
A Student’s Guide to Coding and Information Theory

This easy-to-read guide provides a concise introduction to the engineering background of
modern communication systems, from mobile phones to data compression and storage.
Background mathematics and specific engineering techniques are kept to a minimum,
so that only a basic knowledge of high-school mathematics is needed to understand the
material covered. The authors begin with many practical applications in coding, includ-
ing the repetition code, the Hamming code, and the Huffman code. They then explain
the corresponding information theory, from entropy and mutual information to channel
capacity and the information transmission theorem. Finally, they provide insights into
the connections between coding theory and other fields. Many worked examples are
given throughout the book, using practical applications to illustrate theoretical defini-
tions. Exercises are also included, enabling readers to double-check what they have
learned and gain glimpses into more advanced topics, making this perfect for anyone
who needs a quick introduction to the subject.

stefan m. moser is an Associate Professor in the Department of Electrical Engi-
neering at the National Chiao Tung University (NCTU), Hsinchu, Taiwan, where he has
worked since 2005. He has received many awards for his work and teaching, including
the Best Paper Award for Young Scholars by the IEEE Communications Society and
IT Society (Taipei/Tainan Chapters) in 2009, the NCTU Excellent Teaching Award, and
the NCTU Outstanding Mentoring Award (both in 2007).

po-ning chen is a Professor in the Department of Electrical Engineering at the
National Chiao Tung University (NCTU). Amongst his awards, he has received the
2000 Young Scholar Paper Award from Academia Sinica. He was also selected as
the Outstanding Tutor Teacher of NCTU in 2002, and he received the Distinguished
Teaching Award from the College of Electrical and Computer Engineering in 2003.

A Student’s Guide to Coding and
Information Theory

STEFAN M. MOSER

PO-NING CHEN

National Chiao Tung University (NCTU),
Hsinchu, Taiwan

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107015838

C© Cambridge University Press 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-1-107-01583-8 Hardback
ISBN 978-1-107-60196-3 Paperback

Additional resources for this publication at www.cambridge.org/moser

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

Contents

List of contributors page ix
Preface xi

1 Introduction 1
1.1 Information theory versus coding theory 1
1.2 Model and basic operations of information processing

systems 2
1.3 Information source 4
1.4 Encoding a source alphabet 5
1.5 Octal and hexadecimal codes 8
1.6 Outline of the book 9

References 11

2 Error-detecting codes 13
2.1 Review of modular arithmetic 13
2.2 Independent errors – white noise 15
2.3 Single parity-check code 17
2.4 The ASCII code 19
2.5 Simple burst error-detecting code 21
2.6 Alphabet plus number codes – weighted codes 22
2.7 Trade-off between redundancy and error-detecting

capability 27
2.8 Further reading 30

References 30

3 Repetition and Hamming codes 31
3.1 Arithmetics in the binary field 33
3.2 Three-times repetition code 34

vi Contents

3.3 Hamming code 40
3.3.1 Some historical background 40
3.3.2 Encoding and error correction of the (7,4)

Hamming code 42
3.3.3 Hamming bound: sphere packing 48

3.4 Further reading 52
References 53

4 Data compression: efficient coding of a random message 55
4.1 A motivating example 55
4.2 Prefix-free or instantaneous codes 57
4.3 Trees and codes 58
4.4 The Kraft Inequality 62
4.5 Trees with probabilities 65
4.6 Optimal codes: Huffman code 66
4.7 Types of codes 73
4.8 Some historical background 78
4.9 Further reading 78

References 79

5 Entropy and Shannon’s Source Coding Theorem 81
5.1 Motivation 81
5.2 Uncertainty or entropy 86

5.2.1 Definition 86
5.2.2 Binary entropy function 88
5.2.3 The Information Theory Inequality 89
5.2.4 Bounds on the entropy 90

5.3 Trees revisited 92
5.4 Bounds on the efficiency of codes 95

5.4.1 What we cannot do: fundamental limitations
of source coding 95

5.4.2 What we can do: analysis of the best codes 97
5.4.3 Coding Theorem for a Single Random Message 101

5.5 Coding of an information source 103
5.6 Some historical background 108
5.7 Further reading 110
5.8 Appendix: Uniqueness of the definition of entropy 111

References 112

Contents vii

6 Mutual information and channel capacity 115
6.1 Introduction 115
6.2 The channel 116
6.3 The channel relationships 118
6.4 The binary symmetric channel 119
6.5 System entropies 122
6.6 Mutual information 126
6.7 Definition of channel capacity 130
6.8 Capacity of the binary symmetric channel 131
6.9 Uniformly dispersive channel 134
6.10 Characterization of the capacity-achieving input distri-

bution 136
6.11 Shannon’s Channel Coding Theorem 138
6.12 Some historical background 140
6.13 Further reading 141

References 141

7 Approaching the Shannon limit by turbo coding 143
7.1 Information Transmission Theorem 143
7.2 The Gaussian channel 145
7.3 Transmission at a rate below capacity 146
7.4 Transmission at a rate above capacity 147
7.5 Turbo coding: an introduction 155
7.6 Further reading 159
7.7 Appendix: Why we assume uniform and independent

data at the encoder 160
7.8 Appendix: Definition of concavity 164

References 165

8 Other aspects of coding theory 167
8.1 Hamming code and projective geometry 167
8.2 Coding and game theory 175
8.3 Further reading 180

References 182

References 183
Index 187

Contributors

Po-Ning Chen (Chapter 7)

Francis Lu (Chapter 3 and 8)

Stefan M. Moser (Chapter 4 and 5)

Chung-Hsuan Wang (Chapter 1 and 2)

Jwo-Yuh Wu (Chapter 6)

Preface

Most of the books on coding and information theory are prepared for those
who already have good background knowledge in probability and random pro-
cesses. It is therefore hard to find a ready-to-use textbook in these two subjects
suitable for engineering students at the freshmen level, or for non-engineering
major students who are interested in knowing, at least conceptually, how in-
formation is encoded and decoded in practice and the theories behind it. Since
communications has become a part of modern life, such knowledge is more
and more of practical significance. For this reason, when our school requested
us to offer a preliminary course in coding and information theory for students
who do not have any engineering background, we saw this as an opportunity
and initiated the plan to write a textbook.

In preparing this material, we hope that, in addition to the aforementioned
purpose, the book can also serve as a beginner’s guide that inspires and at-
tracts students to enter this interesting area. The material covered in this book
has been carefully selected to keep the amount of background mathematics
and electrical engineering to a minimum. At most, simple calculus plus a lit-
tle probability theory are used here, and anything beyond that is developed
as needed. Its first version has been used as a textbook in the 2009 summer
freshmen course Conversion Between Information and Codes: A Historical
View at National Chiao Tung University, Taiwan. The course was attended by
47 students, including 12 from departments other than electrical engineering.
Encouraged by the positive feedback from the students, the book went into
a round of revision that took many of the students’ comments into account.
A preliminary version of this revision was again the basis of the correspond-
ing 2010 summer freshmen course, which this time was attended by 51 stu-
dents from ten different departments. Specific credit must be given to Professor
Chung-Hsuan Wang, who volunteered to teach these 2009 and 2010 courses
and whose input considerably improved the first version, to Ms. Hui-Ting

xii Preface

Chang (a graduate student in our institute), who has redrawn all the figures
and brought them into shape, and to Pei-Yu Shih (a post-doc in our institute)
and Ting-Yi Wu (a second-year Ph.D. student in our institute), who checked
the readability and feasibility of all exercises. The authors also gratefully ac-
knowledge the support from our department, which continues to promote this
course.

Among the eight chapters in this book, Chapters 1 to 4 discuss coding tech-
niques (including error-detecting and error-correcting codes), followed by a
briefing in information theory in Chapters 5 and 6. By adopting this arrange-
ment, students can build up some background knowledge on coding through
concrete examples before plunging into information theory. Chapter 7 con-
cludes the quest on information theory by introducing the Information Trans-
mission Theorem. It attempts to explain the practical meaning of the so-called
Shannon limit in communications, and reviews the historical breakthrough of
turbo coding, which, after 50 years of research efforts, finally managed to ap-
proach this limit. The final chapter takes a few glances at unexpected relations
between coding theory and other fields. This chapter is less important for an
understanding of the basic principles, and is more an attempt to broaden the
view on coding and information theory.

In summary, Chapter 1 gives an overview of this book, including the system
model, some basic operations of information processing, and illustrations of
how an information source is encoded.

Chapter 2 looks at ways of encoding source symbols such that any errors,
up to a given level, can be detected at the receiver end. Basics of modular
arithmetic that will be used in the analysis of the error-detecting capability are
also included and discussed.

Chapter 3 introduces the fundamental concepts of error-correcting codes us-
ing the three-times repetition code and the Hamming code as starting exam-
ples. The error-detecting and -correcting capabilities of general linear block
codes are also discussed.

Chapter 4 looks at data compression. It shows how source codes represent
the output of an information source efficiently. The chapter uses Professor
James L. Massey’s beautifully simple and elegant approach based on trees.
By this means it is possible to prove all main results in an intuitive fashion that
relies on graphical explanations and requires no abstract math.

Chapter 5 presents a basic introduction to information theory and its main
quantity entropy, and then demonstrates its relation to the source coding of
Chapter 4. Since the basic definition of entropy and some of its properties
are rather dry mathematical derivations, some time is spent on motivating the
definitions. The proofs of the fundamental source coding results are then again

Preface xiii

based on trees and are therefore scarcely abstract in spite of their theoretical
importance.

Chapter 6 addresses how to convey information reliably over a noisy com-
munication channel. The mutual information between channel input and output
is defined and then used to quantify the maximal amount of information that
can get through a channel (the so-called channel capacity). The issue of how
to achieve channel capacity via proper selection of the input is also discussed.

Chapter 7 begins with the introduction of the Information Transmission
Theorem over communication channels corrupted by additive white Gaussian
noise. The optimal error rate that has been proven to be attainable by Claude
E. Shannon (baptized the Shannon limit) is then addressed, particularly for the
situation when the amount of transmitted information is above the channel ca-
pacity. The chapter ends with a simple illustration of turbo coding, which is
considered the first practical design approaching the Shannon limit.

Chapter 8 describes two particularly interesting connections between coding
theory and seemingly unrelated fields: firstly the relation of the Hamming code
to projective geometry is discussed, and secondly an application of codes to
game theory is given.

The title, A Student’s Guide to Coding and Information Theory, expresses
our hope that this book is suitable as a beginner’s guide, giving an overview to
anyone who wishes to enter this area. In order not to scare the students (espe-
cially those without an engineering background), no problems are given at the
end of each chapter as usual textbooks do. Instead, the problems are incorpo-
rated into the main text in the form of Exercises. The readers are encouraged
to work them out. They are very helpful in understanding the concepts and are
motivating examples for the theories covered in this book at a more advanced
level.

The book will undergo further revisions as long as the course continues to
be delivered. If a reader would like to provide comments or correct typos and
errors, please email any of the authors. We will appreciate it very much!

1
Introduction

Systems dedicated to the communication or storage of information are com-
monplace in everyday life. Generally speaking, a communication system is a
system which sends information from one place to another. Examples include
telephone networks, computer networks, audio/video broadcasting, etc. Stor-
age systems, e.g. magnetic and optical disk drives, are systems for storage and
later retrieval of information. In a sense, such systems may be regarded as com-
munication systems which transmit information from now (the present) to then
(the future). Whenever or wherever problems of information processing arise,
there is a need to know how to compress the textual material and how to protect
it against possible corruption. This book is to cover the fundamentals of infor-
mation theory and coding theory, to solve the above main problems, and to
give related examples in practice. The amount of background mathematics and
electrical engineering is kept to a minimum. At most, simple results of calculus
and probability theory are used here, and anything beyond that is developed as
needed.

1.1 Information theory versus coding theory

Information theory is a branch of probability theory with extensive applica-
tions to communication systems. Like several other branches of mathematics,
information theory has a physical origin. It was initiated by communication
scientists who were studying the statistical structure of electrical communica-
tion equipment and was principally founded by Claude E. Shannon through the
landmark contribution [Sha48] on the mathematical theory of communications.
In this paper, Shannon developed the fundamental limits on data compression
and reliable transmission over noisy channels. Since its inception, information
theory has attracted a tremendous amount of research effort and provided lots

2 Introduction

of inspiring insights into many research fields, not only communication and
signal processing in electrical engineering, but also statistics, physics, com-
puter science, economics, biology, etc.

Coding theory is mainly concerned with explicit methods for efficient and
reliable data transmission or storage, which can be roughly divided into data
compression and error-control techniques. Of the two, the former attempts to
compress the data from a source in order to transmit or store them more effi-
ciently. This practice is found every day on the Internet where data are usually
transformed into the ZIP format to make files smaller and reduce the network
load.

The latter adds extra data bits to make the transmission of data more robust
to channel disturbances. Although people may not be aware of its existence in
many applications, its impact has been crucial to the development of the Inter-
net, the popularity of compact discs (CD), the feasibility of mobile phones, the
success of the deep space missions, etc.

Logically speaking, coding theory leads to information theory, and informa-
tion theory provides the performance limits on what can be done by suitable
encoding of the information. Thus the two theories are intimately related, al-
though in the past they have been developed to a great extent quite separately.
One of the main purposes of this book is to show their mutual relationships.

1.2 Model and basic operations of information
processing systems

Communication and storage systems can be regarded as examples of informa-
tion processing systems and may be represented abstractly by the block dia-
gram in Figure 1.1. In all cases, there is a source from which the information
originates. The information source may be many things; for example, a book,
music, or video are all information sources in daily life.

Encoder
InformationInformation

source
DecoderChannel

sink

Figure 1.1 Basic information processing system.

The source output is processed by an encoder to facilitate the transmission
(or storage) of the information. In communication systems, this function is
often called a transmitter, while in storage systems we usually speak of a

1.2 Model and basic operations 3

recorder. In general, three basic operations can be executed in the encoder:
source coding, channel coding, and modulation. For source coding, the en-
coder maps the source output into digital format. The mapping is one-to-one,
and the objective is to eliminate or reduce the redundancy, i.e. that part of the
data which can be removed from the source output without harm to the infor-
mation to be transmitted. So, source coding provides an efficient representation
of the source output. For channel coding, the encoder introduces extra redun-
dant data in a prescribed fashion so as to combat the noisy environment in
which the information must be transmitted or stored. Discrete symbols may
not be suitable for transmission over a physical channel or recording on a digi-
tal storage medium. Therefore, we need proper modulation to convert the data
after source and channel coding to waveforms that are suitable for transmission
or recording.

The output of the encoder is then transmitted through some physical com-
munication channel (in the case of a communication system) or stored in some
physical storage medium (in the case of a storage system). As examples of
the former we mention wireless radio transmission based on electromagnetic
waves, telephone communication through copper cables, and wired high-speed
transmission through fiber optic cables. As examples of the latter we indicate
magnetic storage media, such as those used by a magnetic tape, a hard-drive, or
a floppy disk drive, and optical storage disks, such as a CD-ROM1 or a DVD.2

Each of these examples is subject to various types of noise disturbances. On a
telephone line, the disturbance may come from thermal noise, switching noise,
or crosstalk from other lines. On magnetic disks, surface defects and dust par-
ticles are regarded as noise disturbances. Regardless of the explicit form of the
medium, we shall refer to it as the channel.

Information conveyed through (or stored in) the channel must be recovered
at the destination and processed to restore its original form. This is the task
of the decoder. In the case of a communication system, this device is often
referred to as the receiver. In the case of a storage system, this block is often
called the playback system. The signal processing performed by the decoder
can be viewed as the inverse of the function performed by the encoder. The
output of the decoder is then presented to the final user, which we call the
information sink.

The physical channel usually produces a received signal which differs from
the original input signal. This is because of signal distortion and noise intro-
duced by the channel. Consequently, the decoder can only produce an estimate

1 CD-ROM stands for compact disc read-only memory.
2 DVD stands for digital video disc or digital versatile disc.

4 Introduction

of the original information message. All well-designed systems aim at repro-
ducing as reliably as possible while sending as much information as possible
per unit time (for communication systems) or per unit storage (for storage sys-
tems).

1.3 Information source

Nature usually supplies information in continuous forms like, e.g., a beauti-
ful mountain scene or the lovely chirping of birds. However, digital signals in
which both amplitude and time take on discrete values are preferred in modern
communication systems. Part of the reason for this use of digital signals is that
they can be transmitted more reliably than analog signals. When the inevitable
corruption of the transmission system begins to degrade the signal, the digital
pulses can be detected, reshaped, and amplified to standard form before relay-
ing them to their final destination. Figure 1.2 illustrates an ideal binary digital
pulse propagating along a transmission line, where the pulse shape is degraded
as a function of line length. At a propagation distance where the transmitted
pulse can still be reliably identified (before it is degraded to an ambiguous
state), the pulse is amplified by a digital amplifier that recovers its original
ideal shape. The pulse is thus regenerated. On the other hand, analog signals
cannot be so reshaped since they take an infinite variety of shapes. Hence the
farther the signal is sent and the more it is processed, the more degradation it
suffers from small errors.

Propagation distance

Original signal Regenerated signal

Figure 1.2 Pulse degradation and regeneration.

Modern practice for transforming analog signals into digital form is to sam-
ple the continuous signal at equally spaced intervals of time, and then to quan-
tize the observed value, i.e. each sample value is approximated by the nearest

1.4 Encoding a source alphabet 5

level in a finite set of discrete levels. By mapping each quantized sample to a
codeword consisting of a prescribed number of code elements, the information
is then sent as a stream of digits. The conversion process is illustrated in Fig-
ure 1.3. Figure 1.3(a) shows a segment of an analog waveform. Figure 1.3(b)
shows the corresponding digital waveform based on the binary code in Ta-
ble 1.1. In this example, symbols 0 and 1 of the binary code are represented by
zero and one volt, respectively. Each sampled value is quantized into four bi-
nary digits (bits) with the last bit called sign bit indicating whether the sample
value is positive or negative. The remaining three bits are chosen to represent
the absolute value of a sample in accordance with Table 1.1.

Table 1.1 Binary representation of quantized levels

Index of Binary Index expressed as
quantization level representation sum of powers of 2

0 000
1 001 20

2 010 21

3 011 21 +20

4 100 22

5 101 22 +20

6 110 22 + 21

7 111 22 + 21 +20

As a result of the sampling and quantizing operations, errors are introduced
into the digital signal. These errors are nonreversible in that it is not possible to
produce an exact replica of the original analog signal from its digital represen-
tation. However, the errors are under the designer’s control. Indeed, by proper
selection of the sampling rate and number of the quantization levels, the errors
due to the sampling and quantizing can be made so small that the difference
between the analog signal and its digital reconstruction is not discernible by a
human observer.

1.4 Encoding a source alphabet

Based on the discussion in Section 1.3, we can assume without loss of gener-
ality that an information source generates a finite (but possibly large) number
of messages. This is undoubtedly true for a digital source. As for an analog

6 Introduction

2

1

5

−6

−2

Voltage

Time

(a)

000 0000000 1111111 111

1.0

0.0

Sign bitSign bitSign bitSign bitSign bit
(negative)(negative) (positive) (positive)(positive)

(b)

Figure 1.3 (a) Analog waveform. (b) Digital representation.

1.4 Encoding a source alphabet 7

source, the analog-to-digital conversion process mentioned above also makes
the assumption feasible. However, even though specific messages are actually
sent, the system designer has no idea in advance which message will be chosen
for transmission. We thus need to think of the source as a random (or stochas-
tic) source of information, and ask how we may encode, transmit, and recover
the original information.

An information source’s output alphabet is defined as the collection of all
possible messages. Denote by U a source alphabet which consists of r mes-
sages, say u1,u2, . . . ,ur, with probabilities p1, p2, . . . , pr satisfying

pi ≥ 0, ∀ i, and
r

∑
i=1

pi = 1. (1.1)

Here the notation ∀ means “for all” or “for every.” We can always represent
each message by a sequence of bits, which provides for easier processing by
computer systems. For instance, if we toss a fair dice to see which number
faces up, only six possible outputs are available with U = {1,2,3,4,5,6} and
pi = 1/6, ∀ 1≤ i≤ 6. The following shows a straightforward binary description
of these messages:

1↔ 001, 2↔ 010, 3↔ 011, 4↔ 100, 5↔ 101, 6↔ 110, (1.2)

where each decimal number is encoded as its binary expression. Obviously,
there exist many other ways of encoding. For example, consider the two map-
pings listed below:

1↔ 00, 2↔ 01, 3↔ 100, 4↔ 101, 5↔ 110, 6↔ 111 (1.3)

and

1↔ 1100, 2↔ 1010, 3↔ 0110, 4↔ 1001, 5↔ 0101, 6↔ 0011. (1.4)

Note that all the messages are one-to-one mapped to the binary sequences,
no matter which of the above encoding methods is employed. The original
message can always be recovered from the binary sequence.

Given an encoding method, let li denote the length of the output sequence,
called the codeword, corresponding to ui, ∀ 1 ≤ i ≤ r. From the viewpoint of
source coding for data compression, an optimal encoding should minimize the
average length of codewords defined by

Lav ,
r

∑
i=1

pili. (1.5)

8 Introduction

By (1.5), the average lengths of codewords in (1.2), (1.3), and (1.4) are, re-
spectively,

L
(1.2)
av =

1
6

3+
1
6

3+
1
6

3+
1
6

3+
1
6

3+
1
6

3 = 3, (1.6)

L
(1.3)
av =

1
6

2+
1
6

2+
1
6

3+
1
6

3+
1
6

3+
1
6

3 =
8
3
' 2.667, (1.7)

L
(1.4)
av =

1
6

4+
1
6

4+
1
6

4+
1
6

4+
1
6

4+
1
6

4 = 4. (1.8)

The encoding method in (1.3) thus provides a more efficient way for the rep-
resentation of these source messages.

As for channel coding, a good encoding method should be able to protect
the source messages against the inevitable noise corruption. Suppose 3 is to be
transmitted and an error occurs in the least significant bit (LSB), namely the
first bit counted from the right-hand side of the associated codeword. In the
case of code (1.2) we now receive 010 instead of 011, and in the case of code
(1.3) we receive 101 instead of 100. In both cases, the decoder will retrieve
a wrong message (2 and 4, respectively). However, 0111 will be received if 3
is encoded by (1.4). Since 0111 is different from all the codewords in (1.4),
we can be aware of the occurrence of an error, i.e. the error is detected, and
possible retransmission of the message can be requested. Not just the error in
the LSB, but any single error can be detected by this encoding method. The
code (1.4) is therefore a better choice from the viewpoint of channel coding.

Typically, for channel coding, the encoding of the message to be transmitted
over the channel adds redundancy to combat channel noise. On the other hand,
the source encoding usually removes redundancy contained in the message to
be compressed. A more detailed discussion on channel and source coding will
be shown in Chapters 2 and 3 and in Chapters 4 and 5, respectively.

1.5 Octal and hexadecimal codes

Although the messages of an information source are usually encoded as bi-
nary sequences, the binary code is sometimes inconvenient for humans to use.
People usually prefer to make a single discrimination among many things. Ev-
idence for this is the size of the common alphabets. For example, the English
alphabet has 26 letters, the Chinese “alphabet” (bopomofo) has 37 letters, the
Phoenician alphabet has 22 letters, the Greek alphabet has 24 letters, the Rus-
sian alphabet 33, the Cyrillic alphabet has 44 letters, etc. Thus, for human use,
it is often convenient to group the bits into groups of three at a time and call
them the octal code (base 8). This code is given in Table 1.2.

1.6 Outline of the book 9

Table 1.2 Octal code

Binary Octal

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

When using the octal representation, numbers are often enclosed in paren-
theses with a following subscript 8. For example, the decimal number 81 is
written in octal as (121)8 since 81 = “1”×82+“2”×81+“1”×80. The trans-
lation from octal to binary is so immediate that there is little trouble in going
either way.

The binary digits are sometimes grouped in fours to make the hexadecimal
code (Table 1.3). For instance, to translate the binary sequence 101011000111
to the octal form, we first partition these bits into groups of three:

101︸︷︷︸ 011︸︷︷︸ 000︸︷︷︸ 111︸︷︷︸ . (1.9)

Each group of bits is then mapped to an octal number by Table 1.2, hence
resulting in the octal representation (5307)8. If we partition the bits into groups
of four, i.e.

1010︸︷︷︸1100︸︷︷︸0111︸︷︷︸, (1.10)

we can get the hexadecimal representation (AC7)16 by Table 1.3. Since com-
puters usually work in bytes, which are 8 bits each, the hexadecimal code fits
into the machine architecture better than the octal code. However, the octal
code seems to fit better into the human’s psychology. Thus, in practice, neither
code has a clear victory over the other.

1.6 Outline of the book

After the introduction of the above main topics, we now have a basis for dis-
cussing the material the book is to cover.

10 Introduction

Table 1.3 Hexadecimal code

Binary Hexadecimal

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

In general, the error-detecting capability will be accomplished by adding
some digits to the message, thus making the message slightly longer. The main
problem is to achieve a required protection against the inevitable channel er-
rors without too much cost in adding extra digits. Chapter 2 will look at ways
of encoding source symbols so that any errors, up to a given level, may be
detected at the terminal end. For a detected error, we might call for a repeat
transmission of the message, hoping to get it right the next time.

In contrast to error-detecting codes, error-correcting codes are able to cor-
rect some detected errors directly without having to retransmit the message a
second time. In Chapter 3, we will discuss two kinds of error-correcting codes,
the repetition code and the Hamming code, as well as their encoding and de-
coding methods.

In Chapter 4, we consider ways of representing information in an efficient
way. The typical example will be an information source that can take on r
different possible values. We will represent each of these r values by a string
of 0s and 1s with varying length. The question is how to design these strings
such that the average length is minimized, but such that we are still able to
recover the original data from it. So, in contrast to Chapters 2 and 3, here we
try to shorten the codewords.

References 11

While in Chapters 2 to 4 we are concerned with coding theory, Chapter 5 in-
troduces information theory. We define some way of measuring “information”
and then apply it to the codes introduced in Chapter 4. By doing so we can not
only compare different codes but also derive some fundamental limits of what
is possible and what not. So Chapter 5 provides the information theory related
to the coding theory introduced in Chapter 4.

In Chapter 6, we continue on the path of information theory and develop the
relation to the coding theory of Chapters 2 and 3. Prior to the mid 1940s people
believed that transmitted data subject to noise corruption can never be perfectly
recovered unless the transmission rate approaches zero. Shannon’s landmark
work in 1948 [Sha48] disproved this thinking and established a fundamental
result for modern communication: as long as the transmission rate is below
a certain threshold (the so-called channel capacity), errorless data transmis-
sion can be realized by some properly designed coding scheme. Chapter 6 will
highlight the essentials regarding the channel capacity. We shall first introduce
a communication channel model from the general probabilistic setting. Based
on the results of Chapter 5, we then go on to specify the mutual information,
which provides a natural way of characterizing the channel capacity.

In Chapter 7, we build further on the ideas introduced in Chapters 2, 3, and
6. We will cover the basic concept of the theory of reliable transmission of in-
formation bearing signals over a noisy communication channel. In particular,
we will discuss the additive white Gaussian noise (AWGN) channel and intro-
duce the famous turbo code that is the first code that can approach the Shannon
limit of the AWGN channel up to less than 1 dB at a bit error rate (BER) of
10−5.

Finally, in Chapter 8, we try to broaden the view by showing two relations
of coding theory to quite unexpected fields. Firstly we explain a connection of
projective geometry to the Hamming code of Chapter 3. Secondly we show
how codes (in particular the three-times repetition code and the Hamming
code) can be applied to game theory.

References
[Sha48] Claude E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.
Available: http://moser.cm.nctu.edu.tw/nctu/doc/shannon1948.pdf

2
Error-detecting codes

When a message is transmitted, the inevitable noise disturbance usually de-
grades the quality of communication. Whenever repetition is possible, it is
sufficient to detect the occurrence of an error. When an error is detected, we
simply repeat the message, and it may be correct the second time or even pos-
sibly the third time.

It is not possible to detect an error if every possible symbol, or set of sym-
bols, that can be received is a legitimate message. It is only possible to catch
errors if there are some restrictions on what a proper message is. The prob-
lem is to keep these restrictions on the possible messages down to ones that
are simple. In practice, “simple” means “easily computable.” In this chapter,
we will mainly investigate the problem of designing codes such that any sin-
gle error can be detected at the receiver. In Chapter 3, we will then consider
correcting the errors that occur during the transmission.

2.1 Review of modular arithmetic

We first give a quick review of the basic arithmetic which is extensively used
in the following sections. For binary digits, which take values of only 0 and 1,
the rules for addition and multiplication are defined by

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 0

and

0×0 = 0

0×1 = 0

1×0 = 0

1×1 = 1,

(2.1)

respectively. For example, by (2.1), we have

1+1×0+0+1×1 = 1+0+0+1 = 0. (2.2)

14 Error-detecting codes

If we choose to work in the decimal arithmetic, the binary arithmetic in (2.1)
can be obtained by dividing the result in decimal by 2 and taking the remainder.
For example, (2.2) yields

1+0+0+1 = 2≡ 0 mod 2. (2.3)

Occasionally, we may work modulo some number other than 2 for the case
of a nonbinary source. Given a positive integer m, for the addition and multi-
plication mod m (“mod” is an abbreviation for “modulo”), we merely divide
the result in decimal by m and take the nonnegative remainder. For instance,
consider an information source with five distinct outputs 0, 1, 2, 3, 4. It follows
that

2+4 = 1×5+ “1” ⇐⇒ 2+4≡ 1 mod 5, (2.4)

3×4 = 2×5+ “2” ⇐⇒ 3×4≡ 2 mod 5. (2.5)

Other cases for the modulo 5 addition and multiplication can be referred to in
Table 2.1.

Table 2.1 Addition and multiplication modulo 5

+ mod 5 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× mod 5 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

For multiplication mod m, we have to be more careful if m is not a prime.
Suppose that we have the numbers a and b congruent to a′ and b′ modulo the
modulus m. This means that

a≡ a′ mod m and b≡ b′ mod m (2.6)

or

a = a′+ k1m and b = b′+ k2m (2.7)

for some integers k1 and k2. For the product ab, we have

ab = a′b′+a′k1m+b′k2m+ k1k2m2 (2.8)

and hence

ab≡ a′b′ mod m. (2.9)

2.2 Independent errors – white noise 15

Now consider the particular case

a = 15, b = 12, m = 10. (2.10)

We have a′ = 5 and b′ = 2 by (2.7) and ab ≡ a′b′ ≡ 0 mod 10 by (2.9). But
neither a nor b is zero! Only for a prime modulus do we have the important
property that if a product is zero, then at least one factor must be zero.

Exercise 2.1 In order to become more familiar with the modular operation
check out the following problems:

3×6+7≡ ? mod 11 (2.11)

and

5−4×2≡ ? mod 7. (2.12)

♦

More on modular arithmetic can be found in Section 3.1.

2.2 Independent errors – white noise

To simplify the analysis of noise behavior, we assume that errors in a message
satisfy the following constraints:

(1) the probability of an error in any binary position is assumed to be a fixed
number p, and

(2) errors in different positions are assumed to be independent.1

Such noise is called “white noise” in analogy with white light, which is sup-
posed to contain uniformly all the frequencies detected by the human eye.
However, in practice, there are often reasons for errors to be more common
in some positions in the message than in others, and it is often true that errors
tend to occur in bursts and not to be independent.We assume white noise in the
very beginning because this is the simplest case, and it is better to start from
the simplest case and move on to more complex situations after we have built
up a solid knowledge on the simple case.

Consider a message consisting of n digits for transmission. For white noise,
the probability of no error in any position is given by

(1− p)n. (2.13)
1 Given events A`, they are said to be independent if Pr(

⋂n
`=1 A`) = ∏

n
`=1 Pr(A`). Here “

⋂
`”

denotes set-intersection, i.e.
⋂
`A` is the set of elements that are members of all sets A`. Hence,

Pr(
⋂n
`=1 A`) is the event that all events A` occur at the same time. The notation ∏` is a short-

hand for multiplication: ∏
n
`=1 a` , a1 ·a2 · · ·an.

16 Error-detecting codes

The probability of a single error in the message is given by

np(1− p)n−1. (2.14)

The probability of ` errors is given by the (`+ 1)th term in the binomial ex-
pansion:

1 =
(
(1− p)+ p

)n (2.15)

=

(
n
0

)
(1− p)n +

(
n
1

)
p(1− p)n−1 +

(
n
2

)
p2(1− p)n−2

+ · · ·+
(

n
n

)
pn (2.16)

= (1− p)n +np(1− p)n−1 +
n(n−1)

2
p2(1− p)n−2 + · · ·+ pn. (2.17)

For example, the probability of exactly two errors is given by

n(n−1)
2

p2(1− p)n−2. (2.18)

We can obtain the probability of an even number of errors (0,2,4, . . .) by
adding the following two binomial expansions and dividing by 2:

1 =
(
(1− p)+ p

)n
=

n

∑
`=0

(
n
`

)
p`(1− p)n−`, (2.19)

(1−2p)n =
(
(1− p)− p

)n
=

n

∑
`=0

(−1)`
(

n
`

)
p`(1− p)n−`. (2.20)

Denote by bξc the greatest integer not larger than ξ . We have2

Pr(An even number of errors) =
bn/2c
∑
`=0

(
n
2`

)
p2`(1− p)n−2` (2.21)

=
1+(1−2p)n

2
. (2.22)

The probability of an odd number of errors is 1 minus this number.

Exercise 2.2 Actually, this is a good chance to practice your basic skills on
the method of induction: can you show that

bn/2c
∑
`=0

(
n
2`

)
p2`(1− p)n−2` =

1+(1−2p)n

2
(2.23)

and
b(n−1)/2c

∑
`=0

(
n

2`+1

)
p2`+1(1− p)n−2`−1 =

1− (1−2p)n

2
(2.24)

2 Note that zero errors also counts as an even number of errors here.

2.3 Single parity-check code 17

by induction on n?
Hint: Note that (

n+1
k

)
=

(
n
k

)
+

(
n

k−1

)
(2.25)

for n,k ≥ 1. ♦

2.3 Single parity-check code

The simplest way of encoding a binary message to make it error-detectable
is to count the number of 1s in the message, and then append a final binary
digit chosen so that the entire message has an even number of 1s in it. The
entire message is therefore of even parity. Thus to (n− 1) message positions
we append an nth parity-check position. Denote by x` the original bit in the
`th message position, ∀1 ≤ ` ≤ n− 1, and let xn be the parity-check bit. The
constraint of even parity implies that

xn =
n−1

∑
`=1

x` (2.26)

by (2.1). Note that here (and for the remainder of this book) we omit “mod 2”
and implicitly assume it everywhere. Let y` be the channel output correspond-
ing to x`, ∀1≤ `≤ n. At the receiver, we firstly count the number of 1s in the
received sequence y. If the even-parity constraint is violated for the received
vector, i.e.

n

∑
`=1

y` 6= 0, (2.27)

this indicates that at least one error has occurred.
For example, given a message (x1,x2,x3,x4) = (0111), the parity-check bit

is obtained by

x5 = 0+1+1+1 = 1, (2.28)

and hence the resulting even-parity codeword (x1,x2,x3,x4,x5) is (01111).
Suppose the codeword is transmitted, but a vector y = (00111) is received. In
this case, an error in the second position is met. We have

y1 + y2 + y3 + y4 + y5 = 0+0+1+1+1 = 1(6= 0); (2.29)

thereby the error is detected. However, if another vector of (00110) is re-
ceived, where two errors (in the second and the last position) have occurred,

18 Error-detecting codes

no error will be detected since

y1 + y2 + y3 + y4 + y5 = 0+0+1+1+0 = 0. (2.30)

Evidently in this code any odd number of errors can be detected. But any even
number of errors cannot be detected.

For channels with white noise, (2.22) gives the probability of any even num-
ber of errors in the message. Dropping the first term of (2.21), which corre-
sponds to the probability of no error, we have the following probability of
undetectable errors for the single parity-check code introduced here:

Pr(Undetectable errors) =
bn/2c
∑
`=1

(
n
2`

)
p2`(1− p)n−2` (2.31)

=
1+(1−2p)n

2
− (1− p)n. (2.32)

The probability of detectable errors, i.e. all the odd-number errors, is then ob-
tained by

Pr(Detectable errors) = 1− 1+(1−2p)n

2
=

1− (1−2p)n

2
. (2.33)

Obviously, we should have that

Pr(Detectable errors)� Pr(Undetectable errors) . (2.34)

For p very small, we have

Pr(Undetectable errors) =
1+(1−2p)n

2
− (1− p)n (2.35)

=
1
2
+

1
2

[(
n
0

)
−
(

n
1

)
(2p)+

(
n
2

)
(2p)2−·· ·

]

−
[(

n
0

)
−
(

n
1

)
p+
(

n
2

)
p2−·· ·

]
(2.36)

=
1
2
+

1
2

[
1−2np+

n(n−1)
2

4p2−·· ·
]

−
[

1−np+
n(n−1)

2
p2−·· ·

]
(2.37)

' n(n−1)
2

p2 (2.38)

and

Pr(Detectable errors) =
1− (1−2p)n

2
(2.39)

=
1
2
− 1

2

[(
n
0

)
−
(

n
1

)
(2p)+ · · ·

]
(2.40)

2.4 The ASCII code 19

=
1
2
− 1

2
[1−2np+ · · ·] (2.41)

' np. (2.42)

In the above approximations, we only retain the leading term that dominates
the sum.

Hence, (2.34) requires

np� n(n−1)
2

p2, (2.43)

and implies that the shorter the message, the better the detecting performance.
In practice, it is common to break up a long message in the binary alphabet

into blocks of (n−1) digits and to append one binary digit to each block. This
produces the redundancy of

n
n−1

= 1+
1

n−1
, (2.44)

where the redundancy is defined as the total number of binary digits divided
by the minimum necessary. The excess redundancy is 1/(n− 1). Clearly, for
low redundancy we want to use long messages, but for high reliability short
messages are better. Thus the choice of the length n for the blocks to be sent is
a compromise between the two opposing forces.

2.4 The ASCII code

Here we introduce an example of a single parity-check code, called the Amer-
ican Standard Code for Information Interchange (ASCII), which was the first
code developed specifically for computer communications. Each character in
ASCII is represented by seven data bits constituting a unique binary sequence.
Thus a total of 128 (= 27) different characters can be represented in ASCII.
The characters are various commonly used letters, numbers, special control
symbols, and punctuation symbols, e.g. $, %, and @. Some of the special con-
trol symbols, e.g. ENQ (enquiry) and ETB (end of transmission block), are
used for communication purposes. Other symbols, e.g. BS (back space) and
CR (carriage return), are used to control the printing of characters on a page.
A complete listing of ASCII characters is given in Table 2.2.

Since computers work in bytes which are blocks of 8 bits, a single ASCII
symbol often uses 8 bits. The eighth bit is set so that the total number of 1s in
the eight positions is an even number. For example, consider “K” in Table 2.2
encoded as (113)8, which can be transformed into binary form as follows:

(113)8 = 1001011 (2.45)

20 Error-detecting codes

Table 2.2 Seven-bit ASCII code

Octal Char. Octal Char. Octal Char. Octal Char.
code code code code

000 NUL 040 SP 100 @ 140 ‘
001 SOH 041 ! 101 A 141 a
002 STX 042 ” 102 B 142 b
003 ETX 043 # 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BEL 047 ’ 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 I 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FF 054 , 114 L 154 l
015 CR 055 - 115 M 155 m
016 SO 056 . 116 N 156 n
017 SI 057 / 117 O 157 o
020 DLE 060 0 120 P 160 p
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 V 166 v
027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 x
031 EM 071 9 131 Y 171 y
032 SUB 072 : 132 Z 172 z
033 ESC 073 ; 133 [173 {
034 FS 074 < 134 \ 174 |
035 GS 075 = 135] 175 }
036 RS 076 > 136 ˆ 176 ˜
037 US 077 ? 137 177 DEL

2.5 Simple burst error-detecting code 21

(where we have dropped the first 2 bits of the first octal symbol). In this case,
the parity-check bit is 0; “K” is thus encoded as 10010110 for even parity. You
are encouraged to encode the remaining characters in Table 2.2.

By the constraint of even parity, any single error, a 0 changed into a 1 or a
1 changed into a 0, will be detected3 since after the change there will be an
odd number of 1s in the eight positions. Thus, we have an error-detecting code
that helps to combat channel noise. Perhaps more importantly, the code makes
it much easier to maintain the communication quality since the machine can
detect the occurrence of errors by itself.

2.5 Simple burst error-detecting code

In some situations, errors occur in bursts rather than in isolated positions in the
received message. For instance, lightning strikes, power-supply fluctuations,
loose flakes on a magnetic surface are all typical causes of a burst of noise.
Suppose that the maximum length of any error burst4 that we are to detect is
L. To protect data against the burst errors, we first divide the original message
into a sequence of words consisting of L bits. Aided with a pre-selected error-
detecting code, parity checks are then computed over the corresponding word
positions, instead of the bit positions.

Based on the above scenario, if an error burst occurs within one word, in
effect only a single word error is observed. If an error burst covers the end of
one word and the beginning of another, still no two errors corresponding to the
same position of words will be met, since we assumed that any burst length l
satisfies 0≤ l ≤ L. Consider the following example for illustration.

Example 2.3 If the message is

Hello NCTU

and the maximum burst error length L is 8, we can use the 7-bit ASCII code in
Table 2.2 and protect the message against burst errors as shown in Table 2.3.
(Here no parity check is used within the ASCII symbols.) The encoded mes-
sage is therefore

Hello NCTUn

3 Actually, to be precise, every odd number of errors is detected.
4 An error burst is said to have length L if errors are confined to L consecutive positions. By

this definition, the error patterns 0111110, 0101010, and 0100010 are all classified as bursts of
length 5. Note that a 0 in an error pattern denotes that no error has happened in that position,
while a 1 denotes an error. See also (3.34) in Section 3.3.2.

22 Error-detecting codes

Table 2.3 Special type of parity check to protect against burst errors of
maximum length L= 8

H = (110)8 = 01001000
e = (145)8 = 01100101
l = (154)8 = 01101100
l = (154)8 = 01101100
o = (157)8 = 01101111

SP= (040)8 = 00100000
N = (116)8 = 01001110
C = (103)8 = 01000011
T = (124)8 = 01010100
U = (125)8 = 01010101
Check sum = 01101110 = n

where n is the parity-check symbol.
Suppose a burst error of length 5, as shown in Table 2.4, is met during the

transmission of the above message, where the bold-face positions are in error.
In this case, the burst error is successfully detected since the check sum is not
00000000. However, if the burst error of length 16 shown in Table 2.5 occurs,
the error will not be detected due to the all-zero check sum. ♦

Exercise 2.4 Could you repeat the above process of encoding for the case of
L = 16? Also, show that the resulting code can detect all the bursts of length
at most 16. ♦

Exercise 2.5 Can you show that the error might not be detected if there is
more than one burst, even if each burst is of length no larger than L? ♦

2.6 Alphabet plus number codes – weighted codes

The codes we have discussed so far were all designed with respect to a simple
form of “white noise” that causes some bits to be flipped. This is very suit-
able for many types of machines. However, in some systems, where people are
involved, other types of noise are more appropriate. The first common human
error is to interchange adjacent digits of numbers; for example, 38 becomes 83.
A second common error is to double the wrong one of a triple of digits, where
two adjacent digits are the same; for example, 338 becomes 388. In addition,
the confusion of O (“oh”) and 0 (“zero”) is also very common.

2.6 Alphabet plus number codes – weighted codes 23

Table 2.4 A burst error of length 5 has occurred during transmission and is
detected because the check sum is not 0000000; bold-face positions denote

positions in error

H⇒ K 0 1 0 0 1 0 1 1
e⇒ ENQ 0 0 0 0 0 1 0 1

l 0 1 1 0 1 1 0 0
l 0 1 1 0 1 1 0 0
o 0 1 1 0 1 1 1 1

SP 0 0 1 0 0 0 0 0
N 0 1 0 0 1 1 1 0
C 0 1 0 0 0 0 1 1
T 0 1 0 1 0 1 0 0
U 0 1 0 1 0 1 0 1
n 0 1 1 0 1 1 1 0

Check sum = 0 1 1 0 0 0 1 1

Table 2.5 A burst error of length 16 has occurred during transmission, but it
is not detected; bold-face positions denote positions in error

H⇒ K 0 1 0 0 1 0 1 1
e⇒ J 0 1 0 0 1 0 1 0
l⇒@ 0 1 0 0 0 0 0 0

l 0 1 1 0 1 1 0 0
o 0 1 1 0 1 1 1 1

SP 0 0 1 0 0 0 0 0
N 0 1 0 0 1 1 1 0
C 0 1 0 0 0 0 1 1
T 0 1 0 1 0 1 0 0
U 0 1 0 1 0 1 0 1
n 0 1 1 0 1 1 1 0

Check sum = 0 0 0 0 0 0 0 0

24 Error-detecting codes

Table 2.6 Weighted sum: progressive digiting

Message Sum Sum of sum

w w w
x w+ x 2w+ x
y w+ x+ y 3w+2x+ y
z w+ x+ y+ z 4w+3x+2y+ z

In English text-based systems, it is quite common to have a source alphabet
consisting of the 26 letters, space, and the 10 decimal digits. Since the size of
this source alphabet, 37 (= 26+ 1+ 10), is a prime number, we can use the
following method to detect the presence of the above described typical errors.
Firstly, each symbol in the source alphabet is mapped to a distinct number in
{0,1,2, . . . ,36}. Given a message for encoding, we weight the symbols with
weights 1,2,3, . . ., beginning with the check digit of the message. Then, the
weighted digits are summed together and reduced to the remainder after divid-
ing by 37. Finally, a check symbol is selected such that the sum of the check
symbol and the remainder obtained above is congruent to 0 modulo 37.

To calculate this sum of weighted digits easily, a technique called progres-
sive digiting, illustrated in Table 2.6, has been developed. In Table 2.6, it is
supposed that we want to compute the weighted sum for a message wxyz, i.e.
4w+3x+2y+1z. For each symbol in the message, we first compute the run-
ning sum from w to the symbol in question, thereby obtaining the second col-
umn in Table 2.6. We can sum these sums again in the same way to obtain the
desired weighted sum.

Example 2.6 We assign a distinct number from {0,1,2, . . . ,36} to each
symbol in the combined alphabet/number set in the following way: “0” = 0,
“1” = 1, “2” = 2, . . . , “9” = 9, “A” = 10, “B” = 11, “C” = 12, . . . , “Z” = 35,
and “space” = 36. Then we encode

3B 8.

We proceed with the progressive digiting as shown in Table 2.7 and obtain a
weighted sum of 183. Since 183 mod 37 = 35 and 35+2 is divisible by 37, it
follows that the appended check digit should be

“2” = 2.

2.6 Alphabet plus number codes – weighted codes 25

Table 2.7 Progressive digiting for the example of “3B 8”: we need to add
“2” = 2 as a check-digit to make sure that the weighted sum divides 37

Sum Sum of sum

“3” = 3 3 3
“B” = 11 14 17

“space” = 36 50 67
“8” = 8 58 125

Check-digit = ?? 58 183

4

37 / 183
148
35

Table 2.8 Checking the encoded message “3B 82”

3 3×5 = 15
B 11×4 = 44

“space” 36×3 = 108
8 8×2 = 16
2 2×1 = 2

Sum = 185 = 37×5≡ 0 mod 37

The encoded message is therefore given by

3B 82.

To check whether this is a legitimate message at the receiver, we proceed as
shown in Table 2.8.

Now suppose “space” is lost during the transmission such that only “3B82”
is received. Such an error can be detected since the weighted sum is now not
congruent to 0 mod 37; see Table 2.9. Similarly, the interchange from “82” to

Table 2.9 Checking the corrupted message “3B82”

3 3×4 = 12
B 11×3 = 33
8 8×2 = 16
2 2×1 = 2

Sum = 63 6≡ 0 mod 37

26 Error-detecting codes

Table 2.10 Checking the corrupted message “3B 28”

3 3×5 = 15
B 11×4 = 44

“space” 36×3 = 108
2 2×2 = 4
8 8×1 = 8

Sum = 179 6≡ 0 mod 37

“28” can also be detected; see Table 2.10. ♦

In the following we give another two examples of error-detecting codes that
are based on modular arithmetic and are widely used in daily commerce.

Example 2.7 The International Standard Book Number (ISBN) is usually a
10-digit code used to identify a book uniquely. A typical example of the ISBN
is as follows:

0︸︷︷︸
country

ID

– 52︸︷︷︸
publisher

ID

18 – 4868︸ ︷︷ ︸
book

number

– 7︸︷︷︸
check
digit

where the hyphens do not matter and may appear in different positions. The
first digit stands for the country, with 0 meaning the United States and some
other English-speaking countries. The next two digits are the publisher ID;
here 52 means Cambridge University Press. The next six digits, 18 – 4868, are
the publisher-assigned book number. The last digit is the weighted check sum
modulo 11 and is represented by “X” if the required check digit is 10.

To confirm that this number is a legitimate ISBN number we proceed as
shown in Table 2.11. It checks! ♦

Exercise 2.8 Check whether 0 – 8044 – 2957 – X is a valid ISBN number. ♦

Example 2.9 The Universal Product Code (UPC) is a 12-digit single parity-
check code employed on the bar codes of most merchandise to ensure reliabil-
ity in scanning. A typical example of UPC takes the form

0 36000︸ ︷︷ ︸
manufacturer

ID

29145︸ ︷︷ ︸
item

number

2︸︷︷︸
parity
check

2.7 Redundancy versus error-detecting capability 27

Table 2.11 Checking the ISBN number 0 – 5218 – 4868 – 7

Sum Sum of sum

0 0 0
5 5 5
2 7 12
1 8 20
8 16 36
4 20 56
8 28 84
6 34 118
8 42 160
7 49 209 = 11×19≡ 0 mod 11

where the last digit is the parity-check digit. Denote the digits as x1,x2, . . . ,x12.
The parity digit x12 is determined such that

3(x1 + x3 + x5 + x7 + x9 + x11)+(x2 + x4 + x6 + x8 + x10 + x12) (2.46)

is a multiple5 of 10. In this case,

3(0+6+0+2+1+5)+(3+0+0+9+4+2) = 60. (2.47)

♦

2.7 Trade-off between redundancy and
error-detecting capability

As discussed in the previous sections, a single parity check to make the whole
message even-parity can help the detection of any single error (or even any odd
number of errors). However, if we want to detect the occurrence of more errors
in a noisy channel, what can we do for the design of error-detecting codes? Can
such a goal be achieved by increasing the number of parity checks, i.e. at the
cost of extra redundancy? Fortunately, the answer is positive. Let us consider
the following illustrative example.

5 Note that in this example the modulus 10 is used although this is not a prime. The slightly
unusual summation (2.46), however, makes sure that every single error can still be detected.
The reason why UPC chooses 10 as the modulus is that the check digit should also range from
0 to 9 so that it can easily be encoded by the bar code.

28 Error-detecting codes

Example 2.10 For an information source of eight possible outputs, obviously
each output can be represented by a binary 3-tuple, say (x1,x2,x3). Suppose
three parity checks x4, x5, x6 are now appended to the original message by the
following equations:





x4 = x1 + x2,

x5 = x1 + x3,

x6 = x2 + x3,

(2.48)

to form a legitimate codeword (x1,x2,x3,x4,x5,x6). Compared with the sin-
gle parity-check code, this code increases the excess redundancy from 1/3 to
3/3. Let (y1,y2,y3,y4,y5,y6) be the received vector as (x1,x2,x3,x4,x5,x6) is
transmitted. If at least one of the following parity-check equations is violated:





y4 = y1 + y2,

y5 = y1 + y3,

y6 = y2 + y3,

(2.49)

the occurrence of an error is detected.
For instance, consider the case of a single error in the ith position such that

yi = xi +1 and y` = x`, ∀` ∈ {1,2, . . . ,6}\{i}. (2.50)

It follows that





y4 6= y1 + y2, y5 6= y1 + y3 if i = 1,

y4 6= y1 + y2, y6 6= y2 + y3 if i = 2,

y5 6= y1 + y3, y6 6= y2 + y3 if i = 3,

y4 6= y1 + y2 if i = 4,

y5 6= y1 + y3 if i = 5,

y6 6= y2 + y3 if i = 6.

(2.51)

Therefore, all single errors can be successfully detected. In addition, consider
the case of a double error in the ith and jth positions, respectively, such that

yi = xi+1, y j = x j +1, and y` = x`, ∀`∈ {1,2, . . . ,6}\{i, j}. (2.52)

2.7 Redundancy versus error-detecting capability 29

We then have




y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (1,2),

y4 6= y1 + y2, y6 6= y2 + y3 if (i, j) = (1,3),

y5 6= y1 + y3 if (i, j) = (1,4),

y4 6= y1 + y2 if (i, j) = (1,5),

y4 6= y1 + y2, y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (1,6),

y4 6= y1 + y2, y5 6= y1 + y3 if (i, j) = (2,3),

y6 6= y2 + y3 if (i, j) = (2,4),

y4 6= y1 + y2, y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (2,5),

y4 6= y1 + y2 if (i, j) = (2,6),

y4 6= y1 + y2, y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (3,4),

y6 6= y2 + y3 if (i, j) = (3,5),

y5 6= y1 + y3 if (i, j) = (3,6),

y4 6= y1 + y2, y5 6= y1 + y3 if (i, j) = (4,5),

y4 6= y1 + y2, y6 6= y2 + y3 if (i, j) = (4,6),

y5 6= y1 + y3, y6 6= y2 + y3 if (i, j) = (5,6).

(2.53)

Hence, this code can detect any pattern of double errors. ♦

Exercise 2.11 Unfortunately, not all triple errors may be caught by the code
of Example 2.10. Can you give an example for verification? ♦

Without a proper design, however, increasing the number of parity checks
may not always improve the error-detecting capability. For example, consider
another code which appends the parity checks by





x4 = x1 + x2 + x3,

x5 = x1 + x2 + x3,

x6 = x1 + x2 + x3.

(2.54)

In this case, x5 and x6 are simply repetitions of x4. Following a similar discus-
sion as in Example 2.10, we can show that all single errors are still detectable.
But if the following double error occurs during the transmission:

y1 = x1 +1, y2 = x2 +1, and y` = x`, ∀3≤ `≤ 6, (2.55)

none of the three parity-check equations corresponding to (2.54) will be vi-
olated. This code thus is not double-error-detecting even though the same
amount of redundancy is required as in the code (2.48).

30 Error-detecting codes

2.8 Further reading

In this chapter simple coding schemes, e.g. single parity-check codes, burst
error-detecting codes, and weighted codes, have been introduced to detect the
presence of channel errors. However, there exists a class of linear block codes,
called cyclic codes, which are probably the most widely used form of error-
detecting codes. The popularity of cyclic codes arises primarily from the fact
that these codes can be implemented with extremely cost-effective electronic
circuits. The codes themselves also possess a high degree of structure and reg-
ularity (which gives rise to the promising advantage mentioned above), and
there is a certain beauty and elegance in the corresponding theory. Interested
readers are referred to [MS77], [Wic94], and [LC04] for more details of cyclic
codes.

References
[LC04] Shu Lin and Daniel J. Costello, Jr., Error Control Coding, 2nd edn. Prentice

Hall, Upper Saddle River, NJ, 2004.
[MS77] F. Jessy MacWilliams and Neil J. A. Sloane, The Theory of Error-Correcting

Codes. North-Holland, Amsterdam, 1977.
[Wic94] Stephen B. Wicker, Error Control Systems for Digital Communication and

Storage. Prentice Hall, Englewood Cliffs, NJ, 1994.

3
Repetition and Hamming codes

The theory of error-correcting codes comes from the need to protect informa-
tion from corruption during transmission or storage. Take your CD or DVD as
an example. Usually, you might convert your music into MP3 files1 for stor-
age. The reason for such a conversion is that MP3 files are more compact and
take less storage space, i.e. they use fewer binary digits (bits) compared with
the original format on CD. Certainly, the price to pay for a smaller file size is
that you will suffer some kind of distortion, or, equivalently, losses in audio
quality or fidelity. However, such loss is in general indiscernible to human au-
dio perception, and you can hardly notice the subtle differences between the
uncompressed and compressed audio signals. The compression of digital data
streams such as audio music streams is commonly referred to as source coding.
We will consider it in more detail in Chapters 4 and 5.

What we are going to discuss in this chapter is the opposite of compression.
After converting the music into MP3 files, you might want to store these files
on a CD or a DVD for later use. While burning the digital data onto a CD, there
is a special mechanism called error control coding behind the CD burning pro-
cess. Why do we need it? Well, the reason is simple. Storing CDs and DVDs in-
evitably causes small scratches on the disk surface. These scratches impair the
disk surface and create some kind of lens effect so that the laser reader might
not be able to retrieve the original information correctly. When this happens,
the stored files are corrupted and can no longer be used. Since the scratches
are inevitable, it makes no sense to ask the users to keep the disks in per-
fect condition, or discard them once a perfect read-out from the disk becomes
impossible. Therefore, it would be better to have some kind of engineering
mechanism to protect the data from being compromised by minor scratches.

1 MP3 stands for MPEG-2 audio layer 3, where MPEG is the abbreviation for moving picture
experts group.

32 Repetition and Hamming codes

We use error-correcting codes to accomplish this task. Error-correcting codes
are also referred to as channel coding in general.

First of all, you should note that it is impossible to protect the stored MP3
files from impairment without increasing the file size. To see this, say you have
a binary data stream s of length k bits. If the protection mechanism were not
allowed to increase the length, after endowing s with some protection capa-
bility, the resulting stream x is at best still of length k bits. Then the whole
protection process is nothing but a mapping from a k-bit stream to another k-
bit stream. Such mapping is, at its best, one-to-one and onto, i.e. a bijection,
since if it were not a bijection, it would not be possible to recover the original
data. On the other hand, because of the bijection, when the stored data stream
x is corrupted, it is impossible to recover the original s. Therefore, we see that
the protection process (henceforth we will refer to it as an encoding process)
must be an injection, meaning x must have length larger than k, say n, so that
when x is corrupted, there is a chance that s may be recovered by using the
extra (n− k) bits we have used for storing extra information.

How to encode efficiently a binary stream of length k with minimum (n−k)
extra bits added so that the length k stream s is well protected from corrup-
tion is the major concern of error-correcting codes. In this chapter, we will
briefly introduce two kinds of error-correcting codes: the repetition code and
the Hamming code. The repetition code, as its name suggests, simply repeats
information and is the simplest error-protecting/correcting scheme. The Ham-
ming code, developed by Richard Hamming when he worked at Bell Labs in
the late 1940s (we will come back to this story in Section 3.3.1), on the other
hand, is a bit more sophisticated than the repetition code. While the original
Hamming code is actually not that much more complicated than the repeti-
tion code, it turns out to be optimal in terms of sphere packing in some high-
dimensional space. Specifically, this means that for certain code length and
error-correction capability, the Hamming code actually achieves the maximal
possible rate, or, equivalently, it requires the fewest possible extra bits.

Besides error correction and data protection, the Hamming code is also good
in many other areas. Readers who wish to know more about these subjects
are referred to Chapter 8, where we will briefly discuss two other uses of the
Hamming code. We will show in Section 8.1 how the Hamming code relates
to a geometric subject called projective geometry, and in Section 8.2 how the
Hamming code can be used in some mathematical games.

3.1 Arithmetics in the binary field 33

3.1 Arithmetics in the binary field

Prior to introducing the codes, let us first study the arithmetics of binary oper-
ations (see also Section 2.1). These are very important because the digital data
is binary, i.e. each binary digit is either of value 0 or 1, and the data will be
processed in a binary fashion. By binary operations we mean binary addition,
subtraction, multiplication, and division. The binary addition is a modulo-2
addition, i.e.

0+0 = 0,

1+0 = 1,

0+1 = 1,

1+1 = 0.

(3.1)

The only difference between binary and usual additions is the case of 1+ 1.
Usual addition would say 1+ 1 = 2. But since we are working with modulo-
2 addition, meaning the sum is taken as the remainder when divided by 2,
the remainder of 2 divided by 2 equals 0, hence we have 1+ 1 = 0 in binary
arithmetics.

By moving the second operand to the right of these equations, we obtain
subtractions:

0 = 0−0,

1 = 1−0,

0 = 1−1,

1 = 0−1.

(3.2)

Further, it is interesting to note that the above equalities also hold if we replace
“−” by “+”. Then we realize that, in binary, subtraction is the same as addition.
This is because the remainder of −1 divided by 2 equals 1, meaning −1 is
considered the same as 1 in binary. In other words,

a−b = a+(−1)×b = a+(1)×b = a+b. (3.3)

Also, it should be noted that the above implies

a−b = b−a = a+b (3.4)

in binary, while this is certainly false for real numbers.

34 Repetition and Hamming codes

Multiplication in binary is the same as usual, and we have

0×0 = 0,

1×0 = 0,

0×1 = 0,

1×1 = 1.

(3.5)

The same holds also for division.

Exercise 3.1 Show that the laws of association and distribution hold for
binary arithmetics. That is, show that for any a,b,c ∈ {0,1} we have

a+b+ c = (a+b)+ c = a+(b+ c) (additive associative law),

a×b× c = (a×b)× c = a× (b× c) (multiplicative associative law),

a× (b+ c) = (a×b)+(a× c) (distributive law). ♦

Exercise 3.2 In this chapter, we will use the notation ?
= to denote a con-

ditional equality, by which we mean that we are unsure whether the equality
holds. Show that the condition of a ?

= b in binary is the same as a+b ?
= 0. ♦

3.2 Three-times repetition code

A binary digit (or bit in short) s is to be stored on CD, but it could be corrupted
for some reason during read-out. To recover the corrupted data, a straight-
forward means of protection is to store as many copies of s as possible. For
simplicity, say we store three copies. Such a scheme is called the three-times
repetition code. Thus, instead of simply storing s, we store (s,s,s). To distin-
guish them, let us denote the first s as x1 and the others as x2 and x3. In other
words, we have {

x2 = x3 = 0 if x1 = 0,

x2 = x3 = 1 if x1 = 1,
(3.6)

and the possible values of (x1,x2,x3) are (000) and (111).
When you read out the stream (x1,x2,x3) from a CD, you must check wheth-

er x1 = x2 and x1 = x3 in order to detect if there was a data corruption. From
Exercise 3.2, this can be achieved by the following computation:

{
data clean if x1 + x2 = 0 and x1 + x3 = 0,

data corrupted otherwise.
(3.7)

For example, if the read-out is (x1,x2,x3) = (000), then you might say the data

3.2 Three-times repetition code 35

is clean. Otherwise, if the read-out shows (x1,x2,x3) = (001) you immediately
find x1 + x3 = 1 and the data is corrupted.

Now say that the probability of writing in 0 and reading out 1 is p, and
the same for writing in 1 and reading out 0. You see that a bit is corrupted
with probability p and remains clean with probability (1− p). Usually we can
assume p < 1/2, meaning the data is more likely to be clean than corrupted. In
the case of p > 1/2, a simple bit-flipping technique of treating the read-out of
1 as 0 and 0 as 1 would do the trick.

Thus, when p < 1/2, the only possibilities for data corruption going unde-
tected are the cases when the read-out shows (111) given writing in was (000)
and when the read-out shows (000) given writing in was (111). Each occurs
with probability2 p3 < 1/8. Compared with the case when the data is unpro-
tected, the probability of undetectable corruption drops from p to p3. It means
that when the read-out shows either (000) or (111), we are more confident
that such a read-out is clean.

The above scheme is commonly referred to as error detection (see also
Chapter 2), by which we mean we only detect whether the data is corrupted,
but we do not attempt to correct the errors. However, our goal was to correct
the corrupted data, not just detect it. This can be easily achieved with the rep-
etition code. Consider the case of a read-out (001): you would immediately
guess that the original data is more likely to be (000), which corresponds to
the binary bit s = 0. On the other hand, if the read-out shows (101), you would
guess the second bit is corrupted and the data is likely to be (111) and hence
determine the original s = 1.

There is a good reason for such a guess. Again let us denote by p the proba-
bility of a read-out bit being corrupted, and let us assume3 that the probability
of s being 0 is 1/2 (and of course the same probability for s being 1). Then,
given the read-out (001), the probability of the original data being (000) can
be computed as follows. Here again we assume that the read-out bits are cor-
rupted independently. Assuming Pr[s = 0] = Pr[s = 1] = 1/2, it is clear that

Pr(Writing in (000)) = Pr(Writing in (111)) =
1
2
. (3.8)

It is also easy to see that

2 Here we assume each read-out bit is corrupted independently, meaning whether one bit is cor-
rupted or not has no effect on the other bits being corrupted or not. With this independence
assumption, the probability of having three corrupted bits is p · p · p = p3.

3 Why do we need this assumption? Would the situation be different without this assumption?
Take the case of Pr[s = 0] = 0 and Pr[s = 1] = 1 as an example.

36 Repetition and Hamming codes

Pr(Writing in (000) and reading out (001))

= Pr(Writing in (000)) ·Pr(Reading out (001) |Writing in (000)) (3.9)

= Pr(Writing in (000)) ·Pr(0→ 0) ·Pr(0→ 0) ·Pr(0→ 1) (3.10)

=
1
2
· (1− p) · (1− p) · p (3.11)

=
(1− p)2 p

2
. (3.12)

Similarly, we have

Pr(Writing in (111) and reading out (001)) =
(1− p)p2

2
. (3.13)

These together show that

Pr(Reading out (001))

= Pr(Writing in (000) and reading out (001))

+ Pr(Writing in (111) and reading out (001)) (3.14)

=
(1− p)p

2
. (3.15)

Thus

Pr(Writing in (000) | Reading out (001))

=
Pr(Writing in (000) and reading out (001))

Pr(Reading out (001))
(3.16)

= 1− p. (3.17)

Similarly, it can be shown that

Pr(Writing in (111) | Reading out (001)) = p. (3.18)

As p < 1/2 by assumption, we immediately see that

1− p > p, (3.19)

and, given that the read-out is (001), the case of writing in (111) is less likely.
Hence we would guess the original data is more likely to be (000) due to its
higher probability. Arguing in a similar manner, we can construct a table for
decoding, shown in Table 3.1.

From Table 3.1, we see that given the original data being (000), the cor-
rectable error events are the ones when the read-outs are (100), (010), and
(001), i.e. the ones when only one bit is in error. The same holds for the other
write-in of (111). Thus we say that the three-times repetition code is a single-
error-correcting code, meaning the code is able to correct all possible one-bit
errors. If there are at least two out of the three bits in error during read-out,

3.2 Three-times repetition code 37

Table 3.1 Decoding table for the repetition code based on probability

Read-outs Likely original Decoded output

(000), (100), (010), (001) (000) s = 0
(111), (011), (101), (110) (111) s = 1

then this code is bound to make an erroneous decision as shown in Table 3.1.
The probability of having an erroneous decoded output is given by

Pr(Uncorrectable error) = 3p2(1− p)+ p3 (3.20)

that is smaller than the original p.

Exercise 3.3 Prove 3p2(1− p)+ p3 < p for p ∈ (0,1/2). ♦

Exercise 3.4 It should be noted that Table 3.1 is obtained under the assump-
tion of Pr[s = 0] =Pr[s = 1] = 1/2. What if Pr[s = 0] = 0 and Pr[s = 1] = 1? Re-
construct the table for this case and conclude that Pr(Uncorrectable error) = 0.
Then rethink whether you need error protection and correction in this case. ♦

To summarize this section, below we give a formal definition of an error-
correcting code.

Definition 3.5 A code C is said to be an (n,k) error-correcting code if it is a
scheme of mapping k bits into n bits, and we say C has code rate R= k/n. We
say C is a t-error-correcting code if C is able to correct any t or fewer errors
in the received n-vector. Similarly, we say C is an e-error-detecting code if C

is able to detect any e or fewer errors in the received n-vector.

With the above definition, we see that the three-times repetition code is a
(3,1) error-correcting code with code rate R = 1/3, and it is a 1-error-cor-
recting code. When being used purely for error detection, it is also a 2-error-
detecting code. Moreover, in terms of the error correction or error detection
capability, we have the following two theorems. The proofs are left as an exer-
cise.

Theorem 3.6 Let C be an (n,k) binary error-correcting code that is t-error-
correcting. Then assuming a raw bit error probability of p, we have

Pr(Uncorrectable error)≤
(

n
t +1

)
pt+1(1− p)n−t−1

+

(
n

t +2

)
pt+2(1− p)n−t−2 + · · ·+

(
n
n

)
pn, (3.21)

38 Repetition and Hamming codes

where
(n
`

)
is the binomial coefficient defined as

(
n
`

)
,

n!
`!(n− `)!

. (3.22)

Theorem 3.7 Let C be an (n,k) binary error-correcting code that is e-error-
detecting. Then assuming a raw bit error probability of p, we have

Pr(Undetectable error)≤
(

n
e+1

)
pe+1(1− p)n−e−1

+

(
n

e+2

)
pe+2(1− p)n−e−2 + · · ·+

(
n
n

)
pn. (3.23)

Exercise 3.8 Prove Theorems 3.6 and 3.7.
Hint: For the situation of Theorem 3.6, if a code is t-error-correcting, we

know that it can correctly deal with all error patterns of t or fewer errors. For
error patterns with more than t errors, we do not know: some of them might
be corrected; some not. Hence, as an upper bound to the error probability,
assume that any error pattern with more than t errors cannot be corrected.
The same type of thinking also works for Theorem 3.7. ♦

Recall that in (3.6) and (3.7), given the binary bit s, we use x1 = x2 = x3 = s
to generate the length-3 binary stream (x1,x2,x3), and use x1+x2

?
= 0 and x1+

x3
?
= 0 to determine whether the read-out has been corrupted. In general, it is

easier to rewrite the two processes using matrices; i.e., we have the following:
(

x1 x2 x3

)
= s
(

1 1 1
)

(generating equation), (3.24)

(
1 1 0

1 0 1

)



x1

x2

x3




?
=

(
0

0

)
(check equations). (3.25)

The two matrix equations above mean that we use the matrix

G=
(

1 1 1
)

(3.26)

to generate the length-3 binary stream and use the matrix

H=

(
1 1 0

1 0 1

)
(3.27)

to check whether the data is corrupted. Thus, the matrix G is often called the
generator matrix and H is called the parity-check matrix. We have the follow-
ing definition.

3.2 Three-times repetition code 39

Definition 3.9 Let C be an (n,k) error-correcting code that maps length-k
binary streams s into length-n binary streams x. We say C is a linear code
if there exist a binary matrix G of size (k× n) and a binary matrix H of size
((n− k)×n) such that the mapping from s to x is given by

x = (x1 · · · xn) = (s1 · · · sk)︸ ︷︷ ︸
=s

G (3.28)

and the check equations are formed by

HxT ?
=




0
...

0


 , (3.29)

where by xT we mean the transpose of vector x (rewriting horizontal rows as
vertical columns and vice versa). The vector x is called a codeword associated
with the binary message s.

Exercise 3.10 With linear codes, the detection of corrupted read-outs is ex-
tremely easy. Let C be an (n,k) binary linear code with a parity-check matrix
H of size ((n−k)×n). Given any read-out y = (y1, . . . ,yn), show that y is cor-
rupted if HyT 6= 0T, i.e. if at least one parity-check equation is unsatisfied. It
should be noted that the converse is false in general.4 ♦

Exercise 3.11 Let C be an (n,k) binary linear code with generator matrix G
of size (k× n) and parity-check matrix H of size ((n− k)× n). Show that the
product matrix HGT must be a matrix whose entries are either 0 or multiples
of 2; hence, after taking modulo reduction by 2, we have HGT = 0, an all-zero
matrix. ♦

Exercise 3.12 (Dual code) In Definition 3.9, we used matrix G to generate
the codeword x given the binary message s and used the matrix H to check the
integrity of read-outs of x for an (n,k) linear error-correcting code C . On the
other hand, it is possible to reverse the roles of G and H. The process is detailed
as follows. Given C , G, and H, we define the dual code C⊥ of C by encoding
the length-(n− k) binary message s′ as x′ = s′H and check the integrity of x′

using Gx′T ?
= 0T. Based on the above, verify the following:

(a) The dual code C⊥ of the three-times repetition code is a (3,2) linear code
with rate R′ = 2/3, and

(b) C⊥ is a 1-error-detecting code.

4 For the correction of corrupted read-outs of linear codewords, see the discussion around (3.34).

40 Repetition and Hamming codes

This code is called the single parity-check code; see Chapter 2. ♦

In the above exercise, we have introduced the concept of a dual code. The
dual code is useful in the sense that once you have an (n,k) linear code with
generator matrix G and parity-check matrix H, you immediately get another
(n,n− k) linear code for free, simply by reversing the roles of G and H. How-
ever, readers should be warned that this is very often not for the purpose of
error correction. Specifically, throughout the studies of various kinds of linear
codes, it is often found that if the linear code C has a very strong error correc-
tion capability, then its dual code C⊥ is highly likely to be weak. Conversely,
if C is very weak, then its dual C⊥ might be strong. Nevertheless, the duality
between C and C⊥ can be extremely useful when studying the combinatorial
properties of a code, such as packing (see Section 3.3.3), covering (see p. 179),
weight enumerations, etc.

3.3 Hamming code

In Section 3.2, we discussed the (3,1) three-times repetition code that is capa-
ble of correcting all 1-bit errors or detecting all 2-bit errors. The price for such
a capability is that we have to increase the file size by a factor of 3. For exam-
ple, if you have a file of size 700 MB to be stored on CD and, in order to keep
the file from corruption, you use a (3,1) three-times repetition code, a space of
2100 MB, i.e. 2.1 GB, is needed to store the encoded data. This corresponds to
almost half of the storage capacity of a DVD!

Therefore, we see that while the three-times repetition code is able to pro-
vide some error protection, it is highly inefficient in terms of rate. In general,
we would like the rate R = k/n to be as close to 1 as possible so that wastage
of storage space is kept to a minimum.

3.3.1 Some historical background

The problem of finding efficient error-correcting schemes, but of a much smal-
ler scale, bothered Richard Wesley Hamming (1915–1998) while he was em-
ployed by Bell Telephone Laboratory (Bell Labs) in the late 1940s. Hamming
was a mathematician with a Ph.D. degree from the University of Illinois at
Urbana-Champaign in 1942. He was a professor at the University of Louisville
during World War II, and left to work on the Manhattan Project in 1945, pro-
gramming a computer to solve the problem of whether the detonation of an
atomic bomb would ignite the atmosphere. In 1946, Hamming went to Bell

3.3 Hamming code 41

Labs and worked on the Bell Model V computer, an electromechanical relay-
based machine. At that time, inputs to computers were fed in on punch cards,
which would invariably have read errors (the same as CDs or DVDs in com-
puters nowadays). Prior to executing the program on the punch cards, a special
device in the Bell Model V computer would check and detect errors. During
weekdays, when errors were found, the computer would flash lights so the op-
erators could correct the problem. During after-hours periods and at weekends,
when there were no operators, the machine simply terminated the program and
moved on to the next job. Thus, during the weekends, Hamming grew increas-
ingly frustrated with having to restart his programs from scratch due to the
unreliable card reader.

Over the next few years he worked on the problem of error correction, de-
veloping an increasingly powerful array of algorithms. In 1950 he published
what is now known as the Hamming code, which remains in use in some ap-
plications today.

Hamming is best known for the Hamming code he developed in 1950, as
well as the Hamming window5 used in designing digital filters, the Hamming
bound related to sphere packing theory (see Section 3.3.3), and the Ham-
ming distance as a measure of distortion in digital signals (see Exercise 3.16).
Hamming received the Turing award in 1968 and was elected to the National
Academy of Engineering in 1980.

Exercise 3.13 The error-correcting mechanism used in CDs6 for data pro-
tection is another type of error-correcting code called Reed–Solomon (R-S)
code, developed by Irving S. Reed and Gustave Solomon in 1960. The use of
R-S codes as a means of error correction for CDs was suggested by Jack van
Lint (1932–2004) while he was employed at Philips Labs in 1979. Two con-
secutive R-S codes are used in serial in a CD. These two R-S codes operate
in bytes (B) instead of bits (1 B = 8 bits). The first R-S code takes in 24 B of
raw data and encodes them into a codeword of length 28 B. After this, another
mechanism called interleaver would take 28 such encoded codewords, each
28 B long, and then permute the overall 282 = 784 B of data symbols. Finally,
the second R-S code will take blocks of 28 B and encode them into blocks of

5 The Hamming window was actually not due to Hamming, but to John Tukey (1915–2000),
who also rediscovered with James Cooley the famous algorithm of the fast Fourier transform
(FFT) that was originally invented by Carl Friedrich Gauss in 1805, but whose importance to
modern engineering was not realized by the researchers until 160 years later. The wonderful
Cooley–Tukey FFT algorithm is one of the key ingredients of your MP3 players, DVD players,
and mobile phones. So, you actually have Gauss to thank for it. Amazing, isn’t it?

6 A similar mechanism is also used in DVDs. We encourage you to visit the webpage of Professor
Tom Høholdt at http://www2.mat.dtu.dk/people/T.Hoeholdt/DVD/index.html for an extremely
stimulating demonstration.

42 Repetition and Hamming codes

32 B. Thus, the first R-S code can be regarded as a (28 B, 24 B) linear code
and the second as a (32 B, 28 B) linear code. Based on the above, determine
the actual size (in megabytes (MB)) of digital information that is stored on a
CD if a storage capacity of 720 MB is claimed. Also, what is the overall code
rate used on a CD? ♦

3.3.2 Encoding and error correction of the (7,4) Hamming code

The original Hamming code is a (7,4) binary linear code with the following
generator and parity-check matrices:

G=




1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1




and H=




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1


 .

(3.30)
Specifically, the encoder of the (7,4) Hamming code takes in a message of
four bits, say s = (s1,s2,s3,s4) and encodes them as a codeword of seven bits,
say x = (p1, p2, p3,s1,s2,s3,s4), using the following generating equations:





p1 = s1 + s3 + s4,

p2 = s1 + s2 + s3,

p3 = s2 + s3 + s4.

(3.31)

Mappings from s to x are tabulated in Table 3.2.

Table 3.2 Codewords of the (7,4) Hamming code

Message Codeword Message Codeword

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0
0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 1
0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0
0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1
0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0
0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1
0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0
0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

There are several ways to memorize the (7,4) Hamming code. The simplest

3.3 Hamming code 43

s1 s2

s3

s4

p1

p2

p3

I

II

III

Figure 3.1 Venn diagram of the (7,4) Hamming code.

way is perhaps to use the Venn diagram pointed out by Robert J. McEliece
[McE85] and shown in Figure 3.1. There are three overlapping circles: circles I,
II, and III. Each circle represents one generating equation as well as one parity-
check equation of the (7,4) Hamming code (see (3.31)). For example, circle I
corresponds to the first generating equation of p1 = s1 + s3 + s4 and the parity-
check equation p1 + s1 + s3 + s4 = 0 since bits s1,s3,s4, and p1 are included
in this circle. Similarly, the second circle, circle II, is for the check equation
of p2 + s1 + s2 + s3 = 0, and the third circle III is for the check equation of
p3 + s2 + s3 + s4 = 0. Note that each check equation is satisfied if, and only if,
there is an even number of 1s in the corresponding circle. Hence, the p1, p2,
and p3 are also known as even parities.

Using the Venn diagram, error correction of the Hamming code is easy. For
example, assume codeword x = (0110100) was written onto the CD, but due
to an unknown one-bit error the read-out shows (0111100). We put the read-
out into the Venn diagram shown in Figure 3.2. Because of the unknown one-
bit error, we see that

• the number of 1s in circle I is 1, an odd number, and a warning (bold circle)
is shown;

• the number of 1s in circle II is 3, an odd number, and a warning (bold circle)
is shown;

• the number of 1s in circle III is 2, an even number, so no warning (normal
circle) is given.

From these three circles we can conclude that the error must not lie in circle III,
but lies in both circles I and II. This leaves s1 as the only possibility, since s1

44 Repetition and Hamming codes

0
0

0

1

11

1

I

II

III

Figure 3.2 Venn diagram used for decoding (0111100).

is the only point lying in circles I and II but not in III. Hence s1 must be wrong
and should be corrected to a 0 so that both warnings are cleared and all three
circles show no warning. This then corrects the erroneous bit as expected.

Let us try another example. What if the read-out is (1110100)? The corre-
sponding Venn diagram is shown in Figure 3.3. Following the same reasoning

0

0

0

1

1

1

1

I

II

III

Figure 3.3 Venn diagram used for decoding (1110100).

as before, we see that the error must lie in circle I, but cannot be in circles II
and III. Hence the only possible erroneous bit is p1. Changing the read-out of
p1 from 1 to 0 will correct the one-bit error.

Now let us revisit the above two error-correcting examples and try to for-
mulate a more systematic approach. In the first example, the read-out was
y = (0111100). Using the parity-check matrix H defined in (3.30) we see

3.3 Hamming code 45

the following connection:

HyT =




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1







0

1

1

1

1

0

0




=




1

1

0


 ⇐⇒




I
II
III


 . (3.32)

This corresponds exactly to the Venn diagram of Figure 3.2. Note that the first
entry of (110) corresponds to the first parity-check equation of p1 + s1 + s3 +

s4
?
= 0 as well as to circle I in the Venn diagram. Since it is unsatisfied, a

warning is shown. Similarly for the second and third entries of (110). Now
we ask the question: which column of H has the value (110)T? It is the fourth
column, which corresponds to the fourth bit of y, i.e. s1 in x. Then we conclude
that s1 is in error and should be corrected to a 0. The corrected read-out is
therefore (0110100).

For the second example of a read-out being y = (1110100), carrying out
the same operations gives

HyT =




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1







1

1

1

0

1

0

0




=




1

0

0


 ⇐⇒




I
II

III


 (3.33)

corresponding to the Venn diagram of Figure 3.3. Since (100)T is the first
column of H, it means the first entry of y is in error, and the corrected read-out
should be (0110100).

There is a simple reason why the above error correction technique works.
For brevity, let us focus on the first example of y = (0111100). This is the
case when the fourth bit of y, i.e. s1, is in error. We can write y as follows:

y = (0111100) = (0110100)︸ ︷︷ ︸
=x

+ (0001000)︸ ︷︷ ︸
= e

, (3.34)

where x is the original codeword written into a CD and e is the error pattern.

46 Repetition and Hamming codes

Recall that x is a codeword of the (7,4) Hamming code; we must have HxT =

0T from Definition 3.9. Thus from the distributive law verified in Exercise 3.1
we see that

HyT = H(xT + eT) = HxT +HeT = 0T +HeT = HeT. (3.35)

Since the only nonzero entry of e is the fourth entry, left-multiplying eT by H

gives the fourth column of H. Thus, HeT = (110)T. In other words, we have
the following logic deductions: without knowing the error pattern e in the first
place, to correct the one-bit error,

HyT = (110)T (3.36)

=⇒ HeT = (110)T (3.37)

=⇒ e = (0001000). (3.38)

The last logic deduction relies on the following two facts:

(1) we assume there is only one bit in error, and
(2) all columns of H are distinct.

With the above arguments, we get the following result.

Theorem 3.14 The (7,4) Hamming code can be classified as one of the fol-
lowing:

(1) a single-error-correcting code,
(2) a double-error-detecting code.

Proof The proof of the Hamming code being able to correct all one-bit errors
follows from the same logic deduction given above. To establish the second
claim, simply note that when two errors occur, there are two 1s in the error
pattern e, for example e = (1010000). Calculating the parity-check equations
shows HyT = HeT. Note that no two distinct columns of H can be summed to
yield (000)T. This means any double-error will give HyT 6= 0T and hence can
be detected.

From Theorem 3.14 we see that the (7,4) Hamming code is able to correct
all one-bit errors. Thus, assuming each bit is in error with probability p, the
probability of erroneous correction is given by

Pr(Uncorrectable error)≤
(

7
2

)
p2(1− p)5 +

(
7
3

)
p3(1− p)4 + · · ·+

(
7
7

)
p7.

(3.39)

It should be noted that in (3.39) we actually have an equality. This follows from

3.3 Hamming code 47

the fact that the Hamming code cannot correct any read-outs having more than
one bit in error.

Exercise 3.15 For error detection of the (7,4) Hamming code, recall the

check equation HyT = HeT ?
= 0T. Using this relation, first show that an error

pattern e is undetectable if, and only if, e is a nonzero codeword. Thus the
(7,4) Hamming code can detect some error patterns that have more than two
errors. Use this fact to show that the probability of a detection error of the
(7,4) Hamming code is

Pr(Undetectable error) = 7p3(1− p)4 +7p4(1− p)3 + p7, (3.40)

which is better than what has been claimed by Theorem 3.7.
Hint: Note from Table 3.2 that, apart from the all-zero codeword, there are

seven codewords containing three 1s, another seven codewords containing four
1s, and one codeword consisting of seven 1s. ♦

Next we compare the performance of the three-times repetition code with the
performance of the (7,4) Hamming code. First, note that both codes are able
to correct all one-bit errors or detect all double-bit errors. Yet, the repetition
code requires to triple the size of the original file for storage, while the (7,4)
Hamming code only needs 7/4 = 1.75 times the original space. Therefore, the
(7,4) Hamming code is more efficient than the three-times repetition code in
terms of required storage space.

Before concluding this section, we use the following exercise problem as
a quick introduction to another contribution of Hamming. It is related to the
topic of sphere packing, which will be discussed in Section 3.3.3.

Exercise 3.16 (Hamming distance) Another contribution of Richard Ham-
ming is the notion of Hamming distance. Given any two codewords x = (x1,

x2, . . . ,x7) and x′ = (x′1,x
′
2, . . . ,x

′
7), the Hamming distance between x and x′

is the number of places x differs from x′. For example, the Hamming dis-
tance between (1011100) and (0111001) is 4 since x differs from x′ in
the first, second, fifth, and seventh positions. Equivalently, you can compute
(1011100)+ (0111001) = (1100101). Then the condition given in Exer-

cise 3.2, namely, x`
?
= x′` is equivalent to x`+ x′`

?
= 0 for ` = 1,2, . . . ,7, shows

the distance is 4 since there are four 1s appearing in the sum (1100101).
Note that the number of ones in a binary vector is called the Hamming weight
of the vector.

Now, using Table 3.2, show that every two distinct codewords of a (7,4)
Hamming code are separated by Hamming distance ≥ 3. ♦

48 Repetition and Hamming codes

Some of you might wonder why not simply stick to the general definition of
Euclidean distance and try to avoid the need for this new definition of Ham-
ming distance. There is a good reason for this. Recall that the Euclidean dis-
tance between two distinct points (x,y) and (x′,y′) is defined as follows:

d ,
√
(x− x′)2 +(y− y′)2. (3.41)

However, this definition will not work in the binary space. To see this, con-
sider the example of (x,y) = (00) and (x′,y′) = (11). The Euclidean distance
between these two points is given by

d =
√

(0−1)2 +(0−1)2 =
√

1+1 =
√

0 = 0, (3.42)

where you should note that 1+ 1 = 0 in binary. Thus, the Euclidean distance
fails in the binary space.

3.3.3 Hamming bound: sphere packing

In Exercise 3.16 we have seen that every distinct pair of codewords of the (7,4)
Hamming code is separated by Hamming distance at least d = 3. Thus in terms
of geometry we have a picture as shown in Figure 3.4(a). Now if we draw two
spheres as shown in Figure 3.4(b) (you might want to think of them as high-
dimensional balls), each with radius R = 1, centered at x and x′, respectively,
these two spheres would not overlap and must be well-separated. Points within
the x-sphere represent the read-outs that are at a distance of at most 1 from x.
In other words, the points within the x-sphere are either x or x with a one-bit
error.

x x′d = 3

(a)

x x′
d = 3

R= 1R= 1

(b)

Figure 3.4 Geometry of x 6= x′ in the (7,4) Hamming code with Hamming
distance 3.

If we draw a sphere with radius R = 1 centered at each codeword of the
(7,4) Hamming code, there will be 16 nonoverlapping spheres since there are
16 codewords and every pair of distinct codewords is separated by a distance
of at least 3. Given that a codeword x was written into the CD, for example,

3.3 Hamming code 49

the one-bit error read-out must be at distance 1 from x and therefore must lie
within the radius-1 x-sphere centered at x. It cannot lie in other spheres since
the spheres are well-separated. This shows that this one-bit error read-out is
closer to x than to any other codewords of the (7,4) Hamming code.

Thus, correcting a one-bit error is always possible for the (7,4) Hamming
code. This can be seen as a geometrical explanation of the single-error-cor-
rection capability of the (7,4) Hamming code. We may generalize the above
argument slightly and give the following theorem.

Theorem 3.17 Let C be an (n,k) error-correcting code (not necessarily lin-
ear, i.e. it does not necessarily have the generator and parity-check matrices
G and H). Assume that every distinct pair of codewords in C is separated by
Hamming distance at least d; then C is a t-error-correcting code with

t =
⌊

d−1
2

⌋
, (3.43)

where by bξc we mean7 the largest integer not larger than ξ . Also, if C is used
only for error detection, then C is an (d−1)-error-detecting code.

Proof Given d, we can draw spheres with radius t centered at the codewords
of C . Since 2t < d, the spheres must be nonoverlapping. Extending the proof
to error detection is obvious.

The above theorem says that in order to correct more errors, the codewords
should be placed as far apart as possible. But this is not what we are interested
in here. Instead, we are interested in the reverse direction. We ask the following
question.

Consider a t-error-correcting code C that maps input messages to a
binary stream of length n. So, we draw spheres of radius t centered at
the codewords of C . The spheres do not overlap with each other. What
is the maximal number of codewords C can have? In other words, we
are interested in knowing how many nonoverlapping radius-t spheres
can be packed into an n-dimensional binary space.

This is the sphere packing problem in discrete mathematics. Let us work
through some examples in order to understand the question better.

Example 3.18 The (7,4) Hamming code has 16 codewords, hence 16 spheres
with radius 1, since the code is 1-error-correcting.

• The codewords have length 7, with a binary value in each coordinate. So,

7 For example, b1.1c= b1.9c= 1.

50 Repetition and Hamming codes

the number of possible length-7 binary tuples is 27 = 128, meaning there
are 128 points in this 7-dimensional binary space.

• Each codeword of the Hamming code is surrounded by a sphere with radius
1. There are 1+

(7
1

)
= 8 points in each sphere. This first “1” corresponds to

the center, i.e. distance 0. The remaining
(7

1

)
points are the ones at distance

1 from the center, i.e. one-bit errors from the codeword.

Thus, the 16 nonoverlapping spheres actually cover 16×8= 128 points, which
are all the points in the 7-dimensional binary space. We see that the (7,4)
Hamming code has the tightest possible packing of radius-1 spheres in the
7-dimensional binary space. ♦

Example 3.19 Let us consider the dual of the (7,4) Hamming code C in
this example. Recall from Exercise 3.12 that the dual code C⊥ is obtained by
reversing the roles of the generating matrix G and the parity-check matrix H of
C . That is, we use the parity-check matrix H for encoding and the generator
matrix G for checking. Thus the generator matrix G⊥ of C⊥ is given by

G⊥ = H=




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1


 (3.44)

and it maps binary messages of length 3 to codewords of length 7. All the eight
possible codewords are tabulated in Table 3.3.

Table 3.3 Codewords of the dual code of the (7,4) Hamming code

Message Codeword Message Codeword

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1
0 0 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0
0 1 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1
0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0

You can check that the codewords are separated by Hamming distance 4
exactly. Hence C⊥ is able to correct errors up to t =

⌊ 4−1
2

⌋
= 1, which is the

same as C does. Thus, it is clear that C⊥ is not a good packing of radius-1
spheres in the 7-dimensional binary space since it packs only eight spheres,
while C can pack 16 spheres into the same space. ♦

Why are we interested in the packing of radius-t spheres in an n-dimensional

3.3 Hamming code 51

space? The reason is simple. Without knowing the parameter k in the first place,
i.e. without knowing how many distinct 2k binary messages can be encoded,
by fixing t we make sure that the codewords are immune to errors with at most
t error bits. Choosing n means the codewords will be stored in n bits. Being
able to pack more radius-t spheres into the n-dimensional spaces means we can
have more codewords, hence larger k. This gives a general bound on k, known
as the sphere bound, and stated in the following theorem.

Theorem 3.20 (Sphere bound) Let n, k, and t be defined as above. Then we
have

2k ≤ 2n
(n

0

)
+
(n

1

)
+ · · ·+

(n
t

) . (3.45)

Codes with parameter n, k, and t that achieve equality in (3.45) are called
perfect, meaning a perfect packing.

Proof Note that 2k is the number of codewords, while 2n is the number
of points in an n-dimensional binary space, i.e. the number of distinct bi-
nary n-tuples. The denominator shows the number of points within a radius-t
sphere. The inequality follows from the fact that for t-error-correcting codes
the spheres must be nonoverlapping.

Finally we conclude this section with the following very deep result.

Theorem 3.21 The only parameters satisfying the bound (3.45) with equality
are



n = 2u−1, k = 2u−u−1, t = 1, for any positive integer u;

n = 23, k = 12, t = 3;

n = 2u+1, k = 1, t = u, for any positive integer u.
(3.46)

This theorem was proven by Aimo Tietäväinen [Tie73] in 1973 after much
work by Jack van Lint. One code satisfying the second case of n = 23, k = 12,
and t = 3 is the Golay code, hand-constructed by Marcel J. E. Golay in 1949
[Gol49].8 Vera Pless [Ple68] later proved that the Golay code is the only code
with these parameters that satisfies (3.45) with equality. The first case is a
general Hamming code of order u (see Exercise 3.22 below), and the last case
is the (2u+1)-times repetition code, i.e. repeating the message (2u+1) times.
8 This paper is only half a page long, but belongs to the most important paper in information

theory ever written! Not only did it present the perfect Golay code, but it also gave the gen-
eralization of the Hamming code and the first publication of a parity-check matrix. And even
though it took over 20 years to prove it, Golay already claimed in that paper that there were no
other perfect codes. For more details on the life of Marcel Golay, see http://www.isiweb.ee.eth
z.ch/archive/massey pub/pdf/BI953.pdf.

52 Repetition and Hamming codes

Exercise 3.22 (Hamming code of order u) Recall that the (7,4) Hamming
code is defined by its parity-check matrix

H=




1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 1


 . (3.47)

Note that the columns of the above (3×7) matrix consist of all possible non-
zero length-3 binary vectors. From this, we can easily define a general Ham-
ming code Cu of order u. Let Hu be the matrix whose columns consist of all
possible nonzero length-u binary vectors; Hu is of size (u× (2u− 1)). Then a
general Hamming code Cu is the code defined by the parity-check matrix Hu

with n = 2u−1 and k = 2u−u−1. Show that

(a) Cu is 2-error-detecting (Hint: Show that HueT 6= 0T for all nonzero vectors
e that have at most two nonzero entries);

(b) Cu is 1-error-correcting (Hint: Show that HuyT = 0T for some nonzero
vector y if, and only if, y has at least three nonzero entries. Then use this
to conclude that every pair of distinct codewords is separated by Hamming
distance at least 3). ♦

3.4 Further reading

In this chapter we have briefly introduced the theory of error-correcting codes
and have carefully studied two example codes: the three-times repetition code
and the (7,4) Hamming code. Besides their error correction capabilities, we
have also briefly studied the connections of these codes to sphere packing in
high-dimensional spaces.

For readers who are interested in learning more about other kinds of error-
correcting codes and their practical uses, [Wic94] is an easy place to start,
where you can learn about a more general treatment of the Hamming codes.
Another book, by Shu Lin and Daniel Costello [LC04], is a comprehensive
collection of all modern coding schemes. An old book by Jessy MacWilliams
and Neil Sloane [MS77] is the most authentic source for learning the theory
of error-correcting codes, but it requires a solid background in mathematics at
graduate level.

The Hamming codes are closely related to combinatorial designs, differ-
ence sets, and Steiner systems. All are extremely fascinating objects in com-
binatorics. The interested readers are referred to [vLW01] by Jack van Lint
and Richard Wilson for further reading on these subjects. These combinatorial

References 53

objects are also used in the designs of radar systems, spread spectrum-based
cellular communications, and optical fiber communication systems.

The topic of sphere packing is always hard, yet fascinating. Problems therein
have been investigated for more than 2000 years, and many remain open.
A general discussion of this topic can be found in [CS99]. As already seen
in Theorem 3.21, the sphere packing bound is not achievable in almost all
cases. Some bounds that are tighter than the sphere packing bound, such as the
Gilbert–Varshamov bound, the Plotkin bound, etc., can be found in [MS77]
and [Wic94]. In [MS77] a table is provided that lists all known best packings
in various dimensions. An updated version can be found in [HP98]. So far, the
tightest lower bound on the existence of the densest possible packings is the
Tsfasman–Vlăduţ–Zink (TVZ) bound, and there are algebraic geometry codes
constructed from function fields defined by the Garcia–Stichtentoth curve that
perform better than the TVZ bound, i.e. much denser sphere packings. A good
overview of this subject can be found in [HP98].

References
[CS99] John Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups,

3rd edn. Springer Verlag, New York, 1999.
[Gol49] Marcel J. E. Golay, “Notes on digital coding,” Proceedings of the IRE,

vol. 37, p. 657, June 1949.
[HP98] W. Cary Huffman and Vera Pless, eds., Handbook of Coding Theory. North-

Holland, Amsterdam, 1998.
[LC04] Shu Lin and Daniel J. Costello, Jr., Error Control Coding, 2nd edn. Prentice

Hall, Upper Saddle River, NJ, 2004.
[McE85] Robert J. McEliece, “The reliability of computer memories,” Scientific Amer-

ican, vol. 252, no. 1, pp. 68–73, 1985.
[MS77] F. Jessy MacWilliams and Neil J. A. Sloane, The Theory of Error-Correcting

Codes. North-Holland, Amsterdam, 1977.
[Ple68] Vera Pless, “On the uniqueness of the Golay codes,” Journal on Combination

Theory, vol. 5, pp. 215–228, 1968.
[Tie73] Aimo Tietäväinen, “On the nonexistence of perfect codes over finite fields,”

SIAM Journal on Applied Mathematics, vol. 24, no. 1, pp. 88–96, January
1973.

[vLW01] Jacobus H. van Lint and Richard M. Wilson, A Course in Combinatorics,
2nd edn. Cambridge University Press, Cambridge, 2001.

[Wic94] Stephen B. Wicker, Error Control Systems for Digital Communication and
Storage. Prentice Hall, Englewood Cliffs, NJ, 1994.

4
Data compression: efficient coding of a

random message

In this chapter we will consider a new type of coding. So far we have con-
centrated on codes that can help detect or even correct errors; we now would
like to use codes to represent some information more efficiently, i.e. we try to
represent the same information using fewer digits on average. Hence, instead
of protecting data from errors, we try to compress it such as to use less storage
space.

To achieve such a compression, we will assume that we know the probabil-
ity distribution of the messages being sent. If some symbols are more probable
than others, we can then take advantage of this by assigning shorter code-
words to the more frequent symbols and longer codewords to the rare symbols.
Hence, we see that such a code has codewords that are not of fixed length.

Unfortunately, variable-length codes bring with them a fundamental prob-
lem: at the receiving end, how do you recognize the end of one codeword and
the beginning of the next? To attain a better understanding of this question and
to learn more about how to design a good code with a short average codeword
length, we start with a motivating example.

4.1 A motivating example

You would like to set up your own telephone system that connects you to your
three best friends. The question is how to design efficient binary phone num-
bers. In Table 4.1 you find six different ways of how you could choose them.

Note that in this example the phone number is a codeword for the person we
want to talk to. The set of all phone numbers is called code. We also assume
that you have different probabilities when calling your friends: Bob is your best
friend whom you will call in 50% of the times. Alice and Carol are contacted
with a frequency of 25% each.

56 Efficient coding of a random message

Table 4.1 Binary phone numbers for a telephone system with three friends

Friend Probability Phone number

Alice 1/4 0011 001101 0 00 0 10

Bob 1/2 0011 001110 1 11 11 0

Carol 1/4 1100 110000 10 10 10 11

(i) (ii) (iii) (iv) (v) (vi)

Let us discuss the different designs in Table 4.1.

(i) In this design, Alice and Bob have the same phone number. The system
obviously will not be able to connect properly.

(ii) This is much better, i.e. the code will actually work. However, the phone
numbers are quite long and therefore the design is rather inefficient.

(iii) Now we have a code that is much shorter and, at the same time, we have
made sure that we do not use the same codeword twice. However, a closer
look reveals that the system will not work. The problem here is that this
code is not uniquely decodable: if you dial 10 this could mean “Carol”
or also “Bob, Alice.” Or, in other words, the telephone system will never
connect you to Carol, because once you dial 1, it will immediately connect
you to Bob.

(iv) This is the first quite efficient code that is functional. But we note some-
thing: when calling Alice, why do we have to dial two zeros? After the
first zero it is already clear to whom we would like to be connected! Let
us fix that in design (v).

(v) This is still uniquely decodable and obviously more efficient than (iv). Is
it the most efficient code? No! Since Bob is called most often, he should
be assigned the shortest codeword!

(vi) This is the optimal code. Note one interesting property: even though the
numbers do not all have the same length, once you finish dialing any of
the three numbers, the system immediately knows that you have finished
dialing. This is because no codeword is the prefix1 of any other codeword,
i.e. it never happens that the first few digits of one codeword are identical
to another codeword. Such a code is called prefix-free (see Section 4.2).
Note that (iii) was not prefix-free: 1 is a prefix of 10.

1 According to the Oxford English Dictionary, a prefix is a word, letter, or number placed before
another.

4.2 Prefix-free or instantaneous codes 57

From this example we learn the following requirements that we impose on
our code design.

• A code needs to be uniquely decodable.
• A code should be short; i.e., we want to minimize the average codeword

length Lav, which is defined as follows:

Lav ,
r

∑
i=1

pili. (4.1)

Here pi denotes the probability that the source emits the ith symbol, i.e. the
probability that the ith codeword ci is selected; li is the length of the ith
codeword ci; and r is the number of codewords.

• We additionally require the code to be prefix-free. Note that this requirement
is not necessary, but only convenient. However, we will later see that we lose
nothing by asking for it.

Note that any prefix-free code is implicitly uniquely decodable, but not vice
versa. We will discuss this issue in more detail in Section 4.7.

4.2 Prefix-free or instantaneous codes

Consider the following code with four codewords:

c1 = 0

c2 = 10

c3 = 110

c4 = 111

(4.2)

Note that the zero serves as a kind of “comma”: whenever we receive a zero
(or the code has reached length 3), we know that the codeword has finished.
However, this comma still contains useful information about the message as
there is still one codeword without it! This is another example of a prefix-free
code. We recall the following definition.

Definition 4.1 A code is called prefix-free (sometimes also called instanta-
neous) if no codeword is the prefix of another codeword.

The name instantaneous is motivated by the fact that for a prefix-free code
we can decode instantaneously once we have received a codeword and do not
need to wait for later until the decoding becomes unique. Unfortunately, in the
literature one also finds that people call a prefix-free code a prefix code. This

58 Efficient coding of a random message

name is confusing because rather than having prefixes it is the point of the code
to have no prefix! We will stick to the name of prefix-free codes.

Consider next the following example:

c1 = 0

c2 = 01

c3 = 011

c4 = 111

(4.3)

This code is not prefix-free (0 is a prefix of 01 and 011; 01 is a prefix of 011),
but it is still uniquely decodable.

Exercise 4.2 Given the code in (4.3), split the sequence 0011011110 into
codewords. ♦

Note the drawback of the code design in (4.3): the receiver needs to wait and
see how the sequence continues before it can make a unique decision about the
decoding. The code is not instantaneously decodable.

Apart from the fact that they can be decoded instantaneously, another nice
property of prefix-free codes is that they can very easily be represented by
leaves of decision trees. To understand this we will next make a small detour
and talk about trees and their relation to codes.

4.3 Trees and codes

The following definition is quite straightforward.

Definition 4.3 (Trees) A rooted tree consists of a root with some branches,
nodes, and leaves, as shown in Figure 4.1. A binary tree is a rooted tree in
which each node (hence also the root) has exactly two children,2 i.e. two
branches stemming forward.

The clue to this section is to note that any binary code can be represented
as a binary tree. Simply take any codeword and regard each bit as a decision

2 The alert reader might wonder why we put so much emphasis on having exactly two children.
It is quite obvious that if a parent node only had one child, then this node would be useless and
the child could be moved back and replace its parent. The reason for our definition, however,
has nothing to do with efficiency, but is related to the generalization to D-ary trees where every
node has exactly D children. We do not cover such trees in this book; the interested reader is
referred to, e.g., [Mas96].

4.3 Trees and codes 59

parent node with two children

root

leaves

nodes

branch

forward

Figure 4.1 A rooted tree (in this case a binary tree) with a root (the node
that is grounded), four nodes (including the root), and five leaves. Note that
in this book we will always clearly distinguish between nodes and leaves: a
node always has children, while a leaf always is an “end-point” in the tree.

whether to go up (“0”) or down3 (“1”). Hence, every codeword can be rep-
resented by a particular path traversing through the tree. As an example, Fig-
ure 4.2 shows the binary tree of a binary code with five codewords. Note that
on purpose we also keep branches that are not used in order to make sure that
the tree is binary.

In Figure 4.3, we show the tree describing the prefix-free code given in (4.2).
Note that here every codeword is a leaf. This is no accident.

Lemma 4.4 A binary code {c1, . . . ,cr} is prefix-free if, and only if, in its
binary tree every codeword is a leaf. (But not every leaf necessarily is a code-
word; see, e.g., code (iv) in Figure 4.4.)

Exercise 4.5 Prove Lemma 4.4.
Hint: Think carefully about the definition of prefix-free codes (see Defini-

tion 4.1). ♦

As mentioned, the binary tree of a prefix-free code might contain leaves that
are not codewords. Such leaves are called unused leaves.

Some more examples of trees of prefix-free and non-prefix-free codes are
shown in Figure 4.4.

3 It actually does not matter whether 1 means up and 0 down, or vice versa.

60 Efficient coding of a random message

0

1

110

0010

001101

001110

110000

Figure 4.2 An example of a binary tree with five codewords: 110, 0010,
001101, 001110, and 110000. At every node, going upwards corresponds to
a 0, and going downwards corresponds to a 1. The node with the ground
symbol is the root of the tree indicating the starting point.

0

01

10

110

111

Figure 4.3 Decision tree corresponding to the prefix-free code given in (4.2).

00

1

00

10

10

10

11

11

(iii) (iv) (v)–(vi)

prefix-freeprefix-freenot prefix-free

Figure 4.4 Examples of codes and their corresponding trees. The examples
are taken from Table 4.1. The prefix-free code (iv) has one unused leaf.

4.3 Trees and codes 61

An important concept of trees is the depths of their leaves.

Definition 4.6 The depth of a leaf in a binary tree is the number of steps it
takes when walking from the root forward to the leaf.

As an example, consider again Figure 4.4. Tree (iv) has four leaves, all of
them at depth 2. Both tree (iii) and tree (v)–(vi) have three leaves, one at depth
1 and two at depth 2.

We now will derive some interesting properties of trees. Since codes can be
represented as trees, we will then be able to apply these properties directly to
codes.

Lemma 4.7 (Leaf-Counting and Leaf-Depth Lemma) The number of
leaves n and their depths l1, l2, . . . , ln in a binary tree satisfy:

n = 1+N, (4.4)

n

∑
i=1

2−li = 1, (4.5)

where N is the number of nodes (including the root).

Proof By extending a leaf we mean changing a leaf into a node by adding
two branches that stem forward. In that process

• we reduce the number of leaves by 1,
• we increase the number of nodes by 1, and
• we increase the number of leaves by 2,

i.e. in total we gain one node and one leaf. This process is depicted graphically
in Figure 4.5.

=⇒

−1 leaf +1 node

+2 leaves

Figure 4.5 Extending a leaf: both the total number of nodes and the total
number of leaves is increased by 1.

62 Efficient coding of a random message

To prove the first statement (4.4), we start with the extended root; i.e., at the
beginning we have the root and n = 2 leaves. In this case we have N = 1 and
(4.4) is satisfied. Now we can grow any tree by continuously extending some
leaf, every time increasing the number of leaves and nodes by one each. We
see that (4.4) remains valid. By induction this proves the first statement.

We will prove the second statement (4.5) also by induction. We again start
with the extended root.

(1) An extended root has two leaves, all at depth 1: li = 1. Hence,

n

∑
i=1

2−li =
2

∑
i=1

2−1 = 2 ·2−1 = 1; (4.6)

i.e., for the extended root, (4.5) is satisfied.
(2) Suppose ∑

n
i=1 2−li = 1 holds for an arbitrary binary tree with n leaves. Now

we extend one leaf, say the nth leaf.4 We get a new tree with n′ = n+ 1
leaves, where

n′

∑
i=1

2−li =
n−1

∑
i=1

2−li

︸ ︷︷ ︸
unchanged

leaves

+2 ·2−(ln+1)
︸ ︷︷ ︸
new leaves

at depth
ln +1

(4.7)

=
n−1

∑
i=1

2−li +2−ln (4.8)

=
n

∑
i=1

2−li = 1. (4.9)

Here the last equality follows from our assumption that ∑
n
i=1 2−li = 1.

Hence, by extending one leaf, the second statement continues to hold.
(3) Since any tree can be grown by continuously extending some leaves, the

proof follows by induction.

We are now ready to apply our first insights about trees to codes.

4.4 The Kraft Inequality

The following theorem is very useful because it gives us a way of finding out
whether a prefix-free code exists or not.

4 Since the tree is arbitrary, it does not matter how we number the leaves!

4.4 The Kraft Inequality 63

Theorem 4.8 (Kraft Inequality) There exists a binary prefix-free code with
r codewords of lengths l1, l2, . . . , lr if, and only if,

r

∑
i=1

2−li ≤ 1. (4.10)

If (4.10) is satisfied with equality, then there are no unused leaves in the tree.

Example 4.9 Let l1 = 3, l2 = 4, l3 = 4, l4 = 4, l5 = 4. Then

2−3 +4 ·2−4 =
1
8
+

4
16

=
3
8
≤ 1; (4.11)

i.e., there exists a binary prefix-free code consisting of five codewords with the
given codeword lengths.

On the other hand, we cannot find any prefix-free code with five codewords
of lengths l1 = 1, l2 = 2, l3 = 3, l4 = 3, and l5 = 4 because

2−1 +2−2 +2 ·2−3 +2−4 =
17
16

> 1. (4.12)

These two examples are shown graphically in Figure 4.6. ♦

1

2

3

3

3

4

4

4

4

4?

Figure 4.6 Examples of the Kraft Inequality.

Proof of the Kraft Inequality We prove the two directions separately.

=⇒: Suppose that there exists a binary prefix-free code with the given code-
word lengths. From Lemma 4.4 we know that all r codewords of a binary
prefix-free code are leaves in a binary tree. The total number n of (used
and unused) leaves in this tree can therefore not be smaller than r, i.e.

r ≤ n. (4.13)

64 Efficient coding of a random message

Hence,
r

∑
i=1

2−li ≤
n

∑
i=1

2−li = 1, (4.14)

where the last equality follows from the Leaf-Depth Lemma (Lem-
ma 4.7).

⇐=: Suppose that ∑
r
i=1 2−li ≤ 1. We now can construct a prefix-free code as

follows:

Step 1 Start with the extended root, i.e. a tree with two leaves, set i = 1,
and assume, without loss of generality, that l1 ≤ l2 ≤ ·· · ≤ lr.

Step 2 If there is an unused leaf at depth li, put the ith codeword there.
Note that there could be none because li can be strictly larger
than the current depth of the tree. In this case, extend any unused
leaf to depth li, and put the ith codeword to one of the new leaves.

Step 3 If i = r, stop. Otherwise i→ i+1 and go to Step 2.

We only need to check that Step 2 is always possible, i.e. that there is
always some unused leaf available. To that goal, note that if we get to
Step 2, we have already put i−1 codewords into the tree. From the Leaf-
Depth Lemma (Lemma 4.7) we know that

1 =
n

∑
j=1

2−l̃ j =
i−1

∑
j=1

2−l j

︸ ︷︷ ︸
used leaves

+
n

∑
j=i

2−l̃ j

︸ ︷︷ ︸
unused leaves

, (4.15)

where l̃ j are the depths of the leaves in the tree at that moment; i.e.,
(l̃1, . . . , l̃i−1) = (l1, . . . , li−1) and l̃i, . . . , l̃n are the depths of the (so far)
unused leaves. Now note that in our algorithm i≤ r, i.e.

i−1

∑
j=1

2−l j <
r

∑
j=1

2−l j ≤ 1, (4.16)

where the last inequality follows by assumption. Hence,

i−1

∑
j=1

2−l j

︸ ︷︷ ︸
<1

+
n

∑
j=i

2−l̃ j = 1 =⇒
n

∑
j=i

2−l̃ j > 0 (4.17)

and there still must be some unused leaves available!

4.5 Trees with probabilities 65

1

0.1

0.2

0.2

0.3

0.5

0.8

node 1

node 2

node 3

leaf 1

leaf 3

leaf 4

leaf 2

Figure 4.7 Rooted tree with probabilities.

4.5 Trees with probabilities

We have seen already in Section 4.1 that for codes it is important to consider
the probabilities of the codewords. We therefore now introduce probabilities in
our trees.

Definition 4.10 A rooted tree with probabilities is a finite rooted tree with
probabilities assigned to each node and leaf such that

• the probability of a node is the sum of the probabilities of its children, and

• the root has probability 1.

An example of a rooted tree with probabilities is given in Figure 4.7. Note
that the probabilities can be seen as the overall probability of passing through
a particular node (or reaching a particular leaf) when making a random walk
from the root to a leaf. Since we start at the root, the probability that our path
goes through the root is always 1. Then, in the example of Figure 4.7, we have
an 80% chance that our path will go through node 2 and a 10% chance to end
up in leaf 4.

Since in a prefix-free code all codewords are leaves and we are particularly
interested in the average codeword length, we are very much interested in the
average depth of the leaves in a tree (where for the averaging operation we use
the probabilities in the tree). Luckily, there is an elegant way to compute this
average depth, as shown in the following lemma.

Lemma 4.11 (Path Length Lemma) In a rooted tree with probabilities, the

66 Efficient coding of a random message

average depth Lav of the leaves is equal to the sum of the probabilities of all
nodes (including the root).

To clarify our notation we refer to leaf probabilities by small pi while node
probabilities are denoted by capital P̀ .

Example 4.12 Consider the tree of Figure 4.7. We have four leaves: one at
depth l1 = 1 with a probability p1 = 0.2, one at depth l2 = 2 with a probability
p2 = 0.5, and two at depth l3 = l4 = 3 with probabilities p3 = 0.2 and p4 = 0.1,
respectively. Hence, the average depth of the leaves is given by

Lav =
4

∑
i=1

pili = 0.2 ·1+0.5 ·2+0.2 ·3+0.1 ·3 = 2.1. (4.18)

According to Lemma 4.11, this must be equal to the sum of the node probabil-
ities:

Lav = P1 +P2 +P3 = 1+0.8+0.3 = 2.1. (4.19)

♦

Proof of Lemma 4.11 The lemma is easiest understood when looking at a par-
ticular example. Let us again consider the tree of Figure 4.7: the probability
p1 = 0.2 of leaf 1 needs to be counted once only, which is the case as it is only
part of the probability of the root P1 = 1. The probability p2 = 0.5 must be
counted twice. This is also the case because it is contained in the root proba-
bility P1 = 1 and also in the probability of the second node P2 = 0.8. Finally,
the probabilities of leaf 3 and leaf 4, p3 = 0.2 and p4 = 0.1, are counted three
times: they are part of P1, P2, and P3:

Lav = 2.1 (4.20)

= 1 ·0.2+2 ·0.5+3 ·0.2+3 ·0.1 (4.21)

= 1 · (0.2+0.5+0.2+0.1)+1 · (0.5+0.2+0.1)

+1 · (0.2+0.1) (4.22)

= 1 ·P1 +1 ·P2 +1 ·P3 (4.23)

= P1 +P2 +P3. (4.24)

4.6 Optimal codes: Huffman code

Let us now connect the probabilities in the tree with the probabilities of the
code, or actually, more precisely, the probabilities of the random messages that

4.6 Optimal codes: Huffman code 67

shall be represented by the code. We assume that we have in total r different
message symbols. Let the probability of the ith message symbol be pi and let
the length of the corresponding codeword representing this symbol be li. Then
the average length of the code is given by

Lav =
r

∑
i=1

pili. (4.25)

With no loss in generality, the pi may be taken in nonincreasing order. If the
lengths li are then not in the opposite order, i.e. we do not have both

p1 ≥ p2 ≥ p3 ≥ ·· · ≥ pr (4.26)

and

l1 ≤ l2 ≤ l3 ≤ ·· · ≤ lr, (4.27)

then the code is not optimal in the sense that we could have a shorter average
length by reassigning the codewords to different symbols. To prove this claim,
suppose that for some i and j with i < j we have both

pi > p j and li > l j. (4.28)

In computing the average length, originally, the sum in (4.25) contains, among
others, the two terms

old: pili + p jl j. (4.29)

By interchanging the codewords for the ith and jth symbols, we get the terms

new: pil j + p jli, (4.30)

while the remaining terms are unchanged. Subtracting the old from the new we
see that

new−old: (pil j + p jli)− (pili + p jl j) = pi(l j− li)+ p j(li− l j) (4.31)

= (pi− p j)(l j− li) (4.32)

< 0. (4.33)

From (4.28) this is a negative number, i.e. we can decrease the average code-
word length by interchanging the codewords for the ith and jth symbols. Hence
the new code with exchanged codewords for the ith and jth symbols is better
than the original code – which therefore cannot have been optimal.

We will now examine the optimal binary code which is called the Huffman
code due to its discoverer. The trick of the derivation of the optimal code is the
insight that the corresponding code tree has to be grown backwards, starting

68 Efficient coding of a random message

tree

rest of tree

unused leaf

Figure 4.8 Code performance and unused leaves: by deleting the unused leaf
and moving its sibling to the parent, we can improve on the code’s perfor-
mance.

0.2

0.2

0.3

0.3

0.5 0.5

(i) (ii)

Figure 4.9 Improving a code by removing an unused leaf.

from the leaves (and not, as might be intuitive at a first glance, starting from
the root).

The clue of binary Huffman coding lies in two basic observations. The first
observation is as follows.

Lemma 4.13 In a binary tree of an optimal binary prefix-free code, there is
no unused leaf.

Proof Suppose that the tree of an optimal code has an unused leaf. Then we
can delete this leaf and move its sibling to the parent node; see Figure 4.8.
By doing so we reduce Lav, which contradicts our assumption that the original
code was optimal.

4.6 Optimal codes: Huffman code 69

Example 4.14 As an example consider the two codes given in Figure 4.9,
both of which have three codewords. Code (i) has an average length5 of Lav =

2, and code (ii) has an average length of Lav = 1.5. Obviously, code (ii) per-
forms better. ♦

The second observation basically says that the two most unlikely symbols
must have the longest codewords.

Lemma 4.15 There exists an optimal binary prefix-free code such that the
two least likely codewords only differ in the last digit, i.e. the two most unlikely
codewords are siblings.

Proof Since we consider an optimal code, the codewords that correspond to
the two least likely symbols must be the longest codewords (see our discussion
after (4.27)). If they have the same parent node, we are done. If they do not
have the same parent node, this means that there exist other codewords of the
same length (because we know from Lemma 4.13 that there are no unused
leaves). In this case, we can simply swap two codewords of equal maximum
length in such a way that the two least likely codewords have the same parent,
and we are done.

Because of Lemma 4.13 and the Path Length Lemma (Lemma 4.11), we see
that the construction of an optimal binary prefix-free code for an r-ary random
message U is equivalent to constructing a binary tree with r leaves such that the
sum of the probabilities of the nodes is minimum when the leaves are assigned
the probabilities pi for i = 1,2, . . . ,r:

Lav =
N

∑
`=1

P̀

︸ ︷︷ ︸
−→minimize!

. (4.34)

But Lemma 4.15 tells us how we may choose one node in an optimal code tree,
namely as the parent of the two least likely leaves pr−1 and pr:

PN = pr−1 + pr. (4.35)

So we have fixed one P̀ in (4.34) already. But, if we now pruned our binary
tree at this node to make it a leaf with probability p = pr−1 + pr, it would
become one of (r−1) leaves in a new tree. Completing the construction of the
optimal code would then be equivalent to constructing a binary tree with these

5 Remember Lemma 4.11 to compute the average codeword length: summing the node probabil-
ities. In code (i) we have P1 = 1 and P2 = P3 = 0.5 (note that the unused leaf has, by definition,
zero probability), and in code (ii) P1 = 1 and P2 = 0.5.

70 Efficient coding of a random message

(r−1) leaves such that the sum of the probabilities of the nodes is minimum:

Lav =
N−1

∑
`=1

P̀

︸ ︷︷ ︸
−→minimize!

+ PN︸︷︷︸
optimally

chosen

. (4.36)

Again Lemma 4.15 tells us how to choose one node in this new tree, and so on.
We have thus proven the validity of the following algorithm.

Huffman’s Algorithm for Optimal Binary Codes

Step 1 Create r leaves corresponding to the r possible symbols and

assign their probabilities p1, . . . , pr. Mark these leaves as active.

Step 2 Create a new node that has the two least likely active leaves

or nodes as children. Activate this new node and deactivate its

children.

Step 3 If there is only one active node left, root it. Otherwise, go to

Step 2.

Example 4.16 In Figure 4.10 we show the procedure of producing a Huffman
code for the example of a random message with four possible symbols with
probabilities p1 = 0.4, p2 = 0.3, p3 = 0.2, p4 = 0.1. We see that the average
codeword length of this Huffman code is

Lav = 0.4 ·1+0.3 ·2+0.2 ·3+0.1 ·3 = 1.9. (4.37)

Using Lemma 4.11 this can be computed much easier as follows:

Lav = P1 +P2 +P3 = 1+0.6+0.3 = 1.9. (4.38)

♦

Note that the code design process is not unique in several respects. Firstly,
the assignment of the 0 or 1 digits to the codewords at each forking stage is
arbitrary, but this produces only trivial differences. Usually, we will stick to the
convention that going upwards corresponds to 0 and downwards to 1. Secondly,
when there are more than two least likely (active) nodes/leaves, it does not
matter which we choose to combine. The resulting codes can have codewords
of different lengths; however, the average codeword length will always be the
same.

Example 4.17 As an example of different Huffman encodings of the same
random message, let p1 = 0.4, p2 = 0.2, p3 = 0.2, p4 = 0.1, p5 = 0.1. Fig-
ure 4.11 shows three different Huffman codes for this message: the list of

4.6 Optimal codes: Huffman code 71

0

0

1

1
1

10

110

111

0.1

0.10.1

0.1

0.1

0.2

0.20.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.40.4

0.40.4

0.4

0.60.6

0.6

Step 1 Step 2, first time

Step 2, second time Step 2, third time

Step 3

Figure 4.10 Creation of a binary Huffman code. Active nodes and leaves are
shaded.

72 Efficient coding of a random message

0

00

1

1

1

1

10

10

00

01

110

110

110

1110

1111

100

101

111

111

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.4

0.4

0.6

0.6

0.6

Figure 4.11 Different binary Huffman codes for the same random message.

4.7 Types of codes 73

codeword lengths are (1,2,3,4,4), (1,3,3,3,3), and (2,2,2,3,3), respectively.
But all of these codes have the same performance, Lav = 2.2. ♦

Exercise 4.18 Try to generate all three codes of Example 4.17 (see Fig-
ure 4.11) yourself. ♦

4.7 Types of codes

Note that in Section 4.1 we have restricted ourselves to prefix-free codes. So,
up to now we have only proven that Huffman codes are the optimal codes under
the assumption that we restrict ourselves to prefix-free codes. We would now
like to show that Huffman codes are actually optimal among all useful codes.

To reach that goal, we need to come back to a more precise definition of
“useful codes,” i.e. we continue the discussion that we started in Section 4.1.
Let us consider an example with a random message U with four different sym-
bols and let us design various codes for this message as shown in Table 4.2.

Table 4.2 Various codes for a random message with four possible values

U Code (i) Code (ii) Code (iii) Code (iv)

a 0 0 10 0
b 0 010 00 10
c 1 01 11 110
d 1 10 110 111

We discuss these different codes.

Code (i) is useless because some codewords are used for more than one sym-
bol. Such a code is called singular.

Code (ii) is nonsingular. But we have another problem: if we receive 010 we
have three different possibilities how to decode it: it could be (010)
giving us b, or it could be (0)(10) leading to ad, or it could be
(01)(0) corresponding to ca. Even though nonsingular, this code
is not uniquely decodable and therefore in practice is as useless as
code (i).6

6 Note that adding a comma between the codewords is not allowed because in this case we change
the code to be ternary, i.e. the codewords contain three different letters “0”, “1”, and “,” instead
of only two “0” and “1”. By the way, it is not very difficult to generalize all results given in this
chapter to D-ary codes. See, for example, [Mas96]. In this book, we will stick to binary codes.

74 Efficient coding of a random message

all codes

nonsingular codes

uniquely decodable codes

prefix-free codes

Figure 4.12 Set of all codes.

Code (iii) is uniquely decodable, even though it is not prefix-free! To see this,
note that in order to distinguish between c and d we only need to
wait for the next 1 to show up: if the number of 0s in between is
even, we decode 11, otherwise we decode 110. Example:

11000010 = (11)(00)(00)(10) =⇒ cbba, (4.39)

110000010 = (110)(00)(00)(10) =⇒ dbba. (4.40)

So in a uniquely decodable but not prefix-free code we may have to
delay the decoding until later.

Code (iv) is prefix-free and therefore trivially uniquely decodable.

We see that the set of all possible codes can be grouped as shown in Fig-
ure 4.12. We are only interested in the uniquely decodable codes. But so far
we have restricted ourselves to prefix-free codes. So the following question
arises: is there a uniquely decodable code that is not prefix-free, but that has a
better performance than the best prefix-free code (i.e. the corresponding Huff-
man code)?

Luckily the answer to this question is No, i.e. the Huffman codes are the
best uniquely decodable codes. This can be seen from the following theorem.

Theorem 4.19 (McMillan’s Theorem) The codeword lengths li of any

4.7 Types of codes 75

uniquely decodable code must satisfy the Kraft Inequality
r

∑
i=1

2−li ≤ 1. (4.41)

Why does this help to answer our question about the most efficient uniquely
decodable code? Well, note that we know from Theorem 4.8 that every prefix-
free code also satisfies (4.41). So, for any uniquely decodable, but non-prefix-
free code with given codeword lengths, one can find another code with the
same codeword lengths that is prefix-free. But if the codeword lengths are the
same, the performance is identical! Hence, there is no gain in designing a non-
prefix-free code.

Proof of Theorem 4.19 Suppose we are given a random message U that takes
on r possible values u ∈ U (here the set U denotes the message alphabet).
Suppose further that we have a uniquely decodable code that assigns to every
possible symbol u ∈ U a certain codeword of length l(u).

Now choose an arbitrary positive integer ν and design a new code for a
vector of ν symbols u = (u1,u2, . . . ,uν) ∈ Uν = U× ·· ·×U by simply con-
catenating the original codewords.

Example 4.20 Consider a ternary message with the possible values u = a,
u = b, or u = c, i.e. U = {a,b,c}. If the probabilities of these possible values
are

Pr[U = a] =
1
2
, Pr[U = b] = Pr[U = c] =

1
4
, (4.42)

a binary (single-letter) Huffman code would map

a 7→ 0, b 7→ 10, c 7→ 11. (4.43)

If we now choose ν = 3, we get a new source with 33 = 27 possible symbols,
namely

U3 = {aaa,aab,aac,aba,abb,abc,aca,acb,acc,

baa,bab,bac,bba,bbb,bbc,bca,bcb,bcc,

caa,cab,cac,cba,cbb,cbc,cca,ccb,ccc}. (4.44)

The corresponding 27 codewords are then as follows (given in the same order):

{000,0010,0011,0100,01010,01011,0110,01110,01111,

1000,10010,10011,10100,101010,101011,10110,101110,101111,

1100,11010,11011,11100,111010,111011,11110,111110,111111}.
(4.45)

♦

76 Efficient coding of a random message

The clue observation now is that because the original code was uniquely
decodable, it immediately follows that this new concatenated code also must
be uniquely decodable.

Exercise 4.21 Explain this clue observation, i.e. explain why the new con-
catenated code is also uniquely decodable.

Hint: Note that the codewords of the new code consist of a sequence of
uniquely decodable codewords. ♦

The lengths of the new codewords are given by

l̃(u) =
ν

∑
j=1

l(u j). (4.46)

Let lmax be the maximal codeword length of the original code. Then the new
code has a maximal codeword length l̃max satisfying

l̃max = ν lmax. (4.47)

We now compute the following:
(

∑
u∈U

2−l(u)

)ν

=

(
∑

u1∈U
2−l(u1)

)(
∑

u2∈U
2−l(u2)

)
· · ·
(

∑
uν∈U

2−l(uν)

)
(4.48)

= ∑
u1∈U

∑
u2∈U
· · · ∑

uν∈U
2−l(u1)2−l(u2) · · ·2−l(uν) (4.49)

= ∑
u∈Uν

2−l(u1)−l(u2)−···−l(uν) (4.50)

= ∑
u∈Uν

2−∑
ν
j=1 l(u j) (4.51)

= ∑
u∈Uν

2−l̃(u). (4.52)

Here (4.48) follows by writing the exponentiated sum as a product of ν sums;
in (4.50) we combine the ν sums over u1, . . . ,uν into one huge sum over the
ν-vector u; and (4.52) follows from (4.46).

Next we will rearrange the order of the terms by collecting all terms with
the same exponent together:

∑
u∈Uν

2−l̃(u) =
l̃max

∑
m=1

w(m)2−m, (4.53)

where w(m) counts the number of such terms with equal exponent, i.e. w(m)

denotes the number of codewords of length m in the new code.

4.7 Types of codes 77

Example 4.22 (Continuation from Example 4.20) We see from (4.45) that the
new concatenated code has one codeword of length 3, six codewords of length
4, twelve codewords of length 5, and eight codewords of length 6. Hence,

∑
u∈Uν

2−l̃(u) = 1 ·2−3 +6 ·2−4 +12 ·2−5 +8 ·2−6, (4.54)

i.e.

w(m) =





1 for m = 3,

6 for m = 4,

12 for m = 5,

8 for m = 6,

0 otherwise.

(4.55)

Also note that l̃max = 6 = ν · lmax = 3 ·2 in this case. ♦

We combine (4.53) and (4.52) and use (4.47) to write
(

∑
u∈U

2−l(u)

)ν

=
ν lmax

∑
m=1

w(m)2−m. (4.56)

Note that since the new concatenated code is uniquely decodable, every
codeword of length m is used at most once. But in total there are only 2m

different sequences of length m, i.e. we know that

w(m)≤ 2m. (4.57)

Thus,
(

∑
u∈U

2−l(u)

)ν

=
ν lmax

∑
m=1

w(m)2−m ≤
ν lmax

∑
m=1

2m2−m = ν lmax (4.58)

or

∑
u∈U

2−l(u) ≤ (ν lmax)
1/ν . (4.59)

At this stage we are back to an expression that depends only on the original
uniquely decodable code. So forget about the trick with the new concatenated
code, but simply note that we have shown that for any uniquely decodable code
and any positive integer ν , expression (4.59) must hold! Also note that we can
choose ν freely here.

Note further that for any finite value of lmax one can show that

lim
ν→∞

(ν lmax)
1/ν = 1. (4.60)

78 Efficient coding of a random message

Hence, by choosing ν extremely large (i.e. we let ν tend to infinity) we have

∑
u∈U

2−l(u) ≤ 1 (4.61)

as we wanted to prove.

4.8 Some historical background

David A. Huffman had finished his B.S. and M.S. in electrical engineering
and also served in the U.S. Navy before he became a Ph.D. student at the
Massachusetts Institute of Technology (MIT). There, in 1951, he attended an
information theory class taught by Professor Robert M. Fano who was working
at that time, together with Claude E. Shannon, on finding the most efficient
code, but could not solve the problem. So Fano assigned the question to his
students in the information theory class as a term paper. Huffman tried for a
long time to find a solution and was about to give up when he had the sudden
inspiration to start building the tree backwards from leaves to root instead from
root to leaves. Once he had understood this, he was quickly able to prove that
his code was the most efficient one. Naturally, Huffman’s term paper was later
published.

Huffman became a faculty member of MIT in 1953, and later, in 1967, he
moved to the University of California, Santa Cruz, where he stayed until his
retirement in 1994. He won many awards for his accomplishments, e.g. in 1988
the Richard Hamming Medal from the Institute of Electrical and Electronics
Engineers (IEEE). Huffman died in 1998. See [Sti91] and [Nor89].

4.9 Further reading

For an easy-to-read, but precise, introduction to coding and trees, the lecture
notes [Mas96] of Professor James L. Massey from ETH Zurich are highly rec-
ommended. There the interested reader will find a straightforward way to gen-
eralize the concept of binary codes to general D-ary codes using D-ary trees.
Moreover, in [Mas96] one also finds the concept of block codes, i.e. codes with
a fixed codeword length. Some of the best such codes are called Tunstall codes
[Tun67].

References 79

References
[Mas96] James L. Massey, Applied Digital Information Theory I and II, Lecture notes,

Signal and Information Processing Laboratory, ETH Zurich, 1995/1996.
Available: http://www.isiweb.ee.ethz.ch/archive/massey scr/

[Nor89] Arthur L. Norberg, “An interview with Robert M. Fano,” Charles Babbage
Institute, Center for the History of Information Processing, April 1989.

[Sti91] Gary Stix, “Profile: Information theorist David A. Huffman,” Scientific Amer-
ican (Special Issue on Communications, Computers, and Networks), vol. 265,
no. 3, September 1991.

[Tun67] Brian P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. disserta-
tion, Georgia Institute of Technology, September 1967.

5
Entropy and Shannon’s Source Coding Theorem

Up to this point we have been concerned with coding theory. We have de-
scribed codes and given algorithms of how to design them. And we have eval-
uated the performance of some particular codes. Now we begin with informa-
tion theory, which will enable us to learn more about the fundamental proper-
ties of general codes without having actually to design them.

Basically, information theory is a part of physics and tries to describe what
information is and how we can work with it. Like all theories in physics it is a
model of the real world that is accepted as true as long as it predicts how nature
behaves accurately enough.

In the following we will start by giving some suggestive examples to mo-
tivate the definitions that follow. However, note that these examples are not a
justification for the definitions; they just try to shed some light on the reason
why we will define these quantities in the way we do. The real justification of
all definitions in information theory (or any other physical theory) is the fact
that they turn out to be useful.

5.1 Motivation

We start by asking the question: what is information?
Let us consider some examples of sentences that contain some “informa-

tion.”

• The weather will be good tomorrow.
• The weather was bad last Sunday.
• The president of Taiwan will come to you tomorrow and will give you one

million dollars.

The second statement seems not very interesting as you might already know

82 Entropy and Shannon’s Source Coding Theorem

what the weather was like last Sunday. The last statement is much more excit-
ing than the first two and therefore seems to contain much more information.
But, on the other hand, do you actually believe it? Do you think it is likely that
you will receive one million dollars tomorrow?

Let us consider some easier examples.

• You ask: “Is the temperature in Taiwan currently above 30 degrees?”
This question has only two possible answers: “yes” or “no.”

• You ask: “The president of Taiwan has spoken with a certain person from
Hsinchu today. With whom?”

Here, the question has about 400 000 possible answers (since Hsinchu has
about 400 000 inhabitants).

Obviously the second answer provides you with a much bigger amount of in-
formation than the first one. We learn the following.

The number of possible answers r should be linked to “information.”

Here is another example.

• You observe a gambler throwing a fair dice. There are six possible outcomes
{1,2,3,4,5,6}. You note the outcome and then tell it to a friend. By doing
so you give your friend a certain amount of information.

• Next you observe the gambler throwing the dice three times. Again, you note
the three outcomes and tell them to your friend. Obviously, the amount of
information that you give to your friend this time is three times as much as
the first time.

So we learn the following.

“Information” should be additive in some sense.

Now we face a new problem: regarding the example of the gambler above
we see that in the first case we have r = 6 possible answers, while in the second
case we have r = 63 = 216 possible answers. Hence in the second experiment
there are 36 times more possible outcomes than in the first experiment! But we
would like to have only a three times larger amount of information. So how do
we solve this?

Idea: use a logarithm. Then the exponent 3 will become a factor exactly as
we wish: logb 63 = 3 · logb 6.

5.1 Motivation 83

Exactly these observations have been made by the researcher Ralph Hartley
in 1928 in Bell Labs [Har28]. He gave the following definition.

Definition 5.1 We define the following measure of information:

Ĩ(U), logb r, (5.1)

where r is the number of all possible outcomes of a random message U .

Using this definition we can confirm that it has the wanted property of addi-
tivity:

Ĩ(U1,U2, . . . ,Un) = logb rn = n · logb r = n · Ĩ(U). (5.2)

Hartley also correctly noted that the basis b of the logarithm is not really impor-
tant for this measure. It only decides on the unit of information. So, similarly
to the fact that 1 km is the same distance as 1000 m, b is only a change of units
without actually changing the amount of information it describes.

For two important and one unimportant special cases of b it has been agreed
to use the following names for these units:

b = 2 (log2): bit,

b = e (ln): nat (natural logarithm),

b = 10 (log10): Hartley.

Note that the unit Hartley has been chosen in honor of the first researcher who
made the first (partially correct) attempt at defining information. However, as
nobody in the world ever uses the basis b = 10 for measuring information, this
honor is questionable.

The measure Ĩ(U) is the right answer to many technical problems.

Example 5.2 A village has eight telephones. How long must the phone num-
ber be? Or, asked differently: how many bits of information do we need to send
to the central office so that we are connected to a particular phone?

8 phones =⇒ log2 8 = 3 bits. (5.3)

We choose the following phone numbers:

{000, 001, 010, 011, 100, 101, 110, 111}. (5.4)

♦

In spite of its usefulness, Hartley’s definition had no effect whatsoever in
the world. That’s life. . . On the other hand, it must be admitted that Hartley’s
definition has a fundamental flaw. To realize that something must be wrong,
note that according to (5.1) the smallest nonzero amount of information is

84 Entropy and Shannon’s Source Coding Theorem

A: B:

black and white balls

Figure 5.1 Two hats with four balls each.

log2 2 = 1 bit. This might sound like only a small amount of information, but
actually 1 bit can be a lot of information! As an example, consider the 1-bit
(yes or no) answer if a man asks a woman whether she wants to marry him. If
you still do not believe that one bit is a huge amount of information, consider
the following example.

Example 5.3 Currently there are 6 902 106 897 persons living on our planet
(U.S. Census Bureau, 25 February 2011, 13:43 Taiwan time). How long must
a binary telephone number U be if we want to be able to connect to every
person?

According to Hartley we need Ĩ(U) = log2(6902106897) ' 32.7 bits. So
with only 33 bits we can address every single person on this planet. Or, in
other words, we only need 33 times 1 bit in order to distinguish every human
being alive. ♦

We see that 1 bit is a lot of information and it cannot be that this is the
smallest amount of (nonzero) information.

To understand more deeply what is wrong, consider the two hats shown in
Figure 5.1. Each hat contains four balls, where the balls can be either white or
black. Let us draw one ball at random and let U be the color of the ball. In hat
A we have r = 2 colors: black and white, i.e. Ĩ(UA) = log2 2 = 1 bit. In hat B
we also have r = 2 colors and hence also Ĩ(UB) = 1 bit. But obviously, we get
less information if in hat B black shows up, since we somehow expect black to
show up in the first place. Black is much more likely!

We realize the following.

A proper measure of information needs to take into account the proba-

bilities of the various possible events.

This was observed for the first time by Claude Elwood Shannon in 1948 in

5.1 Motivation 85

his landmark paper “A mathematical theory of communication” [Sha48]. This
paper has been like an explosion in the research community!1

Before 1948, the engineering community was mainly interested in the be-
havior of a sinusoidal waveform that is passed through a communication sys-
tem. Shannon, however, asked why we want to transmit a deterministic sinu-
soidal signal. The receiver already knows in advance that it will be a sinus, so
it is much simpler to generate one at the receiver directly rather than to trans-
mit it over a channel! In other words, Shannon had the fundamental insight
that we need to consider random messages rather than deterministic messages
whenever we deal with information.

Let us go back to the example of the hats in Figure 5.1 and have a closer
look at hat B.

• There is one chance out of four possibilities that we draw a white ball.
Since we would like to use Hartley’s measure here, we recall that the

quantity r inside the logarithm in (5.1) is “the number of all possible out-
comes of a random message.” Hence, from Hartley’s point of view, we will
see one realization out of r possible realizations. Translated to the case of
the white ball, we see that we have one realization out of four possible real-
izations, i.e.

log2 4 = 2 bits (5.5)

of information.
• On the other hand, there are three chances out of four that we draw a black

ball.
Here we cannot use Hartley’s measure directly. But it is possible to trans-

late the problem into a form that makes it somehow accessible to Hartley: we
need to “normalize” the statement into a form that gives us one realization
out of r. This can be done if we divide everything by 3, the number of black
balls: we have one chance out of 4/3 possibilities (whatever this means), or,
stated differently, we have one realization out of 4/3 possible “realizations,”
i.e.

log2
4
3
= 0.415 bits (5.6)

of information.

1 Besides the amazing accomplishment of inventing information theory, at the age of 21 Shan-
non also “invented” the computer in his Master thesis [Sha37]! He proved that electrical circuits
can be used to perform logical and mathematical operations, which was the foundation of dig-
ital computer and digital circuit theory. It is probably the most important Master thesis of the
twentieth century! Incredible, isn’t it?

86 Entropy and Shannon’s Source Coding Theorem

So now we have two different values depending on what color we get. How
shall we combine them to one value that represents the information? The most
obvious choice is to average it, i.e. we weight the different information values
according to their probabilities of occurrence:

1
4
·2 bits+

3
4
·0.415 bits = 0.811 bits (5.7)

or
1
4

log2 4+
3
4

log2
4
3
= 0.811 bits. (5.8)

We see the following.

Shannon’s measure of information is an “average Hartley information”:

r

∑
i=1

pi log2

1

pi

=−
r

∑
i=1

pi log2 pi, (5.9)

where pi denotes the probability of the ith possible outcome.

We end this introductory section by pointing out that the given three moti-
vating ideas, i.e.

(1) the number of possible answers r should be linked to “information”;
(2) “information” should be additive in some sense; and
(3) a proper measure of information needs to take into account the probabili-

ties of the various possible events,

are not sufficient to exclusively specify (5.9). The interested reader can find in
Appendix 5.8 some more information on why Shannon’s measure should be
defined like (5.9) and not differently.

5.2 Uncertainty or entropy

5.2.1 Definition

We now formally define the Shannon measure of “self-information of a source.”
Due to its relationship with a corresponding concept in different areas of phys-
ics, Shannon called his measure entropy. We will stick to this name as it is
standard in the whole literature. However, note that uncertainty would be a far
more precise description.

5.2 Uncertainty or entropy 87

Definition 5.4 (Entropy) The uncertainty or entropy of a random message
U that takes on r different values with probability pi, i = 1, . . . ,r, is defined as

H(U),−
r

∑
i=1

pi logb pi. (5.10)

Remark 5.5 What happens if pi = 0? Remember that logb 0=−∞. However,
also note that pi = 0 means that the symbol i never shows up. It therefore
should not contribute to the uncertainty. Luckily this is the case:

lim
t→0

t logb t = 0, (5.11)

i.e. we do not need to worry about this case.
So we note the following.

Whenever we sum over pi logb pi, we implicitly assume that we exclude

all indices i with pi = 0.

As in the case of the Hartley measure of information, b denotes the unit of
uncertainty:

b = 2 : bit, (5.12)

b = e : nat, (5.13)

b = 10 : Hartley. (5.14)

If the base of the logarithm is not specified, then we can choose it freely. How-
ever, note that the units are very important. A statement “H(U) = 0.43” is
completely meaningless: since

logb ξ =
log2 ξ

log2 b
, (5.15)

0.43 could mean anything as, e.g.,

if b = 2 : H(U) = 0.43 bits, (5.16)

if b = e : H(U) = 0.43 nats' 0.620 bits, (5.17)

if b = 256 = 28 : H(U) = 0.43 “bytes” = 3.44 bits. (5.18)

Note that the term bits is used in two ways: its first meaning is the unit of
entropy when the base of the logarithm is chosen to be 2; its second meaning
is binary digits, i.e. in particular the number of digits of a binary codeword.

88 Entropy and Shannon’s Source Coding Theorem

Remark 5.6 It is worth mentioning that if all r events are equally likely,
Shannon’s definition of entropy reduces to Hartley’s measure:

pi =
1
r
, ∀ i : H(U) =−

r

∑
i=1

1
r

logb
1
r
=

1
r

logb r ·
r

∑
i=1

1

︸︷︷︸
=r

= logb r. (5.19)

Remark 5.7 Be careful not to confuse uncertainty with information. For
motivation purposes, in Section 5.1 we talked a lot about “information.” How-
ever, what we actually meant there is “self-information” or, more nicely put,
“uncertainty.” You will learn in Chapter 6 that information is what you get by
reducing uncertainty and see a formal definition of information there.

Another important observation is that the entropy of U does not depend on
the different possible values that U can take on, but only on the probabilities
of these values. Hence,

U ∈
{

1︸︷︷︸
with

prob. 1
2

, 2︸︷︷︸
with

prob. 1
3

, 3︸︷︷︸
with

prob. 1
6

}
(5.20)

and

V ∈
{

34︸︷︷︸
with

prob. 1
2

, 512︸︷︷︸
with

prob. 1
3

, 981︸︷︷︸
with

prob. 1
6

}
(5.21)

have both the same entropy, which is

H(U) = H(V) =−1
2

log2
1
2
− 1

3
log2

1
3
− 1

6
log2

1
6
' 1.46 bits. (5.22)

5.2.2 Binary entropy function

One special case of entropy is so important that we introduce a specific name.

Definition 5.8 (Binary entropy function) If U is binary with two possible
values u1 and u2 such that Pr[U = u1] = p and Pr[U = u2] = 1− p, then

H(U) = Hb(p), (5.23)

where Hb(·) is called the binary entropy function and is defined as

Hb(p),−p log2 p− (1− p) log2(1− p), p ∈ [0,1]. (5.24)

The function Hb(·) is shown in Figure 5.2.

Exercise 5.9 Show that the maximal value of Hb(p) is 1 bit and is taken on
for p = 1/2. ♦

5.2 Uncertainty or entropy 89

p

H
b
(p
)

[b
it

s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2 Binary entropy function Hb(p) as a function of the probability p.

5.2.3 The Information Theory Inequality

The following inequality does not really have a name, but since it is so impor-
tant in information theory, we will follow James Massey, retired professor at
ETH in Zurich, and call it the Information Theory Inequality or the IT Inequal-
ity.

Lemma 5.10 (IT Inequality) For any base b > 0 and any ξ > 0,
(

1− 1
ξ

)
logb e≤ logb ξ ≤ (ξ −1) logb e (5.25)

with equalities on both sides if, and only if, ξ = 1.

Proof Actually, Figure 5.3 can be regarded as a proof. For those readers who
would like a formal proof, we provide a mathematical derivation. We start with
the upper bound. First note that

logb ξ
∣∣
ξ=1 = 0 = (ξ −1) logb e

∣∣
ξ=1. (5.26)

Then have a look at the derivatives:

d
dξ

logb ξ =
1
ξ

logb e

{
> logb e if 0 < ξ < 1,

< logb e if ξ > 1,
(5.27)

90 Entropy and Shannon’s Source Coding Theorem

ξ

logb ξ
(ξ−1) logb e

(1−1/ξ) logb e

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−5

−4

−3

−2

−1

0

1

2

3

4

Figure 5.3 Illustration of the IT Inequality.

and
d

dξ
(ξ −1) logb e = logb e. (5.28)

Hence, the two functions coincide at ξ = 1, and the linear function is above
the logarithm for all other values.

To prove the lower bound again note that
(

1− 1
ξ

)
logb e

∣∣∣∣
ξ=1

= 0 = logb ξ
∣∣
ξ=1 (5.29)

and

d
dξ

(
1− 1

ξ

)
logb e =

1
ξ 2 logb e

{
> d

dξ
logb ξ = 1

ξ
logb e if 0 < ξ < 1,

< d
dξ

logb ξ = 1
ξ

logb e if ξ > 1,
(5.30)

similarly to above.

5.2.4 Bounds on the entropy

Lemma 5.11 If U has r possible values, then

0≤ H(U)≤ log2 r bits, (5.31)

5.2 Uncertainty or entropy 91

where

H(U) = 0 if, and only if, pi = 1 for some i, (5.32)

H(U) = log2 r bits if, and only if, pi =
1
r
∀ i. (5.33)

Proof Since 0≤ pi ≤ 1, we have

−pi log2 pi

{
= 0 if pi = 1,

> 0 if 0 < pi < 1.
(5.34)

Hence, H(U) ≥ 0. Equality can only be achieved if −pi log2 pi = 0 for all i,
i.e. pi = 1 for one i and pi = 0 for the rest.

To derive the upper bound, we use a trick that is quite common in informa-
tion theory: we take the difference and try to show that it must be nonpositive.
In the following we arrange the probabilities in descending order and assume
that r′ (r′ ≤ r) of the r values of the probabilities pi are strictly positive, i.e.
pi > 0 for all i = 1, . . . ,r′, and pi = 0 for i = r′+1, . . . ,r. Then

H(U)− log2 r =−
r

∑
i=1

pi log2 pi− log2 r (5.35)

=−
r′

∑
i=1

pi log2 pi− log2 r ·
r′

∑
i=1

pi

︸ ︷︷ ︸
=1

(5.36)

=−
r′

∑
i=1

pi log2 pi−
r′

∑
i=1

pi log2 r (5.37)

=−
r′

∑
i=1

pi log2(pi · r) (5.38)

=
r′

∑
i=1

pi log2

(
1

pi · r︸︷︷︸
,ξ

)
(5.39)

≤
r′

∑
i=1

pi

(
1

pi · r
−1
)
· log2 e (5.40)

=

(
r′

∑
i=1

1
r
−

r′

∑
i=1

pi

︸ ︷︷ ︸
=1

)
· log2 e (5.41)

=

(
r′

r
−1
)
· log2 e (5.42)

≤ (1−1) · log2 e = 0. (5.43)

92 Entropy and Shannon’s Source Coding Theorem

Here, (5.40) follows from the IT Inequality (Lemma 5.10), and (5.43) follows
because r′ ≤ r. Hence, H(U)≤ log2 r.

Equality can only be achieved if both

(1) in the IT Inequality ξ = 1, i.e. if 1/pir = 1 for all i, i.e. if pi = 1/r for all
i; and

(2) r′ = r.

Note that if the first condition is satisfied, then the second condition is auto-
matically satisfied.

5.3 Trees revisited

The most elegant way to connect our new definition of entropy with the codes
introduced in Chapter 4 is to rely again on trees with probabilities.

Consider a binary tree with probabilities. We remind the reader of our nota-
tion:

• n denotes the total number of leaves;
• pi, i = 1, . . . ,n, denote the probabilities of the leaves;
• N denotes the number of nodes (including the root, but excluding the leaves);

and
• P̀ , ` = 1, . . . ,N, denote the probabilities of the nodes, where by definition

P1 = 1 is the root probability.

Moreover, we will use q`, j to denote the probability of the jth node/leaf that is
one step forward from node ` (the jth child of node `), where j = 0,1. That is,
we have

q`,0 +q`,1 = P̀ . (5.44)

Now we give the following definitions.

Definition 5.12 The leaf entropy is defined as

Hleaf ,−
n

∑
i=1

pi log2 pi. (5.45)

Definition 5.13 Denoting by P1,P2, . . . ,PN the probabilities of all nodes (in-
cluding the root) and by q`, j the probability of the nodes and leaves one step
forward from node `, we define the branching entropy H` of node ` as

H` ,−
q`,0
P̀

log2
q`,0
P̀
− q`,1

P̀
log2

q`,1
P̀

. (5.46)

5.3 Trees revisited 93

0

1

0.6

0.5

0.4

0.1

0.1

H1

H2

H3

Figure 5.4 An example of a binary tree with probabilities to illustrate the
calculations of the leaf entropy and the branching entropies.

Note that following Remark 5.5 we implicitly assume that the sum is only over
those j for which q`, j > 0, i.e. we have H` = 0 if one of the q`, j is zero. Note
further that q`, j/P̀ is the conditional probability of going along the jth branch
given that we are at node ` (normalization!).

Example 5.14 As an example consider the tree in Figure 5.4. We have

Hleaf =−0.4log2 0.4−0.1log2 0.1−0.5log2 0.5' 1.361 bits; (5.47)

H1 =−
0.4
1

log2
0.4
1
− 0.6

1
log2

0.6
1
' 0.971 bits; (5.48)

H2 =−
0.1
0.6

log2
0.1
0.6
− 0.5

0.6
log2

0.5
0.6
' 0.650 bits; (5.49)

H3 =−
0.1
0.1

log2
0.1
0.1

= 0 bits. (5.50)

♦

We will next prove a very interesting relationship between the leaf entropy
and the branching entropy that will turn out to be fundamental for the under-
standing of codes.

Theorem 5.15 (Leaf Entropy Theorem) In any tree with probabilities we
have that

Hleaf =
N

∑
`=1

P̀ H`. (5.51)

94 Entropy and Shannon’s Source Coding Theorem

Proof Recall that by the definition of trees and trees with probabilities we
have, for every node `,

P̀ = q`,0 +q`,1. (5.52)

Using the definition of branching entropy, we obtain

P̀ H` = P̀ ·
(
−q`,0

P̀
log2

q`,0
P̀
− q`,1

P̀
log2

q`,1
P̀

)
(5.53)

=−q`,0 log2
q`,0
P̀
−q`,1 log2

q`,1
P̀

(5.54)

=−q`,0 log2 q`,0−q`,1 log2 q`,1 +q`,0 log2 P̀ +q`,1 log2 P̀ (5.55)

=−q`,0 log2 q`,0−q`,1 log2 q`,1 +
(
q`,0 +q`,1

)
︸ ︷︷ ︸

=P̀

log2 P̀ (5.56)

=−q`,0 log2 q`,0−q`,1 log2 q`,1 + P̀ log2 P̀ , (5.57)

where the last equality follows from (5.52).

1

+1log2 1 = 0

−0.6log2 0.6

−0.4log2 0.4

0.6

+0.6log2 0.6

−0.1log2 0.1

−0.5log2 0.5

0.1

+0.1log2 0.1

−0.05log2 0.05

−0.05log2 0.05

0.5

0.4

0.05

0.05

contribution of P1H1

contribution of P2H2

contribution of P3H3

Figure 5.5 Graphical proof of the Leaf Entropy Theorem. There are three
nodes: we see that all contributions cancel apart from the root node (whose
contribution is 0) and the leaves.

Hence, for every node ˜̀, we see that it will contribute to ∑
N
`=1 P̀ H` twice:

• firstly it will add P˜̀ log2 P˜̀ when the node counter ` passes through ˜̀; but
• secondly it will subtract q`, j log2 q`, j = P˜̀ log2 P˜̀ when the node counter `

points to the parent node of ˜̀.

5.4 Bounds on the efficiency of codes 95

Hence, the contributions of all nodes will be canceled out – apart from the
root that does not have a parent! The root only contributes P1 log2 P1 for `= 1.
However, since P1 = 1, we have P1 log2 P1 = 1log2 1 = 0. So the root does not
contribute either.

It only remains to consider the leaves. Note that the node counter ` will
not pass through leaves by definition. Hence, a leaf only contributes when the
node counter points to its parent node and its contribution is −q`, j log2 q`, j =
−pi log2 pi. Since the sum of all −pi log2 pi equals the leaf entropy by defini-
tion, this proves the claim.

In Figure 5.5 we have tried to depict this proof graphically.

Example 5.16 (Continuation from Example 5.14) Using the values from
(5.47)–(5.50) we obtain

P1H1 +P2H2 +P3H3 = 1 ·0.971+0.6 ·0.650+0.1 ·0 bits (5.58)

= 1.361 bits = Hleaf (5.59)

as expected. ♦

5.4 Bounds on the efficiency of codes

The main strength of information theory is that it can provide some fundamen-
tal statements about what is possible and what is not possible to achieve. So a
typical information theoretic result will consist of an upper bound and a lower
bound or, in general, an achievability part and a converse part. The achievabil-
ity part of a theorem tells us what we can do, and the converse part tells us
what we cannot do.

Sometimes, the theorem will also tell us how to do it, but usually the result
is theoretic in the sense that it only proves what is possible without actually
saying how it could be done. To put it pointedly: information theory tells us
what is possible; coding theory tells us how to do it.

5.4.1 What we cannot do: fundamental limitations of
source coding

Let us quickly summarize what we know about codes and their corresponding
trees.

• The most efficient codes can always be chosen to be prefix-free (Theo-
rem 4.19).

96 Entropy and Shannon’s Source Coding Theorem

• Every prefix-free code can be represented by a tree where every codeword
corresponds to a leaf in the tree.

• Every codeword has a certain probability corresponding to the probability
of the symbol it represents.

• Unused leaves can be regarded as symbols that never occur, i.e. we assign
probability zero to them.

Hence, from these observations we immediately see that the entropy H(U) of
a random message U with probabilities p1, . . . , pr and the leaf entropy of the
corresponding tree are the same:

Hleaf = H(U). (5.60)

Note that the unused leaves do not contribute to Hleaf since they have zero
probability.

Moreover, the average codeword length Lav is equivalent to the average
depth of the leaves. (Again we can ignore the unused leaves, since they have
probability zero and therefore do not contribute to the average.)

Now note that since we consider binary trees where each node branches into
two different children, we know from Lemma 5.11 that the branching entropy
can be upper-bounded as follows:

H` ≤ log2 2 = 1 bit. (5.61)

Hence, using this together with the Leaf Entropy Theorem (Theorem 5.15) and
the Path Length Lemma (Lemma 4.11) we obtain the following:

H(U) = Hleaf =
N

∑
`=1

P̀ H` ≤
N

∑
`=1

P̀ ·1 bit =
N

∑
`=1

P̀ = Lav bits. (5.62)

In other words,

Lav ≥ H(U) bits. (5.63)

This is the converse part of the Coding Theorem for a Single Random Mes-
sage. It says that whatever code you try to design, the average codeword length
of any binary code for an r-ary random message U cannot be smaller than the
entropy of U (using the correct unit of bits)!

Note that to prove this statement we have not designed any code, but instead
we have been able to prove something that holds for every code that exists!

When do we have equality? From the above derivation we see that we have
equality if the branching entropy is always 1 bit, H` = 1 bit, i.e. the branching
probabilities are all uniform. This is only possible if pi is a negative integer
power of 2 for all i:

pi = 2−νi (5.64)

5.4 Bounds on the efficiency of codes 97

with νi a natural number (and, of course, if we design an optimal code).

5.4.2 What we can do: analysis of the best codes

In practice, it is not only important to know where the limitations are, but also
perhaps even more so to know how close we can get to these limitations. So
as a next step we would like to analyze the best codes (i.e. the Huffman codes
derived in Section 4.6) and see how close they get to the limitations shown in
Section 5.4.1.

Unfortunately, it is rather difficult to analyze Huffman codes. To circumvent
this problem, we will design a new code, called the Fano code, and analyze
its performance instead. Fano codes are not optimal in general, i.e. their per-
formance is worse than the performance of Huffman codes. Therefore any up-
per bound on Lav that can be achieved by a Fano code can definitely also be
achieved by a Huffman code.

Definition 5.17 (Fano code) The Fano code2 is generated according to the
following algorithm:

Step 1 Arrange the symbols in order of nonincreasing probability.
Step 2 Divide the list of ordered symbols into two parts, with the total proba-

bility of the left part being as close to the total probability of the right
part as possible.

Step 3 Assign the binary digit 0 to the left part of the list, and the digit 1 to
the right part. This means that the codewords for the symbols in the
first part will all start with 0, and the codewords for the symbols in the
second part will all start with 1.

Step 4 Recursively apply Step 2 and Step 3 to each of the two parts, subdi-
viding into further parts and adding bits to the codewords until each
symbol is the single member of a part.

Note that effectively this algorithm constructs a tree. Hence, the Fano code is
prefix-free.

Example 5.18 Let us generate the Fano code for a random message with five
symbols having probabilities

p1 = 0.35, p2 = 0.25, p3 = 0.15,

p4 = 0.15, p5 = 0.1.
(5.65)

2 Note that this code is usually known as the Shannon–Fano code. However, this is a misnaming
because it was Fano’s invention. Shannon proposed a slightly different code, which unfortu-
nately is also known as the Shannon–Fano code. For more details on this confusion, we refer
to the discussion in Section 5.6.

98 Entropy and Shannon’s Source Coding Theorem

Since the symbols are already ordered in decreasing order of probability, Step 1
can be omitted. We hence want to split the list into two parts, both having as
similar total probability as possible. If we split {1} and {2,3,4,5}, we have
a total probability 0.35 on the left and 0.65 on the right; the split {1,2} and
{3,4,5} yields 0.6 and 0.4; and {1,2,3} and {4,5} gives 0.75 and 0.25. We
see that the second split is best. So we assign 0 as a first digit to {1,2} and 1
to {3,4,5}.

Now we repeat the procedure with both subgroups. Firstly, we split {1,2}
into {1} and {2}. This is trivial. Secondly, we split {3,4,5} into {3} and {4,5}
because 0.15 and 0.25 is closer than 0.3 and 0.1 that we would have obtained
by dividing into {3,4} and {5}. Again we assign the corresponding second
digits.

Finally, we split the last group {4,5} into {4} and {5}. We end up with
the five codewords {00,01,10,110,111}. This whole procedure is shown in
Figure 5.6. ♦

p1 p2 p3 p4 p5

0.35 0.25 0.15 0.15 0.1
0.6 0.4

0 1

0.35 0.25 0.15 0.15 0.1
0.15 0.25

0 1 0 1

0.15 0.1
0 1

00 01 10 110 111

Figure 5.6 Construction of the Fano code of Example 5.18.

Exercise 5.19 Construct the Fano code for the random message U of Exam-
ple 4.16 with four symbols having probabilities

p1 = 0.4, p2 = 0.3, p3 = 0.2, p4 = 0.1, (5.66)

and show that it is identical to the corresponding Huffman code. ♦

Remark 5.20 We would like to point out that there are cases where the algo-
rithm given in Definition 5.17 does not lead to a unique design: there might be
two different ways of dividing the list into two parts such that the total proba-
bilities are as similar as possible. Since the algorithm does not specify what to

5.4 Bounds on the efficiency of codes 99

do in such a case, you are free to choose any possible way. Unfortunately, how-
ever, these different choices can lead to codes with different performance.3 As
an example, consider a random message U with seven possible symbols having
the following probabilities:

p1 = 0.35, p2 = 0.3, p3 = 0.15, p4 = 0.05,

p5 = 0.05, p6 = 0.05, p7 = 0.05.
(5.67)

Figures 5.7 and 5.8 show two different possible Fano codes for this random
message. The first has an average codeword length of Lav = 2.45, while the
latter’s performance is better with Lav = 2.4.

p1 p2 p3 p4 p5 p6 p7

0.35 0.3 0.15 0.05 0.05 0.05 0.05
0.65 0.35

0 1

0.35 0.3 0.15 0.05 0.05 0.05 0.05
0.2 0.15

0 1 0 1

0.15 0.05 0.05 0.05 0.05
0.1 0.05

0 1 0 1

0.05 0.05
0 1

00 01 100 101 1100 1101 111

Figure 5.7 One possible Fano code for the random message given in (5.67).

Exercise 5.21 In total there are six different possible designs of a Fano code
for the random message given in Remark 5.20. Design all of them and compare
their performances. ♦

We next prove a simple property of the Fano code.

Lemma 5.22 The codeword lengths li of a Fano code satisfy the following:

li ≤
⌈

log2
1
pi

⌉
, (5.68)

where dξe denotes the smallest integer not smaller than ξ .
3 This cannot happen in the case of a Huffman code! Even though the algorithm of the Huffman

code is not unique either, it always will result in codes of equal (optimal) performance. The
reason for this is clear: we have proven that the Huffman algorithm results in an optimal code.

100 Entropy and Shannon’s Source Coding Theorem

p1 p2 p3 p4 p5 p6 p7

0.35 0.3 0.15 0.05 0.05 0.05 0.05
0.35 0.65

0 1

0.3 0.15 0.05 0.05 0.05 0.05
0.3 0.35

0 1

0.15 0.05 0.05 0.05 0.05
0.15 0.2

0 1

0.05 0.05 0.05 0.05
0.1 0.1

0 1

0.05 0.05 0.05 0.05
0 1 0 1

0 10 110 11100 11101 11110 11111

Figure 5.8 A second possible Fano code for the random message given in
(5.67).

Proof By construction, any symbol with probability pi ≥ 1/2 will be alone
in one part in the first round of the algorithm. Hence,

li = 1 =

⌈
log2

1
pi

⌉
. (5.69)

If 1/4≤ pi < 1/2, then at the latest in the second round of the algorithm the
symbol will occupy one partition. (Note that it is possible that the symbol is
already the single element of one partition in the first round. For example, for
p1 = 3/4 and p2 = 1/4, p2 will have l2 = 1.) Hence, we have

li ≤ 2 =

⌈
log2

1
pi

⌉
. (5.70)

In the same fashion we show that for 1/8≤ pi < 1/4,

li ≤ 3 =

⌈
log2

1
pi

⌉
; (5.71)

for 1/16≤ pi < 1/8,

li ≤ 4 =

⌈
log2

1
pi

⌉
; (5.72)

etc.

5.4 Bounds on the efficiency of codes 101

Next, let us see how efficient the Fano code is. To that goal, we note that
from (5.68) we have

li ≤
⌈

log2
1
pi

⌉
< log2

1
pi

+1. (5.73)

We get

Lav =
r

∑
i=1

pili (5.74)

<
r

∑
i=1

pi

(
log2

1
pi

+1
)

(5.75)

=
r

∑
i=1

pi log2
1
pi

+
r

∑
i=1

pi (5.76)

=−
r

∑
i=1

pi log2 pi +1 (5.77)

= H(U)+1 bits, (5.78)

where the entropy is based on the binary logarithm, i.e. it is measured in bits.
Hence, the Fano code (even though it is not an optimal code) approaches the
ultimate lower bound (5.63) by less than 1 bit! A Huffman code will be even
better than that.

5.4.3 Coding Theorem for a Single Random Message

We summarize this so far most important result of this chapter.

Theorem 5.23 (Coding Theorem for a Single Random Message)

For an optimal binary prefix-free code (i.e. a binary Huffman code) for

an r-ary random message U, the average codeword length Lav satisfies

H(U) bits ≤ Lav < H(U)+1 bits (5.79)

(where the entropy is measured in bits). We have equality on the left if,

and only if, pi is a negative integer power of 2, ∀ i.

Moreover, this statement also holds true for Fano coding.

Example 5.24 We consider a random message U with seven symbols having
probabilities

p1 = 0.4, p2 = 0.1, p3 = 0.1, p4 = 0.1,

p5 = 0.1, p6 = 0.1, p7 = 0.1,
(5.80)

102 Entropy and Shannon’s Source Coding Theorem

i.e. H(U) ' 2.52 bits. We firstly design a Fano code; see Figure 5.9. The cor-
responding tree is shown in Figure 5.10. Note that the construction algorithm
is not unique in this case: in the second round we could split the second group
either to {3,4} and {5,6,7} or {3,4,5} and {6,7}. In this case, both ways will
result in a code of identical performance. The same situation occurs in the third
round.

p1 p2 p3 p4 p5 p6 p7

0.4 0.1 0.1 0.1 0.1 0.1 0.1
0.5 0.5

0 1

0.4 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.3

0 1 0 1

0.1 0.1 0.1 0.1 0.1
0.2 0.1

0 1 0 1

0.1 0.1
0 1

00 01 100 101 1100 1101 111

Figure 5.9 Construction of the Fano code of Example 5.24.

The efficiency of this Fano code is given by

Lav = 1+0.5+0.5+0.2+0.3+0.2 = 2.7 bits, (5.81)

which satisfies, as predicted,

2.52 bits≤ 2.7 bits < 3.52 bits. (5.82)

A corresponding Huffman code for U is shown in Figure 5.11. Its perfor-
mance is Lav = 2.6 bits, i.e. it is better than the Fano code, but of course it still
holds that

2.52 bits≤ 2.6 bits < 3.52 bits. (5.83)

♦

Exercise 5.25 Design a Huffman code and a Fano code for the random mes-
sage U with probabilities

p1 = 0.25, p2 = 0.2, p3 = 0.2, p4 = 0.1,

p5 = 0.1, p6 = 0.1, p7 = 0.05,
(5.84)

and compare their performances. ♦

5.5 Coding of an information source 103

0

1

1 00

01

100

101

1100

1101

111

0.4

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.3

0.5

0.5

Figure 5.10 A Fano code for the message U of Example 5.24.

We have seen in the above examples and exercises that, even though the
Fano code is not optimal, its performance is usually very similar to the optimal
Huffman code. In particular, we know from Theorem 5.23 that the performance
gap is less than one binary digit.

We are going to see next that once we start encoding not a single random
message, but a sequence of such messages emitted by a random source, this
difference becomes negligible.

5.5 Coding of an information source

So far we have only considered a single random message, but in reality we are
much more likely to encounter a situation where we have a stream of messages

104 Entropy and Shannon’s Source Coding Theorem

0
0

1

1

100

101

1100

1101

1110

1111

0.6

0.4

0.4

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

Figure 5.11 A Huffman code for the message U of Example 5.24.

that should be encoded continuously. Luckily we have prepared ourselves for
this situation already by considering prefix-free codes only, which make sure
that a sequence of codewords can be separated easily into the individual code-
words.

In the following we will consider only the simplest case where the random
source is memoryless, i.e. each symbol that is emitted by the source is inde-
pendent of all past symbols. A formal definition is given as follows.

Definition 5.26 (DMS) An r-ary discrete memoryless source (DMS) is a de-
vice whose output is a sequence of random messages U1,U2,U3, . . ., where

• each U` can take on r different values with probability p1, . . . , pr, and
• the different messages U` are independent of each other.

The obvious way of designing a compression system for such a source is to
design a Huffman code for U , continuously use it for each message U`, and
concatenate the codewords together. The receiver can easily separate the code-

5.5 Coding of an information source 105

words (because the Huffman code is prefix-free) and decode them to recover
the sequence of messages {U`}.

However, the question is whether this is the most efficient approach. Note
that it is also possible to combine two or more messages

(U`,U`+1, . . . ,U`+ν)

together and design a Huffman code for these combined messages! We will
show below that this latter approach is actually more efficient. But before doing
so, we need to think about such random vector messages.

Remark 5.27 Note that a random vector message V = (U1, . . . ,Uν) is, from
the mathematical point of view, no different from any other random message: it
takes on a certain finite number of different values with certain probabilities. If
U` is r-ary, then V is rν -ary, but otherwise there is no fundamental difference.

We can even express the entropy of V as a function of the entropy of U . Let
q j denote the probability of the jth symbol of V. Since the different messages
U` are independent, we have

q j = pi1 · pi2 · · · piν , (5.85)

where pi` denotes the probability of the i`th symbol of U`. Hence,

H(V) =−
rν

∑
j=1

q j log2 q j (5.86)

=−
r

∑
i1=1
· · ·

r

∑
iν=1

(pi1 · pi2 · · · piν) log2(pi1 · pi2 · · · piν) (5.87)

=−
r

∑
i1=1
· · ·

r

∑
iν=1

(pi1 · pi2 · · · piν)
(

log2 pi1 + · · ·+ log2 piν
)

(5.88)

=−
r

∑
i1=1
· · ·

r

∑
iν=1

pi1 · pi2 · · · piν · log2 pi1

−·· ·−
r

∑
i1=1
· · ·

r

∑
iν=1

pi1 · pi2 · · · piν · log2 piν (5.89)

=−
(

r

∑
i1=1

pi1 log2 pi1

)
·
(

r

∑
i2=1

pi2

)

︸ ︷︷ ︸
=1

· · ·
(

r

∑
iν=1

piν

)

︸ ︷︷ ︸
=1

−·· ·−
(

r

∑
i1=1

pi1

)

︸ ︷︷ ︸
=1

· · ·
(

r

∑
iν−1=1

piν−1

)

︸ ︷︷ ︸
=1

·
(

r

∑
iν=1

piν log2 piν

)
(5.90)

106 Entropy and Shannon’s Source Coding Theorem

=−
(

r

∑
i1=1

pi1 log2 pi1

)
−·· ·−

(
r

∑
iν=1

piν log2 piν

)
(5.91)

= H(U1)+ · · ·+H(Uν) (5.92)

= νH(U). (5.93)

Here the last equality follows because the entropy of all U` is identical.
In other words, since V consists of ν independent random messages U , its

uncertainty is simply ν times the uncertainty of U .

Cℓ′

codewordsmessagessymbols

Vℓ′Uℓ Source

parser

r-ary

DMS

Message

encoder

Figure 5.12 A coding scheme for an information source: the source parser
groups the source output sequence {U`} into messages {V`′ }. The message
encoder then assigns a codeword C`′ to each possible message V`′ .

Now our compression system looks as shown in Figure 5.12. The source
parser is a device that groups ν incoming source symbols (U1, . . . ,Uν) together
to a new message V. Note that because the source {U`} is memoryless, the
different messages {V`′ } are independent. Therefore we only need to look at
one such message V (where we omit the time index `′).

So let us now use an optimal code (i.e. a Huffman code) or at least a good
code (e.g. a Fano code) for the message V. Then from the Coding Theorem for
a Single Random Message (Theorem 5.23) we know that

H(V) bits≤ Lav < H(V)+1 bits, (5.94)

where Lav denotes the average codeword length for the codewords describing
the vector messages V.

Next note that it is not really fair to compare different Lav because, for larger
ν , Lav also will be larger. So, to be correct we should compute the average
codeword length necessary to describe one source symbol. Since V contains ν

source symbols U`, the correct measure of performance is Lav/ν .
Hence, we divide the whole expression (5.94) by ν :

H(V)

ν
bits≤ Lav

ν
<

H(V)

ν
+

1
ν

bits, (5.95)

and make use of (5.93),

νH(U)

ν
bits≤ Lav

ν
<

νH(U)

ν
+

1
ν

bits; (5.96)

5.5 Coding of an information source 107

i.e.,

H(U) bits≤ Lav

ν
< H(U)+

1
ν

bits. (5.97)

Note that again we assume that the entropies are measured in bits.
We immediately get the following main result, also known as Shannon’s

Source Coding Theorem.

Theorem 5.28 (Coding Theorem for a DMS)

There exists a binary prefix-free code of a ν-block message from a dis-

crete memoryless source (DMS) such that the average number Lav/ν

of binary code digits per source letter satisfies

Lav

ν
< H(U)+

1

ν
bits, (5.98)

where H(U) is the entropy of a single source letter measured in bits.

Conversely, for every binary code of a ν-block message,

Lav

ν
≥ H(U) bits. (5.99)

Note that everywhere we need to choose the units of the entropy to be in
bits.

We would like to discuss this result briefly. The main point to note here
is that by choosing ν large enough, we can approach the ultimate limit of
compression H(U) arbitrarily closely when using a Huffman or a Fano code.
Hence, the entropy H(U) is the amount of information that is packed in the
output of the discrete memoryless source U! In other words, we can compress
any DMS to H(U) bits on average, but not less. This is the first real justification
of the usefulness of Definition 5.4.

We also see that in the end it does not make much difference whether we
use a Huffman code or a suboptimal Fano code as both approach the ultimate
limit for ν large enough.

On the other hand, note the price we have to pay: by making ν large, we
not only increase the number of possible messages, and thereby make the code
complicated, but also we introduce delay into the system as the encoder can
only encode the message after it has received a complete block of ν source
symbols! Basically, the more closely we want to approach the ultimate limit of
entropy, the larger is our potential delay in the system.

We would like to mention that our choice of a source parser that splits the

108 Entropy and Shannon’s Source Coding Theorem

source sequence into blocks of equal length is not the only choice. It is actually
possible to design source parsers that will choose blocks of varying length
depending on the arriving source symbols and their probabilities. By trying to
combine more likely source symbols to larger blocks, while less likely symbols
are grouped to smaller blocks, we can further improve on the compression
rate of our system. A parser that is optimal in a specific sense is the so-called
Tunstall source parser [Tun67], [Mas96]. The details are outside the scope
of this introduction. However, note that whatever source parser and whatever
message encoder we choose, we can never beat the lower bound in (5.99).

All the systems we have discussed here contain one common drawback:
we always have assumed that the probability statistics of the source is known
in advance when designing the system. In a practical situation this is often
not the case. What is the probability distribution of a digitized speech in a
telephone system? Or of English ASCII text in comparison to French ASCII
text?4 Or of different types of music? A really practical system should work
independently of the source; i.e., it should estimate the probabilities of the
source symbols on the fly and adapt to it automatically. Such a system is called
a universal compression scheme. Again, the details are outside of the scope of
this introduction, but we would like to mention that such schemes exist and that
commonly used compression algorithms like, e.g., ZIP successfully implement
such schemes.

5.6 Some historical background

The Fano code is in the literature usually known as the Shannon–Fano code,
even though it is an invention of Professor Robert Fano from MIT [Fan49]
and not of Shannon. To make things even worse, there exists another code
that is also known as the Shannon–Fano code, but actually should be called
the Shannon code because it was proposed by Shannon [Sha48, Sec. 9]: the
construction of the Shannon code also starts with the ordering of the symbols
according to decreasing probability. The ith codeword with probability pi is
then obtained by writing the cumulative probability

Fi ,
i−1

∑
j=1

p j (5.100)

in binary form. For example, Fi = 0.625 in binary form is .101 yielding a
codeword 101, or Fi = 0.3125 is written in binary as .0101, which then results

4 Recall the definition of ASCII given in Table 2.2.

5.6 Some historical background 109

in a codeword 0101. Since in general this binary expansion might be infinitely
long, Shannon gave the additional rule that the expansion shall be carried out
to exactly li positions, where

li ,
⌈

log2
1
pi

⌉
. (5.101)

So if Fi = 0.625 (with binary form .101) and pi is such that li = 5, then the
resulting codeword is 10100, or if Fi = 0.6, which in binary form is

.10011001100 . . . ,

and pi is such that li = 3, then the resulting codeword is 100.
It is not difficult to show that this code is prefix-free. In particular it is

straightforward to show that the Kraft Inequality (Theorem 4.8) is satisfied:

r

∑
i=1

2−li =
r

∑
i=1

2−
⌈

log2
1
pi

⌉
≤

r

∑
i=1

2− log2
1
pi =

r

∑
i=1

pi = 1, (5.102)

where we have used that

li =
⌈

log2
1
pi

⌉
≥ log2

1
pi
. (5.103)

Shannon’s code performs similarly to the Fano code of Definition 5.17, but
Fano’s code is in general slightly better, as can be seen by the fact that in
(5.68) we have an inequality while in (5.101) we have, by definition, equal-
ity always. However – and that is probably one of the reasons5 why the two
codes are mixed up and both are known under the same name Shannon–Fano
code – both codes satisfy the Coding Theorem for a Single Random Message
(Theorem 5.23).

Actually, one also finds that any code that satisfies (5.101) is called a Shan-
non–Fano code! And to complete the confusion, sometimes the Shannon–Fano
code is also known as Shannon–Fano–Elias code [CT06, Sec. 5.9]. The rea-
son is that the Shannon code was the origin of arithmetic coding, which is an
elegant and efficient extension of Shannon’s idea, applied to the compression
of the output sequence of a random source. It is based on the insight that it
is not necessary to order the output sequences u according to their probabili-
ties, but that it is sufficient to have them ordered lexicographically (according
to the alphabet). The codeword for u is then the truncated binary form of the

5 Another reason is that Shannon, when introducing his code in [Sha48, Sec. 9], also refers to
Fano’s code construction.

110 Entropy and Shannon’s Source Coding Theorem

cumulative probability

Fu , ∑
all sequences ũ

that are alphabetically
before u

pũ, (5.104)

where pũ is the probability of ũ. However, in order to guarantee that the code is
prefix-free and because the output sequences are ordered lexicographically and
not according to probability, it is necessary to increase the codeword length by
1; i.e., for arithmetic coding we have the rule that the codeword length is

lu ,
⌈

log2
1
pu

⌉
+1. (5.105)

Note further that, since the sequences are ordered lexicographically, it is also
possible to compute the cumulative probability (5.104) of a particular source
output sequence u iteratively without having to know the probabilities of all
other source sequences. These ideas have been credited to the late Professor
Peter Elias from MIT (hence the name Shannon–Fano–Elias coding), but ac-
tually Elias denied this. The concept has probably come from Shannon himself
during a talk that he gave at MIT.

For an easy-to-read introduction to arithmetic coding including its history,
the introductory chapter of [Say99] is highly recommended.

5.7 Further reading

For more information about data compression, the lecture notes [Mas96] of
Professor James L. Massey from ETH, Zurich, are highly recommended. They
read very easily and are very precise. The presentation of the material in Chap-
ters 4 and 5 is strongly inspired by these notes. Besides the generalization of
Huffman codes to D-ary alphabets and the variable-length–to–block Tunstall
codes, one also finds there details of a simple, but powerful, universal data
compression scheme called Elias–Willems coding.

For the more commonly used Lempel–Ziv universal compression scheme we
refer to [CT06]. This is also a good place to learn more about entropy and its
properties.

One of the best books on information theory is by Robert Gallager [Gal68];
however, it is written at an advanced level. It is fairly old and therefore does
not cover more recent discoveries, but it gives a very deep treatment of the
foundations of information theory.

5.8 Appendix: Uniqueness of the definition of entropy 111

5.8 Appendix: Uniqueness of the definition of entropy

In Section 5.1 we tried to motivate the definition of entropy. Even though we
partially succeeded, we were not able to provide a full justification of Def-
inition 5.4. While Shannon did provide a mathematical justification [Sha48,
Sec. 6], he did not consider it very important. We omit Shannon’s argument,
but instead we will now quickly summarize a slightly different result that was
presented in 1956 by Aleksandr Khinchin. Khinchin specified four properties
that entropy is supposed to have and then proved that, given these four proper-
ties, (5.10) is the only possible definition.

We define Hr(p1, . . . , pr) to be a function of r probabilities p1, . . . , pr that
sum up to 1:

r

∑
i=1

pi = 1. (5.106)

We ask this function to satisfy the following four properties.

(1) For any r, Hr(p1, . . . , pr) is continuous (i.e. a slight change to the values of
pi will only cause a slight change to Hr) and symmetric in p1, . . . , pr (i.e.
changing the order of the probabilities does not affect the value of Hr).

(2) Any event of probability zero does not contribute to Hr:

Hr+1(p1, . . . , pr,0) = Hr(p1, . . . , pr). (5.107)

(3) Hr is maximized by the uniform distribution:

Hr(p1, . . . , pr)≤ Hr

(
1
r
, . . . ,

1
r

)
. (5.108)

(4) If we partition the m · r possible outcomes of a random experiment into m
groups, each group containing r elements, then we can do the experiment
in two steps:

(i) determine the group to which the actual outcome belongs,
(ii) find the outcome in this group.

Let p j,i, 1≤ j ≤ m, 1≤ i≤ r, be the probabilities of the outcomes in this
random experiment. Then the total probability of all outcomes in group j
is given by

q j =
r

∑
i=1

p j,i, (5.109)

and the conditional probability of outcome i from group j is then given by
p j,i

q j
. (5.110)

112 Entropy and Shannon’s Source Coding Theorem

Now Hm·r can be written as follows:

Hm·r(p1,1, p1,2, . . . , pm,r)

= Hm(q1, . . . ,qm)+
m

∑
j=1

q jHr

(
p j,1

q j
, . . . ,

p j,r

q j

)
; (5.111)

i.e., the uncertainty can be split into the uncertainty of choosing a group
and the uncertainty of choosing one particular outcome of the chosen
group, averaged over all groups.

Theorem 5.29 The only functions Hr that satisfy the above four conditions
are of the form

Hr(p1, . . . , pr) =−c
r

∑
i=1

pi log2 pi, (5.112)

where the constant c > 0 decides about the units of Hr.

Proof This theorem was proven by Aleksandr Khinchin in 1956, i.e. af-
ter Shannon had defined entropy. The article was first published in Russian
[Khi56], and then in 1957 it was translated into English [Khi57]. We omit the
details.

References
[CT06] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory,

2nd edn. John Wiley & Sons, Hoboken, NJ, 2006.
[Fan49] Robert M. Fano, “The transmission of information,” Research Laboratory of

Electronics, Massachusetts Institute of Technology (MIT), Technical Report
No. 65, March 17, 1949.

[Gal68] Robert G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, New York, 1968.

[Har28] Ralph Hartley, “Transmission of information,” Bell System Technical Journal,
vol. 7, no. 3, pp. 535–563, July 1928.

[Khi56] Aleksandr Y. Khinchin, “On the fundamental theorems of information theory,”
(in Russian), Uspekhi Matematicheskikh Nauk XI, vol. 1, pp. 17–75, 1956.

[Khi57] Aleksandr Y. Khinchin, Mathematical Foundations of Information Theory.
Dover Publications, New York, 1957.

[Mas96] James L. Massey, Applied Digital Information Theory I and II, Lecture notes,
Signal and Information Processing Laboratory, ETH Zurich, 1995/1996.
Available: http://www.isiweb.ee.ethz.ch/archive/massey scr/

[Say99] Jossy Sayir, “On coding by probability transformation,” Ph.D. dissertation,
ETH Zurich, 1999, Diss. ETH No. 13099. Available: http://e-collection.ethbi
b.ethz.ch/view/eth:23000

References 113

[Sha37] Claude E. Shannon, “A symbolic analysis of relay and switching circuits,”
Master’s thesis, Massachusetts Institute of Technology (MIT), August 1937.

[Sha48] Claude E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.
Available: http://moser.cm.nctu.edu.tw/nctu/doc/shannon1948.pdf

[Tun67] Brian P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. disserta-
tion, Georgia Institute of Technology, September 1967.

6
Mutual information and channel capacity

6.1 Introduction

We go on to take a closer look at a typical problem in communications: how
to send information reliably over a noisy communication channel. A commu-
nication channel can be thought of as the medium through which the message
signal propagates from the transmit end (the source) to the receive end (the
destination). A channel is said to be noisy if the data read at the channel output
is not necessarily the same as the input (due to, e.g., perturbation caused by the
ambient noise). Consider for example that Alice writes down a “7” on a paper
with a small font size, and uses a fax machine to transfer this page to Bob. Due
to limited resolution of electronic cable data transfer, Bob sees a “distorted 7”
on the faxed page and could decode it incorrectly as, say, “9” (see Figure 6.1).

Figure 6.1 Cable data transfer as a channel.

In this example the route of data transfer through the cable acts as the chan-
nel, which is noisy since it distorts the input alphabet and, in turn, leads to
possibly incorrect message decoding at the destination. It is still probable that
Bob reads the message correctly as “7.” The higher the probability of correct
message decoding is, the more reliable the communication will be.

116 Mutual information and channel capacity

Source Sink

Noise

Encoder Channel Decoder

Figure 6.2 Signaling model.

The general block diagram of a typical communication system is depicted
in Figure 6.2.

For a probabilistic message source, we are now able to quantify the amount
of its information content in terms of the entropy defined in Chapter 5. We
implicitly assume that the message has been compressed in order to remove
the inherent redundancy, if any; this can be done via data compression as in-
troduced in Chapter 4 (see also the discussion in Appendix 7.7). To combat
the detrimental effect induced by the channel, the source message is further
encoded with certain channel coding schemes, like the Hamming code intro-
duced in Chapter 3. The encoded data stream is then sent over the channel.
Message decoding is performed at the receiver based on the channel output.
We examine each of the following problems.

• How should we measure the amount of information that can get through the
channel, and what is the maximal amount?

• How can we use the channel to convey information reliably?

Note that if the channel is noiseless, i.e. the input is always reproduced at the
output without errors, the answers to the aforementioned problems are simple:
the maximal amount of information that can be conveyed over the channel
equals the source entropy, and this can be done without any data protection
mechanisms such as channel coding. If the channel is noisy, the answers turn
out to be rather nontrivial. Let us begin the discussions with the mathematical
model of a noisy communication channel.

6.2 The channel

Recall that in the example depicted in Figure 6.1, the input letter “7” can be ei-
ther correctly decoded or mis-recognized as some other letter. The uncertainty
in source symbol recovery naturally suggests a probabilistic characterization
of the input–output relation of a noisy channel; such a mathematical channel

6.2 The channel 117

model is needed in order to pin down various intrinsic properties of a channel,
e.g. how much information can go through a channel.

Below is the formal definition for a channel.

Definition 6.1 (Channel) A channel (X,PY |X (y j|xi),Y) is given by

(1) an input alphabet X , {x1, . . . ,xs}, where s denotes the number of input
letters;

(2) an output alphabet Y, {y1, . . . ,yt}, where t denotes the number of output
letters; and

(3) a conditional probability distribution PY |X (y j|xi), which specifies the prob-
ability of observing Y = y j at the output given that X = xi is sent, 1≤ i≤ s,
1≤ j ≤ t.

Hence a channel with input X ∈ X and output Y ∈ Y is entirely specified by
a set of conditional probabilities PY |X (y j|xi). The size of the input and output
alphabets, namely s and t, need not be the same. A schematic description of
the channel is shown Figure 6.3.

X Y

PY |X (y j|xi)X=





x1

x2

x3

...

xs









y1

y2

y3

...

yt





= Y

Figure 6.3 Channel model.

In this model the channel is completely described by the matrix of condi-
tional probabilities, the so-called channel transition matrix:




PY |X (y1|x1) PY |X (y2|x1) . . . PY |X (yt |x1)

PY |X (y1|x2) PY |X (y2|x2) . . . PY |X (yt |x2)
...

...
. . .

...

PY |X (y1|xs) PY |X (y2|xs) . . . PY |X (yt |xs)



. (6.1)

The channel transition matrix has the following properties.

(1) The entries on the ith row consist of the probabilities of observing output
letters y1, . . . ,yt given that the ith input symbol xi is sent.

(2) The entries on the jth column consist of the probabilities of observing the
jth output letter y j given, respectively, the ith input symbols xi are sent,
i = 1, . . . ,s.

118 Mutual information and channel capacity

(3) The sum of the entries in a row is always 1, i.e.
t

∑
j=1

PY |X (y j|xi) = 1. (6.2)

This merely means that for each input xi we are certain that something will
come out, and that the PY |X (y j|xi) give the distribution of these probabili-
ties.

(4) If PX (xi) is the probability of the input symbol xi, then

s

∑
i=1

t

∑
j=1

PY |X (y j|xi)PX (xi) = 1, (6.3)

meaning that when something is put into the system, then certainly some-
thing comes out.

The probabilities PY |X (y j|xi), 1 ≤ i ≤ s, 1 ≤ j ≤ t, characterize the channel
completely. We assume that the channel is stationary, i.e. the probabilities do
not change with time. We note that X is not a source but is an information-
carrying channel input, which is typically a stream of encoded data (see Fig-
ure 6.2; see Chapters 3 and 7 for more details).

6.3 The channel relationships

At the transmit end we have s possible input symbols {x1, . . . ,xs}. If the ith
symbol xi is selected and sent over the channel, the probability of observing the
jth channel output letter y j is given by the conditional probability PY |X (y j|xi).
This means that the probability that the input–output pair (xi,y j) simultane-
ously occurs, i.e. the joint probability of X = xi and Y = y j, is given by

PX ,Y (xi,y j), PY |X (y j|xi)PX (xi). (6.4)

Let us go one step further by asking the question of how to determine the
probability that the jth letter y j will occur at the channel output, hereafter
denoted by PY (y j). A simple argument, taking into account that each input
symbol occurs with probability PX (xi), yields

PY (y j) = PY |X (y j|x1)PX (x1)+ · · ·+PY |X (y j|xs)PX (xs) (6.5)

=
s

∑
i=1

PY |X (y j|xi)PX (xi), 1≤ j ≤ t. (6.6)

The above “channel equation” characterizes the input–output relation of a chan-
nel. Note that in terms of the joint probability PX ,Y (xi,y j) in (6.4), we can

6.4 The binary symmetric channel 119

rewrite (6.6) in a more compact form:

PY (y j) =
s

∑
i=1

PX ,Y (xi,y j), 1≤ j ≤ t. (6.7)

Now take a further look at (6.4), which relates the probability of a joint oc-
currence of the symbol pair (xi,y j) with the input distribution via the forward
conditional probability PY |X (y j|xi) (starting from the input front with xi given
and expressing the probability that y j is the resultant output). We can alterna-
tively write PX ,Y (xi,y j) as

PX ,Y (xi,y j) = PX |Y (xi|y j)PY (y j), (6.8)

which evaluates the joint probability PX ,Y (xi,y j) based on the output distri-
bution and the backward conditional probability PX |Y (xi|y j) (given that y j is
received, the probability that xi is sent). Equating (6.4) with (6.8) yields

PX |Y (xi|y j) =
PY |X (y j|xi)PX (xi)

PY (y j)
, (6.9)

which is the well known Bayes’ Theorem on conditional probabilities [BT02].
In the Bayes’ formula (6.9) we can write PY (y j) in the denominator in terms

of (6.6) to get the equivalent expression

PX |Y (xi|y j) =
PY |X (y j|xi)PX (xi)

∑
s
i′=1 PY |X (y j|xi′)PX (xi′)

. (6.10)

Summing (6.10) over all the xi clearly gives
s

∑
i=1

PX |Y (xi|y j) =
s

∑
i=1

PY |X (y j|xi)PX (xi)

∑
s
i′=1 PY |X (y j|xi′)PX (xi′)

(6.11)

=
∑

s
i=1 PY |X (y j|xi)PX (xi)

∑
s
i′=1 PY |X (y j|xi′)PX (xi′)

(6.12)

= 1, (6.13)

which means that, given output y j, some xi was certainly put into the channel.

6.4 The binary symmetric channel

A simple special case of a channel is the binary channel, which has two input
symbols, 0 and 1, and two output symbols, 0 and 1; a schematic description is
depicted in Figure 6.4.

The binary channel is said to be symmetric if

PY |X (0|0) = PY |X (1|1), PY |X (0|1) = PY |X (1|0). (6.14)

120 Mutual information and channel capacity

x1 = 0

x2 = 1

y1 = 0

y2 = 1

PY |X (0|0)

PY |X (1|0)

PY |X (0|1)

PY |X (1|1)

Figure 6.4 The binary channel.

Usually we abbreviate binary symmetric channel to BSC.
Let the probabilities of the input symbols be

PX (0) = δ , (6.15)

PX (1) = 1−δ , (6.16)

and let the BSC probabilities be

PY |X (0|0) = PY |X (1|1) = 1− ε, (6.17)

PY |X (1|0) = PY |X (0|1) = ε. (6.18)

The channel matrix is therefore
(

1− ε ε

ε 1− ε

)
(6.19)

and the channel relationships (6.6) become

PY (0) = (1− ε)δ + ε(1−δ), (6.20)

PY (1) = εδ +(1− ε)(1−δ). (6.21)

Note that these equations can be simply checked by computing their sum:

PY (0)+PY (1) = (1− ε + ε)δ +(1− ε + ε)(1−δ) = δ +1−δ = 1. (6.22)

Given that we know what symbol we received, what are the probabilities for
the various symbols that might have been sent?

6.4 The binary symmetric channel 121

We first compute the two denominators in Equation (6.10):
2

∑
i=1

PY |X (y1|xi)PX (xi) = (1− ε)δ + ε(1−δ), (6.23)

2

∑
i=1

PY |X (y2|xi)PX (xi) = εδ +(1− ε)(1−δ), (6.24)

which of course are the same as (6.20) and (6.21). We then have

PX |Y (0|0) =
(1− ε)δ

(1− ε)δ + ε(1−δ)
, (6.25)

PX |Y (1|0) =
ε(1−δ)

(1− ε)δ + ε(1−δ)
, (6.26)

PX |Y (0|1) =
εδ

εδ +(1− ε)(1−δ)
, (6.27)

PX |Y (1|1) =
(1− ε)(1−δ)

εδ +(1− ε)(1−δ)
. (6.28)

Note that this involves the choice of the probabilities of the channel input.
In the special case of equally likely input symbols (δ = 1/2) we have the

very simple equations

PX |Y (0|0) = PX |Y (1|1) = 1− ε, (6.29)

PX |Y (1|0) = PX |Y (0|1) = ε. (6.30)

As a more peculiar example, suppose that 1− ε = 9/10 and ε = 1/10 for
the BSC, but suppose also that the probability of the input x = 0 being sent is
δ = 19/20 and x = 1 being sent is 1−δ = 1/20. We then have

PX |Y (0|0) =
171
172

, (6.31)

PX |Y (1|0) =
1

172
, (6.32)

PX |Y (0|1) =
19
28

, (6.33)

PX |Y (1|1) =
9

28
. (6.34)

Thus if we receive y = 0, it is more likely that x = 0 was sent because 171/172
is much larger than 1/172. If, however, y= 1 is received, we still have 19/28>
9/28, and hence x = 0 has a higher probability of being the one that has been
sent. Therefore, x = 0 is always claimed regardless of the symbol received. As
a result, if a stream of n binary bits is generated according to the probability
law PX (0) = δ = 19/20, then there are about n(1−δ) = n/20 1s in the input
sequence that will be decoded incorrectly as 0s at the channel output. Hence,

122 Mutual information and channel capacity

the above transmission scheme does not use the channel properly, since irre-
spective of n it will incur an average decoding error of about 1/20, significantly
away from zero.

This situation arises whenever both following conditions are valid:

PX |Y (0|0)> PX |Y (1|0), (6.35)

PX |Y (0|1)> PX |Y (1|1). (6.36)

From (6.25)–(6.28) we see that for the binary symmetric channel these condi-
tions are

(1− ε)δ > ε(1−δ), (6.37)

εδ > (1− ε)(1−δ), (6.38)

or equivalently

δ > ε, (6.39)

δ > 1− ε; (6.40)

i.e., the bias in the choice of input symbols is greater than the bias of the chan-
nel. This discussion shows that it is possible, for given values of the channel
transition probabilities, to come up with values for the channel input probabil-
ities that do not make much sense in practice. As will be shown below, we can
improve this if we can learn more about the fundamental characteristics of the
channel and then use the channel properly through a better assignment of the
input distribution.1 To this end, we leverage the entropy defined in Chapter 5
to define the notion of “capability of a channel for conveying information” in
a precise fashion.

6.5 System entropies

We can regard the action of a channel as “transferring” the probabilistic in-
formation-carrying message X into the output Y by following the conditional
probability law PY |X (y j|xi). Both the input and output ends of the channel are
thus uncertain in nature: we know neither exactly which input symbol will be
selected nor which output letter will be certainly seen at the output (rather,
only probabilistic characterizations of various input–output events in terms of
PX (·) and PY |X (·|·) are available). One immediate question to ask is: how much

1 Note that, whereas the source is assumed to be given to us and therefore cannot be modified,
we can freely choose the channel input probabilities by properly designing the channel encoder
(see Figure 6.2).

6.5 System entropies 123

“aggregate” information, or amount of uncertainty, is contained in the overall
channel system? From Chapter 5, we know that the average amount of uncer-
tainty of the input is quantified by the entropy as

H(X) =
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)
. (6.41)

We have shown that H(X)≥ 0, and H(X) = 0 if the input is certain; also, H(X)

is maximized when all xi are equally likely.2 We can also likewise define the
entropy of the output as

H(Y) =
t

∑
j=1

PY (y j) log2

(
1

PY (y j)

)
, (6.42)

which, as expected, measures the uncertainty of the channel output. If we look
at both the input and the output, the probability of the event that X = xi and
Y = y j simultaneously occur is given by the joint probability PX ,Y (xi,y j) (see
(6.4)). Analogous to the entropy of X (or Y), we have the following definition
of the entropy when both X and Y are simultaneously taken into account.

Definition 6.2 The joint entropy of X and Y , defined as

H(X ,Y),
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PX ,Y (xi,y j)

)
, (6.43)

measures the total amount of uncertainty contained in the channel input and
output, hence the overall channel system.

One might immediately ask about the relation between H(X ,Y) and the in-
dividual entropies, in particular whether H(X ,Y) just equals the sum of H(X)

and H(Y). This is in general not true, unless X and Y are statistically indepen-
dent, meaning that what comes out does not depend on what goes in. More
precisely, independence among X and Y is characterized by [BT02]

PX ,Y (xi,y j) = PX (xi)PY (y j). (6.44)

Based on (6.43) and (6.44), we have the following proposition.

Proposition 6.3 If X and Y are statistically independent, then

H(X ,Y) = H(X)+H(Y). (6.45)

2 As noted in Lemma 5.11, H(X)≤ log2 s bits, with equality if PX (xi) = 1/s for all i.

124 Mutual information and channel capacity

Proof With (6.44), we have

H(X ,Y) =
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j) log2

(
1

PX (xi)PY (y j)

)
(6.46)

=
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j)

(
log2

(
1

PX (xi)

)
+ log2

(
1

PY (y j)

))
(6.47)

=
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j) log2

(
1

PX (xi)

)

+
s

∑
i=1

t

∑
j=1

PX (xi)PY (y j) log2

(
1

PY (y j)

)
(6.48)

=
t

∑
j=1

PY (y j)
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)

︸ ︷︷ ︸
H(X)

+
s

∑
i=1

PX (xi)
t

∑
j=1

PY (y j) log2

(
1

PY (y j)

)

︸ ︷︷ ︸
H(Y)

(6.49)

= H(X)+H(Y), (6.50)

where the last equality follows since

t

∑
j=1

PY (y j) =
s

∑
i=1

PX (xi) = 1. (6.51)

In Proposition 6.4 we derive the relation that links the joint entropy H(X ,Y)
with the individual H(X) (or H(Y)) when X and Y are dependent, which is
typically true since the channel output depends at least partly on the channel
input (otherwise no information can be conveyed through the channel).

Proposition 6.4 (Chain rule) The following result holds:

H(X ,Y) = H(X)+H(Y |X), (6.52)

where

H(Y |X),
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.53)

is the conditional entropy associated with Y given X.

Proof By means of the relation PX ,Y (xi,y j) = PY |X (y j|xi)PX (xi) (see (6.4)) it

6.5 System entropies 125

follows that

H(X ,Y) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)PX (xi)

)
(6.54)

=
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PX (xi)

)

+
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.55)

=
s

∑
i=1

log2

(
1

PX (xi)

) t

∑
j=1

PX ,Y (xi,y j)

︸ ︷︷ ︸
PX (xi)

+
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.56)

=
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)

+
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PY |X (y j|xi)

)
(6.57)

= H(X)+H(Y |X). (6.58)

The joint entropy H(X ,Y) is thus the sum of the input entropy H(X) and
the conditional entropy H(Y |X), which measures the uncertainty remaining in
Y , given that X is known. Note that if X and Y are independent, i.e. one can
infer nothing about Y even if X is already known, we have H(Y |X) = H(Y)
and Proposition 6.4 reduces to Proposition 6.3.

Another interpretation of H(Y |X) is that it represents how much must be
added to the input entropy to obtain the joint entropy; in this regard, H(Y |X)

is called the equivocation of the channel. We can again use (6.4) to rewrite
H(Y |X) as

H(Y |X) =
s

∑
i=1

t

∑
j=1

PY |X (y j|xi)PX (xi) log2

(
1

PY |X (y j|xi)

)
(6.59)

=
s

∑
i=1

PX (xi)H(Y |xi), (6.60)

where

H(Y |xi),
t

∑
j=1

PY |X (y j|xi) log2

(
1

PY |X (y j|xi)

)
(6.61)

126 Mutual information and channel capacity

is the conditional entropy of Y given a particular X = xi. Finally, we remark
that, starting from the alternative expression for PX ,Y (xi,y j) given in (6.8),
H(X ,Y) can be accordingly expressed as

H(X ,Y) = H(Y)+H(X |Y). (6.62)

Exercise 6.5 Let (X ,Y) have the joint distribution given in Table 6.1. Com-
pute H(X), H(X ,Y), and H(X |Y). ♦

Table 6.1 A joint distribution of (X ,Y)

X

1 2 3 4

Y

1 1
8

1
16

1
32

1
32

2 1
16

1
8

1
32

1
32

3 1
16

1
16

1
16

1
16

4 1
4 0 0 0

Exercise 6.6 Verify that H(Y |X) = H(Y) if X and Y are independent. ♦

6.6 Mutual information

Consider again the transmission system shown in Figure 6.3. We wish to de-
termine how much information about the input can be gained based on some
particular received output letter Y = y j; this is the first step toward quantifying
the amount of information that can get through the channel.

At the transmit side, the probability that the ith input symbol xi occurs is
PX (xi), which is called the a priori3 probability of xi. Upon receiving Y =

y j, one can try to infer which symbol probably has been sent based on the
information carried by y j. In particular, given y j is received, the probability that
xi has been sent is given by the backward conditional probability PX |Y (xi|y j),
which is commonly termed the a posteriori4 probability of xi. The change
of probability (from a priori to a posteriori) is closely related to how much
information one can learn about xi from the reception of y j. Specifically, the
difference between the uncertainty before and after receiving y j measures the

3 From the Latin, meaning “from what comes first” or “before.”
4 From the Latin, meaning “from what comes after” or “afterwards.”

6.6 Mutual information 127

gain in information due to the reception of y j. Such an information gain is
called the mutual information and is naturally defined to be

I(xi;y j)︸ ︷︷ ︸
information gain

or uncertainty loss
after receiving y j

, log2

(
1

PX (xi)

)

︸ ︷︷ ︸
uncertainty

before receiving y j

− log2

(
1

PX |Y (xi|y j)

)

︸ ︷︷ ︸
uncertainty

after receiving y j

(6.63)

= log2

(
PX |Y (xi|y j)

PX (xi)

)
. (6.64)

Note that if the two events X = xi and Y = y j are independent, thereby

PX |Y (xi|y j) = PX (xi), (6.65)

we have I(xi;y j) = 0, i.e. no information about xi is gained once y j is received.
For the noiseless channel, thus y j = xi, we have PX |Y (xi|y j) = 1 since, based

on what is received, we are completely certain about which input symbol has
been sent. In this case, the mutual information attains the maximum value
log2(1/PX (xi)); this means that all information about xi is conveyed without
any loss over the channel.

Since

PX |Y (xi|y j)PY (y j) = PX ,Y (xi,y j) = PY |X (y j|xi)PX (xi), (6.66)

we have

I(xi;y j) = log2

(
PX ,Y (xi,y j)

PX (xi)PY (y j)

)
= I(y j;xi). (6.67)

Hence, we see that xi provides the same amount of information about y j as y j

does about xi. This is why I(xi;y j) has been coined “mutual information.”
We have now characterized the mutual information with respect to a partic-

ular input–output event. Owing to the random nature of the source and channel
output, the mutual information should be averaged with respect to both the
input and output in order to account for the true statistical behavior of the
channel. This motivates the following definition.

Definition 6.7 The system mutual information, or average mutual informa-
tion, is defined as

I(X ;Y),
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)I(xi;y j) (6.68)

=
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
PX ,Y (xi,y j)

PX (xi)PY (y j)

)
. (6.69)

128 Mutual information and channel capacity

The average mutual information I(X ;Y) has the following properties (the
proofs are left as exercises).

Lemma 6.8 The system mutual information has the following properties:

(1) I(X ;Y)≥ 0;
(2) I(X ;Y) = 0 if, and only if, X and Y are independent;
(3) I(X ;Y) = I(Y ;X).

Exercise 6.9 Prove Lemma 6.8.
Hint: For the first and second property use the IT Inequality (Lemma 5.10).

You may proceed similarly to the proof of Lemma 5.11. The third property can
be proven based on the formula of the mutual information, i.e. (6.69). ♦

Starting from (6.68), we have

I(X ;Y) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)I(xi;y j) (6.70)

=
s

∑
i=1

t

∑
j=1

PX |Y (xi|y j)PY (y j)I(xi;y j) (6.71)

=
t

∑
j=1

PY (y j)I(X ;y j), (6.72)

where

I(X ;y j),
s

∑
i=1

PX |Y (xi|y j)I(xi;y j) (6.73)

measures the information about the entire input X provided by the reception of
the particular y j. In an analogous way we can obtain

I(X ;Y) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)I(xi;y j) (6.74)

=
s

∑
i=1

t

∑
j=1

PY |X (y j|xi)PX (xi)I(xi;y j) (6.75)

=
s

∑
i=1

PX (xi)I(xi;Y), (6.76)

where

I(xi;Y),
t

∑
j=1

PY |X (y j|xi)I(xi;y j) (6.77)

represents the information about the output Y given that we know the input
letter xi is sent.

6.6 Mutual information 129

Let us end this section by specifying the relation between the average mutual
information I(X ;Y) and various information quantities introduced thus far, e.g.
input entropy H(X), output entropy H(Y), joint entropy H(X ,Y), and condi-
tional entropies H(X |Y) and H(Y |X). To proceed, let us use (6.69) to express
I(X ;Y) as

I(X ;Y) =
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
PX ,Y (xi,y j)

PX (xi)PY (y j)

)
(6.78)

=
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j)
(

log2 PX ,Y (xi,y j)− log2 PX (xi)

− log2 PY (y j)
)

(6.79)

=−
s

∑
i=1

t

∑
j=1

PX ,Y (xi,y j) log2

(
1

PX ,Y (xi,y j)

)

+
s

∑
i=1

PX (xi) log2

(
1

PX (xi)

)
+

t

∑
j=1

PY (y j) log2

(
1

PY (y j)

)
(6.80)

= H(X)+H(Y)−H(X ,Y)≥ 0. (6.81)

Since

H(X ,Y) = H(X)+H(Y |X) (6.82)

= H(Y)+H(X |Y), (6.83)

we also have

I(X ;Y) = H(X)−H(X |Y) (6.84)

= H(Y)−H(Y |X). (6.85)

We have the following corollary (the proof is left as an exercise).

Corollary 6.10 (Conditioning reduces entropy) The following inequalities
hold:

(a) 0≤ H(X |Y)≤ H(X), (6.86)

0≤ H(Y |X)≤ H(Y); (6.87)

(b) H(X ,Y)≤ H(X)+H(Y). (6.88)

Part (a) of Corollary 6.10 asserts that conditioning cannot increase entropy,
whereas Part (b) shows that the joint entropy H(X ,Y) is maximized when X
and Y are independent.

Exercise 6.11 Prove Corollary 6.10.
Hint: Use known properties of I(X ;Y) and H(X). ♦

130 Mutual information and channel capacity

To summarize: the average mutual information is given by

I(X ;Y) =





H(X)+H(Y)−H(X ,Y),

H(X)−H(X |Y),
H(Y)−H(Y |X);

(6.89)

the equivocation is given by

H(X |Y) = H(X)− I(X ;Y), (6.90)

H(Y |X) = H(Y)− I(X ;Y); (6.91)

the joint entropy is given by

H(X ,Y) =





H(X)+H(Y)− I(X ;Y),

H(X)+H(Y |X),

H(Y)+H(X |Y).
(6.92)

A schematic description of the relations between various information quanti-
ties is given by the Venn diagram in Figure 6.5.

I(X ;Y)
H(X |Y)

H(Y |X)

H(X) H(Y)

H(X ,Y)

Figure 6.5 Relation between entropy, conditional entropy, and mutual infor-
mation.

6.7 Definition of channel capacity

Given the conditional probabilities PY |X (y j|xi), which define a channel, what is
the maximum amount of information we can send through the channel? This
is the main question attacked in the rest of this chapter.

6.8 Capacity of the binary symmetric channel 131

The mutual information connects the two ends of the channel together. It is
defined by (6.84) as

I(X ;Y) = H(X)−H(X |Y), (6.93)

where the entropy H(X) is the uncertainty of the channel input before the re-
ception of Y , and H(X |Y) is the uncertainty that remains after the reception of
Y . Thus I(X ;Y) is the change in the uncertainty. An alternative expression for
I(X ;Y) is

I(X ;Y) =
s

∑
i=1

t

∑
j=1

PX (xi)PY |X (y j|xi) log2

(
PY |X (y j|xi)

∑
s
i′=1 PX (xi′)PY |X (y j|xi′)

)
. (6.94)

This formula involves the input symbol frequencies PX (xi); in particular, for
a given channel law PY |X (y j|xi), I(X ;Y) depends completely on PX (xi). We
saw in the example of a binary symmetric channel (Section 6.4) how a poor
match of PX (xi) to the channel can ruin a channel. Indeed, we know that if the
probability of one symbol is PX (xi) = 1, then all the others must be zero and
the constant signal contains no information.

How can we best choose the PX (xi) to get the most through the channel, and
what is that amount?

Definition 6.12 (Capacity) For a given channel, the channel capacity, de-
noted by C, is defined to be the maximal achievable system mutual information
I(X ;Y) among all possible input distributions PX (·):

C,max
PX (·)

I(X ;Y). (6.95)

Finding a closed-form solution to the channel capacity is in general difficult,
except for some simple channels, e.g. the binary symmetric channel defined in
Section 6.4 (see also Section 6.8 below).

We would like to point out that even though this definition of capacity is
intuitively quite pleasing, at this stage it is a mere mathematical quantity, i.e.
a number that is the result of a maximization problem. However, we will see
in Section 6.11 that it really is the capacity of a channel in the sense that it is
only possible to transmit signals reliably (i.e. with very small error probability)
through the channel as long as the transmission rate is below the capacity.

6.8 Capacity of the binary symmetric channel

Consider again the binary symmetric channel (BSC), with the probability of
transmission error equal to ε , as depicted in Figure 6.6.

132 Mutual information and channel capacity

PX (0) 0

PX (1) 1

0 PY (0)

1 PY (1)

1− ε

ε

ε

1− ε

Figure 6.6 Binary symmetric channel (BSC).

The channel matrix is given by
(

1− ε ε

ε 1− ε

)
. (6.96)

Exercise 6.13 For the BSC, show that

H(Y |X = 0) = H(Y |X = 1) = Hb(ε), (6.97)

where Hb(·) is the binary entropy function defined in (5.24). ♦

We start from the definition of mutual information (6.85) to obtain the fol-
lowing set of relations:

I(X ;Y) = H(Y)−H(Y |X) (6.98)

= H(Y)− ∑
x∈X

PX (x)H(Y |X = x) (6.99)

= H(Y)−
(
PX (0)H(Y |X = 0)+PX (1)H(Y |X = 1)

)
(6.100)

= H(Y)−Hb(ε) (6.101)

≤ 1−Hb(ε) bits, (6.102)

where (6.102) follows since Y is a binary random variable (see Lemma 5.11).
Since equality in (6.102) is attained if Y is uniform, which will hold if input X
is uniform, we conclude that the capacity of the BSC is given by

C= 1−Hb(ε) bits, (6.103)

and that the achieving input distribution is PX (0) = PX (1) = 1/2. Alternatively,
we can find the capacity of a BSC by starting from PX (0) = δ = 1−PX (1) and

6.8 Capacity of the binary symmetric channel 133

expressing I(X ;Y) as

I(X ;Y) = H(Y)−H(Y |X) (6.104)

=−
(
δ (1− ε)+(1−δ)ε

)
log2

(
δ (1− ε)+(1−δ)ε

)

−
(
δε +(1−δ)(1− ε)

)
log2

(
δε +(1−δ)(1− ε)

)

+(1− ε) log2(1− ε)+ ε log2 ε. (6.105)

If we now maximize the above quantity over δ ∈ [0,1], we find that the optimal
δ is δ = 1/2, which immediately yields (6.103).

Figure 6.7 depicts the mutual information in (6.105) versus δ with respect
to three different choices of the error probability ε . As can be seen from the
figure, the peak value of each curve is indeed attained by δ = 1/2.

δ

I(
X

;Y
)

[b
it

s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε = 0.0625
ε = 0.125
ε = 0.25

Figure 6.7 Mutual information over the binary symmetric channel (BSC):
(6.105) as a function of δ , for various values of ε .

Figure 6.8 plots the capacity C in (6.103) versus the cross-over probability
ε . We see from the figure that C attains the maximum value 1 bit when ε = 0
or ε = 1, and attains the minimal value 0 when ε = 1/2.

When ε = 0, it is easy to see that C = 1 bit is the maximum rate at which
information can be communicated through the channel reliably. This can be
achieved simply by transmitting uncoded bits through the channel, and no de-
coding is necessary because the bits are received unchanged. When ε = 1 the

134 Mutual information and channel capacity

ε

C
[b

it
s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.8 Capacity of the binary symmetric channel (BSC).

same can be achieved with the additional decoding step which complements
all the received bits. By doing so, the bits transmitted through the channel can
be recovered without error. Thus from a communications point of view, for
binary channels, a channel which never makes an error and a channel which
always makes an error are equally good.

When ε = 1/2, the channel output is independent of the channel input.
Therefore, no information can possibly be communicated through the chan-
nel.

6.9 Uniformly dispersive channel

Recall that the channel transition matrix for the BSC is
(

1− ε ε

ε 1− ε

)
, (6.106)

in which the second row is a permutation of the first row. In fact, the BSC
belongs to the class of uniformly dispersive channels.

Definition 6.14 A channel is said to be uniformly dispersive if the set

A(x), {PY |X (y1|x), . . . ,PY |X (yt |x)} (6.107)

is identical for each input symbol x. Hence a uniformly dispersive channel has

6.9 Uniformly dispersive channel 135

a channel matrix 


P11 P12 · · · P1t

P21 P22 · · · P2t
...

...
. . .

...

Ps1 Ps2 · · · Pst




(6.108)

such that each row is a permutation of the first row.

According to the definition, for a uniformly dispersive channel the entropy
of the output conditioned on a particular input alphabet x being sent, namely

H(Y |X = x) = ∑
y∈Y

PY |X (y|x) log2

(
1

PY |X (y|x)

)
, (6.109)

is thus identical for all x. By means of (6.109), the mutual information between
the channel input and output reads

I(X ;Y) = H(Y)−H(Y |X) (6.110)

= H(Y)− ∑
x∈X

PX (x)H(Y |X = x) (6.111)

= H(Y)−H(Y |X = x) ∑
x∈X

PX (x)

︸ ︷︷ ︸
=1

(6.112)

= H(Y)−H(Y |X = x). (6.113)

Equations (6.110)–(6.113) should be reminiscent of (6.98)–(6.101). This is no
surprise since the BSC is uniformly dispersive.

Recall also from (6.102) that the capacity of the BSC is attained with a uni-
form output, which can be achieved by a uniform input. At a first glance one
might expect that a similar argument can be directly applied to the uniformly
dispersive case to find the capacity of an arbitrary uniformly dispersive chan-
nel. However, for a general uniformly dispersive channel, the uniform input
does not necessarily result in the uniform output, and neither can the capacity
necessarily be achieved with the uniform output. For example, consider the bi-
nary erasure channel (BEC) depicted in Figure 6.9. In this channel, the input
alphabet is X= {0,1}, while the output alphabet is Y= {0,1,?}. With proba-
bility γ , the erasure symbol ? is produced at the output, which means that the
input bit is lost; otherwise the input bit is reproduced at the output without er-
ror. The parameter γ is thus called the erasure probability. The BEC has the
channel transition matrix (

1− γ γ 0

0 γ 1− γ

)
(6.114)

136 Mutual information and channel capacity

and is thus, by definition, uniformly dispersive (the second row is a permuta-
tion of the first row). However, with the input distribution PX (0) = PX (1) =
1/2, the output is, in general, not uniform (PY (?) = γ and PY (0) = PY (1) =
(1− γ)/2). Despite this, the uniform input remains as the capacity-achieving
input distribution for the BEC.

0 0

1 1

?

1− γ

γ

γ

1− γ

Figure 6.9 Binary erasure channel (BEC).

Exercise 6.15 Based on (6.113), show that the capacity of the BEC is

C= 1− γ bits, (6.115)

which is attained with PX (0) = PX (1) = 1/2. The result is intuitively reason-
able: since a proportion γ of the bits are lost in the channel, we can recover
(at most) a proportion (1− γ) of the bits, and hence the capacity is (1− γ). ♦

6.10 Characterization of the capacity-achieving
input distribution

Even though it is, in general, difficult to find the closed-form capacity formula
and the associated capacity-achieving input distribution, it is nonetheless pos-
sible to specify some underlying properties of the optimal PX (·). The following
theorem, which is stated without proof, provides one such characterization in
terms of I(x;Y), i.e. the information gain about Y given that X = x is sent (see
(6.77)).

6.10 Capacity-achieving input distribution 137

Theorem 6.16 (Karush–Kuhn–Tucker (KKT) conditions) An input distri-
bution PX (·) achieves the channel capacity C if, and only if,

I(x;Y)

{
= C for all x with PX (x)> 0;

≤ C for all x with PX (x) = 0.
(6.116)

Remark 6.17 The KKT conditions were originally named after Harold W.
Kuhn and Albert W. Tucker, who first published the conditions in 1951 [KT51].
Later, however, it was discovered that the necessary conditions for this problem
had already been stated by William Karush in his master’s thesis [Kar39].

The assertion of Theorem 6.16 is rather intuitive: if PX (·) is the capacity-
achieving input distribution and PX (x) > 0, i.e. the particular letter x will be
used with a nonvanishing probability to convey information over the channel,
then the contribution of the mutual information due to this x must attain the
capacity; otherwise there will exist another PX ′(·) capable of achieving the
capacity by just disregarding this x (thus, PX ′(x) = 0) and using more often
input letters other than x.

Theorem 6.16 can also be exploited for finding the capacity of some chan-
nels. Consider again the BSC case; the capacity should satisfy one of the fol-
lowing three cases:

C= I(0;Y) = I(1;Y) for PX (0)> 0 and PX (1)> 0 (6.117)

or

C= I(0;Y)≥ I(1;Y) for PX (0) = 1 and PX (1) = 0 (6.118)

or

C= I(1;Y)≥ I(0;Y) for PX (0) = 0 and PX (1) = 1. (6.119)

Since (6.118) and (6.119) only yield uninteresting zero capacity, it remains to
verify whether or not (6.117) can give a positive capacity. By rearrangement
(6.117) implies

C= I(0;Y) (6.120)

=
1

∑
y=0

PY |X (y|0) log2
PY |X (y|0)

PY (y)
(6.121)

=−
1

∑
y=0

PY |X (y|0) log2 PY (y)+
1

∑
y=0

PY |X (y|0) log2 PY |X (y|0) (6.122)

=−(1− ε) log2 PY (0)− ε log2 PY (1)−Hb(ε) (6.123)

138 Mutual information and channel capacity

and

C= I(1;Y) (6.124)

=
1

∑
y=0

PY |X (y|1) log2
PY |X (y|1)

PY (y)
(6.125)

=−
1

∑
y=0

PY |X (y|1) log2 PY (y)+
1

∑
y=0

PY |X (y|1) log2 PY |X (y|1) (6.126)

=−ε log2 PY (0)− (1− ε) log2 PY (1)−Hb(ε), (6.127)

which yields

−(1− ε) · log2 PY (0)− ε · log2 PY (1)−Hb(ε)

=−ε · log2 PY (0)− (1− ε) · log2 PY (1)−Hb(ε). (6.128)

This can only be satisfied if PY (0) = PY (1) (= 1/2). Thus

C=−ε · log2

(
1
2

)
− (1− ε) · log2

(
1
2

)
−Hb(ε) (6.129)

= 1−Hb(ε) bits. (6.130)

Exercise 6.18 Repeat the above arguments to derive the capacity of the BEC.
♦

6.11 Shannon’s Channel Coding Theorem

The channel capacity measures the amount of information that can be carried
over the channel; in fact, it characterizes the maximal amount of transmis-
sion rate for reliable communication. Prior to the mid 1940s people believed
that transmitted data subject to noise corruption can never be perfectly recov-
ered unless the transmission rate approaches zero [Gal01]. Shannon’s land-
mark work [Sha48] in 1948 disproved this thinking and established the well
known Channel Coding Theorem: as long as the transmission rate in the same
units as the channel capacity, e.g. information bits per channel use, is below
(but can be arbitrarily close to) the channel capacity, the error can be made
smaller than any given number (which we term arbitrarily small) by some
properly designed coding scheme.

In what follows are some definitions that are required to state the theorem
formally; detailed mathematical proofs can be found in [CT06] and [Gal68].

Definition 6.19 An (M,n) coding scheme for the channel (X,PY |X (y|x),Y)
consists of the following.

6.11 Shannon’s Channel Coding Theorem 139

(1) A message set {1,2, . . . ,M}.
(2) An encoding function φ : {1,2, . . . ,M} → Xn, which is a rule that asso-

ciates message m with a channel input sequence of length n, called the mth
codeword and denoted by xn(m). The set of all codewords

{xn(1),xn(2), . . . ,xn(M)}

is called the codebook (or simply the code).

(3) A decoding function ψ : Yn→{1,2, . . . ,M}, which is a deterministic rule
that assigns a guess to each possible received vector.

Definition 6.20 (Rate) The rate R of an (M,n) coding scheme is defined to
be

R,
log2M

n
bits per transmission. (6.131)

In (6.131), log2M describes the number of digits needed to write the num-
bers 0, . . . ,M− 1 in binary form. For example, for M = 8 we need three bi-
nary digits (or bits): 000, . . . ,111. The denominator n tells how many times the
channel is used for the total transmission of a codeword (recall that n is the
codeword length). Hence the rate describes how many bits are transmitted on
average in each channel use.

Definition 6.21 Let

λm , Pr[ψ(Yn) 6= m | Xn = xn(m)] (6.132)

be the conditional probability that the receiver makes a wrong guess given that
the mth codeword is sent. The average error probability λ (n) for an (M,n)
coding scheme is defined as

λ
(n) ,

1
M

M

∑
m=1

λm. (6.133)

Now we are ready for the famous Channel Coding Theorem due to Shannon.

140 Mutual information and channel capacity

Theorem 6.22 (Shannon’s Channel Coding Theorem)

For a discrete-time information channel, it is possible to transmit mes-

sages with an arbitrarily small error probability (i.e. we have so-called

reliable communication), if the communication rate R is below the

channel capacity C. Specifically, for every rate R < C, there exists a

sequence of (2nR,n) coding schemes5 with average error probability

λ (n) → 0 as n → ∞.

Conversely, any sequence of (2nR,n) coding schemes with λ (n) → 0

must have R ≤ C. Hence, any attempt of transmitting at a rate larger

than capacity will for sure fail in the sense that the average error prob-

ability is strictly larger than zero.

Take the BSC for example. If the cross-over probability is ε = 0.1, the result-
ing capacity is C= 0.531 bits per channel use. Hence reliable communication
is only possible for coding schemes with a rate smaller than 0.531 bits per
channel use.

Although the theorem shows that there exist good coding schemes with arbi-
trarily small error probability for long blocklength n, it does not provide a way
of constructing the best coding schemes. Actually, the only knowledge we can
infer from the theorem is perhaps “a good code favors a large blocklength.”
Ever since Shannon’s original findings, researchers have tried to develop prac-
tical coding schemes that are easy to encode and decode; the Hamming code
we discussed in Chapter 3 is the simplest of a class of algebraic error-correcting
codes that can correct one error in a block of bits. Many other techniques have
also been proposed to construct error-correcting codes, among which the turbo
code – to be discussed in Chapter 7 – has come close to achieving the so-called
Shannon limit for channels contaminated by Gaussian noise.

6.12 Some historical background

In his landmark paper [Sha48], Shannon only used H, R, and C to denote en-
tropy, rate, and capacity, respectively. The first to use I for information were
5 In Theorem 6.22, 2nR is a convenient expression for the code size and should be understood as

either the smallest integer no less than its value or the largest integer no greater than its value.
Researchers tend to drop the ceiling or flooring function applying to it, because the ratio of
2nR, against the integer it is understood to be, will be very close to unity as n is large. Since the
theorem actually deals with very large codeword lengths n (note that λ (n) approaches zero only
when n is very large), the slack use of 2nR as an integer is somehow justified in concept.

6.13 Further reading 141

Philip M. Woodward and Ian L. Davies in [WD52]. This paper is a very good
read and gives an astoundingly clear overview of the fundamentals of informa-
tion theory only four years after the theory had been established by Shannon.
The authors give a slightly different interpretation of Shannon’s theory and
redevelop it using two additivity axioms. However, they did not yet use the
name “mutual information.” The name only starts to appear between 1954 and
1956. In 1954, Mark Pinsker published a paper in Russian [Pin54] with the title
“Mutual information between a pair of stationary Gaussian random processes.”
However, depending on the translation, the title also might read “The quantity
of information about a Gaussian random stationary process, contained in a sec-
ond process connected with it in a stationary manner.” Shannon certainly used
the term “mutual information” in a paper about the zero-error capacity in 1956
[Sha56].

By the way, Woodward is also a main pioneer in modern radar theory. He
had the insight to apply probability theory and statistics to the problem of re-
covering data from noisy samples. Besides this, he is a huge clock fan and
made many contributions to horology; in particular, he built the world’s most
precise mechanical clock, the Clock W5, inventing a completely new mecha-
nism.6

6.13 Further reading

Full discussions of the mutual information, channel capacity, and Shannon’s
Channel Coding Theorem in terms of probability theory can be found in many
textbooks, see, e.g., [CT06] and [Gal68]. A unified discussion of the capacity
results of the uniformly dispersive channel is given in [Mas96]. Further gener-
alizations of uniformly dispersive channels are quasi-symmetric channels, dis-
cussed in [CA05, Chap. 4], and T-symmetric channels, described in [RG04].
The proof of Theorem 6.16 is closely related to the subject of constrained op-
timization, which is a standard technique for finding the channel capacity; see,
e.g., [Gal68] and [CT06]. In addition to the Source Coding Theorem (Theo-
rem 5.28 introduced in Chapter 5) and the Channel Coding Theorem (The-
orem 6.22), Shannon’s third landmark contribution is the development of the
so-called rate distortion theory, which describes how to represent a continuous
source with good fidelity using only a finite number of “representation levels”;
for more details, please also refer to [CT06] and [Gal68].

6 To see some amazing videos of this, search on http://www.youtube.com for “clock W5.”

142 Mutual information and channel capacity

References
[BT02] Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability.

Athena Scientific, Belmont, MA, 2002.
[CA05] Po-Ning Chen and Fady Alajaji, Lecture Notes on Information Theory,

vol. 1, Department of Electrical Engineering, National Chiao Tung Univer-
sity, Hsinchu, Taiwan, and Department of Mathematics & Statistics, Queen’s
University, Kingston, Canada, August 2005. Available: http://shannon.cm.nc
tu.edu.tw/it/itvol12004.pdf

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory,
2nd edn. John Wiley & Sons, Hoboken, NJ, 2006.

[Gal68] Robert G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, New York, 1968.

[Gal01] Robert G. Gallager, “Claude E. Shannon: a retrospective on his life, work,
and impact,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp.
2681–2695, November 2001.

[Kar39] William Karush, “Minima of functions of several variables with inequalities
as side constraints,” Master’s thesis, Department of Mathematics, University
of Chicago, Chicago, IL, 1939.

[KT51] Harold W. Kuhn and Albert W. Tucker, “Nonlinear programming,” in Pro-
ceedings of Second Berkeley Symposium on Mathematical Statistics and
Probability, J. Neyman, ed. University of California Press, Berkeley, CA,
1951, pp. 481–492.

[Mas96] James L. Massey, Applied Digital Information Theory I and II, Lecture notes,
Signal and Information Processing Laboratory, ETH Zurich, 1995/1996.
Available: http://www.isiweb.ee.ethz.ch/archive/massey scr/

[Pin54] Mark S. Pinsker, “Mutual information between a pair of stationary Gaus-
sian random processes,” (in Russian), Doklady Akademii Nauk SSSR, vol. 99,
no. 2, pp. 213–216, 1954, also known as “The quantity of information about a
Gaussian random stationary process, contained in a second process connected
with it in a stationary manner.”

[RG04] Mohammad Rezaeian and Alex Grant, “Computation of total capacity for
discrete memoryless multiple-access channels,” IEEE Transactions on Infor-
mation Theory, vol. 50, no. 11, pp. 2779–2784, November 2004.

[Sha48] Claude E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.
Available: http://moser.cm.nctu.edu.tw/nctu/doc/shannon1948.pdf

[Sha56] Claude E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans-
actions on Information Theory, vol. 2, no. 3, pp. 8–19, September 1956.

[WD52] Philip M. Woodward and Ian L. Davies, “Information theory and inverse
probability in telecommunication,” Proceedings of the IEE, vol. 99, no. 58,
pp. 37–44, March 1952.

7
Approaching the Shannon limit by turbo coding

7.1 Information Transmission Theorem

The reliable transmission of information-bearing signals over a noisy commu-
nication channel is at the heart of what we call communication. Information
theory, founded by Claude E. Shannon in 1948 [Sha48], provides a mathemat-
ical framework for the theory of communication. It describes the fundamental
limits to how efficiently one can encode information and still be able to recover
it with negligible loss.

At its inception, the main role of information theory was to provide the en-
gineering and scientific communities with a mathematical framework for the
theory of communication by establishing the fundamental limits on the per-
formance of various communication systems. Its birth was initiated with the
publication of the works of Claude E. Shannon, who stated that it is possible to
send information-bearing signals at a fixed code rate through a noisy commu-
nication channel with an arbitrarily small error probability as long as the code
rate is below a certain fixed quantity that depends on the channel character-
istics [Sha48]; he “baptized” this quantity with the name of channel capacity
(see the discussion in Chapter 6). He further proclaimed that random sources
– such as speech, music, or image signals – possess an irreducible complexity
beyond which they cannot be compressed distortion-free. He called this com-
plexity the source entropy (see the discussion in Chapter 5). He went on to
assert that if a source has an entropy that is less than the capacity of a com-
munication channel, then asymptotically error-free transmission of the source
over the channel can be achieved. This result is usually referred to as the Infor-
mation Transmission Theorem or the Joint Source–Channel Coding Theorem.

144 Approaching the Shannon limit by turbo coding

Theorem 7.1 (Information Transmission Theorem)

Consider the transmission of a source Uk = (U1,U2, . . . ,Uk) through

a channel with input Xn = (X1,X2, . . . ,Xn) and output Yn =

(Y1,Y2, . . . ,Yn) as shown in Figure 7.1. Assume that both the source

sequence U1,U2, . . . ,Uk and the noise sequence N1,N2, . . . ,Nn are inde-

pendent and identically distributed. Then, subject to a fixed code rate

R = k/n, there exists a sequence of encoder–decoder pairs such that

the decoding error, i.e. Pr
[
Ûk 6= Uk

]
, can be made arbitrarily small

(i.e. arbitrarily close to zero) by taking n sufficiently large if

1

Ts
H(U) bits/second <

1

Tc
max

PX

I(X ;Y) bits/second, (7.1)

where the base-2 logarithm is adopted in the calculation of entropy

and mutual information (so they are in units of bits), and Ts and Tc are,

respectively, the time (in units of second) to generate one source symbol

Uℓ and the time to transmit one channel symbol Xℓ. On the other hand,

if

1

Ts
H(U) bits/second >

1

Tc
max

PX

I(X ;Y) bits/second, (7.2)

then Pr
[
Ûk 6= Uk

]
has a universal positive lower bound for all coding

schemes of any length k; hence, the error cannot be made arbitrarily

small.

Recall from Definition 6.20 that the rate of a code is defined as

R=
log2M

n
bits per transmission. (7.3)

From Figure 7.1 we now see that here we have1 M= 2k, i.e.

R=
log2(2

k)

n
=

k
n
. (7.4)

On the other hand, it is also apparent from Figure 7.1 that, due to timing rea-
sons, we must have

kTs = nTc. (7.5)

1 The number of codewords M is given by the number of different source sequences Uk of
length k. For simplicity we assume here that the source is binary, i.e. |U| = 2. In general we
have M= |U|k and R= (k/n) log2 |U|.

7.2 The Gaussian channel 145

ChannelTransmitter Receiver

-Uk, . . . ,U2,U1 Encoder -Xn, . . . ,X1 ⊕ -Yn, . . . ,Y1

6
Nn, . . . ,N2,N1

Decoder -Ûk, . . . ,Û2,Û1

Figure 7.1 Noisy information transmission system.

Combined with (7.4) we thus see that the code rate can also be represented as

R=
Tc

Ts
. (7.6)

In Sections 7.3 and 7.4, we will further explore the two situations corre-
sponding to whether condition (7.1) or (7.2) is valid.

7.2 The Gaussian channel

Figure 7.1 considers the situation of a binary source U1,U2, . . . ,Uk being trans-
mitted through a noisy channel that is characterized by

Y` = X`+N`, `= 1,2, . . . ,n, (7.7)

where X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn are, respectively, the channel input and
channel output sequences, and N1,N2, . . . ,Nn is the noise sequence.

Assume that U` is either 0 or 1, and Pr [U` = 0] = Pr [U` = 1] = 1/2. Also
assume that U1,U2, . . . ,Uk are all independent.2 Hence, its average entropy is
equal to

1
k

H(Uk) =
1
k ∑

uk∈{0,1}k
Pr
[
Uk = uk

]
log2

(
1

Pr[Uk = uk]

)
bits/source symbol

(7.8)

=
1
k ∑

uk∈{0,1}k
2−k log2

(
1

2−k

)
bits/source symbol (7.9)

= 1 bit/source symbol, (7.10)

where we abbreviate (U1,U2, . . . ,Uk) as Uk.
In a practical communication system, there usually exists a certain constraint

2 This assumption is well justified in practice: were U` not uniform and independent, then any
good data compression scheme could make them so. For more details on this, we refer to
Appendix 7.7.

146 Approaching the Shannon limit by turbo coding

E on the transmission power (for example, in units of joule per transmission).
This power constraint can be mathematically modeled as

x2
1 + x2

2 + · · ·+ x2
n

n
≤ E for all n. (7.11)

When being transformed into an equivalent statistical constraint, one can re-
place (7.11) by

E

[
X2

1 +X2
2 + · · ·+X2

n

n

]
= E

[
X2

1
]
≤ E, (7.12)

where E[·] denotes the expected value of the target random variable, and equal-
ity holds because we assume E

[
X2

1
]
= E

[
X2

2
]
= · · ·= E

[
X2

n
]
, i.e. the channel

encoder is expected to assign, on average, an equal transmission power to each
channel input. Note that the channel inputs are in general strongly dependent so
as to combat interference; what we assume here is that they have, on average,
equal marginal power. We further assume that the noise samples N1,N2, . . . ,Nn

are independent in statistics and that the probability density function3 of each
N` is given by

fN`
(t) =

1√
2πσ2

exp
(
− t2

2σ2

)
, t ∈ℜ. (7.13)

This is usually termed the zero-mean Gaussian distribution, and the corre-
sponding channel (7.7) is therefore called the Gaussian channel.

7.3 Transmission at a rate below capacity

It can be shown that the channel capacity (i.e. the largest code rate below which
arbitrarily small error probability can be obtained) of a Gaussian channel as
defined in Section 7.2 is

C(E) = max
fX :E[X2]≤E

I(X ;Y) (7.14)

=
1
2

log2

(
1+

E

σ2

)
bits/channel use, (7.15)

3 A probability density function is the density function for probability. Similar to the fact that
the density of a material describes its mass per unit volume, the probability density function
gives the probability of occurrence per unit point. Hence, integration of the material density
over a volume leads to the mass confined within it, and integration of the probability density
function over a range tells us the probability that one will observe a value in this range. The
Gaussian density function in (7.13) is named after the famous mathematician Carl Friedrich
Gauss, who used it to analyze astronomical data. Since it is quite commonly seen in practice, it
is sometimes named the normal distribution.

7.4 Transmission at a rate above capacity 147

where the details can be found in [CT06, Eq. (9.16)]. Recall from the Informa-
tion Transmission Theorem (Theorem 7.1) that if the source entropy (namely,
1 bit/source symbol) is less than the capacity of a communication channel (i.e.
(1/2) log2(1+E/σ2) bits per channel use), then reliable transmission becomes
feasible. Hence, in equation form, we can present the condition for reliable
transmission as follows:

1
Ts

bits/second <
1

2Tc
log2

(
1+

E

σ2

)
bits/second. (7.16)

Note that when comparing we have to represent the average source entropy
and channel capacity by the same units (here, bits/second). This is the reason
why we have introduced Ts and Tc.

7.4 Transmission at a rate above capacity

Now the question is what if

1
Ts

bits/second >
1

2Tc
log2

(
1+

E

σ2

)
bits/second. (7.17)

In such a case, we know from the Information Transmission Theorem (Theo-
rem 7.1) that an arbitrarily small error probability cannot be achieved. How-
ever, can we identify the smallest error rate that can be possibly obtained?

ChannelTransmitter Receiver

-Uk, . . . ,U1 Com-
pressor

6Vk, . . . ,V1

Encoder -Xn, . . . ,X1 ⊕ -Yn, . . . ,Y1

6

Nn, . . . ,N1

Decoder

-V̂k, . . . ,V̂1

Figure 7.2 Noisy information transmission system with incorporated com-
pressor.

A straightforward system design is to map each source sequence u1, . . . ,uk

into a compressed binary sequence vk , g(uk) for transmission (see Fig-
ure 7.2), where the compressor function g(·) is chosen such that the resulting
average entropy is less than the channel capacity, i.e.

1
Ts

1
k

H(Vk) bits/second <
1

2Tc
log2

(
1+

E

σ2

)
bits/second. (7.18)

Then, from Theorem 7.1 we know that V1,V2, . . . ,Vk can be transmitted through
the additive Gaussian noise channel with arbitrarily small error. This is to say,

148 Approaching the Shannon limit by turbo coding

there exists a transmission scheme such that the decision at the channel out-
put v̂1, v̂2, v̂3, . . . is the same as the compressed channel input v1,v2,v3, . . . with
probability arbitrarily close to unity.4 As a consequence, the error that is intro-
duced in this straightforward system design occurs only at those instances (i.e.
`s) where the compression is not reversible, i.e. u` cannot be recovered from
vk.

In the following, we will determine a minimum error probability that the
straightforward system in Figure 7.2 cannot beat even if we optimize over all
possible compressor designs subject to the average entropy of the compressor
output being smaller than the channel capacity. Before we come to this analy-
sis, we give several examples of how a compressor works and what is its error.

Example 7.2 For example, let g(·) map u1,u2,u3, . . . into v1,v2,v3, . . . in a
fashion that

(v1,v2,v3,v4, . . .) = g(u1,u2,u3,u4, . . .) = (u1,u1,u3,u3, . . .), (7.19)

i.e. v2`−1 = v2` = u2`−1 (see Table 7.1). Since V2`−1 =V2` for every `, no new
information is provided by V2` given V2`−1. The average entropy of V1,V2, . . . ,

Vk, with k = 2m even, is then given by

1
k

H(Vk) =
1

2m
H(V1,V2, . . . ,V2m) (7.20)

=
1

2m
H(V1,V3, . . . ,V2m−1) (7.21)

=
1

2m
H(U1,U3,U5, . . . ,U2m−1) (7.22)

=
1
2

bits/source symbol, (7.23)

i.e.
1
Ts

1
k

H(Vk) =
1

2Ts
bits/second. (7.24)

4 What Shannon targeted in his theorem is the block error rate, not the bit error rate. Hence, his
theorem actually concludes that Pr

[
(V1,V2, . . . ,Vk) = (V̂1,V̂2, . . . ,V̂k)

]
' 1 when k is sufficiently

large since
1
Ts

1
k

H(Vk) bits/second

is less than
1

2Tc
log2

(
1+

E

σ2

)
bits/second.

This is a very strong statement because, for example, v` = v̂` for 1≤ `≤ k−1 and vk 6= v̂k will
be counted as one block error even though there is only one bit error among these k bits. Note
that Pr

[
(V1,V2, . . . ,Vk) = (V̂1,V̂2, . . . ,V̂k)

]
' 1 surely implies that Pr

[
V` = V̂`

]
' 1 for most `,

but not vice versa.

7.4 Transmission at a rate above capacity 149

Table 7.1 The mapping g(·) from uk to vk defined in (7.19) in Example 7.2

u1,u2,u3,u4, . . . v1,v2,v3,v4, . . .

0000. . . 0000. . .
0001. . . 0000. . .
0010. . . 0011. . .
0011. . . 0011. . .
0100. . . 0000. . .
0101. . . 0000. . .
0110. . . 0011. . .
0111. . . 0011. . .
1000. . . 1100. . .
1001. . . 1100. . .
1010. . . 1111. . .
1011. . . 1111. . .
1000. . . 1100. . .
1101. . . 1100. . .
1110. . . 1111. . .
1111. . . 1111. . .

Under the premise that

1
2Ts

bits/second <
1

2Tc
log2

(
1+

E

σ2

)
bits/second, (7.25)

the average “bit” error rate of the system is given by

1
k

(
Pr[U1 6=V1]+Pr[U2 6=V2]+Pr[U3 6=V3]+Pr[U4 6=V4]

+ · · ·+Pr[Uk 6=Vk]
)

=
1

2m

(
Pr[U1 6=V1]+Pr[U2 6=V2]+Pr[U3 6=V3]+Pr[U4 6=V4]

+ · · ·+Pr[U2m 6=V2m]
)

(7.26)

=
1

2m

(
0+Pr[U2 6=V2]+0+Pr[U4 6=V4]+ · · ·+Pr[U2m 6=V2m]

)
(7.27)

=
1

2m

(
Pr[U2 6=U1]+Pr[U4 6=U3]+ · · ·+Pr[U2m 6=U2m−1]

)
(7.28)

=
1
2

Pr[U2 6=U1] (7.29)

=
1
2

(
Pr[(U1,U2) = (01)]+Pr[(U1,U2) = (10)]

)
(7.30)

150 Approaching the Shannon limit by turbo coding

=
1
2

(
1
4
+

1
4

)
=

1
4
. (7.31)

In fact, the error rate of 1/4 can be obtained directly without computation by
observing that all the odd-indexed bits U1,U3,U5, . . . can be correctly recovered
from V1,V3,V5, . . .; however, the sequence Vk provides no information for all
the even-indexed bits U2,U2,U6, . . . Thus, we can infer that a zero error rate for
odd-indexed bits and a 1/2 error rate based on a pure guess for even-indexed
bits combine to a 1/4 error rate. ♦

Example 7.2 provides a compressor with average bit error rate (BER) of
1/4 between input U1,U2, . . . ,Uk and output V1,V2, . . . ,Vk subject to its aver-
age output entropy 1/2Ts bits/second being smaller than the channel capac-
ity C(E) = (1/2Tc) log2(1+E/σ2). However, dropping all even-indexed bits
may not be a good compressor design because it is possible that half of the
bits in V1,V2, . . . ,Vk are different from U1,U2, . . . ,Uk; i.e., in the worst case,
the difference between compressor input U1,U2, . . . ,Uk and compressor output
V1,V2, . . . ,Vk will result in a large distortion of k/2 bits.

In Section 3.3.3 we saw that the (7,4) Hamming code is a perfect packing
of radius-one spheres in the 7-dimensional binary space. Using this property,
we can provide in Example 7.3 an alternative compressor design such that the
input and output are different in at most 1 bit with a (smaller) average BER of
1/8 and a (slightly larger) average output entropy of 4/7Ts bits/second.

Example 7.3 A compressor g is defined based on the (7,4) Hamming code-
words listed in Table 3.2 as follows: g(u7) = v7 if v7 is a (7,4) Hamming code-
word and u7 is at Hamming distance at most one from v7. The perfect packing
of the 16 nonoverlapping radius-one spheres centered at the codewords for the
(7,4) Hamming code guarantees the existence and uniqueness of such a v7;
hence, the compressor function mapping is well defined.

The probability of each (7,4) Hamming codeword appearing at the output
is 8 ·2−7 = 2−4 (since there are eight u7 mapped to the same v7). Hence,

1
7

H(V7) =
1
7 ∑

v7∈CH

2−4 log2

(
1

2−4

)
(7.32)

=
4
7

bits/source symbol, (7.33)

where CH denotes the set of the 16 codewords of the (7,4) Hamming code.
Hence,

1
7Ts

H(V7) =
4

7Ts
bits/second. (7.34)

7.4 Transmission at a rate above capacity 151

Next, we note that Pr[U1 6=V1] = 1/8 because only one of the eight u7 that
are mapped to the same v7 results in a different first bit. Similarly, we can
obtain

Pr[U2 6=V2] = Pr[U3 6=V3] = · · ·= Pr[U7 6=V7] =
1
8
. (7.35)

Hence, the average BER is given by

BER =
1
7
(
Pr[U1 6=V1]+Pr[U2 6=V2]+ · · ·Pr[U7 6=V7]

)
=

1
8
. (7.36)

This example again shows that data compression can be regarded as the oppo-
site operation of error correction coding, where the former removes the redun-
dancy (or even some information such as in this example) while the latter adds
controlled redundancy to combat the channel noise effect. ♦

Exercise 7.4 Design a compressor mapping by reversing the roles of encoder
and decoder of the three-times repetition code. Prove that the average BER is
1/4 and the average output entropy equals 1/3 bits per source symbol. ♦

Readers may infer that one needs to know the best compressor design, which
minimizes the BER subject to the average output entropy less than C(E), in or-
der to know what will be the minimum BER attainable for a given channel
(or more specifically for a given C(E)). Ingeniously, Shannon identifies this
minimum BER without specifying how it can be achieved. We will next de-
scribe his idea of a converse proof that shows that the minimum BER cannot
be smaller than some quantity, but that does not specify g(·).

We can conceptually treat the compressor system as a channel with input
U1,U2, . . . ,Uk and output V1,V2, . . . ,Vk. Then, by

H(Vk|Uk) = H(g(Uk)|Uk) = 0, (7.37)

we derive from (6.85) that

I(Uk;Vk) = H(Uk)−H(Uk|Vk) = H(Vk)−H(Vk|Uk) = H(Vk). (7.38)

This implies that the average entropy of the compressor output is equal to

1
k

H(Vk) =
1
k

H(Uk)− 1
k

H(Uk|Vk) = 1− 1
k

H(Uk|Vk) bits. (7.39)

By the chain rule for entropy,5

1
k

H(Vk) = 1− 1
k

H(Uk|Vk) (7.40)

5 The chain rule for entropy is

H(Uk) = H(U1)+H(U2|U1)+H(U3|U1,U2)+ · · ·+H(Uk|U1, . . . ,Uk−1).

This is a generalized form of Proposition 6.4 and can be proven similarly.

152 Approaching the Shannon limit by turbo coding

= 1− 1
k

(
H(U1|Vk)+H(U2|U1,Vk)+H(U3|U1,U2,Vk)

+ · · ·+H(Uk|U1, . . . ,Uk−1,Vk)
)

(7.41)

≥ 1− 1
k

(
H(U1|V1)+H(U2|V2)+H(U3|V3)+ · · ·+H(Uk|Vk)

)
,

(7.42)

where (7.42) holds because additional information always helps to decrease
entropy; i.e., H(U`|U1, . . . ,U`−1,V1, . . . ,Vk) ≤ H(U`|V`) since the former has
additional information (U1, . . . ,U`−1,V1, . . . ,V`−1,V`+1, . . . ,Vk) (see Corollar-
y 6.10).

We proceed with the derivation by pointing out that

H(U`|V`) = Pr[V` = 0]H(U`|V` = 0)+Pr[V` = 1]H(U`|V` = 1) (7.43)

= Pr[V` = 0]Hb
(
Pr[U` = 1 |V` = 0]

)

+Pr[V` = 1]Hb
(
Pr[U` = 0 |V` = 1]

)
(7.44)

≤ Hb

(
Pr[V` = 0]Pr[U` = 1 |V` = 0]

+Pr[V` = 1]Pr[U` = 0 |V` = 1]
)

(7.45)

= Hb(BER`), (7.46)

where BER` , Pr[U` 6=V`];

Hb(p), p log2
1
p
+(1− p) log2

1
1− p

, for 0≤ p≤ 1, (7.47)

is the so-called binary entropy function (see Section 5.2.2); and (7.45) follows
from the concavity6 of the function Hb(·). We then obtain the final lower bound
of the output average entropy:

1
k

H(Vk)≥ 1− 1
k

(
Hb(BER1)+Hb(BER2)+ · · ·+Hb(BERk)

)
(7.48)

= 1− 1
k

k

∑
`=1

Hb(BER`) (7.49)

≥ 1−Hb

(
1
k

k

∑
`=1

BER`

)
(7.50)

= 1−Hb(BER). (7.51)

Here, (7.50) follows again from concavity.
In conclusion, the Information Transmission Theorem (Theorem 7.1) iden-

tifies the achievable bit error rate (BER) for the target additive Gaussian noise

6 For a definition of concavity see Appendix 7.8.

7.4 Transmission at a rate above capacity 153

channel as follows:

1
Ts

(1−Hb(BER))≤ 1
Ts

1
k

H(Vk)<
1

2Tc
log2

(
1+

E

σ2

)
, (7.52)

where the first inequality follows from (7.51) and the second follows from
our assumption (7.18). In usual communication terminologies, people denote
R= Tc/Ts = k/n (information bit carried per channel use) as the channel code
rate; N0 , 2σ2 (joule) as the noise energy level; Eb , ETs/Tc (joule) as the
equivalent transmitted energy per information bit; and γb , Eb/N0 as the
signal-to-noise power ratio per information bit. This transforms the above in-
equality to

Hb(BER)> 1− 1
2R

log2 (1+2Rγb) . (7.53)

Equation (7.53) clearly indicates that the BER cannot be made smaller than

H−1
b

(
1− 1

2R
log2 (1+2Rγb)

)
, (7.54)

where H−1
b (·) is the inverse function of the binary entropy function Hb(ξ) (see

Section 5.2.2) for ξ ∈ [0,1/2]. Shannon also proved the (asymptotic) achiev-
ability of this lower bound. Hence, (7.53) provides the exact margin on what
we can do and what we cannot do when the amount of information to be trans-
mitted is above the capacity.

We plot the curves corresponding to R = 1/2 and R = 1/3 in Figure 7.3.
The figure indicates that there exists a rate-1/2 system design that can achieve
BER = 10−5 at γb,dB , 10log10(Eb/N0) close to 0 dB, i.e. for Eb ' N0. On
the other hand, no system with a rate R= 1/2 can yield a BER less than 10−5

if the signal energy per information bit Eb is less than the noise energy level
N0. Information theorists therefore call this threshold the Shannon limit.

For decades (ever since Shannon ingeniously drew such a sacred line in
1948 simply by analysis), researchers have tried to find a good design that can
achieve the Shannon limit. Over the years, the gap between the real transmis-
sion scheme and this theoretical limit has been gradually closed. For example, a
concatenated code [For66] proposed by David Forney can reach BER = 10−5

at about γb,dB ' 2 dB. However, no schemes could push their performance
curves within 1 dB of the Shannon limit until the invention of turbo codes in
1993 [BGT93]. Motivated by the turbo coding idea, the low-density parity-
check (LDPC) codes were subsequently rediscovered7 in 1998; these could

7 We use “rediscover” here because the LDPC code was originally proposed by Robert G. Gal-
lager in 1962 [Gal62]. However, due to its high complexity, computers at that time could not
perform any simulations on the code; hence, nobody realized the potential of LDPC codes. It

154 Approaching the Shannon limit by turbo coding

10−6

10−5

10−4

10−3

10−2

10−1

1

−6 −5 −4 −3 −2 −1 −0.5 0 1 2

B
E

R

γb,dB [dB]

Shannon limit

R= 1/2
R= 1/3

Figure 7.3 The Shannon limits for rates 1/2 and 1/3 codes on continuous-
input AWGN channels. Decibel (abbreviated as dB) is a logarithmic scaling
of a given quantity; i.e., we first take the base-10 logarithm and then multiply
by 10. So, e.g., γb,dB , 10log10(γb) = 10log10(Eb/N0).

reduce the performance gap (between the LDPC codes and the Shannon limit)
within, e.g., 0.1 dB. This counts 50 years of efforts (from 1948 to 1998) until
we finally caught up with the pioneering prediction of Shannon in the classical
additive Gaussian noise channel.

With excitement, we should realize that this is just the beginning of closing
the gap, not the end of it. Nowadays, the channels we face in reality are much
more complicated than the simple additive Gaussian noise channel. Multipath
and fading effects, as well as channel nonlinearities, make the Shannon-limit
approaching mission in these channels much more difficult. New ideas other
than turbo and LDPC coding will perhaps be required in the future. So we are
waiting for some new exciting results, similar to the discovery of turbo codes
in 1993.

was Matthew Davey and David MacKay who rediscovered and examined the code, and con-
firmed its superb performance in 1998 [DM98].

7.5 Turbo coding: an introduction 155

7.5 Turbo coding: an introduction

Of all error-correcting codes to date, the turbo code was the first that could
approach the Shannon limit within 1 dB, at BER = 10−5, over the additive
Gaussian noise channel. It is named the turbo code because the decoder func-
tions iteratively like a turbo machine, where two turbo engines take turns to
refine the previous output of the other until a certain number of iterations is
reached.

t1 t2 t3 t4- - - - -
6 6 6 6

?- -

⊕W��	

⊕

interleaved seq.

t1 t2 t3 t4-- - - -
6 6 6 6

?- -

⊕W��	

⊕

information seq.

π

?

?

- x1

x2

x3

Figure 7.4 Exemplified turbo encoder from [BGT93]. An example of how a
length-5 input sequence passes through this encoder is depicted in Figure 7.5.
The complete list of all length-5 input sequences with their corresponding
codewords is given in Table 7.2.

As an example, an information sequence (s1,s2,s3,s4,s5) = (10100) is fed
into the turbo encoder shown in Figure 7.4, where s1 is inserted first. In this
figure, the squares marked with t1, t2, t3, and t4 are clocked memory elements,
usually named flip-flops or simply registers, which store the coming input
binary data and, at the same time, output its current content according to a
clocked timer. The square marked with π is the interleaver that permutes the
input sequence into its interleaved counterpart. The notation “⊕” denotes the
modulo-2 addition.

This figure then indicates that the output sequence from node x1 will be the
original information sequence (s1,s2,s3,s4,s5) = (10100). Since the contents
of all four registers are initially zero, and since

t1(`+1) = s`⊕ t1(`)⊕ t2(`)⊕ t3(`)⊕ t4(`), (7.55)

156 Approaching the Shannon limit by turbo coding

input register output
sequence contents sequence

s5s4s3s2s1→ t1 t2 t3 t4 → x2(5)x2(4)x2(3)x2(2)x2(1)

00101 0 0 0 0

0010 1 0 0 0 1

001 1 1 0 0 11

00 1 1 1 0 111

0 1 1 1 1 1111

0 1 1 1 11111

Figure 7.5 The snap show of the input and output sequences of the turbo
encoder from Figure 7.4 at node x2. Note that we have mirrored the sequences
to match the direction of the register placement in Figure 7.4.

t2(`+1) = t1(`), (7.56)

t3(`+1) = t2(`), (7.57)

t4(`+1) = t3(`), (7.58)

x2(`) = t1(`+1)⊕ t4(`) = s`⊕ t1(`)⊕ t2(`)⊕ t3(`), (7.59)

where ` represents the clocked time instance, we obtain the output sequence
from node x2 as 11111 (see Figure 7.5). Note that in order to start indexing
all sequences from 1, we re-adjust the index at the output such that x2(`) is
actually outputted at clocked time instance `+1.

An important feature of the turbo code design is the incorporation of an
interleaver π that permutes the input sequence. For example,

π(s1s2s3s4s5) = s4s2s1s5s3. (7.60)

In concept, the purpose of adding an interleaver is to introduce distant depen-
dencies into the codewords. Notably, a strong dependency among the code bits
can greatly enhance their capability against local noisy disturbance. A good
example is a code of two codewords, i.e.

000000000000000 and 111111111111111,

where the code bits are all the same and hence are strongly dependent. Since
the receiver knows all code bits should be the same, the local noisy distur-
bances that alter, for example, code bits 3, 7, and 10, yielding

001000100100000,

7.5 Turbo coding: an introduction 157

Table 7.2 The information sequences of length 5 and their respective turbo
codewords of length 15 for the turbo code in Figure 7.4 with interleaver

π(s1s2s3s4s5) = s4s2s1s5s3

Information Codewords
sequences

s x1 x2 x3

s1s2s3s4s5 x1 = s x2(1)x2(2)x2(3)x2(4)x2(5) x3(1)x3(2)x3(3)x3(4)x3(5)

00000 — 00000 00000
00001 — 00001 00011
00010 — 00011 11001
00011 — 00010 11010
00100 — 00110 00001
00101 — 00111 00010
00110 — 00101 11000
00111 — 00100 11011
01000 — 01100 01100
01001 — 01101 01111
01010 — 01111 10101
01011 — 01110 10110
01100 — 01010 01101
01101 — 01011 01110
01110 — 01001 10100
01111 — 01000 10111
10000 — 11001 00110
10001 — 11000 00101
10010 — 11010 11111
10011 — 11011 11100
10100 — 11111 00111
10101 — 11110 00100
10110 — 11100 11110
10111 — 11101 11101
11000 — 10101 01010
11001 — 10100 01001
11010 — 10110 10011
11011 — 10111 10000
11100 — 10011 01011
11101 — 10010 01000
11110 — 10000 10010
11111 — 10001 10001

158 Approaching the Shannon limit by turbo coding

can be easily recovered back to the transmitted codeword

000000000000000.

By interleaving the information bits, s1 may now affect distant code bits such
as x3(`), where ` can now be much larger than the number of registers, 4. This
is contrary to the conventional coding scheme for which the code bit is only a
function of several recent information bits. For example, without interleaving,
s1 can only affect x2(4) but not any x2(`) with ` > 4 according to (7.55)–(7.59).
We can of course purposely design a code such that each code bit is a function
of more distant information bits, but the main problem here is that the strong
dependency of code bits on distant information bits will make the decoder
infeasibly complex.

This leads to another merit of using the interleaver: it helps structure a fea-
sible decoding scheme, i.e. turbo decoding. In short, the sub-decoder based
on x1 and x2 will deal with a code that only has local dependencies as each
code bit only depends on the previous four information bits. The second sub-
decoder based on interleaved x1 and x3 similarly handles a code with only local
dependencies. By this design, the task of decoding the code with distant depen-
dencies can be accomplished by the cooperation of two feasible sub-decoders.

To be specific, the practice behind turbo decoding is to first decode the in-
formation sequence based on the noisy receptions due to the transmission of
sequences x1 and x2 (in terms of the above example, 10100 and 11111). Since
the code bits generated at node x2 depend on previous information bits only
through the contents of four registers, the sub-decoding procedure is feasi-
ble. The decoding output sequence, however, is not the final estimate about
the information sequence 10100, but a sequence of real numbers that repre-
sent the probability for each bit to be, e.g. 1, calculated based on the noisy
receptions due to the transmission of x1 and x2. Continuing with the exam-
ple of the simple 5-bit input sequence, the decoding output sequence might
be (0.8,0.2,0.7,0.1,0.1). Based on these numbers, we know that with 80%
probability the first bit is 1. Also, we assert with only 20% confidence that
the second information bit is 1. Please note that if there is no noise during the
transmission, the five real numbers in the decoding output sequence should be
(1.0,0.0,1.0,0.0,0.0). It is due to the noise that the receiver can only approxi-
mate the sequence that the transmitter sends. In terminology, we call these real
numbers the soft decoding outputs in contrast to the conventional zero–one
hard decoding outputs.

After obtaining the real-valued decoding output based on the noisy recep-
tions due to the transmission of x1 and x2, one can proceed to refine these
numbers by performing a similar decoding procedure based on the noisy re-

7.6 Further reading 159

ceptions due to the transmission of x1 and x3 as well as the interleaved soft de-
coding output from the previous step, e.g. (0.1,0.2,0.8,0.1,0.7) subject to the
interleaver π(s1s2s3s4s5)= s4s2s1s5s3. With the additional knowledge from the
noisy receptions due to the transmission of x3, these numbers may be refined
to, e.g., (0.05,0.1,0.9,0.05,0.8); hence, the receiver is more certain (here, 90%
sure) that s1 should be 1.

By performing the decoding procedure based on the noisy receptions due to
x1 and x2 as well as the de-interleaved soft decoding output (e.g. (0.9, 0.1, 0.8,
0.05, 0.05)), these numbers are refined again. Then, in terms of these re-refined
numbers, the decoding procedure based on the noisy receptions due to x1 and
x3 is re-performed.

Because the repetitive decoding procedures are similar to running two turbo
pistons alternatively, it is named turbo coding. Simulations show that after 18
iterations we can make the final hard decisions (i.e. 0 and 1 on each bit) based
on the repeatedly refined soft decoding outputs yielding a bit error rate almost
achieving the Shannon limit.

Ever since the publication of turbo coding, iterative decoding schemes have
become a new research trend, and codes similar to the rediscovered LDPC
code have subsequently been proposed. In this way the Shannon limit finally
has become achievable after 50 years of research efforts!

7.6 Further reading

In this chapter we introduced the Information Transmission Theorem (Theo-
rem 7.1) as a summary of what we have learned in this book. In order to appre-
ciate the beauty of the theorem, we then examined it under a specific case when
the coded information is corrupted by additive Gaussian noise. Two scenarios
followed in a straightforward manner: transmission at a rate below capacity and
transmission at a rate above capacity. The former directed us to reliable trans-
mission where decoding errors can be made arbitrarily small, while the latter
gave the (in principle) required Eb/N0 to achieve an acceptable BER. Infor-
mation theorists have baptized this minimum Eb/N0 the Shannon limit. Since
this is the center of information theory, most advanced textbooks in this area
cover the subject extensively. For readers who are interested in learning more
about the theorem, [CT06] could be a good place to start. The long-standing
bible-like textbook [Gal68] by Robert G. Gallager, who was also the inventor
of the Shannon-limit-achieving low-density parity-check (LDPC) codes, can
also serve as a good reference. Some advanced topics in information theory,
such as the channel reliability function, can be found in [Bla88].

160 Approaching the Shannon limit by turbo coding

As previously mentioned, the turbo code was the first empirically confirmed
near-Shannon-limit error-correcting code. It is for this reason that the turbo
code was introduced briefly at the end of this chapter. The two books [HW99]
and [VY00] may be useful for those who are specifically interested in the prac-
tice and principle of turbo codes. Due to their significance, Shu Lin and Daniel
Costello also devote one chapter for each of turbo coding and LDPC coding in
their book in the new 2004 edition [LC04]. For general readers, the material
in these two chapters should suffice for a comprehensive understanding of the
related subjects.

7.7 Appendix: Why we assume uniform and independent
data at the encoder

It is very common to assume that the input S` of a channel encoder comprise
independent binary data bits of uniform distribution

Pr[S` = 0] = Pr[S` = 1] =
1
2
. (7.61)

The reason for this lies in the observation that, under the assumption of in-
dependence with uniform marginal distribution, no data compression can be
performed further on the sequence S1,S2, . . . ,Sk since every binary combina-
tion of length k has the same probability 2−k (or specifically, (1/k)H(Sk) = 1
bit per source symbol). Note that any source that is compressed by an opti-
mal data compressor should in principle produce a source output of this kind,
and we can regard this assumption as that S1,S2, . . . ,Sk are the output from an
optimal data compressor.

For a better understanding of this notion, consider the following example.
Assume that we wish to compress the sequence U1,U2,U3, . . . to the binary
sequence S1,S2,S3, . . ., and that each source output U` is independent of all
others and has the probability distribution

Pr[U` = a] =
1
2
, Pr[U` = b] = Pr[U` = c] =

1
4
. (7.62)

We then use the single-letter (i.e. ν = 1) Huffman code that maps as follows:

a 7→ 0, b 7→ 10, c 7→ 11. (7.63)

Note that (7.63) is also a Fano code (see Definition 5.17); in fact, when the
source probabilities are reciprocals of integer powers of 2, both the Huffman
code and the Fano code are optimal compressors with average codeword length

7.7 Appendix: Uniform and independent data at the encoder 161

Lav equal to the source entropy, H(U) bits. This then results in

Pr
[
S`+1 = 0

∣∣∣S` = s`
]

=





Pr
[
U`′+1 = a

∣∣∣U`′ = u`′
]

if code(u`′) = s`,

Pr
[
U`′+1 = b

∣∣∣U`′ = u`′ and U`′+1 6= a
]

if code(u`′) = s`−1

and s` = 1.

(7.64)

Here `′ denotes the symbol-timing at the input of the Huffman encoder (or,
equivalently, the Fano encoder), and ` is the corresponding timing of the output
of the Huffman encoder (equivalently, the Fano encoder).

We can now conclude by the independence of the sequence U1,U2,U3, . . .

that

Pr
[
S`+1 = 0

∣∣∣S` = s`
]

=

{
Pr[U`′+1 = a] if code(u`′) = s`,
Pr[U`′+1 = b |U`′+1 6= a] if code(u`′) = s`−1 and s` = 1

(7.65)

=
1
2
. (7.66)

Since the resultant quantity 1/2 is irrespective of the s` given, we must have

Pr
[
S`+1 = 0

∣∣∣S` = s`
]
= Pr[S`+1 = 0] =

1
2
. (7.67)

Hence, S`+1 is independent of S` and is uniform in its statistics. Since this is
true for every positive integer `, S1,S2,S3, . . . is an independent sequence with
uniform marginal distribution.

Sometimes, the output from an optimal compressor can only approach as-
ymptotic independence with asymptotic uniform marginal distribution. This
occurs when the probabilities of U are not reciprocals of powers of 2, i.e. dif-
ferent from what we have assumed in the previous derivation. For example,
assume

Pr[U = a] =
2
3

and Pr[U = b] = Pr[U = c] =
1
6
. (7.68)

Then S1,S2,S3, . . . can only be made asymptotically independent with asymp-
totic uniform marginal distribution in the sense that a multiple-letter code (i.e.
a code that encodes several input letters at once; see Figure 5.12 in Section 5.5)
needs to be used with the number of letters per compression growing to infinity.
For example, the double-letter Huffman code in Table 7.3 gives

Pr[S1 = 0] = Pr
[
U2 = aa

]
=

(
2
3

)2

=
4
9

(7.69)

162 Approaching the Shannon limit by turbo coding

Table 7.3 Double-letter and triple-letter Huffman codes for source statistics
Pr[U = a] = 2/3 and Pr[U = b] = Pr[U = c] = 1/6

Letters Code

aa 0
ab 100
ac 110
bb 11100
ba 1010
bc 11101
ca 1011
cb 11110
cc 11111

Letters Code Letters Code Letters Code

aaa 00 baa 0111 caa 1110
aab 1100 bab 10100 cab 10110
aac 0100 bac 10101 cac 10111
aba 0101 bba 110100 cba 110110
abb 10000 bbb 1111000 cbb 1111100
abc 10001 bbc 1111001 cbc 1111101
aca 0110 bca 110101 cca 110111
acb 10010 bcb 1111010 ccb 1111110
acc 10011 bcc 1111011 ccc 1111111

and

Pr[S2 = 0] = Pr
[(

U2 = ab or ba or ca
)

or U4 = aaaa
]

(7.70)

=
2
3
· 1

6
+

1
6
· 2

3
+

1
6
· 2

3
+

(
2
3

)4

(7.71)

=
43
81

. (7.72)

These two numbers are closer to 1/2 than those from the single-letter Huffman
code that maps a,b,c to 0,10,11, respectively, which gives

Pr[S1 = 0] = Pr[U1 6= a] =
1
3

(7.73)

and

Pr[S2 = 0] = Pr
[
(U1 = b) or (U2 = aa)

]
=

33
54

. (7.74)

Note that the approximation from the triple-letter Huffman code may be tran-
siently less “accurate” to the uniform distribution than the double-letter Huff-
man code (in the current example we have Pr[S1 = 0] = 16/27, which is less
close to 1/2 than Pr[S1 = 0] = 4/9 from (7.69)). This complements what has
been pointed out in Section 5.4.2, namely that it is rather difficult to analyze
(and also rather operationally intensive to examine numerically8) the average

8 As an example, when ν (the number of source letters per compression) is only moderately large,
such as 20, you can try to construct a Huffman code with source alphabet of size |{a,b,c}|20 =
320 using Huffman’s Algorithm from Section 4.6. Check how many iterations are required to
root a tree with 320 leaves.

7.7 Appendix: Uniform and independent data at the encoder 163

Table 7.4 Double-letter and triple-letter Fano codes for source statistics
Pr[U = a] = 2/3 and Pr[U = b] = Pr[U = c] = 1/6

Letters Code

aa 00
ab 01
ac 100
bb 11100
ba 101
bc 11101
ca 110
cb 11110
cc 11111

Letters Code Letters Code Letters Code

aaa 00 baa 1001 caa 1010
aab 0100 bab 110011 cab 110101
aac 0111 bac 110100 cac 11011
aba 011 bba 111000 cba 11101
abb 1011 bbb 1111010 cbb 1111101
abc 110000 bbc 1111011 cbc 11111100
aca 1000 bca 111001 cca 111100
acb 110001 bcb 11111000 ccb 11111101
acc 110010 bcc 11111001 ccc 11111111

codeword length of Huffman codes. However, we can anticipate that better ap-
proximations to the uniform distribution can be achieved by Huffman codes if
the number of letters per compression further increases.

In comparison with the Huffman code, the Fano code is easier in both
analysis and implementation. As can be seen from Table 7.4 and Figure 7.6,
Pr[S1 = 0] quickly converges to 1/2, and the assumption that the compressor
output S1,S2,S3, . . . is independent with uniform marginal distribution can be
acceptable when ν is moderately large.

164 Approaching the Shannon limit by turbo coding

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

P
r[

S
1
=

0
]

ν

Figure 7.6 Asymptotics of ν-letter Fano codes.

7.8 Appendix: Definition of concavity

Definition 7.5 A real-valued function h(·) is concave if

h
(
λ p1 +(1−λ)p2

)
≥ λh(p1)+(1−λ)h(p2) (7.75)

for all real numbers p1 and p2, and all 0≤ λ ≤ 1.

Geometrically, this means that the line segment that connects two points of
the curve h(·) will always lie below the curve; see Figure 7.7 for an illustration.

h(p1)
h
(
λ p1 +(1−λ)p2

)

h(p2)

λh(p1)+(1−λ)h(p2)

h(p)

pp1 p2

Figure 7.7 Example of a concave function.

References 165

The concavity of a function can be verified by showing that its second
derivative is nonpositive. By this approach, we can prove that the binary en-
tropy function is concave, as this can also be observed from Figure 5.2. By
induction, a concave function satisfies

h

(
1
k

k

∑
`=1

a`

)
≥ 1

k

k

∑
`=1

h(a`); (7.76)

hence, (7.50) is also confirmed.

References
[BGT93] Claude Berrou, Alain Glavieux, and Punya Thitimajshima, “Near Shannon

limit error-correcting coding and decoding: turbo-codes,” in Proceedings of
IEEE International Conference on Communications (ICC), Geneva, Switzer-
land, May 23–26, 1993, pp. 1064–1070.

[Bla88] Richard E. Blahut, Principles and Practice of Information Theory. Addi-
son-Wesley, Reading, MA, 1988.

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory,
2nd edn. John Wiley & Sons, Hoboken, NJ, 2006.

[DM98] Matthew C. Davey and David MacKay, “Low-density parity check codes
over GF(q),” IEEE Communications Letters, vol. 2, no. 6, pp. 165–167, June
1998.

[For66] G. David Forney, Jr., Concatenated Codes. MIT Press, Cambridge, MA,
1966.

[Gal62] Robert G. Gallager, Low Density Parity Check Codes. MIT Press, Cam-
bridge, MA, 1962.

[Gal68] Robert G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, New York, 1968.

[HW99] Chris Heegard and Stephen B. Wicker, Turbo Coding. Kluwer Academic
Publishers, Dordrecht, 1999.

[LC04] Shu Lin and Daniel J. Costello, Jr., Error Control Coding, 2nd edn. Prentice
Hall, Upper Saddle River, NJ, 2004.

[Sha48] Claude E. Shannon, “A mathematical theory of communication,” Bell Sys-
tem Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October
1948. Available: http://moser.cm.nctu.edu.tw/nctu/doc/shannon1948.pdf

[VY00] Branka Vucetic and Jinhong Yuan, Turbo Codes: Principles and Applica-
tions. Kluwer Academic Publishers, Dordrecht, 2000.

8
Other aspects of coding theory

We end this introduction to coding and information theory by giving two exam-
ples of how coding theory relates to quite unexpected other fields. Firstly we
give a very brief introduction to the relation between Hamming codes and pro-
jective geometry. Secondly we show a very interesting application of coding
to game theory.

8.1 Hamming code and projective geometry

Though not entirely correct, the concept of projective geometry was first de-
veloped by Gerard Desargues in the sixteenth century for art paintings and
for architectural drawings. The actual development of this theory dated way
back to the third century to Pappus of Alexandria. They were all puzzled by
the axioms of Euclidean geometry given by Euclid in 300 BC who stated the
following.

(1) Given any distinct two points in space, there is a unique line connecting
these two points.

(2) Given any two nonparallel1 lines in space, they intersect at a unique point.
(3) Given any two distinct parallel lines in space, they never intersect.

The confusion comes from the third statement, in particular from the concept
of parallelism. How can two lines never intersect? Even to the end of universe?

1 Note that in some Euclidean spaces we have three ways of how two lines can be arranged: they
can intersect, they can be skew, or they can be parallel. For both skew and parallel lines, the
lines never intersect, but in the latter situation we additionally have that they maintain a con-
stant separation between points closest to each other on the two lines. However, the distinction
between skew and parallel relies on the definition of a norm. If such a norm is not defined,
“distance” is not properly defined either and, therefore, we cannot distinguish between skew
and parallel. We then simply call both types to be “parallel.”

168 Other aspects of coding theory

[00]

[01]

[10]

[11]

Figure 8.1 Two-dimensional binary Euclidean space.

In your daily life, the two sides of a road are parallel to each other, yet you
do see them intersect at a distant point. So, this is somewhat confusing and
makes people very uncomfortable. Revising the above statements gives rise to
the theory of projective geometry.

Definition 8.1 (Axioms of projective geometry)

(1) Given any two distinct points in space, there is a unique line connecting
these two points.

(2) Given any two distinct lines in space, these two lines intersect at a unique
point.

So, all lines intersect with each other in projective geometry. For parallel
lines, they will intersect at a point at infinity. Sounds quite logical, doesn’t it?
Having solved our worries, let us now focus on what the projective geometry
looks like. We will be particularly working over the binary space.

Consider a two-dimensional binary Euclidean space2 as shown in Figure 8.1.
Do not worry about the fact that one line is curved and is not a straight line.
We did this on purpose, and the reason will become clear later. Here we have
four points, and, by the first axiom in Euclidean geometry, there can be at most(4

2

)
= 6 lines.

Exercise 8.2 Ask yourself: why at most six? Can there be fewer than six lines
given four points in space? ♦

We use [XY] to denote the four points in space. Consider, for example, the
dash–single-dotted line [00][10] and the dash–double-dotted line [01][11]. The

2 Note that, as mentioned in Section 3.3.2, the Euclidean distance fails to work in the binary
Euclidean space.

8.1 Hamming code and projective geometry 169

[100]

[101]

[110]

[111][010]

Figure 8.2 Two-dimensional binary Euclidean space with a point at infinity.

dash–single-dotted line [00][10] represents the line Y = 0 and the dash–double-
dotted line [01][11] is the line of Y = 1. In Euclidean geometry, these two lines
never intersect, hence it worries people. Now we introduce the concept of a
“point at infinity” and make these two lines intersect as shown in Figure 8.2.

To distinguish the points at infinity from the original points, we add another
coordinate Z in front of the coordinates [XY]. The points in the new plots are
read as [ZXY]. The points with coordinates [1XY] are the original points and
the ones with [0XY] are the ones at infinity. But why do we label this new point
at infinity with coordinate [010] and not something else? This is because points
lying on the same line are co-linear:

[101]+ [111] = [010], (8.1)

i.e. we simply add the coordinates. Note that the same holds for [100]+[110] =
[010]. Having the same result for these two sums means that the lines of
[100][110] and [101][111] intersect at the same point, [010].

Repeating the above process gives the geometry shown in Figure 8.3. Fi-
nally, noting that the points at infinity satisfy

[001]+ [011] = [010], (8.2)

we see that these three newly added points are co-linear as well. So we can add
another line connecting these three points and obtain the final geometry given
in Figure 8.4. This is the famous Fano plane for the two-dimensional projective
binary plane. There are seven lines and seven points in this plane.

Note that the number of lines and the number of points in the projective
geometry are the same, and this is no coincidence. Recall the original definition
of projective geometry.

170 Other aspects of coding theory

[100]

[101]

[110]

[111][010]

[011]

[001]

Figure 8.3 Two-dimensional binary Euclidean space with many points at in-
finity.

(1) Given any two distinct points in space, a unique line lies on these two
points.

(2) Given any two distinct lines in space, a unique point lies on these two lines.

For the moment, forget about the literal meanings of “lines” and “points.”
Rewrite the above as follows.

(1) Given any two distinct � in space, a unique© lies on these two �.
(2) Given any two distinct© in space, a unique � lies on these two©.

So you see a symmetry between these two definitions, and this means the �s
(lines) are just like the©s (points) and vice versa. In other words, if we label
the points and lines as in Figure 8.5, we immediately discover the symmetry
between the two. We only rename the L by P and the P by L in Figure 8.5(a)
and Figure 8.5(b). In particular, the patterns of the lines in Figure 8.5(a) are
matched to the patterns of the points in Figure 8.5(b) to signify such a duality.

To understand more about the symmetry, consider for example the follow-
ing.

• Point P1 is intersected by lines L2, L3, and L5 in Figure 8.5(a). In Fig-

8.1 Hamming code and projective geometry 171

[100]

[101]

[110]

[111][010]

[011]

[001]

Figure 8.4 Final projective geometry of the two-dimensional binary Eu-
clidean space with points at infinity.

ure 8.5(b), we see exactly the same relation between the lines L3, L5, and
L2 and the point P1.
• Line L1 is related to points P2, P3, and P5 in Figure 8.5(b). In Figure 8.5(a),

we see that L1 passes through all these three points.

Also note that, in terms of the [ZXY] axes, the lines are defined by the following
functions:

L1 : Z = 0,

L2 : X = 0,

L3 : Y = 0,

L4 : Z +X = 0,

L5 : X +Y = 0,

L6 : Z +X +Y = 0,

L7 : Z +Y = 0.

(8.3)

Note that the above is quite different from what you learned in high school
mathematics. For example, the function Z = 0 does not give a plane in projec-
tive geometry as it does in Euclidean geometry.

172 Other aspects of coding theory

P1

P7

P4

P6P2

P5

P3

L1

L2

L3

L4

L5

L6

L7

(a)

L1

L7

L4

L6L2

L5

L3

P1

P2

P3

P4

P5

P6

P7

(b)

Figure 8.5 Symmetry between two definitions of projective geometry.

8.1 Hamming code and projective geometry 173

In general, the connection between lines in the two-dimensional Euclidean
plane and the lines in the two-dimensional projective plane can be easily ob-
tained through the following. For simplicity, let E2 denote the two-dimensional
binary Euclidean plane, and let P2 denote the two-dimensional binary projec-
tive plane. Then the connection between lines in E2 and P2 is given by

L : aX +bY + c = 0 in E2 ⇐⇒ L : aX +bY + cZ = 0 in P2, (8.4)

where not all a, b, and c equal zero.

Example 8.3 We now apply (8.4) in order to study a solid example so that
we can understand more about the two geometries from the algebraic point of
view. Consider, for example, lines L3 and L7, which represent the functions
Y = 0 and Y = 1 in E2, respectively. Of course, L3 and L7 are parallel in E2

and do not intersect. On the other hand, lifting these two functions from E2 to
P2 (by setting (a,b,c) = (010) and (011) in (8.4)) gives Y = 0 and Y +Z =

0, respectively. It then follows that these two functions do intersect in P2 at
[ZXY] = [010], a point satisfying these two equations. It justifies the fact that
any two distinct lines always intersect with each other. An equivalent view
from algebra says that every system of linear equations is always solvable in
the projective sense. ♦

To relate the Fano plane to the Hamming code, we simply construct Ta-
ble 8.1. A “1” means the point lies on the line, or, equivalently, that the line
passes through the point.

Table 8.1 Relation of Fano plane to Hamming code

P1 P2 P3 P4 P5 P6 P7

L1 0 1 1 0 1 0 0
L2 1 0 1 0 0 0 1
L3 1 1 0 1 0 0 0
L4 0 0 1 1 0 1 0
L5 1 0 0 0 1 1 0
L6 0 0 0 1 1 0 1
L7 0 1 0 0 0 1 1

On reading Table 8.1 row-wise and comparing these rows with codewords
in Table 3.2, we see that

• line L1 defines the codeword (0110100) associated with message (0100),

174 Other aspects of coding theory

• line L2 defines the codeword (1010001) associated with message (0001),
• line L3 defines the codeword (1101000) associated with message (1000),
• line L4 defines the codeword (0011010) associated with message (1010),
• line L5 defines the codeword (1000110) associated with message (0110),
• line L6 defines the codeword (0001101) associated with message (1101),
• line L7 defines the codeword (0100011) associated with message (0011).

So, the seven lines define seven codewords of a (7,4) Hamming code. What
about the remaining 16−7 = 9 codewords? Well, if we add an empty line, L0,
to define the codeword (00000000), then the remaining eight codewords are
just the binary complement of these eight codewords. For example, the binary
complement of (00000000) is (11111111), and the binary complement of
(0110100) defined by L1 is (1001011) (simply replace 0 by 1 and 1 by 0).
This way you recover all the 16 codewords of the (7,4) Hamming code.

While all the above seems tricky and was purposely done, it presents a
means of generalization of the Hamming code. In particular, extending the
two-dimensional Fano plane to higher-dimensional binary projective spaces,
say (u−1) dimensions,

(1) we could construct the (2u−1,2u−u−1) Hamming codes defined by the
lines in the (u−1)-dimensional binary projective space,3 and

(2) we could construct other codes defined by the s-dimensional subspaces
(called s-flats or s-hyperplanes in finite geometry) in the (u− 1)-dimen-
sional binary projective space. These codes are therefore coined projective
geometry codes.

Exercise 8.4 Identify all the 16 Hamming codewords on the Fano plane plus
an empty line. The points associated with each codeword form either a line or
a complement of a line. Can you use this geometrical fact to decode read-outs
with one-bit error? We can give you some hints for this.

(1) Read-outs with only one nonzero position are decoded to the empty line.
(2) Read-outs with two nonzero positions are decoded to a line. Two nonzero

positions mean two points in the Fano plane. The line obtained by joining
these two points gives the decoded codeword. For example, if the nonzero
positions are P2 and P4, then they form the line L3, and the corrected
output should be the codeword associated with L3.

(3) Read-outs with three nonzero positions correspond to either a line or a tri-
angle in the Fano plane. If it is a line, then the line gives the decoded code-
word. Otherwise, the triangle can be made into a quadrangle by adding an

3 An alternative way of getting this is given in Exercise 3.22.

8.2 Coding and game theory 175

extra point. Then note that the quadrangle is a complement of a line, which
is a codeword. So the codeword associated with this quadrangle is the de-
coded output. For example, assume the nonzero positions of the read-out
are P1, P2, and P3, which form a triangle. To make the triangle into a quad-
rangle, we should add point P6 (note that adding either P4, P5, or P7 would
not work: it would still be a triangle). Then the quadrangle P1P2P3P6 is
the complement of the projective line L6, and hence it corresponds to a
valid codeword.

Complete the decodings of read-outs with more than three nonzero positions.
♦

8.2 Coding and game theory

The Hamming code can be used to solve many problems in combinatorial de-
signs as well as in game theory. One of the most famous and most interesting
problems is the hat game. On April 10, 2001, the New York Times published
an article entitled “Why mathematicians now care about their hat color.” The
game has the following setup.

• A team of n players enters a room, whereupon they each receive a hat with
a color randomly selected from r equally probable possibilities. Each player
can see everyone else’s hat, but not his own.

• The players must simultaneously guess the color of their own hat, or pass.
• The team loses if any player guesses wrong or if all players pass.
• The players can meet beforehand to devise a strategy, but no communication

is allowed once they are inside the room.
• The goal is to devise a strategy that gives the highest probability of winning.

Example 8.5 Let n = 3 and r = 2 with the colors Red and Blue. Let us
number the three players by 1, 2, and 3, and denote their hats by H1, H2, and H3,
respectively. If the three players receive (H1,H2,H3) = (Red,Red,Blue) and
they guess (Red,Pass,Pass), then they win the game. Otherwise, for example,
if they guess (Pass,Blue,Blue), then they lose the game due to the wrong guess
of the second player. They also lose for the guess of (Pass,Pass,Pass). ♦

Random strategy What if the players guess at random? Say, guessing with
probability 1/(r + 1) for each color and probability 1/(r + 1) for pass. With
this random strategy, the probability of winning is given by

Pr(Win by using “random strategy”) =
(

2
r+1

)n

− 1
(r+1)n . (8.5)

176 Other aspects of coding theory

So, in Example 8.5 the random strategy will yield a probability of winning

Pr(Win by using “random strategy”) =
7

27
' 26%, (8.6)

i.e. the odds are not good.

Exercise 8.6 Prove (8.5).
Hint: the first term of (8.5) describes the probability of the correct color or

a pass and that the second term is the probability of all passing. ♦

One-player-guess strategy Another simple strategy is to let only one of the
players, say the first player, guess and let the others always pass. It is clear that
if the first player passes, then the team loses. So he must make a choice. In this
case, the probability of winning the game is given by

Pr(Win by using “one-player-guess strategy”) =
1
r
, (8.7)

i.e. for Example 8.5 (r = 2)

Pr(Win by using “one-player-guess strategy”) =
1
2
= 50%, (8.8)

and the first player simply guesses the color to be either Red or Blue, each with
probability 1/2. This strategy is a lot better than the random guess strategy.
Now the question is, can we do better than 1/2? Actually we can, with the
help of the three-times repetition code and the Hamming code we learned in
Chapter 3.

Repetition code strategy For simplicity, let us focus on the case of n = 3 and
r = 2 with colors being Red (denoted as binary 0) and Blue (denoted as binary
1). Recall that the three-times repetition code Crep has two codewords (000)
and (111). Using the repetition code, we formulate the following strategy.

• For the first player, let (?,H2,H3) be a vector where H2,H3 ∈ {0,1} are the
hat colors of the second and the third players, respectively. The question
mark symbol “?” means that the color of the hat is unknown. The colors H2

and H3 are known to the first player according to the setup. Then the first
player makes a guess using the following rule:

? =





0 if (1,H2,H3) is a codeword in Crep,

1 if (0,H2,H3) is a codeword in Crep,

pass otherwise.

(8.9)

8.2 Coding and game theory 177

• The same applies to the second and the third players. For example, the strat-
egy of the second player is

? =





0 if (H1,1,H3) is a codeword in Crep,

1 if (H1,0,H3) is a codeword in Crep,

pass otherwise,

(8.10)

where H1 is the color of the first player’s hat known to the second player.

Example 8.7 (Continuation from Example 8.5) If the three players receive
(H1,H2,H3) = (Red,Red,Blue) = (001), then

• the first player sees (?01), and neither (001) nor (101) is a codeword in
Crep, so he passes;

• the second player sees (0?1), and neither (001) nor (011) is a codeword in
Crep, so he passes, too;

• the third player sees (00?). He notices that (000) is a codeword in Crep, so
he guesses 1.

Hence, the team wins. ♦

Exercise 8.8 Show by listing all possibilities that the three-times repetition
code strategy gives a probability of winning

Pr
(
Win by using “Crep code strategy”

)
=

3
4

(8.11)

when n = 3 and r = 2. ♦

It turns out that for n= 3 and r = 2, the three-times repetition code Crep is the
best possible strategy for this game. Also, by carrying out Exercise 8.8 you will
see that the only cases for the Crep strategy to fail are the ones when the players
are given hats as (000) and (111), which are exactly the two codewords in
Crep.

(7,4) Hamming code strategy The (7,4) Hamming code strategy is the best
strategy when n = 7 and r = 2. But, prior to handing over the strategy, we
quickly review what happened in the three-times repetition code case. In the
previous example of n = 3 and r = 2, the ith player, given the observation
(H1, . . . ,Hi−1,?,Hi+1, . . . ,H3), makes the following guess:

? =





0 if (H1, . . . ,Hi−1,1,Hi+1, . . . ,H3) is a codeword in Crep,

1 if (H1, . . . ,Hi−1,0,Hi+1, . . . ,H3) is a codeword in Crep,

pass otherwise.

(8.12)

178 Other aspects of coding theory

So, for the case of n = 7 and r = 2, let CH be the (7,4) Hamming code with 16
codewords given in Table 3.2. Then we use the following similar strategy.

• The ith player, given the observation (H1, . . . ,Hi−1,?,Hi+1, . . . ,H7), makes
the following guess:

? =





0 if (H1, . . . ,Hi−1,1,Hi+1, . . . ,H7) is a codeword in CH,

1 if (H1, . . . ,Hi−1,0,Hi+1, . . . ,H7) is a codeword in CH,

pass otherwise.

(8.13)

Example 8.9 For example, the seven players are given hats according to

(Blue,Red,Blue,Red,Blue,Blue,Blue) = (1010111). (8.14)

Based on the strategy in (8.13) and the codewords of CH in Table 3.2, the
players make the following guesses.

• The first player observes (?010111) and notices that (0010111) is a code-
word. So he guesses 1, i.e. Blue.

• The second player observes (1?10111) and notices that neither (101011
1) nor (1110111) are codewords. So he passes.
• You can check the remaining cases and show that they all pass.

Since the first player makes the right guess and the others pass, the team wins.
♦

We can show the following theorem.

Theorem 8.10 For the case of n = 7 and r = 2, the (7,4) Hamming code
strategy given as in (8.13) yields the probability of winning

Pr(Win by using “CH code strategy”) = 1− 16
27 =

7
8
. (8.15)

Proof Note that from the sphere bound of Theorems 3.20 and 3.21, we see
that the (7,4) Hamming code CH is a perfect packing of 16 spheres of radius 1
in the seven-dimensional binary space. Hence, given any combination of hats
H= (H1,H2, . . . ,H7), H must lie in one of the 16 spheres. In other words, there
must exist a codeword x = (x1, . . . ,x7) of CH that is at Hamming distance at
most 1 from H. We distinguish the following cases.

Case I: If H ∈ CH, then according to the strategy (8.13), the `th player for
every 1≤ `≤ 7 would notice that (H1, . . . , H`−1,x`,H`+1, . . . ,H7) is
a codeword in CH, hence he will guess x̄`, the binary complement of
x`. The team always loses in this case.

8.2 Coding and game theory 179

Case II: If H 6∈ CH, then H is at Hamming distance 1 from some codeword x.
Say the difference is at the jth place, for some j, i.e. the hat color Hj

of the jth player equals x̄ j.

• For the `th player, ` 6= j, we see from strategy (8.13) that (H1,

. . . ,H`−1, x`,H`+1, . . . ,H7) is at Hamming distance 1 from x and
(H1, . . . ,H`−1, x̄`, H`+1, . . . ,H7) is at Hamming distance 2 from x.
Both cannot be codewords because the codewords of Hamming
code are separated by a distance of at least 3. Thus, the `th player
always passes in this case.
• The jth player observes that (H1, . . . ,Hj−1,x j,Hj+1, . . . ,H7) = x

is a codeword, hence he guesses x̄ j, which is the correct guess.

Thus, the team wins.

From the above analysis we see that the team loses if, and only if, H is a
codeword in CH. Since there are 16 such possibilities, we conclude that

Pr(Lose by using “CH code strategy”) =
16
27 (8.16)

and the theorem is proven.

The strategy we have devised above is related to the covering of error-
correcting codes. The concept of covering is the opposite of that of sphere
packing: the problem of covering asks what the minimum number of t is such
that the radius-t spheres centered at the 2k codewords of a code fill up the com-
plete n-dimensional binary space. Here the spheres are allowed to overlap with
each other. The three-times repetition code Crep and the Hamming code CH are
both 1-covering codes because radius-1 spheres centered at their codewords
completely cover the three-dimensional and seven-dimensional binary space,
respectively.

In general, we can show the following theorem.

Theorem 8.11 Let C be a length-n 1-covering error-correcting code with |C |
codewords. Then for the hat game with n players and r = 2 colors, following
the strategy defined by C as in (8.13), yields a winning probability of

Pr(Win by using “C code strategy”) = 1− |C |
2n . (8.17)

Exercise 8.12 Prove Theorem 8.11 by showing that (Case I) if H ∈ C , the
team always loses, and (Case II) if H 6∈ C , the team always wins even if the
codewords of the 1-covering code are not separated by a distance of at least 3.

Hint: (H1, . . . ,H`−1, x̄`,H`+1, . . . ,Hn) could be a codeword. ♦

180 Other aspects of coding theory

Finally we remark that both Crep and CH are optimal 1-covering codes be-
cause they have the smallest possible code size among all 1-covering codes
of length 3 and length 7, respectively. The fact that the three-times repetition
code Crep is an optimal length-3 1-covering code follows from the third case
in Theorem 3.21 with u = 1.

8.3 Further reading

In this chapter we have briefly discussed two different aspects of coding theory.
Using the (7,4) Hamming code as a starting example, we have shown how the
error-correcting codes can be used in the study of finite geometry as well as
game theory. To encourage further investigations in this direction, we provide
a short list of other research fields that are closely related to coding theory.

Cryptography One aim in cryptography is message encryption so that eaves-
droppers cannot learn the true meaning of an encrypted message. The
encryption device has a key, which is known to the sender and the re-
cipient, but not to the eavesdropper. Given the key K, the encryption
device encrypts plaintext S into ciphertext C. It is hoped that without
the key the eavesdropper cannot easily recover the plaintext S from
C. In 1949 Shannon [Sha49] first applied information theory to the
study of cryptography and defined the notion of perfect secrecy. We
say that the communication is perfectly secure if the mutual informa-
tion between S and C is zero, i.e. I(S;C) = 0. Noting that

I(S;C) = H(S)−H(S|C), (8.18)

a perfectly secure communication means that the eavesdropper can
never learn any information about S from the observation of C. While
none of the currently used cryptosystems can offer such perfect se-
crecy, in 1978 Robert J. McEliece proposed a highly secure cryptosys-
tem based on the use of (n,k) binary linear error-correcting codes.
McEliece’s cryptosystem with large n is immune to all known attacks,
including those made by quantum computers. Readers interested in
this line of research are referred to [McE78] and [Sti05] for further
reading.

Design of pseudo-random sequences The pseudo-random number generator
is perhaps one of the most important devices in modern comput-
ing. A possible implementation of such a device is through the use

8.3 Further reading 181

of maximum-length sequences, also known as m-sequences. The m-
sequence is a binary pseudo-random sequence in which the binary
values 0 and 1 appear almost statistically independent, each with prob-
ability 1/2. Given the initial seed, the m-sequence can be easily gen-
erated by feedback shift registers. It is also one of the key components
in modern cellular communication systems that are built upon code-
division multiple-access (CDMA) technology. The m-sequence and
the Hamming code are closely connected. In fact, the m-sequence is
always a codeword in the dual of the Hamming code. Readers are re-
ferred to [McE87] and [Gol82] for more details about this connection
and about the design of pseudo-random sequences.

Latin square and Sudoku puzzle The Latin square is a special kind of com-
binatorial object which many people have seen in some mathematical
puzzles. Specifically, a Latin square is an (n×n) array in which each
row and each column consist of the same set of elements without rep-
etition. For example, the following is a (3×3) Latin square.




3 1 2

1 2 3

2 3 1


 (8.19)

The famous game of Sudoku can also be regarded as a special kind
of (9× 9) Latin square. Sudoku puzzles are probably the most pop-
ular among all Latin squares. Another interesting extension is called
the orthogonal array, which has very useful applications in software
testing. Two (n×n) Latin squares A and B are said to be orthogonal if
all the n2 pairs ([A]i, j, [B]i, j) are distinct. For example, the following
(4×4) Latin squares are orthogonal to each other:




1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1




and




3 4 1 2

4 3 2 1

2 1 4 3

1 2 3 4



. (8.20)

While there are many ways to construct mutually orthogonal arrays,
one of the most notable constructions is from the finite projective
plane we studied in Section 8.1. A famous theorem in this area states
that there exists (n−1) mutually orthogonal (n×n) Latin squares if,
and only if, there exists a finite projective plane in which every projec-
tive line has (n−1) points. Again, the finite projective planes are tied

182 Other aspects of coding theory

closely to the Hamming codes. Please refer to [Bry92] and [vLW01]
for a deeper discussion.

Balanced incomplete block designs The problem with block design is as fol-
lows: ν players form t teams with m members in each team. Two con-
ditions are required: (a) each player is in precisely µ teams, and (b)
every pair of players is in precisely λ teams. Configurations meet-
ing the above requirements are termed (ν , t,µ,m,λ) block designs.
It should be noted that these parameters are not all independent. The
main challenge is, given a set of parameters, to find out whether the
design exists, and, if the answer is yes, how to construct it. For many
parameters these questions are still unanswered. The (ν , t,µ,m,λ)

block designs have many applications to experimental designs, cryp-
tography, and optical fiber communications. Moreover, block designs
can be transformed into a class of error-correcting codes, termed con-
stant-weight codes. Certain block-designs with λ = 1 can be obtained
from finite projective planes. For more details please refer to [HP03].

References
[Bry92] Victor Bryant, Aspects of Combinatorics: A Wide-Ranging Introduction.

Cambridge University Press, Cambridge, 1992.
[Gol82] Solomon W. Golomb, Shift Register Sequences, 2nd edn. Aegean Park

Press, Laguna Hills, CA, 1982.
[HP03] W. Cary Huffman and Vera Pless, eds., Fundamentals of Error-Correcting

Codes. Cambridge University Press, Cambridge, 2003.
[McE78] Robert J. McEliece, “A public-key cryptosystem based on algebraic coding

theory,” DSN Progress Report 42-44, Technical Report, January and Febru-
ary 1978.

[McE87] Robert J. McEliece, Finite Field for Scientists and Engineers, Kluwer Inter-
national Series in Engineering and Computer Science. Kluwer Academic
Publishers, Norwell, MA, 1987.

[Sha49] Claude E. Shannon, “Communication theory of secrecy systems,” Bell Sys-
tem Technical Journal, vol. 28, no. 4, pp. 656–715, October 1949.

[Sti05] Douglas R. Stinson, Cryptography: Theory and Practice, 3rd edn. Chapman
& Hall/CRC Press, Boca Raton, FL, 2005.

[vLW01] Jacobus H. van Lint and Richard M. Wilson, A Course in Combinatorics,
2nd edn. Cambridge University Press, Cambridge, 2001.

References

[BGT93] Claude Berrou, Alain Glavieux, and Punya Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: turbo-codes,” in Proceedings of
IEEE International Conference on Communications (ICC), Geneva, Switzer-
land, May 23–26, 1993, pp. 1064–1070.

[Bla88] Richard E. Blahut, Principles and Practice of Information Theory. Addi-
son-Wesley, Reading, MA, 1988.

[Bry92] Victor Bryant, Aspects of Combinatorics: A Wide-Ranging Introduction.
Cambridge University Press, Cambridge, 1992.

[BT02] Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability.
Athena Scientific, Belmont, MA, 2002.

[CA05] Po-Ning Chen and Fady Alajaji, Lecture Notes on Information Theory,
vol. 1, Department of Electrical Engineering, National Chiao Tung Univer-
sity, Hsinchu, Taiwan, and Department of Mathematics & Statistics, Queen’s
University, Kingston, Canada, August 2005. Available: http://shannon.cm.n
ctu.edu.tw/it/itvol12004.pdf

[CS99] John Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups,
3rd edn. Springer Verlag, New York, 1999.

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory,
2nd edn. John Wiley & Sons, Hoboken, NJ, 2006.

[DM98] Matthew C. Davey and David MacKay, “Low-density parity check codes
over GF(q),” IEEE Communications Letters, vol. 2, no. 6, pp. 165–167, June
1998.

[Fan49] Robert M. Fano, “The transmission of information,” Research Laboratory of
Electronics, Massachusetts Institute of Technology (MIT), Technical Report
No. 65, March 17, 1949.

[For66] G. David Forney, Jr., Concatenated Codes. MIT Press, Cambridge, MA,
1966.

[Gal62] Robert G. Gallager, Low Density Parity Check Codes. MIT Press, Cam-
bridge, MA, 1962.

[Gal68] Robert G. Gallager, Information Theory and Reliable Communication. John
Wiley & Sons, New York, 1968.

184 References

[Gal01] Robert G. Gallager, “Claude E. Shannon: a retrospective on his life, work,
and impact,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp.
2681–2695, November 2001.

[Gol49] Marcel J. E. Golay, “Notes on digital coding,” Proceedings of the IRE,
vol. 37, p. 657, June 1949.

[Gol82] Solomon W. Golomb, Shift Register Sequences, 2nd edn. Aegean Park
Press, Laguna Hills, CA, 1982.

[Har28] Ralph Hartley, “Transmission of information,” Bell System Technical Jour-
nal, vol. 7, no. 3, pp. 535–563, July 1928.

[HP98] W. Cary Huffman and Vera Pless, eds., Handbook of Coding Theory. North-
Holland, Amsterdam, 1998.

[HP03] W. Cary Huffman and Vera Pless, eds., Fundamentals of Error-Correcting
Codes. Cambridge University Press, Cambridge, 2003.

[HW99] Chris Heegard and Stephen B. Wicker, Turbo Coding. Kluwer Academic
Publishers, Dordrecht, 1999.

[Kar39] William Karush, “Minima of functions of several variables with inequalities
as side constraints,” Master’s thesis, Department of Mathematics, University
of Chicago, Chicago, IL, 1939.

[Khi56] Aleksandr Y. Khinchin, “On the fundamental theorems of information the-
ory,” (in Russian), Uspekhi Matematicheskikh Nauk XI, vol. 1, pp. 17–75,
1956.

[Khi57] Aleksandr Y. Khinchin, Mathematical Foundations of Information Theory.
Dover Publications, New York, 1957.

[KT51] Harold W. Kuhn and Albert W. Tucker, “Nonlinear programming,” in Pro-
ceedings of Second Berkeley Symposium on Mathematical Statistics and
Probability, J. Neyman, ed. University of California Press, Berkeley, CA,
1951, pp. 481–492.

[LC04] Shu Lin and Daniel J. Costello, Jr., Error Control Coding, 2nd edn. Prentice
Hall, Upper Saddle River, NJ, 2004.

[Mas96] James L. Massey, Applied Digital Information Theory I and II, Lecture notes,
Signal and Information Processing Laboratory, ETH Zurich, 1995/1996.
Available: http://www.isiweb.ee.ethz.ch/archive/massey scr/

[McE78] Robert J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” DSN Progress Report 42-44, Technical Report, January and Febru-
ary 1978.

[McE85] Robert J. McEliece, “The reliability of computer memories,” Scientific Amer-
ican, vol. 252, no. 1, pp. 68–73, 1985.

[McE87] Robert J. McEliece, Finite Field for Scientists and Engineers, Kluwer Inter-
national Series in Engineering and Computer Science. Kluwer Academic
Publishers, Norwell, MA, 1987.

[MS77] F. Jessy MacWilliams and Neil J. A. Sloane, The Theory of Error-Correcting
Codes. North-Holland, Amsterdam, 1977.

[Nor89] Arthur L. Norberg, “An interview with Robert M. Fano,” Charles Babbage
Institute, Center for the History of Information Processing, April 1989.

[Pin54] Mark S. Pinsker, “Mutual information between a pair of stationary Gaus-
sian random processes,” (in Russian), Doklady Akademii Nauk SSSR, vol. 99,
no. 2, pp. 213–216, 1954, also known as “The quantity of information about

References 185

a Gaussian random stationary process, contained in a second process con-
nected with it in a stationary manner.”

[Ple68] Vera Pless, “On the uniqueness of the Golay codes,” Journal on Combination
Theory, vol. 5, pp. 215–228, 1968.

[RG04] Mohammad Rezaeian and Alex Grant, “Computation of total capacity for
discrete memoryless multiple-access channels,” IEEE Transactions on In-
formation Theory, vol. 50, no. 11, pp. 2779–2784, November 2004.

[Say99] Jossy Sayir, “On coding by probability transformation,” Ph.D. dissertation,
ETH Zurich, 1999, Diss. ETH No. 13099. Available: http://e-collection.ethb
ib.ethz.ch/view/eth:23000

[Sha37] Claude E. Shannon, “A symbolic analysis of relay and switching circuits,”
Master’s thesis, Massachusetts Institute of Technology (MIT), August 1937.

[Sha48] Claude E. Shannon, “A mathematical theory of communication,” Bell Sys-
tem Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October
1948. Available: http://moser.cm.nctu.edu.tw/nctu/doc/shannon1948.pdf

[Sha49] Claude E. Shannon, “Communication theory of secrecy systems,” Bell Sys-
tem Technical Journal, vol. 28, no. 4, pp. 656–715, October 1949.

[Sha56] Claude E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans-
actions on Information Theory, vol. 2, no. 3, pp. 8–19, September 1956.

[Sti91] Gary Stix, “Profile: Information theorist David A. Huffman,” Scientific
American (Special Issue on Communications, Computers, and Networks),
vol. 265, no. 3, September 1991.

[Sti05] Douglas R. Stinson, Cryptography: Theory and Practice, 3rd edn. Chapman
& Hall/CRC Press, Boca Raton, FL, 2005.

[Tie73] Aimo Tietäväinen, “On the nonexistence of perfect codes over finite fields,”
SIAM Journal on Applied Mathematics, vol. 24, no. 1, pp. 88–96, January
1973.

[Tun67] Brian P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. disser-
tation, Georgia Institute of Technology, September 1967.

[vLW01] Jacobus H. van Lint and Richard M. Wilson, A Course in Combinatorics,
2nd edn. Cambridge University Press, Cambridge, 2001.

[VY00] Branka Vucetic and Jinhong Yuan, Turbo Codes: Principles and Applica-
tions. Kluwer Academic Publishers, Dordrecht, 2000.

[WD52] Philip M. Woodward and Ian L. Davies, “Information theory and inverse
probability in telecommunication,” Proceedings of the IEE, vol. 99, no. 58,
pp. 37–44, March 1952.

[Wic94] Stephen B. Wicker, Error Control Systems for Digital Communication and
Storage. Prentice Hall, Englewood Cliffs, NJ, 1994.

Index

Italic entries are to names.

∀, 7
dξe, 99
bξc, 16, 49
?
=, 34
xT, 39

a posteriori probability, 126
a priori probability, 126
additive white Gaussian noise channel, see

AWGN channel
Alajaji, Fady, 141
arithmetic coding, 109
arithmetics in the binary field, see modular

arithmetic
ASCII code, 19
average codeword length, 57, 65, 96
AWGN channel, 11, 145, 154

Bayes’ Theorem, 119
BEC, 135
BER, see bit error rate
Berrou, Claude, 153, 155
Bertsekas, Dimitri P., 119, 123
binary digit, 87
binary tree, see tree
bit, 5, 87
bit error rate, 148, 150, 152
Blahut, Richard E., 159
block design, 182
block error rate, 148
bound

on average codeword length, 96, 101
on BER, 153
on entropy, 90
Gilbert–Varshamov, 53

Hamming, 51
Plotkin, 53
sphere, 51, 53
TVZ, 53

Bryant, Victor, 182
BSC, 120
byte, 9, 19, 41, 87

CD, 3, 31, 41
CDMA, 181
channel, 2, 117

AWGN, 11, 145, 154
binary, 119
binary erasure, 135
binary symmetric, 119, 131
channel transition matrix, 117
Gaussian, 145
quasi-symmetric, 141
stationary, 118
uniformly dispersive, 134

channel capacity, 131, 139, 143
of binary erasure channel, 136
of binary symmetric channel, 132
of Gaussian channel, 146
KKT conditions, 136
power constraint, 146
of uniformly dispersive channel, 135

channel coding, 2, 31, 138, 143, see also
under code

Channel Coding Theorem, 139
Chen, Po-Ning, 141
code, 5, 55, 139

ASCII, 19
average codeword length, 57, 65, 96
block, 78, 110
concatenated, 153

188 Index

constant-weight, 182
cyclic, 30
dual, 39, 40
Elias–Willems, 110
error-correcting, 37

single-error-correcting, 36, 46
t-error-correcting, 37

error-detecting, 13, 37
double-error-detecting, 29, 46
e-error-detecting, 37

Fano, 97, 108, 160
generator matrix, 38
Hamming, 42

general, 52
strategy, 177
Venn diagram, 43

hexadecimal, 10
Huffman, 70, 160
instantaneous, 57
ISBN, 26
LDPC, 153
Lempel–Ziv, 110
linear, 39
octal, 9
parity-check matrix, 38
perfect, 51
prefix-free, 57, 74
rate, 37, 139, 144
Reed–Solomon, 41
repetition, 34
Shannon, 108
Shannon–Fano, see code, Fano
single parity-check, 17, 40
singular, 73
Tunstall, 78, 108, 110
turbo, 11, 155

decoder, 158
encoder, 155
interleaver, 156

uniquely decodable, 56, 73
universal product, 26
variable-length, 55
weighted, 22

codebook, 139
codeword, 7, 17, 39, 55, 139
coding scheme, 138
Coding Theorem

achievability part, 97
Channel Coding Theorem, 139
converse part, 95
for a Discrete Memoryless Source, 107

Information Transmission Theorem, 143
Joint Source–Channel Coding Theorem,

143
for a Single Random Message, 101

coding theory, 1
compression, see data compression
compressor, 147
concatenation of codewords, 75, 104
concavity, 164
Conway, John, 53
Cooley, James, 41
Costello, Jr., Daniel J., 30, 52, 160
Cover, Thomas M., 109, 110, 138, 141, 147,

159
covering, 179
cryptography, 180

data compression, 55, 160
universal, 108

Davey, Matthew C., 154
Davies, Ian L., 141
decoder, 2, 116, 145, 147

of Hamming code, 42
of turbo code, 158

depth of leaf, 61
Desargues, Gerard, 167
discrete memoryless source, see DMS
DMS, 104, 107
dual code, 39
DVD, 3, 31, 41

Elias, Peter, 110
encoder, 2, 106, 116, 145, 147

of Hamming code, 42
of turbo code, 155

entropy, 87
binary entropy function, 88, 132, 152
branching, 92
chain rule, 123, 124, 151
conditional, 124
conditioning reduces entropy, 129, 152
joint, 105, 123, 130
leaf, 92
properties, 90
source, 107, 143
uniqueness, 111
unit, 87

equivocation, 125, 130
error

arbitrarily small, 138, 139, 143
bit, 148

Index 189

block, 148
burst, 21
detectable, 18, 27
independent, 15
uncorrectable, 37
undetectable, 18, 38

error pattern, 21, 45
error probability, 139
error-correcting code, see code,

error-correcting
error-detecting code, see code, error-detecting
Euclid, 167
Euclidean geometry, 167
extended root, 62
extending a leaf, 61

Fano, Robert M., 78, 108
Fano code, 97, 108, 160
Fano plane, 169
Forney, Jr., G. David, 153

Gallager, Robert G., 110, 138, 141, 153, 159
game theory, 175

Hamming code strategy, 177
one-player-guess strategy, 176
random strategy, 175
repetition code strategy, 176

Gauss, Carl F., 41, 146
Gaussian channel, 145
Gaussian distribution, 146
generator matrix, 38
geometry

Euclidean, 167
Fano plane, 169
projective, 167–169

Gilbert–Varshamov bound, 53
Glavieux, Alain, 153, 155
Golay, Marcel J. E., 51
Golomb, Solomon W., 181
Grant, Alex, 141

Hamming, Richard W., 32, 40, 47
Hamming bound, 51
Hamming code, 42

general, 52
strategy, 177
Venn diagram, 43

Hamming distance, 47
Hamming weight, 47
hard decoding, 158

Hartley, 87
Hartley, Ralph, 83
hat game, 175
Heegard, Chris, 160
Høholdt, Tom, 41
Huffman, David A., 67, 78
Huffman, W. Cary, 53, 182
Huffman code, 70, 160

IEEE, 78
independent random variables, 15, 106, 123,

125, 128, 145, 160
information, 88, see also mutual information
information theory, 1
Information Theory Inequality, see IT

Inequality
Information Transmission Theorem, 143
instantaneous code, 57
ISBN, 26
IT Inequality, 89

Joint Source–Channel Coding Theorem, 143

Karush, William, 137
Karush–Kuhn–Tucker conditions, see KKT

conditions
Khinchin, Aleksandr Y., 111, 112
KKT conditions, 136
Kraft Inequality, 63
Kuhn, Harold W., 137
Kuhn–Tucker conditions, see KKT conditions

Latin square, 181
LDPC code, 153
Leaf Entropy Theorem, 93
Leaf-Counting Lemma, 61
Leaf-Depth Lemma, 61
Lin, Shu, 30, 52, 160
linear code, 39
LSB, 8

m-sequences, 181
McEliece, Robert J., 43, 180, 181
MacKay, David, 154
McMillan’s Theorem, 74
MacWilliams, F. Jessy, 30, 52, 53
Massey, James L., 58, 73, 78, 89, 108, 110, 141
MIT, 78
modular arithmetic, 13, 33
modulation, 3

190 Index

modulo-2, see modular arithmetic
mutual information, 127

average, 127, 130, 131
properties, 128
system, 127
Venn diagram, 130

nat, 87
Norberg, Arthur L., 78
normal distribution, 146

packing, 48, 51, 53
Pappus of Alexandria, 167
parity check

ASCII code, 19
LDPC code, 153
matrix, 38

of Hamming code, 42
over words, 21
single parity-check code, 17, 40
universal product code, 26

Path Length Lemma, 65
perfect code, 51
perfect secrecy, 180
Pinsker, Mark S., 141
Pless, Vera, 51, 53, 182
Plotkin bound, 53
power constraint, 146
prefix-free code, 57, 74
probability

a posteriori, 126
a priori, 126
backward conditional, 119
conditional, 118, 119
conditional probability distribution, 117
forward conditional, 119
joint, 118

probability density function, 146
Gaussian, 146

progressive digiting, 24
projective geometry, 167–169
pseudo-random sequences, 180

rate, 37, 139, 144
rate distortion theory, 141
receiver, see decoder
redundancy, 19, 27
Reed, Irving S., 41
reliable communication, 131, 139
Rezaeian, Mohammad, 141

rooted tree, see tree

Sayir, Jossy, 110
Shannon, Claude E., 1, 11, 78, 84, 85, 108,

109, 111, 138, 140, 141, 143, 180
Shannon code, 108
Shannon limit, 153, 155, 159
Shannon–Fano code, see Fano code
sign bit, 5
singular code, 73
Sloane, Neil J. A., 30, 52, 53
soft decoding, 158
Solomon, Gustave, 41
source coding, 2, 55, 143, see also under code
Source Coding Theorem, 107
source entropy, 107, 143
sphere bound, 51
sphere packing, 48, 51, 53
stationarity, 118
statistical independence, 15, 106, 123, 125,

128, 145, 160
Stinson, Douglas R., 180
Stix, Gary, 78
strategy

Hamming code, 177
one-player-guess, 176
random, 175
repetition code, 176

Sudoku, 181

Thitimajshima, Punya, 153, 155
Thomas, Joy A., 109, 110, 138, 141, 147, 159
Tietäväinen, Aimo, 51
transition matrix, 117
transmitter, see encoder
tree, 58, 78

depth of leaf, 61
extended root, 62
extending a leaf, 61
with probabilities, 65, 92
unused leaf, 59, 63, 68

Tsfasman–Vlăduţ–Zink bound, see TVZ
bound

Tsitsiklis, John N., 119, 123
Tucker, Albert W., 137
Tukey, John, 41
Tunstall, Brian P., 78, 108
turbo code, 155

decoder, 158
encoder, 155
interleaver, 156

Index 191

TVZ bound, 53

uncertainty, see entropy
uniquely decodable code, 56, 73
unused leaf, 59, 63, 68
UPC, 26

van Lint, Jacobus H., 41, 51, 52, 182
vector message, 105
Venn diagram

Hamming code, 43
mutual information, 130

Vucetic, Branka, 160

white noise, 15
Gaussian, 145

Wicker, Stephen B., 30, 52, 53, 160
Wilson, Richard M., 52, 182
Woodward, Philip M., 141

Yuan, Jinhong, 160

	Frontmatter
	Contents
	List of contributors
	Preface
	1 - Introduction
	2 - Error-detecting codes
	3 - Repetition and Hamming codes
	4 - Data compression: efficient coding of a random message
	5 - Entropy and Shannon's Source Coding Theorem
	6 - Mutual information and channel capacity
	7 - Approaching the Shannon limit by turbo coding
	8 - Other aspects of coding theory
	References
	Index

