables. Roughly how many bits are required on 
the average to describe to 3 digit accuracy the decay time (in years) of 
a radium atom if the half-life of radium is 80 years? Note that half-life 
is the median of the distribution. 

6. Scaling. Let h(X) = -J f(x) log fix) dx. Show h(AX) = logldet(A)) + 
h(X). 

HISTORICAL NOTES 

Differential entropy and discrete entropy were introduced in Shannon’s original 
paper [238]. The general rigorous definition of relative entropy and mutual 
information for arbitrary random variables was developed by Kolmogorov [156] 
and Pinsker [212], who defined mutual information as supP, ,I([X],; [Y],), where 
the supremum is over all finite partitions P and Q. The differential entropy 
bound on discrete entropy was developed independently by J. Massey (un- 
published) and by F. Willems (unpublished). 



Chapter 10 

The Gaussian Channel 

The most important continuous alphabet channel is the Gaussian chan- 
nel depicted in Figure 10.1. This is a time discrete channel with output 
Yi at time i, where Yi is the sum of the input Xi and the noise 2;. The 
noise Zi is drawn i.i.d. from a Gaussian distribution with variance N. 
Thus 

Yi =Xi + Zi, Zi - ~(0, N) . (10.1) 

The noise Zi is assumed to be independent of the signal Xi. This channel 
is a good model for some common communication channels. Without 
further conditions, the capacity of this channel may be infinite. If the 
noise variance is zero, then the receiver receives the transmitted symbol 
perfectly. Since X can take on any real value, the channel can transmit 
an arbitrary real number with no error. 

If the noise variance is non-zero and there is no constraint on the 
input, we can choose an infinite subset of inputs arbitrarily far apart, so 
that they are distinguishable at the output with arbitrarily small 
probability of error. Such a scheme has an infinite capacity as well. 
Thus if the noise variance is zero or the input is unconstrained, the 
capacity of the channel is infinite. 

The most common limitation on the input is an energy or power 
constraint. We assume an average power constraint. For any codeword 
(x+2, ’ * . , xn) transmitted over the channel, we require 

1 n - c n i=l 
xf(P. (10.2) 

This communication channel models many practical channels, including 
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Figure 10.1. The Gaussian channel. 

radio and satellite links. The additive noise in such channels may be due 
to a variety of causes. However, by the central limit theorem, the 
cumulative effect of a large number of small random effects will be 
approximately normal, so the Gaussian assumption is valid in a large 
number of situations. 

We first analyze a simple suboptimal way to use this channel. 
Assume that we want to send 1 bit over the channel in 1 use of the 
channel. Given the power constraint, the best that we can do is to send 
one of two levels +I@ or -a The receiver looks at the corresponding 
received Y and tries to decide which of the two levels was sent. 
Assuming both levels are equally likely (this would be the case if we 
wish to send exactly 1 bit of information), the optimum decoding rule is 
to decide that +fl was sent if Y > 0 and decide -fl was sent if Y < 0. 
The probability of error with such a decoding scheme is 

pt? = 2 LPr(Y<OIX= +I@)+ ;Pr(Y>oIx= -fl) (10.3) 

= j+-(Z< -VFlX=+VF)+ ~Pr(Zz*~X= -fl) (10.4) 

= Pr(Z > 0) (10.5) 

=1-&g), 
where Q,(x) is the cumulative normal function 

I 

x 1 t2 -- 
@(x) = - -rn flT e 2 dt a 

(10.6) 

(10.7) 

Using such a scheme, we have converted the Gaussian channel into a 
discrete binary symmetric channel with crossover probability P,. Simi- 
larly, by using a four level input signal, we can convert the Gaussian 
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channel into a discrete four input channel. In some practical modulation 
schemes, similar ideas are used to convert the continuous channel into a 
discrete channel. The main advantage of a discrete channel is ease of 
processing of the output signal for error correction, but some informa- 
tion is lost in the quantization. 

10.1 THE GAUSSIAN CHANNEL: DEFINITIONS 

We now define the (information) capacity of the channel as the max- 
imum of the mutual information between the input and output over all 
distributions on the input that satisfy the power constraint. 

Definition: The information capacity of the Gaussian channel with 
power constraint P is 

C= max 1(X, Y) . (10.8) 
p(x) : EX2sP 

We can calculate the information capacity as follows: Expanding 
1(x, Y), we have 

1(X; Y) = h(Y) - h(YIX) (10.9) 

= h(Y) - h(X + 21X) (10.10) 

= h(Y) - h(ZIX) (10.11) 

= h(Y) - W), (10.12) 

since 2 is independent of X. Now, h(Z) = i log 2TeN. Also, 

EY2=E(X+Z)2=EX2+2EXEZ+EZ2=P+N, (10.13) 

since X and 2 are independent and EZ = 0. Given EY2 = P + N, the 
entropy of Y is bounded by i log 2me(P + N) by Theorem 9.6.5 (the 
normal maximizes the entropy for a given variance). 

Applying this result to bound the mutual information, we obtain 

1(X; Y) = h(Y) - h(Z) (10.14) 

1 1 
4 5 log 2ve(P + N) - 5 log 27reN (10.15) 

1 P 
=j1og 1+g # 

( 1 
(10.16) 
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Hence the information capacity of the Gaussian channel is 

C = max 1(X, Y) = i log 
EX!kP 

(10.17) 

and the maximum is attained when X - MO, P). 
We will now show that this capacity is also the supremum of the 

achievable rates for the channel. The arguments are similar to the 
arguments for a discrete channel. We will begin with the corresponding 
definitions. 

Definition: A (M, n) code for the Gaussian channel with power con- 
straint P consists of the following: 

1. An index set {1,2, . . . , M}. 
2. An encoding function x : { 1,2, . . . , M} + %‘“, yielding codewords 

x”(l), x”(2), . . . ,x”(M), satisfying the power constraint P, i.e., for 
every codeword 

i x:(w)5 nP, w=1,2 ,..., M. 
i=l 

(10.18) 

3. A decoding function 

g:?F-+{l,2 ,..., M}. (10.19) 

The rate and probability of error of the code are defined as in Chapter 
8 for the discrete case. 

Definition: A rate R is said to be achievable for a Gaussian channel 
with a power constraint P if there exists a sequence of (2nR, n) codes 
with codewords satisfying the power constraint such that the maximal 
probability of error hen’ tends to zero. The capacity of the channel is the 
supremum of the achievable rates. 

Theorem 10.1.1: The capacity of a Gaussian channel with power con- 
straint P and noise variance N is 

c l = 2 log bits per transmission . (10.20) 

Remark: We will first present a plausibility argument as to why we 
may be able to construct (2”‘, n) codes with low probability of error. 
Consider any codeword of length n. The received vector is normally 
distributed with mean equal to the true codeword and variance equal to 
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the noise variance. With high probability, the received vector is con- 
tained in a sphere of radius qm around the true codeword. If we 
assign everything within this sphere to the given codeword, then when 
this codeword is sent, there will be an error only if the received vector 
falls outside the sphere, which has low probability. 

Similarly we can choose other codewords and their corresponding 
decoding spheres. How many such codewords can we choose? The 
volume of an n-dimensional sphere is of the form A,rn where r is the 
radius of the sphere. In this case, each of the decoding spheres has 
radius m. These spheres are scattered throughout the space of 
received vectors. The received vectors have energy no greater than 
n(P + N) so they lie in a sphere of radius d-j. The maximum 
number of non-intersecting decoding spheres in this volume is no more 
than 

A,W + N)); = 2; log(l+;) 
(10.21) 

A,(nN) ; 

and the rate of the code is i log (1 + fi ). This idea is illustrated in Figure 
10.2. 

This sphere packing argument indicates that we cannot hope to send 
at rates greater than C with low probability of error. However, we can 
actually do almost as well as this, as is proved next. 

Figure 10.2. Sphere packing for the Gaussian channel. 
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Proof (Achievability): We will use the same ideas as in the proof of 
the channel coding theorem in the case of discrete channels, namely, 
random codes and joint typicality decoding. However, we must make 
some modifications to take into account the power constraint and the 
fact that the variables are continuous and not discrete. 

1. 

2. 

3. 

4. 

Generation of the codebook. We wish to generate a codebook in 
which all the codewords satisfy the power constraint. To ensure 
this, we generate the codewords with each element i.i.d. according 
to a normal distribution with variance P - E. Since for large n, 
i C X3 + P - E, the probability that a codeword does not satisfy the 
power constraint will be small. However, we do not delete the bad 
codewords, as this will disturb the symmetry of later arguments. 

LetX,(w), i = 1,2, . . . , n, w  = 1,2, . . . , 2”R be i.i.d. - N(O, P - E), 
forming codewords X”(l), X”(2), . . . , X”( 2nR) E 9”. 
Encoding. After the generation of the codebook, the codebook is 
revealed to both the sender and the receiver. To send the message 
index w, the transmitter sends the wth codeword X”(w) in the 
codebook. 
Decoding. The receiver looks down the list of codewords {X”(w)} 
and searches for one that is jointly typical with the received vector. 
If there is one and only one such codeword, the receiver declares it 
to be the transmitted codeword. Otherwise the receiver declares an 
error. The receiver also declares an error if the chosen codeword 
does not satisfy the power constraint. 
Probability of error. Without loss of generality, assume that 
codeword 1 was sent. Thus Y” = X”(1) + 2”. 

Define the following events: 

&,={; +W’} (10.22) 
rl 

and 

Ei = {(X”(i), Y”) is in A:‘} . (10.23) 

Then an error occurs if E, occurs (the power constraint is violated) or E”, 
occurs (the transmitted codeword and the received sequence are not 
jointly typical) or E, U E, U . . . U E+ occurs (some wrong codeword is 
jointly typical with the received sequence). Let Z? denote the event 
I@ # W and let P denote the conditional probability given W = 1. Hence 

Pr(8(W=1)=P(8)=P(E0UE”,UE,UE,U .a. UEZ,& (10.24) 



10.2 CONVERSE TO THE CODING THEOREM FOR GAUSSZAZV CHANNELS 245 

2nR 

IP(E*)+P(E”,)+ Cp(E,L (10.25) 
i-2 

by the union of events bound for probabilities. By the law of large 
numbers, P&J+ 0 as n+ 00. Now, by the joint AEP (which can be 
proved using the same argument used in the discrete case), P(E”,)+ 0, 
and hence 

P(E”, ) 5 E for n sufficiently large . (10.26) 

Since by the code generation process, X”( 1) and X”(i) are independent, 
so are Y” and X”(i). Hence, the probability that X”(i) and Y” will be 
jointly typical is ~2-~(‘@’ y)-3’) by the joint AEP. Hence 

P~'=Pr(8)=Pr(8IW=l)=P(8) (10.27) 

rP(E,)+P(E”,)+ 2 REi) (10.28) 
i=2 

2nR 
I E + ~ + c 2-nczw Y)-3c) (10.29) 

i=2 

= & + (p _ 1)2-“‘zw; Y)-3c) (10.30) 

I zE + 23ne2-n(Z(X; Y)-R) (10.31) 

136 (10.32) 

for n sufficiently large and R < 1(X, Y) - 3~. 
This proves the existence of a good (2”R, n) code. 
Now choosing a good codebook and deleting the worst half of the 

codewords, we obtain a code with low maximal probability of error. In 
particular, the power constraint is satisfied by each of the remaining 
codewords (since the codewords that do not satisfy the power constraint 
have probability of error 1 and must belong to the worst half of the 
codewords). 

Hence we have constructed a code which achieves a rate arbitrarily 
close to capacity. The forward part of the theorem is proved. In the next 
section, we show that the rate cannot exceed the capacity. Cl 

10.2 CONVERSE TO THE CODING THEOREM FOR GAUSSIAN 
CHANNELS 

In this section, we complete the proof that the capacity of a Gaussian 
channel is C = i log (1 + R> by proving that rates R > C are not achiev- 
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able. The proof parallels the proof for the discrete channel. The main 
new ingredient is the power constraint. 

Proof (Converse to Theorem 10.1 .l ): We must show that if Pr’ + 0 
for a sequence of (2”R, n) codes for a Gaussian channel with power 
constraint P, then 

1 P 
BC=$og l+E . 

( > 
(10.33) 

Consider any (2”R, n) code that satisfies the power constraint, i.e., 

(10.34) 

for w  = 1,2,. . . , 2nR. Proceeding as in the converse for the discrete case, 
the uniform distribution over the index set w  E { 1,2, . . . , 2nR} induces a 
distribution on the input codewords, which in turn induces a dis- 
tribution over the input alphabet. Since we can decode the index W from 
the output vector Y” with low probability of error, we can apply Fano’s 
inequality to obtain 

H(WIY”)I~ + nRPr’= nc,, (10.35) 

where E, --, 0 as Pp’+ 0. Hence 

nR =H(W)= I(W; Y”)+H(WIY”) (10.36) 

sI(W; Y”)+ ncn (10.37) 

5 I(X”; Y”) + nen (10.38) 

= h(Y”) - h(Y”(X”) + nc, (10.39) 

= h(Y”) - h(Z”> + 7x, (10.40) 

5 i h(Yi) - h(Z”) + nE n (10.41) 
i=l 

=~ h(Yi)-~ h(Zi)+nE n (10.42) 
i=l i=l 

=i I(Xi;Y.)+nE I n’ (10.43) 
i=l 

Here Xi = Xi(W), where W is drawn according to the uniform dis- 
tribution on { 1,2, . . . , 2nR}. Now let Pi be the average power of the ith 
column of the codebook, i.e., 
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Pi=$j&f(W). (10.44) 
W 

Then, since YI: = Xi + Zi and since Xi and Zi are independent, the 
average power of Yi is Pi + IV. Hence, since entropy is maximized by the 
normal distribution, 

h(Yi) I i log2ne(P, + N) . (10.45) 

Continuing with the inequalities of the converse, we obtain 

nR 5 C (h(Yi) - h(Zi)) + ne, (10.46) 

5 C( i lOg(27Te(Pi + IV)) - i log2?rellr) + ne, (10.47) 

1 c Ig( P. 
= 

5 
0 l+” +ne,. 

N > 
(10.48) 

Since each of the codewords satisfies the power constraint, so does their 
average, and hence 

(10.49) 

Since fix) = % log(l + x) is a concave function of x, we can apply Jensen’s 
inequality to obtain 

; $ ; log(1 + 2) Is ; log(l + i 2 3) (10.50) 
l-l i-l 

1 P 
52log l+R . 

( > 
(10.51) 

Thus R+log(l+;)+~,, E,+ 0, and we have the required con- 
verse. Cl 

Note that the power constraint enters the standard proof in (10.44). 

10.3 BAND-LIMITED CHANNELS 

A common model for communication over a radio network or a telephone 
line is a band-limited channel with white noise. This is a continuous 
time channel. The output of such a channel can be described as 

Y(t) = (x(t) + 2w) * h(t) , (10.52) 
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where X(t) is the signal waveform, Z(t) is the waveform of the white 
Gaussian noise, and h(t) is the impulse response of an ideal bandpass 
filter, which cuts out all frequencies greater than W. In this section, we 
give simplified arguments to calculate the capacity of such a channel. 

We begin with a representation theorem due to Nyquist [199] and 
Shannon [240], which shows that sampling a band-limited signal at a 
sampling rate & is sufficient to reconstruct the signal from the samples. 
Intuitively, this is due to the fact that if a signal is band-limited to W, 
then it cannot change by a substantial amount in a time less than half a 
cycle of the maximum frequency in the signal, that is, the signal cannot 
change very much in time intervals less than & seconds. 

Theorem 10.3.1: Suppose a function f(t) is band-limited to W, namely, 
the spectrum of the function is 0 for all frequencies greater than W Then 
the function is completely determined by samples of the function spaced 
&F seconds apart. 

Proof: Let F(o) be the frequency spectrum of fct). Then 

(10.53) 

(10.54) 

since F(o) is 0 outside the band -27rW I 0 52~W. If we consider 
samples spaced $ seconds apart, the value of the signal at the sample 
points can be written 

(10.55) 

The right hand side of this equation is also the definition of the 
coefficients of the Fourier series expansion of the periodic extension of 
the function F(w), taking the interval -2 r W to 2 r W as the fundamen- 
tal period. Thus the sample values f( &) determine the Fourier coeffici- 
ents and, by extension, they determine the value of F(o) in the interval 
(-27rW, 27rW). Since a function is uniquely specified by its Fourier 
transform, and since F(o) is 0 outside the band W, we can determine the 
function uniquely from the samples. 

Consider the function 

sin@) = 
sin(2rWt) 

2vwt ’ 
(10.56) 

This function is 1 at t = 0 and is 0 for t = n/2W, n # 0. The spectrum of 
this function is constant in the band (- W, W) and is zero outside this 
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band. Now define 

g(t) = jim f( &) sinc( t - &) . (10.57) 

From the properties of the sine function, it follows that g(t) is band- 
limited to W and is equal to fin/2 W) at t = n/2W. Since there is only one 
function satisfying these constraints, we must have g(t) = fit>. This 
provides an explicit representation of fit) in terms of its samples. Cl 

A general function has an infinite number of degrees of freedom-the 
value of the function at every point can be chosen independently. The 
Nyquist-Shannon sampling theorem shows that a band-limited function 
has only 2W degrees of freedom per second. The values of the function at 
the sample points can be chosen independently, and this specifies the 
entire function. 

If a function is band-limited, it cannot be limited in time. But we can 
consider functions that have most of their energy in bandwidth W and 
have most of their energy in a finite time interval, say (0, 2’). We can 
describe these functions using a basis of prolate spheroidal functions. 
We do not go into the details of this theory here; it sufllces to say that 
there are about 2TW orthonormal basis functions for the set of almost 
time-limited, almost band-limited functions, and we can describe any 
function within the set by its coordinates in this basis. The details can 
be found in a series of papers by Slepian, Landau and Pollak [169], 
11681, [253]. Moreover, the projection of white noise on these basis 
vectors forms an i.i.d. Gaussian process. The above arguments enable us 
to view the band-limited, time-limited functions as vectors in a vector 
space of 2TW dimensions. 

Now we return to the problem of communication over a band-limited 
channel. Assuming that the channel has bandwidth W, we can represent 
both the input and the output by samples taken 1/2W seconds apart. 
Each of the input samples is corrupted by noise to produce the corre- 
sponding output sample. Since the noise is white and Gaussian, it can 
be shown that each of the noise samples is an independent, identically 
distributed Gaussian random variable. If the noise has payer spectral 
density N,,/2 and bandwidth W, then the noise has power 22 W = N,W 
and each of the 2WT noise samples in time 2’ has variance N,WTI 
2WT = N,/2. Looking at the input as a vector in the 2TW dimensional 
space, we see that the received signal is spherically normally distributed 

about this point with covariance $. 
Now we can use the theory derived earlier for discrete time Gaussian 

channels, where it was shown that the capacity of such a channel is 

1 
C = 2 log bits per transmission . (10.58) 
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Let the channel be used over the time interval CO, 2’1. In this case, the 
power per sample is PTI2WT = P/2W, the noise variance per sample is 

9 2W Q& = &/2, and hence the capacity per sample is 

C=~log(l+f)=~log(I+&) bitspersample. 
2 

(10.59) 

Since there are 2W samples each second, the capacity of the channel can 
be rewritten as 

bits per second . (10.60) 

This equation is one of the most famous formulae of information theory. 
It gives the capacity of a band-limited Gaussian channel with noise 
spectral density A$,/2 watts/Hz and power P watts. 

If we let W-, 00 in (10.60), we obtain 

P 
C = F log, e bits per second, 

0 

(10.61) 

as the capacity of a channel with an infinite bandwidth, power P and 
noise spectral density No/2. Thus for infinite bandwidth channels, the 
capacity grows linearly with the power. 

Example 10.3.1 (Telephone line): To allow multiplexing of many chan- 
nels, telephone signals are band-limited to 3300 Hz. Using a bandwidth 
of 3300 Hz and a SNR (signal to noise ratio) of 20 dB (i.e., P/NOW = loo), 
in (10.60), we find the capacity of the telephone channel to be about 
22,000 bits per second. Practical modems achieve transmission rates up 
to 19,200 bits per second. In real telephone channels, there are other 
factors such as crosstalk, interference, echoes, non-flat channels, etc. 
which must be compensated for to achieve this capacity. 

10.4 PARALLEL GAUSSIAN CHANNELS 

In this section, we consider k independent Gaussian channels in parallel 
with a common power constraint. The objective is to distribute the total 
power among the channels so as to maximize the capacity. This channel 
models a non-white additive Gaussian noise channel where each paral- 
lel component represents a different frequency. 

Assume that we have a set of Gaussian channels in parallel as 
illustrated in Figure 10.3. The output of each channel is the sum of the 
input and Gaussian noise. For channel j, 
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Xk+& Yk 
Figure 10.3. Parallel Gaussian channels. 

yj=Xj+Zj, j=1,2,...,k, 

with 

(10.62) 

and the noise is assumed to be independent from channel to channel. We 
assume that there is a common power constraint on the total power 
used, i.e., 

EiX;SP. 
j=l 

We wish to distribute the power among the various channels so as to 
maximize the total capacity. 

The information capacity of the channel C is 

C= max 1(X1,X,, . . . ,xh; Yl, Yz, . 0’) Yk) I 
f(Jp”‘& ’ . . 2 x,): C EX+P 

(10.65) 

We calculate the distribution that achieves the information capacity for 
this channel. The fact that the information capacity is the supremum of 
achievable rates can be proved by methods identical to those in the proof 
of the capacity theorem for single Gaussian channels and will be 
omitted. 
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Since Z,, Z,, . . . , Zk are independent, 

=h(Y,,Y,,...,Y,)-h(Z,,Z,,...,Z,IX,,X,,..’,X,) 

= MY,,  Yz, .  .  l ,  Yk> -  h(Z,, z , ,  .  l .  ,  z,> (10.66) 

= MY,, Yz, . . . , Yk) - c Wi) (10.67) 

(10.68) 

,,;log(l+$), 
i 

(10.69) 

where Pi = EXf , and C Pi = P. Equality is achieved by 

(10.70) 

So the problem is reduced to finding the power allotment that 
maximizes the capacity subject to the constraint that C Pi = P. This is a 
standard optimization problem and can be solved using Lagrange multi- 
pliers. Writing the functional as 

J(P1,...,P~)=C flOg(l+~)+I(CPi) 
i 

and differentiating with respect to Pi, we have 

1 1 
,jFpjq+“=Op 

(10.71) 

(10.72) 

or 

Pi= V-Ni. (10.73) 

However since the Pi’s must be non-negative, it may not always be 
possible to find a solution of this form. In this case, we use the 
Kuhn-Tucker conditions to verify that the solution 

Pi ‘(V -Ni)+ (10.74) 
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Figure 10.4. Water-filling for parallel channels. 

is the assignment that maximizes capacity, where Y is chosen so that 

&-Ni)+ =P. (10.75) 

Here (x)+ denotes the positive part of x, i.e., 

x ifxr0 
(x)+ ={O ifx<OI 

(10.76) 

This solution is illustrated graphically in Figure 10.4. The vertical 
levels indicate the noise levels in the various channels. As signal power 
is increased from zero, we allot the power to the channels with the 
lowest noise. When the available power is increased still further, some 
of the power is put into noisier channels. The process by which the 
power is distributed among the various bins is identical to the way in 
which water distributes itself in a vessel. Hence this process is some- 
times referred to as “water-filling.” 

10.5 CHANNELS WITH COLORED GAUSSIAN NOISE 

In the previous section, we considered the case of a set of parallel 
independent Gaussian channels in which the noise samples from differ- 
ent channels were independent. Now we will consider the case when the 
noise is dependent. This represents not only the case of parallel chan- 
nels, but also the case when the channel has Gaussian noise with 
memory. For channels with memory, we can consider a block of n 
consecutive uses of the channel as n channels in parallel with dependent 
noise. As in the previous section, we will only calculate the information 
capacity for this channel. 

Let Kz be the covariance matrix of the noise, and let K, be the input 
covariance matrix. The power constraint on the input can then be 
written as 
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lcEXfSP, (10.77) n i 
or equivalently, 

(10.78) 

Unlike the previous section, the power constraint here depends on n; the 
capacity will have to be calculated for each n. 

Just as in the case of independent channels, we can write 

I<x,,&, * * * 3,; Yl, Yz, * * * , YJ 

= MY,, YQ, . . . , Y,> - w,, z,, . . . , 2,) . (10.79) 

Here h(Z,, Z,, . . . , 2, > is determined only by the distribution of the 
noise and is not dependent on the choice of input distribution. So finding 
the capacity amounts to maximizing h( YI , Y2, . . . , Y, ). The entropy of 
the output is maximized when Y is normal, which is achieved when the 
input is normal. Since the input and the noise are independent, the 
covariance of the output Y is KY = K, + K, and the entropy is 

MY,, Yz, . . . , Y,) = i log((2re)“IKx + K& . (10.80) 

Now the problem is reduced to choosing K, so as to maximize (K, + K, I, 
subject to a trace constraint on K,. To do this, we decompose K, into its 
diagonal form, 

Then 

K, = QhQt, where QQ” = I. (10.31) 

I& + K,) = 1% + QAQ”l (10.82) 

= lQllQ%~ + 41~7 (10.83) 

=lQ%Q+N (10.84) 

= (A+ Al, (10.85) 

where A = QtKxQ. Since for any matrices B and C, 

tr@C) = tr(cI3)) (10.86) 

we have 
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tr(4 = tdQtK’Q) (10.87) 

= tr(QQtK,) (10.88) 

= h(K,). (10.89) 

Now the problem is reduced to maximizing IA + Al subject to a trace 
constraint tr(A) 5 nl? 

Now we apply Hadamard’s inequality, mentioned in Chapter 9. 
Hadamard’s inequality states that the determinant of any positive 
definite matrix K is less than the product of its diagonal elements, i.e., 

with equality iff the matrix is diagonal. Thus 

IA+AIIn(Aii +hi) (10.91) 

with equality iff A is diagonal. Since A is subject to a trace constraint, 

~~Aii~P, 
i 

(10.92) 

and Aii zz 0, the maximum value of ni(Aii + hi) is attained when 

Aii + Ai = Y. (10.93) 

However, given the constraints, it may not be always possible to satisfy 
this equation with positive Aii. In such cases, we can show by standard 
Kuhn-Tucker conditions that the optimum solution corresponds to 
setting 

Aii = (Y - hi)+ , (10.94) 

where v is chosen SO that C Aii = nl? This value of A maximizes the 
entropy of Y and hence the mutual information. We can use Figure 10.4 
to see the connection between the methods described above and “water- 
filling”. 

Consider a channel in which the additive Gaussian noise forms a 
stochastic process with finite dimensional covariance matrix &i’. If the 
process is stationary, then the covariance matrix is Toeplitz and the 
eigenvalues tend to a limit as n --) 00. The density of eigenvalues on the 
real line tends to the power spectrum of the stochastic process [126]. In 
this case, the above “water-filling” argument translates to water-filling 
in the spectral domain. 
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w 

Figure 10.5. Water-filling in the spectral domain. 

Hence for channels in which the noise forms a stationary stochastic 
process, the input signal should be chosen to be a Gaussian process with 
a spectrum which is large at frequencies where the noise spectrum is 
small. This is illustrated in Figure 10.5. The capacity of an additive 
Gaussian noise channel with noise power spectrum iV( f> can be shown 
to be [120] 

(10.95) 

where v is chosen so that JCv - AK f>>’ df= P. 

10.6 GAUSSIAN CHANNELS WITH FEEDBACK 

In Chapter 8, we proved that feedback does not increase the capacity for 
discrete memoryless channels. It can greatly help in reducing the 
complexity of encoding or decoding. The same is true of an additive noise 
channel with white noise. As in the discrete case, feedback does not 
increase capacity for memoryless Gaussian channels. However, for 
channels with memory, where the noise is correlated from time instant 
to time instant, feedback does increase capacity. The capacity without 
feedback can be calculated using water-filling, but we do not have a 
simple explicit characterization of the capacity with feedback. In this 
section, we describe an expression for the capacity in terms of the 
covariance matrix of the noise 2. We prove a converse for this expression 
for capacity. We then derive a simple bound on the increase in capacity 
due to feedback. 
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W yi 

Figure 10.6. Gaussian channel with feedback. 

The Gaussian channel with feedback is illustrated in Figure 10.6. The 
output of the channel Yi is 

The feedback allows the input of the channel to depend on the past 
values of the output. 

A (ZmR, n) code for the Gaussian channel with feedback consists of a 
sequence of mappings 
input message and Y”-’ 

xi( W, Y’-‘), where W E {1,2, . . . , 2nR} is the 
is the sequence of past values of the output. 

Thus x( W, l ) is a code function rather than a codeword. In addition, we 
require that the code satisfy a power constraint, 

E[i &:Wi-+~, w~{1,2 ,..., 2nR), (10.97) 
i 

where the expectation is over all possible noise sequences. 
We will characterize the capacity of the Gaussian channel is terms of 

the covariance matrices of the input X and the noise 2. Because of the 
feedback, X” and 2” are not independent; Xi depends causally on the 
past values of 2. In the next section, we prove a converse for the 
Gaussian channel with feedback and show that we achieve capacity if 
we take X to be Gaussian. 

We now state an informal characterization of the capacity of the 
channel with and without feedback. 

1. With feedback. The capacity Cn,, in bits per transmission of the 
time-varying Gaussian channel with feedback is 

(10.98) 
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where the maximization is taken over all X” of the form 

i-l 

Xi=~ b,Zj+Vi, i=l,2 ,..., n, 
j=l 

(10.99) 

and V” is independent of 2”. 
To verify that the maximization over (10.99) involves no loss of 

generality, note that the distribution on X” + 2” achieving the 
maximum entropy is Gaussian. Since 2” is also Gaussian, it can be 
verified that a jointly Gaussian distribution on (X”, Z”, X” + 2”) 
achieves the maximization in (10.98). But since 2” = Y” - X”, the 
most general jointly normal causal dependence of X” on Y” is of 
the form (10.99), where V” plays the role of the innovations 
process. Recasting (10.98) and (10.99) using X = BZ + V and Y = 
X + 2, we can write 

C 
1 

n, FB = max 2n log 
I(B + I)K,“‘(B + Iy + K,I 

n) 
IK’ I 

(10.100) 
z 

where the maximum is taken over all nonnegative definite K, and 
strictly lower triangular B such that 

trU3KF’Bt + K,) I nP . (10.101) 

(Without feedback, B is necessarily 0.) 
2. Without feedback. The capacity C, of the time-varying Gaussian 

channel without feedback is given by 

C, = max -!- log 
+ tr(K+P 2n 

(n) . 
IK I 

(10.102) 
2 

This reduces to water-filling on the eigenvalues { Ain’} of K’$‘. Thus 

n 

‘n 2’, = Og l+ 
=- 

Ix1 ( 

(A - P)+ 
’ 

i 1 
,Cn; > 

9 (10.103) 
i 

where ( y)’ = max{ y, 0) and where A is chosen so that 

i (A-hj”‘)+=nP. 
i=l 

(10.104) 

We now prove an upper bound for the capacity of the Gaussian 
channel with feedback. This bound is actually achievable, and is there- 
fore the capacity, but we do not prove this here. 
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Theorem 10.6.1: The rate R, fir any (2”Rn, n) code with Pf’ + 0 for the 
Gaussian channel with feedback satisfies 

11 n) 

R, I - - log IK’ I 
n2 + + ‘n p 

IK I 2 
(10.105) 

with l ,+O as n+a. 

Proof: By Fano’s inequality, 

H(WIY”) I 1 + nR,Pp’ = nen, (10.106) 

where E, + 0 as Pp’ + 0. We can then bound the rate as follows: 

nR, = H(W) (10.107) 

= I(W, Y”) + H(W(y”) (10.108) 

SI(W, Y”)+ ne, (10.109) 

= C I(W; YJYiT1) + m, (10.110) 

2 c [h(Y,IYi-l) - h(Yil W, Y”-‘, Xi, Xi-‘, P-l)] + 7x, (10.111) 

(t-’ c [h(Yi)Yi-‘) - h(Z,( W, Y”-‘, Xi,XiS1, P-l)] + ne, (10.112) 

= c [h(YilY’-‘) - h(Z,( Z’-l)] + nr, (10.113) 

= h(Y”) - h(Z”) + ne, , (10.114) 

where (a) follows from the fact that Xi is a function of W and the past 
Yi’s, and Z’-l is Yi-’ - Xi-‘, (b) follows from Y = Xi + Zi and the fact 
that h(X + 21X) = h(ZIX), and (c) follows from the fact Zi and 
(W, Y’-‘, Xi) are conditionally independent given Zi-‘. Continuing the 
chain of inequalities after dividing by n, we have 

1 n) 

R,~n[h(Yn)-h(Zn)]+e,- 
1 IK’ I 

( 2n log + + En 9 JK’ I 
(10.115) 

z 

by the entropy maximizing property of the normal. cl 

We have proved an upper bound on the capacity of the Gaussian 
channel with feedback in terms of the covariance matrix K$i,. We now 
derive bounds on the capacity with feedback in terms of K$’ and @‘, 
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which will then be used to derive bounds in terms of the capacity 
without feedback. For simplicity of notation, we will drop the 
superscript n in the symbols for covariance matrices. 

We first prove a series of lemmas about matrices and determinants. 

Lemma 10.6.1: Let X and Z be n-dimensional random vectors. Then 

K x+z + Kx-z = 2Kx + 2K, (10.116) 

Proof: 

K x+z = E(X + 2)(X + 2)” 

= EXXt + EX? + EZXt + EZZ’ 

=K,+K,+K,,+K,. 

Similarly, 

K,_,=K,-K,--K,,+K,. 

(10.117) 

(10.118) 

(10.119) 

(10.120) 

Adding these two equations completes the proof. Cl 

Lemma 10.6.2: For two n x n positive definite matrices A and B, if 
A - B is positive definite, then IAl 2 (B I. 

Proof: Let C = A - B. Since B and C are positive definite, we can 
consider them as covariance matrices. Consider two independent normal 
random vectors X, - N(0, B) and X, - N(0, C). Let Y = X, + X,. Then 

h(Y) 2 WIX,) (10.121) 

= h(X, I&> (10.122) 

= MX,), (10.123) 

where the inequality follows from the fact that conditioning reduces 
dflerential entropy, and the final equality from the fact that X, and X, 
are independent. Substituting the expressions for the differential en- 
tropies of a normal random variable, we obtain 
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(10.124) 

which is equivalent to the desired lemma. q 

Lemma 10.6.3: For two n-dimensional random vectors X and 2, 

l&+,I ‘2”IK, + &I l 

Proof: From Lemma 10.6.1, 

(10.125) 

2(Kx + K,) - Kx+z = K,-, 2 0 9 (10.126) 

where A 2 0 means that A is non-negative definite. Hence, applying 
Lemma 10.6.2, we have 

IK,+,I 5 pu& + K,)I = 2”p& +&I, 

which is the desired result. 0 

(10.127) 

We are now in a position to prove that feedback increases the capacity 
of a non-white Gaussian additive noise channel by at most half a bit. 

Theorem: 10.6.2: 

c, 1 
n FB I C, + - bits per transmission 

2 
(10.128) 

Proof: Combining all the lemmas, we obtain 

c 1 
( max (K I - log y 

np FB - tr(KX)snP %a IK I z 
(10.129) 

(10.130) 

(10.131) 

1 
SC,+- 2 bits per transmission, (10.132) 

where the inequalities follow from Theorem 10.6.1, Lemma 10.6.3 and 
the definition of capacity without feedback, respectively. Cl 
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SUMMARY OF CHAPTER 10 

Maximum entropy: max,,s=, h(X) = & log awnecu. 

The Gaussian channel: Yi = Xi + Zi, Zi - J(O, N), power constraint 
f C~~,Xf rP, 

bits per transmission . (10.133) 

Band-limited additive white Gaussian noise channel: Bandwidth W, 
two-sided power spectral density N,/2, signal power P, 

C=Wlog(l+&)bitsper second. (10.134) 

Water-filling (12 parallel Gaussian channels): 5 = 4 + Zj , j = 1,2, . . . , k, 
Zj - NO, Nj), C;31 X; I F’, 

c= 5 ;log(l+ (v-Ny)+) 
i=l I 

(10.135) 

where v is chosen so that C( v - Ni )’ = P. 

Additive non-white Gaussian noise channel: Yi = Xi + Zi, 2” - NO, K,) 

(10.136) 

where A,, A,, . . . , A, are the eigenvalues of K, and Y is chosen so that 
Ci (v - hi)+ = nP. 

Capacity without feedback: 

cn = t2EL 2n 
r log I& +&I 

X lK.1 * 

Capacity with feedback: 

c = n, FB 

Feedback bound: 

(10.137) 

(10.138) 

c,,F#c,,+;. (10.139) 
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PROBLEMS FOR CHAPTER 10 

1. A mutual inform&ion game. Consider the following channel: 

z 

X 
+!I- + Y 

Throughout this problem we shall constrain the signal power 

EX=O, EX2=P, (10.140) 

and the noise power 

EZ=O, EZ2=N, (10.141) 

and assume that X and Z are independent. The channel capacity is 
given by 1(X, X + Z ). 

Now for the game. The noise player chooses a distribution on Z to 
minimize 1(X, X + Z), while the signal player chooses a distribution on 
X to maximize 1(X, X + Z ). 

Letting X* - h-(0, P), Z” - JV(O, N), show that X* and Z* satisfy 
the saddlepoint conditions 

z(x;x+z*)~z(x*;x*+z*)~z(x*;x*+z). (10.142) 

Thus 

mjnmFl(X;X+ Z)=mxaxmzml(X,X+ Z) (10.143) 

=;1og 1+; , ( ) (10.144) 

and the game has a value. In particular, a deviation from normal for 
either player worsens the mutual information from that player’s 
standpoint. Can you discuss the implications of this? 

Note: Part of the proof hinges on the entropy power inequality from 
Section 16.7, which states that if X and Y are independent random 
n-vectors with densities, then 

e 
$A(X+Y) 

Le 34(X) + e b(Y) . (10.145) 

2. A channel with two independent looks at Y. Let Y1 and Y2 be conditional- 
ly independent and conditionally identically distributed given X. 
(a) Show 1(X, Y1, Y,) = 21(X, Y,) - Z(Y,; Y,). 
(b) Conclude that the capacity of the channel 
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x4----+ w,, y,> 

is less than twice the capacity of the channel 

3. The two-look Gaussian channel. 

x-4-I-, w,, y,> 
Consider the ordinary Shannon Gaussian channel with two correlated 
looks at X, i.e., Y = (Y,, Y,), where 

Yl =x+2, (10.146) 

Y2 =x+2, (10.147) 

with a power constraint P on X, and (Z,, 2,) - NJO, K), where 

K=[; z]. (10.148) 

Find the capacity C for 

(4 P = 1 
(b) p = 0 
(c) p=-1 

4. Parallel channels and waterfilling. Consider a pair of parallel Gaussian 
channels, i.e., 

(10.149) 

(10.150) 

and there is a power constraint 23(X: + Xi) I 2P. Assume that U: > 0:. 
At what power does the channel stop behaving like a single channel 
with noise variance ai, and begin behaving like a pair of channels? 

HISTORICAL NOTES 

The Gaussian channel was first analyzed by Shannon in his original paper [238]. 
The water-filling solution to the capacity of the colored noise Gaussian channel 
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was developed by Holsinger [135]. Pinsker [210] and Ebert [94] showed that 
feedback at most doubles the capacity of a non-white Gaussian channel; a simple 
proof can be found in Cover and Pombra [76]. Cover and Pombra also show that 
feedback increases the capacity of the non-white Gaussian channel by at most 
half a bit. 



Chapter 11 
A 

Maximum Entropy and 
Spectral Estimation 

The temperature of a gas corresponds to the average kinetic energy of 
the molecules in the gas. What can we say about the distribution of 
velocities in the gas at a given temperature? We know from physics that 
this distribution is the maximum entropy distribution under the tem- 
perature constraint, otherwise known as the Maxwell-Boltzmann dis- 
tribution. The maximum entropy distribution corresponds to the mac- 
rostate (as indexed by the empirical distribution) that has the most 
microstates (the actual gas velocities). Implicit in the use of maximum 
entropy methods in physics is a sort of AEP that says that all mi- 
crostates are equally probable. 

11.1 MAXIMUM ENTROPY DISTRIBUTIONS 

Consider the following problem: 

Maximize the entropy h( f) over all probability densities f satisfying 

1. f(x) 2 0, with equality outside the support set S, 
2. Js f(x) dx = 1, (11.1) 

3. Js f(x)ri(x) o?x = for 15 i cq, 5 172. 

Thus f is a density on support set S meeting certain moment 
constraints cyl, (Ye, . . . , LY,. 

Approach 1 (CuZcuZus): The differential entropy h( f) is a concave 
function over a convex set. We form the functional 
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J(f)= - /flnf+AO/f+Ii h,lP, 
i=l 

(11.2) 

and “differentiate” with respect to fix), the xth component off to obtain 

- = - In flX> - 1 + ho + 2 hi~i(3C) . 
aJ 

aft4 i=l 

(11.3) 

Setting this equal to zero, we obtain the form of the maximizing density 

flx>=e A,-l+E~f~ hi’ib) 
, x(=, (11.4) 

where A,, A,, . . . , A, are chosen so that f satisfies the constraints. 

The approach using calculus only suggests the form of the density 
that maximizes the entropy. To prove that this is indeed the maximum, 
we can take the second variation. It is simpler to use the information 
inequality D(glJ f > 2 0. 

Approach 2 (Information inequality): If g satisfies (11.1) and if f * is of 
the form (11.4), then O~D(gllf*)=-h(g)+h(f*). Thus h(g)rh(f*) 
for all g satisfying the constraints. We prove this in the following 
theorem. 

Theorem 11.1.1 (Maximum entropy distribution): Let f*(x) = f,(x) = 
e”O+Cc, Ai’i(kZ), xES, where ho,..., A, are chosen so that f* satisfies 
(11 .l ). Then f * uniquely maximizes h(f) over all probability densities f 
satisfying constraints (11.1). 

Proof: Let g satisfy the constraints (11.1). Then 

h(g)= - sglng I 

=- sgln 
I ; f* 

(11.5) 

(11.6) 

= -D(gllf*)--/sgln f* (11.7) 

(b) 
=- 

~ -Is f*( h* + C Airi) 

(11.9) 

(11.10) 
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=- sf*lnf* 
I 

(11.11) 

= h(f*) , (11.12) 

where (a) follows from the non-negativity of relative entropy, (b) from 
the definition off* and (c) from the fact that both f* and g satisfy the 
constraints. Note that equality holds in (a) if and only if g(x) = f*(x) for 
all X, except for a set of measure 0, thus proving uniqueness. 0 

The same approach 
distributions. 

holds for discrete entropies and for multivariate 

11.2 EXAMPLES 

Example 11.2.1 (One dimensional gas with a temperature constraint): 
Let the constraints be EX = 0, and EX2 = (r2. Then the form of the 
maximizing distribution is 

flx>=e . 
A,+A,x+Apx2 (11.13) 

To find the appropriate constants, we first recognize that this dis- 
tribution has the same form as a normal distribution. Hence the density 
that satisfies the constraints and also maximizes the entropy is the 
JV(O, (r2> distribution. 

Example 11.2.2 (Dice, no constraints): Let S = { 1,2,3,4,5,6}. The 
distribution that maximizes the entropy is the uniform distribution, 
p(x) = Q for x E S. 

Example 11.2.3 (Dice, with EX = C ipi = cu): This important example 
was used by Boltzmann. Suppose n dice are thrown on the table and we 
are told that the total number of spots showing is ncx. What proportion 
of the dice are showing face i, i = 1,2, . . . ,6 ? 

One way of going about this is to count the number of ways that n 
dice can fall so that ni dice show face i. There are ( nI, n,,Y.. , ns ) such ways. 
This is a macrostate indexed by (n,, n,, . . . , n6) corresponding to 
( “. ) microstates, each having probability f . To find the most 
p:o%bie”‘macrostate, we wish to maximize ( n n,,Y.. , ns ) under the ob- 
served constraint on the total number of spots:’ 

6 

Ix in; = na , (11.14) 
i=l 
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Using a crude Stirling’s approximation, n! = ( 4 )“, we find 

( n 
> 

2: 
n,, n,, . . . 9 n, 

n n 
( > 
- 
e 

ni 
= 

(11.15) 

(11.16) 

=e ( 
n1 nH y, !2*. ns 

n ’ n ) 
. (11.17) 

Thus maximizing ( nl, n,,‘t . . , nB ) under the constraint (11.14) is almost 
equivalent to maximizing H( pl, p2, . . . , p,J under the constraint 
C ipi = a. Using Theorem 11.1.1 under this constraint, we find the 
maximum entropy probability mass function to be 

hi 

Pr=g--p 
i-l 

(11.18) 

where A is chosen so that C ipT = a. Thus the most probable macrostate 
is (n.pT, npg . . . . , npf), and we expect to find nT = npT dice showing face 
i. 

In Chapter 12, we shall show that the reasoning and the approxima- 
tions are essentially correct. In fact, we shall show that not only is the 
maximum entropy macrostate the most likely, but it also contains 
almost all of the probability. Specifically, for rational a, 

Ni --pT <e,i=1,2 ,..., 
n 

6li X,=na}+l, (11.19) 
i=l 

as n+m along the subsequence such that na is an integer. 

Example 11.2.4: Let S = [a, b], with no other constraints. Then the 
maximum entropy distribution is the uniform distribution over this 
range. 

Example 11.2.8: S = [0, 00) and EX = p. Then the entropy maximizing 
distribution is 
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This problem has a physical interpretation. Consider the distribution of 
the height X of molecules in the atmosphere. The average potential 
energy of the molecules is fixed, and the gas tends to the distribution 
that has the maximum entropy subject to the constraint that E[mgX1 is 
fixed. This is the exponential distribution with density f(;lG) = heck, 313 1 
0. The density of the atmosphere does indeed have this distribution. 

Example 11.2.6: S = (- 00, a), and EX = p. Here the maximum entropy 
is infinite, and there is no maximum entropy distribution. (Consider 
normal distributions with larger and larger variances.) 

Example 11.23 S = ( -00, m), EX = cyl 
entropy distribution is N(cyl, a2 - a! ;). 

and EX2 = a2. The maximum 

Example 11.2.8: S = .!% “, EXiXj = Ku, 1 I i, j I n. This is a multi- 
variate example, but the same analysis holds and the maximum entropy 
density is of the form 

flx)=e v . ho+Ci j A(jXiXj (11.21) 

Since the exponent is a quadratic form, it is clear by inspection that the 
density is a multivariate normal with zero mean. Since we have to 
satisfy the second moment constraints, we must have a multivariate 
normal with covariance Kii, and hence the density is 

fix)= l 
(V%)"IKf 

e-Jx=r’x, (11.22) 

which has an entropy 

h(Nn(O, KN = log(2ne)“(K/ , (11.23) 

as derived in Chapter 9. 

11.3 AN ANOMALOUS 

We have proved that the 
constraints 

MAXIMUM ENTROPY PROBLEM 

maximum entropy distribution subject to the 

I S 
hi (32)flX) d% = (Yi (11.24) 

is of the form 
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flx)=e Ag+ r: Aihi(X) (11.25) 

if&,&..., A, satisfying the constraints (11.24) exist. 
We now consider a tricky problem in which the Ai cannot be chosen to 

satisfy the constraints. Nonetheless, the “maximum” entropy can be 
found. We consider the following problem: maximize the entropy subject 
to the constraints 

I 

co 

f(x)o!.X=l, --m (11.26) 

I 

03 

x~x)dx=aI, (11.27) 
--m 

I 

m 

xzflx> dx = cx2 , (11.28) 
--m 

I 

m 

x3flx> dx = a3 . (11.29) --m 

In this case, 
the form 

the maximum entropy distribution, if it exists, must be of 

f(x) = e A,,+hlx+A2x2+A~3 . (11.30) 

But if A, is non-zero, then Jrco f = 00 and the density cannot be normal- 
ized. So A, must be 0. But then we have four equations and only three 
variables, so that in general it is not possible to choose the appropriate 
constants. The method seems to have failed in this case. 

The reason for the apparent failure is simple: the entropy has an 
upper bound under these constraints, but it is not possible to attain it. 
Consider the corresponding problem with only first and second moment 
constraints. In this case, the results of Example 11.2.1 show that the 
entropy maximizing distribution is the normal with the appropriate 
moments. With the additional third moment constraint, the maximum 
entropy cannot be higher. Is it possible to achieve this value? 

We cannot achieve it, but we can come arbitrarily close. Consider a 
normal distribution with a small “wiggle” at a very high value of x. The 
moments of the new distribution are almost the same as the old one, 
with the biggest change being in the third moment. We can bring the 
first and second moments back to their original values by adding new 
wiggles to balance out the changes caused by the first. By choosing the 
position of the wiggles, we can get any value of the third moment 
without significantly reducing the entropy below that of the associated 
normal. Using this method, we can come arbitrarily close to the upper 
bound for the maximum entropy distribution. We conclude that 
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1 
~~ph(f)=h(Jlr(O,(~,-cue))= $n2mG2-4L (11.31) 

This example shows that the maximum entropy may only be E- 
achievable. 

11.4 SPECTRUM ESTIMATION 

Given a stationary zero mean stochastic process {X,}, we define the 
autocorrelation function as 

R(k) = EX,X,+~ , (11.32) 

The Fourier transform of the autocorrelation function for a zero mean 
process is the power spectral density S( A), i.e., 

S(A) = i R(m)eeimA, -n<hr7r. 
m=--m 

(11.33) 

Since the power spectral density is indicative of the structure of the 
process, it is useful to form an estimate from a sample of the process. 

There are many methods to estimate the power spectrum. The 
simplest way is to estimate the autocorrelation function by taking 
sample averages for a sample of length n, 

n-k 

fi(k)=& C xixi+k* 
i 1 

(11.34) 

If we use all the values of the sample correlation function R(s) to 
calculate the spectrum, the estimate that we obtain from (11.33) does 
not converge to the true power spectrum for large n. Hence this method, 
called the periodogram method, is rarely used. 

One of the reasons for the problem with the periodogram method is 
that the estimates of the autocorrelation function from the data have 
different accuracies. The estimates for low values of k (called the lags) 
are based on a large number of samples and those for high k on very few 
samples. So the estimates are more accurate at low k. The method can 
be modified so that it depends only on the autocorrelations at low k by 
setting the higher lag autocorrelations to 0. However this introduces 
some artifacts because of the sudden transition to zero autocorrelation. 
Various windowing schemes have been suggested to smooth out the 
transition. However, windowing reduces spectral resolution and can give 
rise to negative power spectral estimates. 

In the late 196Os, while working on the problem of spectral estima- 
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tion for geophysical applications, Burg suggested an alternative method. 
Instead of setting the autocorrelations at high lags to zero, he set them 
to values that make the fewest assumptions about the data, i.e., values 
that maximize the entropy rate of the process. This is consistent with 
the maximum entropy principle as articulated by Jaynes [ 1431. Burg 
assumed the process to be stationary and Gaussian and found that the 
process which maximizes the entropy subject to the correlation con- 
straints is an autoregressive Gaussian process of the appropriate order. 
In some applications where we can assume an underlying autoregres- 
sive model for the data, this method has proved useful in determining 
the parameters of the model (e.g., linear predictive coding for speech). 
This method (known as the maximum entropy method or Burg’s 
method) is a popular method for estimation of spectral densities. We 
prove Burg’s theorem in Section 11.6. 

11.5 ENTROPY RATES OF A GAUSSIAN PROCESS 

In Chapter 9, we defined the differential entropy of a continuous 
random variable. We can now extend the definition of entropy rates to 
real-valued stochastic processes. 

Definition: The differential entropy rate of a stochastic process 
{X,}, Xi E 9, is defined to be 

h(g) = lim 
M&,X,,...,X,) 

n-m n (11.35) 

if the limit exists. 

Just as in the discrete case, we can show that the limit exists for 
stationary processes and that the limit is given by the two expressions 

(11.36) 

(11.37) 

For any sample of a stationary Gaussian stochastic process, we have 

h(X,, X2, . . . , XJ = i log(27re)nIK’“‘I , (11.38) 

where the covariance matrix K?’ is Toeplitz with entries R(O), 
R(l), . . . , R(n - 1) along the top row. Thus $’ = R( Ii -jl) = E(X, - 
EXi)(Xj - Ex,). As n+q the density of the eigenvalues of the 



274 M AXlM UM ENTROPY AND SPECTRAL ESTZM ATlON 

covariance matrix tends to a limit, which is the spectrum of the 
stochastic process. Indeed, Kolmogorov showed that the entropy rate of 
a stationary Gaussian stochastic process can be expressed as 

h(&)=;logalre+& _:logS(h)& I 
(11.39) 

The entropy rate is also lim,,, h(X, IXn-‘). Since the stochastic 
process is Gaussian, the conditional distribution is also Gaussian and 
hence the conditional entropy is i log 2?reat, where a: is the variance of 
the error in the best estimate of X, given the infinite past. Thus 

a: - 1 22h’W, 
27re 

(11.40) 

where h(E) is given by (11.39). Hence the entropy rate corresponds to 
the minimum mean squared error of the best estimator of a sample of 
the process given the infinite past. 

11.6 BURG’S MAXIMUM ENTROPY THEOREM 

Theorem 11.6.1: The maximum entropy rate stochastic process {Xi} 
satisfying the constraints 

EXiXi+, = Cyk, k = 0, 1, . . . , p, for all i , 

is the pth order Gauss-Markov process of the form 

xi = - $ akxi-k + Zi , 
k=l 

(11.42) 

where the Zi are i.i.d. - N(0, a2) and a,, a2,. . . , aP, u2 are chosen to 
satisfy (Il.41 ). 

Remark: We do not assume that {Xi} is (a) zero mean, (b) Gaussian, 
or (c) wide-sense stationary. 

Proofi Let x1,x2,. . . , X, be any stochastic process that satisfies the 
constraints (11.41). Let Z,, Z,, . . . ,Z, be a Gaussian process with the 
same covariance matrix as X1, X2, . . . , X,. Then since the multivariate 
normal distribution maximizes the entropy over all vector-valued 
random variables under a covariance constraint, we have 
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h(X,,X,, . . . , X,)~h(Z,,Z,,...,Z,) (11.43) 

=h(Z,,..., 2,) + i h(zilZi-l, zi-2,. * * ,zl) 
i=p+l 

(11.44) 

sh(Z,,..., Zp)+ i h(ZiIZi-,,Zi-,, * * l ,zi-p) 
i=p+l 

(11.45) 

by the chain rule and the fact that conditioning reduces entropy. Now 
define Z;,Z;I,..., 2: as a pth order Gauss-Markov process with the 
same distribution as 2, , Z,, . . . , 2, for all orders up to p. (Existence of 
such a process will be verified using the Yule-Walker equations 
immediately after the proof.) Then since h(Zi IZi _ 1, . . . , Zi -p ) depends 
only on the pth order distribution, 
h(ziIz’i-1, 

h(Zi 1 Zi _ 1, . . . , Zi -p ) = 
. . . , Z& ), and continuing the chain of inequalities, we 

obtain 

h(X~,X~,...,X,)rh(Z,,o..,Z,)+i=~+~h(zilzi-~,zi-~,..*,‘i-~) 

(11.46) 

=h(Z;,..., 2;) + i h(Z; &‘+ z[-,, . . . 3 z;-,) 
i-p+1 

(11.47) 

=h(Z;,Z; ,..., Z;), (11.48) 

where the last equality follows from the pth order Markovity of the 
{ 2:). Dividing by n and taking the limit, we obtain 

1 
lim; h(X,,X,, . . . ,X,+lim ; h(Z;,Z; ,..., Z;)=h*, (11.49) 

where 

h* = $ log&reu2, (11.50) 

which is the entropy rate of the Gauss-Markov process. Hence, the 
maximum entropy rate stochastic process satisfying the constraints is 
the pth order Gauss-Markov process satisfying the constraints. Cl 

A bare bones summary of the proof is that the entropy of a finite 
segment of a stochastic process is bounded above by the entropy of a 
segment of a Gaussian random process with the same covariance 
structure. This entropy is in turn bounded above by the entropy of the 
minimal order Gauss-Markov process satisfying the given covariance 
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constraints. Such a process exists and has a convenient characterization 
by means of the Yule-Walker equations given below. 

Note on the choice of a,, . . . , ap and g2: Given a sequence of 
covariances R(O), R(l), . . . , R(p), does there exist a pth order Gauss- 
Markov process with these covariances? Given a process of the form 
(11.421, can we choose the ak’s to satisfy the constraints? Multiplying 
(11.42) by Xi-l and taking expectations, and noting that R(k) = N-k), 
we get 

R(O) = - i a&-k) + cr2 
&=l 

(11.51) 

and 

R(Z)=-5 a,R(l-k), I=1 2 , ,... . (11.52) 
k=l 

These equations are called the Yule-Walker equations. There are p + 1 
equations in the p + 1 unknowns a,, a2, . . . , ap, a2. Therefore, we can 
solve for the parameters of the process from the covariances. 

Fast algorithms such as the Levinson algorithm and the Durbin 
algorithm [213] have been devised to use the special structure of these 
equations to efficiently calculate the coefficients a,, a2, . . . , ap from the 
covariances. (We set a, = 1 for a consistent notation.) Not only do the 
Yule-Walker equations provide a convenient set of linear equations for 
calculating the ak’s and o2 from the R(k)%, they also indicate how the 
autocorrelations behave for lags greater than p. The autocorrelations for 
high lags are an extension of the values for lags less than p. These 
values are called the Yule-Walker extension of the autocorrelations. The 
spectrum of the maximum entropy process is seen to be 

(11.53) 

This is the maximum entropy spectral density subject to the constraints 
MN, R(l), l . . , R(p). 

In a practical problem, we are generally given a sample sequence 
x,,x,, l l l 

, X,, from which we calculate the autocorrelations. An 
important question is how many autocorrelation lags we should 
consider, i.e., what is the optimum value of p? A logically sound method 
is to choose the value of p that minimizes the total description length in 
a two stage description of the data. This method has been proposed by 
Rissanen [218,223] and Barron [17] and is closely related to the idea of 
Kolmogorov complexity. 
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SUMMARY OF CHAPTER 11 

Maximum entropy distribution: Let f be a probability density satisfying 
the constraints 

I sflx)ri(x)=ai, for llirm. (11.54) 

Let f*(x) = f,(x) = eAO+cK1 hi’i(r), x E S, and let A,, . . . , A, be chosen so that f * 
satisfies (11.54). Then f * uniquely maximizes h( f) over all f satisfying these 
constraints. 

Maximum entropy spectral density estimation: The entropy rate of a 
stochastic process subject to autocorrelation constraints R,, R,, . . . , R, is 
maximized by the pth order zero-mean Gauss-Markov process satisfying 
these constraints. The maximum entropy spectrum is 

(11.55) 

PROBLEMS FOR CHAPTER 11 

1. Maximum entropy. Find the maximum entropy density f defined for 
x L 0 satisfying EX = (Y~, E In X = Q~. That is, maximize -.J f In f 
subject to J 3Gf(3c) C& = CZ~, J(ln x)f<x) dx = (Ye, where the integrals are 
over 0 I x < 03. What family of densities is this? 

2. Min D(PIIQ) d un er constraints on P. We wish to find the (parametric 
form) of the probability mass function P(x), x E {1,2, . . . } that 
minimizes the relative entropy D(PIlQ) over all P such that 
C P(x)gi(x) = ai, i = 1,2, . . . . 
(a) Use Lagrange multipliers to guess that 

JNQ-) = Q(x)eC?=~ h,gi(x)+ho (11.56) 

achieves this minimum if there exist Ai’S satisfying the cyi 
constraints. This generalizes the theorem on maximum entropy 
distributions subject to constraints. 

(b) Verify that P* minimizes D(P 11 Q ). 

3. Maximum entropy processes. Find the maximum entropy rate 
stochastic process {Xi}:“, subject to the constraints: 
(a) EXf=l, i=l,2 ,..,, 
(b) EXf = 1, EXiXi+I = &, i = 1,2, . . . . 
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4. Find the maximum entropy spectrum for the processes in parts (a) and 
(b) of Problem 3. 

5. Maximum entropy zuith marginals. What is the maximum entropy 
distribution p(x, y) that has the following marginals? Hint: You may 
wish to guess and verify a more general result. 

Y 

X 1 2 3 

‘I-- 
1 Pll Pl2 P13 l/2 
2 P21 P22 P23 l/4 
3 PSI P32 P33 l/4 

Z/3 l/6 l/6 

6. Processes with fixed ma~ginals. Consider the set of all densities 
with fixed pairwise marg;inals fxl&,, x2), f&&,, x3), . . . 9 
f x, _ 1, x (x, _ 1, x, ). Show that the maximum entropy process with these 
margi&ls is the first-order (possibly time-varying) Markov process 
with these marginals. Identify the maximizing f*(xl, x2, . . . , x, ). 

7. Every density is a maximum enfropy density. Let f,(x) be a given density. 
Given dx), consider the parametric family of densities g,(x) 
maximizing h(X) over all f satisfying J flx)r<x) & = cr. Now let r(x) = 
In fO(x). Show that g,(x) = f,(x) for an appropriate choice (Y = q,. Thus 
&(x) is a maximum entropy density under the constraint j f In fO = q,. 

HISTORICAL NOTES 

The maximum entropy principle arose in statistical mechanics in the 
nineteenth century and has been advocated for use in a broader context by Jaynes 
[143]. It was applied to spectral estimation by Burg [47]. The information theoretic 
proof of Burg’s theorem is from Choi and Cover [56]. 



Chapter 12 

Information Theory and 
Statistics 

We now explore the relationship between information theory and statis- 
tics. We begin by describing the method of types, which is a powerful 
technique in large deviation theory. We use the method of types to 
calculate the probability of rare events and to show the existence of 
universal source codes. We also consider the problem of testing hypoth- 
eses and derive the best possible error exponents for such tests (Stein’s 
lemma). Finally, we treat the estimation of the parameters of a dis- 
tribution and describe the role of Fisher information. 

12.1 THE METHOD OF TYPES 

The AEP for discrete random variables (Chapter 3) focuses our atten- 
tion on a small subset of typical sequences. The method of types is an 
even more powerful procedure in which we consider the sequences that 
have the same empirical distribution. With this restriction, we can 
derive strong bounds on the number of sequences of a particular 
empirical distribution and the probability of each sequence in this set. It 
is then possible to derive strong error bounds for the channel coding 
theorem and prove a variety of rate-distortion results. The method of 
types was fully developed by Csiszar and Korner [83], who obtained 
most of their results from this point of view. 

Let X1,X,, . . . ,X, be a sequence of n symbols from an alphabet 
2 = {a,, fJ2, * * * , a,*,). We will use the notation xn and x interchange- 
ably to denote a sequence ;xl, x2, . . . , x, . 

Definition: The type P, (or empirical probability distribution) of a 
sequence x,, x,, . . . , x, is the relative proportion of occurrences of each 
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symbol of %‘, i.e., P&z) = N(alx)ln for all a E %‘, where N(aIx) is the 
number of times the symbol a occurs in the sequence x E %“. 

The type of a sequence x is denoted as P,. It is a probability mass 
function on Z. (Note that in this chapter, we will use capital letters to 
denote types and distributions. We will also loosely use the word 
“distribution” to mean a probability mass function.) 

Definition: Let 9,, denote the set of types with denominator n. 

For example, if 8? = (0, l}, then the set of possible types with de- 
nominator n is 

~~={(P(o),PUk(;, ;),(;,g ,..., (I, !)}. (12.1) 

DefZnition: If P E P,,, then the set of sequences of length n and type P 
is called the type class of P, denoted T(P), i.e., 

T(P)= {XEr:P,=P}. (12.2) 

The type class is sometimes called the composition class of P. 

EmmpZe 12.1.1: Let %‘= {1,2,3}, a ternary alphabet. Let x = 11321. 
Then the type P, is 

P,(l)= 5, P,(2)= 5, P,(3)= 5. (12.3) 

The type class of P, is the set of all sequences of length 5 with three l’s, 
one 2 and one 3. There are 20 such sequences, and 

T(P,) = {11123,11132,11213,. . . ,321ll) . (12.4) 

The number of elements in T(P) is 

IzIP,I=(,; 1)=&=20. 
9 9 . . . (12.5) 

The essential power of the method of types arises from the following 
theorem, which shows that the number of types is at most polynomial in 
n. 

Theorem 12.1.1: 

lgnl 22 (n + l)l&( . (12.6) 
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Proof: There are 1 Z 1 components in the vector that specifies Px. The 
numerator in each component can take on only n + 1 values. So there 
are at most (n + l)la”’ choices for the type vector. Of course, these choices 
are not independent (for example, the last choice is fixed by the others). 
But this is a sufficiently good upper bound for our needs. Cl 

The crucial point here is that there are only a polynomial number of 
types of length n. Since the number of sequences is exponential in n, it 
follows that at least one type has exponentially many sequences in its 
type class. In fact, the largest type class has essentially the same 
number of elements as the entire set of sequences, to first order in the 
exponent. 

Now, we will assume that the sequence X,, X,, . . . , X, is drawn i.i.d. 
according to a distribution Q(x). AI1 sequences with the same type will 
have the same probability, as shown in the following theorem. Let 
Q”(x”) = II;=, Q&) denote the product distribution associated with Q. 

Theorem 12.1.2: If X1,X,, . . . ,X, are drawn Cd. according to Q(x), 
then the probability of x depends only on its type and is given by 

Proof: 

Q”(x) = 2- nW(P,&+D(P,"Q)) . 

Q”(x) = ii Q(xi) 
i=l 

= fl Q(a)N(uIx) 

aE&” 

= n Q(a)npJa) 

aE% 

= 
l-I 2 nP,(u) log Q(a) 

UEEe” 

= n 2 n(P.,&z) log Q(a)-P,(a) log P&)+P,b) log P,(a)) 

aE% 

nC 
= 2 

aE* (-P,(a) log ~+PJaI logP,W 

= p-NP,llQ)-H(P,H . q 

Corollary: If x is in the type class of Q, then 

Qn(x) = 24(Q) . 

(12.7) 

(12.8) 

(12.9) 

(12.10) 

(12.11) 

(12.12) 

(12.13) 

(12.14) 

(12.15) 
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Proof: If x E T(Q), then Px = Q, which can be substituted into 
(12.14). q 

Example 12.1.2: The probability that a fair die produces a particular 
sequence of length n with precisely n/6 occurrences of each face (n is a 
multiple of 6) is 2-nHcaP 8’. . . ’ Q’ = 6-“. This is obvious. However, if the die 
has a probability mass function ( i, $, i, &, &, 0), the probability of 
observing a particular sequence with precisely these frequencies is 
precisely 2 --nH(i, g, Q, i&P $270) f or n a multiple of 12. This is more inter- 
esting. 

We now give an estimate of the size of a type class Z’(P). 

Theorem 12.1.3 (Size of a type class Z’(P)): For any type P E gn, 

1 

(n + l)‘Z’ 2 
nN(P) ( IT(P)I 5 y-) . (12.16) 

Proof: The exact size of Z’(P) is easy to calculate. It is a simple 
combinatorial problem-the number of ways of arranging nP(a, ), 
nP(a,), . . . , nP(a,,,) objects in a sequence, which is 

IT(P)I = ( n 
nP(a, 1, nP(a,), . . . , nP(algl) > ’ 

(12.17) 

This value is hard to manipulate, so we derive simple exponential 
bounds on its value. 

We suggest two alternative proofs for the exponential bounds. 
The first proof uses Stirling% formula [ 1101 to bound the factorial 

function, and after some algebra, we can obtain the bounds of the 
theorem. 

We give an alternative proof. We first prove the upper bound. Since a 
type class must have probability I 1, we have 

11 P”(T(P)) (12.18) 

= c P”(x) 
xE!r(P) 

= 
x&J) 2- 

nH(P 1 

= IT(P))2-“H’P) , 

(12.19) 

(12.20) 

(12.21) 

using Theorem 12.1.2. Thus 

1 T(P)1 5 2nH(P) , (12.22) 
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Now for the lower bound. We first prove that the type class T(P) has the 
highest probability among all type classes under the probability dis- 
tribution P, i.e., 

JWYPN 1 P”u@)), for all P E 9n . (12.23) 

We lower bound the ratio of probabilities, 

P”(T(PN _ JT(P)p,,, PwP(a) 

P”(m) - 1 T@)ll-l,,, P(czypca) 
(12.24) 

( nPbl), nP$?, . . . , nP(qq) ) fla,, P(cFa) 
= 

( 
n 

n&al), n&a2), . . . , nP(algI) >fl 

(12 25) 

uE* P(a)npca) * 

= fl (da))! p(a)n(P(a)-B(a)) 

aEg WbN 
. (12.26) 

Now using the simple bound (easy to prove by separately considering 
the cases m 2 n and m < n) 

(12.27) 

we obtain 

~“UYP)) 

P”(m) 

L n (np(u))n~(a)-nP(a)p(a)n(P(u)-~(a)) (12.28) 
aE2f 

= 
l-I n n@(a)-P(a)) 

aEl 

= nn(caEZ P(a)-C aEIP P(a)) 

(12.29) 

=n &l-l) 
(12.31) 

. 

=l. (12.32) 

Hence P”(T(P)) 2 P”(@)). The lower bound now follows easily from this 
result, since 

l= c P”U’(QN 
QEB, 

(12.33) 

(12.34) 

(12.35) 
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< (n + l)‘x’P”(T(P)) - (12.36) 

= (n + l)‘%’ c P”(x) (12.37) 
XET(P) 

= (n + r>l"l 2 243(P) (12.38) 
xET(P) 

=(n + lfa'lT(P)12-nH'P' ? (12.39) 

where (12.36) follows from Theorem 12.1.1 and (12.38) follows from 
Theorem 12.1.2. Cl 

We give a slightly better approximation for the binary case. 

Example 12.1.3 (Binary alphabet): In this case, the type is defined by 
the number of l’s in the sequence, and the size of the type class is 
therefore ( g ). We show that 

1 
-2 rzH(h< n 

( > 
nH(!i) 

n-II 
-k12 . (12.40) 

These bounds can be proved using Stirling’s approximation for the 
factorial function. But we provide a more intuitive proof below. 

We first prove the upper bound. From the binomial formula, for any p, 

p&(1 -p)n-k = 1 . (12.41) 

Since all the terms of the sum are positive for 0 I p I 1, each of the 
terms is less than 1. Setting p = $ and taking the Filth term, we get 

k log h+(n-k) log%? 

( > i2 

n(h log ff+* log+ 
= > 

= ( > nZ!Z(!i) ;2- . 

(12.42) 

(12.43) 

(12.44) 

(12.45) 

nH(i) 52 . (12.46) 
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For the lower bound, let S be a random variable with a binomial 
distribution with parameters n and p. The most likely value of S is 
S = ( np ) . This can be easily verified from the fact that 

P(S=i+l)-n-i p 
P(S = i) i+l l-p 

(12.47) 

and considering the cases when i < np and when i > np. Then, since 
there are n + 1 terms in the binomial sum, 

1= i (;)p*(l -p)n-k r(n + l)m*ax( ;)pkU -pTk 
k=O 

(12.48) 

=(n+l)( (&) > 
p’“P’(l -p)“-‘“P’ . 

(12.49) 

Now let p = $. Then we have 

l~~n+l)(~)(t)k(l-%)“-k, (12.50) 

which by the arguments in (12.45) is equivalent to 

1 
-2s 
n-+1 

(12.51) 

or 

(12.52) 

Combining the two results, we see that 

(12.53) 

Theorem 12.1.4 (Probdbility of type c2ass): For any P E gn and any 
distribution Q, the probability of the type class T(P) under Q” is 
2-nD’p”Q) to first order in the exponent. More precisely, 

cyD(PllQ) I Q”(T(p)) I 2-nDU-‘llQ) . (12.54) 

Proof: We have 

&VW) = c Q”(x) 
XET(P) 

(12.55) 



286 UVFORMATION THEORY AND STATZSTlCS 

= IT(P)12- n(D(P(lQ)+H(PN 
2 

(12.56) 

(12.57) 

by Theorem 12.1.2. Using the bounds on IT(P)) derived in Theorem 
12.1.3, we have 

1 

(n + 1)'"' 
2-no(pllQ)IQn(~(p))~2-no(pltQ). q (12.58) 

We can summarize the basic theorems concerning types in four equa- 
tions: 

lLPnl I (n + 1)‘“’ , (12.59) 

Q"(x)= 2- n(D(P,llQ)+H(P,N 
7 

1 T(P)1 A 2nH(P) , 

Qn(T(p))~2-'11Q) . (12.62) 

These equations state that there are only a polynomial number of types 
and that there are an exponential number of sequences of each type. We 
also have an exact formula for the probability of any sequence of type P 
under distribution Q and an approximate formula for the probability of 
a type class. 

These equations allow us to calculate the behavior of long sequences 
based on the properties of the type of the sequence. For example, for 
long sequences drawn i.i.d. according to some distribution, the type of 
the sequence is close to the distribution generating the sequence, and we 
can use the properties of this distribution to estimate the properties of 
the sequence. Some of the applications that will be dealt with in the 
next few sections are as follows: 

l The law of large numbers. 
l Universal source coding. 
l Sanov’s theorem. 

l Stein’s lemma and hypothesis testing. 
l Conditional probability and limit theorems. 

12.2 THE LAW OF LARGE NUMBERS 

The concept of type and type classes enables us to give an alternative 
interpretation to the law of large numbers. In fact, it can be used as a 
proof of a version of the weak law in the discrete case. 
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The most important property of types is that there are only a 
polynomial number of types, and an exponential number of sequences of 
each type. Since the probability of each type class depends exponentially 
on the relative entropy distance between the type P and the distribution 
Q, type classes that are far from the true distribution have exponential- 
ly smaller probability. 

Given an E > 0, we can define a typical set T’, of sequences for the 
distribution Q” as 

T’, = {xn: D(P,,IIQ)s E} . (12.63) 

Then the probability that X” is not typical is 

1 - Q”(T;) = 2 Q”UVN 
zJ:DuqQ)>c 

(12.64) 

I P:D(P,,Q)>~ 2-nD(P”Q) c (Theorem 12.1.4) (12.65) 

5 c 2-“’ (12.66) 
P:LXPJJQDe 

-= (n + 1)‘“‘2-“’ - (Theorem 12.1.1) (12.67) 

= 2 
-,(,-,*,*) 

7 (12.68) 

which goes to 0 as n + 00. Hence, the probability of the typical set goes to 
1 as n * 00. This is similar to the AEP proved in Chapter 3, which is a 
form of the weak law of large numbers. 

Theorem 12.2.1: Let Xl, X,, . . . , X, be i.i.d. -P(x). Then 

Pr{D(P,, lip> > E} I 2 
-,(,-l*l~) 

7 (12.69) 

and consequently, D(P,, II P)+ 0 with probability I. 

Proof: The inequality (12.69) was proved in (12.68). Summing over 
n, we find 

2 Pr{D(P,,IIP) > E} < 00. 
n=l 

(12.70) 

Thus the expected number of occurrences of the event { D(P,, II P) > E} 
for all n is finite, which implies that the actual number of such 
occurrences is also finite with probability 1 (Borel-Cantelli lemma). 
Hence D(P,, II P) --, 0 with probability 1. Cl 

We now define a stronger version of typicality. 
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Definition: We will define the strongZy typicaL set A:’ to be the set of 
sequences in %‘” for which the sample frequencies are close to the true 
values, i.e., 

A(n) = 
l 

{rtrr”:I~N(alr)Po)l<~, for allaE% (1271) 

. 

Hence the typical set consists of sequences whose type does not differ 
from the true probabilities by more than E/I %‘I in any component. 

By the strong law of large numbers, it follows that the probability of 
the strongly typical set goes to 1 as n+ 00. 

The additional power afforded by strong typicality is useful in proving 
stronger results, particularly in universal coding, rate distortion theory 
and large deviation theory. 

12.3 UNIVERSAL SOURCE CODING 

Huffman coding compresses an i.i.d. source with a known distribution 
p(x) to its entropy limit H(X). However, if the code is designed for some 
incorrect distribution q(x), a penalty of D( p 119) is incurred. Thus Huff- 
man coding is sensitive to the assumed distribution. 

What compression can be achieved if the true distribution p(x) is 
unknown? Is there a universal code of rate R, say, that suffices to 
describe every i.i.d. source with entropy H(X)< R? The surprising 
answer is yes. 

The idea is based on the method of types. There are 2nncP’ sequences 
of type P. Since there are only a polynomial number of types with 
denominator n, an enumeration of all sequences xn with type Pzn such 
that H(P,,) =C R will require roughly nR bits. Thus, by describing all 
such sequences, we are prepared to describe any sequence that is likely 
to arise from 
definition. 

Definition: A 
which has an 
encoder, 

any distribution Q with H(Q) < R. We begin with a 

fied rate block code of rate R for a source X1, X,, . . . , X, 
unknown distribution Q consists of two mappings, the 

fn:~n+{l,2,...,2nR}, (12.72) 

and the decoder, 

4${1,2 ,..., ZnR)+3!?. (12.73) 



12.3 UNIVERSAL SOURCE CODZNG 289 

Here R is called the rate of the code. The probability of error for the code 
with respect to the distribution Q is 

P~‘=Q”(X,,X, ,..., X,:~,(f,cx,,x,,...,x,)~~cx,,x,,..~~x,))~ 

(12.74) 

Definition: A rate R block code for a source will be called universal if 
the functions f, and & do not depend on the distribution Q and if 
Pr’+O as n+m ifR>H(Q). 

We now describe one such universal encoding scheme, due to Csiszar 
and Korner [83], that is based on the fact that the number of sequences 
of the type P increases exponentially with the entropy and the fact that 
there are only a polynomial number of types. 

Theorem 12.3.1: There exists a sequence of (2nR, n) universal source 
codes such that Pr’ + 0 for every source Q such that H(Q) < R. 

Proof= Fix the rate R for the code. Let 

Consider the set of sequences 

A={xE%‘“:H(P,)sR,}. 

Then 

I4 = c I WV 
PEG, : H(P)<R, 

I c 2 nH(P) 

PE9, : H(P)sR,, 

I c 2 4l 
PEP, : H(P)sR,, 

((n + 1y*'2nRn - 

= 2 
n(R,+[&(q) 

= 2”R. 

(12.75) 

(12.76) 

(12.77) 

(12.78) 

(12.79) 

(12.80) 

(12.81) 

(12.82) 

By indexing the elements of A, we define the encoding f, as 
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fn<x> = { tdex of x in A iE;h;i= 
. (12.83) 

The decoding function maps each index onto the corresponding element 
of A. Hence all the elements of A are encoded correctly, and all the 
remaining sequences result in an error. The set of sequences that are 
encoded correctly is illustrated in Figure 12.1. 

We will now show that this encoding scheme is universal. Assume 
that the distribution of XI, X,, . . . , X,, is Q and H(Q) CR. Then the 
probability of decoding error is given by 

I’:’ = 1 - Q”(A) (12.84) 

= c Q’VW) (12.85) 
P : H(P)>R, 

I (n + 1)‘“’ max Q”(W)) 
P : H(P)>R,, 

(12.86) 

-=I (n + 1)‘“‘2 
-n m%wP)>R”wIQ) - (12.87) 

Since R, TR and H(Q) < R, there exists n, such that for all n L n,, 
R, > H(Q). Then for n 1 n,, minp,Htpl,Rno(PIIQ> must be greater than 
0, and the probability of error Pr’ converges to 0 exponentially fast as 
n-a. 

On the other hand, if the distribution Q is such that the entropy H(Q) 
is greater than the rate R, then with high probability, the sequence will 
have a type outside the set A. Hence, in such cases the probability of 
error is close to 1. 

Figure 12.1. Universal code and the probability simplex. 
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H(Q) Rate of code 

Figure 12.2. Error exponent for the universal code. 

The exponent in the probability of error is 

D&g = min DP((Q), 
P : H(P)>R 

(12.88) 

which is illustrated in Figure 12.2. Cl 

The universal coding scheme described here is only one of many such 
schemes. It is universal over the set of i.i.d. distributions. There are 
other schemes like the Lempel-Ziv algorithm, which is a variable rate 
universal code for all ergodic sources. The Lempel-Ziv algorithm, dis- 
cussed in Section 12.10, is often used in practice to compress data which 
cannot be modeled simply, such as English text or computer source code. 

One may wonder why it is ever necessary to use Huffman codes, 
which are specific to a probability distribution. What do we lose in using 
a universal code? 

Universal codes need a longer block length to obtain the same 
performance as a code designed specifically for the probability dis- 
tribution. We pay the penalty for this increase in block length by the 
increased complexity of the encoder and decoder. Hence a distribution 
specific code is best if one knows the distribution of the source. 

12.4 LARGE DEVIATION THEORY 

The subject of large deviation theory can be illustrated by an example. 
What is the probability that w  C Xi is near l/3, if X1, X,, . . . , X, are 
drawn i.i.d. Bernoulli( l/3)? This is a small deviation (from the expected 
outcome) and the probability is near 1. Now what is the probability that 
k C Xi is greater than 3/4 given that X1, X,, . . . , X, are Bernoulli(l/3)? 
This is a large deviation, and the probability is exponentially small. We 
might estimate the exponent using the central limit theorem, but this is 
a poor approximation for more than a few standard deviations. We note 
that i C Xi = 3/4 is equivalent to P, = (l/4,3/4). Thus the probability 
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that X, is near 3/4 is the probability of the corresponding type. The 
probability of this large deviation will turn out to be = 2 -nD(( lf f )‘I( f, % “! In 
this section, we estimate the probability of a set of non-typical types. 

Let E be a subset of the set of probability mass functions. For 
example, E may be the set of probability mass functions with mean p. 
With a slight abuse of notation, we write 

Q”(E) = Q”(E n 9’J = 2 Q”(x). 
x: P,EE~~,, 

(12.89) 

If E contains a relative entropy neighborhood of Q, then by the weak law 
of large numbers (Theorem 12.2.1), Q”(E)+ 1. On the other hand, if E 
does not contain Q or a neighborhood of Q, then by the weak law of large 
numbers, Q”(E )+ 0 exponentially fast. We will use the method of types 
to calculate the exponent. 

Let us first give some examples of the kind of sets E that we are 
considering. For example, assume that by observation we find that the 
sample average of g(X) is greater than or equal to QI, i.e., k Ci g<x, > L ar. 
This event is equivalent to the event Px E E n P,, where 

because 

E = {P: 2 g(a)P(u)r a}, 
aE& 

(12.90) 

(12.91) 

~P,EEM’~. (12.92) 

Thus 

(12.93) 

Here E is a half space in the space of probability vectors, as illustrated 
in Figure 12.3. 

Theorem 12.4.1 (Sunov’s theorem): Let Xl, X2, . . . , X, be i.i.d. - Q(x). 
Let E c 9 be a set of probability distributions. Then 

where 

Q”(E) = Q”(E n 9,) 5 (n + ~)I*~~-~D(P*IIQ) ? (12.94) 

P* = argyigD(PII&), (12.95) 

is the distribution in E that is closest to Q in relative entropy. 



12.4 LARGE DEVIATION THEORY 293 

Figure 12.3. The probability simplex and Sanov’s theorem. 

If, in addition, the set E is the closure of its interior, then 

; log Qn(E)+ -D(P*llQ) . (12.96) 

Proof: We first prove the upper bound: 

Q”(E)= 2 Q”W-‘N 
PEEPS’,, 

(12.97) 

5 c 
6pvPIlQ) (12.98) 

PEEW, 

5 c max 2 -nD(PllQ) 

PEEr-9, PEEn9’, 

(12.99) 

= c 2 
-n minpEEnpn~(PllQ) 

(12.100) 
PEEnp’, 

I 2 2 -n minp&XP(lQ) (12.101) 
PEEnB, 

= 2 spwJ*llQ) 

PEEn9, 
(12.102) 

< cn + ~~l~l2-~~(J’*llQ) (12.103) 

where the last inequality follows from Theorem 12.1.1. 
Note that P* need not be a member of .Pn. We now come to the lower 

bound, for which we need a “nice ” set E, so that for all large n, we can 
find a distribution in E n .P,, which is close to P. If we now assume that 
E is the closure of its interior (thus the interior must be non-empty), 
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then since U n 9,, is dense in the set of all distributions, it follows that 
E n 9n is non-empty for all n 1 n, for some n,. We can then fknd 
a sequence of distributions P,, such that P, E E n 9n and D(P, IIQ) 
+D(P*IIQ). For each n 2 n,, 

Q”(E)= 2 &VW) 
PeErW, 

1 Q”U’Pn )) 

1 
21 (n + lj”l 

2-~~(P,llQ) . 

Consequently, 

(12.104) 

(12.105) 

(12.106) 

1 
lim inf ; log Q”(E) I lim i 

IS?1 logh + 1) 
- 

n 

= -D(P*)lQ). 

- D(P,llQ$ 

(12.107) 

Combining this with the upper bound establishes the theorem. Cl 

This argument can also be extended to continuous distributions using 
quantization. 

12.5 EXAMPLES OF SANOV’S THEOREM 

Suppose we wish to find Pr{ i Cy=, gj(X,> 2 a!, j = 1,2,. . . , k}. Then the 
set E is defined as 

E = {P: 2 P(a)gj(a) 1 ~j, j = 1,2, . . . , k} . (12.108) 
a 

To find the closest distribution in E to Q, we minimize D(PII Q) subject 
to the constraints in (12.108). Using Lagrange multipliers, we construct 
the functional 

P(x) 
J(P) = c Rd log g<=c> + C Ai C P<x)gi(~> + VC p(~) . (12’log) 

x i x x 

We then differentiate and calculate the closest distribution to Q to be of 
the form 

P*(x) = 
Q(& ci %gi(x) 

c a~&” Q(a)e”i *igi(a) ’ (12.110) 
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where the constants Ai are chosen to satisfy the constraints. Note that if 
Q is uniform, then P* is the maximum entropy distribution. Verification 
that P* is indeed the minimum follows from the same kind of arguments 
as given in Chapter 11. 

Let us consider some specific examples: 

Example 12.5.1 (Dice): Suppose we toss a fair die n times; what is the 
probability that the average of the throws is greater than or equal to 4? 
From Sanov’s theorem, it follows that 

Q”(E)& 2-P*llQJ 
, (12.111) 

where P* minimizes D(PIIQ) over all distributions P that satisfy 

$ iP(i)l4. 
i=l 

From (12.110), it follows that P* has the form 

2 p*w = g$ , 
z-l 

(12.112) 

(12.113) 

with h chosen so that C iP*(i) = 4. Solving numerically, we obtain 
A=0.2519, and P*= (0.1031,0.1227,0.1461,0.1740,0.2072,0.2468), 
and therefore D(P*II Q) = 0.0624 bits. Thus, the probability that the 
average of 10000 throws is greater than or equal to 4 is = 2-624. 

Example 12.62 (Coins): Suppose we have a fair coin, and want to 
estimate the probability of observing more than 700 heads in a series of 
1000 tosses. The problem is like the previous example. The probability is 

(12.114) 

where P* is the (0.7,0.3) distribution and Q is the (0.5,0.5) dis- 
tribution. In this case, D(P*IIQ) = 1 - H(P*) = 1 - H(0.7) = 0.119. Thus 
th;lgprobability of 700 or more heads in 1000 trials is approximately 
2- . 

Example 12.6.3 (Mutual dependence): Let Q(x, y) be a given joint 
distribution and let QJx, y) = Q(x>Q( y) be the associated product dis- 
tribution formed from the marginals of Q. We wish to know the 
likelihood that a sample drawn according to Q0 will “appear” to be 
jointly distributed according to Q. Accordingly, let (Xi, Yi) be i.i.d. 
-Q&, y)= Q(x)&(y). W e d fi e ne joint typicality as we did in Section 8.6, 
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i.e., (x”, y”) is jointly typical with respect to a joint distribution Q(x, y) 
iff the sample entropies are close to their true values, i.e., 

-i log&(x")-H(x) SE, (12.115) 

+ogQ(y”)-H(Y) SE, (12.116) 

and 

1 
-,logQ(x”,y”)-H(X,Y) SE. (12.117) 

We wish to calculate the probability (under the product distribution) of 
seeing a pair (x”, y”) that looks jointly typical of Q, i.e., (x”, y”) satisfies 
(12.115)-(12.117). Thus (x”, y”) are jointly typical with respect to 
Q(x, y) if P xn, yn E E n iFn (X, Y), where 

E= - 2 P(x, y) log Q(x) - H(X) 5 E , 
x9 Y 

-c Rx, y) log Q(y) - H(Y) 5 E , 
x* Y 

-c P(x, y) log Q(x, y) - H(X, Y) . (12.118) 
x9 Y 

Using Sanov’s theorem, the probability is 

Q;(E) & 2-n~(p*!lQ,) , (12.119) 

where P* is the distribution satisfying the constraints that is closest to 
Q0 in relative entropy. In this case, as E + 0, it can be verified (Problem 
10) that P* is the joint distribution Q, and Q0 is the product dis- 
tribution, so that the probability is 2-nDcQcX9 y)ttQ(x)Q(y)) = 2-nrcXi y’, which 
is the same as the result derived in Chapter 8 for the joint AEP 

In the next section, we consider the empirical distribution of the 
sequence of outcomes given that the type is in a particular set of 
distributions E. We will show that not only is the probability of the set E 
essentially determined by D(P*II Q), the distance of the closest element 
of E to Q, but also that the conditional type is essentially P*, so that 
given that we are in set E, the type is very likely to be close to P*. 
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12.6 THE CONDITIONAL LIMIT THEOREM 

It has been shown that the probability of a set of types under a 
distribution Q is essentially determined by the probability of the closest 
element of the set to Q; the probability is 2-nD* to first order in the 
exponent, where 

D” = yn; D(PllQ) . (12.120) 

This follows because the probability of the set of types is the sum of the 
probabilities of each type, which is bounded by the largest term times 
the number of terms. Since the number of terms is polynomial in the 
length of the sequences, the sum is equal to the largest term to first 
order in the exponent. 

We now strengthen the argument to show that not only is the 
probability of the set E essentially the same as the probability of the 
closest type P* but also that the total probability of other types that are 
far away from P* is negligible. This implies that with very high 
probability, the observed type is close to P*. We call this a conditional 
limit theorem. 

Before we prove this result, we prove a “Pythagorean” theorem, which 
gives some insight into the geometry of D(P 11 Q ). Since D(P 11 Q ) is not a 
metric, many of the intuitive properties of distance are not valid for 
D(P(lQ). The next theorem shows a sense in which D(PIIQ) behaves like 
the square of the Euclidean metric (Figure 12.4). 

Theorem 12.6.1: For a closed convex set E C 9 and distribution Q $E, 
let P* E E be the distribution that achieves the minimum distance to Q, 
i.e., 

Figure 12.4. Pythagorean theorem for relative entropy. 
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Then 

for all P E E. 

D(P(IQ)rD(PIIP*)+D(P*I(Q) (12.122) 

Note: The main use of this theorem is as follows: suppose we have a 
sequence P, E E that yields D(P, II Q ) + D(P* II Q 1. Then from the Py- 
thagorean theorem, D(P, II P*)+ 0 as well. 

Proof: Consider any P E E. Let 

PA = AP + (1 - A)P* . (12.123) 

Then PA + P* as A + 0. Also since E is convex, PA E E for 0 I A I 1. Since 
D(P*IlQ) is the minimum of D(P,IIQ) along the path P*+P, the 
derivative of D(P, I I Q ) as a function of A is non-negative at A = 0. Now 

P,(x) 
D,=D(P,IIQ)=C.P,(z)logQo, (12.124) 

d4 -= 
dh (Rx) - P”(x)) log g + (P(x) - P*(x))) . 

X 
(12.125) 

Setting A = 0, so that PA = P* and using the fact that C P(x) = C P*(x) = 
1, we have 

= 2 (P(x) - P”(x)) log $+ 
X 

= 2 P(x) log $L$ - c P*‘(x) log p+ 
X 

= 2 P(x) log z s - c P*(x) log z 
X 

= DU’((Q) - D(P(IP*) - DP*llQ>, 

which proves the theorem. Cl 

(12.126) 

(12.127) 

(12.128) 

(12.129) 

(12.130) 
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Note that the relative entropy D(PII Q) behaves like the square of the 
Euclidean distance. Suppose we have a convex set E in % n. Let A be a 
point outside the set, B the point in the set closest to A, and C any other 
point in the set. Then the angle between the lines BA and BC must be 
obtuse, which implies that Zic 1 IL + I&, which is of the same form as 
the above theorem. This is illustrated in Figure 12.5. 

We now prove a useful lemma which shows that convergence in 
relative entropy implies convergence in the ZI norm. 

The .ZI distance between any two distributions is defined 

Let A be the set on which P,(X) > P&G). Then 

lp$ - Pz 111 = c IP&) - P&)1 
xE& 

Also note that 

= c P,(r) - P,(x)> + c (P&d - P,(x)> 
XEA ZEAC 

= P,(A) - P,(A) + &(A”) - &(A”) 

= P,(A) -P,(A) + 1 -P,(A) - 1 + P,(A) 

= W,(A) - P,(A)) . 

(12.131) 

(12.132) 

(12.133) 

(12.134) 

(12.135) 

(12.136) 

(12.137) 

Figure 12.5. Triangle inequality for distance squared. 
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The left hand side of (12.137) is called the variational distance between 
PI and Pz. 

Lemma 12.6.1: 

(12.138) 

Proof: We first prove it for the binary case. Consider two binary 
distributions with parameters p and q with p 1 q. We will show that 

l-p 4 
plog~+(l-p)logi_g~~(P-q)2~ (12.139) 

The difference g(p, q) between the two sides is 

l-p 4 
g~p,q)=Plog~+u-p)log-- 

1-q 
m(P - d2 * 

(12.140) 

Then 

dg(P,d P 1-P 4 
dq -- = qln2 

+ 
(1 -q)ln2 - g&Kq -p) (12.141) 

Q-P 4 
= q(l- q)ln2 - &I -P) (12.142) 

10 9 (12.143) 

since q(1 - q) 5 f and q 5 p. For q = p, g(p, q) = 0, and hence g( p, q) 2 0 
for q 5 p, which proves the lemma for the binary case. 

For the general case, for any two distributions P, and P2, let 

A = {x: PI(x) > P,(x)} . (12.144) 

Define a new binary random variable Y = 4(X), the indicator of the set 
A, and let P, and P2 be the distributions of Y. Thus P, and P, correspond 
to the quantized versions of P, and P,. Then by the data processing 
inequality applied to relative entropies (which is proved in the same way 
as the data processing inequality for mutual information), we have 

(12.145) 

(12.146) 
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= & IlPl - PzllT (12.147) 

by (12.137), and the lemma is proved. Cl 

We can now begin the proof of the conditional limit theorem. We first 
outline the method used. As stated at the beginning of the chapter, the 
essential idea is that the probability of a type under Q depends exponen- 
tially on the distance of the type from Q, and hence types that are 
further away are exponentially less likely to occur. We divide the set of 
types in E into two categories: those at about the same distance from Q 
as P* and those a distance 26 farther away. The second set has 
exponentially less probability than the first, and hence the first set has a 
conditional probability tending to 1. We then use the Pythagorean 
theorem to establish that all the elements in the first set are close to P*, 
which will establish the theorem. 

The following theorem is an important strengthening of the max- 
imum entropy principle. 

Theorem 12.6.2 (Conditional limit theorem): Let E be a closed convex 
subset of 9 and let Q be a distribution not in E. Let XI, X2, . . . , X, be 
discrete random variables drawn i.i.d. -Q. Let P* achieve min,,, 
WP(IQ). Then 

Pr(x, = alPxn E E)+ P*(a) (12.148) 

in probability as n + 00, i.e., the conditional distribution of XI, given that 
the type of the sequence is in E, is close to P* for large n. 

Example 12.6.1: If Xi i.i.d. - Q, then 

where P*(a) minimizes D(PIJQ) over P satisfying C P(a)a2 1 a. This 
minimization results in 

ha2 

P*(a) = Q(a) e 
C, Q(a)eAa2 ’ 

(12.150) 

where A is chosen to satisfy C P*(a)a2 = CL Thus the conditional dis- 
tribution on X1 given a constraint on the sum of the squares is a 
(normalized) product of the original probability mass function and the 
maximum entropy probability mass function (which in this case is 
Gaussian). 
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Proof of Theorem: Define the sets 

S, = {PE cP:D(PIlQ)st}. (12.151) 

The sets S, are convex since D(P 11 Q ) is a convex function of P. Let 

D* = D(P*IIQ) = pE~D(PllQ). (12.152) 

Then P* is unique, since D(P II Q ) is strictly convex in I? 
Now define the set 

A = SDefz6 n E (12.153) 

and 

B=E-S,,,,,nE. (12.154) 

Thus A U B = E. These sets are illustrated in Figure 12.6. Then 

Q”(B) = 
PEE”~‘, :&,Q,>o.+26 QvYP)) (12.155) 

I c ywllQ) (12.156) 
PEEW, :D(PllQ)>D*+26 

I c 2 -n(D*+2s) (12.157) 
PEEM’,:D(PJJQ)>D*+2S 

< cn + 1)1&“12-4D*+2~) - 9 (12.158) 

Figure 12.6. The conditional limit theorem. 
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since there are only a polynomial number of types. On the other hand, 

Q"(A) 2 &"CS,.+, n E) (12.159) 

= (12.160) 

c 1 
1 

PEEn9, :DG’llQ)sD*+6 (?Z + l)‘*’ 
yW’11Q) (12.161) 

1 
2 (n + 1)‘“’ 

2- n(D*+S) 
’ for n sufficiently large , (12.162) 

since the sum is greater than one of the terms, and for sufficiently large 
n, there exists at least one type in SD*+6 n E fl 9,. Then for n sufficient- 
ly large 

I  Q"(B) 
Q”(A) 

(12.163) 

(12.164) 

I (n + l)l&“l2-dD*+w 

&2- 
n(D*+6) (12.165) 

= (n + l)2iz12-n6 
’ (12.166) 

which goes to 0 as n --* m. Hence the conditional probability of B goes to 
0 as n + 00, which implies that the conditional probability of A goes to 1. 

We now show that all the members of A are close to P* in relative 
entropy. For all members of A, 

D(PIlQ)5D*+26. (12.167) 

Hence by the “Pythagorean” theorem (Theorem 12.6.1)) 

D(pIIP*) + D(P*IlQ) 5 D(Pl(Q) 5 D* + 2s , (12.168) 

which in turn implies that 

D(PJ(P”) 5 2s ) (12.169) 

since D(P*(I Q) = D*. Thus P, E A implies that D(P,II Q) 5 D* + 26, and 
therefore that D(P,IIP*) I 28. Consequently, since Pr{P,, E A(P,, E 
E} --) 1, it follows that 
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Pr(D(P,,IIP”)I2SIP,,EE)-,l (12.170) 

By Lemma 12.6.1, the fact that the relative entropy is small implies 
that the 3, distance is small, which in turn implies that max,,zt” 
ppw - P”(a>l is small. Thus Pr(IP,,(a) - P*(a)) 2 EIP,, E E)+ 0 as 
n + 00. Alternatively, this can be written as 

Pr(x, = a IPxn E E) + P*(a) in probability . (12.171) 

In this theorem, we have only proved that the marginal distribution 
goes to P* as n --) co. Using a similar argument, we can prove a stronger 
version of this theorem, i.e., 

m 

Pr(x, = u,,X, = uz,. . . ,x, = u,lPp EE)+ n P”(u,) in probability . 
i=l 

(12.172) 

This holds for fked m as n + 00. The result is not true for m = n, since 
there are end effects; given that the type of the sequence is in E, the last 
elements of the sequence can be determined from the remaining ele- 
ments, and the elements are no longer independent. The conditional 
limit theorem states that the first few elements are asymptotically 
independent with common distribution P*. 

Example 12.6.2: As an example of the conditional limit theorem, let us 
consider the case when n fair dice are rolled. Suppose that the sum of 
the outcomes exceeds 4n. Then by the conditional limit theorem, the 
probability that the first die shows a number a E { 1,2, . . . ,6} is approx- 
imately P*(u), where P*(u) is the distribution in E that is closest to the 
uniform distribution, where E = {P: C P(u)u 14). This is the maximum 
entropy distribution given by 

2 p*w = & , 
i-l 

(12.173) 

with A chosen so that C iP*(i) = 4 (see Chapter 11). Here P* is the 
conditional distribution on the first (or any other) die. Apparently the 
first few dice inspected will behave as if they are independently drawn 
according to an exponential distribution. 

12.7 HYPOTHESIS TESTING 

One of the standard problems in statistics is to decide between two 
alternative explanations for the observed data. For example, in medical 
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testing, one may wish to test whether a new drug is effective or not. 
Similarly, a sequence of coin tosses may reveal whether the coin is 
biased or not. 

These problems are examples of the general hypothesis testing prob- 
lem. In the simplest case, we have to decide between two i.i.d. dis- 
tributions. The general problem can be stated as follows: 

Problem: Let X, , X,, . . . , X,, be i.i.d. - Q(Z). We consider two hy- 
potheses: 

l H,: Q=P,. 

l H2:Q=P2. 

Consider the general decision function g(xl, xs, . . . , x, ), where 
g&9 x2, * * * 9 XJ = 1 implies that HI is accepted and g(+ x2, . . . , xn) = 2 
implies that H, is accepted. Since the function takes on only two values, 
the test can also be specified by specifying the set A over which 
&Xl, 372, * * * 2 x,J is 1; the complement of this set is the set where 
gb,, 3t2, * * * 9 rn ) has the value 2. We define the two probabilities of error: 

a = Pr<g(X,,X,, . . . , X,) = 21H, true) = Py(A”) (12.174) 

and 

p = pr(g(x,,x,, * * * , X,) = 11H2 true) = Pi(A). (12.175) 

In general, we wish to minimize both probabilities, but there is a 
trade-off. Thus we minimize one of the probabilities of error subject to a 
constraint on the other probability of error. The best achievable error 
exponent in the probability of error for this problem is given by Stein’s 
lemma. 

We first prove the Neyman-Pearson lemma, which derives the form of 
the optimum test between two hypotheses. We derive the result for 
discrete distributions; the same results can be derived for continuous 
distributions as well. 

Theorem 12.7.1 (Neyman-Pearson lemma): Let Xl, X2, . . . ,X, be 
drawn i.i.d. according to probability mass function P Consider the 
decision problem corresponding to hypotheses Q = PI vs. Q = P2. For 
T 2 0, define a region 

(12.176) 

Let 

a* = P;(A”,(T)), p* = P&4,(T)), (12.177) 
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be the corresponding probabilities of error corresponding to decision 
region A,. Let B, be any other decision region with associated prob- 
abilities of error C-X and p. If a 5 a*, then p L p*. 

Proof: Let A = A,(T) be the region defined in (12.176) and let 
B E 35’” be any other acceptance region. Let $Q and 4B be the indicator 
functions of the decision regions A and B respectively. Then for all 
x=(x1,x2 ,..., xJE2rn, 

h/&d - ~&dlP,(x> - Tp,(X)l~ 0 l (12.178) 

This can be seen by considering separately the cases x E A and xeA. 
Multiplying out and integrating this over the entire space, we obtain 

=zP,-TP,)-aP,-TP,) (12.180) 
A B 

=(l-o!*)-Tp*-(l-cw)+Tp (12.181) 

= T(p - p*) -(a* - a). (12.182) 

Since T 2 0, we have proved the theorem. Cl 

The Neyman-Pearson lemma indicates that the optimum test for two 
hypotheses is of the form 

(12.183) 

This is the likelihood ratio test and the quantity :i::z:::: $1 is called 
the likelihood ratio. 

For example, in a test between two Gaussian distributions, i.e., 
between f, = .@l, a2> and f, = JV( - 1, 02), the likelihood ratio becomes 

(Xi-1j2 

f,<x,,X,, . . . ,x,> T=l & e 2az 

f2WpX2, ’ * * 9x,) = (Xi+l12 
l-l;.-, * e 2u2 

2 Cr=l Xi 
+- 

=e cl2 

(12.184) 

(12.185) 

+s 
=e cr.2 . (12.186) 

Hence the likelihood ratio test consists of comparing the sample mean 
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rl, with a threshold. If we want the two probabilities of error to be equal, 
we should set 2’ = 1. This is illustrated in Figure 12.7. 

In the above theorem, we have shown that the optimum test is a 
likelihood ratio test. We can rewrite the log-likelihood ratio as 

= 2 nP,,(a) log E 
aE&0 2 

= 2 nP,,(a) log $$ x 
aEX Xn 

(12.187) 

(12.188) 

(12.189) 

(12.190) 

= C nPxnW log p2(a) 
aE% 

EE@ - C nP,,(U) log E 
aE& 1 

(12.191) 

= n~(P,,((P,) - nD(P,,((P,), (12.192) 

the difference between the relative entropy distances of the sample type 
to each of the two distributions. Hence the likelihood ratio test 
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Figure 12.7. Testing between two Gaussian distributions. 
X 

Fi igure 12.7. Testing between two Gaussian distribut 

is equivalent to 

(12.193) 

(12.194) 
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We can consider the test to be equivalent to specifying a region of the 
simplex of types which corresponds to choosing hypothesis 1. The 
optimum region is of the form (12.1941, for which the boundary of the 
region is the set of types for which the difference between the distances 
is a constant. This boundary is the analog of the perpendicular bisector 
in Euclidean geometry. The test is illustrated in Figure 12.8. 

We now offer some informal arguments based on Sanov’s theorem to 
show how to choose the threshold to obtain different probabilities of 
error. Let B denote the set on which hypothesis 1 is accepted. The 
probability of error of the first hind is 

%a = PycPp E B”) . (12.195) 

Since the set B” is convex, we can use Sanov’s theorem to show that the 
probability of error is essentially determined by the relative entropy of 
the closest member of B” to P,. Therefore, 

% 
‘2-- nmqp~) 

9 (12.196) 

where PT is the closest element of B” to distribution PI. Similarly, 

pn &2- nmq IlP~) 
9 (12.197) 

where Pz is the closest element in B to the distribution P,. 
Now minimizing D(PIIP,) subject to the constraint D(PIIP,) - 

D(P(( PI) 2 A log T will yield the type in B that is closest to P2. Setting 
up the minimization of D(PIIP,) subject to D(PIIP,) - D(P)IP,) = $ log T 
using Lagrange multipliers, we have 

Rx) J(P) = 2 P(x) log p + AC Rx) log p p1(=c) + vc P(x). (12.198) 
2 2 

Figure 12.8. The likelihood ratio test on the probability simplex. 
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Differentiating with respect to P(X) and setting to 0, we have 

log %) 
Pl(=G) 

P&d 
-+v=o. + 1+ A loI3 p&) (12.199) 

Solving this set of equations, we obtain the minimizing P of the form 

(12.200) 

where A is chosen so that D(P,, 11 PI ) - D(P,, 11 Pz> = v. 
From the symmetry of expression (12.200), it is clear that PT = PX 

and that the probabilities of error behave exponentially with exponents 
given by the relative entropies D(P*lI PI) and D(P*ll P2). Also note from 
the equation that as h + 1, Pn + P, and as A+ 0, PA + Pz. The line that 
PA traces out as h varies is a geodesic in the simplex. Here PA is a 
normalized convex combination, where the combination is in the expo- 
nent (Figure 12.8). 

In the next section, we calculate the best error exponent when one of 
the two types of error goes to zero arbitrarily slowly (Stein’s lemma). We 
will also minimize the weighted sum of the two probabilities of error and 
obtain the Chernoff bound. 

12.8 STEIN’S LEMMA 

We now consider the case when one of the probabilities of error is fixed 
and we wish to minimize the other probability of error. The best error 
exponent in this case is given by Stein’s lemma. 

Theorem 12.8.1 (Stein’s lemma): Let Xl, X2, . . . , X,, be i.i.d. - Q. Con- 
sider the hypothesis test between two alternatives, Q = PI and Q = Pz, 
where DP,I(p,)< 00. Let A, c P be an acceptance region for hypothesis 
1. Let the probabilities of ermr be 

a, = Py(Ae,) , pn =Pi(An) l (12.201) 

and for O<E<& define 

El= min &. 
A,W” 

(12.202) 
U,<C 

Then 

(12.203) 
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Proofi To prove the theorem, we construct a sequence of acceptance 
regions A, c Sep” such that (x,, < (E and 6,, k 2-“D’p”‘P2! We then show that 
no other sequence of tests has an asymptotically better exponent. 

First, we define 

A, = xEBY:2 +nux4(IP2)-6) ( P,(x) (2 

- P&d - 

Then we have the following properties: 

1. Py(A,)+ 1. This follows from 

P;ca,,l=f’;(; 8 ‘ogp 
i-l 

p1w E(D(P,((P,)- s,D(PJP,)+ s,) 
2 i 

(12.205) 

-,l (12.206) 

by the strong law of large numbers, since DP, llP2) = 

I!&+, (log s). Hence for sufficiently large n, a, < E. 

2. Pi(A,) 5 2-n(D(PlllP2)? Using the definition of A,, we have 

P;(A, I= c P,(x) 
*?a 

I C p1(x)2-n(~‘P’Il%)-6) 

4 

= 2 -n(D(P111P2)-S) 
c P,(x) 

*Ia 

= 2--n(D(P~IIW-a)(1 _ a 
n 

1. 

Similarly, we can show that 

Hence 

P;(A,,)r2 -n(D(P11(P2)+G 1 
Cl- a, )  l 

1 logtl - an) 
;logP,I -D(p,IIP,)+S+ n , 

and 

1 
i logBra 

log(1 - ar,) 
-wqp,b-~+ n 9 

(12.207) 

(12.208) 

(12.209) 

(12.210) 

(12.211) 

(12.212) 

(12.213) 
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1 
lim $+i ; log Pn = - D(P,IIP,) . (12.214) 

3. We now prove that no other sequence of acceptance regions does 
better. Let B, c %‘” be any other sequence of acceptance regions 
with cy,, B = Py(BC,) < E. Let &B, = Pi@,). We will show that 

Pn,B 22 
-kD(P,((P,kE) . 

H”ere 

P n, 4, 
=P~(B,)~P~(An’B,) (12.215) 

= c P,(x) 
A”*Bn 

= C pl~x)2-n(~(P’IIP,)+~) 

An”Bn 

(12.216) 

(12.217) 

= 2 -nuw,((P2)+S 1 c Pi(x) (12.218) 
A,“Bn 

z(l - (y, - cy,, Bn)2-n(D(p1i’p2)+*) , (12.219) 

where the last inequality follows from the union of events bound as 
follows: 

(12.220) 

(12.221) 

'l-PICA',)-P,(B",) (12.222) 

1 
-$og&,5 -HP,IIP,)-a- 

log(l - an - an, 8,) 
9 (12.224) 

n 

and since 6 > 0 is arbitrary, 

(12.225) 

Thus no sequence of sets B, has an exponent better than D(P, IIP,). But 
the sequence A, achieves the exponent D(P, I(P,). Thus A, is asymp- 
totically optimal, and the best error exponent is D(P, 11 P&. 0 
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12.9 CHERNOFF BOUND 

We have considered the problem of hypothesis testing in the classical 
setting, in which we treat the two probabilities of error separately. In 
the derivation of Stein’s lemma, we set a, I E and achieved 6, * 2-“4 
But this approach lacks symmetry. Instead, we can follow a Bayesian 
approach, in which we assign prior probabilities to both the hypotheses. 
In this case, we wish to minimize the overall probability of error given 
by the weighted sum of the individual probabilities of error. The 
resulting error exponent is the Chernoff information. 

The setup is as follows: X1, X,, . . . , X, i.i.d. - Q. We have two 
hypotheses: Q = P, with prior probability w1 and Q = P, with prior 
probability rr2. The overall probability of error is 

P;’ = ?r,ar, + nip, . (12.226) 

Let 

1 
D* = !.i+.iArnz” - ; log PF’ . (12.227) 

R 

Theorem 12.9.1 (Chenwff): The best achievable exponent in the 
Bayesian probability of error is D*, where 

D* = D(P#l) = D(P,*IIP,), (12.228) 

with 

(12.229) 

and A* the value of A such that 

D(p,#‘,) = W’,~IIP,) . (12.230) 

Proof: The basic details of the proof were given in the previous 
section. We have shown that the optimum test is a likelihood ratio test, 
which can be considered to be of the form 

D(P~rllP~)-D(P,,llP,)> 2’. (12.231) 

The test divides the probability simplex into regions corresponding to 
hypothesis 1 and hypothesis 2, respectively. This is illustrated in Figure 
12.9. 

Let A be the set of types associated with hypothesis 1. From the 
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Figure 12.9. The probability simplex and Chernoffs bound. 

discussion preceding (12.200), it follows that the closest point in the set 
A” to P, is on the boundary of A, and is of the form given by (12.229). 
Then from the discussion in the last section, it is clear that PA is the 
distribution in A that is closest to P2; it is also the distribution in A” that 
is closest to P,. By Sanov’s theorem, we can calculate the associated 
probabilities of error 

and 
ff?l 

= plf(AC)&2-nD(p~*11P1) 

p, = p;(A) & 2 -nD(P~*11P2) . 

(12.232) 

(12.233) 

In the Bayesian case, the overall probability of error is the weighted 
sum of the two probabilities of error, 

since the exponential rate is determined by the worst exponent. Since 
D(P, 11 PJ increases with A and D(P, 11 Pz) decreases with A, the maximum 
value of the minimum of {D(P, II P, ), D(P, II P, >} is attained when they 
are equal. This is illustrated in Figure 12.10. 

Hence, we choose A so that 

WqlP,) = D(P*IIP,) i C(P,, PSI. (12.235) 

Thus C(P,, Pz> is the highest achievable exponent for the probability of 
error and is called the Chernoff information. Cl 

The above definition is equivalent to the standard definition of Chernoff 
information, 
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Figure 12.10. Relative entropy D(P,IJP,) and D(P,(IP,) as a function of A. 

(12.236) 

It is left as an exercise to the reader to show (algebraically) the 
equivalence of (12.235) and (12.236). We will briefly outline the usual 
derivation of the Chernoff bound. The maximum a posteriori probability 
decision rule minimizes the Bayesian probability of error. The decision 
region A for hypothesis 1 for the maximum a posteriori rule is 

?r P (d 
A={x:-&>l (12.237) 

the set of outcomes where the a posteriori probability of hypothesis 1 is 
greater than the a posteriori probability of hypothesis 2. The probability 
of error for this rule is 

P, = Tl% + 48 (12.238) 

(12.239) 

= C min{ n,P,, r2P,} . (12.240) 

Now for any two positive numbers a and 6, we have 

min{a, b} sa*b’-*, for all 0~ AS 1. (12.241) 

Using this to continue the chain, we have 
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P, = C min{ qP,, ?r,P,) (12.242) 

(12.243) 

5 c P;P;-̂  . (12.244) 

For a sequence of i.i.d. observations, Pk(x) = II:= 1 Pk(xi ), and 

(12.245) 

(12.246) 

(12.247) 

= (c P:P:-^)’ , 
where (a) follows since rI 5 1, 7~~ I 1. Hence, we have 

i log Py 5 log c P;(x)P;-A(x) 

(12.248) 

(12.249) 

Since this is true for all A, we can take the minimum over 0 I h I 1, 
resulting in the Chernoff bound. This proves that the exponent is no 
better than C(P,, P,>. Achievability follows from Theorem 12.9.1. 

Note that the Bayesian error exponent does not depend on the actual 
value of ?rI and rZ, as long as they are non-zero. Essentially, the effect of 
the prior is washed out for large sample sizes. The optimum decision 
rule is to choose the hypothesis with the maximum a posteriori prob- 
ability, which corresponds to the test 

(12.250) 

Taking the log and dividing by n, this test can be rewritten as 

1 P,(x-1 
;1og3+---log&JsO, 

r2 i 2 i 
(12.251) 

where the second term tends to D(P, IIP,> or - D(P, IIP,> accordingly as 
PI or P2 is the true distribution. The first term tends to 0, and the effect 
of the prior distribution washes out. 

Finally, to round off our discussion of large deviation theory and 
hypothesis testing, we consider an example of the conditional limit 
theorem. 
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Example 12.9.1: Suppose major league baseball players have a batting 
average of 260 with a standard deviation of 15 and suppose that minor 
league ballplayers have a batting average of 240 with a standard 
deviation of 15. A group of 100 ballplayers from one of the leagues (the 
league is chosen at random) is found to have a group batting average 
greater than 250, and is therefore judged to be major leaguers. We are 
now told that we are mistaken; these players are minor leaguers. What 
can we say about the distribution of batting averages among these 100 
players? It will turn out that the distribution of batting averages among 
these players will have a mean of 250 and a standard deviation of 15. 
This follows from the conditional limit theorem. To see this, we abstract 
the problem as follows. 

Let us consider an example of testing between two Gaussian dis- 
tributions, fi = Crr(l, a2> and f, = JV( - 1, 02), with different means and 
the same variance. As discussed in the last section, the likelihood ratio 
test in this case is equivalent to comparing the sample mean with a 
threshold. The Bayes test is “Accept the hypothesis f = f, if a Cr=, Xi > 
0.” 

Now assume that we make an error of the first kind (we say f = f, 
when indeed f = f,> in this test. What is the conditional distribution of 
the samples given that we have made an error? 

We might guess at various possibilities: 

l The sample will look like a ( $, 4 ) mix of the two normal dis- 
tributions. Plausible as this is, it is incorrect. 

. Xi = 0 for all i. This is quite clearly very very unlikely, although it is 
conditionally likely that X, is close to 0. 

l The correct answer is given by the conditional limit theorem. If the 
true distribution is f, and the sample type is in the set A, the 
conditional distribution is close to f*, the distribution in A that is 
closest to f,. By symmetry, this corresponds to A = 4 in (12.229). 
Calculating the distribution, we get 

f*(x) = 
( 1 (*-1J2 l/2 -- 

m e 2u2 > ( 

1 (x+1j2 l/2 -- 

m e 2c72 > 

I( 1 (x-1J2 l/2 
-- > ( 1 (z+1j2 l/2 -- 

m e 2=2 m e 2u2 dx > 

1 -- (x2+1) 

m e 2u2 

= 
I 1 -- (x2+1) 

m e 202 dx 

(12.252) 

(12.253) 
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1 -- 
=- 

+j&3 e zcz2 (12.254) 

= h-(0, (r2). (12.255) 

It is interesting to note that the conditional distribution is normal 
with mean 0 and with the same variance as the original dis- 
tributions. This is strange but true; if we mistake a normal popula- 
tion for another, the “shape” of this population still looks normal 
with the same variance and a different mean. Apparently, this rare 
event does not result from bizarre looking data. 

Example 12.9.2 (Large deviation theory and football): Consider a very 
simple version of football in which the score is directly related to the 
number of yards gained. Assume that the coach has a choice between 
two strategies: running or passing. Associated with each strategy is a 
distribution on the number of yards gained. For example, in general, 
running results in a gain of a few yards with very high probability, 
while passing results in huge gains with low probability. Examples of 
the distributions are illustrated in Figure 12.11. 

At the beginning of the game, the coach uses the strategy that 
promises the greatest expected gain. Now assume that we are in the 
closing minutes of the game and one of the teams is leading by a large 
margin. (Let us ignore first downs and adaptable defenses.) So the 
trailing team will win only if it is very lucky. If luck is required to win, 
then we might as well assume that we will be lucky and play according- 
ly. What is the appropriate strategy? 

Assume that the team has only n plays left and it must gain I yards, 
where Z is much larger than n times the expected gain under each play. 
The probability that the team succeeds in achieving I yards is exponen- 
tially small; hence, we can use the large deviation results and Sanov’s 
theorem to calculate the probability of this event. 

Yards gained in pass Yards gained in run 

Figure 12.11. Distribution of yards gained in a run or a pass play. 
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To be precise, we wish to calculate the probability that Cy= 1 Zi 1 ncx, 
where Zi are independent random variables, and Zi has a distribution 
corresponding to the strategy chosen. 

The situation is illustrated in Figure 12.12. Let E be the set of types 
corresponding to the constraint, 

E={P: 2 Papa}. 
aE% 

(12.256) 

If P, is the distribution corresponding to passing all the time, then the 
probability of winning is the probability that the sample type is in E, 
which by Sanov’s theorem is 2-nD(PT”P1), where PT is the distribution in E 
that is closest to P,. Similarly, if the coach uses the running game all 
the time, the probability of winning is 2-RD(p5”p2! What if he uses a 
mixture of strategies? Is it possible that 2-nD(P;“PA), the probability of 
winning with a mixed strategy, PA = AP, + (1 - h)P,, is better than the 
probability of winning with either pure passing or pure running? 

The somewhat surprising answer is yes, as can be shown by example. 
This provides a reason to use a mixed strategy other than the fact that 
it confuses the defense. 

We end this section with another inequality due to Chernoff, which is 
a special version of Markov’s inequality. This inequality is called the 
Chernoff bound. 

Lemma 12.9.1: Let Y be any random variable and let e(s) be the 
moment generating function of Y, 

+5(s) = Eesy . 

Then for all s 2 0, 

Figure 12.12. Probability simplex for a football game. 
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Proofi 
able es7 

APPlY 
cl 

Pr(Y L a) I e-““+(s) . (12.258) 

Markov’s inequality to the non-negative random vari- 

12.10 LEMPEL-ZIV CODING 

We now describe a scheme for universal data compression due to Ziv and 
Lempel [291], which is simple to implement and has an asymptotic rate 
approaching the entropy of the source. The algorithm is particularly 
simple and has become popular as the standard algorithm for file 
compression on computers because of its speed and efficiency. 

We will consider a binary source throughout this section. The results 
generalize easily to any finite alphabet. 

Algorithm: The source sequence is sequentially parsed into strings 
that have not appeared so far. For example, if the string is 
1011010100010.. . , we parse it as 1,0,11,01,010,00,10,. . . . After every 
comma, we look along the input sequence until we come to the shortest 
string that has not been marked off before. Since this is the shortest 
such string, all its prefixes must have occurred earlier. In particular, the 
string consisting of all but the last bit of this string must have occurred 
earlier. We code this phrase by giving the location of the prefix and the 
value of the last bit. 

Let c(n) be the number of phrases in the parsing of the input 
n-sequence. We need log c(n) bits to describe the location of the prefix to 
the phrase and 1 bit to describe the last bit. For example, the code for 
the above sequence is (OOO,l)(OOO,O)(OOl,l)(OlO,l)( lOO,O)(OlO,O)(OOl,O), 
where the first number of each pair gives the index of the prefix and the 
second number gives the last bit of the phrase. Decoding the coded 
sequence is straightforward and we can recover the source sequence 
without error. 

The above algorithm requires two passes over the string-in the first 
pass, we parse the string and calculate c(n), the number of phrases in 
the parsed string. We then use that to decide how many bits (log c(n)) to 
allot to the pointers in the algorithm. In the second pass, we calculate 
the pointers and produce the coded string as indicated above. The 
algorithm described above allots an equal number of bits to all the 
pointers. This is not necessary, since the range of the pointers is smaller 
at the initial portion of the string. The algorithm can be modified so that 
it requires only one pass over the string and uses fewer bits for the 
initial pointers. These modifications do not affect the asymptotic ef- 
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ficiency of the algorithm. Some of the implementation details are 
discussed by Welch [269] and Bell, Cleary and Witten 1221. 

In the example, we have not compressed the string; instead, we have 
expanded the number of bits by more than a factor of 2. But for long 
strings the phrases will get longer, and describing the phrases by 
describing the location of the prefix will be more efficient. We will show 
that this algorithm asymptotically achieves the entropy rate for the 
unknown ergodic source. 

Without loss of generality, we will assume that the source alphabet is 
binary. Thus %’ = { 0, 1) throughout this section. We first define a pars- 
ing of the string to be a decomposition into phrases. 

Definition: A pursing S of a binary string x,x, . . . x, is a division of the 
string into phrases, separated by commas. A distinct pursing is a 
parsing such that no two phrases are identical. 

For example, O,lll,l is a distinct parsing of 01111, but O,ll,ll is a 
parsing which is not distinct. 

The Lempel-Ziv algorithm described above gives a distinct parsing of 
the source sequence. Let c(n) denote the number of phrases in the 
Lempel-Ziv parsing of a sequence of length n. Of course, c(n) depends on 
the sequence X”. The compressed sequence (after applying the Lempel- 
Ziv algorithm) consists of a list of c(n) pairs of numbers, each pair 
consisting of a pointer to the previous occurrence of the prefix of the 
phrase and the last bit of the phrase. Each pointer requires log c(n) bits, 
and hence the total length of the compressed sequence is c(n)(log c(n) + 
1) bits. We will now show that c(n’log$n) + ‘) + H(g) for a stationary 
ergodic sequence X1, X,, . . . , X,. Our proof is based on the simple proof 
of asymptotic optimality of Lempel-Ziv coding due to Wyner and Ziv 
[2851. 

We first prove a few lemmas that we need for the proof of the 
theorem. The first is a bound on the number of phrases possible in a 
distinct parsing of a binary sequence of length n. 

Lemma 12.10.1 (Lempel and Ziv): The number of phrases c(n) in a 
distinct parsing of a binary sequence Xl, X2, . . . , X, satisfies 

c(n) I 
n 

u- Qlogn 
(12.259) 

where l n+0 as n+m. 

Proof: Let 

k 

n& = C j2’ = (k - 1)2’+’ + 2 (12.260) 
j=l 
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be the sum of the lengths of all distinct strings of length less than or 
equal to k. The number of phrases c in a distinct parsing of a sequence of 
length n is maximized when all the phrases are as short as possible. If 
n = nA, this occurs when all the phrases are of length Sk, and thus 

C(?Z,)ZS A 2-j =p+l -2<2k+‘C&. - 
j=l 

(12.261) 

If nA 5 n < n,,,, we write n = nA + A, where A<(k + 1)2? Then the 
parsing into shortest phrases has each of the phrases of length Sk and 
Al(k + 1) phrases of length k + 1. Thus 

(12.262) 

we now bound the size of k for a given n. Let nA 5 n < nk +1* Then 

n2nik=(k-1)2A+1+2r2k, (12.263) 

and therefore 

kslogn. (12.264) 

Moreover, 

n 5 nA+l = k2 h+2+2~(k+2)2’+2r(logn+2)2”2 (12.265) 

by (12.264), and therefore 

k+2rlog n 
logn +2 ’ 

(12.266) 

or, for all n 2 4, 

k-lrlogn-log(logn+2)-3 (12.267) 

( 1 log(logn+2)+3 = - 
log n > log n (12.268) 

) 1 
( 

log(2logn)+3 
- - 

log n > 
log n (12.269) 

= - 
( 
1 log(log n) + 4 

log n > log n (12.270) 

=(l- Qlogn. (12.271) 

Note that Ed = min(1, 
obtain the lemma. 0 

‘N:z,‘+ 4 }. Combining (12.271) with (12.262), we 
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We will need a simple result on maximum entropy in the proof of the 
main theorem. 

Lemma 12.10.2: Let Z be a positive integer valued random variable 
with mean p. Then the entropy H(Z) is bounded by 

H(Z)~(~+l)log(~+l1)-~log~. (12.272) 

Proofi The lemma follows directly from the results of Chapter 11, 
which show that the probability mass function that maximizes entropy 
subject to a constraint on the mean is the geometric distribution, for 
which we can compute the entropy. The details are left as an exercise for 
the reader. 0 

Let {Xi}~= --m be a stationary ergodic process with probability mass 
function P(q , x2, . . . , x,). (Ergodic processes are discussed in greater 
detail in Section 15.7.) For a fixed integer k, define the kth order Markov 
approximation to P as 

Qcb+l,, . . . 9 ~0, ~1, . - - 9 Xn) L ~(~o_(~-~)) fi P(~~~~;I:), (12.273) 
j=l 

where xi A 
txi> Xi+13 l *  *  

, xi), i 5 j, and the initial state JcO_(~-~) will be 
part of the specification of Qi. Since P(X, 1X:1:> is itself an ergodic 
process, we have 

+ -E log P(XjIXiI:) (12.275) 

= H(XjIX::_:). (12.276) 

We will bound the rate of the Lempel-Ziv code by the entropy rate of the 
kth order Markov approximation for all k. The entropy rate of the 
Markov approximation H(Xj IX~I: ) converges to the entropy rate of the 
process as k + 00 and this will prove the result. 

Suppose X?ck-lj = d&), and suppose that XI is parsed into c dis- 
tinct phrases, yl, y2, . . . , y,. Let vi be the index of the start of the ith 
phrase, i.e., yi =x:+‘-‘. For each i = 1,2,. . . , C, define Si = x:I:. Thus Si 
is the k bits of x ireceding yi. Of course, s1 = xfck -1 ). 

Let cl8 be the number of phrases yi with length I and preceding state 
Si = S for I = 1,2, . . . and s E %?. We then have 

c Cl* = c (12,277) 
1. 8 
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and Cl cl8 =n. 
1.8 

(12.278) 

We now prove a surprising upper bound on the probability of a string 
based on the parsing of the string. 

Lemma 12.10.3 (Ziv’s inequality): For any distinct parsing (in particu- 
lar, the Lempel-Ziv parsing) of the string x1x2 . . . x,, we have 

log Q&l, ~2, . . . > x,Is+ -c Cl8 logqs * 
1,s 

(12.279) 

Note that the right hand side does not depend on Qk. 

Proof: We write 

or 

QJx1, ~2, - - - 9 x,Isl) = Q<Y,, ~2, - - 0 9 ycls1) (12.280) 

= fi RY,lSi), (12.281) 
i=l 

log Q&, ~2, . . -3 X,ISl)= i l”gp(yi(si) (12.282) 
i=l 

=C C l”gp(yilsi) (12.283) 
I,8 i : (yi )=I, si=s 

where the inequality follows from Jensen’s inequality and the concavity 
of the logarithm. 

Now since the yi are distinct, we have C i:lyi I=l, .yi=,RYi(Si) 5 1. Thus 

1 
log &,(x1, ~2, . . -9 x,lsl) 5 2 cls log < 9 

1,s 

proving the lemma. 0 

We can now prove the main theorem: 

(12.286) 

Theorem 12.10.1: Let {X,,} be a stationary ergodicprocess with entropy 
rate H(Z), and let c(n) be the number of phrases in a distinct parsing of 
a sample of length n from this process. Then 
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lim sup 
c(n) log c(n) 

5 H(E) 
n-+00 n 

(12.287) 

with probability 1. 

Proof: We will begin with Ziv’s inequality, which we rewrite as 

log Q&Q, x2, . . . 3 clsc x,IQ 5 -c Cl* log c 
1, s 

(12.288) 

= -c log c - c 2 s log c,, . 
1s c C 

(12.289) 

Writing rlS = %, we have 

from (12.227) and (12.278). We now define random variables U, V, such 
that 

Pr(U = Z, V= s) = q, . (12.291) 

Thus EU = $ and 

log Q&q, ~2, . . . , r,~s,)~cH(U,V)-clogc (12.292) 

or 

1 
- ; log Q&5, ~2, . . - 9 z,~s,~~~logc-~H~u,v~. 

(12.293) 

Now 

H(U, V) rH(U) + H(V), 

and H(V) 5 loglElk = k. By Lemma 12.10.2, we have 

(12.294) 

H(U)I(EU+~)~O~(EU+~)-EU~~~EU (12.295) 

=(~+l)Log(~+l)-;1og; 

= log p + (i+l)log(;+l). 

(12.296) 

(12.297) 

Thus 
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(12.298) 

For a given n, the maximum of $ log 3 is attained for the maximum 
value of c (for $ I i). But from Lemma 12.10.1, c 5 &(l + o(1)). Thus 

f log i 50(10;o;;n) (12.299) 

and therefore $H( U, V)+ 0 as n + 00. 
Therefore 

c(n) log c(n) 1 
n 

I -; i0g Qk(=cl, x2, . . . , x,Is~) + Ek(d (12.300) 

where ck(n) + 0 as n + 00. Hence, with probability 1, 

lim sup 
c(n) log c(n) < lirn 

n -llo,Q,Wl,x,,.. 
n--*m -n-m n - 9 x,IXL,) 

(12.301) 

= H(x,Ixq, . . . ,X-k) (12.302) 

+ mu ask+a. Cl (12.303) 

We now prove that Lempel-Ziv coding is asymptotically optimal. 

Theorem 12.10.2: Let {Xi}“_, b e a stationary ergodic stochastic process. 
Let z<x,,x,, . . . ,X,> be the Lempel-Ziv codeword length associated with 
XI, X2, . . . , X,,. Then 

lim sup 
1 
; RX,, X2, . . . , X,) 5 H(g) with probability 1 

n+m 

(12.304) 

where H(E) is the entropy rate of the process. 

Proof: We have shown that &XI, X,, . . . ,X,> = c(n)(log c(n) + 1), 
where c(n) is the number of phrases in the Lempel-Ziv parsing of the 
string XI, X,, . . . ,X,. By Lemma 12.10.1, lim sup c(n)ln = 0, and thus 
Theorem 12.10.1 establishes that 

lim sup 
zcx,,x,, ’ * - ,x,1 

n 
= lim sup 

with probability 1. q (12.305) 
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Thus the length per source symbol of the Lempel-Ziv encoding of an 
ergodic source is asymptotically no greater than the entropy rate of the 
source. The Lempel-Ziv code is a simple example of a universal code, i.e., 
a code that does not depend on the distribution of the source. This code 
can be used without knowledge of the source distribution and yet will 
achieve an asymptotic compression equal to the entropy rate of the 
source. 

The Lempel-Ziv algorithm is now the standard algorithm for com- 
pression of files-it is implemented in the compress program in UNIX 
and in the arc program for PC’s The algorithm typically compresses 
ASCII text files by about a factor of 2. It has also been implemented in 
hardware and is used to effectively double the capacity of communica- 
tion links for text files by compressing the file at one end and decom- 
pressing it at the other end. 

12.11 FISHER INFORMATION AND THE CRAMkR-RAO 
INEQUALITY 

A standard problem in statistical estimation is to determine the param- 
eters of a distribution from a sample of data drawn from that dis- 
tribution. For example, let X, , X2, . . . , X, be drawn i.i.d. - N( 0, 1). 
Suppose we wish to estimate 8 from a sample of size n. There are a 
number of functions of the data that we can use to estimate 8. For 
example, we can use the first sample X1. Although the expected value of 
X1 is 0, it is clear that we can do better by using more of the data. We 
guess that the best estimate -of 8 is the sample mean X, = a C Xi. 
Indeed, it can be shown that X, is the minimum mean squared error 
unbiased estimator. 

We begin with a few definitions. Let {fix; e)}, 8 E 0, denote an 
indexed family of densities, fix; 0) I 0, J fix; 6) dx = 1 for all 8 E 0. Here 
0 is called the parameter set. 

Definition: An estimator for 8 for sample size n is a function 
T:8?“+0. 

An estimator is meant to approximate the value of the parameter. It 
is therefore desirable to have some idea of the goodness of the approxi- 
mation. We will call the difference T - 8 the error of the estimator. The 
error is a random variable. 

Definition: The bias of an estimator T(x, , X,, . . . , X, ) for the parame- 
ter 8 is the expected value of the error of the estimator, i.e., the bias is 
E, T(x,,&, . . . , X,> - 8. The subscript 8 means that the expectation is 
with respect to the density fl. ; 0). The estimator is said to be unbiased if 
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the bias is zero, i.e., the expected value of the estimator is equal to the 
parameter. 

Example 12.11.1: Let X1,X,, . . . ,X, drawn i.i.d. - fly) = (l/A) e-x’A, 
x 2 0 be a sequence of exponentially distributed random variables. 
Estimators of h include X, and X,. Both estimators are unbiased. 

The bias is the expected value of the error, and the fact that it is zero 
does not guarantee that the error is low with high probability. We need 
to look at some loss function of the error; the most commonly chosen loss 
function is the expected square of the error. A good estimator should 
have a low expected squared error and should have an error that 
approaches 0 as the sample size goes to infinity. This motivates the 
following definition: 

Definition: An estimator T(x,, X,, . . . , X, > for 8 is said to be consistent 
in probability if T(X,,X,, . . . , XJ + 8 in probability as n + cc). 

Consistency is a desirable asymptotic property, but we are interested 
in the behavior for small sample sizes as well. We can then rank 
estimators on the basis of their mean squared error. 

Definition: An estimator TJX,, X,, . . . , X, > is said to dominate 
another estimator T2(Xl, X,, . . . , XJ if, for all 0, 

E,(T,(X,, X2, . . .,XJ-e)2~EB(T2(Xl,X2 ,..., XJ-~)~, (12.306) 

This definition raises a natural question: what is the minimum 
variance unbiased estimator of 0? To answer this question, we derive 
the Cramer-Rao lower bound on the mean squared error of any es- 
timator. We first define the score function of the distribution fix; 8). We 
then use the Cauchy-Schwarz inequality to prove the Cramer-Rao lower 
bound on the variance of all unbiased estimators. 

Definition: The score V is a random variable defined by 

V= 
5 f(x; to 

$lnf(x;e)= flxej , 9 
where X- fix; e). 

The mean value of the score is 

Ev= 
I 

5 fke) 

fix. 0) Rx; e)d31G 
9 

(12.307) 

(12.308) 
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= I 5 flx;eMx (12.309) 

(12.310) 

al =- 
ae 

= 0, 

(12.311) 

(12.312) 

and therefore EV2 = var(V). The variance of the score has a special 
significance. 

Definition: The Fisher information J(6) is the variance of the score, 
i.e., 

1 
2 

. (12.313) 

If we consider a sample of n random variables XI, X2, . . . , X, drawn 
i.i.d. - fix; e), we have 

flqr %> ’ ’ - 7 xn; e)= ii f(xi;e), (12.314) 
i-l 

and the score function is the sum of the individual score functions, 

vq, x2, l l l , x , ,  
=$lnflXI,X2,...,xn;e) (12.315) 

n a = i=l s ln f(xi; 0) c (12.316) 

= 2 v(xi>, (12.317) 
i=l 

where the V(Xi) are independent, identically distributed with zero 
mean. Hence the Fisher information is 

[ I 
2 

J,(e) = E, 3 In /7x,, x2, . . . ,x,; 0) (12.318) 

= E,V2(Xl, X2,. . . ,X,) (12.319) 

= Eo( i VWi))’ 
i=l 

= i E,V2(X ) i 
i=l 

= d(e). 

(12.320) 

(12.321) 

(12.322) 
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Consequently, the Fisher information for n i.i.d. samples is n times the 
individual Fisher information. The significance of the Fisher informa- 
tion is shown in the following theorem: 

Theorem: 12.11.1 (Cram&Rao inequality): The mean squared error of 
any unbiased estimator T(X) of the parameter 8 is lower bounded by the 
reciprocal of the Fisher information, i.e., 

1 
var(Tk JO . (12.323) 

Proof: Let V be the score function and 2’ be the estimator. By the 
Cauchy-Schwarz inequality, we have 

(EJW- E,V)(T - E,T)D2 5 E,(V- EJq2E,(T - E,zy2 . 
(12.324) 

By (12.312), E,V= 0 and hence E&V- E,V)(T - E,T) = EJVT). Also, by 
definition, var(V) = J(0). Substituting these conditions in (12.324), we 
have 

[E,(VT)12 5 J(O) var(T) . 

Now, 

Tb)fl~; e) dx (12.326) 

=$E,T 

(12.327) 

(12.328) 

(12.329) 

de =- 
de (12.330) 

= 1. (12.331) 

where the interchange of differentiation and integration in (12.328) can 
be justified using the bounded convergence theorem for appropriately 
well behaved fix; 0) and (12.330) follows from the fact that the estimator 
T is unbiased. Substituting this in (12.325), we obtain 
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1 
var(Tk JCS, , (12.332) 

which is the Cramer-Rao inequality for unbiased estimators. Cl 

By essentially the same arguments, we can show that for any 
estimator 

E,(T- to2 2 [l +J!(;;e)12 + b;(e), 

where br( 6) = E,T - 8 and b# ) is the derivative of b,( 0) with respect to 
6. The proof of this is left as an exercise at the end of the chapter. 

EmzmpZe 12.11.2: Let X1, X2, . . . ,X, be i.i.d. - .N(e, 02), o_” known. 
HereJ@)=$ LetZ’(X,,X2,...,X,)=X,=ACXi.ThenE,(X,-8)2= 
us- 1 
ii -J(B)* Thus Xn is the minimum variance unbiased estimator of 0, 
since it achieves the Cramer-Rao lower bound. 

The Cramer-Rao inequality gives us the lowest possible variance for 
all unbiased estimators. We now use it to define the most efficient 
estimator. 

Definition: An unbiased estimator 2’ is said to be efficient if it meets 
the Cramer-Rao bound with equality, i.e., if var(T) = &. 

The Fisher information is therefore a measure of the amount of 
“information” about 8 that is present in the data. It gives a lower bound 
on the error in estimating 8 from the data. However, it is possible that 
there does not exist an estimator meeting this lower bound. 
We can generalize the concept of Fisher information to the multi- 
parameter case, in which case we define the Fisher information matrix 
J(e) with elements 

J,(e) = 1 f(~; e) -& In f(x; e) -& In f(lx:; e) &. (12.334) 
i j 

The Cramer-Rao inequality becomes the matrix inequality 

x2P(e), (12.335) 

where Z is the covariance matrix of a set of unbiased estimators for the 
parameters 8 and I: I J-‘(S) in the sense that the difference Z - J-l is a 
non-negative definite matrix. We will not go into the details of the proof 
for multiple parameters; the basic ideas are similar. 
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Is there a relationship between the Fisher information J(e) and 
quantities like entropy defined earlier? Note that Fisher information is 
defined with respect to a family of parametric distributions, unlike 
entropy, which is defined for all distributions. But we can parametrize 
any distribution, fix), by a location parameter 0 and define Fisher 
information with respect to the family of densities { f(~ - 8)) under 
translation. We will explore the relationship in greater detail in Section 
16.7, where we show that while entropy is related to the volume of the 
typical set, the Fisher information is related to the surface area of the 
typical set. Further relationships of Fisher information to relative 
entropy are developed in the exercises. 

SUMMARY OF CHAPTER 12 

Basic identities: 

Q”(x) = 2- n(D(P,I)Q)+H(P,)) 
, 

pnl 5 (n + 1)‘“’ , 

1 T(P)1 s 2nH(P) , 

Q”(flp))d4-“~‘p114’. 

Universal data compression: 

where 

Pj”‘12 -nD(P;l(Q) , for all Q , 

Large deviations (Sanov’s theorem): 

Q”(E) = Q”(E n P,,) I (n + 1) WI 2-nD(P*“e), 

WP*IIQ) = p~;WllQ), 

If E is the closure of its interior, then 

Qn(E)&2-nD(p*118). 

5fI bound on relative entropy: 

(12.336) 

(12.337) 

(12.338) 

(12.339) 

(12.340) 

(12.341) 

(12.342) 

(12.343) 

(12.344) 

(12.345) 
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Pythagorean theorem: If E is a convex set of types, distribution Q$E, 
and P* achieves D(P*liQ) = minpEE D(P(lQ), we have 

for all PEE. 

D(PI(Q) 1 D(PI(P*) + D<P*llQ> (12.346) 

Conditional limit theorem: If X,, X2, . . . , X,, i.i.d. - Q, then 

Pr(X, = alPxm E E)* P*(a) in probability , (12.347) 

where P* minimizes D(P(( Q ) over P E E. In particular, 

(12.348) 

Neyman-Pearson lemma: The optimum test betwee% ~~~~,den~ities P, and 
Pz has a decision region of the form “Accept P = P, if ~~Cxl:xz~. . . : ,I, > T.” 

Stein’s lemma: The best achievable error exponent 6 ‘, if (Y, 5 E : 

P’,= min 6,. (12.349) 
A,CIP” 
a,-=t 

limFl.iW i logp’, = - mp, p,, * (12.350) 

Chernoff information: The best achievable exponent for a Bayesian prob- 
ability of error is 

D* = D(P,.(IP,) = D(P,eIjP,), (12.351) 

where 

with h = A* chosen so that 

D(P,(lP,)= D(P,IIP,), (12.353) 

Lempel-Ziv: Universal data compression. For a stationary ergodic source, 

lim sup 
z<x,,x,, . . . ,x,> 

= lim sup c(n) log c(n) 
n n 

5 H(%‘) . (12.354) 

Fisher information: 

(12.355) 

Cram&-Rao inequality: For any unbiased estimator 2’ of 0, 

E,(T(X) - 0)” = var(T) L --& . (12.356) 
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PROBLEMS FOR CHAPTER 12 

1. Stein’s lemma. Consider the two hypothesis test 

H,:f=f, vs. Hz:f=fi 

Find D(f,IIf,) if 
(a) fi(x) = MO, a:), i = 1,2 
(b) fi(x) = hieeAiX, x: 2 0, i = 1,2 
Cc) f,(x) is the uniform density over the interval [0, 11 and f&r) is the 

uniform density over [a, a + 11. Assume 0 < a < 1. 
(d) fi corresponds to a fair coin and fi corresponds to a two-headed 

coin. 

2. A relation between D(PII Q) and c&square. Show that the x2 statistic 

X2=X 
VW - QW2 

x Q(x) 

is (twice) the first term in the Taylor series expansion of D(P 11 Q ) 
about Q. Thus D(P(IQ) = $x2 +. . s . 

Hint: Write $ = 1 + v and expand the log. 

3. Error exponent for universal codes. A universal source code of rate R 
achieves a probability of error Pr’ + e-nD(P*“Q ‘, where Q is the true 
distribution and P* achieves min D(PIJ Q) over all P such that H(P) I 
R. 
(a) Find P* in terms of Q and R. 
(b) Now let X be b’ mary. Find the region of source probabilities 

Q(x), x E (0, l}, f or which rate R is sufficient for the universal 
source code to achieve Pr’+ 0. 

4. Sequential projection. We wish to show that projecting Q onto P, and 
then projecting the projection Q onto P, f~ P2 is the same as projecting 
Q directly onto P, n P,. Let 9, be the set of probability mass 
functions on 8? satisfying 

2 p(x) = 1 , (12.357) 
x 

Z p(x)h,(x) 2 q, i = 1,2, . . . , r . (12.358) 
x 

Let P2 be the set of probability mass functions on Z?Y satisfying 

Ix p(x) = 1 , (12.359) 

~pWg,(x)~pi, j=lJ,...,s. 
x 

(12.360) 

Suppose QgP, UP,. Let P* minimize D(PllQ) over all PE 8,. Let 
R* minimize D(R 11 Q) over all R E PI n P2. Argue that R* minimizes 
D(RI(P*) over all REP, CI P2. 
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5. Counting. Let 2f = {1,2, . . . , m}. Show that the number of sequences 
xn E $Y satisfying A Cy= 1 g(zi ) 1 LY is approximately equal to 2nH*, to 
first order in the exponent, for n sufficiently large, where 

H*= max HP). 
P:CYz”,, P(i )gCi &=a 

(12.361) 

6. Biased estimates may be better. Consider the problem of estimating p 
and g2 from n samples of data drawn i.i.d. from a .N( p, (r2) dis- 
tribution. 
(a) Show that X is an unbiased estimator of p. 
(b) Show that the estimator 

S:=~ ~ (xi-X,>2 
rl 

is biased and the estimator 

(12.362) 

is unbiased. 
(c) Show that 8: h as a lower mean squared error than Sz- 1. This 

illustrates the idea that a biased estimator may be “better” than 
an unbiased estimator. 

7. Fisher information and relative entropy. Show for a parametric family 
{p,(x)} that 

1 
e,+e (0 +),)2 weIlPe~)= lim ---- &J(e). (12.364) 

8. Examples of Fisher information. The Fisher information J(f?> for the 
family f,(z), 8 E R is defined by 

af,(x)iae 2 
J(e) =E,( f,(x) 1 I 

(f; I2 
= f, . 

Find the Fisher informatio? for the following families: 
(a) f,(x) = N(0, e) = -&CT+ 
(b) f,(=c> = K”“, x I 0 
(c) What is th e C ram&-Rae lower bound on E,($X) - e)“, where &X> 

is an unbiased estimator of 8 for (a) and (b)? 

9. Two conditionally independent looks double the Fisher information. Let 
g,b,, x2) = f,(=c,)fe(~,). show J,(e) = w,(e). 

10. Joint distributions and product distributions. Consider a joint distribu- 
tion Q(x, y) with marginals Q(x) and Q(y). Let E be the set of types 
that look jointly typical with respect to Q, i.e., 
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jp{p(qy): - ~P(%,y)logQ(x)-HCX)=O* 
x. Y 

- x p(x, y) log Q(y) - WY) = 0, x, Y 

- 2 Rx,, y) log Q<x, y) - H(X, Y) = O> . (12.365) 
x. Y 

(a) Let Q,(x, y) be another distribution on E x 9. Argue that the 
distribution P* in E that is closest to Q. is of the form 

f’*b, Y) = Q&, yk Ao+Al 101~ Q(x)+A2 log Q(y)++ log Q(x, y) 
, 

(12.366) 

where A,, A,, A, and A, are chosen to satisfy the constraints. 
Argue that this distribution is unique. 

(b) Now let Q,(x, y) = Q(x)&(y). Veri@ that Q(x, y) is of the form 
(12.366) and satisfies the constraints. Thus P*(x, y) = Q(x, y), i.e., 
the distribution in E closest to the product distribution is the joint 
distribution. 

11. Cnme’r-Rae inequality with a bias term. Let X-fix; 0) and let Z’(X) be 
an estimator for 8. Let b,(e) = E,T - 8 be the bias of the estimator. 
Show that 

E,(T - 812 2 ” +~j~‘12 + b;(e). (12.367) 

12. Lempel-Ziv. Give the Lempel-Ziv parsing and encoding of 000000110- 
10100000110101. 

HISTORICAL NOTES 

The method of types evolved from notions of weak typicality and strong 
typicality; some of the ideas were used by Wolfowitz [277] to prove channel 
capacity theorems. The method was fully developed by CsiszAr and Kiimer [83], 
who derived the main theorems of information theory from this viewpoint. The 
method of types described in Section 12.1 follows the development in Csiszir and 
Kiimer. The 2, lower bound on relative entropy is due to Csiszir [78], Kullback 
[151] and Kemperman [227]. Sanov’s theorem [175] was generalized by Csisz6r 
[289] using the method of types. 

The parsing algorithm for Lempel-Ziv encoding was introduced by Lempel 
and Ziv [175] and was proved to achieve the entropy rate by Ziv [289]. The 
algorithm described in the text was first described in Ziv and Lempel [289]. A 
more transparent proof was provided by Wyner and Ziv [285], which we have 
used to prove the results in Section 12.10. A number of different variations of the 
basic Lempel-Ziv algorithm are described in the book by Bell, Cleary and Witten 
Ia. 
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Rate Distortion Theory 

The description of an arbitrary real number requires an infinite number 
of bits, so a finite representation of a continuous random variable can 
never be perfect. How well can we do? To frame the question 
appropriately, it is necessary to define the “goodness” of a 
representation of a source. This is accomplished by defining a distortion 
measure which is a measure of distance between the random variable 
and its representation. The basic problem in rate distortion theory can 
then be stated as follows: given a source distribution and a distortion 
measure, what is the minimum expected distortion achievable at a 
particular rate? Or, equivalently, what is the minimum rate description 
required to achieve a particular distortion? 

One of the most intriguing aspects of this theory is that joint 
descriptions are more efficient than individual descriptions. It is simpler 
to describe an elephant and a chicken with one description than to 
describe each alone. This is true even for independent random variables. 
It is simpler to describe X1 and X2 together (at a given distortion for 
each) than to describe each by itself. Why don’t independent problems 
have independent solutions? The answer is found in the geometry. 
Apparently rectangular grid points (arising from independent descrip- 
tions) do not fill up the space efficiently. 

Rate distortion theory can be applied to both discrete and continuous 
random variables. The zero-error data compression theory of Chapter 5 
is an important special case of rate distortion theory applied to a 
discrete source with zero distortion. 

We will begin by considering the simple problem of representing a 
single continuous random variable by a finite number of bits. 
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13.1 QUANTIZATION 

This section on quantization motivates the elegant theory of rate distor- 
tion by showing how complicated it is to solve the quantization problem 
exactly for a single random variable. 

Since a continuous random source requires infinite precision to repre- 
sent exactly, we cannot reproduce it exactly using a finite rate code. The 
question is then to find the best possible representation for any given 
data rate. 

We first consider the problem of representing a single sample from 
the source. Let the random variable to be represented be X and let the 
representation of X be denoted as X(X). If we are given R bits to 
represent X, then the function X can take on 2R values. The problem is 
to find the optimum set of values for X (called the reproduction points or 
codepoints) and the regions that are associated with each value X. 

For example, let X - NO, (T’), and assume a square-d error distortion 
measure. In this case, we wish to find the function X(X) such that X 
takes on at most 2R values and minimizes E(X - X(XN2. If we are given 
1 bit to represent X, it is clear that the bit should distinguish whether 
X > 0 or not. To minimize squared error, each reproduced symbol should 
be at the conditional mean of its region. This is illustrated in Figure 
13.1. Thus 

ifxr0, 
(13.1) - I d %, ifx<O. 

n- 

0.4 

0.35 

0.3 

0.25 

2 0.2 

0.15 

-0.7979 0.7979 

Figure 13.1. One bit quantization of a Gaussian random variable. 
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If we are given 2 bits to represent the sample, the situation is not as 
simple. Clearly, we want to divide the real line into four regions and use 
a point within each region to represent the sample. But it is no longer 
immediately obvious what the representation regions and the recon- 
struction points should be. 

We can however state two simple properties of optimal regions and 
reconstruction points for the quantization of a single random variable: 

l Given a set of reconstruction points, the distortion is minimized by 
mapping a source random variable X to the representation X(w) 
that is closest to it. The set of regions of %’ defined by this mapping 
is called a Voronoi or Dirichlet partition defined by the reconstruc- 
tion points. 

l The reconstruction points should minimize the conditional expected 
distortion over their respective assignment regions. 

These two properties enable us to construct a simple algorithm to find 
a “good” quantizer: we start with a set of reconstruction points, find the 
optimal set of reconstruction regions (which are the nearest neighbor 
regions with respect to the distortion measure), then find the optimal 
reconstruction points for these regions (the centroids of these regions if 
the distortion is squared error), and then repeat the iteration for this 
new set of reconstruction points. The expected distortion is decreased at 
each stage in the algorithm, so the algorithm will converge to a local 
minimum of the distortion. This algorithm is called the Lloyd algorithm 
[ 1811 (for real-valued random variables) or the generaked Lloyd aZ- 
gorithm [80] (for vector-valued random variables) and is frequently used 
to design quantization systems. 

Instead of quantizing a single random variable, let us assume that we 
are given a set of n i.i.d. random variables drawn according to a 
Gaussian distribution. These random variables are to be represented 
using nR bits. Since the source is i.i.d., the symbols are independent, 
and it may appear that the representation of each element is an 
independent problem to be treated separately. But this is not true, as 
the results on rate distortion theory will show. We will represent the 
entire sequence by a single index taking ZnR values. This treatment of 
entire sequences at once achieves a lower distortion for the same rate 
than independent quantization of the individual samples. 

13.2 DEFINITIONS 

Assume that we have a source that produces asequenceX,,X,,...,X, 
i.i.d. -p(x), x E 35 We will assume that the alphabet is finite for the 
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proofs in this chapter; but most of the proofs can be extended to 
continuous random variables. 

The encoder describes the source sequence X” by an index f,(X”> E 
{1,2,. . . , ZnR}. The decoder represents X” by an estimate p E @, as 
illustrated in Figure 13.2. 

Definition: A distortion function or distortion measure is a mapping 

d:%‘x&-R+ (13.2) 

from the set of source alphabet-reproduction alphabet pairs into the set 
of non-negative real numbers. The distortion d(x, i) is a measure of the 
cost of representing the symbol x by the symbol i. 

Definition: A distortion measure is said to be bounded if the maximum 
value of the distortion is finite, i.e., 

d 
def 

max = max d(x,i)<m. 
XEBe”, i&t 

(13.3) 

In most cases, the reproduction alphabet k is the same as the source 
alphabet %‘. Examples of common distortion functions are 

l Hamming (probability of error) distortion. The Hamming distortion 
is given by 

d&i) = 
0 ifx=i 
1 ifx#? (13.4) 

which results in a probability of error distortion, since Ed(X, @ = 
Pr(X #X). 

l Squared error distortion. The squared error distortion, 

d(x, i) = (3~ - i>2 , (13.5) 

is the most popular distortion measure used for continuous al- 
phabets. Its advantages are its simplicity and its relationship to 
least squares prediction. But in applications such as image and 

fnw9 E (1,2,...Pl 
P > Encoder > Decoder ,‘- & 

Figure 13.2. Rate distortion encoder and decoder. 
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speech coding, various authors have pointed out that the mean 
squared error is not an appropriate measure of distortion as ob- 
served by a human observer. For example, there is a large squared 
error distortion between a speech waveform and another version of 
the same waveform slightly shifted in time, even though both would 
sound very similar to a human observer. 

Many alternatives have been proposed; a popular measure of distor- 
tion in speech coding is the Itakura-Saito distance, which is the relative 
entropy between multivariate normal processes. In image coding, how- 
ever, there is at present no real alternative to using the mean squared 
error as the distortion measure. 

The distortion measure is defined on a symbol-by-symbol basis. We 
extend the definition to sequences by using the following definition: 

Definition: The distortion between sequences xn and in is defined by 

d(x”,P) = ; $ d(xi, &) . 
11 

(13.6) 

So the distortion for a sequence is the average of i;he per symbol 
distortion of the elements of the sequence. This is not the only reason- 
able definition. For example, one may want to measure distortion 
between two sequences by the maximum of the per symbol distortions. 
The theory derived below does not apply directly to this case. 

Definition: A (2nR, n) rate distortion code consists of an encoding 
function, 

f, : Z”+ {1,2,. . . , 2nR} , (13.7) 

and a decoding (reproduction) function, 

g,:{1,2 ,..., znR}+P. 

The distortion associated with the (2nR, n) code is defined as 

D = Ed(X”, g,( f, (x” 1)) 3 

(13.8) 

(13.9) 

where the expectation is with respect to the probability distribution on 
X, i.e., 

D = c p(x”) dtx”, g,( f,b” ))) . 
xn 

(13.10) 
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The set of n-tuples g,(l), g,(2), . . . , g,(2’?, denoted bY e(l), . l -3 
p~2”~), constitutes the codebook, and f,‘(l), . . . , f,‘<2’? are the 
associated assignment regions. 

Many terms are used to describe the replacement of X” by its 
quantized version p(w). It is common to refer to * as the vector 
quantization, reproduction, reconstruction, representation, source code, 
or estimate of X”. 

Definition: A rate distortion pair (R, D) is said to be achievable if there 
exists a sequence of (2”R, n) rate distortion codes ( f,, g, 1 with 
lim,,, E&X”, g,( fn,cx” ))I 5 D. 

Definition: The rate distortion region for a source is the closure of the 
set of achievable rate distortion pairs (R, D). 

Definition: The rate distortion function R(D) is the infimum of rates R 
such that (R, D) is in the rate distortion region of the source for a given 
distortion D. 

Definition: The distortion rate function D(R) is the inflmum of all 
distortions D such that (R, D) is in the rate distortion region of the 
source for a given rate R. 

The distortion rate function defines another way of looking at the 
boundary of the rate distortion region, which is the set of achievable 
rate distortion pairs. We will in general use the rate distortion function 
rather than the distortion rate function to describe this boundary, 
though the two approaches are equivalent. 

We now define a mathematical function of the source, which we call 
the information rate distortion function. The main result of this chapter 
is the proof that the information rate distortion function is equal to the 
rate distortion function defined above, i.e., it is the infimum of rates that 
achieve a particular distortion. 

Definition: The information rate distortion function R"'(D) for a 
source X with distortion measure d(x, LC) is defined as 

R"'(D) = 
p(ilx) : 

min 
pWp(ilx)d(x, 

I(X, 2) (13.11) 
i&D 

where the minimization is over all conditional distributions p(i)x) for 
which the joint distribution p(x, i) = p(x)p(ilz) satisfies the expected 
distortion constraint. 



342 RATE DlSTORTION THEORY 

Paralleling the discussion of channel capacity in Chapter 8, we 
initially consider the properties of the information rate distortion func- 
tion and calculate it for some simple sources and distortion measures. 
Later we prove that we can actually achieve this function, i.e., there 
exist codes with rate R”‘(D) with distortion D. We also prove a converse 
establishing that R 1 R”‘(D) for any code that achieves distortion D. 

The main theorem of rate distortion theory can now be stated as 
follows: 

Theorem 13.2.1: The rate distortion function for an i.i.d. source X with 
distribution p(x) and bounded distortion function d(x, i) is equal to the 
associated information rate distortion function. Thus 

R(D) = R”‘(D) - - min I(X, 2) (13.12) 
p(i(x): C(,,i) p(x)pdi.lzMz, ?ED 

is the minimum achievable rate at distortion D. 

This theorem shows that the operational definition of the rate distor- 
tion function is equal to the information definition. Hence we will use 
R(D) from now on to denote both definitions of the rate distortion 
function. Before coming to the proof of the theorem, we calculate the 
information rate distortion function for some simple sources and distor- 
tions. 

13.3 CALCULATION OF THE RATE DISTORTION FUNCTION 

13.3.1 Binary Source 

We now find the description rate R(D) required to describe a 
Bernoulli(p) source with an expected proportion of errors less than or 
equal to D. 

Theorem 13.3.1: The rate distortion function for a Bernoulli( p> source 
with Hamming distortion is given by 

O~D~min{p,l-p}, 
D>min{p,l-p}. (13.13) 

Proof: Consider a binary source X - Bernoulli(p) with a Hamming 
distortion measure. Without loss of generality, we may assume that 
p < fr . We wish to calculate the rate distortion function, 

R(D) = min Icx;&. (13.14) 
p(ilr) : cc,, ij p(le)p(ilx)m, i)=D 

Let 69 denote modulo 2 addition. Thus X$X = 1 is equivalent to X # X. 
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We cannot minimize 1(X, X) directly; instead, we find a lower bound and 
then show that this lower bound is achievable. For any joint distribution 
satisfying the distortion constraint, we have 

WC a = H(X) - H(X@) 
= H(p) - H(XcBX(2) (13.16) 

H(p)-H(Xa32) (13.17) 

IH(p)--H(D), (13.18) 

since Pr(X #X) I D and H(D) increases with D for D 5 f . Thus 

R(D)zH(p)-H(D). (13.19) 

We will now show that the lower bound is actually the rate distortion 
function by finding a joint distribution that meets the distortion con- 
straint and has 1(X, X) = R(D). For 0 I D 5 p, we can achieve the value 
of the rate distortion function in (13.19) by choosing (X, X) to have the 
joint distribution given by the binary symmetric channel shown in 
Figure 13.3. 

We choose the distribution of X at the input of the channel so that the 
output distribution of X is the specified distribution. Let r = Pr(X = 1). 
Then choose r so that 

r(l-D)+(l-r)D=p, (13.20) 

or 

(13.21) 

P-D 
1-W 

1-D 
0 

1 
1-D 

0 l-p 

X 

1 P 

Figure 13.3. Joint distribution for binary source. 
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I(x;~=HGX)-H(XI~=H(p)-H(D), (13.22) 

and the expected distortion is RX # X) = D. 
If D 2 p, then we can-achieve R(D) = 0 by letting X = 0 with probabili- 

ty 1. In this case, Z(X, X) = O-and D = p. Similarly, if D 2 1 - p, we cm 
achieve R(D I= 0 by setting X = 1 with probability 1. 

Hence the rate distortion function for a binary source is 

OrD= min{p,l-p}, 
D> min{p,l-p}. (13.23) 

This function is illustrated in Figure 13.4. Cl 

The above calculations may seem entirely unmotivated. Why should 
minimizing mutual information have anything to do with quantization? 
The answer to this question must wait until we prove Theorem 13.2.1. 

13.3.2 Gaussian Source 

Although Theorem 13.2.1 is proved only for discrete sources with a 
bounded distortion measure, it can also be proved for well-behaved 
continuous sources and unbounded distortion measures. Assuming this 
general theorem, we calculate the rate distortion function for a Gaus- 
sian source with squared error distortion: 

Theorem 13.3.2: The rate distortion function for a N(0, u2) source with 
squared error distortion is 

1 2 
+%, OsDsg2, 

(13.24) 
0, D>U2. 

I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

D 

Figure 13.4. Rate distortion function for a binary source. 
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proof= Let X be -N(O, a’). By the rate distortion theorem, we have 

R(D) = min I(X, 2) . (13.25) 
flilx) : E(2-m2sD 

As in the previous example, we first 6nd a lower bound for the rate 
distortion function and then prove that this is achievable. Since 
E(X - a2 5 D, we observe 

Z(X, 2) = h(X) - h(X(X) (13.26) 

1 
= 2 log(27re)(r2 - h(X - XIX) 

2 f log(27re)cr2 - h(X - X) 

1 
2 2 log(27re)02 - h(N(0, E(X - 2)“)) 

1 
= 5 log(27re)(r2 - f log(2ne)E(X - X)” 

(13.27) 

(13.28) 

(13.29) 

(13.30) 

1 1 
2 2 log(2?re)(r2 - 2 log(2we)D (13.31) 

1 
= 2 log $ , (13.32) 

where (13.28) follows from the fact that conditioning reduces entropy 
and (13.29) follows from the fact that the normal distribution maximizes 
the entropy for a given second moment (Theorem 9.6.5). Hence 

R(D)? f log;. (13.33) 

To find the conditional density fliI%) that achieves this lower bound, 
it is usually more convenient to look at the conditional density fix Ii>, 
which is sometimes called the test channel (thus emphasizing the 
duality of rate distortion with channel capacity). As in the binary case, 
we construct flx)i) to achieve equality in the bound. We choose the joint 
distribution as shown in Figure 13.5. If D I cr2, we choose 

x=x+2, k-N(0,a2-D), Z-yNtO,D), (13.34) 

i-,V(0,a2- D)+~+-X-N(0,02) 

Figure 13.5. Joint distribution for Gaussian source. 
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where X and 2 are independent. For this joint distribution, we calculate 

I(X,k)= flog;, (13.35) 

and E(X-X)2 = D, thus achieving the bound in (13.33). If D > a2, we 
choose X = 0 with probability 1, achieving R(D) = 0. 
Hence the rate distortion function for the Gaussian source with squared 
error distortion is 

1 
R(D) = 

z log ; , OsDscr2, 
(13.36) 

0, D>a2, 

as illustrated in Figure 13.6. Cl 

We can rewrite (13.36) to express the distortion in terms of the rate, 

D(R) = a22-2R. (13.37) 

Each bit of description reduces the expected distortion by a factor of 4. 
With a 1 bit description, the best expected square error is a2/4. We can 
compare this with the result of simple 1 bit quantization of a N(0, a2) 
random variable as described in Section 13.1. In this case, using the two 
regions corresponding to the positive and negative real lines and repro- 
duction points as the centroids of the respective regions, the expected 
distortion is r-2 a2 = 0.3633~~. (See Problem 1.) As we prove later, the 
rate distortion=limit R(D) is achieved by considering long block lengths. 
This example shows that we can achieve a lower distortion by consider- 
ing several distortion problems in succession (long block lengths) than 
can be achieved by considering each problem separately. This is some- 
what surprising because we are quantizing independent random vari- 
ables. 

3 

2.5 

-0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

D 

Figure 13.6. Rate distortion function for a Gaussian source. 
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13.3.3 Simultaneous Description of Independent Gaussian 
Random Variables 

Consider the case of representing m independent (but not identically 
distributed) normal random sources XI, . . . , Xm, where Xi are 
-JV(O, CT:>, with squared error distortion. Assume that we are given R 
bits with which to represent this random vector. The question naturally 
arises as to how we should allot these bits to the different components to 
minimize the total distortion. Extending the definition of the informa- 
tion rate distortion function to the vector case, we have 

R(D) = min 
f(imlxm) :EdtXm,~m,zsD 

I(X”; 2”)) (13.38) 

where d(xm, irn ) = Cr!, (xi - &>2. Now using the arguments in the previ- 
ous example, we have 

I(X”;X”) = h(X”) - h(X”IX”) (13.39) 

= 2 h(Xi) - 2 h(xiIXi-1,2m) 
i=l i=l 

1 ~ h(Xi)- ~ h(Xi(~i) 
i=l i=l 

=E I(Xi;X) i 
i=l 

12 R(D ) i 
i=l 

=~l(;log$+, 

(13.40) 

(13.41) 

(13.42) 

(13.43) 

(13.44) 

where Di = E(Xi - pi)’ and (13.41) follows from the fact that condition- 
ing reduces entropy. We can achieve equality in (13.41) by choosing 
f(36mI~m) = ~~=l f(Xil~i) an in (13.43) by choosing the distribution of d 
each pi - &(O, 0; - Di >, as in the previous example. Hence the problem 
of finding the rate distortion function can be reduced to the following 
optimization (using nats for convenience): 

R(D)=EA~D gmax . 
1 i-l 

Using Lagrange multipliers, we construct the functional 

(13.45) 

J(D)=2 ‘ln’+h$ Di, 
i=l2 Di i=l 

(13.46) 
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and differentiating with respect to Di and setting equal to 0, we have 

or 

aJ 11 -= 
aDi 

-gE+A=O, (13.47) 
i 

Di = A’ . (13.48) 

Hence the optimum allotment of the bits to the various descriptions 
results in an equal distortion for each random variable. This is possible 
if the constant A’ in (13.48) is less than a; for all i. As the total 
allowable distortion D is increased, the constant A’ increases until it 
exceeds C: for some i. At this point the solution (13.48) is on the 
boundary of the allowable region of distortions. If we increase the total 
distortion, we must use the Kuhn-Tucker conditions to find the mini- 
mum in (13.46). In this case the Kuhn-Tucker conditions yield 

aJ 1 1 
a= -2D,+A, (13.49) 

where A is chosen so that 

ifDi<uB, 
(13.50) 

ifDi?uP. 

It is easy to check that the solution to the 
given by the following theorem: 

Kuhn-Tucker equations is 

Theorem 13.3.3 (Rate distortion for a parallel Gaussian source): Let 
Xi - N(0, Uf), i = 1,2, . . . , m be independent Gaussian random variables 
and let the distortion measure be d(xm, irn) = Cr=, (Xi - 3;i)2. Then the rate 
distortion function is given by 

m 1 
R(D)=2 zlog$ 

i=l i 

where 

if ACuB, 

if Aru$, 

where A is chosen SO that Ill=, Di = D. 

(13.51) 

(13.52) 

This gives rise to a kind of reverse “water-filling” as illustrated in 
Figure 13.7. We choose a constant A and only describe those random 
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2 
'i 

4 04 7 O6 

D3 D, 
Ds 

xi x2 x3 x4 x5 x6 

Figure! 13.7. Reverse water-filling for independent Gaussian random variables. 

variables with variances greater than A. No bits are used to describe 
random variables with variance less than A. 

More generally, the rate distortion function for a multivariate normal 
vector can be obtained by reverse water-filling on the eigenvalues. We 
can also apply the same arguments to a Gaussian stochastic process. By 
the spectral representation theorem, a Gaussian stochastic process can 
be represented as an integral of independent Gaussian processes in the 
different frequency bands. Reverse water-filling on the spectrum yields 
the rate distortion function. 

13.4 CONVERSE TO THE RATE DISTORTION THEOREM 

In this section, we prove the converse to Theorem 13.2.1 by showing that 
we cannot achieve a distortion less than D if we describe X at a rate less 
than R(D), where 

R(D) = min I(X, 2) . (13.53) 
p(ilx): c p(x)p(iIrkz(x, i)sD 

dr,i) 

The minimization is over all conditional distributions p(;ls) for which 
the joint distribution p(x, i) = p(x)& 1~) satisfies the expected distortion 
constraint. Before proving the converse, we establish some simple 
properties of the information rate distortion function. 

Lemma 13.4.1 (Convexity of R(D)): The rate distortion function R(D) 
given in (13.53) is a non-increasing convex function of D. 

Proof: R(D) is the minimum of the mutual information over increas- 
ingly larger sets as D increases. Thus R(D) is non-increasing in D. 

To prove that R(D) is convex, consider two rate distortion pairs 
(R,, D, ) and (R2, D,) which lie on the rate-distortion curve. Let the joint 
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distributions that achieve these pairs be pl(x, i) =p(x)p,(ilx) and 
p&, i) = p(z)&lx). Consider the distribution pA = Ap, + (1 - A)JQ. 
Since the distortion is a linear function of the distribution, we have 
D( p,) = AD, + (1 - A)D,. Mutual information, on the other hand, is a 
convex function of the conditional distribution (Theorem 2.7.4) and 
hence 

IJX; 2) 5 AIJX; k) + ( 1 - A)I,.JX; X) . 

Hence by the definition of the rate distortion function, 

ND, 11 IJZ ti 

5 AI& %) + (1 - A)l,$X; X) 

= AR(D,) + (1 - A)R(D,), 

which proves that R(D) is a convex function of D. Cl 

The converse can now be proved. 

(13.54) 

(13.55) 

(13.56) 

(13.57) 

Proof: (Converse in Theorem 13.2.1): We must show, for any source 
X drawn i.i.d. -p(x) with distortion measure d(x, i), and any (2RR, n) 
rate distortion code with distortion ID, that the rate R of the code 
satisfies R 2 R(D). 

Consider any (2”“, n) rate distortion code defined by functions f, and 
g,. Let P = &X”) = g,( &(X”)) be the reproduced sequence corre- 
sponding to X”. Then we have the following chain of inequalities: 

‘2 i H(Xi) - H(X”IP) 
i=l 

~ ~ H(xi) - ~ H(XiI~,Xi-l, 
i=l i=l 

~ ~ H(x,)- ~ H(XiI$) 
i=l i=l 

(13.58) 

(13.59) 

(13.60) 

(13.61) 

(13.62) 

9x1) (13.63) 

(13.64) 
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= i: I(xi;s> i (13.65) 
i=l 

~ ~ R(Ed(Xi, ~ )) i 
i=l 

=n~ ’ R(Ed(Xi,ff )) 
i=l n 

i 

(h) 
2 nR(x ~ Ed(Xi,~i)) 

rl 

(13.66) 

(13.67) 

(13.68) 

‘2 nR(Ed(X”, p)> (13.69) 

= nR(D), (13.70) 

where 

(a) follows from the fact that there are at most 2nR p’s in the range 
of the encoding function, 

(b) from the fact that p is a function of X” and thus H(* IX” ) = 0, 
(c) from the definition of mutual information, 
(d) from the fact that the Xi are independent, 
(e) from the chain rule for entropy, 
(f) from the fact that conditioning reduces entropy, 
(g) from the definition of the rate distortion function, 
(h) from the convexity of the rate distortion function (Lemma 13.4.1) 

and Jensen’s inequality, and 
(i) from the definition of distortion for blocks of length n. 

This shows that the rate R of any rate distortion code exceeds the rate 
distortion function R(D) evaluated at the distortion level D = Ed(X”, p) 
achieved by that code. 0 

13.5 ACHIEVABILITY OF THE RATE DISTORTION FUNCTION 

We now prove the achievability of the rate distortion function. We begin 
with a modified version of the joint AIZP in which we add the condition 
that the 
measure. 

pair of sequences be typical with respect to the distortion 

Definitions Let p(x, i) be a joint probability distribution on E x & and 
let d(x, i) be a distortion measure on aP x %, For any E > 0, a pair of 
sequences (x”, in) is said to be distortion e-typical or simply distortion 
typical if 
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1 
--; log&?)-H(X) <E 

1 
-;logp(?)-H(X) <E 

1 
-; logp(x”,i”)-H(X,& <e 

(13.71) 

(13.72) 

(13.73) 

]dW, i”) - Ed(X, %)I < E (13.74) 

The set of distortion typical sequences is called the distortion typical set 
and is denoted A:‘,. 

Note that this is the definition of the jointly typical set (Section 8.6) 
with the additional constraint that the distortion be close to the expec- 
ted value. Hence, the distortion typical set is a subset of the jointly 
typical set, i.e., At;f’, CA:‘. If <xi, pi> are drawn i.i.d -p(x, 12), then the 
distortion between two random sequences 

d(X”,P)= i $l d(Xi,*i) 
i 

(13.75) 

is an average of i.i.d. random variables, and the law of large numbers 
implies that it is close to its expected value with high probability. Hence 
we have the following lemma. 

Lemma 13.5.1: Let (Xi, pi) be drawn i.i.d. - p(x, i). Then Pr(Al;f’, )+ 1 
us n-*a. 

Proof: The sums in the four conditions in the definition of Agjc are 
all normalized sums of i.i.d random variables and hence, by the law of 
large numbers, tend to their respective expected values with probability 
1. Hence the set of sequences satisfying all four conditions has probabili- 
ty tending to 1 as n- 00. Cl 

The following lemma is a direct consequence of the definition of the 
distortion typical set. 

Lemma 13.5.2: For all (x”, i”) E A:‘,, 

p($t) ~p~~~I~n)2-“(z(X;t)+3~) . (13.76) 

Proof: Using the definition of A:‘,, we can bound the probabilities 
p(x”), p(P) and ~(2, i”) for all (2, P) E A:‘,, and hence 
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pw, i”) Jwp3 = &?a) (13.77) 

pw, 3) 
=Pop(x”)p(~n) (13.78) 

2- n(H(X, a,-,, 
ql(a2- n(H(X)+c) -nvzUE)+E) 2 

(13.79) 

= p(? )2 n(Z(X; tj+3rj 
2 (13.80) 

and the lemma follows immediately. Cl 

We also need the following interesting inequality. 

Lemma 13.5.3: For 0 5 x, y 5 1, n > 0, 

(13.81) 

Proof: Let f(y) = e-’ - l+y. Thenf(O)=O andf’(y)= -eeY+l>O 
for y > 0, and hence fly) > 0 for y > 0. Hence for 0 I y I 1, we have 
1- ySemY, and raising this to the nth power, we obtain 

(1 -y)” IemY”. (13.82) 

Thus the lemma is satisfied for x = 1. By examination, it is clear that the 
inequality is also satisfied for x = 0. By differentiation, it is easy to see 
that g,(jc) = (1 - my)” is a convex function of x and hence for 0 5 x 5 1, we 
have 

(1 - xy>” = gym (13.83) 

5 Cl- x)g,(O) + 3cg,w (13.84) 

= (1 - X)1 + x(1 -y)” (13.85) 

51 --x +xemyn (13.86) 

51 -x+ee-yn. Cl (13.87) 

We use this to prove the achievability of Theorem 13.2.1. 

Proof (Achievability in Theorem 13.2.1): Let XI, X,, . . . , Xn be 
drawn i.i.d. - p(x) and let d(x, i) be a bounded distortion measure for 
this source. Let the rate distortion function for this source be R(D). 
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Then for any D, and any R > R(D), we will show that the rate distortion 
pair (R, D) is achievable, by proving the existence a sequence of rate 
distortion codes with rate R and asymptotic distortion D. 

Fix p(i Ix), where p(ilx) achieves equality in (13.53). Thus 1(X; X) = 
R(D). Calculate p(i) = C, p(x)p(i)x). Choose S > 0. We will prove the 
existence of a rate distortion code with rate R and distortion less than or 
equal to D + 6. 

Generation of codebook. Randomly generate a rate distortion 
codebook % consisting of 2nR sequences p drawn i.i.d. - lly=, ~(32~). 
Index these codewords by w E { 1,2, . . . , 2nR}. Reveal this codebook 
to the encoder and decoder. 

Encoding. Encode X” by w if there exists a w such that (X”, p(w)) E 
Al;f’,, the distortion typical set. If there is more than one such w, 
send the least. If there is no such w, let w = 1. Thus nR bits suffice 
to describe the index w of the jointly typical codeword. 

Decoding. The reproduced sequence is x”(w). 
Calculation of distortion. As in the case of the channel coding 

theorem, we calculate the expected distortion over the random 
choice of codebooks %’ as 

fi = Exn, .d(X”, p) 

where the expectation is over the random choice of codebooks and 
over X”. 

For a tied codebook %’ and choice of E > 0, we divide the sequences 
xn E 8” into two categories: 

l Sequences xn such that there exists a codeword p(w) that is 
distortion typical with xn, i.e., d(x”, Z(w)) <D + E. Since the total 
probability of these sequences is at most 1, these sequences contrib- 
ute at most D + E to the expected distortion. 

l Sequences xn such that there does not exist a codeword e(w) that 
is distortion typical with xn. Let P, be the total probability of these 
sequences. Since the distortion for any individual sequence is 
bounded by d,,,, these sequences contribute at most P,d,,, to the 
expected distortion. 

Hence we can bound the total distortion by 

Ed(X”, *(X”>> 5 D + E + P,d,,, , (13.89) 

which can be made less than D + S for an appropriate choice of E if P, is 
small enough. Hence, if we show that P, is small, then the expected 
distortion is close to D and the theorem is proved. 
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Cchhtion of P,. We must bound the probability that, for a random 
choice of codebook % and a randomly chosen source sequence, there is no 
codeword that is distortion typical with the source sequence. Let J( % ) 
denote the set of source sequences xn such that at least one codeword in 
%’ is distortion typical with xn. 

Then 

This is the probability of all sequences not well represented by a code, 
averaged over the randomly chosen code. By changing the order of 
summation, we can also interpret this as the probability of choosing a 
codebook that does not well represent sequence xn, averaged with 
respect to p(x”). Thus 

Let us define 

1 
K(x”, in) = 

if (x”, i”) EA~‘~ , 

0 if (x”, i”) $ZAg’, . 

(13.91) 

(13.92) 

The probability that a single randomly chosen codeword x” does not 
well represent a fixed xn is 

p~(x:*>$@;) = Pr(K(x:p) = o) = I - &(in)~xn, in), (13.93) 

and therefore the probability that 2”R independently chosen codewords 
do not represent xn, averaged over p(x”), is 

P,=&(x”) c PM) 
Xn v :x” $JC%, 

(13.94) 

= c po[ 1 - c p(?)K(xn, ??I”“. (13.95) 
xn P 

We now use Lemma 13.5.2 to bound the sum within the brackets. From 
Lemma 13.5.2, it follows that 

2 p(.p)K(=zn, in) 2 c p(~n(Xn)2-n(z(x;a)+3.)~(x~, i”) , (13.96) 
i” in 

and hence 
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P, 5 c $I&“)( 1 - 2-“(z(X;t)+3’) c p@yx”)K~x”, in)) 
anR 

. (13.97) 
x” 2” 

We now use Lemma 135.3 to bound the term on the right hand side of 
(13.97) and obtain 

( > 

2”R 

1-2- n(ZLY; A)+3c) 2 p(,plx~)K(;r:~, p) 
i” 
( 1 - c p(.pIxn)&~, p) + e-(2-n"(x;9)+3e)2nR) . (13.98) 

in 

Substituting this inequality in (13.971, we obtain 

p, 5 1 - 2 &“)p(i”Ixn)K((xn, i”) + e-2-n(z(X;k)+3t)2nR. (13.99) 

The last term in the bound is equal to 

e 
-cp(R-ZW,bP-Se) 

9 (13.100) 

which goes to zero exponentially fast with n if R > 1(X, a + 3~. Hence if 
we choose p@(r) to be the conditional distribution that achieves the 
minimum in the rate distortion function, then R > R(D) implies R > 
1(X, X) and we can choose E small enough so that the last term in (13.99) 
goes to 0. 

The first two terms in (13.99) give the probability under the joint 
distribution p(x”, P) that the pair of sequences is not distortion typical. 
Hence using Lemma 13.5.1, 

I - c c p(xR, in )IC(X”, in ) = PI-W”, p ) @;‘, 1 (13.101) 
Xn 12n 

<E (13.102) 

for n sufficiently large. Therefore, by an appropriate choice of l and n, 
we can make P, as small as we like. 

So for any choice of 6 > 0 there exists an c and n such that over all 
randomly chosen rate R codes of block length n, the expected distortion 
is less than D + S. Hence there must exist at least one code %* with this 
rate and block length with average distortion less than D + 8. Since 6 
was arbitrary, we have shown that (R, 0) is achievable if R > R(D). Cl 

We have proved the existence of a rate distortion code with an 
expected distortion close to D and a rate close to R(D). The similarities 
between the random coding proof of the rate distortion theorem and the 
random coding proof of the channel coding theorem are now evident. We 
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will explore the parallels further by considering the Gaussian example, 
which provides some geometric insight into the problem. It turns out 
that channel coding is sphere packing and rate distortion coding is 
sphere covering. 

Channel coding for the Gaussian channel. Consider a Gaussian chan- 
nel, Yi = Xi + Zi, where the Zi are i.i.d. - N(0, N) and there is a 
power constraint P on the power per symbol of the transmitted 
codeword. Consider a sequence of n transmissions. The power 
constraint implies that the transmitted sequence lies within a 
sphere of radius a in W. The coding problem is equivalent to 
finding a set of ZnR sequences within this sphere such that the 
probability of any of them being mistaken for any other is small- 
the spheres of radius a around each of them are almost 
disjoint. This corresponds to filling a sphere of radius vm 
with spheres of radius a. One would expect that the largest 
number of spheres that could be fit would be the ratio of their 
volumes, or, equivalently, the nth power of the ratio of their radii. 
Thus if M is the number of codewords that can be transmitted 
efficiently, we have 

(13.103) 

The results of the channel coding theorem show that it is possible 
to do this efficiently for large n; it is possible to find approximately 

codewords such that the noise spheres around them are almost 
disjoint (the total volume of their intersection is arbitrarily small). 

Rate distortion for the Gaussian source. Consider a Gaussian source 
of variance a2. A (2nR, n) rate distortion code for this source with 
distortion D is a set of 2nR sequences in W such that most source 
sequences of length n (all those that lie within a sphere of radius 
w) are within a distance m of some codeword. Again, by the 
sphere packing argument, it is clear that the minimum number of 
codewords required is 

The rate distortion theorem shows that this minimum rate is 
asymptotically achievable, i.e., that there exists a collection of 
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spheres of radius m that cover the space except for a set of 
arbitrarily small probability. 

The above geometric arguments also enable us to transform a good code 
for channel transmission into a good code for rate distortion. In both 
cases, the essential idea is to fll the space of source sequences: in 
channel transmission, we want to find the largest set of codewords 
which have a large minimum distance between codewords, while in rate 
distortion, we wish to find the smallest set of codewords that covers the 
entire space. If we have any set that meets the sphere packing bound for 
one, it will meet the sphere packing bound for the other. In the 
Gaussian case, choosing the codewords to be Gaussian with the appro- 
priate variance is asymptotically optimal for both rate distortion and 
channel coding. 

13.6 STRONGLY TYPICAL SEQUENCES AND RATE DISTORTION 

In the last section, we proved the existence of a rate distortion code of 
rate R(D) with average distortion close to D. But a stronger statement is 
true-not only is the average distortion close to D, but the total 
probability that the distortion is greater than D + S is close to 0. The 
proof of this stronger result is more involved; we will only give an 
outline of the proof. The method of proof is similar to the proof in the 
previous section; the main difference is that we will use strongly typical 
sequences rather than weakly typical sequences. This will enable us to 
give a lower bound to the probability that a typical source sequence is 
not well represented by a randomly chosen codeword in (13.93). This 
will give a more intuitive proof of the rate distortion theorem. 

We will begin by defining strong typicality and quoting a basic 
theorem bounding the probability that two sequences are jointly typical. 
The properties of strong typicality were introduced by Berger [281 and 
were explored in detail in the book by Csiszar and Kiirner [83]. We will 
define strong typicality (as in Chapter 12) and state a fundamental 
lemma. The proof of the lemma will be left as a problem at the end of 
the chapter. 

Definition: A sequence xn E SE’” is said to be c-strongly typical with 
respect to a distribution p(x) on Z!Y if 

1. For all a E S? with p(a) > 0, we have 

(13.106) 

2. For all a E % with p(a) = 0, N(alxn) = 0. 
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N(alxn) is the number of occurrences of the symbol a in the sequence 
X”. 

The set of sequences xn E Z’” such that xn is strongly typical is called 
the strongly typical set and is denoted Afn’(X) or AT’“’ when the random 
variable is understood from the context. 

Definition: A pair of sequences (x”, y” ) E Z” x 9” is said to be E- 
strongly typical with respect to a distribution p(x, y) on %’ X ??I if 

1. For all (a, b) E 2 x 3 with p(a, b) > 0, we have 

iN(a, bIxn, y”)-pb,W <- 
l&l 

? (13.107) 

2. For all (a, b) E 8? x 9 with p(a, b) = 0, N(a, bIxn, y”) = 0. 

N(o, bIxn, Y”) is the number of occurrences of the pair (a, b) in the 
pair of sequences (xn, y”). 

The set of sequences (x”, y” ) E %? x ?V such that (xn, yn ) is strongly 
typical is called the strongly typical set and is denoted AT’“‘(X, Y) or 
A*(n) . 

‘From the definition, it follows that if (x”, y” > E AT’“‘(X, Y), then 
xn E Af’(X). 

From the strong law of large numbers, the following lemma is 
immediate. 

Lemma 13.6.1: Let (Xi, Yi) be drawn i.i.d. - p(x, y). Then Pr(Af”‘)+ 1 
as n+m. 

We will use one basic result, which bounds the probability that an 
independently drawn sequence will be seen as jointly strongly typical 
with a given sequence. Theorem 8.6.1 shows that if we choose X” and Y” 
independently, the probability that they will be weakly jointly typical is 
4- nzcx; Y) 

. The following lemma extends the result to strongly typical 
sequences. This is stronger than the earlier result in that it gives a 
lower bound on the probability that a randomly chosen sequence is 
jointly typical with a fixed typical xn. 

Lemma 13.6.2: Let Yl, Y2, . . . , Y, be drawn i.i.d. -II p(y). For xn E 
A z(“‘, the probability that (x”, Y”) E AT’“’ is bounded by 

2- n(Z(X; Y)+E,) I pdcxn, yn) EA;(n)) I g-n(ZcX; Y)-El) , (13.108) 

where E, goes to 0 as E --, 0 and n+ 00. 
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Proof: We will not prove this lemma, but instead outline the proof in 
a problem at the end of the chapter. In essence, the proof involves 
finding a lower bound on the size of the conditionally typical set. Cl 

We will proceed directly to the achievability of the rate distortion 
function. We will only give an outline to illustrate the main ideas. The 
construction of the codebook and the encoding and decoding are similar 
to the proof in the last section. 

Proof: Fix p(iIx). Calculate p(i) = C, p($p(~?I;1~). Fix E > 0. Later we 
will choose E appropriately to achieve an expected distortion less than 
D + 6. 

Generation of codeboolz. Generate a rate distortion codebook % con- 
sisting of ZnR sequences p drawn i.i.d. -llip(lZi). Denote the 
sequences P(l), . . . , P(anR). 

Encoding. Given a sequence X”, index it by w if there exists a w such 
that (X”, x”(w)) E Afn), the strongly jointly typical set. If there is 
more than one such w, send the first in lexicographic order. If there 
is no such w, let w = 1. 

Decoding. Let the reproduced sequence be k(w). 
Calculation of distortion. As in the case of the proof in the last 

section, we calculate the expected distortion over the random 
choice of codebook as 

D = Ex,,, ,d(X”, p) 

= E, c p(x” )d(xn, %‘Yxn )I 

= 2 p;n)E,d(x:*l, 
xn 

(13.110) 

(13.111) 

where the expectation is over the random choice of codebook. 

For a fixed codebook %, we divide the sequences xn E 8?” into three 
categories as shown in Figure 13.8. 

l The non-typical sequences xnFAe . I(n) The total probability of these 
sequences can be made less than E by choosing n large enough. 
Since the individual distortion between any two sequences is boun- 
ded by d,,,, the non-typical sequences can contribute at most Ed,,, 
to the expected distortion. 

l Typical sequences xn E AT’“’ such that there exists a codeword &’ 
that is jointly typical with x”. In this case, since the source sequence 
and the codeword are strongly jointly typical, the continuity of the 
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Figure 13.8. Classes of source sequences in rate distortion theorem. 

distortion as a function of the joint distribution ensures that they 
are also distortion typical. Hence the distortion between these xn 
and their codewords is bounded by D + Ed,,,, and since the total 
probability of these sequences is at most 1, these sequences contrib- 
ute at most D + ~d,,.,~~ to the expected distortion. 

l Typical sequences xn E AT’“’ such that there does not exist a 
codeword p that is jointly typical with x”. Let P, be the total 
probability of these sequences. Since the distortion for any individu- 
al sequence is bounded by d,,,, these sequences contribute at most 
P,4nax to the expected distortion. 

The sequences in the first and third categories are the sequences that 
may not be well represented by this rate distortion code. The probability 
of the first category of sequences is less than E for sufficiently large n. 
The probability of the last category is P,, which we will show can be 
made small. This will prove the theorem that the total probability of 
sequences that are not well represented is small. In turn, we use this to 
show that the average distortion is close to D. 

Cakulation of P,. We must bound the probability that there is no 
codeword that is jointly typical with the given sequence X”. From 
the joint AEP, we know that the probability that X” and any x” are 
jointly typical is A 2-nz(x’ “!- Hence the expected number of jointly 
typical x”(w) is 2nR2-nz’x’x’, which is exponentially large if R > 
I(X, X). 

But this is not sufficient to show that P, + 0. We must show that the 
probability that there is no codeword that is jointly typical with X” goes 
to zero. The fact that the expected number of jointly typical codewords is 
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exponentially large does not ensure that there will at least one with 
high probability. 

Just as in (13.93), we can expand the probability of error as 

I’, = c p(xn)[l - Pr((x”, ?, E Afn))12”R . 
xn EAT(~) 

(13.112) 

From Lemma 13.6.2, we have 

Substituting this in (13.112) and using the inequality (1 - x)” 5 eVnx, we 
have 

(13.114) 

which goes to 0 as n + a if R > 1(X, & + Ed. Hence for an appropriate 
choice of E and n, we can get the total probability of all badly repre- 
sented sequences to be as small as we want. Not only is the expected 
distortion close to D, but with probability going to 1, we will find a 
codeword whose distortion with respect to the given sequence is less 
than D+6. Cl 

13.7 CHARACTERIZATION OF THE RATE DISTORTION 
FUNCTION 

We have defined the information rate distortion function as 

R(D)= min m a , (13.115) 
Polx):q+)P Wq(ildd(z, i&D 

where the minimization is over all conditional distributions @Ix) for 
which the joint distribution p(~)&?Ix) satisfies the expected distortion 
constraint. This is a standard minimization problem of a convex func- 
tion over the convex set of all q(i 1~) I 0 satisfying C, &IX) = 1 for all x 
and CQ(~~X)JI(X)C&X, i) 5 D. 

We can use the method of Lagrange multipliers to find the solution. 
We set up the functional 

J(q) = c c p(x)q(iIx) log qG Ix> 
x i c 

X 

p(x)q(iIx) + A T c PWW~k a 32 
(13.116) 

(13.117) 
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where the last term corresponds to the constraint that @Ix) is a 
conditional probability mass function. If we let q(i) = C, p(x)q(iIx) be 
the distribution on X induced by &C lx), we can rewrite J(a) as 

J(q) = c c pWqG Ix> log $ + AC c p(x)q(iIx)&x, i) (13.118) 
x i 2 i 

+ c dx>C qelx) - (13.119) 
x i 

DifYerentiating with respect to &fix), we have 

+pw - c p(r’)q(~lx’)--&p~x) + Ap(xMx, i) 
x’ 

+ v(x) = 0 . (13.120) 

Setting log p(x) = ~(x>/p(x>, we obtain 

p(x)[ log s + h&x, i> + log /&L(x) 1 = 0 (13.121) 

(13.122) 

Since C, q(i(x) = 1, we must have 

p(x) = 2 q(i)e-*d’“, i, 
P 

(13.123) 

q@e 
-Ad(x, i) 

qcqx) = 
c, q(i)e-Wd l 

Multiplying this by p(x) and summing over all x, we obtain 

-hd(x, i) 

q(i) = q(i) 2 p(x)e r c;, q(~t)e-kW” ’ 

If q(i) > 0, we can divide both sides by q(i) and obtain 

p&k 
-I\d(r, i) 

c z c,, q(~/)e-WW = 1 

(13.124) 

(13.125) 

(13.126) 

for all i E &‘. We can combine these @‘I equations with the equation 
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defining the distortion and calculate h and the I@ unknowns q(i). We 
can use this and (13.124) to find the optimum conditional distribution. 

The above analysis is valid if all the output symbols are active, i.e., 
q(i) > 0 for all i. But this is not necessarily the case. We would then 
have to apply the Kuhn-Tucker conditions to characterize the minimum. 
The inequality condition a(i) > 0 is covered by the Kuhn-Tucker condi- 
tions, which reduce to 

aJ =0 if q(iJz)>O, 

aq(ild 20 if q(iJx)=O. 
(13.127) 

Substituting the value of the derivative, we obtain the conditions for the 
minimum as 

p(de 
-A&x, i) 

c x & q(~‘)e-Ad’“, i’) =1 if q(i)>O, 

p We 
-h&x, if) 

c x c;, q(Jl’)e-“d’“’ i’) sl if q(i) = 0 . 

(13.128) 

(13.129) 

This characterization will enable us to check if a given q(i) is a solution 
to the minimization problem. However, it is not easy to solve for the 
optimum output distribution from these equations. In the next section, 
we provide an iterative algorithm for computing the rate distortion 
function. This algorithm is a special case of a general algorithm for 
finding the minimum relative entropy distance between two convex sets 
of probability densities. 

13.8 COMPUTATION OF CHANNEL CAPACITY AND THE RATE 
DISTORTION FUNCTION 

Consider the following problem: Given two convex sets A and B in .% n as 
shown in Figure 13.9, we would like to the find the minimum distance 
between them 

d min = aEyipE, &a, b) , (13.130) 
, 

where d(a, b) is the Euclidean distance between a and b. An intuitively 
obvious algorithm to do this would be to take any point x E A, and find 
the y E B that is closest to it. Then fix this y and find the closest point in 
A. Repeating this process, it is clear that the distance decreases at each 
stage. Does it converge to the minimum distance between the two sets? 
Csiszhr and Tusnady [85] have shown that if the sets are convex and if 
the distance satisfies certain conditions, then this alternating minimiza- 
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Figure 13.9. Distance between convex sets. 

tion algorithm will indeed converge to the minimum. In particular, if the 
sets are sets of probability distributions and the distance measure is the 
relative entropy, then the algorithm does converge to the the minimum 
relative entropy between the two sets of distributions. 

To apply this algorithm to rate distortion, we have to rewrite the rate 
distortion function as a minimum of the relative entropy between two 
sets. We begin with a simple lemma: 

Lemma X3.8.1: Let p(x)p( ylx) be a given joint distribution. Then the 
distribution r(y) that minimizes the relative entropy D( p(x)p( yIx)ll p(x) 
r(y)) is the marginal distribution r*(y) corresponding to p( ~1x1, i.e., 

D(p(x)p(y(x)l(p(x)r*(y)) = 7% D(p(dp( yIdIIpW-( yN , 
(13.131) 

where r*(y) = C, p(x)p( y lx). Also 

ZE Fy PWP(Y Id log $$ = c p(x)p( ylx) log $$ , (13.132) 
, x9 Y 

pWp( y Id 
r*(3cly) = c, p(x)p( y Jx) * 

proof: 

D( pWp( yldJI pWr( yN - D(pWp( yIx)ll pWr*( yN 

(13.133) 

= c PCX)P(Y lx> log $g;;jy (13.134) 
x9 Y 
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(13.136) 

(13.137) 

10. (13.139) 

The proof of the second part of the lemma is left as an exercise. cl 

We can use this lemma to rewrite the minimization in the definition 
of the rate distortion function as a double minimization, 

R(D) = min min 2 2 p(3G)q(32~x)log $i!$ l 

r(i) q(iJx): c p(x)q(iIx)d(x, 3iMD z p 

(13.140) 

If A is the set of all joint distributions with marginal p(x) that satisfy 
the distortion constraints and if B the set of product distributions 
p(~)r($ with arbitrary r(i), then we can write 

We now apply the process of alternating minimization, which is called 
the Blahut-Arimoto algorithm in this case. We begin with a choice of A 
and an initial output distribution r(i) and calculate the q(ilx) that 
minimizes the mutual information subject to a distortion constraint. We 
can use the method of Lagrange multipliers for this minimization to 
obtain 

r(i)e 
-h&x, i) 

q(qx) = c; r(.$e-wG) . (13.142) 

For this conditional distribution q(ilx), we calculate the output dis- 
tribution r(32) that minimizes the mutual information, which by Lemma 
13.31 is 

(13.143) 

We use this output distribution as the starting point of the next 
iteration. Each step in the iteration, minimizing over q( l I l ) and then 
minimizing over r( l > reduces the right hand side of (13.140). Thus there 
is a limit, and the limit has been shown to be R(D) by Csiszar [791, 
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where the value of D and R(D 1 depends on h. Thus choosing A appropri- 
ately sweeps out the R(D) curve. 

A similar procedure can be applied to the calculation of channel 
capacity. Again we rewrite the definition of channel capacity, 

(13.144) 

as a double maximization using Lemma 13.8.1, 

&lY) 
c = Fx$YF c c r(jc)p(yld log r(x) . 

32 Y 
(13.145) 

In this case, the Csiszar-Tusnady algorithm becomes one of alternating 
maximization-we start with a guess of the maximizing distribution r(x) 
and find the best conditional distribution, which is, by Lemma 13.8.1, 

(13.146) 

For this conditional distribution, we find the best input distribution r(x) 
by solving the constrained maximization problem with Lagrange multi- 
pliers. The optimum input distribution is 

n,c q(x 1 y))p’y’x) 
r(X) = c, rl,( q(xJy))p’y’x) ’ 

(13.147) 

which we can use as the basis for the next iteration. 
These algorithms for the computation of the channel capacity and the 

rate distortion function were established by Blahut [37] and Arimoto 
[ll] and the convergence for the rate distortion computation was proved 
by Csiszar [79]. The alternating minimization procedure of Csiszar and 
Tusnady can be specialized to many other situations as well, including 
the EM algorithm [88], and the algorithm for finding the log-optimal 
portfolio for a stock market 1641. 

SUMMARY OF CHAPTER 13 

Rate distortion: The rate distortion function for a source X-p(r) and 
distortion measure d(x, i) is 

R(D) = min 1(x; a , (13.148) 
p(Xlx): C(,,i) p(x)p(iIx)d(x, i)SD 
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where the minimization is over all conditional distributions p(i]x) for which 
the joint distribution p(r, i) = p(x)p(~~;lx> satisfies the expected distortion 
constraint. 

Rate distortion theorem: If R > R(D), there exists a sequence of codes 
&X”) with number of codewords IXY l )I I 2”R with E&X”, X’YX”))-, D. If 
R <R(D), no such codes exist. 

Bernoulli source: For a Bernoulli source with Hamming distortion, 

R(D)=H(p)-H(D). (13.149) 

Gaussian source: For a Gaussian source with squared error distortion, 

R(D)=;log$. (13.150) 

Multivariate Gaussian source: The rate distortion function for a mul- 
tivariate normal vector with Euclidean mean squared error distortion is 
given by reverse water-filling on the eigenvalues. 

PROBLEMS FOR CHAPTER 13 

1. One bit quantization of a single Gaussian random variable. Let X- 
Jw, a21 and let the distortion measure be squared error. Here we do 
not allow block descriptions. Show that the optimum reproduction 
points for 1 bit quantization are -+ flu, and that the expected 
distortion for 1 bit quantization is %? a”. 

Compare this with the distortion rate bound D = a22 -2R for R = 1. 

2. Rate distortion function wit? infinite distortion. Find the rate distortion 
function R(D) = min 1(X, X) for X - Bernoulli ( i ) and distortion 

1 

0, x=i, 
d(Q)= 1, x=l,i=O, 

00, x=0$=1. 

3. Rate distortion for binary source with asymmetric distortion. Fix p(xli) 
and evaluate 1(X,X) and D for 

X- Bern(l/2), 

0 a 
d(x,c,)= b o . [ I 

(R(D) cannot be expressed in closed form.) 

4. Properties of R(D). Consider a discrete source X E %’ = { 1,2, . . . , m} 
with distribution pl, p2, . . . , p, and a distortion measure d(i, j). Let 
R(D) be the rate distortion function for this source and distortion 
measure. Let d’(i, j) = d(i, j) - wi be a new distortion measure and 
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let R’(D) be the corresponding rate distortion function. Show that 
R’(D) = R(D + W ), where ti = C piwi, and use this to show that there 
is no essential loss of generality in assuming that min, c&i, i) = 0, i.e., 
for each x E 8, there is one symbol 2 which reproduces the source 
with zero distortion. 

This result is due to Pinkston [209]. 

5. Rate distortion for uniform source with Hamming distortion. Consider a 
source X uniformly distributed on the set { 1,2, . . . , m}. Find the rate 
distortion function for this source with Hamming distortion, i.e., 

d(x, i) = 
{ 

0 ifx=i, 
1 ifx#i. 

6. Shannon lower bound for the rate distortion function. Consider a source 
X with a distortion measure d(x, i) that satisfies the following proper- 
ty: all columns of the distortion matrix are permutations of the set 
W,, 4,. . . , d,}. Define the function 

4(D)= glax H(p). 
P’Cizl PidisD 

(13.151) 

The Shannon lower bound on the rate distortion function [245] is 
proved by the following steps: 
(a) Show that 4(D) is a concave function of D. 
(b) Justify th e following series of inequalities for 1(X; X) if 

Ed(X, k) 5 D, 

1(x; % = H(X) - H(X@) (13.152) 

= H(X) - 2 p(i)H(X@ = i) 
i 

(13.153) 

1 H(X) - c p(i)+(D,) 
i 

(13.154) 

(13.155) 

rH(X)- 4(D), (13.156) 

where Di = C, p(x]i)d(x, i). 
(c) Argue that 

R(DkH(X)-4(D), (13.157) 

which is the Shannon lower bound on the rate distortion function. 
(d) If in add t i ion, we assume that the source has a uniform dis- 

tribution and that the rows of the distortion matrix are permuta- 
tions of each other, then R(D) = H(X) - 4(D), i.e., the lower 
bound is tight. 
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7. Erasure distortion. Consider X- Bernoulli( i ), and let the distortion 
measure be given by the matrix 

Calculate the rate distortion function for this source. Can you suggest 
a simple scheme to achieve any value of the rate distortion function 
for this source? 

8. Bounds on the rate distortion function for squared error distortion. 
For the case of a continuous random variable X with mean zero and 
variance a2 and squared error distortion, show that 

h(X) - i log(2?re)D I R(D) I f log $ . (13.159) 

For the upper bound, consider the joint distribution shown in Figure 
13.10. Are Gaussian random variables harder or easier to describe 
than other random variables with the same variance? 

Figure 13.10. Joint distribution for upper bound on rate distortion function. 

9. Properties of optimal rate distortion code. A good (R, D) rate distortion 
code with R = R(D) puts severe constraints on the relationship of the 
source X” and the representations x”. Examine the chain of 
inequalities (13.58-13.70) considering the conditions for equality and 
interpret as properties of a good code. For example, equality in 
(13.59) implies that p is a deterministic function of X”. 

10. Probability of conditionally typical sequences. In Chapter 8, we calcu- 
lated the probability that two independently drawn sequences X” and 
Y” will be weakly jointly typical. To prove the rate distortion 
theorem, however, we need to calculate this probability when one of 
the sequences is fixed and the other is random. 

The techniques of weak typicality allow us only to calculate the 
average set size of the conditionally typical set. Using the ideas of 
strong typicality on the other hand provides us with stronger bounds 
which work for all typical X” sequences. We will outline the proof that 
Pr{(x”, Y”) E AT’“‘} = 2-nz(X’ y, for all typical x~. This approach was 
introduced by Berger [28] and is fully developed in the book by 
Csiszar and Korner [83]. 
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Let (Xi, Yi> be drawn i.i.d. -p(z, y). Let the marginals of X and Y 
be p(x) and p(y) respectively. 
(a) Let A*(“) be the strongly typical set for X. Show that c 

IA;‘“‘I & 2nH(X) (13.160) 

Hint: Theorem 12.1.1 and 12.1.3. 
(b) The joint type of a pair of sequences W, y” ) is the proportion of 

times (xi, yi) = (a, b) in the pair of sequences, i.e., 

pxn,Yn(a, b) = $(a, b( x”, y”) = i &$,I I(xi = a, yi = b) * (13.161) 

The conditional type of a sequence y” given xR is a stochastic 
matrix that gives the proportion of times a particular element of 
9 occurred with each element of 8 in the pair of sequences. 
Specifically, the conditional type V,,,,,(b Icz) is defined as 

Nb, blx”, Y”) 
V,~,,dbb) = jQlxn) * (13.162) 

Show that the number of conditional types is bounded by (n + 
l)l”lPl . 

(c) The set of sequences y” E 9” with conditional type V with respect 
to a sequence zn is called the conditional type class Tv(x” ). Show 
that 

(n + ~),*,,~, 2nH(Y’X) 5 IT”(X”>I 5 2nH(Y’X) . (13.163) 

(d) The sequence yn E W is said to be e-strongly conditionally typical 
with the sequence xn with respect to the conditional distribution 
V( - I . ) if the conditional type is close to V. The conditional type 
should satisfy the following two conditions: 
i. For all (a, b) E aP x 91 with V(bla)> 0, 

; IN(a, blx: y”) - V(bla)N(alx”)l~ 6 . (13.164) 

ii. N(a, blx”, y”) = 0 for all (a, b) such that V(bla) = 0. 

The set of such sequences is called the conditionally typical set 
and is denoted AT’“’ (Ylx”). Show that the number of sequences y” 
that are conditionally typical with a given xn E ZP is bounded by 

?t(W(Y(X)-cl) I IA;‘“‘(ylx”)l 5 (n + l)1~11~Y12n(N(Y1X)+cl) , 

(13.165) 
where E~--,O as E+O. 
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(e) For a pair of random variables (X, Y) with joint distribution 
p(x, y), the e-strongly typical set AT’“’ is the set of sequences 
(x”, y”) E En X ??/” satisfying 
i. 

/ iN(a, blx”, Y”) --da, WI< & (13.166) 

for every pair (a, b) E %’ x 3 with p(a, b) > 0. 
ii. N(a,b~x~,y”)=Oforall(a,b)~%‘~~withp(a,b)=O. 

The set of E-strongly jointly typical sequences is called the E- 
strongly jointly typical set and is denoted Af”‘(X, Y). 
Let (X, Y) be drawn i.i.d. -p(x, y). For any xn such that there 
exists at least one pair (x”, y”) E AT’“‘(X, Y), the set of sequences 
y” such that (x”, y”) EAT(~) satisfies 

(n + ;),%,,%, 2n(H(YIX)-G(c)) I I{ yR: (x”, y”) E AT’“‘} 1 

I(n + 1) I~11912n(H(YlX)+S(s)) , 

(13.167) 

where US+ 0 as E + 0. In particular, we can write 

2 n(ff(YIX)-+ I I{yn:(xn, y”) eAT( 5 24H(Y1X)+4, 

(13.168) 

where we can make Q. arbitrarily small with an appropriate 
choice of E and n. 

(f) Let Y1, Y2,. . . , Y, be drawn i.i.d. -np(yi>. For xn EA:(~‘, the 
probability that (x”, Y”) E AT’“’ is bounded by 

2- nU(X; Y)+e3) 5 I+((~“, y”) E AT’“‘) 5 2-n(z(X; y)-s3) , (13.169) 

where Ed goes to 0 as E+ 0 and n+a. 

HISTORICAL NOTES 

The idea of rate distortion was introduced by Shannon in his original paper 
[238]. He returned to it and dealt with it exhaustively in his 1959 paper [245], 
which proved the first rate distortion theorem. Meanwhile, Kolmogorov and his 
school in the Soviet Union began to develop rate distortion theory in 1956. 
Stronger versions of the rate-distortion theorem have been proved for more 
general sources in the comprehensive book by Berger [27]. 
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The inverse water-filling solution for the rate-distortion function for parallel 
Gaussian sources was established by McDonald and Schultheiss [190]. An itera- 
tive algorithm for the calculation of the rate distortion function for a general i.i.d. 
source and arbitrary distortion measure was described by Blahut [37] and 
Arimoto [ll] and Csiszar [79]. This algorithm is a special case of general 
alternating minimization algorithm due to Csiszar and Tusnady [85]. 



Chapter 14 

Network Information Theory 

A system with many senders and receivers contains many new elements 
in the communication problem: interference, cooperation and feedback. 
These are the issues that are the domain of network information theory. 
The general problem is easy to state. Given many senders and receivers 
and a channel transition matrix which describes the effects of the 
interference and the noise in the network, decide whether or not the 
sources can be transmitted over the channel. This problem involves 
distributed source coding (data compression) as well as distributed 
communication (finding the capacity region of the network). This gener- 
al problem has not yet been solved, so we consider various special cases 
in this chapter. 

Examples of large communication networks include computer net- 
works, satellite networks and the phone system. Even within a single 
computer, there are various components that talk to each other. A 
complete theory of network information would have wide implications 
for the design of communication and computer networks. 

Suppose that m stations wish to communicate with a common satel- 
lite over a common channel, as shown in Figure 14.1. This is known as a 
multiple access channel. How do the various senders cooperate with 
each other to send information to the receiver? What rates of communi- 
cation are simultaneously achievable? What limitations does interfer- 
ence among the senders put on the total rate of communication? This is 
the best understood multi-user channel, and the above questions have 
satisfying answers. 

In contrast, we can reverse the network and consider one TV station 
sending information to m TV receivers, as in Figure 14.2. How does the 
sender encode information meant for different receivers in a common 
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Figure 14.1. A multiple access channel. 

signal? What are the rates at which information can be sent to the 
different receivers? For this channel, the answers are known only in 
special cases. 

There are other channels such as the relay channel (where there is 
one source and one destination, but one or more intermediate sender- 
receiver pairs that act as relays to facilitate the communication between 
the source and the destination), the interference channel (two senders 
and two receivers with crosstalk) or the two-way channel (two sender- 
receiver pairs sending information to each other). For all these channels, 
we only have some of the answers to questions about achievable com- 
munication rates and the appropriate coding strategies. 

All these channels can be considered special cases of a general 
communication network that consists of m nodes trying to communicate 
with each other, as shown in Figure 14.3. At each instant of time, the 
ith node sends a symbol xi that depends on the messages that it wants 
to send and on past received symbols at the node. The simultaneous 
transmission of the symbols (xl, x2, . . . , X, ) results in random received 
symbols (Y, , Yz, . . . , Y, ) drawn according to the conditional probability 
distribution p( y”’ yt2’ y’“‘lP, d2), . . . , xcm)). Here p( - 1. ) expresses 
the effects of the noise and interference present in the network. If p( l 1. ) 
takes on only the values 0 and 1, the network is deterministic. 

Associated with some of the nodes in the network are stochastic data 
sources, which are to be communicated to some of the other nodes in the 
network. If the sources are independent, the messages sent by the nodes 

Figure 14.2. A broadcast channel. 
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Figure 14.3. A communication network. 

are also independent. However, for full generality, we must allow the 
sources to be dependent. How does one take advantage of the depen- 
dence to reduce the amount of information transmitted? Given the 
probability distribution of the sources and the channel transition func- 
tion, can one transmit these sources over the channel and recover the 
sources at the destinations with the appropriate distortion? 

We consider various special cases of network communication. We 
consider the problem of source coding when the channels are noiseless 
and without interference. In such cases, the problem reduces to finding 
the set of rates associated with each source such that the required 
sources can be decoded at the destination with low probability of error 
(or appropriate distortion). The simplest case for distributed source 
coding is the Slepian-Wolf source coding problem, where we have two 
sources which must be encoded separately, but decoded together at a 
common node. We consider extensions to this theory when only one of 
the two sources needs to be recovered at the destination. 

The theory of flow in networks has satisfying answers in domains like 
circuit theory and the flow of water in pipes. For example, for the 
single-source single-sink network of pipes shown in Figure 14.4, the 
maximum flow from A to B can be easily computed from the Ford- 
Fulkerson theorem. Assume that the edges have capacities Ci as shown. 
Clearly, the maximum flow across any cut-set cannot be greater than 

Cl c4 

A <=D c3 B 

c2 c5 

C = min(C1 + C,, C2 + C, + C,, C, + C,, C, + C, + C,) 

Figure 14.4. Network of water pipes. 
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the sum of the capacities of the cut edges. Thus minimizing the 
maximum flow across cut-sets yields an upper bound on the capacity of 
the network. The Ford-Fulkerson [113] theorem shows that this capaci- 
ty can be achieved. 

The theory of information flow in networks does not have the same 
simple answers as the theory of flow of water in pipes. Although we 
prove an upper bound on the rate of information flow across any cut-set, 
these bounds are not achievable in general. However, it is gratifying 
that some problems like the relay channel and the cascade channel 
admit a simple max flow min cut interpretation. Another subtle problem 
in the search for a general theory is the absence of a source-channel 
separation theorem, which we will touch on briefly in the last section of 
this chapter. A complete theory combining distributed source coding and 
network channel coding is still a distant goal. 

In the next section, we consider Gaussian examples of some of the 
basic channels of network information theory. The physically motivated 
Gaussian channel lends itself to concrete and easily interpreted an- 
swers. Later we prove some of the basic results about joint typicality 
that we use to prove the theorems of multiuser information theory. We 
then consider various problems in detail-the multiple access channel, 
the coding of correlated sources (Slepian-Wolf data compression), the 
broadcast channel, the relay channel, the coding of a random variable 
with side information and the rate distortion problem with side informa- 
tion. We end with an introduction to the general theory of information 
flow in networks. There are a number of open problems in the area, and 
there does not yet exist a comprehensive theory of information net- 
works. Even if such a theory is found, it may be too complex for easy 
implementation. But the theory will be able to tell communication 
designers how close they are to optimality and perhaps suggest some 
means of improving the communication rates. 

14.1 GAUSSIAN MULTIPLE USER CHANNELS 

Gaussian multiple user channels illustrate some of the important fea- 
tures of network information theory. The intuition gained in Chapter 10 
on the Gaussian channel should make this section a useful introduction. 
Here the key ideas for establishing the capacity regions of the Gaussian 
multiple access, broadcast, relay and two-way channels will be given 
without proof. The proofs of the coding theorems for the discrete 
memoryless counterparts to these theorems will be given in later 
sections of this chapter. 

The basic discrete time additive white Gaussian noise channel with 
input power P and noise variance N is modeled by 
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Yi=Xi +Zi, i-1,2,... (14.1) 

where the Zi are i.i.d. Gaussian random variables with mean 0 and 
variance N. The signal X = (X1, X,, . . . , Xn) has a power constraint 

(14.2) 

The Shannon capacity C is obtained by maximizing 1(X, Y) over all 
random variables X such that EX2 5 P, and is given (Chapter 10) by 

1 
C = 2 log (14.3) 

In this chapter we will restrict our attention to discrete-time memory- 
less channels; the results can be extended to continuous time Gaussian 
channels. 

14.1.1 Single User Gaussian Channel 

We first review the single user Gaussian channel studied in Chapter 10. 
Here Y = X + 2. Choose a rate R < $ log(l + 5 ). Fix a good ( 2nR, n) 
codebook of power P. Choose an index i in the set 2nR. Send the ith 
codeword X(i) from the codebook generated above. The receiver observes 
Y = X( i ) + Z and then finds the index i of the closest codeword to Y. If n 
is sufficiently large, the probability of error Pr(i # i> will be arbitrarily 
small. As can be seen from the definition of joint typicality, this 
minimum distance decoding scheme is essentially equivalent to finding 
the codeword in the codebook that is jointly typical with the received 
vector Y. 

14.1.2 The Gaussian Multiple Access Channel with m Users 

We consider m transmitters, each with a power P. Let 

Let 

Y=~X,+z. (14.4) 
i=l 

P 1 C(N) - = z log 
P 

( > 
1 + N (14.5) 

denote the capacity of a single user Gaussian channel with signal to 
noise ratio PIN. The achievable rate region for the Gaussian channel 
takes on the simple form given in the following equations: 
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(14.7) 

(14.8) 

. 

. (14.9) 

(14.10) 

Note that when all the rates are the same, the last inequality dominates 
the others. 

Here we need m codebooks, the ith codebook having 2nRi codewords of 
power P. Transmission is simple. Each of the independent transmitters 
chooses an arbitrary codeword from its own codebook. The users simul- 
taneously send these vectors. The receiver sees these codewords added 
together with the Gaussian noise 2. 

Optimal decoding consists of looking for the m codewords, one from 
each codebook, such that the vector sum is closest to Y in Euclidean 
distance. If (R,, R,, . . . , R,) is in the capacity region given above, then 
the probability of error goes to 0 as n tends to infinity. 

Remarks: It is exciting to see in this problem that the sum of the 
rates of the users C(mPIN) goes to infinity with m. Thus in a cocktail 
party with m celebrants of power P in the presence of ambient noise N, 
the intended listener receives an unbounded amount of information as 
the number of people grows to infinity. A similar conclusion holds, of 
course, for ground communications to a satellite. 

It is also interesting to note that the optimal transmission scheme 
here does not involve time division multiplexing. In fact, each of the 
transmitters uses all of the bandwidth all of the time. 

14.1.3 The Gaussian Broadcast Channel 

Here we assume that we have a sender of power P and two distant 
receivers, one with Gaussian noise power & and the other with Gaus- 
sian noise power N2. Without loss of generality, assume N1 < N,. Thus 
receiver Y1 is less noisy than receiver Yz. The model for the channel is 
Y1 = X + 2, and YZ = X + Z,, where 2, and 2, are arbitrarily correlated 
Gaussian random variables with variances & and N,, respectively. The 
sender wishes to send independent messages at rates R, and R, to 
receivers Y1 and YZ, respectively. 

Fortunately, all Gaussian broadcast channels belong to the class of 
degraded broadcast channels discussed in Section 14.6.2. Specializing 
that work, we find that the capacity region of the Gaussian broadcast 
channel is 
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(14.11) 

(14.12) 

where a! may be arbitrarily chosen (0 5 a! 5 1) to trade off rate R, for 
rate R, as the transmitter wishes. 

To encode the messages, the transmitter generates two codebooks, 
one with power aP at rate R,, and another codebook with power CUP at 
rate R,, where R, and R, lie in the capacity region above. Then to send 
an index i E {1,2, . . . , 2nR1} andj E {1,2, . . . , 2nR2} to YI and Y2, respec- 
tively, the transmitter takes the codeword X( i ) from the first codebook 
and codeword X(j) from the second codebook and computes the sum. He 
sends the sum over the channel. 

The receivers must now decode their messages. First consider the bad 
receiver YZ. He merely looks through the second codebook to find the 
closest codeword to the received vector Y,. His effective signal to noise 
ratio is CUP/( CUP + IV,), since YI’s message acts as noise to YZ. (This can 
be proved.) 

The good receiver YI first decodes Yz’s codeword, which he can 
accomplish because of his lower noise NI. He subtracts this codeword X, 
from HI. He then looks for the codeword in the first codebook closest to 
Y 1 - X,. The resulting probability of error can be made as low as 
desired. 

A nice dividend of optimal encoding for degraded broadcast channels 
is that the better receiver YI always knows the message intended for 
receiver YZ in addition to the message intended for himself. 

14.1.4 The Gaussian Relay Channel 

For the relay channel, we have a sender X and an ultimate intended 
receiver Y. Also present is the relay channel intended solely to help the 
receiver. The Gaussian relay channel (Figure 14.30) is given by 

Y,=X+Z,, (14.13) 

Y=X+Z,+X,+Z,, (14.14) 

where 2, and 2, are independent zero mean Gaussian random variables 
with variance A$ and N,, respectively. The allowed encoding by the 
relay is the causal sequence 

The sender X has power P and sender XI has power P,. The capacity is 
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C = gyyc min ’ + ;l+;NF), C(g)} , (14.16) 

where Z = 1 - CL Note that if 

(14.17) 

it can be seen that C = C(P/N,),which is achieved by a! = 1. The channel 
appears to be noise-free after the relay, and the capacity C(P/N, ) from X 
to the relay can be achieved. Thus the rate C(PI(N, + N,)) with- 
out the relay is increased by the presence of the relay to C(P/N,). For 
large N2, and for PI/N, 2 PIN,, we see that the increment in rate is 
from C(P/(N, + N,)) = 0 to C(P/N, ). 

Let R, < C(aP/N,). Two codebooks are needed. The first codebook has 
ZnR1 words of power aP The second has 2nRo codewords of power CUP We 
shall use codewords from these codebooks successively in order to create 
the opportunity for cooperation by the relay. We start by sending a 
codeword from the first codebook. The relay now knows the index of this 
codeword since R, < C( aPIN,), but the intended receiver has a list of 
possible codewords of size 2n(R1-C((UP’(N1+N2? This list calculation in- 
volves a result on list codes. 

In the next block, the transmitter and the relay wish to cooperate to 
resolve the receiver’s uncertainty about the previously sent codeword on 
the receiver’s list. Unfortunately, they cannot be sure what this list is 
because they do not know the received signal Y. Thus they randomly 
partition the first codebook into 2nRo cells with an equal number of 
codewords in each cell. The relay, the receiver, and the transmitter 
agree on this partition. The relay and the transmitter find the cell of the 
partition in which the codeword from the first codebook lies and coopera- 
tively send the codeword from the second codebook with that index. 
That is, both X and X1 send the same designated codeword. The relay, of 
course, must scale this codeword so that it meets his power constraint 
P,. They now simultaneously transmit their codewords. An important 
point to note here is that the cooperative information sent by the relay 
and the transmitter is sent coherently. So the power of the sum as seen 
by the receiver Y is <V% + fl)‘. 

However, this does not exhaust what the transmitter does in the 
second block. He also chooses a fresh codeword from the first codebook, 
adds it “on paper” to the cooperative codeword from the second 
codebook, and sends the sum over the channel. 

The reception by the ultimate receiver Y in the second block involves 
first finding the cooperative index from the second codebook by looking 
for the closest codeword in the second codebook. He subtracts the 
codeword from the received sequence, and then calculates a list of 
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indices of size ZnRo corresponding to all codewords of the first codebook 
that might have been sent in the second block. 

Now it is time for the intended receiver to complete computing the 
codeword from the first codebook sent in the first block. He takes his list 
of possible codewords that might have been sent in the first block and 
intersects it with the cell of the partition that he has learned from the 
cooperative relay transmission in the second block, The rates and 
powers have been chosen so that it is highly probable that there is only 
one codeword in the intersection. This is Y’s guess about the information 
sent in the first block. 

We are now in steady state. In each new block, the transmitter and 
the relay cooperate to resolve the list uncertainty from the previous 
block. In addition, the transmitter superimposes some fresh information 
from his first codebook to this transmission from the second codebook 
and transmits the sum. 

The receiver is always one block behind, but for sufficiently many 
blocks, this does not affect his overall rate of reception. 

14.1.5 The Gaussian Interference Channel 

The interference channel has two senders and two receivers. Sender 1 
wishes to send information to receiver 1. He does not care what receiver 
2 receives or understands. Similarly with sender 2 and receiver 2. Each 
channel interferes with the other. This channel is illustrated in Figure 
14.5. It is not quite a broadcast channel since there is only one intended 
receiver for each sender, nor is it a multiple access channel because each 
receiver is only interested in what is being sent by the corresponding 
transmitter. For symmetric interference, we have 

Y~=x,+ax~+z, (14.18) 

Yz=x,+ax~+z,, (14.19) 

where Z,, 2, are independent J(O, N) random variables. This channel 

Figure 14.5. The Gaussian interference channel. 
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has not been solved in general even in the Gaussian case. But remark- 
ably, in the case of high interference, it can be shown that the capacity 
region of this channel is the same as if there were no interference 
whatsoever. 

To achieve this, generate two codebooks, each with power P and rate 
WIN). Each sender independently chooses a word from his book and 
sends it. Now, if the interference a satisfies C(a2P/(P + N)) > C(P/N), 
the first transmitter perfectly understands the index of the second 
transmitter. He finds it by the usual technique of looking for the closest 
codeword to his received signal. Once he finds this signal, he subtracts it 
from his received waveform. Now there is a clean channel between him 
and his sender. He then searches the sender’s codebook to find the 
closest codeword and declares that codeword to be the one sent. 

14.1.6. The Gaussian Two-Way Channel 

The two-way channel is very similar to the interference channel, with 
the additional provision that sender 1 is attached to receiver 2 and 
sender 2 is attached to receiver 1 as shown in Figure 14.6. Hence, 
sender 1 can use information from previous received symbols of receiver 
2 to decide what to send next. This channel introduces another fun- 
damental aspect of network information theory, namely, feedback. Feed- 
back enables the senders to use the partial information that each has 
about the other’s message to cooperate with each other. 

The capacity region of the two-way channel is not known in general. 
This channel was first considered by Shannon 12461, who derived upper 
and lower bounds on the region. (See Problem 15 at the end of this 
chapter.) For Gaussian channels, these two bounds coincide and the 
capacity region is known; in fact, the Gaussian two-way channel decom- 
poses into two independent channels. 

Let P, and P2 be the powers of transmitters 1 and 2 respectively and 
let N1 and N, be the noise variances of the two channels. Then the rates 
R, c C(P,IN,) and R, < C(P,IN,) can be achieved by the techniques 
described for the interference channel. In this case, we generate two 
codebooks of rates R, and R,. Sender 1 sends a codeword from the first 
codebook. Receiver 2 receives the sum of the codewords sent by the two 
senders plus some noise. He simply subtracts out the codeword of sender 

Figure 14.6. The two-way channel. 
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2 and he has a clean channel from sender 1 (with only the noise of 
variance NJ Hence the two-way Gaussian channel decomposes into two 
independent Gaussian channels. But this is not the case for the general 
two-way channel; in general there is a trade-off between the two senders 
so that both of them cannot send at the optimal rate at the same 
time. 

14.2 JOINTLY TYPICAL SEQUENCES 

We have previewed the capacity results for networks by considering 
multi-user Gaussian channels. We will begin a more detailed analysis in 
this section, where we extend the joint AEP proved in Chapter 8 to a 
form that we will use to prove the theorems of network information 
theory. The joint AEP will enable us to calculate the probability of error 
for jointly typical decoding for the various coding schemes considered in 
this chapter. 

Let (X1,X,, . . . , X, ) denote a finite collection of discrete random 
variables with some fixed joint distribution, p(x,, x2, . . . , xk ), 

(Xl, x2, ’ * * 9 Xk) E 2rl x 2iti2 x * - * x zt$. Let 5’ denote an ordered sub- 
set of these random variables and consider n independent copies of S. 
Thus 

Pr{S = s} = fi Pr{S, = si}, SET. 
i=l 

(14.20) 

For example, if S = (Xj, X, ), then 

Pr{S = S} = Pr((Xj, Xi) = txj9 xl)} (14.21) 

= (14.22) 
i=l 

To be explicit, we will sometimes use X(S) for S. By the law of large 
numbers, for any subset S of random variables, 

1 
- ; log p(S,, s,, * * * , s,)= -; 8 logp(S,)-+H(S), (14.23) 

i 1 

where the convergence takes place simultaneously with probability 1 for 
all 2K subsets, S c {X,, X2, . . . , X,}. 

Definition: The set A:’ of E-typical n-sequences (x1, x2,. . . , xK) is 
defined by 
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AI”‘(X,,X,, . . . ,X,> 

= A’:’ 

= 
{ 
(x1, x2, .  * l ,  x,1:  

- ; logp(s)-H(S) <E, VSc{x,,&,..., & ’ xd 
(14.24) 

Let A:‘(S) denote the restriction of A:’ to the coordinates of S. Thus 
if S = (X,, X2>, we have 

A:‘(X,, X2> = {(xl, x2): 

- ;logP(x,,x,)-M&X,) <E, 

1 

- ~logp(x,)-H(x,) 

Definition: We will use the notation a, 6 2n(b &a) to mean 

1 
Floga,-b <E 

for n sufficiently large. 

Theorem 14.2.1: For any E > 0, for suffkiently large n, 

1. P(A’,“‘(S))~~-E, VSc{X,,X, ,..., X,}. 

2. s E A:)(S) +, &) & 2-n(H(S)-ce) , 

3. IAl”’ & 2dH(S)-C24 . 

4. Let s,, s, c {X1,X2,. . . ,x,}. If (s,, s2EA:)(S1, S,), 

&I I*,> & 2-~(~(S&wd . 

Proof: 

(14.25) 

(14.26) 

(14.27) 

(14.28) 

(14.29) 

then 

(14.30) 

1. This follows from the law of large numbers for the random vari- 
ables in the definition of A’“‘(S) c . 
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2. This follows directly from the definition of A:‘(S). 
3. This follows from 

I c 2 -n(H(S)+c) 

BEA:’ (S 1 

= IA~‘(S)(2-“‘H’S”” . 

(14.31) 

(14.32) 

(14.33) 

If n is sufficiently large, we can argue that 

l-ES c p(s) (14.34) 
IWEA~‘(S) 

I c yam-c) (14.35) 
wzA~‘(S) 

= (@‘($)(2-“‘H’S’-” . (14.36) 

Combining (14.33) and (14.36), we have IAy’(S>l A 2n(H(S)r2c) for 
sufficiently large n. 

4. For (sl, s2) E A:‘(&, S,), we have p(sl)k 2-ncHcs1)f’) and p(s,, s,) 
-‘2- nwq, S2kB) . Hence 

P(S2lSl) = 
P(Sl9 82) &2-n(H(SzlS1)k2E) 

p(s ) . 
r-J 

(14.37) 
1 

The next theorem bounds the number of conditionally typical se- 
quences for a given typical sequence. 

Theorem 14.2.2: Let S,, S, be two subsets of Xl, X2,. . . ,X,. For any 
E > 0, define Ar’(S,Is,) to be the set of s, sequences that are jointly 
e-typical with a particular s, sequence. If s, E A:‘@,), then for suffici- 
ently large n, we have 

IAl”‘(Sl(s2)l 5 2n(H(S11S2)+2e) , (14.38) 

and 

(l- E)2 nwc3~JS+-2c) 
5 2 pb3,)~4%, Is4 . 

82 

(14.39) 

Proof: As in part 3 of the previous theorem, we have 
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12 c P(SIb2) (14.40) 
a,~A~+S,ls~) 

= IA~)(Slls2)12-~'H'S11S2'+2~'. (14.42) 

If n is sufficiently large, then we can argue from (14.27) that 

1 - E 5 c p(s2) c P(SIlS2) 
82 q~Af%~l~~) 

Ic p(s2) c 2-~(5wl~2)-2~) 

82 q~Af%~le,) 

(14.43) 

(14.44) 

= 2 p(s2)lA33, ls2)12-n’n’S1(S2’-2” . 0 (14.45) 
82 

To calculate the probability of decoding error, we need to know the 
probability that conditionally independent sequences are jointly typical. 
Let S,, S, and S, be three subsets of {X1,X2,. . . ,X,). If S; and Sg are 
conditionally independent given SA but otherwise share the same pair- 
wise marginals of (S,, S,, S,), we have the following probability of joint 
typicality. 

Theorem 14.2.3: Let A:’ denote the typical set for the probability mass 
function p(sl, s,, sg), and let 

P(& = s,, s; = 82, s; 
i=l 

(14.46) 

Then 
p{(s; , s;, s;> E A:)} f @@1; SzIS3)*6e) . (14.47) 

Proof: We use the f notation from (14.26) to avoid calculating the 
upper and lower bounds separately. We have 

P{(S;, S;, S;>EA~‘} 

= c P(~3)P(~11~3)P(~21~3) (14.48) 
(q I s2, e3EAy) 

A ,@Z’(S,, s,, s3)12-“(H(S~)~~)2-n(Htslls3)‘2.)2-n(H(SalS3)’2.) (14.49) 
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22 -n(Z(Sl; S2IS3)*6a) 
. Cl (14.51) 

We will specialize this theorem to particular choices 
for the various achievability proofs in this chapter. 

of S,, S, and S, 

14.3 THE MULTIPLE ACCESS CHANNEL 

The first channel that we examine in detail is the multiple access 
channel, in which two (or more) senders send information to a common 
receiver. The channel is illustrated in Figure 14.7. 

A common example of this channel is a satellite receiver with many 
independent ground stations. We see that the senders must contend not 
only with the receiver noise but with interference from each other as 
well. 

Definition: A discrete memoryless multiple access channel consists of 
three alphabets, &, E2 and 91, and a probability transition matrix 
P(Yh x2). 

Definition: A ((2nR1, 2nR2 ), n) code for the multiple access channel 
consists of two sets of integers w/; = {1,2, . . . , 2nR1} and ‘IV2 = 
(1, 2,. . . , 2nR2) called the message sets, two encoding functions, 

X/wl-+~~, (14.52) 

x2 : w2+ CY; (14.53) 

and a decoding function 

g:w44”,x w2. (14.54) 

Figure 14.7. The multiple access channel. 
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There are two senders and one receiver for this channel. Sender 1 
chooses an index WI uniformly from the set { 1,2, . . . , 2nRl} and sends 
the corresponding codeword over the channel. Sender 2 does likewise. 
Assuming that the distribution of messages over the product set W; x 
‘I& is uniform, i.e., the messages are independent and equally likely, we 
define the average probability of error for the ((2nRl, 2”R2), n) code as 
follows: 

p(n) = 1 
e 2 n(RI+R2) c Pr{gW”) + b,, w,$w,, Q> sent} . 

(WI, W2EWlXW2 

(14.55) 

Definition: A rate pair (RI, R,) is said to be achievable for the multiple 
access channel if there exists a sequence of ((2”R1, ZnR2), n) codes with 
P%’ + 0. 

Definition: The capacity region of the multiple access channel is the 
closure of the set of achievable (RI, R,) rate pairs. 

An example of the capacity region for a multiple access channel is 
illustrated in Figure 14.8. 

We first state the capacity region in the form of a theorem. 

Theorem 14.3.1 (Multiple access channel capacity): The capacity of a 
multiple access channel (SE”, x 2&, p( yIxl, x2), 3) is the closure of the 
convex hull of all (RI, R,) satisfying 

R, < I(x,; YIX,) , (14.56) 

R,<I(X,; YIX,), (14.57) 

Figure 14.8. Capacity region for a multiple access channel. 
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R, +R,<I(X,,X,; Y) (14.58) 

for some product distribution p1(x1)p2(x2) on %I X E’.. 

Before we prove that this is the capacity region of the multiple access 
channel, let us consider a few examples of multiple access channels: 

Example 14.3.1 (Independent binary symmetric channels): Assume 
that we have two independent binary symmetric channels, one from 
sender 1 and the other from sender 2, as shown in Figure 14.9. 

In this case, it is obvious from the results of Chapter 8 that we can 
send at rate 1 - H( pJ over the first channel and at rate 1 - H( pz ) over 
the second channel. Since the channels are independent, there is no 
interference between the senders. The capacity region in this case is 
shown in Figure 14.10. 

Example 14.3.2 (Binary multiplier channel): Consider a multiple ac- 
cess channel with binary inputs and output 

Y=X,X,. (14.59) 

Such a channel is called a binary multiplier channel. It is easy to see 
that by setting X2 = 1, we can send at a rate of 1 bit per transmission 
from sender 1 to the receiver. Similarly, setting X1 = 1, we can achieve 
R, = 1. Clearly, since the output is binary, the combined rates R, + R, of 

0 

Xl 

1 0 

1 
Y 

0’ 

0 1’ 

x2 

1 

Figure 14.9. Independent binary symmetric channels. 
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R2 A 

C,=l-H(p3 

- 
0 C, = 1 -H@,) R, 

Figure 14.10. Capacity region for independent BSC’s. 

sender 1 and sender 2 cannot be more than 1 bit. By timesharing, we 
can achieve any combination of rates such that R, + R, = 1. Hence the 
capacity region is as shown in Figure 14.11. 

Example 14.3.3 (Binary erasure multiple access channel ): This multi- 
ple access channel has binary inputs, EI = %s = (0, 1) and a ternary 
output Y = XI + X,. There is no ambiguity in (XI, Xz> if Y = 0 or Y = 2 is 
received; but Y = 1 can result from either (0,l) or (1,O). 

We now examine the achievable rates on the axes. Setting X, = 0, we 
can send at a rate of 1 bit per transmission from sender 1. Similarly, 
setting XI = 0, we can send at a rate R, = 1. This gives us two extreme 
points of the capacity region. 

Can we do better? Let us assume that R, = 1, so that the codewords of 
XI must include all possible binary sequences; XI would look like a 

c,= 1 

0 
/ 

C,=l R, 

Figure 14.11. Capacity region for binary multiplier channel. 
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Figure 14.12. Equivalent single user channel for user 2 of a binary erasure multiple access 
channel. 

Bernoulli( fr ) process. This acts like noise for the transmission from X,. 
For X,, the channel looks like the channel in Figure 14.12. 

This is the binary erasure channel of Chapter 8. Recalling the results, 
the capacity of this channel is & bit per transmission. 

Hence when sending at maximum rate 1 for sender 1, we can send an 
additional 8 bit from sender 2. Later on, after deriving the capacity 
region, we can verify that these rates are the best that can be achieved. 

The capacity region for a binary erasure channel is illustrated in 
Figure 14.13. 

I - 
0 1 

z 
C,=l R, 

Figure 14.13. Capacity region for binary erasure multiple access channel. 
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14.3.1 Achievability of the Capacity Region for the Multiple Access 
Channel 

We now prove the achievability of the rate region in Theorem 14.3.1; the 
proof of the converse will be left until the next section. The proof of 
achievability is very similar to the proof for the single user channel. We 
will therefore only emphasize the points at which the proof differs from 
the single user case. We will begin by proving the achievability of rate 
pairs that satisfy (14.58) for some fixed product distribution p(Q(x& 
In Section 14.3.3, we will extend this to prove that all points in the 
convex hull of (14.58) are achievable. 

Proof (Achievability in Theorem 14.3.1): Fixp(z,, x,) =pl(x,)p&). 

Codebook generation. Generate 2nR1 independent codewords X,(i 1, 
i E {1,2,. . . , 2nR1}, of length n, generating each element i.i.d. 
- Ily= 1 p1 (Eli ). Similarly, generate 2nR2 independent codewords 
X,(j), j E { 1,2, . . . , 2nR2}, generating each element i.i.d. 
- IlyE, p2(~2i). These codewords form the codebook, which is re- 
vealed to the senders and the receiver. 

Encoding. To send index i, sender 1 sends the codeword X,(i). 
Similarly, to send j, sender 2 sends X,(j). 

Decoding. Let A:’ denote the set of typical (x1, x,, y) sequences. The 
receiver Y” chooses the pair (i, j) such that 

(q(i 1, x2(j), y) E A:’ (14.60) 

if such a 
declared. 

pair (6 j) exists and is unique; otherwise, an error is 

Analysis of the probability of error. By the symmetry of the random 
code construction, the conditional probability of error does not 
depend on which pair of indices is sent. Thus the conditional 
probability of error is the same as the unconditional probability of 
error. So, without loss of generality, we can assume that (i, j) = 
(1,l) was sent. 

We have an error if either the correct codewords are not typical with 
the received sequence or there is a pair of incorrect codewords that are 
typical with the received sequence. Define the events 

E, = {O&G ), X2( j>, Y) E A:'} . 

Then by the union of events bound, 
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sP(E”,,) + C p(E,l) + 2 P(Elj) + C P(E,) 9 (14.63) 
iZ1, j=l i=l, j#l i#l, j#l 

where P is the conditional probability given that (1, 1) was sent. From 
the AEP, P(E",,)+O. 

By Theorem 14.2.1 and Theorem 14.2.3, for i # 1, we have 

RE,,) = R(X,W, X,(l), W EA:‘) (14.64) 

= c P(X, )P(x,, Y) (14.65) 
(Xl , x2, y)eA:) 

s IAS"' -nu-z(X,)-c) 2- nmx2, Y)-cl (14.66) 

52 -n(H(X1)+H(X,, YbH(Xp x2, Y)-SC) 

=2- n(Z(X1; x2, Y)-36) 

(14.67) 

(14.68) 

=2- n(Z(X,; Y’1X2)-3613 
9 (14.69) 

since Xl and Xz are independent, and therefore 1(X1 ; X,, Y) = 1(X1; X,) + 
ml; YIX,) = 1(X1; YIX,). 

Similarly, for j # 1, 

(14.70) 

and for i f 1, j # 1, 

P(E,)12- n(Z(X1, x2; Y)-4c) 
. (14.71) 

It follows that 

pp’ I  p(E;,) + 2”Rq-d1(x~; yIx2)-3C) + c-J”+J-““‘~~; YiXl)-3e) 

+2 n(R1+R2,pzwl,X2; Y)-4e) . 
(14.72) 

Since E > 0 is arbitrary, the conditions of the theorem imply that each 
term tends to 0 as n + 00. 

The above bound shows that the average probability of error, aver- 
aged over all choices of codebooks in the random code construction, is 
arbitrarily small. Hence there exists at least one code %* with arbitrari- 
ly small probability of error. 

This completes the proof of achievability of the region in (14.58) for a 
fixed input distribution. Later, in Section 14.3.3, we will show that 
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timesharing allows any (R,, R,) in the convex hull to be achieved, 
completing the proof of the forward part of the theorem. 0 

14.3.2 Comments on the Capacity Region for the Multiple Access 
Channel 

We have now proved the achievability of the capacity region of the 
multiple access channel, which is the closure of the convex hull of the 
set of points (R,, R2) satisfying 

R, < I(x,; YIX,) , (14.73) 

R, < I(&; Y(x,) , (14.74) 

R, + R,<I(X,,X,; Y) (14.75) 

for some distribution pI(xI)p2(x2) on ZEI x ZQ. 
For a particularp,(x,)p,(~), the region is illustrated in Figure 14.14. 
Let us now interpret the corner points in the region. The point A 

corresponds to the maximum rate achievable from sender 1 to the 
receiver when sender 2 is not sending any information. This is 

Now for any distribution p& )p2&), 

I(X1; Y(X,) = ; p&M&; YIX, = x2) (14.77) 

5 rnzy 1(X1; YIX, = xa 1, (14.78) 

I A 

0 
/ 

4x,; r) 4x,; Y/X2) R, 

Figure 14.14. Achievable region of multiple access channel for a fixed input distribution. 
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since the average is less than the maximum. Therefore, the maximum in 
(14.76) is attained when we set X, =x2, where x, is the value that 
maximizes the conditional mutual information between X1 and Y. The 
distribution of X1 is chosen to maximize this mutual information. Thus 
X, must facilitate the transmission of X, by setting X, = x2. 

The point B corresponds to the maximum rate at which sender 2 can 
send as long as sender 1 sends at his maximum rate. This is the rate 
that is obtained if X1 is considered as noise for the channel from X, to Y. 
In this case, using the results from single user channels, X, can send at 
a rate I(x,; Y). The receiver now knows which X, codeword was used 
and can “subtract” its effect from the channel. We can consider the 
channel now to be an indexed set of single user channels, where the 
index is the X, symbol used. The X1 rate achieved in this case is the 
average mutual information, where the average is over these channels, 
and each channel occurs as many times as the corresponding X, symbol 
appears in the codewords. Hence the rate achieved is 

(14.79) 

The points C and D correspond to B and A respectively with the roles of 
the senders reversed. 

The non-corner points can be achieved by timesharing. Thus, we have 
given a single user interpretation and justification for the capacity 
region of a multiple access channel. 

The idea of considering other signals as part of the noise, decoding 
one signal and then “subtracting” it from the received signal is a very 
useful one. We will come across the same concept again in the capacity 
calculations for the degraded broadcast channel. 

14.3.3 Convexity of the Capacity Region of the Multiple Access 
Channel 

We now recast the capacity region of the multiple access channel in 
order to take into account the operation of taking the convex hull by 
introducing a new random variable. We begin by proving that the 
capacity region is convex. 

Theorem 14.3.2: The capacity region % of a multiple access channel is 
convex, i.e., if (R,,R,)E% and (R;,Ri)E%, then (hR,+(l-A)R;, 
hR,+(l-h)R;)EceforOsA~l. 

Proof: The idea is timesharing. Given two sequences of codes at 
different rates R = (RI, R,) and R’ = (R; , R;1), we can construct a third 
codebook at a rate AR + (1 - h)R’ by using the first codebook for the first 
An symbols and using the second codebook for the last (1 - A)n symbols. 
The number of X1 codewords in the new code is 
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2 n%2 n(l-h)R{ = 2n(AR1+(1-h)Ri) (14.80) 

and hence the rate of the new code is AR + (1 - A)R’. Since the overall 
probability of error is less than the sum of the probabilities of error for 
each of the segments, the probability of error of the new code goes to 0 
and the rate is achievable. q 

We will now recast the statement of the capacity region for the 
multiple access channel using a timesharing random variable Q. 

Theorem 14.3.3: The set of achievable rates of a discrete memoryless 
multiple access channel is given by the closure of the set of all (R,, R,) 
pairs satisfying 

R,<I(X,; YIX,, &I, 

R, +R,-W&,X,; Y)&) (14.81) 

for some choice of the joint distribution p(~)p(~~~q)p(~~lq)p(yl.r:,, x2) 
with IS I 5 4. 

Proof: We will show that every rate pair lying in the region in the 
theorem is achievable, i.e., it lies in the convex closure of the rate pairs 
satisfying Theorem 14.3.1. We will also show that every point in the 
convex closure of the region in Theorem 14.3.1 is also in the region 
defined in (14.81). 

Consider a rate point R satisfying the inequalities (14.81) of the 
theorem. We can rewrite the right hand side of the first inequality as 

ml; YIX,, &I = it p(q)l(x,; YIX,, Q = d 
k=l 

(14.82) 

k=l 
(14.83) 

where m is the cardinality of the support set of Q. We can similarly 
expand the other mutual informations in the same way. 

For simplicity in notation, we will consider a rate pair as a vector and 
denote a pair satisfying the inequalities in (14.58) for a specific input 
product distributionp19(~,)p,,(x,) as R,. Specifically, let R, = CR,,, Rz,) 
be a rate pair satisfying 

(14.84) 

(14.85) 
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Then by Theorem 14.3.1, R, = (RIP, R,,) is achievable, 
Then since R satisfies (14.81), and we can expand the right hand 

sides as in (14.83), there exists a set of pairs R, satisfying (14.86) such 
that 

R = qtl p(q)R, . (14.87) 

Since a convex combination of achievable rates is achievable, so is R. 
Hence we have proved the achievability of the region in the theorem. 
The same argument can be used to show that every point in the convex 
closure of the region in (14.58) can be written as the mixture of points 
satisfying (14.86) and hence can be written in the form (14.81). 

The converse will be proved in the next section. The converse shows 
that all achievable rate pairs are of the form (14.81), and hence 
establishes that this is the capacity region of the multiple access 
channel. 

The cardinality bound on the time-sharing random variable Q is a 
consequence of Caratheodory’s theorem on convex sets. See the discus- 
sion below. 0 

The proof of the convexity of the capacity region shows that any 
convex combination of achievable rate pairs is also achievable. We can 
continue this process, taking convex combinations of more points. Do we 
need to use an arbitrary number of points ? Will the capacity region be 
increased? The following theorem says no. 

Theorem 14.3.4 (Carattiodory): Any point in the convex closure of a 
connected compact set A in a d dimensional Euclidean space can be 
represented as a convex combination of d + 1 or fewer points in the 
original set A. 

Proof: The proof can be found in Eggleston [95] and Grunbaum 
[127], and is omitted here. Cl 

This theorem allows us to restrict attention to a certain finite convex 
combination when calculating the capacity region. This is an important 
property because without it we would not be able to compute the 
capacity region in (14.81), since we would never know whether using a 
larger alphabet 2 would increase the region. 

In the multiple access channel, the bounds define a connected com- 
pact set in three dimensions. Therefore all points in its closure can be 
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defined as the convex combination of four points. Hence, we can restrict 
the cardinality of Q to at most 4 in the above definition of the capacity 
region. 

14.3.4 Converse for the Multiple Access Channel 

We have so far proved the achievability of the capacity region. In this 
section, we will prove the converse. 

Proof (Converse to Theorem 14.3.1 and Theorem 14.3.3): We must 
show that given any sequence of ((2”Rl, 2nR2), n) codes with Pr’+ 0, that 
the rates must satisfy 

R, 5 I(&; YIX,, Q), 

R, +R,G&,X,; YIQ) (14.88) 

for some choice of random variable Q defined on { 1,2,3,4} and joint 
distrhtion p(q>p(xllq)p(x21q)p(yJ;lc,, x2)’ 

Fix n. Consider the given code of block length n. The joint distribution 
on W; x ‘Wz x S!?y x S?t x 3” is well defined. The only randomness is due 
to the random uniform choice of indices W1 and W, and the randomness 
induced by the channel. The joint distribution is 

1 1 
P(W1,%rX~,x;,Yn)= 7 - 

2 1 p2 P(3GqlWI)P(X~IW2) 4 P(YiIXli, X2i) 9 

(14.89) 

where p(xI; I w,) is either 1 or 0 depending on whether x; = x,(w 1), the 
codeword corresponding to w  1, or not, and similarly, p(xi I w2) = 1 or 0 
according to whether xi = x2(w2) or not. The mutual informations that 
follow are calculated with respect to this distribution. 

By the code construction, it is possible to estimate ( W,, W2) from the 
received sequence Y” with a low probability of error. Hence the condi- 
tional entropy of ( W,, W2) given Y” must be small. By Fano’s inequality, 

H(W,,W21Yn)an(R,+R2)PSI”‘+H(P~‘)~n~n. (14.90) 

It is clear that E + 0 as Pen’ + 0 
Then we have” 

e . 

H(W,JY”)sH(W,, W,IY”)Qzc~, (14.91) 
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H(W,lY")~H(W,, w~IYn)s2En. (14.92) 

We can now bound the rate R, as 

4 = H(W,) (14.93) 

=I(W,; Y”)+ H(Wl(Yn) (14.94) 

(a) 
5 I(W,; Y”)+ 7x, 

(b) 

5 I(Xrf(W,); Y”) + ne, 

(14.95) 

(14.96) 

= H(Xy(W,)) - H(Xq(W,)IY”) + m,, (14.97) 

= Icx;C Wl ); Y” IX:< W,)) + nc, (14.99) 

=H(YnlX~(W,))-H(Yn(X~(Wl),X~(W,))+n~n (14.100) 

'2 H(Y"IXi(W,))- $ H(YiIYiel,X~(Wl),X~(W,))+ ne,, (14.101) 
i=l 

' H(Y"IXi( Wz)) - i H(YiIX,i, Xzi) + ne, (14.102) 
i=l 

2 i H(YiIX”,( Wg)) - i H(Y,IX,i, Xzi) + ne, (14.103) 
i=l i=l 

' i H(YiIX,i) - i H(YiIXli, Xzi) + nc, (14.104) 
i=l i=l 

= i I(Xli; yilX,i) + nr;, 9 (14.105) 
i=l 

(a) follows from Fano’s inequality, 
(b) from the data processing inequality, 
(c) from the fact that since WI and W, are independent, so are Xy( Wl) 

and X",(W,>, and hence H(X~(W,)~X~(W,)> = H(XI(W,)), and 
H(XT( Wl )I Y", XiC W, )) 5 H(Xy( WI )I Y”) by conditioning, 

(d) follows from the chain rule, 
(e) from the fact that Yi depends only on Xii and Xzi by the memory- 

less property of the channel, 
(f) from the chain rule and removing conditioning, and 
(g) follows from removing conditioning. 



14.3 THE MULTZPLE ACCESS CHANNEL 

Hence, we have 

401 

R, I L i I(xli; qx,i) + En. 
n i=l 

Similarly, we have 

R, I ’ ~ I(X,i; Yi IX~i) + ~~ . 
n i=l 

To bound the sum of the rates, we have 

n(R, + R,) = H(W,, W,> 

= I(W,, wz; Y”) + H(W,, wJYn) 

(a) 
5 I(W,, Wz; Y”) + ne, 

(b) 
5 I(Xy( W,), Xt( W, 1; Y”) + ne, 

= H(Y”) - H(Yn~X~(W,),X~(W,N + nen 

2 H(Y”)- i H(YiIY’-l,X~(W,),X~(W,))+ ne, 
i=l 

(:’ H(Y”) - i H(YiIX,i, Xzi) + ne, 
i=l 

2 i H(Yi) - i H(YiIXli, X,i) + ne, 
i=l i=l 

= 2 I(Xli,Xzi; Yi) + nE ny 
i=l 

(14.115) 

(14.116) 

where 

(a) follows from Fano’s inequality, 
(b) from the data processing inequality, 
(c) from the chain rule, 
(d) from the fact that Yi depends only on Xii and X,i and is condition- 

ally independent of everything else, and 
(e) follows from the chain rule and removing conditioning. 

(14.106) 

(14.107) 

(14.108) 

(14.109) 

(14.110) 

(14.111) 

(14.112) 

(14.113) 

(14.114) 

Hence we have 

n’ (14.117) 
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The expressions in (14.106), (14.107) and (14.117) are the averages of 
the mutual informations calculated at the empirical distributions in 
column i of the codebook. We can rewrite these equations with the new 
variable Q, where Q = i E { 1,2, . . . , n} with probability A. The equa- 
tions become 

1 n 

= i $ It&,; y,Ix,,, Q = 9 + E n (14.119) 
i 1 

= I&,; ySIx,,, Q) + E, (14.120) 

=I(x,;yIx,,&)+~,, (14.121) 

where X1 L Xla, X, iXza and Y 2 Ye are new random variables whose 
distributions depend on Q in the same way as the distributions of X~i, 
X,i and Yi depend on i. Since W, and W, are independent, so are X,i( W,) 
and Xzi( W,), and hence 

A Pr{X,, =x,1& = i} Pr{X,, = LC~IQ = i} . 
(14.122) 

Hence, taking the limit as n + a, Pr’+ 0, we have the following 
converse: 

R, 5 I&; YIX,, &I, 

Ra’I(X,; YIX,, &I, 

R, +R,~I(X,,X,; YlQ> (14.123) 

for some choice of joint distribution p( Q)J& I Q)J& I q)p( y 1x1, IX& 
As in the previous section, the region is unchanged if we limit the 

cardinality of 2 to 4. 
This completes the proof of the converse. Cl 

Thus the achievability of the region of Theorem 14.3.1 was proved in 
Section 14.3.1. In Section 14.3.3, we showed that every point in the 
region defined by (14.88) was also achievable. In the converse, we 
showed that the region in (14.88) was the best we can do, establishing 
that this is indeed the capacity region of the channel. Thus the region in 
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(14.58) cannot be any larger than the region in (14.88), and this is the 
capacity region of the multiple access channel. 

14.3.5 m-User Multiple Access Channels 

We will now generalize the result derived for two senders to m senders, 
m 2 2. The multiple access channel in this case is shown in Figure 
14.15. 

We send independent indices w  1, wa, . . . , w, over the channel from 
the senders 1,2, . . . , m respectively. The codes, rates and achievability 
are all defined in exactly the same way as the two sender case. 

Let S G {1,2, . . . , m} . Let SC denote the complement of S. Let R(S ) = 
c iEs Ri, and let X(S) = {Xi : i E S}. Then we have the following theorem. 

Theorem 14.35: The capacity region of the m-user multiple access 
channel is the closure of the convex hull of the rate vectors satisfying 

R(S) I 1(X(S); YIX(S”)) for all S C {1,2, . . . , m} (14.124) 

for some product distribution p&, >p&,> . . . P,,&)~ 

Proof: The proof contains no new ideas. There are now 2” - 1 terms 
in the probability of error in the achievability proof and an equal 
number of inequalities in the proof of the converse. Details are left to 
the reader. 0 

In general, the region in (14.124) is a beveled box. 

14.3.6 Gaussian Multiple Access Channels 

We now discuss the Gaussian multiple access channel of Section 14.1.2 
in somewhat more detail. 

Figure 14.15. m-user multiple access channel. 
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There are two senders, XI and X,, sending to the single receiver Y. 
The received signal at time i is 

Yi = Xii + X,i + Zi ) (14.125) 

where {Zi} is a sequence of independent, identically distributed, zero 
mean Gaussian random variables with variance N (Figure 14.16). We 
will assume that there is a power constraint Pj on sender j, i.e., for each 
sender, for all messages, we must have 

WjE{l,2 ,..., 2nR’},j=l,2. (14.126) 

Just as the proof of achievability of channel capacity for the discrete 
case (Chapter 8) was extended to the Gaussian channel (Chapter lo), 
we can extend the proof the discrete multiple access channel to the 
Gaussian multiple access channel. The converse can also be extended 
similarly, so we expect the capacity region to be the convex hull of the 
set of rate pairs satisfying 

R, 5 I&; Y(&) , (14.127) 

R, 5 I(&?; YIX,) , (14.128) 

R, + R,s Icx,,X,; Y) (14.129) 

for some input distribution f,(~, >f,(x, > satisfying EXf 5 P, and EX: 5 
5. 

Now, we can expand the mutual information in terms of relative 
entropy, and thus 

ml; YJX,) = WIX,) - hW)X,,X,) (14.130) 

=h(xl+x~+Z~x~)-h(x~+x~+z~x~,x~) (14.131) 

Figure 14.16. Gaussian multiple access channel. 
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= h(X, + zlx,> - h(Z(X,, x,> (14.132) 

= h(X, + zlx,> - W) (14.133) 

= h(X, + 2) - h(Z) (14.134) 

1 
= h(X, + 2) - z log(271-e)N 

1 
5 2 log(2ne)(P, + N) - f log(27re)N 

(14.135) 

(14.136) 

1 PI =$og 1+w , 
( > 

(14.137) 

where (14.133) follows from the fact that 2 is independent of XI and X,, 
(14.134) from the independence of XI and X,, and (14.136) from the fact 
that the normal maximizes entropy for a given second moment. Thus 
the maximizing distribution is XI - JV( 0, P, ) and X, - A’( 0, P,) with XI 
and X, independent. This distribution simultaneously maximizes the 
mutual information bounds in (14.127)-(14.129). 

Definition: We define the channel capacity function 

A 1 
C(x) = z log(1 + x) , (14.138) 

corresponding to the channel capacity of a Gaussian white noise channel 
with signal to noise ratio x. 

Then -we write the bound on R, as 

Similarly, 

RI&). (14.139) 

R@(2), (14.140) 

and 

R,+R,sC(v). (14.141) 

These upper bounds are achieved when XI - A’(O, PI) and X, = MO, P,> 
and define the capacity region. 

The surprising fact abopt+$hese inequalities is that the sum of the 
rates can be as large as C( ++ ), which is that rate achieved by a single 
transmitter sending with a power equal to the sum of the powers. 
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The interpretation of the corner points is very similar to the interpre- 
tation of the achievable rate pairs for a discrete multiple access channel 
for a fixed input distribution. In the case of the Gaussian channel, we 
can consider decoding as a two-stage process: in the first stage, the 
receiver decodes the second sender, considering the first sender as part 
of t$e noise. This decoding will have low probability of error if R, < 
C(L P, + N ). After the second sender has been successfully decoded, it can 
be subtpracted out and the first sender can be decoded correctly if 
R, < C( +). Hence, this argument shows that we can achieve the rate 
pairs at the corner points of the capacity region. 

If we generalize this to m senders with equal power, the total rate is 
C( s ), which goes to 00 as m + 00. The average rate per sender, kC( F) 
goes to 0. Thus when the total number of senders is very large, so that 
there is a lot of interference, we can still send a total amount of 
information which is arbitrarily large even though the rate per in- 
dividual sender goes to 0. 

The capacity region described above corresponds to Code Division 
Multiple Access (CDMA), where orthogonal codes are used for the 
different senders, and the receiver decodes them one by one. In many 
practical situations, though, simpler schemes like time division multi- 
plexing or frequency division multiplexing are used. 

With frequency division multiplexing, the rates depend on the band- 
width allotted to each sender. Consider the case of two senders with 
powers P, and P2 and using bandwidths non-intersecting frequency 
bands W, and W,, where W, + W, = W (the total bandwidth). Using the 
formula for the capacity of a single user bandlimited channel, the 
following rate pair is achievable: 

o “(&) c(.) R1 
Figure 14.17. Gaussian multiple access channel capacity. 
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RI =~log(l+&), (14.142) 

(14.143) 

As we vary WI and Wz, we trace out the curve as shown in Figure 14.17. 
This curve touches the boundary of the capacity region at one point, 
which corresponds to allotting bandwidth to each channel proportional 
to the power in that channel. We conclude that no allocation of fre- 
quency bands to radio stations can be optimal unless the allocated 
powers are proportional to the bandwidths. 

As Figure 14.17 illustrates, in general the capacity region is larger 
than that achieved by time division or frequency division multiplexing. 
But note that the multiple access capacity region derived above is 
achieved by use of a common decoder for all the senders. However in 
many practical systems, simplicity of design is an important considera- 
tion, and the improvement in capacity due to the multiple access ideas 
presented earlier may not be sufficient to warrant the increased com- 
plexity. 

For a Gaussian multiple access system with m sources with powers 
PI, p,, * * *, Pm and ambient noise of power N, we can state the equiva- 
lent of Gauss’s law for any set S in the form 

C Ri = Total rate of information flow across boundary of S (14.144) 
iES 

(14.145) 

14.4 ENCODING OF CORRELATED SOURCES 

We now turn to distributed data compression. This problem is in many 
ways the data compression dual to the multiple access channel problem. 

We know how to encode a source X. A rate R > H(X) is sufficient. Now 
suppose that there are two sources (X, Y) - p(x, y). A rate H(X, Y) is 
sufficient if we are encoding them together. But what if the X-source 
and the Y-source must be separately described for some user who wishes 
to reconstruct both X and Y? Clearly, by separate encoding X and Y, it is 
seen that a rate R = R, + R, > H(X) + H(Y) is sufficient. However, in a 
surprising and fundamental paper by Slepian and Wolf [255], it is 
shown that a total rate R = H(X, Y) is sufficient even for separate 
encoding of correlated sources. 

Let <X,,Y,),(x,,Y2),... be a sequence of jointly distributed random 
variables i.i.d. - p(x, y). Assume that the X sequence is available at a 



NETWORK INFORMATION THEORY 

location A and the Y sequence is available at a location B. The situation 
is illustrated in Figure 14.18. 

Before we proceed to the proof of this result, we will give a few 
definitions. 

Definition: A ((2nR1, 2nR2 ), n) distributed source code for the joint source 
(X, Y) consists of two encoder maps, 

f,:i??Y”+ {1,2,. . . ,2nR1}, (14.146) 

fi : 9P+ { 1,2, . . . , 2nR2} (14.147) 

and a decoder map, 

g:{l,2,. . . , 2nR’} x {1,2, . . . , 2nR2} -+ Z” x 3” . (14.148) 

Here fl(Xn ) is the index corresponding to X”, f,( Y” ) is the index 
corresponding to Y” and (RI, R,) is the rate pair of the code. 

Definition: The probability of error for a distributed source code is 
defined as 

Pp’ = P(g( f,W 1, f,W” N # w, Y” 1) * (14.149) 

Definition: A rate pair (R,, R,) is said to be achievable for a distribut- 
ed source if there exists a sequence of ((znR1, 2nR2), n) distributed source 
codes with probability of error PF’ + 0. The achievable rate region is the 
closure of the set of achievable rates. 

X 
= Encoder 

4 

Decoder 

Y 
* Encoder 

R2 

Figure 14.18. Slepian-Wolf coding. 
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Theorem 14.4.1 (Slepian-Wolf ): For the distributed source codingprob- 
lem for the source (X, Y) drawn i.i.d - p(x, y), the achievable rate region 
is given by 

R, ~H(XIY), (14.150) 

R, 2 H(yIX) , (14.151) 

R,+R+H(X,Y). (14.152) 

Let us illustrate the result with some examples. 

Example 14.4.1: Consider the weather in Gotham and Metropolis. For 
the purposes of our example, we will assume that Gotham is sunny with 
probability 0.5 and that the weather in Metropolis is the same as in 
Gotham with probability 0.89. The joint distribution of the weather is 
given as follows: 

Pk Y) 
Metropolis 

Rain Shine 

Gotham 
Rain 
Shine 

0.445 0.055 
0.055 0.445 

Assume that we wish to transmit 100 days of weather information to the 
National Weather Service Headquarters in Washington. We could send 
all the 100 bits of the weather in both places, making 200 bits in all. If 
we decided to compress the information independently, then we would 
still need lOOH(O.5) = 100 bits of information from each place for a total 
of 200 bits. 

If instead we use Slepian-Wolf encoding, we need only H(X) + 
H(YIX) = lOOH(O.5) + lOOH(O.89) = 100 + 50 = 150 bits total. 

Example 14.43: Consider the following joint distribution: 

In this case, the total rate required for the transmission of this source is 
H(U) + H(V] U) = log 3 = 1.58 bits, rather than the 2 bits which would 
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be needed if the sources were transmitted independently without Sle- 
pian-Wolf encoding. 

14.4.1 Achievability of the Slepian-Wolf Theorem 

We now prove the achievability of the rates in the Slepian-Wolf theorem. 
Before we proceed to the proof, we will first introduce a new coding 
procedure using random bins. 

The essential idea of random bins is very similar to hash functions: 
we choose a large random index for each source sequence. If the set of 
typical source sequences is small enough (or equivalently, the range of 
the hash function is large enough), then with high probability, different 
source sequences have different indices, and we can recover the source 
sequence from the index. 

Let us consider the application of this idea to the encoding of a single 
source. In Chapter 3, the method that we considered was to index all 
elements of the typical set and not bother about elements outside the 
typical set. We will now describe the random binning procedure, which 
indexes all sequences, but rejects untypical sequences at a later stage. 

Consider the following procedure: For each sequence X”, draw an 
index at random from { 1,2, . . . , 2”R}. The set of sequences X” which 
have the same index are said to form a bin, since this can be viewed as 
first laying down a row of bins and then throwing the Xn’s at random 
into the bins. For decoding the source from the bin index, we look for a 
typical X” sequence in the bin. If there is one and only one typical X” 
sequence in the bin, we declare it to be the estimate x” of the source 
sequence; otherwise, an error is declared. 

The above procedure defines a source code. To analyze the probability 
of error for this code, we will now divide the X” sequences into two 
types, the typical sequences and the non-typical sequences. 

If the source sequence is typical, then the bin corresponding to this 
source sequence will contain at least one typical sequence (the source 
sequence itself). Hence there will be an error only if there is more than 
one typical sequence in this bin. If the source sequence is non-typical, 
then there will always be an error. But if the number of bins is much 
larger than the number of typical sequences, the probability that there 
is more than one typical sequence in a bin is very small, and hence the 
probability that a typical sequence will result in an error is very small. 

Formally, let RX”) be the bin index corresponding to X”. Call the 
decoding function g. The probability of error (averaged over the random 
choice of codes f) is 

P( g( f(X)) #X) zs P(XflAy’ ) + 2 P( 3x’ # x:x’ E A:‘, f-(x’, = f(x))p(x) 

5 E + c c P;fo = f(x>>p(x) (14.153) 
X 

X’EA(“) 
x’z: 
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5 E + 2 c 2-5(x) (14.154) 
X 

x’EAT) 

=E+ c 2-“R 2 p(x) 
x’EA~) x 

se+ 2 2-nR (14.156) 
x’EA~) 

SE+2 nw(X)+E) 2-nR (14.157) 

126 (14.158) 

if R > H(X) + E and n is sufficiently large. Hence if the rate of the code is 
greater than the entropy, the probability of error is arbitrarily small and 
the code achieves the same results as the code described in Chapter 3. 

The above example illustrates the fact that there are many ways to 
construct codes with low probabilities of error at rates above the entropy 
of the source; the universal source code is another example of such a 
code. Note that the binning scheme does not require an explicit charac- 
terization of the typical set at the encoder; it is only needed at the 
decoder. It is this property that enables this code to continue to work in 
the case of a distributed source, as will be illustrated in the proof of the 
theorem. 

We now return to the consideration of the distributed source coding 
and prove the achievability of the rate region in the Slepian-Wolf 
theorem. 

Proof (Achievability in Theorem 14.4.1): The basic idea of the proof 
is to partition the space of E’” into 2nR1 bins and the space of ?V into 2nR2 
bins. 

Random code generation. Independently assign every x E 2” to one of 
2nR1 bins according to a uniform distribution on { 1,2, . . . , 2nR1}. 
Similarly, randomly assign every y E 9” to one of 2nR2 bins. Reveal 
the assignments f, and f, to both the encoder and decoder. 

Encoding. Sender 1 sends the index of the bin to which X belongs. 
Sender 2 sends the index of the bin to which Y belongs. 

Decoding. Given the received index pair (iO, j,), declare (&, 4) = (x, y), 
if there is one and only one pair of sequences (x, y) such that 
f,(x) = i,, f,(y) = j0 and (x, y) E A:‘. Otherwise declare an error. 

The scheme is illustrated in Figure 14.19. The set of X se- 
quences and the set of Y sequences are divided into bins in such a 
way that the pair of indices specifies a product bin. 
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2nHW, Y) 

jointly typical pairs 
W,Y”) 

Figure 14.19. Slepian-Wolf encoding: the jointly typical pairs are isolated by the product 
bins. 

ProbabiZity of error. Let (Xi, Yi> -p(x, y). Define the events 

4, = {(X, W&4:‘} , (14.159) 

E, = (3x’ #X: f,(x’> = f,(X) and (x’,Y)EA~)} , (14.160) 

E, = {3y’#Y: fJy’) =f,(Y) and (X, y’)EAr’} , (14.161) 

and 

El2 = {3(x’,y’):x’#X,y’ZY, f,w)=fim, f,(YWf,(Y) 

and (x’, y’) E A:‘} . (14.162) 

Here X, Y, f, and f, are random. We have an error if (X, Y) is not in 
A:’ or if there is another typical pair in the same bin. Hence by the 
union of events bound, 

P~‘=P(E,uE,UE,UE,,) (14.163) 

I P(E,) + P(E,) + RE, I+ P(E,,) l (14.164) 

First consider E,. By the AISP, P(E,>+ 0 and hence for n sufficient- 
ly large, P(E,) < e. 

To bound P(EI), we have 

P(E1)= P{3x’#X: f,(x’>= f,(X), and (x’,Y)EA~)} (14.165) 
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= c p(x, y)P{3x’ #x: fi(x’) = f,(x), (x’ , y) E A;‘} (14.166) 
(x9 Y) 

5 c p(x, y) c P( fi(X’) = f,(x)> (14.167) 
(x, Y) x’fx 

(x’ , yEA:’ 

= 2 p(x~P-"~'IA,(Xly)l (14.168) 
k Y) 

52 412 n(H(XIY)+r) (by Theorem 14.2.2)) (14.169) 

which goes to 0 if R, > H(XIY). Hence for sufficiently large n, 
P(E, ) < E. Similarly, for sufficiently large n, P(E, ) < E if R, > 
H(YIX) and P(E12) < E if R, + R, > H(X, Y). 

Since the average probability of error is < 4e, there exists at least one 
code ( fT, f $, g*) with probability of error < 4~. Thus, we can construct a 
sequence of codes with Pr’+ 0 and the proof of achievability is 
complete. 0 

14.4.2 Converse for the Slepian-Wolf Theorem 

The converse for the Slepian-Wolf theorem follows obviously from from 
the results for single source, but we will provide it for completeness. 

Proof (Converse to Theorem 14.4.1): As usual, we begin with Fano’s 
inequality. Let fi , f,, g be fixed. Let I0 = f,<x” ) and J, = f,(Y” ). Then 

H(X”, Y” I&, Jo) 5 Pr’n( loglE( + log1 3 

where E, -+ 0 as n + 00. Now adding conditioning, 

H(X” 1 Y”, I,, JO) 5 Pf%2ca , 

and 

H(Y” IXn, I,, JO) 5 Pr& . 

We can write a chain of inequalities 

(a) 

) + 1 = nen , (14.170) 

we also have 

(14.171) 

(14.172) 

(14.173) 

= I(X”, Y”; I,, Jo) + H(I,, J,(X”, Y”) (14.174) 

(2 I(X”, Y”; I,, JO) (14.175) 
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= H(X", Y") - H(X", Y" II,, Jo) (14.176) 

2 H(X”, Y”) - m, (14.177) 

where 

Cd) 
= nH(X, Y) - ne, , (14.178) 

(a) follo;fR f”” the fact that I,, E {1,2, . . . , 2nR1} and J, E { 1,2, 
2 - * - ? 

(b) from the iact the I, is a function of X” and J, is a function of Y”, 
(c) from Fano’s inequality (14.170), and 
(d) from the h c ain rule and the fact that <xi, Yi> are i.i.d. 

Similarly, using (14.171), we have 
kc) 

nR, 2 H(I,,) 

1 H(I,IY”) 

= 1(x”; I, 1 Y” ) + H(I, IX”, y” ) 

(2 I(X”; I,IY") 

= H(X”IY”) - H(X”II,, Jo, Y”) 

g H(X”IY”) - nc, 

Cd) 
= nH(XIY) - nc, , (14.185) 

R2 

H(Y) 

M YIX) 

!  ’ 

(14.179) 

(14.180) 

(14.181) 

(14.182) 

(14.183) 

(14.184) 

oj HWI Y) H(X) R, 
Figure 14.20. Rate region for Slepian-Wolf encoding. 
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where the reasons are the same as for the equations above. Similarly, 
we can show that 

nR, L nH(Y(X) - TM,. (14.186) 

Dividing these inequalities by n and taking the limit as n + 00, we have 
the desired converse. 0 

The region described in the Slepian-Wolf theorem is illustrated in 
Figure 14.20. 

14.4.3 Slepian-Wolf Theorem for Many Sources 

The results of the previous section can easily be generalized to many 
sources. The proof follows exactly the same lines. 

Theorem 14.4.2: Let (XIi,Xzi, . . . ,X,,J be i.i.d. - p(xI,xz,. . . ,x,). 
Then the set of rate vectors achievable for distributed source coding with 
separate encoders and a common decoder is defined by 

(14.187) 

for all S c {1,2,. . . , m> where 

RW=C,& (14.188) 
iES 

and X(S)= {Xj:jES}. 

Proof: The proof is identical to the case of two variables and is 
omitted. Cl 

The achievability of Slepian-Wolf encoding has been proved for an 
i.i.d. correlated source, but the proof can easily be extended to the case 
of an arbitrary joint source that satisfies the AEP; in particular, it can 
be extended to the case of any jointly ergodic source [63]. In these cases 
the entropies in the definition of the rate region are replaced by the 
corresponding entropy rates. 

14.4.4 Interpretation of Slepian-Wolf Coding 

We will consider an interpretation of the corner points of the rate region 
in Slepian-Wolf encoding in terms of graph coloring. Consider the point 
with rate R, = H(X), R, = H(YIX). Using nH(X) bits, we can encode X” 
efficiently, so that the decoder can reconstruct X” with arbitrarily low 
probability of error. But how do we code Y” with nH(Y(X) bits? 

Looking at the picture in terms of typical sets, we see that associated 
with every X” is a typical “fan” of Y” sequences that are jointly typical 
with the given X” as shown in Figure 14.21. 
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Figure 14.21. Jointly typical fans. 

If the Y encoder knows X”, the encoder can send the index of the Y” 
within this typical fan. The decoder, also knowing X”, can then construct 
this typical fan and hence reconstruct Y”. But the Y encoder does not 
know X”. So instead of trying to determine the typical fan, he randomly 
colors all Y” sequences with ZnR2 colors. If the number of colors is high 
enough, then with high probability, all the colors in a particular fan will 
be different and the color of the Y” sequence will uniquely define the Y” 
sequence within the X” fan. If the rate R, > H(YIX), the number of 
colors is exponentially larger than the number of elements in the fan 
and we can show that the scheme will have exponentially small prob- 
ability of error. 

14.5 DUALITY BETWEEN SLEPIAN-WOLF ENCODING AND 
MULTIPLE ACCESS CHANNELS 

With multiple access channels, we considered the problem of sending 
independent messages over a channel with two inputs and only one 
output. With Slepian-Wolf encoding, we considered the problem of 
sending a correlated source over a noiseless channel, with a common 
decoder for recovery of both sources. In this section, we will explore the 
duality between the two systems. 

In Figure 14.22, two independent messages are to be sent over the 
channel as X; and Xi sequences. The receiver estimates the messages 
from the received sequence. In Figure 14.23, the correlated sources are 
encoded as “independent” messages i and j. The receiver tries to 
estimate the source sequences from knowledge of i and j. 

In the proof of the achievability of the capacity region for the multiple 
access channel, we used a random map from the set of messages to the 
sequences X; and Xi. In the proof for Slepian-Wolf coding, we used a 
random map from the set of sequences X” and Y” to a set of messages. 



14.5 DUALI2-Y BETWEEN SLEPZAN-WOLF ENCODZNG 417 

Wl -x1 

P(YlX*J2) >Y -(lQkz, 

w2 -x2 - 

Figure 14.22. Multiple access channels. 

In the proof of the coding theorem for the multiple access channel, the 
probability of error was bounded by 

Prkr+ c P( d r co eword jointly typical with received sequence) 
codewords (14.189) 

= E + c 2-“” + c 2-“‘2 + c 2-“‘3, (14.190) 
2 nR1 terms 2 nRz terms 2 n(Rl +W terms 

where E is the probability the sequences are not typical, Ri are the rates 
corresponding to the number of codewords that can contribute to the 
probability of error, and Ii is the corresponding mutual information that 
corresponds to the probability that the codeword is jointly typical with 
the received sequence. 

In the case of Slepian-Wolf encoding, the corresponding expression for 
the probability of error is 

X RI 
= Encoder ’ 

(X9 v) Decoder 

Y 
,‘ Encoder t 

R2 

Figure 14.23. Correlated source encoding. 

+td A 
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Puke+ c Pr(have same codeword) (14.191) 
Jointly typical sequences 

= E + 2 2-n%+ c 242 + c 2-n(%+R2) 

2 nH1 terms 2 nH!2 terms 2 nH3 terms 

(14.192) 

where again the probability that the constraints of the AEP are not 
satisfied is bounded by E, and the other terms refer to the various ways 
in which another pair of sequences could be jointly typical and in the 
same bin as the given source pair. 

The duality of the multiple access channel and correlated source 
encoding is now obvious. It is rather surprising that these two systems 
are duals of each other; one would have expected a duality between the 
broadcast channel and the multiple access channel. 

14.6 THE BROADCAST CHANNEL 

The broadcast channel is a communication channel in which there is one 
sender and two or more receivers. It is illustrated in Figure 14.24. The 
basic problem is to find the set of simultaneously achievable rates for 
communication in a broadcast channel. 

Before we begin the analysis, let us consider some examples: 

Example 14.6.1 (TV station): The simplest example of the broadcast 
channel is a radio or TV station. But this example is slightly degenerate 
in the sense that normally the station wants to send the same informa- 
tion to everybody who is tuned in; the capacity is essentially maxpCX, 
min, 1(X, Yi ), which may be less than the capacity of the worst receiver. 

Figure 14.24. Broadcast channel. 
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But we may wish to arrange the information in such a way that the 
better receivers receive extra information, which produces a better 
picture or sound, while the worst receivers continue to receive more 
basic information. As TV stations introduce High Definition TV (HDTV), 
it may be necessary to encode the information so that bad receivers will 
receive the regular TV signal, while good receivers will receive the extra 
information for the high definition signal. The methods to accomplish 
this will be explained in the discussion of the broadcast channel. 

Example 14.6.2 (Lecturer in classroom): A lecturer in a classroom is 
communicating information to the students in the class. Due to difYer- 
ences among the students, they receive various amounts of information. 
Some of the students receive most of the information; others receive only 
a little. In the ideal situation, the lecturer would be able to tailor his or 
her lecture in such a way that the good students receive more informa- 
tion and the poor students receive at least the minimum amount of 
information. However, a poorly prepared lecture proceeds at the pace of 
the weakest student. This situation is another example of a broadcast 
channel. 

Example 14.6.3 (Orthogonal broadcast channels): The simplest broad- 
cast channel consists of two independent channels to the two receivers. 
Here we can send independent information over both channels, and we 
can achieve rate R, to receiver 1 and rate R, to receiver 2, if R, < C!, and 
R, < C,. The capacity region is the rectangle shown in Figure 14.25. 

Example 14.6.4 (Spanish and Dutch speaker): To illustrate the idea of 
superposition, we will consider a simplified example of a speaker who 
can speak both Spanish and Dutch. There are two listeners: one 
understands only Spanish and the other understands only Dutch. As- 
sume for simplicity that the vocabulary of each language is 220 words 

Figure 14.25. Capacity region for two orthogonal broad&t channels. 
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and that the speaker speaks at the rate of 1 word per second in either 
language. Then he can transmit 20 bits of information per second to 
receiver 1 by speaking to him all the time; in this case, he sends no 
information to receiver 2. Similarly, he can send 20 bits per second to 
receiver 2 without sending any information to receiver 1. Thus he can 
achieve any rate pair with R, + R, = 20 by simple timesharing. But can 
he do better? 

Recall that the Dutch listener, even though he does not understand 
Spanish, can recognize when the word is Spanish. Similarly, the Span- 
ish listener can recognize when Dutch occurs. The speaker can use this 
to convey information; for example, if the proportion of time he uses 
each language is 50%, then of a sequence of 100 words, about 50 will be 
Dutch and about 50 will be Spanish. But there are many ways to order 
the Spanish and Dutch words; in fact, there are about ( !&’ ) = 2100H(t) 
ways to order the words. Choosing one of these orderings conveys 
information to both listeners. This method enables the speaker to send 
information at a rate of 10 bits per second to the Dutch receiver, 10 bits 
per second to the Spanish receiver, and 1 bit per second of common 
information to both receivers, for a total rate of 21 bits per second, 
which is more than that achievable by simple time sharing. This is an 
example of superposition of information. 

The results of the broadcast channel can also be applied to the case of 
a single user channel with an unknown distribution. In this case, the 
objective is to get at least the minimum information through when the 
channel is bad and to get some extra information through when the 
channel is good. We can use the same superposition arguments as in the 
case of the broadcast channel to find the rates at which we can send 
information. 

14.6.1 Definitions for a Broadcast Channel 

Definition: A broadcast channel consists of an input alphabet Z and 
two output alphabets q1 and 5V2 and a probability transition function 
p( yl, y2 IX). The broadcast channel will be said to be memoryless if 
pbfq, Y;lx”) = J$L, P(Yli, Y&i). 

We define codes, probability of error, achievability and capacity 
regions for the broadcast channel as we did for the multiple access 
channel. 

A ((2nR1 , 211R2), n) code for a broadcast channel with independent 
information consists of an encoder, 

X:({l, 2,. . . , 2nR1} x { 1,2, . . . , 2nR2})+ 2” , (14.193) 

and two decoders, 
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g,:%+-+(1,2,. . . ,2nR1} (14.194) 

and 

g,:C?+{1,2 ,..., 2nRz}. (14.195) 

We define the average probability of error as the probability the 
decoded message is not equal to the transmitted message, i.e., 

where (WI, W,) are assumed to be uniformly distributed over 2nR1 x 2”R2. 

Definition: A rate pair (R,, Rz) is said to be achievable for the broad- 
cast channel if there exists a sequence of ((ZnR1, 2nR2), n> codes with 
P%’ + 0. 

We will now define the rates for the case where we have common 
information to be sent to both receivers. 

A ((2nR9 2nR1, 2nR2 1, n) code for a broadcast channel with common 
information consists of an encoder, 

X:({l, 2, * . . , 2nRo} x { 1,2, . . . , 2nR1} x { 1,2, . . . , 2nR2} I)-, ap” , 

(14.197) 

and two decoders, 

g, : 37 --j {1,2, . . . , 2nR0) x { 1,2, . . . , FR1} (14.198) 

g,:CK+{1,2 ,..., 2nR0}X{1,2 ,..., 2nR2}. (14.199) 

Assuming that the distribution on ( W,, WI, Wz ) is uniform, we can define 
the probability of error as the probability the decoded message is not 
equal to the transmitted message, i.e., 

Pr) = P(gJYy) # (W,, WI> or gJz"> # CW,, W,)) - (14.200) 

Definition: A rate triple (RO, R,, R,) is said to be achievable for the 
broadcast channel with common information if there exists a sequence 
of ((2nRo, 2nR1, 2nR2), n) codes with PF’-, 0. 

Definition: The capacity region 
of the set of achievable rates. 

of the broadcast channel is the closure 
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Theorem 14.6.1: The capacity region of a broadcast channel depends 
only on the conditional marginal distributions p( y,lx) and p( y21x). 

Proof: See exercises. Cl 

14.6.2 Degraded Broadcast Channels 

Definition: A broadcast channel is said to be physically degraded if 
P(Y1, Yzl”) = P(Yh)P(Y,IYd* 

Definition: A broadcast channel is said to be stochastically degraded if 
its conditional marginal distributions are the same as that of a phys- 
ically degraded broadcast channel, i.e., if there exists a distribution 
p’(y21yI) such that 

p(y&) = c P(YIIdP’(Y2lYd ’ (14.201) 
Yl 

Note that since the capacity of a broadcast channel depends only on 
the conditional marginals, the capacity region of the stochastically 
degraded broadcast channel is the same as that of the corresponding 
physically degraded channel. In much of the following, we will therefore 
assume that the channel is physically degraded. 

14.6.3 Capacity Region for the Degraded Broadcast Channel 

We now consider sending independent information over a degraded 
broadcast channel at rate R, to Y1 and rate R, to Yz. 

Theorem 14.6.2: The capacity region for sending independent informa- 
tion over the degraded broadcast channel X-, Y1+ Y2 is the convex hull 
of the closure of all (R,, R2) satisfying 

R, 5 NJ; y,> , (14.202) 

R, 5 I(X, Y@> (14.203) 

for some joint distribution p(u)p(x I u>p( y, z lx>, where the auxiliary ran- 
o?om variable U has cardinality bounded by I % 11 min{ 1 %I, I CV1 I, I %2 I}. 

Proof: The cardinality bounds for the auxiliary random variable U 
are derived using standard methods from convex set theory and will not 
be dealt with here. 

We first give an outline of the basic idea of superposition coding for 
the broadcast channel. The auxiliary random variable U will serve as a 
cloud center that can be distinguished by both receivers Y1 and Yz. Each 
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cloud consists of ZP1 codewords X” distinguishable by the receiver Y1. 
The worst receiver can only see the clouds, while the better receiver can 
see the individual codewords within the clouds. 

The formal proof of the achievability of this region uses a random 
coding argument: Fix p(u) and p(xlu). 

Random codebook generation. Generate 2nR2 independent codewords 
of length n, U(w,), w1 E { 1,2, . . . , 2nR2}, according to lIysl p(ui ). 

For each codeword U(w2), generate 2nR1 independent codewords 
X(wl, w,) according to l-l:=, ~(~G~IzQ(w~)). 

Here u(i) plays the role of the cloud center understandable to 
both Y1 and Yz, while x( i, j ) is the jth satellite codeword in the i th 
cloud. 

Encoding. To send the pair (W,, W,>, send the corresponding 
codeword X( W1, Wz). 1 

Decodiyg. Receiver 2 determines the unique Ws such that 

NJW,), Y2> E A:‘. If there are none such or more than one such, 
an error is declared. 

Receiver l_ looks for the unique ( W1, W-J such that 
<vCw,>, Xcw,, W,>, Y1) EA:‘. If there are none such or more than 
one such, an error is declared. 

Analysis of the probability of error. By the symmetry of the code 
generation, the probability of error does not depend on which 
codeword was sent. Hence, without loss of generality, we can 
assume that the message pair ( W,, Wz> = (1,l) was sent. Let P( - ) 
denote the conditional probability of an event given that (1,l) was 
sent. 

Since we have essentially a single user channel from U to Yz, we 
will be able to decode the U codewords with low probability of error 
if R, < I(U; Y2>. To prove this, we define the events 

E, = {(U(i), Y2) E A:‘} . (14.204) 

Then the probability of error at receiver 2 is 

(14.205) 

(14.206) 

(14.207) 

(14.208) r2E 
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if n is large enough and R, < I(U; Y,), where (14.207) follows from 
the AEF’. 

Similarly, for decoding for receiver 1, we define the following 
events 

& = {(U(i), Y1) E Al")} , (14.209) 

iyi = {(U(i), X(i, j), Yr) E A:'} , (14.210) 

where the tilde refers to events defined at receiver 1. Then, we can 
bound the probability of error as 

P:‘(l) = P(ZZcy1 LJ U j?*i LJ U ‘rlj) 
if1 j#l 

(14.211) 

~ P(~"y,) + C P(~,) + C P(~yu). (14.212) 
if1 j#l 

Bynhi$e ys~-~~ arguments as for receiver 2, we can bound P(~~i) I 
2- ; 1 . Hence the second term goes to 0 if R, < I(U; YI ). But 
by the data processing inequality and the degraded nature of the 
channel, I(U; YI ) 2 I( U; Y,), and hence the conditions of the 
theorem imply that the second term goes to 0. We can also bound 
the third term in the probability of error as 

p(iyv) = P((U(l), X(1, j), Y1) E A;‘) (14.213) 

= c P((U(l), X(1, j), Y,)) 
(u, X, Y,  EA:’ 

(14.214) 

= c PWWP(X(1, j)(uu))Pw,(uw (14.215) 
W, X, Y, IEAr’ 

5 c 2-n(H(U)-c)2-n(H(xIU)-~)2-~(~(y~t~)-E) (14.216) 

NJ, X, Y, EAr) 

52 n(HW, X, Y1)+c) 2- n(H(U)-c)2-n(H(XI(I)-a)2-n(H(YIIU)-~) (14.217) 

=2- n(Z(X; YIJU)-46) (14.218) 

Hence, if R, < 1(X, YI 1 U ), the third term in the probability of error 
goes to 0. Thus we can bound the probability of error 

p:)(1) I E + 2nR22-nUW; Y1)-3r) + @2-n(Z(X; YlIU)-4r) (14.219) 

13E (14.220) 
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if n is large enough and R, < Z(U; YI ) and R, < Z(X, YI 1 U). The 
above bounds show that we can decode the messages with total 
probability of error that goes to 0. Hence theres exists a sequence 
of good ((znR1, 2”R2), n) codes %‘E with probability of error going to 0. 

With this, we complete the proof of the achievability of the capacity 
region for the degraded broadcast channel. The proof of the converse is 
outlined in the exercises. Cl 

So far we have considered sending independent information to both 
receivers. But in certain situations, we wish to send common informa- 
tion to both the receivers. Let the rate at which we send common 
information be R,. Then we have the following obvious theorem: 

Theorem 14.6.3: Zf the rate pair (RI, R,) is achievable for a broadcast 
channel with independent information, then the rate triple (R,, R, - 
R,, R, - R,) with a common rate R, is achievable, provided that R, 5 
min(R,, R,). 

In the case of a degraded broadcast channel, we can do even better. 
Since by our coding scheme the better receiver always decodes all the 
information that is sent to the worst receiver, one need not reduce the 
amount of information sent to the better receiver when we have common 
information. Hence we have the following theorem: 

Theorem 14.6.4: If the rate pair (R,, R,) is achievable for a degraded 
broadcast channel, the rate triple (R,,, R,, R, - R,) is achievable for the 
channel with common information, provided that R, CR,. 

We will end this section by considering the example of the binary 
symmetric broadcast channel. 

Example 14.6.6: Consider a pair of binary symmetric channels with 
parameters p1 and p2 that form a broadcast channel as shown in Figure 
14.26. 

Without loss of generality in the capacity calculation, we can recast 
this channel as a physically degraded channel. We will assume that 
pr <p2 < 8. Then we can express a binary symmetric channel with 
parameter pz as a cascade of a binary symmetric channel with parame- 
ter p1 with another binary symmetric channel. Let the crossover prob- 
ability of the new channel be (Y. Then we must have 

pl(l-a)+(l-P,)~=P2* (14.221) 

or 



426 NETWORK ZNFORMATZON THEORY 

y2 

Figure 14.26. Binary symmetric broadcast channel. 

a-p2-p1 
l-zp, * 

(14.222) 

We now consider the auxiliary random variable in the definition of the 
capacity region. In this case, the cardinality of U is binary from the 
bound of the theorem. By symmetry, we connect U to X by another 
binary symmetric channel with parameter p9 as illustrated in Figure 
14.27. 

We can now calculate the rates in the capacity region. It is clear by 
symmetry that the distribution on U that maximizes the rates is the 
uniform distribution on (0, l}, so that 

w; Yz> = WY,) - WY,IU) (14.223) 

=l--wp*p,), (14.224) 

where 

p *p2 = PC1 -p2) + (1 - PIP2 - (14.225) 

Figure 14.27. Physically degraded binary symmetric broadcast channel. 
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Similarly, 

427 

m YJU) = H(Y,lU) - H(Y,IX, U) (14.226) 

= H(Y,lU) - H(Y#) (14.227) 

= H(P “PII - MP,), (14.228) 

where 

p*pl=P(l-p,)+(l-P)P,. (14.229) 

Plotting these points as a function of p, we obtain the capacity region in 
Figure 14.28. 

When p = 0, we have maximum information transfer to Y2, i.e., 
R, = 1 - H(p,) and R, = 0. When p = i, we have maximum information 
transfer to YI , i.e., R, = 1 - H( p1 ), and no information transfer to Yz. 
These values of p give us the corner points of the rate region. 

Example 14.6.6 (Gaussian broadcast channel): The Gaussian broad- 
cast channel is illustrated in Figure 14.29. We have shown it in the case 
where one output is a degraded version of the other output. Later, we 
will show that all Gaussian broadcast channels are equivalent to this 
type of degraded channel. 

Y,=X+Z,, (14.230) 

Yz=x+z,=Y,+z;, (14.231) 

where 2, - NO, N,) and Z$ - NO, N, - NJ 
Extending the results of this section to the Gaussian case, we can 

show that the capacity region of this channel is given by 

R2h 

Figure 14.28. Capacity region of binary symmetric broadcast channel. 
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Figure 14.29. Gaussian broadcast channel. 

(14.232) 

(14.233) 

where cy may be arbitrarily chosen (0 5 cy 5 1). The coding scheme that 
achieves this capacity region is outlined in Section 14.1.3. 

14.7 THE RELAY CHANNEL 

The relay channel is a channel in which there is one sender and one 
receiver with a number of intermediate nodes which act as relays to 
help the communication from the sender to the receiver. The simplest 
relay channel has only one intermediate or relay node. In this case the 
channel consists of four finite sets %, E1, 9 and CV1 and a collection of 
probability mass functions p( - , - Ix, x1) on 9 x ?!$, one for each (x, s, > E 
2 x Z&. The interpretation is that x is the input to the channel and y is 
the output of the channel, y1 is the relay’s observation and x, is the 
input symbol chosen by the relay, as shown in Figure 14.30. The 
problem is to find the capacity of the channel between the sender X and 
the receiver Y. 

The relay channel combines a broadcast channel (X to Y and YJ and 
a multiple access channel (X and X1 to Y). The capacity is known for the 
special case of the physically degraded relay channel. We will first prove 
an outer bound on the capacity of a general relay channel and later 
establish an achievable region for the degraded relay channel. 

Definition: A (2”R, n) code for a relay channel consists of a set of 
integers W = { 1,2, . . . , 2”R}, an encoding function 

Figwe 14.30. The relay channel. 
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X:(1,2,. . . ,2nR}+%n, (14.234) 

a set of relay functions { fi}r+ such that 

and a decoding function, 

g:%“-,{l,2 ,..., 2nR}. (14.236) 

Note that the definition of the encoding functions includes the non- 
anticipatory condition on the relay. The relay channel input is allowed 
to depend only on the past observations y 11, y12, . . . , y li _ 1. The channel 
is memoryless in the sense that (Y,, Yli) depends on the past only 
through the current transmitted symbols <x,,X,J Thus for any choice 
p(w), w  E W; and code choice X: { 1,2, . . . , 2”R} + Ey and relay functions 
{ fi} T= 1, the joint probability mass function on ‘W x %‘” x S?y x 3” x 9 9 
is given by 

Pb9 x, Xl, Y, Yl) 

= p(w) l-7 P(36iIW)PblilYI19 Y129 - ’ * , y&po$, Y&i, Xii) l (14*237) 
i=l 

If the message w  E [l, 2nR] is sent, let 

h(w) = F+{ g(Y) # w  1 w  sent} (14.238) 

denote the conditional probability of error. We define the average 
probability of error of the code as 

p$’ = $ c h(w). 
W 

(14.239) 

The probability of error is calculated under the uniform distribution 
over the codewords w  E { 1, 2nR}. The rate R is said to be achievable by 
the relay channel if there exists a sequence of <2”“, n) codes with 
P%’ * 0. The capacity C of a relay channel is the supremum of the set of 
achievable rates. 

We first give an upper bound on the capacity of the relay channel. 

Theorem 14.7.1: For any relay channel (3? x 2&, p( y, yr(x, x1), 9 x 9I> 
the capacity C is bounded above by 

C 5 p;uFl) min{l(X, Xl; Y), 1(x, Y, YJX,)} . (14.240) 
, 
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Proof: The proof is a direct consequence of a more general max flow 
min cut theorem to be given in Section 14.10. Cl 

This upper bound has a nice max flow min cut interpretation. The 
first term in (14.240) upper bounds the maximum rate of information 
transfer from senders X and XI to receiver Y. The second terms bound 
the rate from X to Y and YI. 

We now consider a family of relay channels in which the relay 
receiver is better than the ultimate receiver Y in the sense defined 
below. Here the max flow min cut upper bound in the (14.240) is 
achieved. 

Definition: The relay channel (% x ZI, p(y, yllx, x1), 9 X %$) is said to 
be physically degraded if p(y, y&, x,) can be written in the form 

p(y, Y11~,~1)=P(Y11~,~1)P(YIY1,~1). 

Thus Y is a random degradation of the relay signal YI. 

For the physically degraded 
the following theorem. 

relay channel, the capacity is given bY 

(14.241) 

Theorem 14.7.2: The capacity C of a physically degraded relay channel 
is given by 

C = sup min{l(X, XI; Y), 1(X; YI IX, )} , 
P(& Xl) 

(14.242) 

where the supremum is over all joint distributions on S?’ x 2& 

Proof (Converse): The proof follows from Theorem 14.7.1 and by 
degradedness, since for the degraded relay channel, 1(X, Y, YI 1X1) = 
1(x; Yl Ix, ). 

Achievability. The proof of achievability involves a combination of the 
following basic techniques: (1) random coding, (2) list codes, (3) 
Slepian-Wolf partitioning, (4) coding for the cooperative multiple 
access channel, (5) superposition coding, and (6) block Markov 
encoding at the relay and transmitter. 
We provide only an outline of the proof. 

Outline of achievability. We consider B blocks of transmission, each 
of n symbols. A sequence of B - 1 indices, Wi E { 1, . . . , 2nR}, i = 
1,2,. . . , B - 1 will be sent over the channel in nB transmissions. 
(Note that as B + 00, for a fixed n, the rate R(B - 1)/B is arbitrarily 
close to R.) 
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We define a doubly-indexed set of codewords: 

z = {dwls), XI(S)} : w  E (1, 2nR}, s E (1, 2nRO}, XE 8?“, x, E %I . 

(14.243) 

We will also need a partition 

~={S1,S2,..., S2dzo} of “u’= {1,2,. . . , 2nR) (14.244) 

into 2nRo cells, with Si fl Sj = 4, i #j, and U Si = ‘K The partition 
will enable us to send side information to the receiver in the 
manner of Slepian and Wolf [2551. 

Generation of random code. Fix p(=z&(~)x, ). 
First generate at random 2nRo i.i.d. n-sequences in Zzpy, each 

drawn according to p(xl) = lly=, p(X,i). Index them as x1(s), s E 
{1,2,. . . , 2”Ro}. For each x1(s), generate 2nR conditionally indepen- 
dent n-sequences x(w Is), w  E { 1,2, . . . ,2”}, drawn independently 
according to p(xlx,(s)) = l-l:=, p(3Gi(;Xli(S)). This defines the random 
codebook Ce = {x(wls), x1(s)}. 

The random partition 9’ = {S,, S,, . . . , SznRO} of { 1,2, . . . , 2nR} 
is defined as follows. Let each integer w  E { 1,2, . . . , 2nR} be as- 
signed independently, according to a uniform distribution over the 
indices s = 1,2, . . . , anRo, to cells S,. 

Encoding. Let wi E {1,2, . . . , 2nR} be the new index to be sent in 
block i, and let Si be defined as the partition corresponding to wi_ 1, 
i.e., wi-l f s*i* The encoder sends X( W i IS~ ). The relay has an 
estimate pi _ 1 of the previous index Wi _ 1. (This will be made 
precise in the decoding section.) Assume that S,_1 E Sii. The relay 
encoder sends xl(~i) in block i. 

Decoding. We assume that at the end of block i - 1, the receiver 
LOWS (We, w,, . . . , Wi-0) and (So, s2,. . . , Si-1) and the relay ~IIOWS 

(WI, w2, * * - 3 Wi-r) and consequently (sl, s2, . . . , Si). 

The decoding procedures at the end of block i are as follows: 

1. Knowing Si and upon receiving yl( i), the relay receiver estimates 
the message of the transmitter pi = w  if and only if there exists a 
unique w  such that (X(W ISi), X1(Si), y&i)) are jointly E-typical. 
Using Theorem 14.2.3, it can be shown that Si = Wi with an 
arbitrarily small probability of error if 

R < W Yl Ix, 1 (14.245) 

and n is sufficiently large. 
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2. The receiver declares that ii = s was sent iff there exists one and 
only one s such that (x1(s), y(i)) are jointly E-typical. From 
Theorem 14.2.1, we know that Si can be decoded with arbitrarily 
small probability of error if 

R, < I(&; Y) (14.246) 

and n is sufficiently large. 
3. Assuming that Si is decoded correctly at the receiver, the receiver 

constructs a list LZ(y(i - 1)) of indices that the receiver considers to 
be jointly typical with y(i - 1) in the (i - 1)th block. The receiver 
then declares pi _ 1 = w  as the index sent in block i - 1 if there is a 
unique w  in SSi n JZ(y(i - 1)). If n is sticiently large and if 

Rd(X;YIX,)+R,, (14.247) 

then pi_, = wi -1 with arbitrarily small probability of error. Com- 
bining the two constraints (14.246) and (14.247), R, drops out, 
leaving 

R < I@; YJX,) + I(&; Y) = I(x, xl; Y) . (14.248) 

For a detailed analysis of the probability of error, the reader is 
referred to Cover and El Gamal [671. Cl 

Theorem 14.7.2 can also shown to be the capacity for the following 
classes of relay channels. 

(i) Reversely degraded relay channel, i.e., 

P(Y~Yll~~~l)=P(Yl~~~l)P(YllY~~l). (14.249) 

(ii) Relay channel with feedback. 
(iii) Deterministic relay channel, 

Yl=flGQ, y =gkx,). 

14.8 SOURCE CODING WITH SIDE INFORMATION 

(14.250) 

We now consider the distributed source coding problem where two 
random variables X and Y are encoded separately but only X is to be 
recovered. We now ask how many bits R, are required to describe X if 
we are allowed R, bits to describe Y. 
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If R, > H(Y), then Y can be described perfectly, and by the results of 
Slepian-Wolf coding, R 1 = H(XIY) bits suffice to describe X. At the other 
extreme, if R, = 0, we must describe X without any help, and R, = H(X) 
bits are then necessary to describe X. In general, we will use R, = 
I(Y, i’> bits to describe an approximate version of Y. This will allow us to 
describe X using H(X1 Y) bits in the presence of side information Y. The 
following theorem is consistent with this intuition. 

Theorem 14.8.1: Let (X, Y) -p(x, y). If Y is encoded at rate R, and X is 
encoded at rate R,, we can recover X with an arbitrarily small probabili- 
ty of error if and only if 

R, zH(XIU), (14.251) 

R, L I(y; U) (14.252) 

for some joint probability mass function p(x, y)p(ul y), where 1% 15 
191+2. 

We prove this theorem in two parts. We begin with the converse, in 
which we show that for any encoding scheme that has a small probabili- 
ty of error, we can find a random variable U with a joint probability 
mass function as in the theorem. 

Proof (Converse): Consider any source code for Figure 14.31. The 
source code consists of mappings f,(X” ) and g, (Y” ) such that the rates of 
f, and g, are less than R, and R,, respectively, and a decoding mapping 
h, such that 

P:’ = Pr{h,( f,<X”), g,W”)) +Xnl < E l (14.253) 

Define new random variables S = f,(X”> and 2’ = g,(Y” ). Then since we 
can recover X” from S and T with low probability of error, we have, by 
Fano’s inequality, 

H(x”IS, T)s ne, . (14.254) 

Figure 14.31. Encoding with side information. 



434 

Then 

NETWORK ZNFORMATZON THEORY 

nR,2 H(T) (14.255) 

(b) 
z I(Y”; T) (14.256) 

= i I(Yi; TIY,, .  .  l ,  Y&l) 

i=l 

(14.257) 

= i I(y,;T,Y l,"', yi-l) 
i=l 

(~’ ~ I(Y,; Ui) (14.259) 
i=l 

where 

(a) follows from the fact that the range of g, is { 1,2, . . . , 2”2}, 
(b) follows from the properties of mutual information, 
(c) follows from the chain rule and the fact that Yi is independent of 

YIP * ’ * 9 Yi-l and hence I(Yi; YI, . . . , Yi_l) = 0, and 
(d) follows if we define Vi = (T, Yl , . . . , Yi _ 1). 

We also have another chain for R, , 

(a) 
nR, 1 H(S) 

(b 1 
2 H(SlT) 

= H(SlT) + H(X”Is, T) - H(XnJS, T) 

(14.261) 

(14.262) 

2 HW, SIT) - nc, (14.263) 

(E)H(X” 1 T) - nen 

g ~ H(XiIT,X,, X- )--a -*'9 i 1 n 
i=l 

%) 2 H(XiIT,Ximl > Y"-'>-- ne n 

(14.260) 

(14.264) 

(14.265) 

(14.266) 
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(2) i H(XJT, Yi-l) - TlE n 
i=l 

(14.267) 

” i H(xiI Vi) - ne, (14.268) 
i-l 

where 

(a) follows from the fact that the range of S is { 1,2, . . . , 2nR1}, 
(b) follows from the fact that conditioning reduces entropy, 
(c) from Fano’s inequality, 
(d) from the chain rule and the fact that S is a function of X”, 
(e) from the chain rule for entropy, 
(f) from the fact that conditioning reduces entropy, 
(g) from the (subtle) fact that Xi-;,(T, Yi-l)+X’-l forms a Markov 

chain since Xi does not contain any information about Xi-l that is 
not there in Y’-’ and T, and 

(h) follows from the definition of U. 

Also, since Xi contains no more information about Vi than is present in 
Yi, it follows that Xi + Yi + Vi forms a Markov chain. Thus we have the 
following inequalities: 

RI 2 L i k?(XJU) 
n i=l i 

R, 1 ~ ~ I(Yi; Vi). 
c 1 

(14.269) 

(14.270) 

We now introduce an timesharing random variable Q, so that we can 
rewrite these equations as 

R,d &3(X 
n i=l i 

R, 2 i 3 I(Yi 
i 1 

Vi, Q=i)=H(XQIUQ, &I (14.271) 

Ui(Q=i)=I(YQ; V,lQ> (14.272) 

Now since Q is independent of Ys (the distribution of Yi does not depend 
on i), we have 

I(Y,;U,IQ)=I(Y,;U,,Q)-I(Y,;Q)=I(Y,;U,,Q). (14.273) 

Now Xs and YQ have the joint distribution p(x, y) in the theorem. 
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Defining U = (Uo, Q), X = Xo, and Y = Ye, we have shown the existence 
of a random variable U such that 

R, ~WXJU), (14.274) 

R,rI(Y;U) (14.275) 

for any encoding scheme 
converse is proved. Cl 

that has a low probability of error. Thus the 

Before we proceed to the proof of the achievability of this pair of 
rates, we will need a new lemma about strong typicality and Markov 
chains. Recall the definition of strong typicality for a triple of random 
variables X, Y and 2. A triplet of sequences xn, yn, zn is said to be 
e-strongly typical if 

1 
n Ma, b, cIxn, y: z”) - p(a, b, c> < 

,2&p, ’ (14s276) 

In particular, this implies that (x”, y” ) are jointly strongly typical and 
that ( y”, z”) are also jointly strongly typical. But the converse is not 
true: the fact that (x”, y”) E AT’“‘(X, Y) and (y”, x”) E AT’“‘(Y, 2) does 
not in general imply that (xn, yn, z”) E AT’“‘(X, Y, 2). But if X+ Y+ 2 
forms a Markov chain, this implication is true. We state this as a lemma 
without proof [28,83]. 

Lemma 14.8.1: Let (X, Y, 2) form a Markov chain X-+ Y+ 2, i.e., 
p(x, y, x) =p(x, y)p(zly>. If for a given (y”, z”) EAT’“‘(Y, Z), X” is drawn 
- IlyE p(xilyi), then Pr{(X”, y”, z”) E AT’“‘(X, Y, 2)) > 1 - E for n sufici- 
ently large. 

Remark: The theorem is true from the strong law of large numbers 
if X” - llyzl p(xi 1 yi, ZJ The Markovity of X-, Y+ 2 is used to show 
that X” - p(xi 1 yi) is sufficient for the same conclusion. 

We now outline the proof of achievability in Theorem 14.8.1. 

Proof (Achievability in Theorem 14.8.1): Fix p(u 1 y). Calculate 
p(u) = c, PC y)p(ul y). 

Generation of codebooks. Generate ZnR2 independent codewords of 
length n, U(w,), wo, E { 1,2, . . . , 2nR2} according to llyzl p(ui). 

Randomly bin all the X” sequences into 2” 1 bins by indepen- 
dently generating an index b uniformly distributed on 
{1,2,. . . , 2nR1} for each X”. Let B(i) denote the set of X” sequences 
allotted to bin i. 
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Encoding. The X sender sends the index i of the bin in which X” falls. 
The Y sender looks for an index s such that (Y”, U”(s)) E 

AT’“‘(Y, U). If there is more than one such s, it sends the least. If 
there is no such U”(s) in the codebook, it sends s = 1. 

Decoding. The receiver looks for a unique X” E B(i) such that 
(X”, U”(s)) E Af”‘(X, U). If there is none or more than one, it 
declares an error. 

Analysis of the probability of error. The various sources of error are 
as follows: 

1. The pair (X”, Y” ) generated by the source is not typical. The 
probability of this is small if n is large. Hence, without loss of 
generality, we can condition on the event that the source produces 
a particular typical sequence (cF, y”) E A$‘“! 

2. The sequence Y” is typical, but there does not exist a U”(s) in the 
codebook which is jointly typical with it. The probability of this is 
small from the arguments of Section 13.6, where we showed that if 
there are enough codewords, i.e., if 

R,>I(Y;U), (14.277) 

then we are very likely to find a codeword that is jointly strongly 
typical with the given source sequence. 

3. The codeword V(S) is jointly typical with y” but not with x”. But 
by Lemma 14.8.1, the probability of this is small since X+ Y+ U 
forms a Markov chain. 

4. We also have an error if there exists another typical X” E B(i) 
which is jointly typical with U”(s). The probability that any other 
X” is jointly typical with U”(s) is less than 2-n(z(U’X)-3r\ and 
therefore the probability of this kind of error is bounded above by 

IB(i) nAT(n)(x)J2-n(l(X; u)-3C) 5 2n(H(x)+r)2-nR12-n(z(x; U)-3~) , 

(14.278) 

which goes to 0 if R, > H(Xl U). 

Hence it is likely that the actual source sequence X” is jointly typical 
with U”(s) and that no other typical source sequence in the same bin is 
also jointly typical with U”(s). We can achieve an arbitrarily low 
probability of error with an appropriate choice of n and E, and this 
completes the proof of achievability. Cl 
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14.9 RATE DISTORTION WITH SIDE INFORMATION 

We know that R(D) bits are sufficient to describe X within distortion D. 
We now ask how many bits are required given side information Y. 

We will begin with a few definitions. Let (Xi, Yi> be i.i.d. - p(x, y) and 
encoded as shown in Figure 14.32. 

Definition: The rate distortion function with side information R,(D) is 
defined as the minimum rate required to achieve distortion D if the side 
information Y is available to the decoder. Precisely, R,(D) is the 
infimum of rates R such that there exist maps i, : Z” + { 1, . . . , 2nR}, 
g,:w x (1,. . . , 2nR} + gn such that 

lim sup Ed(X”, g,(Y”, i,vr” ))I 5 D . 
n-bm 

(14.279) 

Clearly, since the side information can only help, we have R.(D) 5 
R(D). For the case of zero distortion, this is the Slepian-Wolf problem 
and we will need H(XIY) bits. Hence R,(O) = H(XIY). We wish to 
determine the entire curve R,(D). The result can be expressed in the 
following theorem: 

Theorem 14.9.1 (Rate distortion with side information): Let (X, Y) be 
drawn Cd. - p(x, y) and Let d(P, P) = A I& d(q, ii) be given. The 
rate distortion function with side information is 

R,(D) = Prnj;j mjnU(X, W) - I(Y; W)) (14.280) 

where the minimization is over all functions f : 9 x ?V+ % and condi- 
tional probability mass functions p(w(x), 1 ?V~S I%‘( + 1, such that 

c 2 c pb, y)p(wId db, fly, w)) -( D . 
x w  Y  

(14.281) 

The function f in the theorem corresponds to the decoding map that 
maps the encoded version of the X symbols and the side information Y to 

Figure 14.32. Rate distortion with side information. 
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the output alphabet. We minimize over all conditional distributions on 
W and functions f such that the expected distortion for the joint 
distribution is less than D. 

We first prove the converse after considering some of the properties of 
the function R,(D) defined in (14.280). 

Lemma 14.9.1: The rate distortion function with side information 
R.(D) defined in (14.280) is a non-increasing convex function of D. 

Proof: The monotonicity of R.(D) follows immediately from the fact 
that the domain of minimization in the definition of R,(D) increases 
with D. 

As in the case of rate distortion without side information, we expect 
R,(D) to be convex. However, the proof of convexity is more involved 
because of the double rather than single minimization in the definition 
of R.(D) in (14.280). We outline the proof here. 

Let D, and D, be two values of the distortion and let WI, fi and Wz, fi 
be the corresponding random variables and functions that achieve the 
minima in the definitions of Ry(D1) and R.(D,), respectively. Let Q be a 
random variable independent of X, Y, WI and W, which takes on the 
value 1 with probability A and the value 2 with probability 1 - A. 

Define W = (Q, Ws) and let f( W, Y) = fQ( Wo, Y). Specifically fl W, Y) = 
f,< WI, Y) with probability A and fl W, Y) = f,( W,, Y) with probability 
1 - A. Then the distortion becomes 

D = Ed(X, Jt) (14.282) 

= AEd(X, f,<W,, Y)) + Cl- NE&X, f,(w,, Y)) (14.283) 

=AD,+(l-A)D,, (14.284) 

and (14.280) becomes 

I(W,X) - I(W, Y) = H(X) - H(XJW) -H(Y) + H(Y(W) (14.285) 

=H(X)-H(XlW,,Q)-H(Y)+ H(YIW,,Q) (14.286) 

= H(X) - AH(XI WI) - (1 - A)H(X( Wz> 

-H(Y) + AH(YIW,) + (I- NH(YIW,) (14.287) 

= MI(W,, X) - WV,; y)) 

+ Cl- A)(I(W,,X) - I<&; Y)) , (14.288) 
and hence 
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R,(D) = min (I(U;X)-I(U;Y)) (14.289) 
U :EdsD 

IZ(W,X)-Z(W, Y) (14.290) 

= h(l(W~,X) - WV,; Y)) + (1 - AU~WJ) - Icw,; YN 

= AR.@,) + (1 - W&U&), (14.291) 

proving the convexity of R,(D). Cl 

We are now in a position to prove the converse to the conditional rate 
distortion theorem. 

Proof (Converse to Theorem 14.9.1): Consider any rate distortion 
code with side information. Let the encoding function be f, : Zn+ 
(132 , . . . , 2nR}. Let the decoding function be g, : T!P x { 1,2, . . . , 2"R} + 
k” and let gni: qn x {1,2, . . . , 2nR} + k denote the ith symbol produced 
by the decoding function. Let 2’ = f,<x”) denote the encoded version of 
X”. We must show that if E&(X”, g,(Y”, f,(X”))) I D, then R 2 R,(D). - ._ ._ 

We have the following chain of inequalities: 

(a) 
r&z H(T) 

(2 H(TIY”) 

21(X”; TIY”) 

~ ~ Z(Xi; TIY”,X’-‘) 
i=l 

- 
i=l 

(~’ ~ H(Xi)Yi) - H(X i 
i-l 

~ ~ H(Xi)Yi)- H(X i 
i==l 

T, Y’-‘, Yip Yy+l, Xi-‘) 

T, Y’-‘, Yip Yy+l) 

‘~’ ~ H(Xi(Yi) - H(XiIwi, yi) 
i=l 

‘~ ~ Z(Xi; Wily) i 
i=l 

(14.292) 

(14.293) 

(14.294) 

(14.295) 

(14.296) 

(14.297) 

(14.298) 

(14.299) 

(14.300) 
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= i H(W,(y,) - H(W,(Xi, Yi> 
i=l 

(~ ~ H(Wi(Yi) -H(Wilxi) 
i=l 

= i H(Wi)-H(WiIX,>-H(wi>+H(w,(y,) 
i=l 

= i I(Wi; Xi> - I(Wi; Yi) 
i=l 

2 2 Ry(Ed(Xi, g’,i(w, yi))) 
i=l 

= Tit $44 R,(Ed(X,, g’,itwi, yi))) 
i 

Cj) 

2 nR,(E k $ldCXi, g',i(Wi, Yi))) 
i 

(k) 

where 

441 

(14.301) 

(14.302) 

(14.303) 

(14.304) 

(14.305) 

(14.306) 

(14.307) 

(14.308) 

(a) follows from the fact that the range of 2’ is { 1,2, . . . , 2nR}, 
(b) from the fact that conditioning reduces entropy, 
(c) from the chain rule for mutual information, 
(d) from the fact that Xi is independent of the past and future Y’s and 

XS given Yi, 
(e) from the fact that conditioning reduces entropy, 
(f) follows by defining Wi = (Z’, Y”-‘, Yy+l ), 
(g) follows from the defintion of mutual information, 
(h) follows from the fact that since Yi depends only on Xi and is 

conditionally independent of 2’ and the past and future Y’s, and 
therefore Wi + Xi + Yi forms a Markov chain, 

(i) follows from the definition of the (information) conditional rate 
distortion function, since % = g,i( T, Y” ) e g’,i( Wi, Yi >, and hence 
I( Wi ; Xi ) - I( Wi ; Yi ) 2 minw : Ed(x, 2)s~~ I( W; X) - I( W; Y) = R,(D, ), 

(j> follows from Jensen’s inequality and the convexity of the condi- 
tional rate distortion function (Lemma 14.9.1), and 

(k) follows from the definition of D = E A C y= 1 d(Xi , I). Cl 

It is easy to see the parallels between this converse and the converse 
for rate distortion without side information (Section 13.4). The proof of 
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achievability is also parallel to the proof of the rate distortion theorem 
using strong typicality. However, instead of sending the index of the 
codeword that is jointly typical with the source, we divide these 
codewords into bins and send the bin index instead. If the number of 
codewords in each bin is small enough, then the side information can be 
used to isolate the particular codeword in the bin at the receiver. Hence 
again we are combining random binning with rate distortion encoding to 
find a jointly typical reproduction codeword. We outline the details of 
the proof below. 

Proof (Achievability of Theorem 14.9.1): Fixp(w Ix) and the function 
flw, y). Calculate p(w) = C, p(x)p(w Ix). 

Generation of codebook. Let R, = I(X, W) + E. Generate ZnR i.i.d. 
codewords W”(S) -lly=, p(zq), and index them by s E 
{1,2, . . . , znR1}* 

Let R, = 1(X, W) - ICY, W) + 5~. Randomly assign the indices 
s E {1,2,. . . , ZnR1} to one of ZnR 2 bins using a uniform distribution 
over the bins. Let B(i) denote the indices assigned to bin i. There 
are approximately 2n(R1-R2) indices in each bin. 

Encoding. Given a source sequence X”, the encoder looks for a 
codeword W”(s) such that (X”, W”(s)) E AT’“! If there is no such W”, 
the encoder sets s = 1. If there is more than one such s, the encoder 
uses the lowest s. The encoder sends the index of the bin in which s 
belongs. 

Decoding. The decoder looks for a W”(s) such that s E B(i) and 
(W”(s), _y”> E AT’“‘. If he finds a unique s, he then calculates p, 
where Xi = fl Wi, Yi). If he does not find any such s or more than 
one such s, he sets p = P, where in is an arbitrary sequence in 2”. 
It does not matter which default sequence is used; we will show 
that the probability of this event is small. 

Analysis of the 
events: 

probability of error. As usual, we have various error 

1. The pair (X”, Y” ) $Af”! The probability of this event is small for 
large enough n by the weak law of large numbers. 

2. The sequence X” is typical, but there does not exist an s such that 
(X”, W”(s)) E A;‘“! As in the proof of the rate distortion theorem, 
the probability of this event is small if 

R, >I(W,X). (14.309) 

3. The pair of sequences (X”, W”(s)) E AT’“’ but (W”(s), Y”)eAf”‘, 
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i.e., the codeword is not jointly typical with the Y” sequence. By 
the Markov lemma (Lemma 14.&l), the probability of this event is 
small if n is large enough. 

4. There exists another s’ with the same bin index such that 
(WV), Y”) E AT’“! Since the probability that a randomly chosen 
W” is jointly typical with Y” is = 2-nz(Y’ “‘, the probability that 
there is another W” in the same bin that is typical with Y” is 
bounded by the number of codewords in the bin times the prob- 
ability of joint typicality, i.e., 

(14.310) 

which goes to zero since R, - R, c I(Y, W) - 3~. 
5. If the index s is decoded correctly, then (X”, W”(s)) E AT’“! By item 

1, we can assume that (X”, Y”) EAT’“! Thus by the Markov lemma, 
we have (X”, Y”, W”) E AT’“’ and therefore the empirical joint 
distribution is close to the original distribution p(x, y)p(w Ix) that 
we started with, and hence (X”, p) will have a joint distribution 
that is close to the distribution that achieves distortion D. 

Hence with high probability, the decoder will produce e such that the 
distortion between X” and e is close to nD. This completes the proof of 
the theorem. 0 

The reader is referred to Wyner and Ziv [284] for the details of the 
proof. 

After the discussion of the various situations of compressing distrib- 
uted data, it might be expected that the problem is almost completely 
solved. But unfortunately this is not true. An immediate generalization 

I I 
X” z- Encoder 1 D 

i(x”) E 2”RI 

Y” >A Encoder 2 D 
i(p) E 2nR2 

Decoder 1 z (in, h) 

Figure 14.33. Rate distortion for two correlated sources. 



NETWORK INFORMATION THEORY 

of all the above problems is the rate distortion problem for correlated 
sources, illustrated in Figure 14.33. This is essentially the Slepian-Wolf 
problem with distortion in both X and Y. It is easy to see that the three 
distributed source coding problems considered above are all special 
cases of this setup. Unlike the earlier problems, though, this problem 
has not yet been solved and the general rate distortion region remains 
unknown. 

14.10 GENERAL MULTITERMINAL NETWORKS 

We conclude this chapter by considering a general multiterminal net- 
work of senders and receivers and deriving some bounds on the rates 
achievable for communication in such a network. 

A general multiterminal network is illustrated in Figure 14.34. In 
this section, superscripts denote node indices and subscripts denote time 
indices. There are m nodes, and node i has an associated transmitted 
variable Xi’ and a received variable Y”‘. The node i sends information at 
rate R’“’ to node j. We assume that all the messages WC” being sent 
from node i to node j are independent and uniformly distributed over 
their respective ranges { 1,2, . . . , ZnR(“‘}. 

The channel is represented by the channel transition function 
p(p), . . . , p’ldl’, . . . , dm) ), which is the conditional probability mass 
function of the outputs given the inputs. This probability transition 
function captures the effects of the noise and the interference in the 
network. The channel is assumed to be memoryless, i.e., the outputs at 
any time instant depend only the current inputs and are conditionally 
independent of the past inputs. 

S SC 0 

l (&r Y,) 

Figure 14.34. A general multiterminal network. 
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Corresponding to each transmitter-receiver node pair is a message 
wCU) E {1,2, . . . , 2nR(ti) }. The input symbol Xci’ at node i depends on 
W”l,jE{l,..., m}, and also on the past values of the received symbol 
pi’ at node i. Hence an encoding scheme of block length n consists of a 
set of encoding and decoding functions, one for each node: 

. Encoders. x’,“(W’il’, WCi2’, . . . , W”“‘, Yy’, Y’!:‘, . . . , Y’Lll), k= 
1 9 ’ * * 9 n. The encoder maps the messages and past received sym- 
bols into the symbol X(,i) transmitted at time k. 

. Decoders. W’j”‘(Yi’, . . . , Y’,“, WCil’, . . . , Wtim)), j = 1,2, . . . , m. The 
decoder j at node i maps the received symbols in each block and his 
own transmitted information to form estimates of the messages 
intended for him from node j, j = 1,2, . . . , m. 

Associated with every pair of nodes is a rate and a corresponding 
probability of error that the message will not be decoded correctly, 

p$'(G) =pr(@r(ti)(y(j', wCj1: ... , wUm))+ w(G)), (14.311) 

where pr)(ii) is defined under the assumption that all the messages are 
independent and uniformly distributed over their respective ranges. 

A set of rates {I?“‘} is said to be achievable if there exist encoders 
and decoders with block length n with Pr”ti’+ 0 as n + 00 for all 
i, j E (1,2, . . . , m>. 

We use this formulation to derive an upper bound on the flow of 
information in any multiterminal network. We divide the nodes into two 
sets, S and the complement SC. We now bound the rate of flow of 
information from nodes in S to nodes in SC. 

Theorem 14.10.1: If the information rates (R’“‘) are achievable, then 
there exists some joint probability distribution p(x”), xC2), . . . , xCm)), such 
that 

(14.312) 

for all S C {1,2, . . . , m>. Thus the total rate of flow of information across 
cut-sets is bounded by the conditional mutual information. 

Proof: The proof follows the same lines as the proof of the converse 
for the multiple access channel. Let T = {(i, j): i E S, j E SC} be the set 
of links that cross from S to SC, and let T” be all the other links in the 
network. Then 



n 2 R(U) 

iES, j&SC 

z 2 H(W”“) 

iES, jESc 

($&W(T)) 

$(W’T),W(TC)) 

= I( wtT); Yy), . . . , y’,““‘I WTC’) 

Cd) 
I I( WtT); Vy), . . . , F!f”‘I WtTc’) + ne, 

(e) 
= 

(8) 
I 

- H(Yy(Y(lsc), . * . , Y’fTi, WcTC’, WcT)) + ne, 

2 H(YylYy ? * * - , 
k=l 

Yyf;, wCTC’, xy’) 

(h) 
I 

- H(Yy(Yy), . . . , Y’ks_“:, WcTC), WcT), Xi”, Xr”) + ne, (14.322) 

i H(y’,sc’lXfc’) - H(r’IXr’, X,“‘) + nE (14.323) 
k=l 

n 

n 

= C I(tif); *c’l~sc)) + m n 
k=l 

+ H( w(TqYyC), . . . , PnSC ), WCTC’) 

NETWORK ZNFORh4ATZON THEORY 

(14.313) 

(14.314) 

(14.315) 

(14.316) 

(14.317) 

(14.318) 

(14.319) 

(14.320) 

(14.321) 

(14.324) 

(i) 1 n 
=n- n zl I(&:‘; ~~c)l&~c’, Q = k) + ne n 

%1(X$ pF)IXz’), Q) + ne, 

= n(H(y’BSc)I~~), Q) - H(F~c’IX’$“, Pi”, Q)) + nq, 

(k) 

(14.325) 

(14.326) 

(14.327) 

5 n(H(~~‘l*~c’) - H(~~‘IX!~‘, X”“, Q)) + nq, (14.328) 

(0 
5 n(H(F~‘IX~c’) - H(y’B”c)Ix(gs), 2:“)) + nc, (14.329) 

= nI(Pi’; y’B”“‘lP~c’) + ne, , (14.330) 
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where 

(a) follows from the fact that the messages WC” are uniformly 
distributed over their respective ranges { 1,2, . . . ,Z”@“)}, 

(b) follows from the definition of WCT) = { W’“’ : i E S, j E SC} and the 
fact that the messages are independent, 

(c) follows f rom the independence of the messages for 2’ and T”, 
(d) follows f rom Fano’s inequality since the messages W’*) can be 

decoded from Y(s) and WfTc), 
(e) is the chain rule for mutual information, 
(f) follows from the definition of mutual information, 
(g) follows from the fact that Xfc’ 

symbols Y@” 
is a function of the past received 

and the messages WCTC) and the fact that adding 
conditioning reduces the second term, 

(h) from the fact that y’ksc) depends only on the current input symbols 
Xr’ and Xr), 

(i) follows after we introduce a new timesharing random variable Q 
uniformly distributed on {1,2, . . . , n}, 

(j) follows from the definition of mutual information, 
(k) follows f rom the fact that conditioning reduces entropy, and 
(1) follows from the fact that ptc’ depends only the inputs Xl) and 

Xrc) and is conditionally independent of Q. 

Thus there exist random variables X@’ and XCSc) with some arbitrary 
joint distribution which satisfy the inequalities of the theorem. Cl 

The theorem has a simple max-flow-min-cut interpretation. The rate 
of flow of information across any boundary is less than the mutual 
information between the inputs on one side of the boundary and the 
outputs on the other side, conditioned on the inputs on the other side. 

The problem of information flow in networks would be solved if the 
bounds of the theorem were achievable. But unfortunately these bounds 
are not achievable even for some simple channels. We now apply these 
bounds to a few of the channels that we have considered earlier. 

l Multiple access channel. The multiple access channel is a network 
with many input nodes and one output node. For the case of a 
two-user multiple access channel, the bounds of Theorem 14.10.1 
reduce to 

R, 5 ex~; YIX2)) (14.331) 

R+I(X,; YIX,), (14.332) 

R,+R,~I(X,,X,;Y) (14.333) 
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Figure 14.35. The relay channel. 

for some joint distribution p(xl , x&( y 1x1, x2>. These bounds coin- 
cide with the capacity region if we restrict the input distribution to 
be a product distribution and take the convex hull (Theorem 
14.3.1). 

l Relay channel. For the relay channel, these bounds give the upper 
bound of Theorem 14.7.1 with different choices of subsets as shown 
in Figure 14.35. Thus 

C 5 sup min{l(X, Xl; Y), 1(X; Y, Y1 IX, )} . (14.334) 
Pk Xl) 

This upper bound is the capacity of a physically degraded relay 
channel, and for the relay channel with feedback [67]. 

To complement our discussion of a general network, we should 
mention two features of single user channels that do not apply to a 
multi-user network. 

. The source channel separation theorem. In Section 8.13, we dis- 
cussed the source channel separation theorem, which proves that 
we can transmit the source noiselessly over the channel if and only 
if the entropy rate is less than the channel capacity. This allows us 
to characterize a source by a single number (the entropy rate) and 
the channel by a single number (the capacity). 

What about the multi-user case? We would expect that a distrib- 
uted source could be transmitted over a channel if and only if the 
rate region for the noiseless coding of the source lay within the 
capacity region of the channel. To be specific, consider the trans- 
mission of a distributed source over a multiple access channel, as 
shown in Figure 14.36. Combining the results of Slepian-Wolf 
encoding with the capacity results for the multiple access channel, 
we can show that we can transmit the source over the channel and 
recover it with a low probability of error if 
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u -x, 

Pw,, +,I = Y‘(G) 

If -x, )I 

Figure 14.36. Transmission of correlated sources over a multiple access channel. 

MU,V)~I(x,,x,;Y,Q) (14.337) 

for some distribution p( q)p(x, 1 ~)JI(x, 1 q)p( y 1x1, x2 1. This condition 
is equivalent to saying that the Slepian-Wolf rate region of the 
source has a non-empty intersection with the capacity region of the 
multiple access channel. 

But is this condition also necessary? No, as a simple example 
illustrates. Consider the transmission of the source of Example 
14.4 over the binary erasure multiple access channel (Example 
14.3). The Slepian-Wolf region does not intersect the capacity 
region, yet it is simple to devise a scheme that allows the source to 
be transmitted over the channel. We just let XI = U, and X, = V, 
and the value of Y will tell us the pair (U, V) with no error. Thus 
the conditions (14.337) are not necessary. 

The reason for the failure of the source channel separation 
theorem lies in the fact that the capacity of the multiple access 
channel increases with the correlation between the inputs of the 
channel. Therefore, to maximize the capacity, one should preserve 
the correlation between the inputs of the channel. Slepian-Wolf 
encoding, on the other hand, gets rid of the correlation. Cover, El 
Gamal and Salehi [69] proposed an achievable region for transmis- 
sion of a correlated source over a multiple access channel based on 
the idea of preserving the correlation. Han and Costa [131] have 
proposed a similar region for the transmission of a correlated 
source over a broadcast channel. 
Capacity regions with feedback. Theorem 8.12.1 shows that feed- 
back does not increase the capacity of a single user discrete 
memoryless channel. For channels with memory, on the other 
hand, feedback enables the sender to predict something about the 
noise and to combat it more effectively, thus increasing capacity. 
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What about multi-user channels? Rather surprisingly, feedback 
does increase the capacity region of multi-user channels, even 
when the channels are memoryless. This was first shown by 
Gaarder and Wolf [ 1171, who showed how feedback helps increase 
the capacity of the binary erasure multiple access channel. In 
essence, feedback from the receiver to the two senders acts as a 
separate channel between the two senders. The senders can decode 
each other’s transmissions before the receiver does. They then 
cooperate to resolve the uncertainty at the receiver, sending infor- 
mation at the higher cooperative capacity rather than the non- 
cooperative capacity. Using this scheme, Cover and Leung [73] 
established an achievable region for multiple access channel with 
feedback. Willems [273] showed that this region was the capacity 
for a class of multiple access channels that included the binary 
erasure multiple access channel. Ozarow [204] established the 
capacity region for the two user Gaussian multiple access channel. 
The problem of finding the capacity region for the multiple access 
channel with feedback is closely related to the capacity of a 
two-way channel with a common output. 

There is as yet no unified theory of network information flow. But 
there can be no doubt that a complete theory of communication net- 
works would have wide implications for the theory of communication 
and computation. 

SUMMARY OF CHAPTEIR 14 

Multiple access channel: The capacity of a multiple access channel ( EI x gz, 
p( y Ix,, x,), 3 ) is the closure of the convex hull of all (R,, RJ satisfying 

R, -Mx~; YIX,), (14.338) 

R, < Kq; YIX, 1, (14.339) 

R, +~~<w~,&; Y) (14.340) 

for some distribution pl(xl)&,) on & x &.. 
The capacity region of the m-user multiple access channel is the closure of 

the convex hull of the rate vectors satisfying 

R(S) 5 Z(X(S); YIX(S”)) for all S C {1,2, . . . , m} 

for some product distribution pl(xl)p,(z,) . . . p,(q,,). 

(14.341) 



SUMMARY OF CHAPTER 14 

R,+R,sC(f#, (14.344) 

C(x) = ; log(1 +x) . (14.345) 

Slepian-Wolf coding. Correlated sources X and Y can be separately de- 
scribed at rates R, and R, and recovered with arbitrarily low probability of 
error by a common decoder if and only if 

R, > H(XIY) , (14.346) 

R, > HWIX) , (14.347) 

R,+R,>H(X,Y). (14.348) 

Broadcast channels: The capacity region of the degraded broadcast chan- 
nel X-* Y1 + Yz is the convex hull of the closure of all (RI, R,) satisfying 

R, = NJ; Y,> , (14.349) 

R,=Z(X,Y,IU) (14.360) 

for some joint distribution p(u)p(~iu)p(y~, y,lx). 

Relay channel: The capacity C of the physically degraded relay channel 
p(y, yll~,~,) is given by 

C = p~ufl) min{Z(X, Xl; Y), 1(x; Yl IX, 1) , (14.361) 

where the supremum is over all joint distributions on 8? x gl. 

Source coding with aide information: Let (X, Y) -p(x, y). If Y is encoded 
at rate R, and X is encoded at rate R,, we can recover X with an arbitrarily 
small probability of error iff 

R, NiUIU), (14.362) 
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R,rl(Y, U) 

for some distribution p( y, u), such that X+ Y+ U. 

(14.353) 

Rate distortion with side information: Let (X, Y) -p(=c, y). The rate 
distortion function with side information is given by 

R,(D)= min min 1(X; W)-I(Y, W), (14.354) 
Pb Ix)pB x w-d 

where the minimization is over all functions f and conditional distributions 
p(wjx), Iw”l I I%‘1 + 1, such that 

z z z p(x, y)ph.ulM~, fly, ~1) 5 D . (14.355) 
x UJ Y 

PROBLEMS FOR CHAPTER 14 

1. The cooperative capacity of a multiple access channel. (See Figure 
14.37.) 

Figure 14.37. Multiple access channel with cooperating senders. 

(a) Suppose XI and Xz have access to both indices WI E { 1, 2nR}, Wz E 
{ 1, ZnR2}. Thus the codewords X1( WI, W,), X,( WI, W,) depend on 
both indices. Find the capacity region. 

(b) Evaluate this region for the binary erasure multiple access 
channel Y = XI + Xz, Xi E (0, 1). Compare to the non-cooperative 
region. 

2. Capacity of multiple access channels. Find the capacity region for each 
of the following multiple access channels: 
(a) Additive modulo 2 multiple access access channel. XI E (0, l}, 

x,E{0,1},Y=X,$X,. 
(b) Multiplicative multiple access channel. XI E { - 1, l}, Xz E { - 1, l}, 

Y=X, ‘X2. 

3. Cut-set interpretation of capacity region of multiple access channel. For 
the multiple access channel we know that (R,, R2) is achievable if 

R, <K&; YlX,>, (14.356) 

R, < I(&; YIX, 1, (14.357) 
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R, +&o&,X,; Y>, (14.358) 

for X1, Xz independent. Show, for X1, X2 independent, that 

1(X,; YIX,) = I(x,; Y, x,>. 

Y 

Interpret the information bounds as bounds on the rate of flow across 
cutsets S,, S, and S,. 

4. Gaussian multiple access channel cupacify. For the AWGN multiple 
access channel, prove, using typical sequences, the achievability of 
any rate pairs (R,, R,) satisfying 

R&og 1+&l , ( 1 (14.359) 

(14.360) 

. (14.361) 

The proof extends the proof for the discrete multiple access channel 
in the same way as the proof for the single user Gaussian channel 
extends the proof for the discrete single user channel. 

5. Converse for the Gaussian multiple uccess channel. Prove the converse 
for the Gaussian multiple access channel by extending the converse 
in the discrete case to take into account the power constraint on the 
codewords. 

6. Unusual multiple uccess channel. Consider the following multiple ac- 
cess channel: 8$ = Z& = ?!/ = (0, 1). If (X1, X,) = (0, 0), then Y = 0. If 
(Xl, X2> = (0, 11, th en Y=l. If (X1,X,)=(1,0), then Y=l. If 
(X1, X,) = (1, l), then Y = 0 with probability i and Y = 1 with prob- 
ability 4. 
(a) Show that th e rate pairs (1,O) and (0,l) are achievable. 
(b) Show that f or any non-degenerate distribution p(rl)p(z,), we 

have 1(X1, Xz; Y) < 1. 
(c) Argue that there are points in the capacity region of this multiple 

access channel that can only be achieved by timesharing, i.e., 
there exist achievable rate pairs (RI, R,) which lie in the capacity 
region for the channel but not in the region defined by 

R, 5 I(&; Y(X,), (14.362) 
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R, 5 I(&; Y(X, 1, (14.363) 

R, +R,~I(X,,X,; Y) (14.364) 

for any product distribution p(xl)p(x,). Hence the operation of 
convexification strictly enlarges the capacity region. This channel 
was introduced independently by Csiszar and Korner [83] and 
Bierbaum and Wallmeier [333. 

7. Convexity of capacity region of broadcast channel. Let C G R2 be the 
capacity region of all achievable rate pairs R = (R,, R,) for the 
broadcast channel. Show that C is a convex set by using a timeshar- 
ing argument. 

Specifically, show that if R(l) and Rc2’ are achievable, then AR(l) + 
(1 - A)Rc2) is achievable for 0 I A 5 1. 

8. Slepian-Wolf for deterministically related sources. Find and sketch the 
Slepian-Wolf rate region for the simultaneous data compression of 
(X, Y), where y = f(x) is some deterministic function of x. 

9. Slepian-Wolf. Let Xi be i.i.d. Bernoulli(p). Let Zi be i.i.d. - Ber- 
noulli(r), and let Z be independent of X. Finally, let Y = X63 Z (mod 2 
addition). Let X be described at rate R, and Y be described at rate R,. 
What region of rates allows recovery of X, Y with probability of error 
tending to zero? 

10. Broadcast capacity depends only on the conditional marginals. Consider 
the general broadcast channel (X, YI x Y2, p(yl, y21x)). Show that the 
capacity region depends only on p(y,lx) and p(y,)x). To do this, for 
any given ((2”R1, 2nR2), n) code, let 

P:“’ = P{WJY,) # Wl} , (14.365) 

PF’ = P{*2(Y2) # W2} , (14.366) 

P = P{(bv,, Iv,> # cw,, W,>} . (14.367) 

Then show 

The result now follows by a simple argument. 
Remark: The probability of error Pen’ does depend on the condi- 

tional joint distribution p(y I, y21x). But whether or not Pen’ can be 
driven to zero (at rates (RI, R,)) does not (except through the condi- 
tional marginals p( y 1 Ix), p( y2 Ix)). 

11. Converse for the degraded broadcast channel. The following chain of 
inequalities proves the converse for the degraded discrete memory- 
less broadcast channel. Provide reasons for each of the labeled 
inequalities. 
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Setup for converse for degraded broadcast channel capacity 

cwl$ W2)indep. +xyw1, w,>-+ yn+zn 

Encoding 

f, :2nRl x gnR2_) gfy”” 

Decoding 

g,: 9P+2nRl, 

Let Vi = (W,, P-l). Then 

h, : 2fn + 2nR2 

fi, 2 Fan0 mv,; 2”) (14.368) 

‘2 i I(W,; zi pF) (14.369) 
i=l 

(L)c (H(Zip?-L) - H(Zi Iw,, P1)> (14.370) 

2x (H(q) - H(ZilWZ, f-l, yi-1)) (14.371) 

zx W(Zi) - H(Z, Iw,, y”-l)) (14.372) 
i 

2) i I(ui;zi). 
i=l 

(14.373) 

Continuation of converse. Give reasons for the labeled in- 
equalities: 

nR, k Fan0 I( Wl; Y”> (14.374) 

(f) 
5 I(W,; Y”, w,> (14.375) 

(2) I(W,; Y” IW,) (14.376) 

‘2 i I(W,; Yip-, W,) 
i-l 

(14.377) 

~ ~ I(Xi; Yi(Ui) I (14.378) 
i-1 

12. Capacity poinfs. 
(a> For the degraded broadcast channel X-, YI + Yz, find the points 

a and b where the capacity region hits the R, and R, axes (Figure 
14.38). 

(b) Show that b 5 a. 
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a Rl 
Figure 14.38. Capacity region of a broadcast channel. 

13. Degraded broadcast channel. Find the capacity region for the degraded 
broadcast channel in Figure 14.39. 

1 -P 

1 -P 

Figure 14.39. Broadcast channel-BSC and erasure channel. 

14. Channels with unknown parameters. We are given a binary symmetric 
channel with parameter p. The capacity is C = 1 - H(p). 

Now we change the problem slightly. The receiver knows only that 
p E {pl, p,}, i.e., p =pl or p =p2, where p1 and pz are given real 
numbers. The transmitter knows the actual value of p. Devise two 
codes for use by the transmitter, one to be used if p = pl, the other to 
be used if p = p2, such that transmission to the receiver can take 
place at rate = C(p,) ifp =pr and at rate = C(p,) ifp =pz. 

Hint: Devise a method for revealing p to the receiver without 
affecting the asymptotic rate. Prefixing the codeword by a sequence of 
l’s of appropriate length should work. 

15. Two-way channel. Consider the two-way channel shown in Figure 
14.6. The outputs YI and Yz depend only on the current inputs XI and 
x2!* 
(a) By using independently generated codes for the two senders, show 

that the following rate region is achievable: 

(14.379) 

R, < eq; Y#J (14.380) 

for some product distribution p(x,)p(x,)p(y,, Y~~x~, x2). 
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(b) Show that the rates for any code for a two-way 
arbitrarily small probability of error must satisfy 

channel with 

R, 5 1(x,; YJXJ (14.382) 

for some joint distribution p(xl, x,)p(y,, y21x,, x,1. 
The inner and outer bounds on the capacity of the two-way 

channel are due to Shannon [246]. He also showed that the inner 
bound and the outer bound do not coincide in the case of the binary 
multiplying channel ZI = Z& = (?I1 = %z = (0, l}, YI = Yz = X1X2. The 
capacity of the two-way channel is still an open problem. 

HISTORICAL NOTES 

This chapter is based on the review in El Gamal and Cover [98]. The two-way 
channel was studied by Shannon [246] in 1961. He derived inner and outer 
bounds on the capacity region. Dueck [90] and Schalkwijk [232,233] suggested 
coding schemes for two-way channels which achieve rates exceeding Shannon’s 
inner bound; outer bounds for this channel were derived by Zhang, Berger and 
Schalkwijk [287] and Willems and Hekstra [274]. 

The multiple access channel capacity region was found by Ahlswede [3] and 
Liao [178] and was extended to the case of the multiple access channel with 
common information by Slepian and Wolf [254]. Gaarder and Wolf [117] were the 
first to show that feedback increases the capacity of a discrete memoryless 
multiple access channel. Cover and Leung [73] proposed an achievable region for 
the multiple access channel with feedback, which was shown to be optimal for a 
class of multiple access channels by Willems [273]. Ozarow [204] has determined 
the capacity region for a two user Gaussian multiple access channel with 
feedback. Cover, El Gamal and Salehi [69] and Ahlswede and Han [6] have 
considered the problem of transmission of a correlated source over a multiple 
access channel. 

The Slepian-Wolf theorem was proved by Slepian and Wolf [255], and was 
extended to jointly ergodic sources by a binning argument in Cover [63]. 

Broadcast channels were studied by Cover in 1972 [60]; the capacity region for 
the degraded broadcast channel was determined by Bergmans [31] and Gallager 
[119]. The superposition codes used for the degraded broadcast channel are also 
optimal for the less noisy broadcast channel (Kiirner and Marton [160]) and the 
more capable broadcast channel (El Gamal [97]) and the broadcast channel with 
degraded message sets (Kiirner and Marton [161]). Van der Meulen [26] and 
Cover [62] proposed achievable regions for the general broadcast channel. The 
best known achievable region for broadcast channel is due to Marton [189]; a 
simpler proof of Marton’s region was given by El Gamal and Van der Meulen 
[loo]. The deterministic broadcast channel capacity was determined by Pinsker 
[211] and Marton [189]. El Gamal [96] showed that feedback does not increase the 
capacity of a physically degraded broadcast channel. Dueck [91] introduced an 
example to illustrate that feedback could increase the capacity of a memoryless 
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broadcast channel; Ozarow and Leung [205] described a coding procedure for the 
Gaussian broadcast channel with feedback which increased the capacity region. 

The relay channel was introduced by Van der Meulen [262]; the capacity 
region for the degraded relay channel was found by Cover and El Gamal[67]. The 
interference channel was introduced by Shannon [246]. It was studied by 
Ahlswede [4], who gave an example to show that the region conjectured by 
Shannon was not the capacity region of the interference channel. Carleial [49] 
introduced the Gaussian interference channel with power constraints, and 
showed that very strong interference is equivalent to no interference at all. Sato 
and Tanabe [231] extended the work of Carleial to discrete interference channels 
with strong interference. Sato [229] and Benzel [26] dealt with degraded interfer- 
ence channels. The best known achievable region for the general interference 
channel is due to Han and Kobayashi [132]. This region gives the capacity for 
Gaussian interference channels with interference parameters greater than 1, as 
was shown in Han and Kobayashi [132] and Sato [230]. Carleial [48] proved new 
bounds on the capacity region for interference channels. 

The problem of coding with side information was introduced by Wyner and 
Ziv [283] and Wyner [280]; the achievable region for this problem was described 
in Ahlswede and Klimer [7] and in a series of papers by Gray and Wyner [125] 
and Wyner [281,282]. The problem of finding the rate distortion function with 
side information was solved by Wyner and Ziv [284]. The problem of multiple 
descriptions is treated in El Gamal and Cover [99]. 

The special problem of encoding a function of two random variables was 
discussed by Khmer and Marton [162], who described a simple method to encode 
the modulo two sum of two binary random variables. A general framework for 
the description of source networks can be found in Csiszar and Khmer [82], [83]. 
A common model which includes Slepian-Wolf encoding, coding with side 
information, and rate distortion with side information as special cases was 
described by Berger and Yeung [3O]. 

Comprehensive surveys of network information theory can be found in El 
Gamal and Cover [98], Van der Meulen [262,263,264], Berger [28] and Csiszar and 
Khmer [83]. 



Chapter 15 

Information Theory and 
the Stock Market 

The duality between the growth rate of wealth in the stock market and 
the entropy rate of the market is striking. We explore this duality in this 
chapter. In particular, we shall find the competitively optimal and 
growth rate optimal portfolio strategies. They are the same, just as the 
Shannon code is optimal both competitively and in expected value in 
data compression. We shall also find the asymptotic doubling rate for an 
ergodic stock market process. 

15.1 THE STOCK MARKET: SOME DEFINITIONS 

A stock market is represented as a vector of stocks X = (X1, X,, . . . , X, 1, 
Xi 1 0, i = 1,2, . . . ) m, where m is the number of stocks and the price 
relative Xi represents the ratio of the price at the end of the day to the 
price at the beginning of the day. So typically Xi is near 1. For example, 
Xi = 1.03 means that the ith stock went up 3% that day. 

Let X - F(x), where F(x) is the joint distribution of the vector of price 
relatives. 

A portfolio b = (b,, b,, . . . , b,), bi I 0, C bi = 1, is an allocation of 
wealth across the stocks. Here bi is the fraction of one’s wealth invested 
in stock i. 

If one uses a portfolio b and the stock vector is X, the wealth relative 
(ratio of the wealth at the end of the day to the wealth at the beginning 
of the day) is S = b’X. 

We wish to maximize S in some sense. But S is a random variable, so 
there is controversy over the choice of the best distribution for S. The 
standard theory of stock market investment is based on the con- 
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sideration of the first and second moments of S. The objective is to 
maximize the expected value of S, subject to a constraint on the 
variance. Since it is easy to calculate these moments, the theory is 
simpler than the theory that deals wth the entire distribution of S. 

The mean-variance approach is the basis of the Sharpe-Markowitz 
theory of investment in the stock market and is used by business 
analysts and others. It is illustrated in Figure 15.1. The figure 
illustrates the set of achievable mean-variance pairs using various 
portfolios. The set of portfolios on the boundary of this region 
corresponds to the undominated portfolios: these are the portfolios 
which have the highest mean for a given variance. This boundary is 
called the efficient frontier, and if one is interested only in mean and 
variance, then one should operate along this boundary. 

Normally the theory is simplified with the introduction of a risk-free 
asset, e.g., cash or Treasury bonds, which provide a fixed interest rate 
with variance 0. This stock corresponds to a point on the Y axis in the 
figure. By combining the risk-free asset with various stocks, one obtains 
all points below the tangent from the risk-free asset to the efficient 
frontier. This line now becomes part of the efficient frontier. 

The concept of the efficient frontier also implies that there is a true 
value for a stock corresponding to its risk. This theory of stock prices is 
called the Capital Assets Pricing Model and is used to decide whether 
the market price for a stock is too high or too low. 

Looking at the mean of a random variable gives information about 
the long term behavior of the sum of i.i.d. versions of the random 
variable. But in the stock market, one normally reinvests every day, so 
that the wealth at the end of n days is the product of factors, one for 
each day of the market. The behavior of the product is determined not 
by the expected value but by the expected logarithm. This leads us to 
define the doubling rate as follows: 

Definition: The doubling rate of a stock market portfolio b is defined 
as 

Mean 

Risk -free 
asset 

Set of achievable 
mean -variance pairs 

/ 
Variance 

Figure 15.1. Sharpe-Markowitz theory: Set of achievable mean-variance pairs. 
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W(b, F) = 1 log btx /P(x) = E(log btX) . 

Definition: The optimal doubling rate W*(F) is defined as 

W*(F) = rnbax W(b, F), 

(15.1) 

(15.2) 

where the maximum is over all possible portfolios bi I 0, Ci bi = 1. 

Definition: A portfolio b* that achieves the maximum of W(b, F) is 
called a log-optimal portfolio. 

The definition of doubling rate is justified by the following theorem: 

Theorem 15.1.1: Let X,, X,, . . . ,X, be i.i.d. according to F(x). Let 

So = ~ b*tXi 
i=l 

(15.3) 

be the wealth after n days using the constant rebalanced portfolio b*. 
Then 

;1ogs:+w* with probability 1 . (15.4) 

Proof: 

~ log So = ~ ~~ log b*tXi 
i 

+W* with probability 1, 

(15.5) 

(15.6) 

by the strong law of large numbers. Hence, Sz G 2”w*. q 

We now consider some of the properties of the doubling rate. 

Lemma 151.1: W(b, F) is concave in b and linear in F. W*(F) is convex 
in F. 

Proof: The doubling rate is 

W(b, F) = / log btx dF(x) . (15.7) 

Since the integral is linear in F, so is W(b, F). 
Since 
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lo& Ab, + (I- A)b,)tX 2 A log bt,X + (1 - A) log bt,X 3 (15.8) 

by the concavity of the logarithm, it follows, by taking expectations, that 
W(b, F) is concave in b. 

Finally, to prove the convexity of W*(F) as a function of F, let Fl and 
F, be two distributions on the stock market and let the corresponding 
optimal portfolios be b*(F,) and b*(F,) respectively. Let the log-optimal 
portfolio corresponding to AF, + (1 - A)F, be b*( AF, + (1 - A)F, ). Then 
by linearity of W(b, F) with respect to F, we have 

W*( AF, + (1 - A)F,) = W(b*( AF, + (1 - A)F,), AF, + (1 - A)F,) (15.9) 

= AW(b*( AF, + (1 - A)&), F,) + (I- A) 

x W(b*(AF, + (1 - AIF,), F2) 

5 AW(b*(F,), F,) + (1 - h)W*(b*(&), &> 3 (15.10) 

since b*(F, ) maximizes W(b, Fl ) and b*(Fz 1 mak-nizes W(b, F& 0 

Lemma 15.1.2: The set of log-optimal portfolios forms a convex set. 

Proof: Let bT and bz be any two portfolios in the set of log-optimal 
portfolios. By the previous lemma, the convex combination of bT and bg 
has a doubling rate greater than or equal to the doubling rate of bT or 
bg, and hence the convex combination also achieves the maximum 
doubling rate. Hence the set of portfolios that achieves the maximum is 
convex. q 

In the next section, we will use these properties to characterize the 
log-optimal portfolio. 

15.2 KUHN-TUCKER CHARACTERIZATION OF THE 
LOG-OPTIMAL PORTFOLIO 

The determination b* that achieves W*(F) is a problem of maximization 
of a concave function W(b, F) over a convex set b E B. The maximum 
may lie on the boundary. We can use the standard Kuhn-Tucker 
conditions to characterize the maximum. Instead, we will derive these 
conditions from first principles. 

Theorem 15.2.1: The log-optimal portfolio b* for a stock market X, i.e., 
the portfolio that maximizes the doubling rate W(b, F), satisfies the 
following necessary and sufficient conditions: 
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=l $ bT>O, 
51 if bT=o. (15.11) 

Proof: The doubling rate W(b) = E( log btX) is concave in b, where b 
ranges over the simplex of portfolios. It follows that b* is log-optimum 
iff the directional derivative of W(. ) in the direction from b* to any 
alternative portfolio b is non-positive. Thus, letting b, = (1 - A)b* + Ab 
for OrAS, we have 

d 
x W(b,)(,,,+ 5 0, bE 9 . (15.12) 

These conditions reduce to (15.11) since the one-sided derivative at 
h=O+ of W(b,) is 

-$ E(log(bt,XN h=O+ (1 - A)b*tX + AbtX 
b*tX 

(15.13) 

=E($n;log(l+A($&l))) (15.14) 

(15.15) 

where the interchange of limit and expectation can be justified using the 
dominated convergence theorem [20]. Thus (15.12) reduces to 

(15.16) 

for all b E %. 
If the line segment from b to b* can be extended beyond b* in the 

simplex, then the two-sided derivative at A = 0 of W(b, ) vanishes and 
(15.16) holds with equality. If the line segment from b to b* cannot be 
extended, then we have an inequality in (15.16). 

The Kuhn-Tucker conditions will hold for all portfolios b E 9 if they 
hold for all extreme points of the simplex 3 since E(btXlb*tX) is linear 
in b. Furthermore, the line segment from the jth extreme point (b : bj = 
1, bi = 0, i #j) to b* can be extended beyond b* in the simplex iff bT > 0. 
Thus the Kuhn-Tucker conditions which characterize log-optimum b* 
are equivalent to the following necessary and sufIicient conditions: 

=l if bT>O, q 
~1 if bT=O. (15.17) 

This theorem has a few immediate consequences. One surprising 
result is expressed in the following theorem: 
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Theorem 15.2.2: Let S* = b@X be the random wealth resulting from 
the log-optimal portfolio b *. Let S = btX be the wealth resulting from 
any other portfolio b. Then 

Conversely, if E(SIS*) 5 1 f or all portfolios b, then E log S/S* 5 0 for all 
b. 

Remark: This theorem can be stated more symmetrically as 

S 
Elnp- 

S 
(0, for all S H E;S;;-51, foralls. (15.19) 

Proof: From the previous theorem, it follows that for a log-optimal 
portfolio b* , 

(15.20) 

for all i. Multiplying this equation by bi and summing over i, we have 

5 biE(&)s2 bi=l, 
i=l i=l 

which is equivalent to 

E btX =E ’ 
b*tX Fsl* 

The converse follows from Jensen’s inequality, since 

S S 
ElogFs 1ogE -== logl=O. Cl 

S” - 

(15.21) 

(15.22) 

(15.23) 

Thus expected log ratio optimality is equivalent to expected ratio 
optimality. 

Maximizing the expected logarithm was motivated by the asymptotic 
growth rate. But we have just shown that the log-optimal portfolio, in 
addition to maximizing the asymptotic growth rate, also “maximizes” 
the wealth relative for one day. We shah say more about the short term 
optimality of the log-optimal portfolio when we consider the game 
theoretic optimality of this portfolio. 

Another consequence of the Kuhn-Tucker characterization of the 
log-optimal portfolio is the fact that the expected proportion of wealth in 
each stock under the log-optimal portfolio is unchanged from day to day. 
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Consider the stocks at the end of the first day. The initial allocation of 
wealth is b*. The proportion of the wealth in stock i at the end of the 
day is bTXilb*tX, and the expected value of this proportion is 

E z = bTE --& = bTl= by. (15.24) 

Hence the expected proportion of wealth in stock i at the end of the day 
is the same as the proportion invested in stock i at the beginning of the 
day. 

15.3 ASYMPTOTIC OPTIMALITY OF THE LOG-OPTIMAL 
PORTFOLIO 

In the previous section, we introduced the log-optimal portfolio and 
explained its motivation in terms of the long term behavior of a 
sequence of investments in a repeated independent versions of the stock 
market. In this section, we will expand on this idea and prove that with 
probability 1, the conditionally log-optimal investor will not do any 
worse than any other investor who uses a causal investment strategy. 

We first consider an i.i.d. stock market, i.e., Xi, X,, . . . , X, are i.i.d. 
according to F(x). Let 

S, = fi b:Xi 
i=l 

(15.25) 

be the wealth after n days for an investor who uses portfolio bi on day i. 
Let 

W* = rnp W(b, F) = rnbax E log btX (15.26) 

be the maximal doubling rate and let b* be a portfolio that achieves the 
maximum doubling rate. 

We only allow portfolios that depend causally on the past and are 
independent of the future values of the stock market. 

From the definition of W*, it immediately follows that the log-optimal 
portfolio maximizes the expected log of the final wealth. This is stated in 
the following lemma. 

Lemma 15.3.1: Let SW be the wealth after n days for the investor using 
the log-optimal strategy on i.i.d. stocks, and let S, be the wealth of any 
other investor using a causal portfolio strategy bi. Then 

E log S; =nW*rElogS,. (15.27) 
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Proof: 

max ElogS,= max (15.28) 
b,, b,, . . . , b, b,, b,, . . . , b, 

E ~ 1ogbrXi 
i=l 

n 

= c max 
i=l bi(X,, X2,. . . I Xi-l) 

E logbf(X,,X,, * * * ,Xi-,)Xi 

(15.29) 

= ~ E logb*tXi 
i=l 

=nW*, 

(15.30) 

(15.31) 

and the maximum is achieved by a constant portfolio strategy b*. Cl 

So far, we have proved two simple consequences of the definition of 
log optimal portfolios, i.e., that b* (satisfying (15.11)) maximizes the 
expected log wealth and that the wealth Sz is equal to 2nW* to first 
order in the exponent, with high probability. 

Now we will prove a much stronger result, which shows that SE 
exceeds the wealth (to first order in the exponent) of any other investor 
for almost every sequence of outcomes from the stock market. 

Theorem 15.3.1 (Asymptotic optimality of the log-optimal portfolio): 
Let x1,x,, . . . , X, be a sequence of i.i.d. stock vectors drawn according to 
F(x). Let Sz = II b*tXi, where b* is the log-optimal portfolio, and let 
S, = II bf Xi be the wealth resulting from any other causal portfolio. Then 

1 s 
lim sup ; log $ I 0 with probability 1 . (15.32) 

n-m n 

Proof: From the Kuhn-Tucker conditions, we have 

Hence by Markov’s inequality, we have 

Pr(S, > t,Sz) = Pr 
($ > 

1 
>t, <t. 

n 

Pr 
( 

1 S 1 
;1og$>-$ogt, 5’. 

n > n 

(15.34) 

(15.35) 
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Setting t, = n2 and summing over n, we have 

Then, by the Borel-Cantelli lemma, 

Pr 
( 

S 210gn 
i log $ > - 

n n ’ 
infinitely often 

> 
= 0 . 

(15.36) 

(15.37) 

This implies that for almost every sequence fgom i2nstock market, 
there exists an N such that for all n > N, k log $ < 7. Thus 

S 
lim sup i log -$ 5 0 with probability 1. Cl (15.38) 

n 

The theorem proves that the log-optimal portfolio will do as well or 
better than any other portfolio to first order in the exponent. 

15.4 SIDE INFORMATION AND THE DOUBLING RATE 

We showed in Chapter 6 that side information Y for the horse race X can 
be used to increase the doubling rate by 1(X; Y) in the case of uniform 
odds. We will now extend this result to the stock market. Here, 1(X; Y) 
will be a (possibly unachievable) upper bound on the increase in the 
doubling rate. 

Theorem 15.4.1: Let X,, X2, . . . , X, be drawn i.i.d. - f(x). Let b*, be 
the log-optimal portfolio corresponding to f(x) and let bz be the log- 
optimal portfolio corresponding to sonae other density g(x). Then the 
increase in doubling rate by using b: instead of bz is bounded by 

AW= W(b$ F) - W(b,*, F)sD( f lig) (15.39) 

Proof: We have 

AW= f(x) log bftx - 
I 

f(x) log bfx (15.40) 

= flx)log 2 
I 8 

= fix) log bftx g(x) f(x) 
bfx fix) g(x) 

(15.41) 

(15.42) 
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= 
I 

f(x) log 2 g$ + D( fllg) 
8 

(2 log 
I 

f(x) 2 gs + NfJlg) 
g 

= log g(x)b*tx 
I 

b:fx +D(fllg) 
8 

(15.43) 

(15.44) 

(15.45) 

(b 1 
zs lwl+D(fllg) (15.46) 

=wlM (15.47) 

where (a) follows from Jensen’s inequality and (b) follows from the 
Kuhn-Tucker conditions and the fact that b$ is log-optimal for g. 0 

Theorem 15.4.2: The increase AW in doubling rate due to side 
information Y is bounded by 

AW I 1(X; Y) . (15.48) 

Proof: Given side information Y = y, the log-optimal investor uses 
the conditional log-optimal portfolio for the conditional distribution 
f(xlY = y). He rice, conditional on Y = y, we have, from Theorem 15.4.1, 

Averaging this over possible values of Y, we have 

AWI f(xly=Y)lW f<x> 
flxly = y’ dx dy 

(15.49) 

(15.50) 

(15.51) 

(15.52) 

(15.53) 

Hence the increase in doubling rate is bounded above by the mutual 
information between the side information Y and the stock market X. Cl 
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15.5 INVESTMENT IN STATIONARY MARKETS 

We now extend some of the results of the previous section from i.i.d. 
markets to time-dependent market processes. 

LetX,,X, ,..., X, ,... be a vector-valued stochastic process. We will 
consider investment strategies that depend on the past values of the 
market in a causal fashion, i.e., bi may depend on X,, X,, . . . , Xi -1. Let 

s, = fj b:(X,,X,, . . . ,X&Xi - 
i=l 

(15.54) 

Our objective is to maximize E log S, over all such causal portfolio 
strategies {b&a)}. Now 

b,, b,, . . . , b, 
max ElogS,=i max log b:Xi 

i=l bf(X,, X2,. . . , Xi-l) 
(15.55) 

= i logb*tX. i L 9 
i=l 

(15.56) 

where bT is the log-optimal portfolio for the conditional distribution of 
Xi given the past values of the stock market, i.e., bT(x,, x,, . . . , Xi_ 1) is 
the portfolio that achieves the conditional maximum, which is denoted 
bY 

maxbE[logb"X,I(X,,X,,... ,&-1)=(X1,X2,* a. ,xi-l)] 

= W*(Xi(Xl, X,, . . . ) Xi-l) (15.57) 

Taking the expectation over the past, we write 

w*(x,Ix,, x,9 * * . ,Ximl)= E mbm E[logb*tXiI(X,,X,, - * * ,&-,)I 

(15.58) 

as the conditional optimal doubling rate, where the maximum is over all 
portfolio-valued functions b defined on X,, . . . , Xi_1. Thus the highest 
expected log return is achieved by using the conditional log-optimal 
portfolio at each stage. Let 

W*(X1,X2,...,Xn)= max 
b,, b,, . . . , b, 

E log S, (15.59) 

where the maximum is over all causal portfolio strategies. Then since 
log SE = Cy!, log b:tXi, we have the following chain rule for W*: 

w*q, x,, ’ . ’ ) X,)= i W*(XiIX,>x,j *  l l ,Xi-l) 0 (15.60) 
i=l 
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This chain rule is formally the same as the chain rule for H. In some 
ways, W is the dual of H. In particular, conditioning reduces H but 
increases W. 

Definition: The doubling rate Wz is defined as 

if the limit exists 

Theorem 15.5.1: 
is equal to 

w* 
= 

m 

lim W”(X,,X,, .  .  .9X,) 

n-m n 

and is undefined otherwise. 

(15.61) 

For a stationary market, the doubling rate exists and 

w: = hiI W”(XnJX1,X,, . . . ,X,-J. (15.62) 

Proof: By stationarity, W*(X, IX,, X,, . . . , X, WI) is non-decreasing in 
n. Hence it must have a limit, possibly 00. Since 

W”(X,,X~, . . . ,X,) 1 n 
= ; Fl w*(x,)x,,x,, . . . ,Xivl>, (15.63) 

n I. 

it follows by the theorem of the Cesaro mean that the left hand side has 
the same limit as the limit of the terms on the right hand side. 

Hence Wz exists and 

w* lim w*(x,,x,9***2xn) = co = lim W*(Xn(X,,X2,. . . ,Xn-J . 0 
n 

(15.64) 

We can now extend the asymptotic optimality property to stationary 
markets. We have the following theorem. 

Theorem 15.5.2: Let Sz be the wealth resulting from a series of 
conditionally log-optimal investments in a stationary stock market (Xi>. 
Let S, be the wealth resulting from any other causal portfolio strategy. 
Then 

1 sn limsup;log-+O. (15.65) 
n-+w n 

Proof: From the Kuhn-Tucker conditions for the constrained maxi- 
mization, we have 

sn 
Ep’ (15.66) 
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which follows from repeated application of the conditional version of the 
Kuhn-Tucker conditions, at each stage conditioning on all the previous 
outcomes. The rest of the proof is identical to the proof for the i.i.d. stock 
market and will not be repeated. Cl 

For a stationary ergodic market, we can also extend the asymptotic 
equipartition property to prove the following theorem. 

Theorem 15.5.3 (AEP for the stock market): Let X1,X,, . . . ,X, be a 
stationary ergodic vector-valued stochastic process. Let 23; be the wealth 
at time n for the conditionally log-optimal strategy, where 

SE = fi bft(X1,Xz, . . . . X&Xi. 
i=l 

(15.67) 

Then 

1 
; 1ogs;+w* with probability 1 . (15.68) 

Proofi The proof involves a modification of the sandwich argument 
that is used to prove the AEP in Section 15.7. The details of the proof 
are omitted. El 

15.6 COMPETITIVE OPTIMALITY OF THE LOG-OPTIMAL 
PORTFOLIO 

We now ask whether the log-optimal portfolio outperforms alternative 
portfolios at a given finite time n. As a direct consequence of the 
Kuhn-Tucker conditions, we have 

SIl Ep, (15.69) 

and hence by Markov’s inequality, 

Pr(S,>ts~)+. (15.70) 

This result is similar to the result derived in Chapter 5 for the 
competitive optimality of Shannon codes. 

By considering examples, it can be seen that it is not possible to get a 
better bound on the probability that S, > Sz. Consider a stock market 
with two stocks and two possible outcomes, 
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Km= 
(1, 1 + E) with probability I- E , 
(1 0) with probability E . (15.71) 

? 

In this market, the log-optimal portfolio invests all the wealth in the 
first stock. (It is easy to verify b = (1,O) satisfies the Kuhn-Tucker 
conditions.) However, an investor who puts all his wealth in the second 
stock earns more money with probability 1 - E. Hence, we cannot prove 
that with high probability the log-optimal investor will do better than 
any other investor. 

The problem with trying to prove that the log-optimal investor does 
best with a probability of at least one half is that there exist examples 
like the one above, where it is possible to beat the log optimal investor 
by a small amount most of the time. We can get around this by adding 
an additional fair randomization, which has the effect of reducing the 
effect of small differences in the wealth. 

Theorem 15.6.1 (Competitive optimality): Let S* be the wealth at the 
end of one period of investment in a stock market X with the log-optimal 
portfolio, and let S be the wealth induced by any other portfolio. Let U* 
be a random variable independent of X uniformly distributed on [0,2], 
and let V be any other random variable independent of X and U with 
V?OandEV=l. Then 

Ku1 
1 

Pr(VS 2 u*s*) -C - 
-2. 

(15.72) 

Remark: Here U and V correspond to initial “fair” randomizations of 
the initial wealth. This exchange of initial wealth S, = 1 for “fair” 
wealth U can be achieved in practice by placing a fair bet. 

Proof: We have 

Pr(VS L U*S*) = Pr &u*) (15.73) 

=Pr(WrU*), (15.74) 

where W = 3 is a non-negative valued random variable with mean 

EW=E(V)E($l, (15.75) 
n 

by the independence of V from X and the Kuhn-Tucker conditions. 
Let F be the distribution function of W. Then since U* is uniform on 

Km, 
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1 = Pr(W>w)2dw 

I 
2 = l-F(w) dw 

0 2 

5 l-F(w) dw 
2 

=;EW (15.80) 

1 
5- 

2’ 

using the easily proved fact (by integrating by parts) that 

EW= lo?1 - F(w)) dw (15.82) 

for a positive random variable W. Hence we have 

1 
Pr(VS 1 U*S*) = Pr(W 2 U*) 5 2 . Cl 
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(15.76) 

(15.77) 

(15.78) 

(15.79) 

(15.81) 

(15.83) 

This theorem provides a short term justification for the use of the 
log-optimal portfolio. If the investor’s only objective is to be ahead of his 
opponent at the end of the day in the stock market, and if fair 
randomization is allowed, then the above theorem says that the investor 
should exchange his wealth for a uniform [0,2] wealth and then invest 
using the log-optimal portfolio. This is the game theoretic solution to the 
problem of gambling competitively in the stock market. 

Finally, to conclude our discussion of the stock market, we consider 
the example of the horse race once again. The horse race is a special 
case of the stock market, in which there are m stocks corresponding to 
the m horses in the race. At the end of the race, the value of the stock 
for horse i is either 0 or oi, the value of the odds for horse i. Thus X is 
non-zero only in the component corresponding to the winning horse. 

In this case, the log-optimal portfolio is proportional betting, i.e. 
bT = pi, and in the case of uniform fair odds 

W*=logm-H(X). (15.84) 

When we have a sequence of correlated horse races, then the optimal 
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portfolio is conditional proportional betting and the asymptotic doubling 
rate is 

W”=logm-H(Z), (15.85) 

where H(Z) = lim kH(x,, X2, . . . , X,), if the limit exists. Then Theorem 
155.3 asserts that 

s; &pm . (15.86) 

15.7 THE SHANNON-McMILLAN-BREIMAN THEOREM 

The AEP for ergodic processes has come to be known as the Shannon- 
McMillan-Breiman theorem. In Chapter 3, we proved the AEP for i.i.d. 
sources. In this section, we offer a proof of the theorem for a general 
ergodic source. We avoid some of the technical details by using a 
“sandwich” argument, but this section is technically more involved than 
the rest of the book. 

In a sense, an ergodic source is the most general dependent source for 
which the strong law of large numbers holds. The technical definition 
requires some ideas from probability theory. To be precise, an ergodic 
source is defined on a probability space (a, 9, P), where 9 is a sigma- 
algebra of subsets of fi and P is a probability measure. A random 
variable X is defined as a function X(U), o E 42, on the probability space. 
We also have a transformation 2’ : Ln+ a, which plays the role of a time 
shift. We will say that the transformation is stationary if p(TA) = F(A), 
for all A E 9. The transformation is called ergo&c if every set A such 
that TA = A, a.e., satisfies p(A) = 0 or 1. If T is stationary and ergodic, 
we say that the process defined by X,(w) = X(T”o) is stationary and 
ergodic. For a stationary ergodic source with a finite expected value, 
Birkhoffs ergodic theorem states that 

XdP with probability 1. (15.87) 

Thus the law of large numbers holds for ergodic processes. 
We wish to use the ergodic theorem to conclude that 

1 
-~lOg~(x,,X,,...,xn-l)= 12 = - L y log p(X Ixi-ll i 0 

i 0 

+ ;iIJJ EL-log p<x,Ixp)l. 
(15.88) 

But the stochastic sequence p<x,IXb-‘) is not ergodic. However, the 
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closely related quantities p(X, IX: 1: ) and p(X, IXrJ ) are ergodic and have 
expectations easily identified as entropy rates. We plan to sandwich 
p(X, IX;-‘, b e t ween these two more tractable processes. 

We define 

Hk =E{-logp(X,(x&,,x&,, . . . ,X,>} (15.89) 

= E{ -log p(x,Ix-,, x-2, . * * ,X-J , (15.90) 

where the last equation follows from stationarity. Recall that the 
entropy rate is given by 

H = p+~ H” (15.91) 

1 
n-1 

= lim - 2 Hk. 
n+m n kEO 

(15.92) 

Of course, Hk \ H by stationarity and the fact that conditioning does 
not increase entropy. It will be crucial that Hk \ H = H”, where 

H”=E{-logp(X,IX,,X-,, . . . )} . (15.93) 

The proof that H” = H involves exchanging expectation and limit. 
The main idea in the proof goes back to the idea of (conditional) 

proportional gambling. A gambler with the knowledge of the k past will 
have a growth rate of wealth 1 - H”, while a gambler with a knowledge 
of the infinite past will have a growth rate of wealth of 1 - H”. We don’t 
know the wealth growth rate of a gambler with growing knowledge of 
the past Xi, but it is certainly sandwiched between 1 - H” and 1 - H”. 
But Hk \ H = H”. Thus the sandwich closes and the growth rate must 
be 1-H. 

We will prove the theorem based on lemmas that will follow the proof. 

Theorem 15.7.1 (AEP: The Shannon-McMillan-Breiman theorem): 
If H is the entropy rate of a finite-valued stationary ergodic process (X, >, 
then 

1 
- ; log p(x,, - * - , Xnel)+ H, with probability 1 (15.94) 

ProoE We argue that the sequence of random variables - A log 
p(X”,-’ ) is asymptotically sandwiched between the upper bound Hk and 
the lower bound H” for all k 2 0. The AEP will follow since Hk + H” and 
H”=H. 

The kth order Markov approximation to the probability is defined for 
n2k as 
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n-l 

pk(x",-l) =p(x",-') &Fk p<X,lxf~:) ' 

From Lemma 157.3, we have 

1 
lim sup ; log 

pkwyl) (o 
n-m p(x;-l) - ’ 

(15.95) 

(15.96) 

which we rewrite, taking the existence of the limit A log pk(Xi) into 
account (Lemma 15.7.1), as 

1 
lim sup i log 

1 1 
5 iiin ; log 

1 =Hk 
n-m p(x”o-l) pka”o-l 1 

for k = 1,2,. . . . Also, from Lemma 15.7.3, we have 

which we 

1 
lim sup i log 

p(x”,-l) <o 
n-- p(x”,-‘IxI:) - ’ 

rewrite as 

1 1 
lim inf ; log - 

1 
2 lim ; log 

1 

p(x:-‘) p(x;-l(xI:) = H” 

(15.97) 

(15.98) 

(15.99) 

from the definition of H” in Lemma 15.7.1. 
Putting together (15.97) and (15.99), we have 

H”sliminf- 1 1 n ogp(X”,-l)rlimsup 
1 

- n logp(X”,-‘)sH’ for all k. 

(15.100) 

But, by Lemma 15.7.2, Hk+ H” = H. Consequently, 

1 
lim-ilogp(X”,)=H. Cl (15.101) 

We will now prove the lemmas that were used in the main proof. The 
first lemma uses the ergodic theorem. 

Lemma 15.7.1 (Markov approximations): For a stationary ergodic sto- 
chastic process (X, >, 

- i log pk(X;-‘)+ Hk with probability 1 , (15.102) 

- ; log p(X”,-lIXT;)+ H” with probability 1 , (15.103) 



15.7 THE SHANNON-McMILLAN-BREIMAN THEOREM 477 

Proof: Functions Y, = f(x”-J of ergodic processes {Xi} are ergodic 
processes. Thus p<x, [X:1: ) and log p(X, IX,+ Xnm2, . . . , ) are also er- 
godic processes, and 

1 - n log pk(xyl) = - i log p<x”,-‘> - - ; ;I log p(xJXfI:) (15.104) 
I 

+ O+Hk, with probability 1 (15.105) 

by the ergodic theorem. Similarly, by the ergodic theorem, 

-; logp(x”,-l~x_,,x~, ,... )= - ; ~~~logP(x,Ix:I:,x~~,x-I. . . .I 
i 

(15.106) 

+ H” with probability 1 . (15.107) 

Lemma 15.7.2 (No gap): H’ \ H” and H = H”. 

Proof: We know that for stationary processes, H’ \ H, so it remains 
to show that H’ L H”, thus yielding H = H”. Levy’s martingale 
convergence theorem for conditional probabilities asserts that 

p(x,lXT~)+p(x,lXI~) with probability 1 (15.108) 

for all x, E 2. Since %’ is finite and p log p is bounded and continuous in 
p for all 0 5 p 5 1, the bounded convergence theorem allows interchange 
of expectation and limit, yielding 

lim Hk = lim E{ - 2 
k+m k-m “0 ELF 

p(3colx~:) log p&IXI:)} 

= E{ -.;% p(x,lxr:) log P(x,lX3 
0 

=H”. 

ThusHk\H=Hm. Cl 

Lemma 15.7.3 (Sandwich): 

1 
lim sup 6 log 

pkw”,-l> (o 
n-m ptx”,-9 - ’ 

lim sup i log 
ptx;-‘1 

p(x”,-lIxIJ 5 O * 

(15.109) 

(15.110) 

(15.111) 

(15.112) 

(15.113) 
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Proof: Let A be the support set of p(Xi-‘). Then 

= c pk(x;f-l) 
le;-kA 

= p’(A) (15.116) 

51. (15.117) 

Similarly, let &XI:) denote the support set of p( l 1x1:). Then, we have 

pa;-9 
p(X;-lIxr:> 

(15.120) 

Il. (15.121) 

By Markov’s inequality and (15.117), we have 

pr Pk(G1) >t <1_ 
1 pcx”,-‘) - n I - t, 

or 

Pr 
1 

1 
; log 

pk(x”,-l) 1 
I 

1 

p(X;-l) - n 
=---log& ‘r. 

n 

(15.122) 

(15.123) 

Letting t, = n2 and noting that C~=l $ < 00, we see by the Borel-Cantelli 
lemma that the event 

1 
1 ; log pk(x”,-l) 1 

2 - log t, 
p(x”,-‘> n I 

occurs only finitely often with probability 1. Thus 

(15.124) 

1 
lim sup ; log 

p?x”,-l) 

p(x”,-‘) 
5 0 with probability 1 . (15.125) 
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Applying the same arguments using Markov’s inequality to (l&121), we 
obtain 

1 
lim sup ; log 

pw;-9 

p(x;-‘Ix::) 
5 0 with probability 1, 

(15.126) 

proving the lemma. q 

The arguments used in the proof can be extended to prove the AEP 
for the stock market (Theorem 15.5.3). 

SUMMARY OF C-R 16 

Doubling rate: The doubling rate of a stock market portfolio b with respect 
to a distribution F(x) is defined as 

W(b, F) = 1 log btx &i’(x) = E(log btX) . (15.127) 

Log-optimal portfolio: The optimal doubling rate is 

W*(F) = rnb”” W(b, F) (15.128) 

The portfolio b* that achieves the maximum of W(b, F) is called the Zog- 
optimal portfolio. 

Concavity: W(b, F) is concave in b and linear in F. W*(F) is convex in F. 

Optimality conditions: The portfolio b* is log-optimal if and only if 

(15.129) 

Expected ratio optimality: Letting SE = II:= 1 b*lXi, S, = II:==, bfXi, we 
have 

sn 
EP* (15.130) 

Growth rate (AEP): 

i log Sz + W “(8’) with probability 1 . (15.131) 

Asymptotic optimality: 

lim sup A log 
S 
6 I 0 with probability 1. (15.132) n- n n 
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Wrong information: Believing g when f is true loses 

AW = W(bT, F) - W(b;, F) 5 D( f llg) . 

Side information Y: 

AW I 1(X, Y) . 

Chain rule: 

W*(X,IX,,X,, . . . ,Ximl) = max 
bi(X~,XZ,. . . 

E log b:X, 
,X"i-1) 

w*m,,x,, - * * , x,>= i w*(x,Ixl,x,, . *. pxi-l) * 
i=l 

Doubling rate for a stationary market: 

w*-lirn w*(xl,x,, . . . ,X,) 
m- n 

Competitive optimal@ of log-optimal portfolios: 

1 
Pr(VS 2 U”S”) -= - 

-2. 

(15.133) 

(15.134) 

(15.135) 

(15.136) 

(15.137) 

(15.138) 

AEP: If {Xi} is stationary ergodic, then 

- ; logp(X,,X,, . . . ,X,)+H(%) with probability 1 . (15.139) 

PROBLEMS FOR CHAPTER 15 

1. Doubling rate. Let 

x = 
(1, a>, with probability l/2 
(1,1/a), with probability l/2 ’ 

where a > 1. This vector X represents a stock market vector of cash vs. 
a hot stock. Let 

W(b, F) = E log btX, 

and 

W* = my W(b, F) 

be the doubling rate. 
(a) Find the log optimal portfolio b*. 
(b) Find the doubling rate W*. 
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(c) Find the asymptotic behavior of 

2. 

3. 

S, = fi bt Xi 
i=l 

for all b. 

Side information. Suppose, in the previous problem, that 

‘= 1 
1, if(X,,X,)~(l, 11, 
0, if (X,,X,>l<l, 1). 

Let the portfolio b depend on Y. Find the new doubling rate W** and 
verify that AW = W** - W* satisfies 

Stock market. Consider a stock market vector 

X=(&,X,) * 

Suppose XI = 2 with probability 1. 
(a) Find necessary and sufficient conditions on the distribution of 

stock Xz such that the log optimal portfolio b* invests all the 
wealth in stock X,, i.e., b* = (0,l). 

(b) Argue that the doubling rate satisfies W* L 1. 

HISTORICAL NOTES 

There is an extensive literature on the mean-variance approach to investment in 
the stock market. A good introduction is the book by Sharpe [250]. Log optimal 
portfolios were introduced by Kelly [150] and Latane [172] and generalized by 
Breiman [45]. See Samuelson [225,226] for a criticism of log-optimal investment. 
An adaptive portfolio counterpart to universal data compression is given in 
Cover [66]. 

The proof of the competitive optimality of the log-optimal portfolio is due to 
Bell and Cover [20,21]. The AEP for the stock market and the asymptotic 
optimality of log-optimal investment are given in Algoet and Cover [9]. The AEP 
for ergodic processes was proved in full generality by Barron [18] and Orey [202]. 
The sandwich proof for the AEP is based on Algoet and Cover [B]. 



Chapter 16 

Inequalities in Information 
Theorv 

This chapter summarizes and reorganizes the inequalities found 
throughout this book. A number of new inequalities on the entropy rates 
of subsets and the relationship of entropy and 3” norms are also 
developed, The intimate relationship between Fisher information and 
entropy is explored, culminating in a common proof of the entropy power 
inequality and the Brunn-Minkowski inequality. We also explore the 
parallels between the inequalities in information theory and inequalities 
in other branches of mathematics such as matrix theory and probability 
theory. 

16.1 BASIC INEQUALITIES OF INFORMATION THEORY 

Many of the basic inequalities of information theory follow directly from 
convexity. 

Definition: A function f is said to be convex if 

f(Ax, + (1 - h)x,)l A/G,) + (1 - wo,) (16.1) 

for all 0 5 A 5 1 and all x1 and xta in the convex domain of r 

Theorem 16.1.1 (Theorem 2.6.2: Jensen’s inequality): If f is convex, 
then 

f(EX) 5 Ef(X) . (16.2) 

482 

Elements of Information Theory
Thomas M. Cover, Joy A. Thomas

Copyright  1991 John Wiley & Sons, Inc.
Print ISBN 0-471-06259-6 Online ISBN 0-471-20061-1



16.1 BASIC ZNEQUALZTZES OF 1NFORMATlON THEORY 483 

Lemma 16.1.1: The function logx is a concave function and x logx is a 
convex function of x, for 0 52 x < 00. 

Theorem 16.1.2 (Theorem 2.7.1: Log sum inequality): For positive 
numbers, a,, a2,. . . , a,, and b,, b,, . . . , b,,, 

(16.3) 

with equality iff ; = constant. 

We have the following properties 

Definition: The entropy H(X) of 
defined by 

- 

of entropy from Section 2.1. 

a discrete random variable X is 

H(X) = - 2 p(x) log p(x) * 
XE.EL” 

(16.4) 

Theorem 16.1.3 (Lemma 2.1.1, Theorem 2.6.4: Entropy bound): 

Oef(X)s logl8q (16.5) 

Theorem 16.1.4 (Theorem 2.6.5: Conditioning reduces entropy): For 
any two random variables X and Y, 

H(xl Y) 5 mm , (16.6) 

with equality iff X and Y are independent. 

Theorem 16.1.5 (Theorem 2.5.1 with Theorem 2.6.6: Chain rule): 

with equality iff XI, X,, . . . , X, are independent. 

Theorem 16.1.6 (Theorem 2.7.3): H(p) is a corxave function of p. 

We now state some properties of relative entropy and mutual 
information (Section 2.3). 

Definition: The relative entropy or K&back Leibler distance be- 
tween two probability mass functions p(x) and q(x) on the same set E is 
defined by 
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(16.8) 

Definition: The mutual information between two random variables X 
and Y is defined by 

Pk Y) &X;Y)= c c P(z,Y)logp(x)p(y) =Wp(x, Y)llP(dP(YN * 
xElyE9 

(16.9) 

The following basic information inequality can be used to prove many 
of the other inequalities in this chapter. 

Theorem 16.1.7 (Theorem 2.6.3: Information inequality): For any two 
probability mass functions p and g, 

D(plJq) 22 0 (16.10) 

with equality iff p(x) = q(x) for all x E 85 

Corollary: For any two random variables, X and Y, 

Itx; Y) = &Ax, y>ll p(dp( yN 2 0 (16.11) 

with equality iff p(x, y) = p(x)p( y), i.e., X and Y are independent. 

Theorem 16.1.8 (Theorem 2.7.2: Convexity of relative entropy): 
D( p II q) is convex in the pair ( p, q). 

Theorem 16.1.9 (Section 2.4 ): 

I(x; Y) = H(X) - H(XIY) , 

I(X, Y) = H(Y) - H(YIX), 

(16.12) 

(16.13) 

ICE, Y) = H(X) + H(Y) - H(X, Y) , (16.14) 

I(X, X) = H(X) . (16.15) 

Theorem 16.1.10 (Section 2.9): For a Markov chain: 

1. Relative entropy D( p,, II &) decreases with time. 
2. Relative entropy D( p,II p) between a distribution and the 

stationary distribution decreases with time. 
3. Entropy H(X,) increases if the stationary distribution is uniform. 
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4. The conditional entropy H(X,IX,) increases with time for a 
stationary Markov chain. 

Theorem 16.1.11 (Problem 34, Chapter 2): Let X1,X2,. . . ,X, be i.i.d. 
- p(x). Let pn be the empirical probability mass function of 
XI, X2, . . . , X,. Then 

(16.16) 

16.2 DIFFERENTIAL ENTROPY 

We now review some of the basic properties of differential entropy 
(Section 9.1). 

Definition: The differential entropy h(X,, X,, . . . , XJ, sometimes 
written h( f ), is defined by 

h(X,,X, ,..., X,)= - f(x)logf(x)dx. (16.17) 

The differential entropy for many common densities is given in Table 
16.1 (taken from Lazo and Rathie [2651). 

Defitition: The relative entropy between probability densities f and g 
is 

DC f II g) = j- f(x) log ( fM/gbd) dx . (16.18) 

The properties of the continuous version of relative entropy are 
identical to the discrete version. Differential entropy, on the other hand, 
has some properties that differ from those of discrete entropy. For 
example, differential entropy may be negative. 

We now restate some of the theorems that continue to hold for 
differential entropy. 

Theorem 16.2.1 (Theorem 9.6.1: Conditioning reduces entropy): 
h(XIY) 5 h(X), with equality iff X and Y are independent. 

Theorem 16.2.2 (Theorem 9.62: Chain rule): 

h(X,,X,, . . . , X,) = i h(XilXi-l,Xi-2,. . . ,X1)5 i h(X,) 
i=l i=l 

(16.19) 

with equality iff XI, X2, . . . , X, are independent. 
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TABLE 16.1. Table of differential entropies. All entropies are in nats. r(z) = 
St e-V-l dt. I,+(Z) = $ K’(z). y = Euler’s constant = 0.57721566. . . . B( p, q) = r( p)r( q)/ 
r(p + 9). 

Distribution I 

Name Density Entropy (in nats) 

f(w) = 
xP-l(l - g-1 

w PI 4) ’ 
Beta ln B( r-b 9) - ( p - 1) 

x I@(p)- $0 + @I 
05x51, p, q>o 34 - m/w - d p + 911 

Cauchy 

f(x) = ; & fl 

--oo<x<ag>O 

f(x) = 2 
x2 

2”‘*d l-+2/2) x 
n-1 e -202 

’ 
Chi ln or(n/2) 

75-- 
- Ly 1(1(g)+ 4 

x>o, n>O 

Chi-squared 

f(x) = 1 
2”‘*a”r(n/2) 

x;-‘e-&, 

In 2u*r(n /2) 
I x>O,n>O I -(l-g)+(g)+ 4 

Erlang 

Exponential 

F 

P" f(x) = (n xn-le-Px , 

x,p>o,n>o 

f(x) = f  e-f, x,h>O 

(1 - n)+(n) + In y  + n 

l+lnh 

In 2 B(y, 5) 
+ (1 - T)@( ?) 

Gamma 

-- 
a-1 ; 

f(x) = g&y/ 
1nW.W) + (1 - 4 

x, a, P ’ 0 x VW + a 

Laplace 
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TABLE 16.1. (Continued) 

Distribution 

Name Density Entropy (in nuts) 
--x 

f(x) = (1 +ee-')2' 

Logistic 2 
--oo<X<~ 

f(x) - l e-(*“;T2, 
UXVZ 

Lognormal m + $ ln(27rea2) 
x > 0, --cc,<m<~,a>O 

f(x) = & g X2e-Pr*, 

Maxwell-Boltzmann $ln$+r-4 

x,p>o 

(x-CL)* -- 
f(x) = & e 2a2 , 

Normal $ ln(27rea2) 
-~<x,p<~,u>O 

2p; a-l -px* ln r(z) 
f(x) = I x e I --sLp@(f)+sj 

Generalized normal 
2pf 

x, Qf, p ’ 0 

Pareto f(x) = $5, x?k>O,a>O lng+l+i 

f(x) = + e-$, 

Rayleigh l+ln$+g 
x,b>O 

n+l -- 

f(x) = (1 + x2/n) 2 

lhiB($, 5) ' 

Student-t y  e(y) - e(g) 

-m<x<m,n>O +lntiB(b, F) 

2x 

f( I={ 
-z- OSxra 

Triangular X - acxll 2(1- x) i -1n2 1-a 

Uniform f(x)= *, asxq ln(P - 4 

f(x, = c xc-le-:, 
a 

Weilbull lq!b+1,~+1 

x, c, a! > 0 
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Lemma 16.2.1: If X and Y are independent, then h(X + Y) zz h(X). 

Proof: h(X + Y) 2 h(X + YI Y) = h(XIY) = h(X). 0 

Theorem 16.2.3 (Theorem 9.6.5): Let the random vector X E R” have 
zero mean and covariance K= EXXt, i.e., Kii = EXiXj, 1 I i, j I n. Then 

h(X) 5 f log(2ne)“IKI , (16.20) 

with equality iff X - N(0, K). 

16.3 BOUNDS ON ENTROPY AND RELATIVE ENTROPY 

In this section, we revisit some of the bounds on the entropy function. 
The most useful is Fano’s inequality, which is used to bound away from 
zero the probability of error of the best decoder for a communication 
channel at rates above capacity. 

Theorem 16.3.1 (Theorem 2.11 .l: Fano’s inequality): Given two 
random variables X and Y, let P, be the probability of error in the best 
estimator of X given Y. Then 

H(p,)+p,log((~l-1)1H(X(Y). 

Consequently, if H(XIY) > 0, then P, > 0. 

(16.21) 

Theorem 16.3.2 (& bound on ent 
mass functions on % such that 

IIP - Sill = c 
XEZ 

Then 

bopy): Let p and q be two probability 

p(x) - qWI( f - (16.22) 

Imp) - H(q)1 5 - lip - all1 log ‘pl,p”l . (16.23) 

Proof: Consider the function fct) = - t log t shown in Figure 16.1. It 
can be verified by differentiation that the function fc.> is concave. Also 
fl0) = f(1) = 0. Hence the function is positive between 0 and 1. 

Consider the chord of the function from t to t + v (where Y I 4). The 
maximum absolute slope of the chord is at either end (when t = 0 or 
l- v). Hence for Ostrl- v, we have 

If@>-fct + 41 5 max{ fcv), fll - v)} = - v  log v  . (16.24) 

Let r(x) = I p(x) - q(x)(. Then 
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I I I I I I I I 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

Figure 16.1. The function fit) = -t log t. 

5 c I< -p(x) log p(x) + a(x) log a( (16.26) 
XEP 

5 c - &)log r(x) (16.27) 
XEX 

5 - IIP - QIII 1% IIP - 4111 + lb - ~111l~gl~l ’ (16.30) 

where (16.27) follows from (16.24). q 

We can use the concept of difTerentia1 entropy to obtain a bound on 
the entropy of a distribution. 

Theorem 16.3.3 (Theorem 9.7. I ): 

H(P,,P,,...)S2 1 log(27re) i p *2 (i=l it - (zl iPi)‘+ A) * (16.31) 

Finally, relative entropy is stronger than the JTI norm in the following 
sense: 

Lemma 16.3.1 (Lemma 126.1): 

(16.32) 
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16.4 INEQUALITIES FOR TYPES 

The method of types is a powerful tool for proving results in large 
deviation theory and error exponents. We repeat the basic theorems: 

Theorem 16.4.1 (Theorem 12.1.1): The number of types with de- 
nominator n is bounded by 

I9+(n + ljz’. (16.33) 

Theorem 16.4.2 (Theorem 12.1.2): If X1,X,, . . . ,Xn are drawn i.i.d. 
according to Q(x), then the probability of xn depends only on its type and 
is given by 

Q”(x”) = 2- nWPzn)+D(Px~~~Q)) . (16.34) 

Theorem 16.4.3 (Theorem 12.1.3: Size of a type class T(P)): For any 
type PE pa, 

1 
(n + 1)‘“’ 2 

nH(P) 5 1 T(p)1 I znHtP) . (16.35) 

Theorem 16.4.4 (Theorem 12.1.4 ): For any P E 9n and any dis- 
tribution Q, the probability of the type class T(P) under Q” is 2-nD(p”Q) to 
first order in the exponent. More precisely, 

(n +‘l)lZ1 
2-nD(PitQ) ( Q”(T(p)) I 2-nD(PIIQ) . (16.36) 

16.5 ENTROPY RATES OF SUBSETS 

We now generalize the chain rule for differential entropy. The chain rule 
provides a bound on the entropy rate of a collection of-random variables 
in terms of the entropy of each random variable: 

M&,X,, . . . , X,>s i h(XJ. 
i=l 

(16.37) 

We extend this to show that the entropy per element of a subset of a set 
of random variables decreases as the size of the set increases. This is not 
true for each subset but is true on the average over subsets, as 
expressed in the following theorem. 

Definition: Let (XI, X2, . . . , X,) have a density, and for every S c 
w, ’ * a, n}, denote by X(S) the subset {Xi : i E S). Let, 
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1 WC3 N hen) = - 2 - 
k 

(;) S:ISI=k k ’ 
(16.38) 

Here ht’ is the average entropy in bits per symbol of a randomly drawn 
k-element subset of {X1,X,, . . . ,X,}. 

The following theorem by Han [130] says that the average entropy 
decreases monotonically in the size of the subset. 

Theorem 16.8.1: 

(n) h:“’ 2 h;’ 2. . .I h, . (16.39) 

Proof: We first prove the last inequality, h’,“’ 5 hrJl. We write 

M&,X,, . . -3 Xn)=h(Xl,X,,...,X,-,)+h(X,IX,,X,,...,Xn-~), 

h(X,,X,, . . . , x,>=h(x,,x, ,..., X,-g,&) 

+ h(X,-&,X,, l .  .  , x , - , , x , )  

sh(X,,X,,..., X,-,,X,> + M&-&,X,, . . . ,Xn-2), . 

M&X,, . . . , x,)sh(X,,X,,...,X,)+h(X,). 

Adding these n inequalities and using the chain rule, we obtain 

nh(X,,X,, . . . , X,&i h(X,,X,,... 
,  q-1, xi+19 l *  l ,  Xn) 

i=l 

+ h(X,,X,, . . . ,x,1 (16.40) 

or 

(16.41) 

which is the desired result ht’ 5 hz?, . 
We now prove that hp’ 5 hf’ll for all k 5 n by first conditioning on a 

k-element subset, and then taking a uniform choice over its (k - l>- 
element subsets. For each k-element subset, hr’ I hf!,, and hence the 
inequality remains true after taking the expectation over all k-element 
subsets chosen uniformly from the n elements. 0 
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Theorem 16.5.2: Let r > 0, and define 

h) l rh WC3 1) 
tk =- c 

(2) S:ISl=k 
e k . 

Then 

Proof: Starting from (16.41) in the previous 
both sides by r, exponentiate and then apply 
geometric mean inequality to obtain 

(16.42) 

(16.43) 

theorem, we multiply 
the arithmetic mean 

1 rh(X1, X2, . . . ,X,) 
rh(Xl,Xz,. .a ,Xi-~tXi+I*...~xn) 

en n-l 
(16.44) 

1” rh(Xl,Xz,. . a sXi-l,Xi+l, * * * TX,) 

I- c e n-l 

n i=l 
for all r 2 0 , 

(16.45) 

which is equivalent to tr ’ 5 t r? 1. Now we use the same arguments as in 
the previous theorem, taking an average over all subsets to prove the 
result that for all k 5 n, tr’ 5 trjl. Cl 

Definition: The average conditional entropy rate per element for all 
subsets of size k is the average of the above quantities for k-element 
subsets of { 1,2, . . . , n}, i.e., 

(n)- l 
gk c WCS $W” N 

(3 S:IS(=k k ’ 
(16.46) 

Here g&S’) is the entropy per element of the set S conditional on the 
elements of the set SC. When the size of the set S increases, one can 
expect a greater dependence among the elements of the set S, which 
explains Theorem 16.5.1. 

In the case of the conditional entropy per element, as k increases, the 
size of the conditioning set SC decreases and the entropy of the set S 
increases. The increase in entropy per element due to the decrease in 
conditioning dominates the decrease due to additional dependence 
among the elements, as can be seen from the following theorem due to 
Han [130]. Note that the conditional entropy ordering in the following 
theorem is the reverse of the unconditional entropy ordering in Theorem 
16.51. 

Theorem 16.5.3: 

(16.47) 
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Proof: The proof proceeds on lines very similar to the proof of the 
theorem for the unconditional entropy per element for a random subset. 
We first prove that gt’ I gr!, and then use this to prove the rest of the 
inequalities. 

By the chain rule, the entropy of a collection of random variables is 
less than the sum of the entropies, i.e., 

M&,X,, . . . , X,>s i h(Xi). 
i=l 

Subtracting both sides of this inequality from nh(X,, X2, . 
have 

(n - l)h(X,,X,, . . . ,X,)2 &hlX,,X,, . . . ,x,> - W&N 
i=l 

Dividing this by n(n - l), we obtain 

. . 

(16.48) 

SW, we 

(16.49) 

(16.50) 

h(X,,&, . . . ,x,1 1 n h(X,,X,, . . . ,Xi-l,Xi+l,. . . ,XnlXi) L- 
n c n i=l n-l 9 

(16.51) 

which is equivalent to gr’ 2 gr? 1. 
We now prove that gt’ 1 grJl for all k 5 n by first conditioning on a 

k-element subset, and then taking a uniform choice over its (k - l)- 
element subsets. For each k-element subset, gf’ 2 gf?, , and hence the 
inequality remains true after taking the expectation over all k-element 
subsets chosen uniformly from the n elements. 0 

Theorem 16.5.4: Let 

Then 

(16.52) 

(16.53) 

Proof: The theorem follows from the identity 1(X(S); X(S” 1) = 
h(X(S)) - h(X(S))X(S”>> and Theorems 16.5.1 and 16.5.3. Cl 
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16.6 ENTROPY AND FISHER INFORMATION 

The differential entropy of a random variable is a measure of its 
descriptive complexity. The Fisher information is a measure of the 
minimum error in estimating a parameter of a distribution. In this 
section, we will derive a relationship between these two fundamental 
quantities and use this to derive the entropy power inequality. 

Let X be any random variable with density f(x). We introduce a 
location parameter 8 and write the density in a parametric form as 
f(;lc - 0). The Fisher information (Section 12.11) with respect to 8 is 
given by 

Jcs,=l~fcx-e)[~lnfcr-e,12dr. --bD 

In this case, differentiation with respect to x is equivalent to 
differentiation with respect to 8. So we can write the Fisher information 

(16.55) 

which we can rewrite as 

(16.56) 

We will call this the Fisher information of the distribution of X. Notice 
that, like entropy, it is a function of the density. 

The importance of Fisher information is illustrated in the following 
theorem: 

Theorem 16.6.1 (Theorem 12.11 .l: Cram&-Rao inequality): The mean 
squared error of any unbiased estimator T(X) of the parameter 8 is lower 
bounded by the reciprocal of the Fisher information, i.e., 

1 
var(T)z JO . (16.57) 

We now prove a fundamental relationship between the differential 
entropy and the Fisher information: 

Theorem 16.6.2 (de BruQn’s identity: Entropy and Fisher infor- 
mation): Let X be any random variable with a finite variance with a 
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density f(x). Let 2 be an independent normally distributed random 
variable with zero mean and unit variance. Then 

$h,(X+V?Z)=;J(X+tiZ), (16.58) 

where h, is the differential entropy to base e. In particular, if the limit 
exists as t + 0, 

$ h,(X + tiZ) = i J(X). 
t=o 2 

Proof: Let Yt = X + tiZ. Then the density of Yi is 

gt( y) = 1-1 fix) & e 
-- 

(y2t*)2 o?x . 

Then 

(16.59) 

(16.60) 

(16.62) 

We also calculate 

(16.63) 

= (16.64) 

and 

a2 
m 

1 a 
2 gt(y) = --m fix> - - - - 
dY I [ 

Y-xeA2z$ ~ 

6Zay t I (16.65) 

1 

00 
1 = 

[ 
1 -Qg + (y -x)2 

-Jx)m -p - t2 e 

-Qg I dx . (16 66) . 
Thus 

; g,(y) = 1 < g,(y) * 
2 aY 

(16.67) 
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We will use this relationship to calculate the derivative of the entropy 
of Yt , where the entropy is given by 

h,W,) = -1-1 gt(y) In g(y) dy . (16.68) 

Differentiating, we obtain 

(16.69) 

gt(Y) ln g,(y) dYrn (16.70) 

The first term is zero since s gt( y) dy = 1. The second term can be 
integrated by parts to obtain 

(16.71) 

The second term in (16.71) is %J(Y,). So the proof will be complete if we 
show that the first term in (16.71) is zero. We can rewrite the first term 
as 

a&) 
aY 

[2vmln I/Z31 . (16.72) 

The square of the first factor integrates to the Fisher information, and 
hence must be bounded as y+ + 00. The second factor goes to zero since 
3t:lnx+O as x-0 and g,(y)+0 as y+ fm. Hence the first term in 
(16.71) goes to 0 at both limits and the theorem is proved. 

In the proof, we have exchanged integration and differentiation in 
(16.61), (16.63), (16.65) and (16.69). Strict justification of these ex- 
changes requires the application of the bounded convergence and mean 
value theorems; the details can be found in Barron [Ml. q 

This theorem can be used to prove the entropy power inequality, 
which gives a lower bound on the entropy of a sum of independent 
random variables. 

Theorem 16.6.3: (Entropy power inequality): If X and Y are inde- 
pendent random n-vectors with densities, then 

zh(x+Y) 
2” 

zh(X, zh(Y, 
12” +2” . (16.73) 
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We outline the basic steps in the proof due to Stam [257] and 
Blachman [34]. The next section contains a different proof. 

Stam’s proof of the entropy power inequality is based on a 
perturbation argument. Let X, =X+mZ1, Y,=Y+mZ,, where 
2, and 2, are independent N(0, 1) random variables. Then the entropy 
power inequality reduces to showing that s( 0) I 1, where we define 

s(t) = 
2 2hWt) + 22MY,) 

2 OA(X,+Y,) l 

(16.74) 

If fit>+ 00 and g(t) + 00 as t + 00, then it is easy to show that s(w) = 1. If, 
in addition, s’(t) ~0 for t 10, this implies that s(O) 5 1. The proof of the 
fact that s’(t) I 0 involves a clever choice of the functions fit> and g(t), 
an application of Theorem 16.6.2 and the use of a convolution inequality 
for Fisher information, 

1 1 1 
J(x+Y)~Jo+J(Y)’ 

(16.75) 

The entropy power inequality can be extended to the vector case by 
induction. The details can be found in papers by Stam [257] and 
Blachman [34]. 

16.7 THE ENTROPY POWER INEQUALITY AND THE 
BRUNN-MINKOWSKI INEQUALITY 

The entropy power inequality provides a lower bound on the differential 
entropy of a sum of two independent random vectors in terms of their 
individual differential entropies. In this section, we restate and outline 
a new proof of the entropy power inequality. We also show how the 
entropy power inequality and the Brunn-Minkowski inequality are 
related by means of a common proof. 

We can rewrite the entropy power inequality in a form that 
emphasizes its relationship to the normal distribution. Let X and Y be 
two independent random variables with densities, and let X’ and Y’ be 
independent normals with the same entropy as X and Y, respectively. 
Then 22h’X’ = 22hCX” = (2ve)& and similarly 22h’Y’ = (2ge)&. Hence 
the entropy power inequality can be rewritten as 

2 2h(X+Y) 2 (2re)(ai, + a;,) = 22h(X’+Y’) , 

since X’ and Y’ are independent. Thus we have a new statement of the 
entropy power inequality: 
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Theorem 16.7.1 (Restatement of the entropy power inequality): For two 
independent random variables X and Y, 

h(X+Y)zh(X’+Y’), (16.77) 

where X’ and Y’ are independent normal random variables with h(X’) = 
h(X) and h(Y’) = h(Y). 

This form of the entropy power inequality bears a striking 
resemblance to the Brunn-Minkowski inequality, which bounds the 
volume of set sums. 

Definition: The set sum A + B of two sets A, B C %n is defined as the 
set {x+y:x~A,y~B}. 

Example 16.7.1: The set sum of two spheres of radius 1 at the origin is 
a sphere of radius 2 at the origin. 

Theorem 16.7.2 (Brunn-Minkowski inequality): The volume of the set 
sum of two sets A and B is greater than the volume of the set sum of two 
spheres A’ and B’ with the same volumes as A and B, respectively, i.e., 

V(A+ B,&f(A’+ B’), (16.78) 

where A’ and B’ are spheres with V(A’) = V(A) and V(B’) = V(B). 

The similarity between the two theorems was pointed out in [%I. A 
common proof was found by Dembo [87] and Lieb, starting from a 
strengthened version of Young’s inequality. The same proof can be used 
to prove a range of inequalities which includes the entropy power 
inequality and the Brunn-Minkowski inequality as special cases. We 
will begin with a few definitions. 

Definition: Let f andg 
convolution of the two 
defined by 

be two densities over % n and let f * g denote the 
densities. Let the 2Zr norm of the density be 

Ilf II, = (1 f’(x) dz)l” - (16.79) 

Lemma 16.7.1 (Strengthened Young’s inequality): For any two den- 
sities f and g, 

IIf*J4lr~ (~)n’211fllpll~ll, 9 (16.80) 
P 



16.7 THE ENTROPY POWER INEQUALZTY 499 

where 111 -=- +--1 
r P Q 

c_pp 1+l-1 
P 19 

p/p' 
p j7- ' 

(16.81) 

(16.82) 

Proof: The proof of this inequality is rather involved; it can be found 
in [19] and [43]. Cl 

We define a generalization of the entropy: 

Definition: The Renyi entropy h,(X) of order r is defined as 

h,(X) = & log[l f’B)dr] (16.83) 

for 0 < r < 00, r # 1. If we take the limit as r + 1, we obtain the Shannon 
entropy function 

h(X) = h,(X) = - f(x) log f(x) o?x . (16.84) 

If we take the limit as r+ 0, we obtain the logarithm of the volume of 
the support set, 

h,(X) = log( /L{X : fix> > 0)) . (16.85) 

Thus the zeroth order Renyi entropy gives the measure of the support 
set of the density f. We now define the equivalent of the entropy power 
for Renyi entropies. 

Definition: The Renyi entropy power V,(X) of order r is defined as 

I 
[J f’(x) dx$ :, O<rlcfJ,r#l,j+~=l 

V,(X) = exp[ %(X)1, r= 1 (16.86) 

p((x: flx,>o),i, r= 0 

Theorem 16.7.3: For two independent random variables X and Y and 
any Orr<mand any OrAll, we have 
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Proof: If we take the logarithm of Young’s inequality (16.80), we 
obtain 

; log V,(X + Y) 2 I logv,(X) + -+ logV,(Y) 
P’ 

+ log c, - log CP - log c4 . (16.88) 

Setting A = r’lp’ and using (16.81), we have 1 - A = f/q’, p = + 
and q = r+(LAXl-r). Thus (16.88) becomes 

log V,(X + Y) 1 A log V,(X) + (1 - A) log v,(Y) + clogr- log r’ 

-$logp+< 
P 

logp’$ log Q + ; logq’ (16.89) 

= A logV,(X) + (1 - A) logv,(Y) + :logr-(A+l-A)logr’ 

-blogp+Alogp’-$logq+(l-A)logq’ (16.90) 

1 
=AlogV,(X)+(l-A)logV,(Y)+ xlogr+H(A) 

_ r + A(1 - r) 
r-l 

log r 
r+A(l-r) 

_ r + (1 - A)(1 - r) 
1% 

r 
r-l r + (1 - A)(1 - r) 

(16.91) 

(16.92) 

= AlogV,(X) + (1 - A)logV,(Y) + H(A) 

+ EM r+;y,r’)-H(&)], (16.93) 

where the details of the algebra for the last step are omitted. 0 

The Brunn-Minkowski inequality and the entropy power inequality 
can then be obtained as special cases of this theorem. 
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l The entropy power inequality. Taking the limit of (16.87) as r --) 1 
and setting 

v,w> 
* = V,(X) + V,(Y) ’ 

(16.94) 

we obtain 

v,<x + Y) 2 V,(X) + V&Y>, (16.95) 

which is the entropy power inequality. 
l The Brunn-Minkowski inequality. Similarly letting r--, 0 and 

choosing 

(16.96) 

we obtain 

Now let A be the support set of X and B be the support set of Y. 
Then A + B is the support set of X + Y, and (16.97) reduces to 

[pFL(A + B)ll’” 1 Ep(A)ll’n + [p(B)l”” , (16.98) 

which is the Brunn-Minkowski inequality. 

The general theorem unifies the entropy power inequality and the 
Brunn-Minkowski inequality, and also introduces a continuum of new 
inequalities that lie between the entropy power inequality and the 
Brunn-Minkowski inequality. This furthers strengthens the analogy 
between entropy power and volume. 

16.8 INEQUALITIES FOR DETERMINANTS 

Throughout the remainder of this chapter, we will assume that K is a 
non-negative definite symmetric n x n matrix. Let IX1 denote the 
determinant of K. 

We first prove a result due to Ky Fan [1031. 

Theorem 16.8.1: 1oglKl is concaue. 
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Proof: Let XI and X, be normally distributed n-vectors, Xi - 
N( 0, Ki ), i = 1,2. Let the random variable 8 have the distribution 

Pr{e=l}=h, (16.99) 

Pr{8=2}=1-A, (16.100) 

for some 0 5 A 5 1. Let t?, X, and X, be independent and let Z = X,. Then 
2 has covariance Kz = AK, + (1 - A& However, Z will not be 
multivariate normal. By first using Theorem 16.2.3, followed by 
Theorem 16.2.1, we have 

(16.101) 

1 h(ZJB) (16.102) 

= Ai log(2re)“IKlI + (1 - A); log(2?re)“&( . 

(AK, +(l-A)K,IrIK,IAIKzll-A, (16.103) 

as desired. Cl 

We now give Hadamard’s inequality using an information theoretic 
proof [68]. 

Theorem 16.8.2 (HMZUmUrd): IKI 5 II Kii, with equality iff Kij = 0, 
i #j. 

Proof: Let X - NO, K). Then 

f log(2~e)“IK]= h(X,,X,, . . . , xp&>5C h(Xi)= i i lOg27TelKiiI, 
i=l 

(16.104) 

with equality iff XI, X,, . . . , X, are independent, i.e., Kii = 0, i Z j. Cl 

We now prove a generalization of Hadamard’s inequality due to Szasz 
[196]. Let K(i,, i,, . . . , k i ) be the k x k principal submatrix of K formed 
by the rows and columns with indices i,, i,, . . . , i,. 

Theorem 16.8.3 (&a&: If K is a positive definite n x n matrix and Pk 
denotes the product of the determinants of all the principal k-rowed 
minors of K, i.e., 
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Pk = rI IK( i,, i,, . . . , iJ , (16.105) 
l~il<i2<..‘<i~zssn 

then 

p, 2 p;‘(“i’ ) 2 p;‘(T) 2 . . . 1 p, . (16.106) 

Proof: Let X - N(0, K). Then the theorem follows directly from 
Theorem 16.5.1, with the identification hr’ = & log Pk + 
i log2re. q 

We can also prove a related theorem. 

Theorem 16.8.4: Let K be a positive definite n x n matrix and let 

pz) l 
k 

=- 
c 

( ; ) 12sil <i2<..‘<iksn 
Im 

i19 i2y * * 
. , ik)lllk . (16.107) 

Then 

1 
; tr(K) = Sr) I St) 2.. .z SF) = IKI l/n 

. (16.108) 

Proof: This follows directly from the corollary to Theorem 16.5.1, 
with the identification tr’ = (277e)Sr’ and r = 2. Cl 

Theorem 16.8.5: Let 

IKI 
Qk=(,:~z, IK(s”>I 

(16.109) 

Then 

n 

( > 

l/n 

l-I tT ;  =Q1~Q2~ l -  . I Qnml I Q, = IKll’n . (16.110) 
i=l 

Proof: The theorem follows immediately from Theorem 16.5.3 and 
the identification 

IKI h(X(S)IX(S”)) = i log(2re)k - IKW>l ’ •I (16.111) 

The outermost inequality, Q1 5 Q,, can be rewritten as 
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where 
IKI 

u’ = IK(1,2.. . , i - 1, i + 1,. . . , n)l 
(16.113) 

is the minimum mean squared error in the linear prediction of Xi from 
the remaining X’s, Thus 0: is the conditional variance of Xi given the 
remaining Xj’S if XI, X,, . . . ,X, are jointly normal. Combining this with 
Hadamard’s inequality gives upper and lower bounds on the 
determinant of a positive definite matrix: 

Corollary: 

nKii~IKJrrZ*$. (16.114) 
i i 

Hence the determinant of a covariance matrix lies between the 
product of the unconditional variances Kii of the random variables Xi 
and the product of the conditional variances a;. 

We now prove a property of Toeplitz matrices, which are important as 
the covariance matrices of stationary random processes. A Toeplitz 
matrix K is characterized by the property that Kti = K,., if I i - jl = I r - s I. 
Let Kk denote the principal minor K(1,2, . . . , k). For such a matrix, the 
following property can be proved easily from the properties of the 
entropy function. 

Theorem 16.8.6: If the positive definite n x n matrix K is Toeplitz, then 

IKJ L IK,I”” 10. . . I IK,J1’(n-l) I IK,I”” 

and lKhl/lKk-J is decreasing in k, and 

IK I 
liilKnl”” = lii IK_ . 

n 1 

(16.116) 

Proof: Let <x1,x2,. . . , X,) - N(O, K,). We observe that 

h(X,IX,-1, * * . ,xl)=h(Xk)-h(Xk-l) (16.117) 

(16.118) 

Thus the monotonicity of I Kk I / IK, _ 1 I follows from the monotonocity of 
wqX&,, * * . , Xl), which follows from 

h(X,IX&,,. . . ,x1> = h(X,+,lX,, ‘0 ’ ,x2> (16.119) 

zh(&+llX,, * - - ,&,X,L (16.120) 
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where the equality follows from the Toeplitz assumption and the in- 
equality from the fact that conditioning reduces entropy. Since 
wqX,-1, * * . , X, > is decreasing, it follows that the running averages 

&Xl,. . . ,x,> = ; $ h(XJXi-1, . . . ,x1> (16.121) 
i 1 

are decreasing in k. Then (16.115) follows from h(X,, X,, . . . , Xk ) = 
fr log(2rre)‘)K,I. Cl 

Finally, since h(X, IX,- 1, . . . , XI) is a decreasing sequence, it has a 
limit. Hence by the Cesaro mean theorem, 

lim W~,X,, ’ * * ,x,1 
= lim - 

n-+m n 
n~m I, klil WkIXk-I,. . .,X1) 

= ;irr h(X,IX,-1, . . . ,x,>. 

Translating this to determinants, one obtains 

IK I fir. IKyn = lii i$J . 
n 1 

Theorem 16.8.7 (Minkowski inequality [195]): 

IKl + KZllln 2 IK$‘” + IK,l”n. 

(16.123) 

Proof: Let X,, X, be independent with Xi - JV( 0, Ki ). Noting that 
X, + X, - &(O, KI + K,) and using the entropy power inequality 
(Theorem 16.6.3) yields 

(2ne)JK, + K,( 1’n = 2(2’n)h(X1+X2) (16.125) 

> 2(2/n)h(X1) + pnMX2) 
- (16.126) 

= (2ne)lKII”” + (2re)lK211’n. 0 (16.127) 

16.9 INEQUALITIES FOR RATIOS OF DETERMINANTS 

We now prove similar inequalities for ratios of determinants. Before 
developing the next theorem, we make an observation about minimum 
mean squared error linear prediction. If (Xl, X2, . . . , X,> - NO, K, ), we 
know that the conditional density of X, given (Xl, X2, . . . , X, _ 1 ) is 
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univariate normal with mean linear in X,, X,, . . . , X,- 1 and conditional 
variance ai. Here 0: is the minimum mean squared error E(X, - X,>” 
over all linear estimators Xn based on X,, X2, . . . , X,_,. 

Lemma 16.9.1: CT: = lK,l/lKnsll. 

Proof: Using the conditional normality of X,, we have 

(16.128) 

=h(X,,X, ,..., x,>--h(X,,X, ,“‘,x,-1) (16.129) 

= k log(2re)“lK,( - i log(2ne)“-’ IK,-,I (16.130) 

= f log2~elK,IIIK,-,J . Cl (16.131) 

Minimization of ai over a set of allowed covariance matrices {K,} is 
aided by the following theorem. Such problems arise in maximum 
entropy spectral density estimation. 

Theorem 16.9.1 (Bergstrtim [231): lo& IK, I /JK,-, 1) is concaue in K,. 

Proof: We remark that Theorem 16.31 cannot be used because 
lo& IK, I l/K,-, I) is the difference of two concave functions. Let 2 = X,, 
where X, -N(O,S,), X2-.N(O,T,), Pr{8=l}=h=l-Pr{8=2} and 
let X,, X2, 8 be independent. The covariance matrix K, of 2 is given by 

K, = AS, + (1 - A)T, . (16.132) 

The following chain of inequalities proves the theorem: 

A ~log(2~eYIS,l/IS,-,) + (1 - A) i log(27re)PIT,IIIT,-J 

+ Cl- M&,,,&,n-1,. . . ,X2,+,+& 1, . . . ,X2, 4 (16.133) 

= h(Z,, q-1, .  *  l ,zn-p+lJzl, *  *  l ,zn-p 0) (16.134) 

(b) 
~h(Z,,Z,-1,. l l ,zn-p+lpl,. .  .  , z , - ,>  (16.135) 

(cl 1 IK I 5 2 log(2ve)P - 
ILpl 9 (16.136) 
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where(a) follows from h(X,, XnB1, . . . , Xn-P+llXI, . . . , Xn-J = h(X,, . . . , 
x,)--ml,.. . , X,_, ), (b) from the conditioning lemma, and (c) follows 
from a conditional version of Theorem 16.2.3. Cl 

Theorem 16.9.2 (Bergstram [23]): IK, 1 /(IQ-, I is concuue in K,, 

Proof: Again we use the properties of Gaussian random variables. 
Let us assume that we have two independent Gaussian random n- 
vectors, X- N(0, A,) and Y- N(0, B,). Let Z =X + Y. 

Then 

IA . ,Z,) (16.137) 

(2) h(Z,pn4, Zn-2, . . * , z,, xn-l, x-2, -  -  l ,  Xl, L-1, Yz-2, ’ ’ * 9 y,) 

(16.138) 

%(Xn + YnIXn4,Xn-2,. . . ,x1, Y,-1, Y,-2, - - - , Y,> (16.139) 

‘% f log[27reVar(X, + YnIXn+Xn-2,. . . ,X1, Ynml, Ynm2,. . . , YJI 

(16.140) 

%!S i log[27re(Var(XJX,-,,X,-,, . . . ,X1) 

+VdY,IY,-,, Ynd2,. . . , YINI (16.141) 

(f) 1 
=E slog 

( ( 
271-e IA I IB I 

La + lB,1Il >> 
1 

=2log 2re 
( ( 

IA I IB I 
cl+ lBn:Il >> ’ 

(16.142) 

(16.143) 

where 

(a) follows from Lemma 16.9.1, 
(b) from the fact the conditioning decreases entropy, 
(c) from the fact that 2 is a function of X and Y, 
(d) since X, + Y, is Gaussian conditioned on XI, X2, . . . , XnmI, 

YIP yz, * -  l 9 
Y,- 1, and hence we can express its entropy in terms of 

its variance, 
(e) from the independence of X, and Y, conditioned on the past 

Xl,- X2,. . . ,JL, Yl, Y2, . . . p YL, and 
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(f) follows from the fact that for a set of jointly Gaussian random 
variables, the conditional variance is constant, independent of the 
conditioning variables (Lemma 16.9.1). 

Setting A = AS and B = IT’, we obtain 

IhS, + hT,I Is I IT I 
I~%, + K-II 1 * Is,l,l + h lT,1,l ’ 

(16.144) 

i.e., lK,l/lK,-ll is concave. Simple examples show that IK, I / IK, -p 1 is not 
necessarily concave for p 12. q 

A number of other determinant inequalities can be proved by these 
techniques. A few of them are found in the exercises. 

Entropy: H(X) = -c p(x) log p(x). 

Relative entropy: D( p 11 q) = C p(x) log P$$. 

Mutual information: 1(X, Y) = C p(x, y) log a, 

Information inequality: D( p 11 q) ~0. 

Asymptotic equipartition property: - A log p(X,, X2, . . . , X,>+ H(X). 

Data compression: H(X) I L * < H(X) + 1. 

Kolmogorov complexity: K(x) = min,,,,=, Z(P). 

Channel capacity: C = maxP(z, 1(X, Y). 

Data transmission: 

l R -C C: Asymptotically error-free communication possible 
l R > C: Asymptotically error-free communication not possible 

Capacity of a white Gaussian noise channel: C = 4 log(1 + fj ). 

Rate distortion: R(D) = min 1(X; X) 
over all p(iIx) such that EP~z)p(b,rId(X, X) I D. 

Doubling rate for stock market: W* = maxbe E log btX. 
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PROBLEMS FOR CHAPTER 16 

1. Sum of positive definite matrices. For any two positive definite matrices, 
KI and K,, show that ]K, + Kz] 1 ]&I. 

2. Ky Fan inequality [IO41 for ratios of determinants. For all 1 “p I n, for a 
positive definite K, show that 

I4 fi IK(i, p + 1, p + 2,. . . , n>l 
IK(p + 1, p + 2,. . . , n)l S i=l IK(p + 1, p + 2,. . . , dl ’ U6’145) 

HISTORICAL NOTES 

The entropy power inequality was stated by Shannon [238]; the first formal 
proofs are due to Stam [257] and Blachman [34]. The unified proof of the entropy 
power and Brunn-Minkowski inequalities is in Dembo [87]. 

Most of the matrix inequalities in this chapter were derived using information 
theoretic methods by Cover and Thomas [59]. Some of the subset inequalities for 
entropy rates can be found in Han [130]. 
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