Determine the value of the following determinant over GF(4) $\det \begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix} = ?$

Solution:

Every number in GF(4) can be represented as a polynomial of degree q^m-1 helyett m. Then for the multiplication to fulfill the axioms we can use an irreducible polynomial to perform the "mod" arithmetic in the big field.

If $a,b \in \{0,1,\dots q^m-1\}$ are in the big field, we can uniquely represent these numbers as polynomials

$$a\mapsto a\left(x\right)=a_{0}+a_{1}x+a_{2}x^{2}+\ldots+a_{q^{m}-1}x^{q^{m}-1} \qquad \qquad \frac{a \mid poly \mid bind}{0\mid 0\cdot x^{1}+0\mid 00}$$
 as: $b\mapsto b\left(x\right)=b_{0}+b_{1}x+b_{2}x^{2}+\ldots+b_{q^{m}-1}x^{q^{m}-1}$ in this case: $1\mid 0\cdot x^{1}+1\mid 01$
$$b_{i},a_{i}\in\left\{0,\ldots,q-1\right\}, \text{ the little field} \qquad \qquad 2\mid 1\cdot x^{1}+0\mid 10$$

$$3\mid 1\cdot x^{1}+1\mid 11$$

To have operations called multiplication and addition in the big field which satisfy the axioms, we need an irreducible polynomial of degree $\deg = m$, if $GF(q^m)$.

For this problem the irreducible polynomial's deg=2.

If we have such a polynomial, the addition and multiplication can be defined to fulfill the axioms.

The operations of two elements in $GF(q^m)$ are equivalent to the operations on their polynomials and perform the "mod" operation with the irreducible polynomial

$$a,b,c \in GF\left(q^m\right),a_i,b_i \in \{0,\ldots,q-1\}$$
, the little field $a \cdot b = c$ such that $c(x) = \{a(x) \cdot b(x)\} \mod P(x)$
$$a+b=c \qquad \text{such that}$$

$$c(x) = \{a(x)+b(x)\} \mod P(x) = a(x)+b(x)$$

We know that an irreducible polynomial with degree 2 is $P(x) = x^2 + x + 1$

If we know the irreducible polynomial, we can construct the addition, multiplication and power table.

$$\frac{+ |00\ 01\ 10\ 11}{00|00\ 01\ 10\ 11} \frac{+ |0\ 12\ 3}{00|00\ 00\ 10\ 00} \frac{* |00\ 10\ 10}{00|00\ 00\ 000} \frac{1}{0|00\ 00} \frac{bin}{0|00\ x^{1}} \frac{x^{i}}{000\ x^{2}} \frac{bin}{00\ x^{2}} \frac{x^{i}}{000\ x^{2}} \frac{x^{i}}{100\ x^{i}} \frac{x^{i}}{100$$

Perform the operation x = 4.7 over GF(8) with the help of shift registers if the irreducible polynomial is $P(y) = y^3 + y + 1$

Solution:

First we do it generally with an arbitrary element of the field in GF(8) using the power table:

poly	binary	decimal	power			
1	001	1	1	7	14	21
У	010	2	y	8	15	22
y^2	100	4	y^2	9	16	23
y+1	011	3	y^3	10	17	24
$y^2 + y$	110	6	y^4	11	18	25
$y^2 + y + 1$	111	7	y^5	12	19	26
$y^2 + 1$	101	5	y^6	13	20	27
$\alpha \in Q = \{0, 1, \dots, 7\}$						

4 in polynomial reprezentation is y^2

$$4 \cdot \alpha = y^2 \left(a_0 + a_1 y + a_2 y^2 \right) = a_0 y^2 + a_1 y^3 + a_2 y^4 = a_0 y^2 + a_1 (y+1) + a_2 \left(y^2 + y \right) =$$

$$= a_1 + \left(a_1 + a_2 \right) y + \left(a_0 + a_2 \right) y^2$$

From this the SR implementation looks as follows:

7 can be represented with the coefficients: $a_0 = 1$, $a_1 = 1$, $a_2 = 1$ Sot the output is 100 = 1.

7 14 21

Problem 3

Given a cyclic RS code over GF(8) correcting every double errors.

Give the parameters of the code.

Give the parity check polynomial in the standard form

Solution:

C(7,3)

because
$$t = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor$$
, and RS codes are MDS, so $d_{\min} = n - k + 1$

furthermore we know that with RS codes n = q - 1

thus
$$n = 8 - 1 = 7$$

we know that we must correct every double error, so $2 = \left| \frac{d_{\min} - 1}{2} \right| \rightarrow d_{\min} = 5$

from *n* and d_{\min} we can compute *k*: $5 = 7 - k + 1 \rightarrow k = 3$

the parity check polynomial can be constructed as follows:

$$h(x) = \prod_{i=n-k+1}^{n} (x - y^{i}) = \prod_{i=5}^{7} (x - y^{i}) = (x - y^{5})(x - y^{6})(x - y^{7}) =$$

$$= (x^{2} + yx + y^{4})(x + 1) = x^{3} + yx^{2} + xy^{4} + x^{2} + yx + y^{4} = x^{3} + y^{3}x^{2} + y^{2}x + y^{4}$$

Given a cyclic RS code over GF(8).

- a.) What are the parameters of the code (n,k) if two errors are to be corrected.
- b.) Give the parity check polynomials (the power primitive element *y* are used as roots)
- c.) What is the received vector if the corresponding polynomial is $v(x) = v^5 x^6 + v^5 x^5 + v^5 x^4 + v^5 x^3 + v^5 x^2 + v^5 x^1 + v^5$
- d.) What is the degree of the generator polynomial of the code and what is the coefficient of its largest power?

Solution:

a.)
$$n=q-1=7$$
 $t=\left|\frac{d_{\min}-1}{2}\right|=2$ $d_{\min}=n-k+1=5$ $k=3$

b.) The parity check polynomial is given as

$$h(x) = \prod_{i=n-k+1}^{n} (x - y^{i}) = (x - y^{5})(x - y^{6})(x - y^{7}) =$$

$$= (x - y^{5})(x - y^{6})(x - 1) = (x - y^{5})(x^{2} + y^{2}x + y^{6}) =$$

$$= x^{3} + y^{5}x^{2} + y^{2}x^{2} + x + y^{6}x + y^{4} = x^{3} + y^{3}x^{2} + y^{2}x + y^{4}$$

- c.) If he received polynomial is $v(x) = y^5 x^6 + y^5 x^5 + y^5 x^4 + y^5 x^3 + y^5 x^2 + y^5 x + y^5$ then the received vector is all one $\mathbf{v} = (111\ 111\ 111\ 111\ 111\ 111\ 111)$.
- d.) The degree of the generator polynomial is n-k=4, since it is a main polynomial therefore the coefficient of the largest power is 1.

Give the generator polynomial of the cyclic RS code capable of correcting every single error!

Solution:

the code parameters:

$$t = \left| \frac{d_{\min} - 1}{2} \right| = \left| \frac{n - k}{2} \right| = 1 \rightarrow n - k = 2; n = 2^m - 1 \rightarrow n = 3; k = 1; m = 2$$

Over GF(4) the irreducible polynomial is $P(y) = y^2 + y + 1$, and the power table is:

$$y^0 \rightarrow 1;$$

$$y^1 \rightarrow y$$

$$y^2 \rightarrow y + 1$$

The generator polynomial is the following:

$$g(x) = \prod_{i=1}^{n-k} (x - y^i) = (x - y)(x - y^2) = (x + y)(x + y^2) = x^2 + (y + y^2)x + y^3 = x^2 + x + 1$$

Given a cyclic code over GF(8) with the generator polynomial: $g(x) = x^3 + y^6x^2 + yx + y^6$

- a) What are the code parameters?
- b) Give the code word belonging to the message vector. The components of the code word are all 1-s in binary form (the code word is supposed to be given also in binary form)
- c) Can this code be an RS code?

Solution:

a)
$$n = q - 1 = 7$$
, $\deg(g(x)) = n - k = 3 \rightarrow C(7,4)$
b) $c(x) = g(x)u(x) = (x^3 + y^6x^2 + yx + y^6)(y^5x^3 + y^5x^2 + y^5x + y^5) =$
 $= y^5x^6 + y^4x^5 + y^6x^4 + y^4x^3 + y^5x^5 + y^4x^4 + y^6x^3 + y^4x^2 + y^5x^4 + y^4x^3 + y^6x^2 + y^4x + y^5x^3 + y^4x^2 + y^6x + y^4 =$
 $= y^5x^6 + x^5 + y^2x^4 + yx^3 + y^6x^2 + y^3x + y^4$

Using the power table:

$$c(x) = y^{5}x^{6} + 1 \cdot x^{5} + y^{2}x^{4} + yx^{3} + y^{6}x^{2} + y^{3}x + y^{4}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$c = (111, 001, 100, 010, 101, 011, 110)$$

c) it can be, because:

$$g(x) = (x - y)(x - y^{2})(x - y^{3}) = (x^{2} + y^{4}x + y^{3})(x - y^{3}) = x^{3} + y^{4}x^{2} + y^{3}x + y^{3}x^{2} + x + y^{6} = x^{3} + y^{6}x^{2} + yx + y^{6}$$

We have a cyclic RS code with parameters C(7,2)

- a) Give the appropriate field parameter GF(p)
- b) How many errors can we detect and correct with this code?
- c) Give the generator polynomial g(x)
- d) Give the parity check polynomial h(x)
- e) We observe a received vector represented in the decimal form $\mathbf{v} = (0,1,4,3,5,6,2)$ can this be a codeword?
- f) We observe a received vector represented in the decimal form $\mathbf{v} = (0,1,4,2,5,6,2)$ what is the detected error vector?

Solution

- a) $p = n+1 = 7+1 = 8 = 2^3$ we are in GF(8)
- b) We know that an RS code is MDS, so $n-k+1=d_{\min}$ we can detect $l=d_{\min}-1$ errors, and $t=\left\lfloor\frac{d_{\min}-1}{2}\right\rfloor$ errors can be corrected $d_{\min}=7-2+1=6,\ l=5,t=2$
- c) the power table over GF(8) if $P(y) = y^3 + y + 1$ is

poly binary decimal power

1 001 1 1 7 14 21

y 010 2 y 8 15 22

$$y^2$$
 100 4 y^2 9 16 23

y+1 011 3 y^3 10 17 24

 y^2+y 110 6 y^4 11 18 25

 y^2+y+1 111 7 y^5 12 19 26

 y^2+1 101 5 y^6 13 20 27

$$g(x) = \prod_{i=1}^{n-k} (x - y^i) = (x - 1)(x - y^2)(x - y^3)(x - y^4)(x - y^5) =$$

since we are in $GF(2^3)$ the subtraction and the addition is the same, because the small field has mod 2 arithmetic

$$g(x) = \prod_{i=1}^{n-k} (x - y^{i}) = (x - 1)(x - y^{2})(x - y^{3})(x - y^{4})(x - y^{5}) =$$

$$= (x^{2} + y^{2}x + x + y^{2})(x^{2} + y^{4}x + y^{3}x + y^{7})(x + y^{5}) =$$

$$= (x^{2} + y^{6}x + y^{2})(x^{2} + y^{6}x + 1)(x + y^{5}) =$$

$$= (x^{4} + y^{6}x^{3} + x^{2} + y^{6}x^{3} + y^{12}x^{2} + y^{6}x + y^{2}x^{2} + y^{8}x + y^{2})(x + y^{5}) =$$

$$= (x^{4} + (y^{6} + y^{6})x^{3} + (1 + y^{12} + y^{2})x^{2} + y^{6}x + y^{2})(x + y^{5}) =$$

$$= \dots$$

d)
$$h(x) = \prod_{i=n-k+1}^{n} (x-y^i) = (x-y^6)(x-y^7) = x^2 + (y^6+1)x + y^6y^7 = x^2 + y^2x + y^6$$

e) If the received vector in decimal form is $\mathbf{v} = (0,1,4,3,5,6,2)$

then it is in binary form and polynomial form is:

$$\mathbf{v} = (000, 001, 100, 011, 101, 110, 010)$$

$$v(x) = 0x^{6} + 1x^{5} + y^{2}x^{4} + y^{3}x^{3} + y^{6}x^{2} + y^{4}x + y$$

or

$$v(x) = 0 + 1x + y^2x^2 + y^3x^3 + y^6x^4 + y^4x^5 + yx^6$$

it depends on how we define the 0^{th} component of v

We know that both g(x), h(x) divided $x^n - 1$ without a remainder so if

$$h(x)v(x) \mod (x^n-1) = 0$$
 then $v(x)$ is a codeword polynomial

this is true, because $g(x)h(x) = x^n - 1$

$$v(x) = g(x)u(x) + e(x),$$

$$h(x)v(x) \operatorname{mod} x^n - 1 =$$

$$(h(x)g(x)u(x)+h(x)e(x)) \bmod x^n -1 =$$

$$((x^n-1)u(x)+h(x)e(x)) \bmod x^n-1=$$

$$\underbrace{\left(x^{n}-1\right)u\left(x\right)\operatorname{mod}\left(x^{n}-1\right)}_{0}+h\left(x\right)e\left(x\right)\operatorname{mod}\left(x^{n}-1\right)=$$

$$=h(x)e(x) \operatorname{mod}(x^{n}-1)$$

if v(x) is a codeword polynomial, then this should be 0 as well.

We test this equality:

$$h(x)v(x) = (x^{2} + y^{2}x + y^{6})(0x^{6} + 1x^{5} + y^{2}x^{4} + y^{3}x^{3} + y^{6}x^{2} + y^{4}x + y) =$$

$$= 0x^{8} + 1x^{7} + y^{2}x^{6} + y^{3}x^{5} + y^{6}x^{4} + y^{4}x^{3} + yx^{2} +$$

$$+ (0\cdot y^{2})x^{7} + (1\cdot y^{2})x^{6} + (y^{2}\cdot y^{2})x^{5} + (y^{3}\cdot y^{2})x^{4} + (y^{6}\cdot y^{2})x^{3} + (y^{4}\cdot y^{2})x^{2} + (y\cdot y^{2})x +$$

$$+ (0\cdot y^{6})x^{6} + (1\cdot y^{6})x^{5} + (y^{2}\cdot y^{6})x^{4} + (y^{3}\cdot y^{6})x^{3} + (y^{6}\cdot y^{6})x^{2} + (y^{4}\cdot y^{6})x + (y\cdot y^{6}) =$$

$$= 0x^{8} + (1 + 0y^{2})x^{7} + (y^{2} + y^{2} + 0y^{6})x^{6} + (y^{3} + y^{4} + y^{6})x^{5} +$$

$$+ (y^{6} + y^{5} + y^{8})x^{4} + (y^{4} + y^{8} + y^{9})x^{3} + (y + y^{6} + y^{12})x^{2} + (y^{3} + y^{10})x + y^{7} =$$

$$= x^{7} + 1 = x^{7} - 1$$

$$x^{7} - 1 \mod x^{7} - 1 = 0$$

or it can be computer for the other direction as well

$$h(x)v(x) = (x^2 + y^2x + y^6)(0 + 1x + y^2x^2 + y^3x^3 + y^6x^4 + y^4x^5 + yx^6)$$