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Pole-placement controller

Pole-placement controller based on Bass-Gura formula

K = (α− a)T−1l C
−1

where α is the expected (prescribed) characteristic polynomial of the closed-loop system, a is the charac-
teristic polynomial of the original (uncontrolled) system, C is the controllability matrix, finally Tl is the
following Toeplitz matrix:

Tl =


1 a1 a2 · · · an−1
0 1 a1 · · · an−2
0 0 1 · · · an−3
· · · · · · ·


Example 1. Design a pole-placement controller for the following CT LTI SISO system:

A =

(
2 −2
0 1

)
B =

(
1
2

)
C =

(
1 1

)
Solution.

a(s) = s2 − 3s+ 2

a1 = −3
a2 = 2

The prescribed characteristic polynomial (φc(s)):

α(s) = s2 + 3s+ 2

α1 = 3

α2 = 2

A Toeplitz matrix and the controllability matrix in this case are

Tl =

(
1 a1
0 1

)
=

(
1 −3
0 1

)
T−1l =

(
1 3
0 1

) C =
(
1 −2
2 2

)
C−1 = 1

6

(
2 2
−2 1

)
Than the static state feedback will be the following:

K =
(
3− (−3) 2− 2

)(1 3
0 1

)
1

6

(
2 2
−2 1

)
=
(
−4 5

)

1



Ackermann formula

K = [0 0 · · · 0 1]C−1n φc(A)

where φc(s) is the prescribed characteristic polynomial of the closed-loop (controlled) system. In the
previous example, it was denoted by α(s) = φc(s).

Example 2. Design a pole-placement controller for the following CT LTI SISO system:

A =

(
2 −2
0 1

)
B =

(
1
2

)
C =

(
1 1

)
Solution.

C2 =
(
B AB

)
=

(
1 −2
2 2

)
→ C−12 =

(
1
3

1
3

−1
3

1
6

)
Legyen λ1 = −1 és λ2 = −2.

φc = (s− λ1)(s− λ2) = s2 + 3s+ 2

φc(A) = A2 + 3A+ 2I =

(
12 −12
0 6

)

K =
(
0 1

)( 1
3

1
3

−1
3

1
6

)(
12 −12
0 6

)
=
(
−4 5

)
Check

A−BK =

(
2 −2
0 1

)
−
(
1
2

)(
−4 5

)
=

(
6 −7
8 −9

)
det(λI − (A−BK)) = λ2 + 3λ+ 2

Namely, the poles of the obtained closed-loop system are indeed the prescribed values.

Example 3. Design a pole-placement controller for the following CT LTI SISO system:

A =

(
2 −1
3 −2

)
B =

(
1
0

)
C =

(
1 1

)
Solution.

C2 =
(
B AB

)
=

(
1 2
0 3

)
→ C−12 =

(
1 −2

3
0 1

3

)
Let λ1 = −1 and λ2 = −2.

φc = (s+ λ1)(s+ λ2) = s2 + 3s+ 2

φc(A) = A2 + 3A+ 2I =

(
9 −3
9 −3

)

K =
(
0 1

)(1 −2
3

0 1
3

)(
9 −3
9 −3

)
=
(
3 −1

)
Check:

A−BK =

(
2 −1
3 −2

)
−
(
1
0

)(
3 −1

)
=

(
−1 0
3 −2

)
det(λI − (A−BK)) = λ2 + 3λ+ 2

Indeed, the poles of the closed loop system are the prescribed values.
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Example 4. Given the following CT LTI SISO systems

1.

 ẋ =

(
2 0
9 −3

)
x+

(
0
3

)
u

y =
(
1 1

)
x

2.

 ẋ =

(
2 0
9 −3

)
x+

(
2
3

)
u

y =
(
1 1

)
x

Design a state feedback controller (if it is possible), that stabilizes the system!

Example 5. Given the following CT LTI SISO system H(s) = 2s−4
s2+s−6 .

1. Is the system asymptotically stable?

2. If it is possible, design a controller, that shifts the system’s poles to p1 = −3 and p2 = −5! Hint:
controllability normal form.

Linear state observer design

Goal: computation of the values of the non-measured state variables of the system using the observed
output.

The dynamical system
dx̂

dt
= Fx̂+ Ly +Hu

is called a full order state observer, if the error dynamics e = x− x̂ tends to zero, i.e. lim
t→∞

e = 0

In case of an LTI system:

ẋ = Ax+Bu

y = Cx

ė = ẋ− ˙̂x = Ax+Bu− Fx̂− Ly −Hu+ Fx− Fx =

= Ax+Bu− Fx̂− LCx−Hu+ Fx− Fx =

= (A− LC − F )x+ (B −H)u+ F (x− x̂) = (A− LC − F )x+ (B −H)u+ F (e)

Let F = A− LC and H = B
Than ė = Fe
We require that the system be asymptotically stable, namely the real part of the roots of the characteristic
polynomial det(sI − (A− LC)) be negative.

det(sI − (A− LC)) = det
(
sI − (AT − CTLT )

)
We can observe that the state observer design can be traced back to a pole placement problem of (A′, B′),
where A′ = AT , B′ = CT , and the result (K) of the pole placement should be interpreted as L = KT .
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Example 6. Design a state observer for the following CT LTI SISO system

A =

(
−3 1
2 −1

)
B =

(
1
−1

)
C =

(
0 1

)
Solution.
Let the characteristic polynomial of the closed-loop system: φo(s) = (s+ 3)(s+ 3)
In order to use the Ackermann, formula we should substitute A′ = AT into φo(s):

φo(A
′) =

(
2 4
2 6

)
If B′ = CT , the obtained controllability matrix for (A′, B′) (which is actually the transpose of the
observability matrix of (A,C)) is:

C′2 =
(
0 2
1 −1

)
Its inverse will be: (

C′2
)−1

=

(
1/2 1
1/2 0

)
Finally, we compute the feedback gain K:

K =
(
0 1

)(1/2 1
1/2 0

)(
2 4
2 6

)
=
(
1 2

)
From this:

L = KT =

(
1
2

)
F = A− LC =

(
−3 0
2 −3

)
H =

(
1
−1

)

Example 7. Design a state observer for the following CT LTI SISO system

A =

(
2 1
1 −2

)
B =

(
1
1

)
C =

(
1 0

)
Example 8. Design a state observer AND a stabilizer state feedback controller for the following CT
LTI SISO system.

A =

(
2 −1
3 −2

)
B =

(
1
0

)
C =

(
1 0

)
Separation principle: the observer gain L and the feedback gain K can be designed separately.
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Optimal state feedback controller - LQR controller design

We want to minimize the following functional:

J(x, u) =
1

2

∫ T

0
xTQx+ uTRu dt

where Q and R are positive definite symmetric matrices. In case of LTI systems this problem can be
traced back to a CARE (continuous-time algebraic Riccati equation):

KA+ATK −KBR−1BTK +Q = 0

The system can be stabilized with the u = −Gx state feedback, where

G = R−1BTK

Example 9. Design an optimal LQR controller for the following system: ẋ = 2x+u, i.e A = 2, B = 1.
Solution. We minimize the following functional:

J =
1

2

∫
5x2 + u2dt

meaning that in our case Q = 5 and R = 1. In this case (first order system – only one single state
variable) the CARE will have the following form:

−K2 + 4K + 5 = 0

The solutions for K are 5 and −1. By definition, we should choose the positive one, otherwise, we
obtain a positive feedback.

G = 1 · 1 · 5 = 5

Finally, the computed state feedback: u = −5x.
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