Computer controlled systems

Lecture 4
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1 State space transformation

As we shall already know, the state space model is not unique. For the given example, define a new SSM
using a state space transformation.

A:<_26 _04> B:(é) C=(0 1)

Let the linear transformation of the state vector be the following:

T1 =21+ 22
To = 3x1 — 2T9

T1\ 1 1 T
X9 S \3 -2 X2
z=Tx, x=T"'Z — state state space equation can be written for the new state vector  as well
i#=Ar+Bu — T 'i=AT"'z+ Bu

In matrix form:

T=TAT 'z2+TBu — A=TAT' B=TB
y=Cx=CT 'z —

Returning to the example:
(1 1 4 1 /-2 -1
T‘<3 —2> =3 (—3 1)

. _ -4 0 _ 4 _ .
A:TAT1:<_16 _2> B:TB:( ) C=cT'=(¢ -1

—
[\]

If the original and the transformed SSM are (A4, B,C) and (A, B, C), respectively, determine the trans-
formation matrix 7', which connects them.

3 2 1
A:<_4 1) B:<1> C=(1 0 (1)
- 1.8 1.6 = 3 =
A= (_4'4 22) B = <1> C=(04 —0.2) (2)
Solution. B =TB, AB =TAB — T-[B|AB|=[B|AB] — (T=CpC;') where C, = [B|AD]
and Cy = [B|AB] are the controllability matrices of (1) and (2), respectively.

Remark. B and AB are (2 x 1) matrices.
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2 CONTROLLABILITY, OBSERVABILITY

1 (3 7 -3 -5\ (2 1 4 -1/2 -1
T—8’<1 —11)'(—1 1)(—1 2) s 5(1 2)

Just as in the previous example, determine the transformation matrix 7T'.

A:(_21 g) B:(é) c=0 0 (3)

. (-1 2 1 -1 2 =2
SolutzonT-(l 2> T =7 (_1 _1>

Remark. In case of SISO model, this method can be applied for an even higher dimensional state-space
model, but then the controllability matrix will involve further rows. If the state vector is n-dimensional
(A € R™") than C, = [B|AB|A?B|...|A"'B]. To conclude, if the SSM is controllable:

Megjegyzés: SISO modell esetén a fenti modszer tobb allapotvaltozo esetén is alkalmazhatd, de ekkor t6bb
oszlopra van sziikség. Ha A € R™" akkor a [B|AB|A?B]|...|A" ! B] alakt matrixokkal lehet szamolni.

2 Controllability, observability

In general Given the following CT-LTT system: The question arouse: In the full knowledge of y(t) and

System
Input Output
—>
u(t) x(t) y(t)

u(t) can we say something about the unknown state vector z:(¢)? In the other words is x(¢) observable?

The second question would be the following: is there an input function wu(¢), with which we can lead the
system from the initial state xg to state 21 in a finite time. If we can do so (for every possible initial and
final states), we say that the system is controllable.

2.1 Observability

N
Theorem 1. Sufficient and necessary condition for observability

A state space model described by matrices (A, B, C) is observable if and only if (iff) its observability
matrix O, is full-rank:

C
CA
O, = : ,  rank(O,) =n
CA:I’L—l
Remark. In SISO case O, is a square matrix, which is full-rank iff its determinant is nonzero.
|\ J
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2.1 Observability 2 CONTROLLABILITY, OBSERVABILITY

Example 1. Is the system (A4, B, C) observable?

A:(g ‘I’) B:G) c=(0 1)

The observability matrix is the following

CA = (2 1) — Oy = (C’CA> = <(2) 1) , det (O2) = =2 # 0 = Os is full-rank

Hence, z(t) is observable, namely, using y(t¢) and its time derivetive §(t), we can compute the actual
value of z(t)

y(t) = CAx(t) + CBu(t) = (1) = 0y (y(t) - CBu(t)> (6)

L J

{y<t> = Cx(t) y(t)

( Example 2. Unobservable subspace (mathematical background presented in B.1)

Given the state space model:
1 2 . 1 1
A= <_2 _3> , B:arbitrary, C=(1 1), O,= <_1 _1> (7)
A basis for the kernel of O,, is v1 = (_11 ) This means that

— if there is a zero input and z(0) = Av; € Oa, than x(t) € Ker(Oz) (Proposition 9) and y(¢) = 0 for
every t > 0.

— for a given input u(t) and with an initial condition z(0) = xo + \v; € ¢ + Ker(O3) (where A € R
is arbitrary) the system will produce the same ouput y(t).

Output of the system System trajectories z(¢) - phase diagram
2.5 6.
20 _4r
X 150 o 2|
a2, \ c
é 1 [ \\ z 0 [
\ =
\ w0
0.5 |- \ -2
\\‘\ N
0 i ‘ ‘ ‘ —4 ‘ ! : : -
0 2 4 6 8 10 —4 -2 0 2 4 6
time: ¢ state variable x4 (t)

Figure 1. Simulation of system (7) from different initial conditions x(0) € z¢ + Ker(O2) (denoted by dots)
with zero input. As one can observe, the state trajectories are different, however this difference does not
appear in the output of the system. In this example u = 0 and 29 = (1). The blue dashed line in the right
figure illustrates the actual unobservability subspace of the system corresponding to xg.

version: 2018.10.09. — 15:13:40 3 Lecture 4



2.2 Controllability 2 CONTROLLABILITY, OBSERVABILITY

2.2 Controllability

Given a strictly proper state space model (A, B,C') with x(ty) initial and z(t1) # x(to) final condition.
The question arises, is there any input function u(t), which leads the system from z(tp) to x(¢1) in a

finite time.
4 ~\

Theorem 2. Controllability

A state space model described by matrices (A, B, C') is controllable iff its controllability matrix C,, is
full-rank:

Chn=(B AB .-+ A"™!'B), rank(C,)=n

Remark. In SISO case C,, is a square matrix, which is full-rank iff its determinant is nonzero.
.

Example 3.

(] () e amm (1]

This system is controllable, since the determinant of Co is nonzero. In this case the controllability
subspace is the whole R? itself. If we start the system from zero initial condition, we can lead the
system (with an appropriate input) to any other states of the controllability subspace in a finite time.

. J

( Example 4. Controllable subspace (mathematical background presented in B.2)

Given the following state space system and its rank-deficient controllability matrix:

-1 2 —2

) 0 16 —96

A= (§ —6 2;?) , B:(g) ,  eigenvalues of A: (—2) , C3=<8—48 224) (8)
1 0 1 0 -8 48

i 0.3832 0.8082 . .
The basis vectors of Im(Cs) are: v; = (*8?81%2 >, Vo = ( 04285 ) They span a 2-dimensional subspace

in R3, illustrated by the green plane in the Figure 2. If we start the system from an initial condition
which is an element of this subspace x(0) € Im(Cs), the system trajectory will never leave this subspace.
If the initial condition is outside of Im(C3) and A is stable, the system trajectory will tend to this
subspace.

System trajectories z(t) - phase diagram

47 Controllable subspace Im(Cy,)
e z(0) € Im(C,,)

—— trajectory remains in Im(C,,)
o 2(0) ¢ Tn(Cy)

—— trajectory tends to Im(C,,)

Figure 2. Simulation of system (7) from different initial conditions
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2.3 Controllability and observability in case of a diagonal SSM 3 JOINT CTRB-OBSV

( Example 5. )
Compute the controllable subspace of £ = Ax + Bu, where
1 2 =2 1
A=|-0 1 0 ],B=|0]. 9)
1 0 1 0
To check your solutions, we give:
-1 4 -4 -1 -1 1
A2=(0 1 0|,03=(0 0 o0]. (10)
2 2 -1 0o -1 =2

2.3 Controllability and observability in case of a diagonal SSM

A= <%1 0> B = <Z;> AB = <a1b1> C = (Cl Cg) CA = (clal Cgag)

a azbs

C2 _ bl a161 02 _ C1 Co
by agbsy c1a1 C20G2
SISO rendszer diagonalis A métrix esetén

irdnyithatd <= a f6atlobeli elemek paronként kiillonbozdek, és Vi b; # 0
megfigyelhet6 <=  a f6atlobeli elemek paronként kiilonbozdek, és Vi ¢; # 0

[Theorem 3. The rank of O,, and C,, is invariant to the state space transformations. }

Proof .
A=TAT™" B=TB C=CT!
°n=(T'B TAT'TB)=T (B AB)=TC,

C
A cr—! ([ C -1 _ -1
On = (CT—lTAT—1> - (CA) T =0.T

2.4 Markov parameters

CA'B
Markov parameters are invariant to the state space transformations.

CB=CT 'TB=CB
CAB=CT 'TAT'TB=CAB

3 Joint controllability and observability

e Egy H(s) = % (SISO) atviteli fiiggvény n-edrendii realizacidjanak nevezzik az (A, B,C, D)
allapottér-modellt, ha H(s) = C (s — A)"'B + D, ahol A € R, B € R C ¢ R™*" D e R
(nem egyértelmii!)

e Egy H(s) atviteli fiiggvény n-edrendi realizaciojat minimalisnak nevezziik, ha nem létezik nala
kisebb rendt realizaci6.
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3 JOINT CTRB-OBSV

e Egy n-dimenzios (A, B, C, D) allapottér-modellt egyiittesen iranyithatonak és megfigyelhetnek neveziink,

ha teljesiilnek ra az irdnyithatosag és a megfigyelhetdség feltételei (azaz O,, és C, teljes rangu).

e Egy ATM minimalis <= egyszerre irdnyithaté és megfigyelhetd.

7

Example 6. Is the state space representation minimal?

() o) eo

Transfer function: H(s) = —3-—;. This SSM is minimal, since H (s) is irreducible and the degree of
the denominator is equal to the order of the state space realization (n = 2).

\L

Example 7. Is the state space representation minimal?

-2 -1 1
A:<_1 _2> B:<O> C=(1 1)
s+1 _ s+1
s24+4s5+3  (s+1)(s+3)

This SSM is not minimal, meaning the one of two properties is broken: the SSM is controllable but
its is no observable.

H(s)=C(sI — A)"'B =

Example 8. Is the state space representation minimal?

A—(_26 —04> B—@ c=(0 1)

Co=(B AB)= (‘Ol _§4>

The determinant of matrix Csy is nonzero, therefore, it is controllable.

Observability matrix:
C 0 1
Oz = (C’A> B (2 o)

The determinant of matrix Qs is nonzero, therefore, it is observable. Consequently, the SSM is minimal.

Controllability matrix:

\.

J

Example 9. (MIMO case) Is the state space representation minimal?

(B8 e-(h) ()

9 16 1 3 8
AB_(z —2 —2) cA= (14 14)

12

C 0o 7 1419 16 1

OQ‘(CA)‘ 3 5| @ AB)_<2 302 -2 —2)
~14 14

Matrix Qs is full-column-rank, and Cs is full row rank, meaning that the system is jointly controllable
and observable and (A, B, (') is minimal.

\

N\

Example 10. Is the SSM minimal? If not give a minimal representation.

-3 00 1
A=10 4 0| B=[2] C=(3 0 4)
0 06 6
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n

cib; 3-1 0-2 6-4 3(s—6)+24(s+3

Z,:13—)\i_s—|—3+s—4+s—6: (s+3)(s—6)
275+ 54
H = —
(s) 52 — 35— 18
The SSM is not minimal, because the transfer function can be reduced.

9 0 0 3 0 4 1 -3 9

A2=1(0 16 0 O,=1-9 0 24 C,=12 8 32

0 0 36 27 0 144 6 36 216

A minimal SSM can be given by skipping the single degenerated state variable:

A:<_03 g) B:<é> C=(3 4)

A minimal realization can also be given using the controller form:

A:G’ 108) B:<(1)) C— (21 54)

& J

Example 11. It is given a SSM in the controller form. Is the SSM jointly controllable and observable?

0 7 —6 1
A=1|1 0 0 B=10 C= (O 3 9)
01 0 0
Transfer function:
3549
H(s) = +———
() s3—T7s+6
The realization is most be controllable, since it is given in controller form:
, 7 —6 0 0 3 9 107 rank(Cp) = 3
A*=10 7 —6 O,=(3 9 0 C.,=10 1 0 N B
1 0 0 9 21 -18 001 rank(Op) =2

However the SSM is not observable, because it is not minimal: H(s) is reducible by s + 3. Using the
controller form (on the irreducible form of H(s)), we can obtain a jointly controllable and observable
realization Tehat nem egyiittesen megfigyelhets és iranyithat6 a rendszer. The a unobservable subspace

Ker(0,,) = {a(—?:%) ’ a€ R}

\ J

Felhasznalas: AllapotmegfigyelSk tervezése
Bizonyos mennyiségeket (pl. szogsebesség) nem tudunk mérni, csak becsiilni. Ld.: 3. abra

u(t) System ¥(t)
x(t)

x*(t)
~—— Observer

Figure 3. State observer design
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A SUPPLEMENTARY MATERIAL IN LINEAR ALGEBRA

A Supplementary material in linear algebra (not needed for the exam)

( Theorem 4. The fundamental theorem of linear algebra )

Let A:R" — R™, A(z) = Az, where A € R"*". Then the followings are true

Tm(A) = Ker(AT)" c R™ (11a)
Im(AT) = Ker(A)* c R" (11b)
Furthermore
Im(A) ® Ker(AT) =R™ (12a)
Im(A”) ® Ker(4) =R" (12b)
Remark. 1If r = rank(A), than
dimIm(A) = r, dim Ker (AT) =m-r (13a)
dim Im(AT) =, dimKer(4A) =n—r (13b)

Proof . Proof of (11a) as presented in [1]. Let

af
A= (a1 as .. a,) = AT = (azT> (14a)
al
x € Ker(AT) = ATz = (azTQ”) = (0> (14b)
y € Im(A) = Ja; € R such that y = Zaiai (14c)

i=1
Note that « and y are arbitrary vector elements of Ker (AT) and Im(A), respectively. Then we compute
the dot product of & and y:

n
(x,y) =ylx= Z valz =0, (15)
i=1
since aZ-T:c =0, Vi = 1,n. Consequently, & L y for all possible z € Ker (AT) and y € Im(A), which

means that the two subspaces are the orthogonal complement for each other:

Im(A) = Ker(AT)L

(16)
Im(A) N Ker(AT) = {0}
Following this idea, we can conclude that the subspaces are linearly independent, therefore,
dim (Im(A) ® Ker(AT)> =r+(m-—r)=m. (17)

This can only happend if direct product of the two spaces is R™, which completes the proof for (12a).
0

Proposition 5. (Self-adjoint operator) Let A : R® — R", A(x) = Az, where A € R™*" is a symmetric
matrix: A = AT. Than, as a consequence of Theorem 4, we have that

Im(A) = Ker(A)* and Im(A) @ Ker(A) = R™.
For more, see [2, Eq. (10.3)].
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B SUBSPACES OF THE STATE SPACE

~\

( Proposition 6. Singular value decomposition (SVD)

If we make the SVD for matrix A € R™*"

A=UxVT, (18)
where
U € R™™ is unitary: U*U = I, (19a)
V e R™" is unitary: V*V =1, (19Db)
¥ € R™ " eigenvalues in the diagonal. (19¢)

After this decomposition, the basis of the four subspaces (12) can be obtained as presented below.
Im(A) : the first  colums of U
Ker (AT) : the last m — r columns of U
Im(AT) :  the first r columns of V'

Ker(A) : the last n — 7 columns of V/
In short
o A=[Im(4) Ker(AT)] S [Im(AT) Ker(4)]" 7 (20)
\ J
B Subspaces of the state space
Having a strictly proper (D = 0) MIMO LTT system:
it=Ar+ B
’ (21)
y=Czx
The state space could be partitioned as follows:
X = Xco &® Xc6 & XEO ® XE() (22)
where X.. are pairwise orthogonal subspaces of the state space, in other words:
Xco 1 Xcéa Xco 1 XEm Xco 1 X657 (23)

Xc?) uE XEo, Xcé uE X667 XEo L XE5-

B.1 Unobservable subspace X; = Ker(0,). Observable subspace X, = X2 = Im((’)g )

( )
Lemma 7. Linear independence of the first k£ rows of O,

If rank (O,,) = k < n, then the first k rows of O,, are linearly independent, and any further rows of it
can be expressed as the linear combination of the first k& rows.

C
Formally: Vi € N 3a € R*, that CA*t = oT Oy, where O}, € RF*" is defined as O, = ( cA )
CAk-1
Remark. N=1{0,1,2,..}, Ny := N\{0}.

| J

Proof. The proof is given in the following three steps:

(i) If k = n, the set of row vectors (also called as “covariant vectors”) C,CA,..,CA""! constitutes a
linearly independent (covariant) basis for vector space R™, which means that any other row vectors
in R™ can be expressed by their linear combinations, the same as CA™ ", Vi € N can be.

(ii) Let k be the first natural number, for which there exists @ € R* such that CA* = a7 Oj. Then

version: 2018.10.09. — 15:13:40 10 Lecture 4



B.1 Unobservable subspace B SUBSPACES OF THE STATE SPACE

C AFt1 can also be expressed by the covariant vectors of O:
k k—1 k
CAM = (CAF) A= [ 30,0 | A=Y 0,07 + Y ay0aT (24)
j=1 j=1 j=1

By induction, we have that for every every i € N there exists o € R¥ : CA*? = a0,

(iii) As a consequence of (ii), we can state that if rank (0,) = k < n, that the first k£ rows of O,, are
linearly independent (i.e. rank (Of) = k). O

Lemma 8. For every v € Im(O,:f ), we have that ATv € Im(@,:f ) In this sense, the observable

subspace X, = Im(@,{ ) = Ker(On)L C R™ of the state space X = R" is invariant with respect to the
linear transformation A'(v) = AT, i.e. A'(X,) = X,.

Proof. Let a(s) = det(sI — A) = ag + a1s + ... + aps™. Due to Cayley-Hamilton theorem, we have that

1
CL(A) =0 = A" = —(aOI =+ alA + ...+ an_lAn_l) (25)
g
f Proposition 9. x(0) € Ker(O,) and u(t) =0 = y(t) =0 )

Let rank (Op,) = k < n. If 2o € Ker(O,,) and u = 0, than y(¢) = 0 for every ¢t > 0, i.e
z(t) = ety € Ker(O,)

In other words, if there is no input signal (u(t) = 0) and the initial condition zy belongs to the
unobservable subspace Ker(0,,), than the state response of the system z(t) = ez will remain in this

subspace.
. J

Proof. As a consequence of Proposition 7, we have that if C A¥zy = 0 for k = 0,n—1, than C A*zy =0
holds for every k € N. If we consider the Taylor expansion of matrix exponent e, we have:
> Lk

t , .
CAFeAty, = h CA gy =0 Vk=0,n—1 = Opezg=0e ety e Ker(0,,) (26)
j=0 " 0

Consequently, for a given unobservable state space model (A,B,C,D) if we start the system from the
unobservable subspace z(0) € Ker(O,,) and having a zero input (u = 0) the output will be zero y(t) = 0,
for every t > 0. i

' 3\
Proposition 10. Same output for all initial state of an unobservable class

Let us denote vy, ..,v,_r € R™, k < n the basis vectors of the null space of O,:

Ker(0,) = {oqvl + o tapy g =a'N|lae R”_k}, where N := (v1 . vn_k) € R (n—k)

Matrix N is called an annihilator of O, since OpN = 0,,x(n—r). Now we introduce the following
notations:

xo + Ker(O,,) := {xo +aof'N ’ a€ R”_k} (27)

From any initial condition x(0) € zo+ Ker(O,,) and for a given input u(t), the system will produce the
same output y(t).

\. J

Proof. The explicit solution of the state space model is

y(t) = Cez(0) + C /O t A7) Bu(r)dr (28)

Considering an initial condition z(0) = 2o + oT N € g + Ker(0,,) with an arbitrary a € R"7*, and
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B.2 Controllable subspace B SUBSPACES OF THE STATE SPACE

keeping in mind, that o N € Ker(0,,) (i.e. CA'aTN = 0 for all i € N) we obtain:
t ¢

y(t) = Ce (zo + aTN) + C/ A7) Bu(r)dr = Cettag + C/ A=) By(r)dr (29)
0 0

Finally, we can observe that the expression for y(¢) does not depend on «. It depends only on the input
u(t) and on xg, furthermore, for each zy we obtain different outputs, xo defines the unobservability class,
that the system is actually in. If we can find a particular solution z(t) for the (under-determined) linear
equation system

V(t) = Opz(t) + TU(L) [lec 03.pdf, pg. 10/31] (30)
we can determine the actual unobservability class of the system, but we have no further informations
about the state vector itself. i

Remark. Set xo + Ker(O,,) is not a subspace of R", since many properties of the vector space broke (eg.
does not have a unity element), however, it is a k dimensional manifold (sokasag) in vector space R™.

B.2 Controllable subspace X, = Im(C,). Uncontrollable subspace X; = X} = Ker(Cg )

Lemma 11. If (A, B,C) is not controllable rank(C,) = k < n, the first k& columns of C,, are linearly
independent.

Proof. Same as Lemma 7. o

Lemma 12. For every v € Im(C,), vector Av € Im(C,). In this sense, the controllable subspace
X. = Im(C,,) € R"™ of the state space X = R” is invariant with respect to the linear transformation
A(v) = Av, ie. A(X,) = X..

Proof. Let v € X, = span <B, AB, ..., A”*1B>, therefore, there exist real values aq, ..., a, € R, such that

n n
v = Z wATIB = Av = ZaiAiB. (31)
i=1 i=1
It is obvious that A’B € X, for all i = 1,n — 1, furthermore, due to Lemma 11, A" B can be expressed
as the linear combination of vectors A", B, i = 1,n. Finally, we have that Av € X,. O
'd 3\
Proposition 13. xo € Im (Cp,) = x(t) € Im (C,,)

If the initial condition x(0) = z( belongs to the controllable subspace of the state space, than the
solution z(t) will also belong to it. Formally:

zo € Im(Cy,) = 2(t) € Im(Cy,) Vt > 0. (32)

If the initial condition is not an element of Im(C, ), but the system is stable, than the trajectory will
tend exponentially to the controllable subspace of the state space, i.e.

A=<0=2(t) — Im(Cp) (33)

\. J/

Proof . If zp € Im(C,,) = X,, than

t > tk t t— k
(t) = Mg + / e Bu(r)dr = — AFxg + / > U= kB u(ryar € X.. (34)
' 0 k=0

k!
0 =" oY €X.
If xo ¢ X. but A < 0 (is negative definite), than
t

z(t) = eMrg+ [ AT Bu(r)dr — X,.

( ) 0 0 ( ) c (35)
—0 4
€Xe

So, the solution tends to the controllable subspace. |
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B.3 Controllability staircase form B SUBSPACES OF THE STATE SPACE

Theorem 14. (Control the system to a given state) If the system is controllable, there exists an input

t
u(t) = —BTeAT(tlft)Pfl(tl)(eAtlcco — 1), where P(t) = / eA"BBTeA Tdr, te [0,¢1],  (36)
0
which leads the system from z(0) to z(t;) = x; in a finite time #; < co.

Proof. A proof for it can be found in |3, Theorem 2.21]. O

B.3 Controllability staircase form

( Proposition 15. Controllability staircase form )
We construct the following transformation matrix 77! = § = (vl,...,vk,wk+1,...,wn), where
[v] = [v1,...,vx] is the orthonormal (ON) basis of X, = Im(C,) and [w] = [wg41, ..., wy] is the ON
basis of Xz = Im(Cn)J‘ = Ker (C;{ ) Then the transformed matrices will have the form:

A=TAT ' = < Au 412) (37a) B=TB= < B ) (37b)
On—r)yxk A2z O(n—k)x1
(Using SVD: ¢, = U.B.VT, S :=U,)

Proof. (For simplicity, only for SISO) Since X, and Xz are orthogonal complement of each other
(ie. Xc® Xz =R"), [v,w] is an ON basis of R”. In other words: S is an orthogonal matrix with
the well-known properties:

T
sTs=1, = 8§'1=85T= (T‘/[//T> ,  where V = (vl, ...,vk) and W = (wk+1, ...7wn) (38)
Furthermore, VIW = Ok x (n—k) and WtV = On—k)xk (39). Then the transformed matrix A will be:
- vt VTAV VTAW
— -1 _ ¢T — —
A=TAT '=S"AS = <WT> AV W)= <WT W WT AW) : (40)

The columns of V' are elements of X, therefore, the columns of AV are also elements of X.. The columns
of W are the basis vectors of Xz = X}, therefore, WT AV = O(n—k)xk- The transformed matrix B will

be:
_ VT VTR
_ _qTp _ _
B=TB=S B_<WT>B_<WTB>. (41)
Since B € X, wj € X5, WI'B =04,_pyx1, j =k + 1, n. O

B.4 Observability staircase form

'd \
Proposition 16. Observability staircase form

We construct the following transformation matrix 77! = § = (vl, veey Uy Wht 1y eeey wn), where
[v] = [v1, ..., 3] is the orthonormal (ON) basis of X, = Ker(0,)" = Im(O)) and [w] = [wkt1, ..., wn)
is the ON basis of X5 = Ker(O,,). Then the transformed matrices will have the form:

- _ Al Opscfne _
A=TAT ' = ( A; ’“}1(22 ’“)) (42a) C=CT"'=(C1 Oixnw) (42b)

(Using SVD: 0, = U,Z,VZ, S ==V, )

& J

Proof. (For simplicity, only for SISO) Since X, and Xz are orthogonal complement of each other
(ie. Xo® X5 =R"), [v,w] is an ON basis of R". In other words: S is an orthogonal matrix with
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the well-known properties:

T
sTs=1, = S 1=¢8T= (;[//T> , where V = (vl, ...,vk) and W = (wkH, ...,wn) (43)
Furthermore, VIW = Ok (n—k) and wTv = O(n—k)xk (44). The transformed matrix A will be:
= VT vTAV  VvTAW
— -1 _ qT _ —
A=TAT " =5"AS = (WT) AV W)= <WTAV WTAW> : (45)

The columns of V are elements of X,, therefore, the columns of ATV are also elements of X,. The
columns of W are the basis vectors of Xz = X, therefore, (ATV)TW = VTAW = Okx(n—k)- The
transformed matrix C will be:

C=CT'=0cS=C((V W)= (CV CW). (46)
Since CT € X,, W € X}, CWT:OIX(n_k),j:k—i—l,n. i
( ~

Proposition 17. If (A, C) has unobservable mode (i.e. is unobservable), there exists x € R", such
that Az = Az and Cx = 0. Consequently, A is a “decoupling zero” of (A, B, C, D), since

A—-X B\ . .
M = < c 0> is singular, (47)

namely there exists £ = (g) = (0 such that M¢ = 0. Or in other words, the kernel space of M is not

empty, meaning that M is singular.
.

J

'd 3\
Proposition 18. The input decoupling zeros are equal to the eigenvalues of the uncontrollable sub-

system.
& J

Proof. We assume that (A, B) is uncontrollable:
C,= (B AB .. A" 1B)eR™™ (48)

is rank deficient, that implies a nonempty kernel space Ker (CZ ) C R"™, namely, there exists z € R" such
that CL'z = 0. Alternatively, we have that

BTz =0
BTATz =0
(49)
BT(AT)" 'z =0
Od

B.5 Kalman decomposition

We produce a controllability staircase form decomposition on the system, than on both subsystems
(controllable and uncontrollable) we produce an observability staircase form decomposition.
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