Computer controlled systems
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Inverted pendulum model

We consider a simple pendulum mounted an a chart that can move horizontally:

M is the mass of the chart

m is the mass of the pendulum
21 is the length of the pendulum
l is the distance of the pivot point from the pendulum’s cen-

ter of mass

is an external force (input) acting on the chart

is the damping factor

is the (horizontal) position of the chart

is the (horizontal) velocity of the chart

is the angle of the chart (clockwise direction)

is the angular velocity of the chart (clockwise direction)
unstable equilibrium point: if the pendulum’s center
of mass is exactly above its pivot point (is vertical and
pointing towards the sky)

stable equilibrium point: if the pendulum’s center of
mass is exactly below its pivot point
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This system has a nonlinear equation, which can be linearized in a certain operating point! (see Ap-

pendix). The state vector of the system is the following: = = (r vo@ w)T, furthermore, the external
force F' constitutes the input of the system (u). The nonlinear model of the system is: @ = f(z) + g(z)u,
where

v

1 (4ml sin(¢)w? — 1.5mgsin(2¢) — 4bv) 1 fl
f((L') = ! w ) g(.%') - E 0 (1)
3 (f%l sin(26)w? + (M + m)gsin(¢) + bcos(¢)v) —3 cos(¢)

where ¢ = 4(M +m) — 3m cos(czﬁ)z. For the full derivation see Appendix. For each exercise, you can use
your own parameter configuration. Some examples are listed below.

(A) no friction (B) with friction (C) with friction + heavy rod
M= 05 ke M= 05 [k M= 05 ke
m= 0.2 kg m= 0.2 |kg| m= 10 [kg|
I=1 [m] l= 1 |m] I=1 [m]
g= 9.8 [m/s? g= 9.8 [m/s?] g= 9.8 [m/s?
b= 0 [kg/s| b= 10 [kg/s| b= 10 [kg/s|
!munkapont



Linearized model around the unstable equilibrium point (¢ = 0)

Linearized state space model around the unstable operating point z* = (0 0 0 O)T is:

0 1 0 0 0
4b 3m
A= 0 —Irfm _4M+gm 0 B_ 1 41 c— 1000 @)
0 0 0 L I(4M+m) | 0 [~ 0010
0 e Srims -3

IAM+m) 1(dM+m)
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Exercises

1. Simulate the motion of the inverted pendulum in Simulink, use the original nonlinear model of
the system.
Instructions.

e Using the Simulink’s “MATLAB function”, you can implement the equation & = f(x) + g(x)u
as a Matlab function dx = invpend(x,u) with two input arguments (the state variables x € R*
and input v € R) and a single output argument (i € R* the time derivative of z)

e The time derivative of & is fed back through an integrator (see figure below).
e In order to plot the result, use the “Scope” block diagram.

e If you want to export the numerical values to the Matlab’s global workspace use “To Workspace”
block.

e The initial value of the system can be given as the initial value of the integrator: open the
“Block Parameters” dialog of the integrator.

Integrator

X 1 dx
;4

X

u dx
0 U invpend

Constant MATLAB Function
dx = f(x)+g(x)u

2. Design a state feedback gain in Matlab for the (linearized) system, which

(a) translates the poles into {—1, —2,—3, —4} (or into arbitrary stable poles).
(b) minimizes the functional J(z,u) = [;~ 27 Qx + w" Rudt, where Q = I and R = 1 (LQR
design).

3. Apply the state feedback gain on the nonlinear model, and simulate it in Simulink.
Instructions.

e Use the “Gain” block of Simulink, open its “Block Parameters” dialog, and type there the value
of the obtained K.

e Be aware that the multiplication rule is set to be “Matrix(K*u)” (i.e. matrix by matrix
multiplication).

Inverted pendulum

Integrator
X 1 dx

S

P x

4 o
+_ U invpend
u

MATLAB Function
dx = f(x)+g(X)u

feedback-gain
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4. In practical applications the actuator has a finite power to act on the system, so it cannot execute
arbitrarily large input values. Simulate this saturation effect in Simulink using the “Saturation”

block.

Inverted pendulum
Integrator
|

dx
s ‘*‘

X J
4 dx
)@ u invpend
u

MATLAB Function
dx = f(x)+g(x)u

Saturation feedback-gain

S <&

5. Design a stable state observer in Matlab for the (linearized) system.

6. Simulate the nonlinear system with the existing static feedback of the observed state vector Z.

e Optionally, you can add Gaussian noise to the input (actuator noise) or to the output (sensor
noise). Use the “Gaussian Noise Generator” block.

State-observer

Inverted pendulum
Integrator
X 1 dx
s B
>‘K*y
P x c
dx |—
+_ Piu invpend
u
MATLAB Function
dx = f(x)+g(x)u
Saturation feedback-gain
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Appendix

I. Linearize a nonlinear model around an equilibrium point

We have a nonlinear system in the following form:
&= F(z,u) = f(z) + g(z)u (3)
Let z* € R™ be an equilibrium point of the nonlinear system, which means that F(z*,0) = f(z*) = 0.

We assume that the system operates around this equilibrium point, and by default there is no input given
to the system. Therefore, we say that the system’s operating point? is (z*,u* = 0).

The Jacobian matrix of F'(z,u) is

OF (z,u OF (z,u _ [ 0f(x dg(x
DIF(zw)] = (2520 | 2552) = (%52 + 24 | g(a) @
The value of the Jacobian matrix in this operating point is
DIF(a*,0)] = (2 | g(a)) (5)

Now we estimate F'(x,u) by its first order Taylor polynomial around the operating point:

N , u—0
0 (6)
F(x,u) ~ afa(z )(93 —z%) 4+ g(z)u
Hence, the linear model is
| )
&= A(x —2%) + Bu, where ' oz (7)
B = g(a)

There’s only one more thing left, we need to center the system. We introduce the centered state vector
Z := x — x*. Therefore, the time derivative of the transformed state vector will be:

T=1=A(x —2*) + Bu = A% + Bu (8)

Finally, we obtained the centered linearized model:

o 0F)
7= AT + Bu, where ' oz 9)
B g(")

II. Derivation of the inverted pendulum’s equation

The equation of the inverted pendulum is the following:

(M +m)i + migcos(¢) — mig?sin(¢) = F

4 .

mli cos(¢) + ngng —mglsin(¢) =0
The nonlinear state space equation of the inverted pendulum:
T =
.1 . 9 . 4
v = = (4mlsin(¢)w” — 1.5mgsin(2¢) — 4bv) + —F

q

! (11)

b=
w= Z(—n;l sin(2¢)w? 4 (M + m)gsin(¢) + bcos(¢)v> - SCCZ)Z(QS)F
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where ¢ = 4(M + m) — 3mcos(¢)?. Let the state vector be z = (z v ¢ w)T.

v
0
i <4ml sin(¢)w? — 1.5mgsin(2¢) — 4bv> 1 4]
_ q _
%(—%l sin(2¢)w? + (M + m)gsin(¢) + bcos(qb)v) —3cos(¢)
Linearized model around the stable operating point z* = (0 0 m O)T:
0 1 0 0 0
0 4 __3mg 0
A IMEm I tm . B= 1 4l o= 10 00 (13)
0 0 0 1 I(AM+m) | O 0 010
0 _. 3b _3M+m)g 3
I(4M+m) I(4M+m)

Linearized state space model around the unstable operating point z* = (0 0 0 O)T is:

0 1 0 0 0
4b 3
A |0 T om0 L 4l o=t 000y gy
0 0 0 I (A4M+m) | 0 [~ 0010
0 3b 3(M+m)g -3

I(4M+m) 1(dM+m)
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