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Introductory example – 1.
Quantitative model of a simple DNA-repair mechanism
(Karschau et al., Biophysical Journal, 2011)
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Introductory example – 2.
Reaction graph:

Kinetic equations:

ẋ1(t) = k3x3(t)− k1x1(t)

ẋ2(t) = k1x1(t)− k2x2x4(t)

ẋ3(t) = k2x2(t)x4(t)− k3x3(t)

ẋ4(t) = k3x3(t)− k2x2(t)x4(t),

variables:
x1 - no. of undamaged guanine bases
x2 - no. of damaged guanine bases
x3 - no. of guanine bases being repaired
x4 - no. of free repair enzyme molecules
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Simple biochemical system – 3.

Intervention (to change the operation of the system):
adding more repair enzymes

Szederkényi G. (PPKE-ITK) Computer Controlled Systems PPKE-ITK 6 / 83



Notion of dynamical models/systems and their
application

Dynamical models:
they are applied to describe [physical] quantities varying in space
and/or in time
they describe the operation of natural or technological processes
they can be useful to simulate or predict the behaviour of a process
most often, mathematical models are used to describe dynamics (e.g.
ordinary/partial differential equations)
they can efficiently be solved by computers using various numerical
methods
they are useful to analyse the effect of a given (control) input

Szederkényi G. (PPKE-ITK) Computer Controlled Systems PPKE-ITK 7 / 83



Simple RLC circuit
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Simple RLC circuit

Kirchhoff’s voltage law: −ube + uR + uL + uC = 0
Ohm’s law: UR = R · i
Operation of the linear capacitor and inductor:

uL = L · di
dt
, i = C · dUC

dt

the so-called state equation :

di

dt
= −R

L
· i − 1

L
uC +

1
L
ube

duC
dt

=
1
C
· i
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Simple RLC circuit

Parameters: R = 1 Ω, L = 10−1H, C = 10−1F .
uC (0) = 1 V, i(0) = 1 A, ube(t) = 0 V
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Simple RLC circuit

uC (0) = 1 V, i(0) = 1 A,ube(t) = 5 V

0 0.5 1 1.5
−1

0

1

2

3

4

5

6

idö [s]

i [A]  
u

c
 [V]

Szederkényi G. (PPKE-ITK) Computer Controlled Systems PPKE-ITK 11 / 83



Simple RLC circuit

Periodic input:
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Simple RLC circuit

uC (0) = 1 V, i(0) = 1 A
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What does control mean? - Example

Control or stabilize the velocity of vehicles (e.g. tempomat)
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What does control mean?

To control an object:
to manipulate
its behaviour
in order to reach a goal.

Manipulation can happen
through observing the behaviour (modeling), then
choosing an appropriate control input considering the
desired behaviour
through the feedback of the observed quantities
(measurements) to the input of the system (this can
also be model-based)
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What does control mean? - Notions

System: What do we want to operate (what are the limits, what are
the inputs/outputs)?
Control goal: What kind of behaviour do we want to achieve?
System analysis: Does the problem seem soluble? What can we
expect?
Sensors: Detection and monitoring of the the system’s behaviour
Actuators: Actual physical intervention (execution)
Models: Mathematical description of the system’s operation (over
time/space)
Control system: Approach to solve the problem (there can be many
solutions based on various principles)
Hardware/software: Controller design and execution of control
algorithms
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The significance of systems and control theory

Dynamics : Description of varying quantities in space/time
Dynamical systems and control systems are present everywhere in
our lives: household appliances, vehicles, industrial equipment,
communications systems, natural systems (physical, chemical,
biological)
Control becomes mission-critical: if it fails, the whole system may
become unusable
The elements of system theory are (increasingly) utilized by classical
sciences
The principles of control theory has been applied to seemingly distant
areas, like economics , biology , drug discovery , etc.
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The significance of systems and control theory

Systems and control theory is inherently interdisciplinary
(construction of mathematical models and analysis; physical
components: controlled system, sensors, actuators, communication
channels, computers, software)
Systems theory provides a good environment for the transfer of
technology : in general, procedures developed in one area can be
useful in other areas, too
Knowledge and skills obtained in control theory provide a good
background for designing and testing complex (technological) systems
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Dynamical models (systems) and biology

dynamics may be essential to understand the operation of important
biochemical/biological processes (causes, effects, cross-reactions)
biology is increasingly available to the traditional engineering
approaches (on molecular, cellular and organic levels, too):
quantitative modeling, systems theory, computational methods,
abstract synthesis methods
conversely, biological discoveries might serve as a basis for new design
methodologies
a few areas where the dynamics and control have an important role:
gene regulation; signal transmission; hormonal, immune and
cardiovascular feedbacks; muscle and movement control; active
sensing; visual functions; attention; population and disease dynamics
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Simple water clock

Before 1000 BC
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Water clock with water flow rate control

3rd century B.C.
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Flyball governor

James Watt, 1788
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Birth of systems and control theory as a distinct
discipline (approx. 1940-1957)

1940-45: Intensive military research (unfortunately); recognizing
common principles and representations (radar systems, optimal
shooting tables, air defense artillery positioning, autopilot systems,
electronic amplifiers, industrial production of uranium etc.).
Representation of system components using block diagrams
Analysis and solution of linear differential equations using Laplace
transformation, theory of complex functions and frequency domain
analysis
The results of the research in the military were quickly used in other
industries as well
Independent research and teaching of control theory began
1957: The International Federation of Automatic Control (IFAC) was
founded
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The next stage of development (about 1957-1980)

Motivation: military and industrial application requirements,
development of mathematics and computer sciences
Space Race – space research competition (spacecraft Sputnik, 1957)
The first computer-controlled oil refinery in 1959
The use of digital computers for simulation and control systems
implementation
Mathematical precision becomes more important
The appearance of state-space model based methods
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Modern and postmodern control theory (about
1980-)

Birth of nonlinear systems and control theory based on differential
algebra
The explosive development of numerical optimization methods +
computing capacity becomes cheaper
Handling model uncertainties (robust control)
Model predictive control (MPC)
“Soft computing” techniques: fuzzy logics, neural networks etc.
Energy-based linear and nonlinear control (electrical, mechanical,
thermodynamical foundations)
Control of hybrid systems
Theory of positive systems
Control theory and its application to networked systems
(“cyber-physical” system)
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Controlled technological systems

thermostat + heating: temperature
dynamic speed limits on highways: the number of cars passing
through during a time unit, exhaust emissions
power plants’ (thermal) power: required electric power
movement of robotic arms and mobile robots: follow prescribed
tracks (guidance)
aircraft landing/take off: height, speed
air traffic control: time of landings/take-offs and their order
re-scheduling of timetables: to minimize all delays
oxygenation of wastewater treatment plants: speed of
bioreactions
washing machine: weight control, water amount control
ABS, ESP systems in vehicles: torque, braking force
CPU clock speed, fan speed: temperature
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Management of society and economics

laws (including their execution): social life
banking systems: quantity of money in circulation
media: reviews, public taste, agreed standards, overemphasized
and concealed informations
advertisement: consumer habits
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Control in nature

control of gene expression (transcription, translation)
body temperature regulation of warm-blooded animals
blood glucose control
hormonal and neural control in organisms/living entities
swarm of moving animals (birds, insects, fish): speed
synchronized flashing of light emitting insects
movement, human walking
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Bioreactor–model
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Bioreactor–model

dX
dt

= µ(S)X − XF
V

dS
dt

= −µ(S)X
Y

+ (SF−S)F
V

ahol pl. µ(S) = µmax
S

K2S2+S+K1

X biomass concentration [ gl ] Y kin.par. 0.5 -
S substrate concentration [ gl ] µmax kin.par. 1 [ 1

h ]
F input flow rate [ lh ] K1 kin.par. 0.03 [ gl ]
V volume 4 [l ] K2 kin.par 0.5 [ l

g ]

SF substrate feed concentration 10 [ gl ]
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Bioreactor–model

F = 0 l
h
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Bioreactor–model

F = 0.8 l
h
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Simple ecological system

dx

dt
= k · x − a · x · y

dy

dt
= −l · y + b · x · y

x – number of preys in a closed area
y – the number of predators in a closed area
k – the natural growth rate of preys in the absence of predators
a – “meeting” rate of predators and preys
l – natural mortality rate of predators in the absence of preys
b – reproduction rate of predators for each consumed pray animal
Parameters:
k = 2 1

month
a = 0.1 1

pieces·month
l = 1 1

month
b = 0.01 1

pieces·month
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Simple ecological system

x(0) = 200, y(0) = 20
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Simple ecological system

x(0) = 200, y(0) = 80
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SIR disease spreading model

Healing/spreading
mechanism:

S : susceptible human individuals
I : infected human individuals
R : recovered human individuals
N: number of population
s = S/N, i = I/N, r = R/N
mathematical model:

ds
dt

= −b · s(t) · i(t)

dr
dt

= k · i(t)

di
dt

= b · s(t) · i(t)− k · i(t)

b, k : constant parameters
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SIR disease spreading model

N = 107, S(0) = 9999990, I (0) = 10, R(0) = 0, k = 1/3, b = 1/2
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6 degree of freedom robotic arm

(doctoral work of Ferenc Lombai)
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6 degree of freedom robotic arm

Planning and execution of a throwing movement

(videos/6dof_dob_1.avi)
(videos/6dof_dob_2.avi)
(videos/6dof_dob_3.avi)
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Flexible robotic joint

Controlled flexor-extensor mechanism with 2 stepper motor
(doctoral work of József Veres)

http://www.youtube.com/watch?v=qBMs_36gZMg
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Simultaneous Localization & Mapping (SLAM)

Task: Active localization of a mobile robot (parallel movement and
mapping)
Students’ Scientific Conference assignment of
János Rudan and Zoltán Tuza

(videos/SLAM_TDK.mpeg)
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Autonomous and cooperative vehicles

Steered car model – 1
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Autonomous and cooperative vehicles

Steered car model – 2
Configuration space: R2 × S1

Configuration: q = (x , y , θ)
Parameters:
S : signed longitudinal direction, speed
φ: steering angle
L: distance between front and rear axles
ρ: turning radius for a fixed steering angle φ
The dynamical model describes how x , y and θ change in time:

ẋ = f1(x , y , θ, s, φ)

ẏ = f2(x , y , θ, s, φ)

θ̇ = f3(x , y , θ, s, φ)
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Autonomous and cooperative vehicles

Steered car model – 3
The most simple control model:
Manipulate input (simplistic assumptions): velocity (us), steering angle
(uφ), namely u = (us , uφ)
The equations:

ẋ = us cos θ
ẏ = us sin θ

θ̇ =
us
L

tan uφ

More accurate (realistic) model using acceleration dynamics:

ẋ = s cos θ
ẏ = s sin θ

θ̇ =
us
L

tan uφ

ṡ = ut
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Autonomous and cooperative vehicles

Following prescribed trajectories (guidance) (videos/car_track.avi)
Chasing of moving objects, simulations: Gábor Faludi
(videos/ref_car.avi)
(flight) movement in formations (videos/formation.avi)
Formation change (videos/chg_form.avi)
Obstacle avoidance (videos/obstacle.avi)
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Power system application: primary circuit pressure
control
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Primary circuit pressure control

Structure of pressurized water reactor unit
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Primary circuit pressure control
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Primary circuit pressure control

Modeling assumptions:
two perfectly stirred balance volumes: water and the wall of the tank
constant mass in the two balance volumes
constant physico-chemical properties
vapor-liquid equilibrium in the tank

Equations:
water

dU
dt

= cpmTI − cpmT + KW (TW − T ) + WHE · χ

wall of the tank
dUW

dt
= KW (T − TW )−Wloss
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Primary circuit pressure control

Variables and parameters:
T water temperature ◦C
TW wall temperature ◦C
cp specific heat of water J

kg◦C
U internal energy of water J
UW internal energy of the wall J
m water inflow rate kg

s
TI temperature of incoming water ◦C
M mass of water kg
CpW heat capacity of the wall J

◦C
WHE max. power of heaters W
χ portion of heaters turned on -
KW heat transfer coefficient of the wall W

◦C
Wloss the system’s heat loss W
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Primary circuit pressure control

Temperature of water inflow
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Primary circuit pressure control

Pressure without control

0 5 10 15 20 25
121.5

122

122.5

123

123.5

124

124.5

125

125.5

126

idö [h]

n
y
o

m
á

s
 [

b
a

r]

Szederkényi G. (PPKE-ITK) Computer Controlled Systems PPKE-ITK 55 / 83



Primary circuit pressure control

Pressure using a control system
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Primary circuit pressure control

Heating power applied by the the controller
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Primary circuit pressure control

Smaller transient: position of control rods
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Primary circuit pressure control

Thermal power of the reactor
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Primary circuit pressure control

Temperature in the primary circuit
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Primary circuit pressure control

primary circuit pressure with the old and the new controller
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Non-conventional defibrillation

(S. Luther et al. Nature. 2011 Jul 13;475(7355):235-9)
Foundation: a detailed 3D mathematical model of the heart
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Vehicle safety

anti blocking system
(ABS)
traction control (TC)
electronic stability
control (ESC)

There is a 4-times payback of the development costs with the avoidance of
accidents
Typically, model-based controllers are used
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Traffic control on highways

Australia (Monash
Freeway), 2008
model-based ramp
metering control
problem-free
implementation

traffic jams disappeared
throughput increased by 4.7 and 8.4% in the morning and afternoon
peak period, resp.
average speed increased by 24.5 and 58.6% in the morning and
afternoon, resp.
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Why do we study this course?

primary goal: basic knowledge in systems theory
ability to observe, analyse and separate systems of the surrounding
world
ability to determine a system’s inputs, outputs, states

knowledge of basic system properties and their analysis (what
can we expect?)
what options of manipulation do we have in order to reach a
certain control goal, and how expensive is it (time, energy)?
establishing an interdisciplinary perspective (electrical,
mechanical, chemical, biological, thermodynamic, ecological,
economic systems)
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Topics

System classes, basic system properties
Input/output and state space models of continuous time, linear
time invariant (CT-LTI) systems
BIBO stability and other stability criteria for CT-LTI systems
Asymptotic stability of CT-LTI systems, Lyapunov’s method
Controllability and observability of CT-LTI systems
Joint controllability and observability, minimal realization, system
decomposition
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Topics

Control design: PI, PID and pole placement controllers
Optimal (linear quadratic) regulator
State observer synthesis
Sampling, discrete time linear time invariant (DT-LTI) models
Controllability, observability, stability of DT-LTI systems
Control design for DT-LTI systems
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Relations to other subjects
Preliminary studies

mathematics (linear algebra, calculus, probability theory, stochastic
processes)

physics (determining physical models)

signal processing (transfer functions, filters, stability)

electrical networks/circuits theory (linear circuit models)

Further subjects

robotics (dynamical modeling, regulations and guidance)

nonlinear dynamical systems (simulation and stability)

optimization methods, functional analysis (optimal control design, linear
system operators)

computational systems biology (differential equation models, molecular
control loops)

parameter estimation of dynamical systems (construction of dynamical
models based on measurements)
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Software-tools (possible choices)

Commercial
Matlab/Simulink : numerical computations, simulations
http://www.mathworks.com
Mathematica: symbolic and numerical computations
http://www.wolfram.com/
Maple: symbolic, numerical computations, simulations
http://www.maplesoft.com/

Free
Scilab/Xcos: numerical computations, simulations
http://www.scilab.org/
Sage: symbolic, numerical computations
http://sagemath.org/
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Signals – 1

Signal: A (physical) quantity, which depends on time, space or other
independent variables
E.g. (in addition to the introductory examples)

x : R+
0 7→ R, x(t) = e−t

y : N+
0 7→ R, y [n] = e−n

X : C 7→ C, X (s) = 1
s+1
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Signals – 2
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Signals – 3

room temperature: T (x , y , z , t)
(x , y , z : spatial coordinates, t: time)
image of a color TV: I : R3 7→ R3

I (x , y , t) =

 Ir (x , y , t)
Ig (x , y , t)
Ib(x , y , t),
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Classification of signals

dimension of the independent variable
dimension of the dependent variable (signal)
real or complex valued
continuous vs discrete time
bounded vs not bounded
periodic vs aperiodic
even vs odd
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Signals with particular significance – 1

Dirac-δ or the unit impulse function∫ ∞
−∞

f (t)δ(t)dt = f (0)

where f : R+
0 7→ R is an arbitrary smooth (infinitely many times

continuously differentiable) function.
consequence ∫ ∞

−∞
1 · δ(t)dt = 1
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Signals with particular significance – 1

The physical meaning of the unit impulse:
current impulse ⇒ charge
temperature impulse ⇒ energy
force impulse ⇒ momentum
pressure impulse ⇒ mass
density impulse: point mass
charge impulse: point charge
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Signals with particular significance – 1

Heaviside (unit step) function

η(t) =

∫ t

−∞
δ(τ)dτ,

in other words:

η(t) =

{
0, if t < 0
1, if t ≥ 0

Szederkényi G. (PPKE-ITK) Computer Controlled Systems PPKE-ITK 76 / 83



Basic operations on signals – 1

x(t) =

 x1(t)
...

xn(t)

 , y(t) =

 y1(t)
...

yn(t)


addition:
(x + y)(t) = x(t) + y(t), ∀t ∈ R+

0

multiplication by a scalar:
(αx)(t) = αx(t) ∀t ∈ R+

0 , α ∈ R
scalar product:
〈x , y〉ν(t) = 〈x(t), y(t)〉ν ∀t ∈ R+

0
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Basic operation on signals – 2

time shifting:
Tax(t) = x(t − a) ∀t ∈ R+

0 , a ∈ R
causal time shifting:
Tc

ax(t) = η(t − a)x(t − a) ∀t ∈ R+
0 , a ∈ R
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Convolution – 1

x , y : R+
0 7→ R

(x ∗ y)(t) =

∫ t

0
x(τ)y(t − τ)dτ, ∀t ≥ 0
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Convolution – 2
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Laplace transform

Domain (of interpretation):

Λ = { f | f : R+
0 7→ C, f is integrable on [0, a] ∀a > 0 and

∃Af ≥ 0, af ∈ R, such that |f (x)| ≤ Af e
af x ∀x ≥ 0 }

Definition:

L{f }(s) =

∫ ∞
0

f (t)e−stdt, f ∈ Λ, s ∈ C
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The notion of a system

System: A physical or logical device that performs operations on
signals. (Processes input signals, and generates output signals.)
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Summary

changing (physical) quantities: dynamical models
mathematical representation: differential equations
system: operator , input-output mapping
systems theory is interdisciplinary : describes and treats physical,
biological, chemical, technological processes in a common framework
control is present everywhere and is often mission-critical
control design and implementation requires knowledge from
mathematics, physics, hardware, software and computer science
control principles can be found in purely natural systems as well
why to study: to be able to describe, understand and influence
(control) dynamical processes
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Systems

System (S): performs operations on signals (abstract operator)

y = S[u]

input signal space: U
output signal space: Y
inputs: u ∈ U
output: y ∈ Y
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Systems – example

From the previous lecture: systems with possible inputs and outputs
RLC circuit, eq.

input: ube , output: uC
input: ube , output: i

Primary circuit pressure control tank
input: heating power, output: primary circuit pressure

steered car model
input: (uφ, ut), output: (x , y , θ)
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Basic system properties – 1

Linearity
S[c1u1 + c2u2] = c1y1 + c2y2 (1)

c1, c2 ∈ R, u1, u2 ∈ U , y1, y2 ∈ Y , and
S[u1] = y1 , S[u2] = y2
i.e. satisfies the principle of superposition

Examples
the RLC circuit is linear
the bioreactor model is nonlinear

Checking whether a system is linear or not: by definition (1)
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Example: RLC circuit

The system’s output for two different inputs:
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Example: RLC circuit

The system’s output for a linear combination of the previous two inputs:
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Basic system properties – 2

time invariance: the shift operator and the system operator commute, i.e.

Tτ ◦ S = S ◦Tτ

where Tτ denotes the shift operator (in time), i.e. Tτ x(t) = x(t − τ)
Checking whether a system is time invariant: constant (time
independent) parameters in the system’s ordinary differential
equations

u(t) y(t) 

u(t) u(t+∆t) y(t) y(t+∆t) 

∆t ∆t 

S 
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Basic system properties – 3

continuous time and discrete time systems
continuous time: (T ⊆ R)
discrete time: T = {· · · , t0, t1, t2, · · · }
single input – single output (SISO)
multiple input – multiple output (MIMO) systems
causal/non causal systems
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CT-LTI system models

input-output models of SISO systems
time domain (t)
operator domain (s - Laplace transform)
frequency domain (ω - Fourier transform)

State space models
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CT-LTI system models – 1

Time domain
Linear differential equations with constant coefficients

an
dny

dtn
+ an−1

dn−1y

dtn−1 + ...+ a1
dy

dt
+ a0y = b0u + b1

du

dt
+ ...+ bm

dmu

dtm

with given initial conditions

y(0) = y00 ,
dy

dt
(0) = y10 , . . . ,

dn−1y

dtn−1 (0) = y(n−1)0
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CT-LTI system models – 2

Operator domain, SISO systems
Transfer function

Y (s) = H(s)U(s)

if zero initial conditions assumed (!)

Y (s) Laplace transform of the output signal
U(s) Laplace transform of the input signal
H(s) = b(s)

a(s)
the system’s transfer function
where a(s) and b(s) are polynomials
deg b(s) = m
deg a(s) = n

Strictly proper transfer function: m < n
Proper: m = n,
improper: m > n

G. Szederkényi (PPKE-ITK) Computer Controlled Systems PPKE-ITK 15 / 26



CT-LTI system models – 3

Time domain – Impulse response function
Y (s) = H(s)U(s) → L−1 → y(t) = (h ∗ u)(t), i.e.

y(t) =

∫ t

0
h(t − τ)u(τ)dτ =

∫ t

0
h(τ)u(t − τ)dτ

using the definition of Dirac-δ, one can obtain:∫ ∞
0

δ(t − τ)h(τ)dτ =

∫ t

0
δ(t − τ)h(τ)dτ = h(t)

and
L(δ)(s) =

∫ ∞
0

δ(t)e−stdt = 1

consequently, h is the system’s response to a Dirac-δ input
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Example

Impulse response functions of the RLC circuit (u = ube , y1 = i , y2 = uC )

Impulse Response
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CT-LTI I/O models (SISO)

Transfer function – linear differential equation

L{an
dny

dtn
+ an−1

dn−1y

dtn−1 + ...+ a1
dy

dt
+ a0y} =

= L{b0u + b1
du

dt
+ ...+ bm

dmu

dtm
}

H(s) =
Y (s)

U(s)
=

b(s)

a(s)

Transfer function – impulse response

H(s) = L{h(t)}
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CT-LTI I/O models: key points

the Laplace transform converts (higher order) linear differential
equations into algebraic equations
zero initial conditions are assumed for transfer functions (initial state
information is not included!)
knowing the input, the output can be computed (Laplace transform
(and inverse), convolution)
the whole system operator is represented as a time-domain signal
(h(t)) and/or its Laplace transform (H(s))
the model parameters are the coefficients in b(s) and a(s)
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CT-LTI state space systems

General form

ẋ(t) = Ax(t) + Bu(t) (state equation)
y(t) = Cx(t) + Du(t) (output equation)

for a given initial condition x(t0) = x(0) and x(t) ∈ Rn ,
y(t) ∈ Rp , u(t) ∈ Rr

model parameters

A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r
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State transformation

ẋ(t) = Ax(t) + Bu(t) , ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) , y(t) = Cx(t) + Du(t)

invertible transformation of the states:

T ∈ Rn×n , det T 6= 0 , x = Tx ⇒ x = T−1x

dim X = dim X = n

T−1ẋ = AT−1x + Bu

ẋ = TAT−1x + TBu , y = CT−1x + Du

A = TAT−1 , B = TB , C = CT−1 , D = D
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Transfer function computed from the state space
model

Laplace transform of the state space model

sX (s) = AX (s) + BU(s) (state equation, x(0) = 0)
Y (s) = CX (s) + DU(s) (output equation)

X (s) = (sI − A)−1BU(s)
Y (s) = {C (sI − A)−1B + D}U(s)

The system’s transfer function H(s), expressed with the corresponding
state space model matrices (A,B,C ,D):

H(s) = C (sI − A)−1B + D
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Solution of the state space model

We determine the inverse Laplace transform of

X (s) = (sI − A)−1BU(s)

by considering the Taylor series of (matrix) expression: (sI − A)−1:

(sI − A)−1 =
1
s

(
I − A

s

)−1

=
1
s

(
I +

A

s
+

A2

s2 + ...

)
Thus, the inverse Laplace transform of (sI − A)−1 is

L−1{(sI − A)−1} = I + At +
1
2!
A2t2 + ... = eAt , t ≥ 0

Finally, we obtain the unique solution x(t) of the state space model for the
initial condition x(0):

x(t) = eAtx(0) +
∫ t
0 eA(t−τ)Bu(τ)dτ

y(t) = Cx(t) + Du(t)
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Markov parameters

x(t) = eAtx(0) +
∫ t
0 eA(t−τ)Bu(τ)dτ

y(t) = Cx(t) + Du(t)

Assuming x(0) = 0, D = 0 and u(t) = δ(t), we obtain the impulse
response:

h(t) = CeAtB = CB + CABt + CA2B
t2

2!
+ ...

Markov parameters
CAiB , i = 0, 1, 2, ...

are invariant for the state transformations.
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state space models: key points

the Laplace transform converts sets of first order linear differential
equations into algebraic equations
SS models can handle non-zero initial conditions
knowing the input and the initial condition, the output can be
computed (Laplace transform (and inverse), convolution)
the model parameters are the A, B , C , D matrices (x(0) is also
needed for the solution)
SS models can be easily transformed to I/O models through Laplace
transform assuming x(0) = 0
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Summary

fundamental system properties: linearity (superposition),
time-invariance
LTI I/O models: higher order linear differential equations containing
only the input and the output (and derivatives)
transfer function, impulse response function: LTI system operators
given in the form of signals
state space models: sets of first order ODEs with state variables,
inputs and outputs ; initial conditions not necessarily zero
SS and I/O models can be converted to each other
key role of Laplace transform in handling/solving I/O and SS models
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Needed from mathematics

matrices: row/column rank, image, left/right kernel, determinant,
characteristic polynomial
matrix polynomials, Cayley-Hamilton theorem
quadratic forms
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Revision from previous lecture

system: operator (input signals −→ output signals)
LTI models: I/O: H(s), state space: (A,B,C ,D)

states: form the state space; knowing the model, input, and initial
state the future states and outputs can be computed
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Brief problem statements of observability and
controllability
General form of SS models – revision

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x(0)
y(t) = Cx(t)

signals: x(t) ∈ Rn , y(t) ∈ Rp , u(t) ∈ Rr

system parameters: A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n (assumption
without loss of generality: D = 0)

Studied system properties:

observability: determining the initial condition
(we need state information from the measurements (output) knowing the
model)

controllability: setting the initial condition
we want to influence (change) the state with appropriate input knowing the
model
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Observability of LTI systems – 1

Problem formulation
Given:

a state space model (A,B,C ) (D = 0)
input u
measured values y on a finite time horizon

To be computed:
The value of state vector x on a finite time horizon

It is sufficient to compute: x(t0) = x0

Definition. The system (A,B,C ) (or, equivalently, the pair (A,C )) is
observable, if x(t0) can be determined from a finite measurement of y .
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Observability – example 1

We consider the known RLC circuit. We measure the voltage of the
capacitor (uC ). We want to obtain the value of the current (i).

x =

[
i
uC

]
, u = ube , y = x2

A =

[
−R

L − 1
L

1
C 0

]
, B =

[ 1
L
0

]
, C =

[
0 1

]
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Observability – example 2
Elementary acceleration model (without friction, air resistance etc.):

F = m · a = m · ẍ1

in state space form:

ẋ1 = x2

ẋ2 = u,

where x1 is the position, x2 is the velocity, and u = F
m .

A =

[
0 1
0 0

]
, B =

[
0
1

]
Problems/tasks:

a) Can we determine the velocity if the position is measured only?
(i.e. C = [1 0])

b) Can we determine the position if the velocity is measured only?
(i.e. C = [0 1])
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Observability of LTI systems – 2

Necessary and sufficient condition.

A state space model (A,B,C ) is observable if and only if the
observability matrix On is full-rank.

On =



C
CA
.
.
.

CAn−1
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Observability of LTI systems – 3

Proof: (by construction)

y = Cx
ẏ = Cẋ = CAx + CBu
ÿ = Cẍ = CA(Ax + Bu) + CBu̇ = CA2x + CABu + CBu̇
.
.

y (n−1) = Cx (n−1) = CAn−1x + CAn−2Bu + ...+ CABu(n−3) + CBu(n−2)

y
ẏ
ÿ
.
.
.

y (n−1)


=



C
CA
CA2

.

.

.
CAn−1


x +



0 0 . . . 0
CB 0 . . . 0
CAB CB 0 . . 0
. . . . . .
. . . . . .
. . . . . .

CAn−2B CAn−3B . . CB 0





u
u̇
ü
.
.
.

u(n−1)
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Observability of LTI systems – 4

Y(t) = Onx(t) + T U(t)

Expressing x(t)
x(t) = O−1

n (Y(t)− T U(t)),

where O−1 denotes the (generalized) inverse of On

x(t) can be uniquely determined if and only if rank On(A,C ) = n.
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Controllability of LTI systems – 1

Problem formulation
Given:

a state space mode (A,B,C )

initial condition x(0), and x(T ) 6= x(0) desired final state

To be computed:
an appropriate u input signal, which drives the system from state x(t1) to x(t2)
in finite time.

Definition. The system (A,B,C ) (or, equivalently, the pair (A,B)) is
controllable if, given a finite duration T > 0 and two arbitrary points x0, xT ∈ Rn,
there exists an appropriate input u such that for initial condition x(0) = x0, the
value of the state vector at time T is x(T ) = xT .
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Controllability – example

System: RLC circuit i(0) = 1A, u(0) = 0V
Does there exist an input voltage function ube , such that we have
i(t1) = 5A, u(t1) = 10V, and t1 < M <∞?
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Controllability – example 2

Elementary acceleration model again

ẋ = Ax + Bu

where x1 is the position, x2 is the velocity, and u = F
m

matrices of the SS model:

A =

[
0 1
0 0

]
, B =

[
0
1

]
Problem/task:
Compute an acceleration command such that the speed is exactly x2 = 30m/s at
distance x1 = 200m?
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Controllability of LTI systems – 2

Necessary and sufficient condition
A state space model with matrices (A,B,C )

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

is controllable if and only if, the controllability matrix Cn is of full-rank

Cn =
[
B AB A2B . . An−1B

]
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Controllability of LTI systems – 3

Proof: (by construction)∫∞
−∞ f (t)δ′(t)dt = −f ′(0)∫∞
−∞ f (t)δ(n)(t)dt = (−1)nf (n)(0)

f (τ) = e−Aτ , f ′(τ) = −Ae−Aτ

f (n)(τ) = (−1)nAne−Aτ

Input: linear combination of Dirac-δ and its time derivatives.
u(t) = g1δ(t) + g2δ̇(t) + ...+ gnδ

(n−1)(t)
According to the principle of superposition:

x(0+) = x(0−) + g1h(0−) + g2ḣ(0−) + ...+ gnh
(n−1)(0−)

x(0+) = x(0−) + g1B + g2AB + ...+ gnA
n−1B
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Controllability of LTI systems – 4

Assuming that x(0−) = 0 we get:

x(0+) =
[
B AB A2B . . . An−1B

]


g1
g2
.
.
.
gn


for an arbitrary final state value x(0+) there exists a unique weighting vector
[g1...gn]T if and only if rank Cn(A,B) = n.
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Diagonal realization

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

where

ẋ =


λ1 . . . 0
. . . . .
. . . . .
. . . . .
0 . . . λn

 x +


b1
.
.
.
bn

 u

y =
[
c1 . . . cn

]
x
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Controllability in case of a diagonal realization

Controllability matrix

Cn =
[
B AB . . An−1B

]
=


b1 λ1b1 λ2

1b1 . .
. . . . .
. . . . .
. . . . .
bn λnbn λ2

nbn . .

 =

=


b1 . . . 0
. . . . .
. . . . .
. . . . .
0 . . . bn




1 λ1 . . λn−1
1

. . . . .

. . . . .

. . . . .
1 λn . . λn−1

n


This matrix is the so-called Vandermonde-matrix , which is nonsingular if
λi 6= λj (i 6= j).

rank Cn = n ⇔ det Cn 6= 0
det Cn =

∏
i bi
∏

i<j(λi − λj)
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Transfer function of a diagonal SISO realization

H(s) = C (sI − A)−1B =
n∑

i=1

cibi
s − λi

=
b(s)

a(s)

where I is the unit matrix.

If cj = 0 or bk = 0 for a given j or k, then the transfer function can
be rewritten by using a smaller number of partial fractions.

H(s) =
n∑

i=1

cibi
s − λi

=
b(s)

a(s)
, n < n
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Computing a realizable (smooth) input for a
target state
Given: A, B, x(0) (initial state), x(t̄) (target state)
To be determined: u, t̄ (finite)
Assumption: input is in the form u(t) = BT eA

T (t̄−t)z , where z ∈ Rn (z =?)

x(t̄) = eAt̄x(0) +

∫ t̄

0
eA(t̄−τ)BBT eA

T (t̄−τ) · zdτ

Let ξ = t̄ − τ , then:

x(t̄) = eAt̄x(0) +

[∫ t̄

0
eAξBBT eA

T ξdξ

]
︸ ︷︷ ︸

GC (t̄)

·z

From this, the input parameters can be expressed as

z = G−1
c (t̄)

(
x(t̄)− eAt̄x(0)

)
, provided that G−1

c (t̄) exists for some t̄
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The controllability Gramian

GC (t) =

∫ t

0
eAτBBT eA

T τdτ

is the controllability Gramian

The following is true:

The controllability matrix is of full rank if and only if GC (t) is positive
definite (and therefore, invertible) for some t ≥ 0.

controllability =⇒ a smooth input can be computed to arbitrarily change
the state in finite time
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Remark on the powers of A

Q: Why is it that there is no need for higher powers of A than An−1 in the
controllability/observability matrices?

A: It follows from the Cayley-Hamilton theorem that An, An+1, . . . can be
expressed as a linear combination of A0 = I , A, . . . , An−1

characteristic polynomial of A:

p(λ) = det(λI − A) = a0 + a1λ+ a2λ
2 + · · ·+ anλ

n

Then: a0I + a1A + a2A
2 + . . . anA

n = 0

An =
n−1∑
i=0

āiA
i

An+1 = A · An = ā0A + ā1A
2 + · · ·+ ān−1A

n =

= ā0A + ā1A
2 + · · ·+ ān−1

n−1∑
i=0

āiA
i

and so on =⇒ AiB and CAi for i ≥ n cannot increase the rank of the
controllability and observability matrix, respectively
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1 Problem statement

2 Observability

3 Controllability

4 Geometrical interpretation
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Geometrical interpretation of observability

(A,C ) unobservability subspace of the system:

set of initial condition values, which cannot be distinguished from each
other knowing (measuring) the output signal

namely, starting the system operation from any initial condition from the
unobservability subspace, the system will produce the same output

Computing the basis of the unobservability subspace ker(On)
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Example

Matrices of the state space model:

A =

[
1 2
−2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Observability matrix:

O2 =

[
1 1
−1 −1

]
Basis of the unobservability subspace:

ker(O2) = span
{[
−1
1

]}
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Example
Input given to the system:
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Example

State variables of the system and its output for x(0) = [−1 1]T
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Example

State variables of the system and its output for x(0) = [4 − 4]T
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Geometrical interpretation of controllability

(A,B) controllability subspace of a system:

set of state vectors x1 ∈ Rn, which can be reached in finite time from the
origin of the state space (x(0) = 0).
∃u : [0,T ]→ Rm, T <∞ such that x(T ) = x1

in other words, there does not exist any input signal u(t) for which the
state vector can leave the controllability subspace.

Computing the basis of the controllability subspace im(Cn)
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Example

Matrices of the state space model:

A =

[
1 −2
2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Controllability matrix:

C2 =

[
1 −1
1 −1

]
Basis of the controllability subspace:

im(C2) = span
{[

1
1

]
,

[
−1
−1

]}
= span

{[
1
1

]}
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Example
Input given to the system:
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Example

State variables of the system, in case of x(0) = [0 0]T
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Example
Input given to the system:
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Example

State variables of the system, in case of x(0) = [0 0]T
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Summary

observability: possibility to compute the state (initial condition) from
inputs and outputs knowing the model
controllability: possibility to reach a given target state (initial
condition) with appropriate input knowing the model
necessary and sufficient condition: full rank of the
observability/controllability matrix
geometry: controllability subspace, unobservability subspace
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Introductory example

Consider the following SISO CT-LTI system withe realization (A,B,C)

A =

 −1 1 0
2 −1 0
1 0 0

 , B =

 1
0
1

 , C =
[
1 0 1

]
The model is observable but it is not controllable.
Question: Can the model be written in a new coordinates system, such
that the new model is both observable and controllable? (and what are the
conditions / consequences)
Transfer function:

H(s) =
2s2 + 4s

s3 + 2s2 − s
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Introduction – 1

For a given (SISO) transfer function H(s) = b(s)
a(s) , the state space

model (A,B,C ,D) is called an nth order realization if
H(s) = C (sI − A)B + D,
where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R.
(The state space repr. for a given transfer function is not unique).
An n-th order state space realization (A,B,C ,D) of a given transfer
function H(s) is called minimal , if there exist no other realization
with a smaller state space dimension (i.e., with a smaller A matrix)
An n-th order state space model (A,B,C ,D) is called jointly
controllable and observable if both On and Cn are full-rank matrices.

Assumptions from now on: SISO systems, D = 0
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Introduction – 2

The transfer function is invariant for state transformations
The roots of the transfer function’s denominator are the eigenvalues of
matrix A (a(s) is the characteristic polynomial of A)
For a given transfer function H(s), any two arbitrary jointly
controllable and observable realizations (A1,B1,C1) and (A2,B2,C2)
are connected to each other by the following coordinates
transformation

T = O−1(C1,A1)O(C2,A2) = C(A1,B1)C−1(A2,B2)

(without proof)

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 6 / 34



Introduction – 3

Matrix polynomials:

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x + c0, x ∈ R
p(A) = cnA

n + cn−1A
n−1 + · · ·+ c1A + c0I

important properties:
a matrix polynomial commutes with any power of the argument
matrix, namely: AiP(A) = P(A)Ai

eigenvalues: λi [P(A)] = P(λi [A])

Cayley-Hamilton theorem: every n × n matrix is a root of its own
characteristic polynomial (p(x) = det(A− xI ))
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Overview – 1

equivalent state space and I/O model properties
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Overview – 2

Consider SISO CT-LTI systems with realization (A,B,C )

Joint controllability and observability is a system property
Equivalent necessary and sufficient conditions
Minimality of SSRs
Irreducibility of the transfer function
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Hankel matrices

A Hankel matrix is a block matrix of the following form

H[1, n − 1] =



CB CAB . . . CAn−1B
CAB CA2B . . . CAnB
. . . . . .
. . . . . .
. . . . . .

CAn−1B CAnB . . . CA2n−2B



It contains Markov parameters CAiB that are invariant under state
transformations.
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Lemma 1

Lemma (1)

If we have a system with transfer function H(s) = b(s)
a(s) and there is an n-th

order realization (A,B,C ) which is jointly controllable and observable, then
all other n-th order realizations are jointly controllable and observable.

Proof

O(C ,A) =



C
CA
.
.
.

CAn−1

 , C(A,B) =
[
B AB A2B . . . An−1B

]

H[1, n − 1] = O(C ,A)C(A,B)
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Controller form realization

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

with

Ac =



−a1 −a2 . . . −an
1 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . 1 0

 , Bc =



1
0
.
.
.
0


Cc =

[
b1 b2 . . . bn

]
with the coefficients of the polynomials
a(s) = sn + a1s

n−1 + ...+ an−1s + an and b(s) = b1s
n−1 + ...+ bn−1s + bn

that appear in the transfer function H(s) = b(s)
a(s)
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Observer form realization

ẋ(t) = Aox(t) + Bou(t)
y(t) = Cox(t)

where

Ao =


−a1 1 0 . . . 0
−a2 0 1 . . . 0
...

−an−1 0 0 . . . 1
−an 0 0 . . . 0

 , Bo =


b1
b2
...

bn−1
bn


Co =

[
1 0 0 . . . 0

]
, Do = D

with the coefficients of the polynomials
a(s) = sn + a1s

n−1 + ...+ an−1s + an and b(s) = b1s
n−1 + ...+ bn−1s + bn

that appear in the transfer function H(s) = b(s)
a(s)

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 15 / 34



Definitions

Definition (Relative prime polynomials)

Two polynomials a(s) and b(s) are coprimes (or relative primes) if
a(s) =

∏
(s − αi ); b(s) =

∏
(s − βj) and αi 6= βj for all i , j .

In other words: the polynomials have no common roots.

Definition (Irreducible transfer function)

A transfer function H(s) = b(s)
a(s) is called to be irreducible if the

polynomials a(s) and b(s) are relative primes.
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Lemma 2

Lemma (2)

An n-dimensional controller form realization with transfer function
H(s) = b(s)

a(s) (where a(s) is an n-th order polynomial) is jointly controllable
and observable if and only if a(s) and b(s) are relative primes (i.e., H(s) is
irreducible).

Proof
A controller form realization is controllable and

Oc = Ĩnb(Ac)

Ĩn =


0 . . 1
0 . 1 0
. . . .
1 0 . 0

 ∈ Rn×n

Non-singularity of b(Ac)
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Proof of Lemma 2. – 1

Ĩn =
[
en en−1 . . e1

]
=



eTn
eTn−1
.
.
.
eT1

 , ei =



0
.
.
0
1
0
.
.


← i .

Ac =



−a1 −a2 . . . −an
1 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . 1 0

 , eTi Ac =

{
[−a1 − a2 ... − an] i = 1

eTi−1 i ≥ 2
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Proof of Lemma 2. – 2

Computation of the observability matrix Oc = Ĩnb(Ac) ∈ Rn×n

1st row:

eTn b(Ac) = eTn b1A
n−1
c + ...+ eTn bn−1Ac + eTn bnIn

n-th term: [0 ... 0 bn]
(n − 1)-th term: bn−1e

T
n Ac = bn−1e

T
n−1 = [0 ... bn−1 0]

...
eTn b(Ac) = [b1 ... bn−1 bn] = Cc

2nd row:

eTn−1b(Ac) = eTn Acb(Ac) = eTn b(Ac)Ac ⇒ eTn−1b(Ac) = CcAc

and so on ...
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Proof of Lemma 2. – 3

Oc is nonsingular
iff b(Ac) is nonsingular because matrix Ĩn is always nonsingular
b(Ac) is nonsingular iff det(b(Ac)) 6= 0
which depends on the eigenvalues of b(Ac) matrix
the eigenvalues of the matrix b(Ac) are b(λi ), i = 1, 2, ..., n
λi is an eigenvalue of Ac , i.e a root of a(s) = det(sI − A)

det(b(Ac)) =
n∏

i=1

b(λi ) 6= 0

m

a(s) and b(s) have no common roots, i.e. they are relative primes
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Minimal realization conditions – 1

Theorem (1)

H(s) = b(s)
a(s) (where a(s) is an n-th order polynomial) is irreducible if and

only if all of its n-th order realizations are jointly controllable and
observable.

Proof: combine Lemma 1. and 2.

We assume that any nth order realization H(s) is jointly controllable
and observable =⇒ A controller form is jointly controllable and
observable =⇒ H(s) is irreducible (Lemma 2)
We assume that H(s) is irreducible =⇒ the controller form realization
is jointly controllable and observable (Lemma 2) =⇒ Any nth order
realization is jointly controllable and observable (Lemma 1)
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Minimal realization conditions – 2

Definition (Minimal realization)

An n-dimensional realization (A,B,C ) of the transfer function H(s) is minimal if
one cannot find another realization of H(s) with dimension less than n.

Theorem (2)

H(s) = b(s)
a(s) is irreducible iff any of its realization (A,B,C ) is minimal where

H(s) = C (sI − A)−1B

Proof: by contradiction
We assume that H(s) is irreducible, but there exists an nth order realization,
which is not minimal =⇒ there exists an mth (m < n) order realization
(Ā, B̄, C̄ ) of H(s) =⇒ from this realization we can obtain the transfer
function H̄(s), for which the order of its denominator m, which is a
contradiction (since H(s) is reducible).
We assume that the nth order realization (A,B,C ) is minimal, but
H(s) = C (sI − A)−1B is reducible =⇒ From the simplified transfer function
one can obtain an mth order realization, such that m < n, that is a
contradiction.
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Minimal realization conditions – 3

Theorem (3)

A realization (A,B,C ) is minimal iff the system is jointly controllable and
observable.

Proof: Combine Theorem 1 and Theorem 2 .

Lemma (3)

Any two minimal realizations can be connected by a unique similarity
transformation (which is invertible).

Proof: (Just the idea of it)

T = O−1(C1,A1)O(C2,A2) = C(A1,B1)C−1(A2,B2)

exists and it is invertible: this is used as a transformation matrix.
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Decomposition of uncontrollable systems

We assume that (A,B,C ) is not controllable. Then, there exists an
invertible transformation T such that the transformed system in the new
coordinates system (x̄ = Tx) will have the form[

˙̄x1
˙̄x2

]
=

[
Ac A12
0 Ac̄

] [
x̄1
x̄2

]
+

[
Bc

0

]
u

y =
[
Cc Cc̄

] [ x̄1
x̄2

]
and

H(s) = Cc(sI − Ac)−1Bc
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Controllability decomposition – example

Matrices of the state-space :

A =

[
1 −2
2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Controllability matrix:

C2 =

[
1 −1
1 −1

]
Transformation:

T−1 =

[
1 1
1 0

]
, T =

[
0 1
1 −1

]
The transformed model:

Ā =

[
−1 2
0 −1

]
, B̄ =

[
1
0

]
, C̄ =

[
2 1

]
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Decomposition of unobservable systems

We assume that (A,B,C ) is not observable. Then there exists an invertible
matrix transformation T , such that the transformed system in the new
coordinates system (x̄ = Tx) will have the form[

˙̄x1
˙̄x2

]
=

[
Ao 0
A21 Aō

] [
x̄1
x̄2

]
+

[
Bo

Bō

]
u

y =
[
Co 0

] [ x̄1
x̄2

]
and

H(s) = Co(sI − Ao)−1Bo
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Observability decomposition – example

Matrices of the state-space model:

A =

[
1 2
−2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Observability matrix:

O2 =

[
1 1
−1 −1

]
Transformation:

T =

[
1 1
0 2

]
, T−1 =

[
1 −0.5
0 0.5

]
The transformed model:

Ā =

[
−1 0
−4 1

]
, B̄ =

[
2
2

]
, C̄ =

[
1 0

]
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General decomposition theorem

Given an (A,B,C ) SSR, it is always possible to transform it to another
realization (A,B,C ) with partitioned state vector and matrices

x =
[
xco xco xco xco

]T

A =


Aco 0 A13 0
A21 Aco A23 A24
0 0 Aco 0
0 0 A43 Aco

 B =


Bco

Bco

0
0


C =

[
C co 0 C co 0

]
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General decomposition theorem

The partitioning defines subsystems
Controllable and observable subsystem: (Aco ,Bco ,C co) is minimal, i.e.
n ≤ n and

H(s) = C co(sI − Aco)−1Bco = C (sI − A)−1B

Controllable subsystem( [
Aco 0
A21 Aco

]
,

[
Bco

Bco

]
,
[
C co 0

] )
Observable subsystem( [

Aco A13
0 Aco

]
,

[
Bco

0

]
,
[
C co C co

] )
Uncontrollable and unobservable subsystem

([Aco ] , [0] , [0])
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Introductory example – review

Consider the following SISO CT-LTI system withe realization (A,B,C)

A =

 −1 1 0
2 −1 0
1 0 0

 , B =

 1
0
1

 , C =
[
1 0 1

]
The model is observable but it is not controllable.
Its transfer function and its simplified form:

H(s) =
2s2 + 4s

s3 + 2s2 − s
=

2s + 4
s2 + 2s − 1

Its minimal state space realization (eq. controller form):

Ā =

[
−2 1
1 0

]
, B̄ =

[
1
0

]
, C̄ =

[
2 4

]
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Summary

joint controllability and observability of (A,B,C ) has important
consequences, since it is equivalent to:

I a state space realization with the minimum number of state variables
(minimal realization, i.e., A cannot be smaller)

I H(s) = C (sI − A)−1B = b(s)
a(s) is irreducible

non-controllable and/or non-observable state space models can be
transformed such that the non-controllable / non-observable states are
clearly visible in the new coordinates
it’s easy to determine a minimal realization from a
non-controllable/non-observable SS model (simplification of the
transfer function, canonical realization)
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Systems

System (S): acts on signals

y = S[u]

inputs (u) and outputs (y)
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CT-LTI I/O system models

Time domain:Impulse response function
is the response of a SISO LTI system to a Dirac-delta input function
with zero initial condition.
The output of S can be written as

y(t) =

∫ ∞
−∞

h(t − τ)u(τ)dτ =

∫ ∞
−∞

h(τ)u(t − τ)dτ

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 4 / 38



CT-LTI state-space models

General form - revisited

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x(0)
y(t) = Cx(t)

with
I signals: x(t) ∈ Rn , y(t) ∈ Rp , u(t) ∈ Rr

I system parameters: A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n (D = 0 by
using centering the inputs and outputs)

Dynamic system properties:
I observability
I controllability
I stability
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Signal spaces

Lq signal spaces

Lq[0,∞) =

{
f : [0,∞)→ R

∣∣∣ f is measurable and
∫ ∞

0
|f (t)|q dt < 0

}
special case

L∞[0,∞) =

{
f : [0,∞)→ R

∣∣∣ f is measurable and sup
t≥ 0
|f (t)| <∞

}
Remark: Lq spaces are Banach spaces with norms

‖f ‖q =

(∫ ∞
0
|f (t)|q dt

)1/q

‖f ‖∞ = sup
t≥ 0
|f (t)|
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Vector valued signals

Lnq multidimensional signal spaces

Let f (t) ∈ Rn, ∀t ≥ 0, then

Lnq[0,∞) =

{
f : [0,∞)→ Rn

∣∣∣ f is measurable,
∫ ∞

0
‖f (t)‖q2 dt <∞

}
where ‖f (t)‖ =

√
f T (t)f (t) is the Euclidean norm in Rn

Lnq is a Banach space equipped with the signal norm

norm: ‖f ‖q =

(∫ ∞
0
‖f (t)‖q2 dt

)1/q

Remark: The case L2 is special, because the norm can be originated
from an inner product (therefore, L2 is a Hilbert-space)
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BIBO stability – general

Definition (BIBO stability)

A system is externally or BIBO stable if for any bounded input it responds
with a bounded output

‖u‖ ≤ M1 <∞⇒ ‖y‖ ≤ M2 <∞

where ‖·‖ is a signal norm.

This applies to any type of systems.
Stability is a system property, i.e. it is realization-independent.

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 9 / 38



BIBO stability – 1

Bounded input-bounded output (BIBO) stability for SISO systems

|u(t)| ≤ M1 <∞, ∀t ≥ 0 ⇒ |y(t)| ≤ M2 <∞, ∀t ≥ 0

Theorem (BIBO stability)

A SISO LTI system is BIBO stable if and only if∫ ∞
0
|h(t)|dt ≤ M <∞

where M ∈ R+ and h is the impulse response function.
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BIBO stability – 2

Proof:
⇐ Assume

∫∞
0 |h(t)|dt ≤ M <∞ and u is bounded, i.e.

|u(t)| ≤ M1 <∞, ∀t ∈ R+
0 . Then

|y(t)| ≤ |
∫ ∞

0
h(τ)u(t − τ)dτ | ≤ M1

∫ ∞
0
|h(τ)|dτ ≤ M1 ·M = M2

⇒ (indirect) Assume
∫∞
0 |h(τ)|dτ =∞, but the system is BIBO stable.

Consider the bounded input:

u(t − τ) = sign h(τ) =


1 if h(τ) > 0
0 if h(τ) = 0
−1 if h(τ) < 0
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Stability of nonlinear systems

Consider the autonomous nonlinear system:

ẋ = f (x), x ∈ X = Rn, f : Rn → Rn

with an equilibrium point: f (x∗) = 0
I x∗ stable equilibrium point: for any ε > 0 there exists δ ∈ (0, ε) such

that for ‖x∗ − x(0)‖ < δ ‖x∗ − x(t)‖ < ε holds.

I x∗ asymptotically stable equilibrium pint: x∗ stable and lim
t→∞

x(t) = x∗.

I x∗ unstable equilibrium point: not stable

I x∗ locally (asymptotically) stable: there exists a neighborhood U of x∗

within which the (asymptotic) stability conditions hold

I x∗ globally (asymptotically) stable: U = Rn
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Example: asymptotic stability

RLC circuit, parameters: R = 1 Ω, L = 10−1H, C = 10−1F .
uC (0) = 1 V, i(0) = 1 A, ube(t) = 0 V
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Non-asymptotic stability

(R)LC circuit, parameters: R = 0 Ω(!), L = 10−1H, C = 10−1F .
uC (0) = 1 V, i(0) = 1 A, ube(t) = 0 V
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Example: instability

ẋ1 = x1 + 0.1x2
ẋ2 = −0.2x1 + 2x2

, x(0) = [12]T
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Stability of CT-LTI systems

(Truncated) LTI state equation with (u ≡ 0):

ẋ = A · x , x ∈ Rn, A ∈ Rn×n, x(0) = x0

Equilibrium pont: x∗ = 0
Solution:

x(t) = eAt · x0

Recall: A diagonalizable (there exists invertible T , such that

T · A · T−1

is diagonal) if and only if, A has n linearly independent eigenvectors.
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Asymptotic stability of LTI systems – 1

Stability types:
the real part of every eigenvalue of A is negative (A is a stability
matrix): asymptotic stability
A has eigenvalues with zero and negative real parts

I the eigenvectors related to the zero real part eigenvalues are linearly
independent: (non-asymptotic) stability

I the eigenvectors related to the zero real part eigenvalues are not
linearly independent: (polynomial) instability

A has (at least) an eigenvalue with positive real part: (exponential)
instability
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Asymptotic stability of LTI systems – 2

Theorem
The eigenvalues of a square A ∈ Rnxn matrix remain unchanged after a
similarity transformation on A by a transformation matrix T :

A′ = TAT−1

Proof:
Let us start with the eigenvalue equation for matrix A

Aξ = λξ , ξ ∈ Rn , λ ∈ C

If we transform it using ξ′ = T ξ then we obtain

TAT−1T ξ = λT ξ

A′ξ′ = λξ′
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Asymptotic stability of LTI systems – 3

Theorem
A CT-LTI system is asymptotically stable iff A is a stability matrix.

Sketch of Proof: Assume A is diagonalizable

Ā = TAT−1 =


λ1 0 . . . 0
0 λ2 . . . 0

. . . 0
0 . . . 0 λn



x̄(t) = eĀt · x̄0 , eĀt =


eλ1t 0 . . . 0
0 eλ2t . . . 0

. . . 0
0 . . . 0 eλnt
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BIBO and asymptotic stability

Theorem
Asymptotic stability implies BIBO stability for LTI systems.

Proof:

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ, y(t) = Cx(t)

||x(t)|| ≤ ||eAtx(t0) + M
∫ t
0 eA(t−τ)Bdτ || =

= ||eAt(x(t0) + M
∫ t
0 e−AτBdτ)|| =

= ||eAt(x(t0) + M[−A−1e−AτB]t0)|| =
= ||eAt [x(t0)−MA−1e−AtB + MA−1B]||

||x(t)|| ≤ ||eAt(x(t0) + MA−1B)−MA−1B||
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Lyapunov theorem of stability

Lyapunov-function: V : X → R
I V > 0, if x 6= x∗, V (x∗) = 0
I V continuously differentiable
I V non-increasing, i.e. d

dtV (x) = ∂V
∂x ẋ = ∂V

∂x f (x) ≤ 0

Theorem (Lyapunov stability theorem)

If there exists a Lyapunov function to the system ẋ = f (x), f (x∗) = 0,
then x∗ is a stable equilibrium point.
If d

dtV < 0 then x∗ is an asymptotically stable equilibrium point.
If the properties of a Lyapunov function hold only in a neighborhood
U of x∗, then x∗ is a locally (asymptotically) stable equilibrium point.
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Lyapunov theorem – example

System:
ẋ = −(x − 1)3

Equilibrium point: x∗ = 1
Lyapunov function: V (x) = (x − 1)2

d

dt
V =

∂V

∂x
ẋ = 2(x − 1) · (−(x − 1)3) =

= −2(x − 1)4 < 0

The system is globally asymptotically stable
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CT-LTI Lyapunov theorem – 1

Basic notions:
Q ∈ Rn×n symmetric matrix: Q = QT , i.e. [Q]ij = [Q]ji (every
eigenvalue of Q is real)
symmetric matrix Q is positive definite (Q > 0):
xTQx > 0,∀x ∈ Rn, x 6= 0 (⇔ every eigenvalue of Q is positive)
symmetric matrix Q is negative definite Q < 0: xTQx < 0,∀x ∈ Rn,
x 6= 0 (⇔ every eigenvalue of Q is negative)

Theorem (Lyapunov criterion for LTI systems)

The state matrix (A) of an LTI system is a stability matrix if and only if
there exists a positive definite symmetric matrix P for every given positive
definite symmetric matrix Q such that

ATP + PA = −Q
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CT-LTI Lyapunov theorem – 2

Proof:
⇐ Assume ∀ Q > 0 ∃ P > 0 such that ATP + PA = −Q. Let
V (x) = xTPx .

d

dt
V = ẋTPx + xTPẋ = xT (ATP + PA)x < 0

⇒ Assume A is a stability matrix. Then

P =

∫ ∞
0

eA
T tQeAtdt

ATP + PA =

∫ ∞

0
AT eA

T tQeAtdt +

∫ ∞

0
eA

T tQeAtAdt = [eA
T tQeAt ]∞0 = 0 − Q = −Q
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Example: stability of RLC circuit – 1

Model (x1 = iL, x2 = uC , ube = 0, R = 1, C = 0.1, L = 0.05):[
ẋ1
ẋ2

]
=

[
−R

L − 1
L

1
C 0

] [
x1
x2

]
eigenvalues of A (roots of ≡ b(s)): −10± 10i
⇒ the RLC circuit is asymptotically stable
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Example: stability of RLC circuit – 2

Lyapunov function: sum of kinetic and potential energies

V (x) =
1
2

(Lx2
1 + Cx2

2 ) =
1
2
xT
[
L 0
0 C

]
x

d

dt
V =

∂V

∂x
ẋ =

1
2

(ẋTPx + xTPẋ) = −Rx2
1

the sum of energies is not increasing (decreasing if x1 6= 0 and R > 0)
independently of the actual values of the parameters
! the electric energy is preserved (is constant: d

dtV = 0), if R = 0.
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Example: stability of RLC circuit – 3

Plot of the Lyapunov function:
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Example: stability of RLC circuit – 4

Level sets of the Lyapunov function (ellipses):

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

V=0.02

V=0.01
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Example: stability of RLC circuit – 5

The solution of the ODE (voltages and currents) in the phase space:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x
2
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Quadratic stability region

Use quadratic Lyapunov function candidate with a given positive
definite diagonal weighting matrix Q (tuning parameter!)

V [x(t)] = (x − x∗)T · Q · (x − x∗)

Dissipativity condition gives a conservative estimate of the stability
region

dV

dt
=
∂V

∂x

dx

dt
=
∂V

∂x
f (x)

I f (x) = f (x) in the open loop case with u = 0
I f (x) = f (x) + g(x) · C (x) in the closed-loop case where C (x) is the

static state feedback
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Quadratic stability region: an example - 1

Nonlinear system

ẋ1 = 0.4x1x2 − 1.5x1
ẋ2 = −0.8x1x2 − 1.5x2 + 1.5u
y = x2

Equilibrium point with u∗ = 7.75

x∗ =

[
x∗1
x∗2

]
=

[
2

3.75

]
Locally linearized system

˙̃x =

[
0 0.8
−3 −3.1

]
x̃ +

[
0
1.5

]
ũ

ỹ =
[
0 1

]
x̃

Eigenvalues of the state matrix are λ1 = −1.5 and λ2 = −1.6 so
equilibrium x∗ (and not the whole system!) is locally asymptotically
stable.
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Quadratic stability region: an example - 2

Quadratic Lyapunov function

V (x) = (x − x∗)T ·
[
1 0
0 1

]
· (x − x∗)
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Quadratic stability region: an example - 3

Time derivative of the quadratic Lyapunov function
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Transfer functions and stability

SISO case: H(s) = C (sI − A)−1B=b(s)
a(s)=

bms
m + bm−1s

m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
=

(s − β1)(s − β2) . . . (s − βm)

(s − λ1)(s − λ2) . . . (s − λn)

Zeros: β1, β2, . . . , βm ∈ C
Poles: λ1, λ2, . . . , λn ∈ C (identical to the eigenvalues of A)

Asymptotic stability ⇔ Re(λi ) < 0
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Routh’s stability criterion – 1

a(s) = a0s
n + a1s

n−1 + · · ·+ an−1s + an

a0 a2 a4 a6 . . .
a1 a3 a5 a7 . . .

a1a2−a0a3
a1

a1a4−a0a5
a1

a1a6−a0a7
a1

. . .

. . .
an . . .

Routh-coefficients: R0 = a0, R1 = a1, R2 = a1a2−a0a3
a1

, . . . , Rn = an.
(elements of the first column)
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Routh’s stability criterion – 2

number of sign changes in the column of coefficients = number of roots
with positive real part (unstable)
necessary and sufficient condition for stability: Ri > 0, i = 0, . . . , n.
Example: a(s) = s3 + s2 + 3s + 10.
R0 = 1, R1 = 1, R2 = −7, R3 = 10 ⇒ 2 roots with positive real parts
(unstable system)
Remarks:

necessary condition for stability (not sufficient for polynomials with
degree greater than 2): all coefficients ai are positive
in the case of purely imaginary root(s), zero(s) appear among the
coefficients
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Hurwitz’s stability criterion – 1

W =



a1 a3 a5 . . . 0 0 0
a0 a2 a4 a6 . . . 0 0
0 a1 a3 a5 . . . 0
0 a0 a2 a4 a6 . . . 0
. . . 0
0 0 0 . . . an−3 an−1 0
0 0 0 . . . an−4 an−2 an


∈ Rn×n

Minors: H1, H2, . . . , Hn.
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Hurwitz’s stability criterion – 2

necessary and sufficient condition for stability: Hi > 0, i = 1, . . . , n
0 minor: imaginary root
negative minor: root with positive real part
relation between Routh- and Hurwitz-coefficients: Ri = Hi

Hi−1
, H0 = 1.
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Example: RLC circuit – 1

R = 1Ω, L = 0.1H, C = 0.1F , x(0) = [0 0]T , y = uC ,
u(t) = ube = cos(ω · t)
ω = 0 rad/s = 0 Hz
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Example: RLC circuit – 2

ω = 2Π rad/s = 1 Hz
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Example: RLC circuit – 3

ω = 5 · 2Π rad/s = 5 Hz
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Example: RLC circuit – 4

ω = 10 · 2Π rad/s = 10 Hz
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Fourier- and Laplace-transforms

Revision: f : R+
0 7→ R

Fourier-transform:

F (jω) =

∫ ∞
−∞

f (t)e−jωtdt, ω ∈ R

Laplace-transform:

F (s) =

∫ ∞
0

f (t)e−stdt, s ∈ C

Assume that s is on the imaginary axis. Then: s ←→ jω
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Frequency response function

Transfer function: H(s)
Definition: HF (ω) = H(jω) (frequency response function)
Then HF is the Fourier-transform of the impulse response function (h)
since:

HF (ω) =

∫ ∞
0

h(t)e−iωtdt =

∫ ∞
−∞

h(t)e−iωtdt

HF is the restriction of H to the imaginary axis
Question: Can we compute H from the restriction on the complex plane,
where the Laplace-transform is defined?
Answer: Using the fact that the transfer function is analytic, the
computation is the following, if the poles of H are on the left half-plane:

H(s) =
1
2π

∫ ∞
−∞

HF (ω)

s − iω
dω
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Time- operator- and frequency-domains
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Response of stable LTI systems to periodic inputs

Theorem: Let H(s) be the transfer function of an asymptotically stable
LTI system, and ω > 0. Then the response of the system to the input
u(t) = u0 sin(ωt) is of the following form:

y(t) = u0Re(HF (ω)) sin(ωt) + u0Im(HF (ω)) cos(ωt)

(we do not prove)
Remarks:

It is visible that the output is also periodic with a period T = 2π
ω

equal to the period of the input.
The theorem is still valid if the transfer function has purely imaginary
poles of the form i ω̂, but ω/ω̂ /∈ Z.
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Response of stable LTI systems to periodic inputs

transfer function: G (jω), (G (s))

u(t) = u0 sin(ωt + α)

y(t) −→ y0 sin(ωt + β)

gain: k =
∣∣∣ y0u0

∣∣∣ = |G (jω)| (frequency dependent!)
phase: φ = β − α = ∠G (jω[rad]) (frequency dependent!)
E.g. let G (jω) = a + bj

|G (jω)| =
√

(a2 + b2), ∠G (jω) = arctan(b/a)
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Gain in time and frequency domains

u(t) = a0 sin(ωt), y(t) = a1 sin(ωt + φ)

U(s) =
a0ω

s2 + ω2 , Y (s) =
a1(s sin(φ) + ω cos(φ))

s2 + ω2

|G (jω)| =
|Y (jω)|
|U(jω)|

=

∣∣∣∣a1(jω sin(φ) + ω cos(φ))

a0ω

∣∣∣∣ =

∣∣∣∣a1

a0

∣∣∣∣
∠G (jω) = arctan

(
ω sin(φ)

ω cos(φ)

)
= φ
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Example: RLC circuit – 5

Transfer function: C (sI − A)−1B = 100
s2+10s+100 = 100

(jω)2+10(jω)+100

f = 0 Hz, ω = 0 rad/s, G (jω) = 1 + 0j , |G (jω)| = 1, φ = 0 rad
f = 1 Hz, ω = 6.2832 rad/s, G (jω) = 0.7952− 0.8256j ,
|G (jω)| = 1.1463, φ = −0.8041 rad
f = 5 Hz, ω = 31.4159 rad/s, G (jω) = −0.1002− 0.0355j ,
|G (jω)| = 0.1063, φ = 0.3404 rad
f = 10 Hz, ω = 62.8319 rad/s, G (jω) = −0.0253− 0.004j ,
|G (jω)| = 0.0256, φ = 0.1619 rad
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Gain of transfer functions

A =

∣∣∣∣y0

u0

∣∣∣∣
in dB:

Ad = 20 · log10(A) [dB]

|G (jω)| = 1, Ad = 0 dB
|G (jω)| = 1.1463, Ad = 1.1860 dB
|G (jω)| = 0.1063, Ad = −19.4693 dB
|G (jω)| = 0.0256, Ad = −31.8352 dB
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Bode-diagram
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Nyquist-diagram
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Bandwidth of SISO systems

Bandwidth: Frequency, where |G (jω)| first crosses the value 1/
√
2 (≈ −3

dB) from above
Example: RLC circuit
y = uC , ωc ≈ 2.03 Hz
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Transfer function of MIMO systems

u ∈ Rm, y ∈ Rr

Y (s) = H(s)U(s),

H(s) =

 h11(s) . . . h1m(s)

hr1(s) . . . hrm(s)

 ∈ Cr×m

Pl. RLC-circuit, u = uin, y = [i uC ]T

H(s) =

[ 10s
s2+10s+100

100
s2+10s+100

]
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1 Stability criteria for transfer functions

2 SISO systems in the frequency domain

3 Interconnections of subsystems
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Serial interconnection of subsystems

H(s) = H1(s) · H2(s)

i.e.
h(t) = (h1 ∗ h2)(t)
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Parallel interconnection of subsystems

H(s) = H1(s) + H2(s)

h(t) = h1(t) + h2(t)
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Proportional negative feedback

G (s) =
H(s)

1 + k · H(s)
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Negative feedback – example

Original system:

H(s) =
1

s − 1
, (unstable)

Feedback system:

G (s) =
1

s + k − 1
stable, if k > 1
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High gain output feedback

H(s) =
b(s)

a(s)

Transfer function of the feedback system:

G (s) =
b(s)

a(s) + k · b(s)
=

n(s)

d(s)

For k →∞, d(s)→ b(s), i.e. by increasing the feedback gain, the poles of
the feedback system converge to the zeros of the original system.
Minimum phase systems: Such systems where the real part of each zero
is negative. (They can be stabilized by high gain feedback.)
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General negative feedback – 1

G (s) =
H1(s)

1 + H1(s)H2(s)
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General negative feedback – 2

G (s) =
H1(s)H2(s)

1 + H1(s)H2(s)
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Summary

SISO transfer functions (TFs) are complex numbers (with absolute
value and angle) at any given s

frequency domain interpretation: assuming periodic (sinusoidal) input,
s = jω

absolute value of TF: gain (ratio of O/I amplitudes) at a given
frequency
angle of TF: phase shift at a given frequency
visualization: Bode diagram, Nyquist diagram
overall transfer functions were computed for different basic
interconnection of subsystems
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2 PID-control
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The control goal

Goal: the output of the system is identical to the prescribed reference
signal. ("Everything is under control")
Straightforward approach: Let us transform the system operator into the
identity operator (the output is exactly the same as the input)
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Left and right inverse (MIMO case)

Left inverse:

Right inverse:
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Inversion problems

The system operator is not invertible
The system to be controlled is unstable
The inverse is unstable
The inverse is not causal (not computable)
The system operator is uncertain → the inverse (might be) even more
uncertain
The system is not isolated in reality (there are external disturbances)
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Setting the steady state gain

Assumption: a stable SISO transfer function is given
Goal : the output of the "controlled" system should asymptotically follow
the constant reference signal (the gain should be 1 at frequency 0)

|H(j · 0)| = k ⇒ Kc = 1/k
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Example – 1

H(s) = 20
s2+4s+29 , |H(0)| = 20

29

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 8 / 38



Example – 2

Kc = 29
20
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Feedback – 1

Feedback control:
control goal + sensing + feedback computation + actuation

Example: tracking a (constant) speed reference

may fundamentally change the behaviour (dynamical properties) of the
original system
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Feedback – 2

Why to apply?
Often feedback is the only way to stabilize unstable systems
A well-designed feedback might operate well even with an uncertain
system model
The effect of external disturbances can also be reduced by feedback
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Feedback – 3

Types of feedback
output feedback : the input only depends on the outputs of the
system, i.e. u = F[y ]
(full) state feedback : the input depends on the state variables of the
system, i.e. u = F[x ]
static feedback : the F operator is static (u = F (y), u = F (x))
dynamic feedback : the F operator is dynamic (can be given by a state
space model or a transfer function)
linear feedback : the F operator or the F function is linear
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Role of the integrator

H1(s) =
b(s)
a(s) ⇒ G (s) = kI ·b(s)

s·a(s)+kI ·b(s)
|G (j · 0)| = 1
The steady state gain of a stable controlled system containing an integrator
is 1.
(The controlled system follows the constant reference signal, if it is
asymptotically stable.)
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Example – 1

System model: H(s) = 0.5
s2+5s+6

Response for a unit step input:
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Example – 2

Controlled system containing an integrator (kI = 1): G (s) = 0.5
s3+5s2+6s+0.5

Response to a unit step input:
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Example – 3

output of the integrator ≡ input of the original system:
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1 Introduction into the control of (SISO) systems

2 PID-control
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Structure of PID controllers – 1

P=Proportional, I=Integral, D=Derivative
Transfer function:

KPID(s) = Kp

[
1+

1
Ti · s

+ Td · s
]
=

Kp(Ti · Td · s2 + Ti · s + 1)
Ti · s
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Structure of PID controllers – 2

Kp: proportional gain
Ti : integration time constant
Td : derivation time constant
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PID design example – 1

System model: H(s) = 10
s3+6s2+11s+16

Step response
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PID design example – 2

Proportional (P) feedback: Kp = 3, G (s) = 30
s3+6s2+11s+36

Unit step response
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PID design example – 3

Proportional + integrator (PI) feedback: Kp = 2.7, Ti = 1.5,
G (s) = 40.5s+27

1.5s4+9s3+16.5s2+49.5s+27
Unit step response
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PID design example – 4

Proportional + integrator + derivator (PID) feedback: Kp = 2, Ti = 0.9,
Td = 0.6, G (s) = 10.8s2+18s+20

0.9s4+5.4s3+20.7s2+23.4s+20
Unit step response
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Tuning of PID controllers – 1

Ziegler-Nichols method
1 Apply a simple proportional feedback
2 Increase the proportional gain (Kp) until the step response becomes

an undamped (sinusoidal) oscillation. The critical gain is K ∗p .
3 Measure the period of the oscillation (Tc)
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Tuning of PID controllers – 2

Controller tuning:
P-controller: Kp = 0.5K ∗p
PI-controller: Kp = 0.45K ∗p , Ti = 0.833Tc

PID-controller (fast): Kp = 0.6K ∗p , Ti = 0.5Tc , Td = 0.125Tc

PID-controller (small overshoot): Kp = 0.33K ∗p , Ti = 0.5Tc ,
Td = 0.33Tc

PID-controller (without overshoot): Kp = 0.2K ∗p , Ti = 0.3Tc ,
Td = 0.5Tc
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Example – 1

System model: H(s) = 40
2s3+10s2+82s+10

Step response:
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Example – 2

Proportional feedback, Kp = 7
Step response:
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Example – 3

Proportional feedback, K ∗p = 10, Tc = 1
Step response:
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Example – 4

PID controller parameters: Kp = 3.3, Ti = 0.5, Td = 0.33
Controller transfer function:

KPID(s) =
Kp(Ti · Td · s2 + Ti · s + 1)

Ti · s

Transfer function of the closed loop system:

G (s) =
21.78s2 + 66s + 132

s4+ 5s3 + 62.78s2 + 71s + 132
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Example – 5

Step response of the controlled system
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Example: DC motor – 1

System equations, parameters and variables:
J moment of inertia 0.01 kg m2/s2

b damping coefficient 0.1 Nm s
K electromotive torque coefficient 0.01 Nm/A
R resistance 1 ohm
L inductance 0.5 H

state variables, input, output:
x1 = θ̇ angular velocity [rad/s]
x2 = i current [A]
u input voltage [V]
y = x1
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Example: DC motor – 2

State space model:[
ẋ1
ẋ2

]
=

[
−b

J
K
J

−K
L −R

L

] [
x1
x2

]
+

[
0
1
L

]
u

y =
[
1 0

] [ x1
x2

]
Transfer function:

H(s) =
Y (s)

U(s)
=

K

(Js + b)(Ls + R) + K 2
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Example: DC motor – 3

Response to u = 1V input:
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Example: DC motor – 4

PID-parameters: Kp = 100, Ti = 1/100, Kd = 1
Operation of the controlled system:
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Example: DC motor – 5

PID-parameters: Kp = 100, Ti = 1/100, Kd = 10
Operation of the controlled system:
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Evaluation of SISO control systems – 1

Time domain, unit step response
emax : maximal overshoot
tmax : time of maximal overshoot
Ta (Ta,50): rise time
Tu: delay
tε: settling time
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Evaluation of SISO control systems – 2

Time domain, measuring the difference from the reference
I1 =

∫∞
0 e(t)dt

I2 =
∫∞
0 |e(t)|dt

I3 =
∫∞
0 e2(t)dt

I4 =
∫∞
0 [e2(t) + αė2(t)]dt

I5 =
∫∞
0 [e2(t) + βu2(t)]dt
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Summary

typical control goals: output reference following (tracking),
stabilization, disturbance rejection
inversion: important theoretical concept, typically not directly
implementable
feedback: helps to achieve several control goals
classification of feedback types is important
static output feedback is often not enough even for stabilization
PID control: frequently used dynamic output feedback with only 3
parameters
evaluation criteria: help in comparison, acceptance decision
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General problem statement

Given:
a SISO LTI system with matrices (A,B,C ).
The poles depend on A (on a(s)).
prescribed (expected) poles defined by polynomial α(s), such that
deg a(s) = deg α(s) = n

To be computed:
a full state feedback such that the poles of the closed loop system will be
the roots of α(s).
Subproblem: feedback design, which can stabilize an otherwise unstable
system.
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Closed loop LTI system – 1

Static linear (full) state feedback:

u = −kx + v ,

where k ∈ Rr×n, ha x ∈ Rn and u ∈ Rr
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Closed LTI system – 2

The matrices of the SISO system are (A,B,C )

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
y(t) , u(t) ∈ R , x(t) ∈ Rn

A ∈ Rn×n , B ∈ Rn×1 , C ∈ R1×n

static linear full state feedback

v = u + kx (u = v − kx)
k =

[
k1 k2 . . . kn

]
k ∈ R1×n (row vector)
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Closed LTI system – 3

Closed loop system

ẋ(t) = (A− Bk)x(t) + Bv(t)
y(t) = Cx(t)

Namely:
A′ = A− B · k , B ′ = B, C ′ = C

Characteristic polynomials
Without feedback (uncontrolled system):

a(s) = det(sI − A)

Closed loop system (controlled) system:

ac(s) = det(sI − A+ Bk)
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Determinant of block matrices

Let us calculate the following determinant

det

[
M1 M2
M3 M4

]
in two different (but equivalent) ways

det(M1) det(M4 −M3M
−1
1 M2) = det(M4) det(M1 −M2M

−1
4 M3)

We apply:

det

[
sI − A B
−k 1

]
then we obtain the following:

det(sI − A) det(1+ k(sI − A)−1B) = 1 · det((sI − A) + B · 1−1 · k)

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 9 / 39



Resolvent formula

a(s) = sn + a1s
n−1 + · · ·+ an

(sI − A)−1 =
1

a(s)
(sn−1I + sn−2(A+ a1I ) + sn−3(A2 + a1A+ a2I ) + . . . )

Proof:

(sI − A)(sI − A)−1 =

(sI − A)
1

a(s)
(sn−1I + sn−2(A+ a1I ) + sn−3(A2 + a1A+ a2I ) + . . . ) =

=
1

a(s)

snI −sn−1A+ sn−1A︸ ︷︷ ︸
0

+a1s
n−1I − sn−2A2 − sn−2a1A+ . . .

 =

a(s)

a(s)
I = I
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Pole placement – 1

det(sI − A) · det(1+ k(sI − A)−1B) = 1 · det((sI − A) + B · 1−1 · k)

a(s)(1+ k(sI − A)−1B) = det(sI − A+ Bk)

α(s) = a(s)(1+ k(sI − A)−1B) ⇒ α(s)− a(s) = a(s)k(sI − A)−1B

Using the resolvent formula

(sI − A)−1 =
1

a(s)
(sn−1I + sn−2(A+ a1I ) + sn−3(A2 + a1A+ a2I ) + ...

we obtain that

(α1 − a1)s
n−1 + (α2 − a2)s

n−2 + ...(αn − an) =

= kBsn−1 + k(A+ a1I )Bs
n−2 + ...
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Pole placement – 2

(α1−a1)s
n−1+(α2−a2)s

n−2+...(αn−an) = kBsn−1+k(A+a1I )Bs
n−2+...

polynomial equation

α1 − a1 = kB
α2 − a2 = kAB + a1kB = a1kB + kAB
α3 − a3 = kA2B + a1kAB + a2kB = a2kB + a1kAB + kA2B
.
.

α− a = k [ B AB A2B ... An−1B ]


1 a1 a2 . . . an−1
0 1 a1 . . . an−2
0 0 1 . . . an−3
. . . . . . .
. . . . . . .
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Pole placement controller

α− a = k [ B AB A2B ... An−1B ]


1 a1 a2 . . . an−1
0 1 a1 . . . an−2
0 0 1 . . . an−3
. . . . . . .
. . . . . . .


α− a = kCTT

`

If S is controllable then

k = (α− a)T−T` C−1
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Controller form realization

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t)

where

Ac =



−a1 −a2 . . . −an
1 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . 1 0

 , Bc =



1
0
.
.
.
0


Cc =

[
b1 b2 . . . bn

]
The polynomials of the transfer function
a(s) = sn + a1s

n−1 + ...+ an−1s + an and b(s) = b1s
n−1 + ...+ bn−1s + bn

H(s) = b(s)
a(s)
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Pole placement controller in case of a controller
form

Ac − Bckc =



−(a1 + kc1) −(a2 + kc2) . . . −(an + kcn)
1 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . 1 0


the characteristic polynomial of the closed loop system is α(s):

α(s) = det(sI − (Ac − Bckc)) = sn + (a1 + kc1)s
n−1 + ...+ (an + kcn)

The coefficients kc of the state feedback gain is

kc = α− a
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Example – 1

System: RLC circuit. Response of the uncontrolled (open loop) circuit with
zero input (u = 0V ) from initial state x(0) = [1 1]T .
(Poles: −5± 8.6603i)
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Example – 2

Prescribed poles of the closed loop system: −10, −12. Feedback gain:
k = [1.2 0.2]. Response for x(0) = [1 1]T :
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Example – 3

The necessary input for stabilizing control (voltage):
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Example – 4

Prescribed poles of the closed loop system: −1+ 3i , −1− 3i . Feedback
gain: k = [−0.8 − 0.9]. Response:
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Example – 5

The necessary input for stabilizing control:
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Example – 6

System: the inverted pendulum
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Example – 7

State vector:

x =


x1
x2
x3
x4

 =


y
θ
ẏ

θ̇

 (1)

Equilibrium point: x∗ = [0 0 0 0]T

The linearized state-space model:

A =


0 0 1 0
0 0 0 1
0 −mg

M 0 0
0 (M+m)g

ML 0 0

 , B =


0
0
1
M
− 1

ML

 , C = I 4×4

Parameters: m = 0.5 kg, M = 0.1 kg, L = 1 m, g = 10 m
s2
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Example – 8

The poles of the uncontrolled system: λ1=0, λ2=0, λ3 = 7.746,
λ4 = −7.746
Goal: stabilizing controller
Prescribed poles of the closed loop system: κ1 = κ2 = κ3 = κ4 = −1
The computed feedback gain:

k = [−0.01 − 6.61 − 0.04 − 0.44]
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Example – 9

The operation of the controlled system (simulation: Faludi Gábor)

ipend_pp-1.avi
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State observer, problem statement

Recall : If a SSM (A,B,C ) is observable, then, knowing the input (u) and
the output (y), the initial state of the system can be computed, and hence
every further state values.
Problems:

The measurement of the input and the output are (in general) not
precise enough, furthermore, we need the 1st, 2nd, . . . , (n − 1)th
derivatives of the output in order to compute the initial condition.
In general, the system model is not perfect

Goal: design such a tool (state observer), for which we do not need the
derivatives of the output y , and the estimated state converges to the
actual value of the state vector.
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Algebraic form of the state observer

State-space model:

ẋ = Ax + Bu

y = Cx

˙̂x = Ax̂ + Bu + L(y − Cx̂)

˙̂x = (A− LC )x̂ + [B L]

[
u
y

]
observation error:

e = x − x̂

and
ė = (A− LC )e
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The structure of the state observer

The realization of a state observer (it can be seen from the algebraic
equations)
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Calculation of the state observer

Reminder: In case of a pole placement controller the system matrices of
the closed loop system are Ac = A− Bk . (A,B is given, k should be
computed, condition: (A,B) is controllable)
System matrix of the state observer: Ao = A− LC . (A, C is given, L
should be computed, condition: ?)
Solution:

AT
o = AT − (LC )T = AT − CTLT

In other words, L can be computed using the pole placement algorithm
using arbitrary prescribed stable eigenvalues for Ao (i.e. the state observer
be stable). Condition: [CT ATCT . . . (An−1)TCT ] = OT

n is a full-rank
matrix, namely, the system is observable.
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Example – 1

RLC circuit, measured output: uC , namely C = [0 1]
Prescribed eigenvalues of the state observer: −10, −12
The computed matrix L of the state observer: L = [−10 12]T

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 32 / 39



Example – 2

Input of the system:
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Example – 3

The operation of the state observer:
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Example – 4

Observation error:
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Separation principle

Problem: what happens if the estimated state is fed back by the
computed feedback gain k (dynamic output feedback)?

Separation principle: The stabilizing state feedback with the a stable
state observer is asymptotically stable, since the dynamics of the closed
loop system is the following:[

ẋ
ė

]
=

[
A− BK BK

0 A− LC

]
·
[
x
e

]
This means that the stabilizing state feedback (K ) and a stable state
observer (L) can be designed separately.
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Separation principle

Computation:

ẋ = Ax + Bu, u = −Kx̂ , and: e = x − x̂

From this: u = −K (x − e) = −Kx + Ke, and

ẋ = Ax + B(−Kx + Ke) = (A− BK )x + BKe (2)
ė = (A− LC )e (3)

Formula for the eigenvalues:

λi

([
A− BK BK

0 A− LC

])
= λj (A− BK ) ∪ λk (A− LC ) ,

and we know that A− BK ill. A− LC are stability matrices.
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Summary

goal of pole placement: move the poles (eigenvalues) of the controlled
system to arbitrary places on the complex plane
feedback form: full state feedback (requires the knowledge of each
state variable)
condition for computation: controllability
goal of state observer: asymptotically compute the state variables
from the input and the output
observer gain computation: can be traced back to pole placement
(dual problem)
separation principle: separately designed stabilizing feedback and
stable observer results in a stable combined system
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LQR: problem statement

Given
a (MIMO) LTI state space model

ẋ(t) = Ax(t) + Bu(t) , x(0) = x0
y(t) = Cx(t)

a functional (control goal)

J(x , u) =
1
2

∫ T

0
[xT (t)Qx(t) + uT (t)Ru(t)]dt

where QT = Q, Q > 0 és RT = R, R > 0.

To be computed: input: {u(t) , t ∈ [0,T ]}, for which J is minimal
along the solutions of the state space model (constraints)
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Variational calculus – 1

Problem:
Find u which minimizes:

J(x , u) =

∫ T

0
F (x , u, t)dt

constraint: ẋ = f (x , u, t).
Solution: using (vector) Lagrange multipliers λ(t) ∈ Rn, ∀t ≥ 0

J(x , ẋ , u) =

∫ T

0
[F (x , u, t) + λT (t)(f (x , u, t)− ẋ)]dt

Hamilton-function: H(x , u, t) = F (x , u, t) + λT (t)f

J(x , u, t) =

∫ T

0
[H(x , u, t)− λT (t)ẋ(t)]dt
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Variational calculus – 2

ẋ can be eliminated through partial integration

[λT x ]T0 =

∫ T

0
λ̇T x +

∫ T

0
λT ẋ

Then, from J =
∫ T
0 [H − λT ẋ ]dt we obtain:

J = −[λT x ]T0 +

∫ T

0
[H + λ̇T x ]dt

variation of x and u:

x(t) −→ x(α, t) = x(t) + αη(t)

u(t) −→ u(β, t) = u(t) + βγ(t),

where α, β ∈ R
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Euler-Lagrange equations – 1

Objective function:

I (α, β) = −[λT (t)x(α, t)]T0 +

+

∫ T

0
[H(x(α, t), u(β, t), t) + λ̇T (t)x(α, t)]dt

Necessary condition for extremum within a set of varied x and u:

∂I

∂α
= 0,

∂I

∂β
= 0

∂I

∂α
=

∫ T

0

[
∂H

∂x
+ λ̇T (t)

]
η(t)dt = 0

∂I

∂β
=

∫ T

0

∂H

∂u
γ(t)dt
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Euler-Lagrange equations – 2

Euler-Lagrange equations

∂H

∂x
+ λ̇T = 0

∂H

∂u
= 0
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LQR Euler-Lagrange equations

Euler-Lagrange equations with the Hamilton function H = F + λT f :

∂H

∂x
+ λ̇T = 0 ,

∂H

∂u
= 0

for LTI systems:

f = Ax + Bu
F = 1

2(x
TQx + uTRu)

H = 1
2(x

TQx + uTRu) + λT (Ax + Bu)

LQR Euler-Lagrange equations: ∂
∂x (x

TQx) = 2xTQ

λ̇T + xTQ + λTA = 0 , λT (T ) = 0
uTR + λTB = 0
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Dynamics of states and co-states

Re-arranged Euler-Lagrange equations:

λ̇+ Qx + ATλ = 0

u = −R−1BTλ

State equation:
ẋ = Ax(t) + Bu(t) , x(0) = x0

In matrix form:[
ẋ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

][
x(t)
λ(t)

]
,

x(0) = x0
λ(T ) = 0

System dynamics + Hammerstein co-state diff. eq.
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LQR for LTI systems

Lemma: λ(t) can be written as

λ(t) = K (t)x(t) , K (t) ∈ Rn×n

Modified state and co-state equations

λ̇+ Qx + ATλ = 0 ⇒ K̇x + Kẋ = −ATKx − Qx

u = −R−1BTλ ⇒ u = −R−1BTKx

ẋ = Ax + Bu ⇒ ẋ = Ax − BR−1BTKx

K̇x + K [A− BR−1BTK ]x + ATKx + Qx = 0

∀ x(t) ⇒ Matrix Riccati differential equation for K (t):

K̇ + KA+ ATK − KBR−1BTK + Q = 0
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Stationary case

Special case: stationary solution T →∞

J =

∫ ∞
0

(xTQx + uTRu)dt

lim
t→∞

K (t) = K i.e. K̇ = 0

Control Algebraic Riccati Equation (CARE)

KA+ ATK − KBR−1BTK + Q = 0

Theorem: (R. Kalman) If (A,B) is controllable, then CARE has a unique
symmetric solution (K ).

solution in Matlab: care
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The LQR and its properties

Solution: linear static full state feedback

u0(t) = −R−1BTKx(t) = −Gx(t)

where G = R−1BTK .
Closed loop dynamics:

ẋ = Ax − BR−1BTKx = (A− BG )x , x(0) = x0

Properties of the controlled system
the closed loop system is asymptotically stable independently of the
values of A,B,C ,R,Q, i.e.

Re λi (A− BG ) < 0 , i = 1, 2, ..., n

the poles of the closed loop depend on the choice of Q and R
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Example 1: control of the RLC circuit

System: RLC circuit. Response of the open loop system (u = 0V ) for the
initial condition x(0) = [1 1]T . (Poles: −5± 8.6603i)
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Example 1: control of the RLC circuit

Q =

[
1 0
0 1

]
, R = 0.1

Feedback gain: G = [2.9539, 2.3166]
Poles of the closed loop system (A−BG ): λ1 = −27.4616, λ2 = −12.0773
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Example 1: control of the RLC circuit

Operation of the closed loop system
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Example 1: control of the RLC circuit

Input generated by the controller
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Example 1: control of the RLC circuit

Q =

[
1 0
0 1

]
, R = 1

Feedback gain: G = [0.6818, 0.4142]
Poles of the closed loop system (A− BG ): λ1,2 = −8.409± 8.409i
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Example 1: control of the RLC circuit

Operation of the closed loop system

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 22 / 37



Example 1: control of the RLC circuit

Input generared by the controller
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Example 1: control of the RLC circuit

Q =

[
1 0
0 1

]
, R = 10

Feedback gain: G = [0.0944, 0.0488]
Poles of the closed loop system (A− BG ): λ1,2 = −5.4718± 8.6568i
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Example 1: control of the RLC circuit

Operaton of the closed loop system
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Example 1: control of the RLC circuit

Input generated by the controller
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Example 2 - application of the separation principle

System to be controlled: DC motor
Parameters:
J moment of inertia 0.01 kg m2/s2

b damping coefficient 0.1 Nm s
K electormotive force coefficient 0.1127 Nm/A
R resistance 1 ohm
L inductance 0.5 H
state variables, input, output:
x1 = θ̇ angular velocity [rad/s]
x2 = i current [A]
u input voltage [V]
y = x1
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Example 2 - application of the separation principle

State space model:[
ẋ1
ẋ2

]
=

[
−b

J
K
J

−K
L −R

L

] [
x1
x2

]
+

[
0
1
L

]
u

y =
[
1 0

] [ x1
x2

]
Poles: -9.669, -2.331
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Example 2 - application of the separation principle

Operation of the open loop system for the input u(t) = 5:
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Example 2 - application of the separation principle

State observer design
Prescribed poles of the observer: -15, -16

("faster" than the poles of the original system)
Values of the L matrix:

L =

[
19

15.923

]
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Example 2 - application of the separation principle

Stabilizing state feedback design
Parameters of the designed LQR controller:

Q =

[
100 0
0 10

]
, R = 1

The obtained feedback gain:

G =
[
3.807 6.342

]
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Example 2 - application of the separation principle

Operation of the stabilizing feedback combined with the state observer
Input voltage generated by the controller:
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Example 2 - application of the separation principle

State variables of the closed loop system
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Example 2 - application of the separation principle

Operation of the state observer

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 34 / 37



Example 3 - control of the inverted pendulum

Weighting matrices (design parameters):

Q = I 4×4, R = 1

The computed feedback gain:

G =
[
−1 −23.227878 −2.1084534 −7.8899369

]
Eigenvalues of the closed loop system:

λ =


−13.169677
−1.0463076+ 0.3589175i
−1.0463076− 0.3589175i
−3.1028591
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Example 3 - control of the inverted pendulum

Operation of the controller:
ipend_lq_1.avi
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Summary

goal of optimal control: to minimize a functional by an appropriate
input
LQR case: system is LTI, functional is quadratic (combines
performance and ’input energy/price’ terms)
solution principle: constrained minimization using time-dependent
Lagrange multipliers (co-states)
explicit solution is obtained assuming an infinite time horizon
(T →∞)
solution of a quadratic matrix equation (CARE) is required (easy with
computer)
result: linear full state feedback (always stabilizing if appropriate
conditions are fulfilled)
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Sampling
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Zero order hold sampling

Transforming a continuous function into a piecewise constant signal

-

6
u(k)

t0 t1 t2 t3
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Sampling of CT-LTI systems

Given:
ẋ = Ax + Bu
y = Cx + Du

sampling of u using zero order hold

u(τ) = u(tk) = u(k) , tk ≤ τ < tk+1

Uniform (equidistant) sampling: tk+1 − tk = h = const

To be computed:
state space model of the sampled (discretized) system
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Discrete time state equations - 1

Solution of the continuous time state equation

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

Substitution: t = tk+1 and t0 = tk

x(tk+1) = eA(tk+1−tk )x(tk) +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ

uniform sampling and θ = τ − tk , tk+1 − τ = h − θ

x(k + 1) = eAhx(k) +
∫ h
0 eA(h−θ)Bu(k)dθ =

x(k + 1) = eAhx(k) + eAh
∫ h
0 e−AθdθBu(k)
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Discrete time state equations - 2

x(k + 1) = eAhx(k) + eAh
∫ h

0
e−AθdθBu(k)

and ∫ h

0
e−Aθdθ = [−A−1e−Aθ]h0 = A−1(I − eAh)

Discrete time state equations

x(k + 1) = eAhx(k) + A−1(eAh − I )Bu(k)

DT-LTI state equations for sampled systems

x(k + 1) = Φx(k) + Γu(k)

Φ = eAh = I + Ah + ... , Γ = A−1(eAh − I )B = (Ih + Ah2

2! + ...)B
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DT-LTI state space models

x(k + 1) = Φx(k) + Γu(k) state equation
y(k) = Cx(k) + Du(k) output equation

with given x(0) initial condition and

x(k) ∈ Rn , y(k) ∈ Rp , u(k) ∈ Rr

finite dimensional vectors, and

Φ ∈ Rn×n , Γ ∈ Rn×r , C ∈ Rp×n , D ∈ Rp×r

matrices
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Solution of DT-LTI state equations

x(1) = Φx(0) + Γu(0)
x(2) = Φx(1) + Γu(1) = Φ2x(0) + ΦΓu(0) + Γu(1)
x(3) = Φx(2) + Γu(2) = Φ3x(0) + Φ2Γu(0) + ΦΓu(1) + Γu(2)
..
..

x(k) = Φx(k − 1) + Γu(k − 1) = Φkx(0) +
∑k−1

j=0 Φk−j−1Γu(j)

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 8 / 18



DT-LTI I/O system models – 1

Impulse response function: I/O model for SISO systems

U = [u(0) u(1)...u(N − 1)]T , Y = [y(0) y(1)...y(N − 1)]T

General linear model
Y = HU + Yp

where H is an n × n matrix, and Yp contains the initial conditions.
In case of causal systems, H is lower triangular

y(k) =
k∑

j=0

h(k, j)u(j) + yp(k)

where h(k , j) is the impulse response function
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DT-LTI I/O system models – 2

Impulse response function of LTI models: h(k , j) = h(k − j)
From the solution of the state equation (with D = 0):

x(k) = Φx(k − 1) + Γu(k − 1) = Φkx(0) +
∑k−1

j=0 Φk−j−1Γu(j)

y(k) = Cx(k) = CΦkx(0) +
∑k−1

j=0 CΦk−j−1Γu(j)

h(k) =

{
0 k < 1

CΦk−1Γ k ≥ 1

discrete time analogue of the impulse response function.

Discrete time Markov parameters: CΦk−1Γ
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Discrete time signals

f = {f (k), k = 0, 1, ...}

signal norms of scalar valued discrete time signals
infinity norm

||f ||∞ = sup
k
|f (k)|

2-norm

||f ||22 =
∞∑

k=−∞
f 2(k)
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Shift operators

Definition: forward shift operator: q
performs the following operation with a DT signal:

qf (k) = f (k + 1) (1)

Definition: backward shift operator (delay): q−1

performs the following operation:

q−1f (k) = f (k − 1) (2)
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DT-LTI I/O system models – 3

Discrete difference equations: for SISO systems
Using forward differences

y(k + na) + a1y(k + na − 1) + ...+ anay(k) = b0u(k + nb) + ...+ bnbu(k)

where na ≥ nb (proper). More compact form:

A(q)y(k) = B(q)u(k) , A(q) = qna+a1q
na−1+...+ana , B(q) = b0q

nb+b1q
nb−1+...+bnb

Using backward differences

y(k) + a1y(k − 1) + ...+ anay(k − na) = b0u(k − d) + ...+ bnbu(k − d − nb)

where d = na − nb > 0 is the delay. More compact form:

A∗(q−1)y(k) = B∗(q−1)u(k − d) , A∗(q−1) = qnaA(q−1)

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 13 / 18



DT-LTI I/O system models – 4

Pulse transfer operator
Computed from the DT-LTI state space model

x(k + 1) = Φx(k) + Γu(k) , y(k) = Cx(k) + Du(k)

x(k + 1) = qx(k) = Φx(k) + Γu(k)
x(k) = (qI − Φ)−1Γu(k)
y(k) = Cx(k) + Du(k) = [C (qI − Φ)−1Γ + D]u(k)

H(q) pulse transfer operator of the state space model (Φ, Γ,C ,D):

H(q) = C (qI − Φ)−1Γ + D

discrete time analogue of the transfer function.
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DT-LTI I/O system models – 5

Pulse transfer operator, SISO case:

H(q) = C (qI − Φ)−1Γ + D =
B(q)

A(q)
, deg B(q) < deg A(q) = n

where A(q) is the characteristic polynomial of matrix Φ.
Relation with discrete difference equations

y(k) + a1y(k − 1) + ...+ any(k − n) = b1u(k − 1) + ...+ bnu(k − n)
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Poles of DT-LTI systems – 1

continuous time discrete time

state eq. ẋ(t) = Ax(t) + Bu(t) x(kh + h) = Φx(kh) + Γu(kh)
Φ = eAh

output eq. y(t) = Cx(t) y(kh) = Cx(kh)

poles λi (A) λi (Φ)

λi (Φ) = eλi (A)h
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Poles of DT-LTI systems – 2
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Summary

discretization of CT-LTI models: constant sampling time is assumed
zero order hold: the input is constant between two sampling instants
state equation can be integrated: LTI difference equation is obtained,
output equation remains the same
state equation can be solved in discrete time
shift operator: I/O models (filters) can be obtained from state space
models
asymptotic stability: poles are strictly inside the unit circle

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 18 / 18


	Introduction
	Brief history
	Controlled systems in our everyday life and in nature
	Further examples
	Basics of signals and systems
	Systems
	Basic system properties
	Mathematical models of CT-LTI systems
	Input output models
	State space systems

	Problem statement
	Observability
	Controllability
	Geometrical interpretation
	Introduction (1)
	An overview of the problem and its solution
	Computations and proofs
	Minimal realization conditions
	Decomposition of uncontrollable / unobservable systems
	General decomposition theorem
	Basic notions
	Bounded input-bounded output (BIBO) stability
	Stability in the state space
	Stability of nonlinear systems
	Asymptotic stability of CT-LTI systems
	The Lyapunov method

	Examples
	Stability region of nonlinear systems
	Stability criteria for transfer functions
	SISO systems in the frequency domain
	Interconnections of subsystems
	Introduction into the control of (SISO) systems
	PID-control
	Problem statement, full state feedback
	Pole-placement controller design
	Examples for controller design
	Dual problem: state observer design
	State observer examples
	The combination of state observer and pole placement controller
	Optimal control: problem statement
	Basics of variational calculus
	Solution of the LQR problem
	Examples (1)

