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Zero order hold sampling

Transforming a continuous function into a piecewise constant signal

A

u(k)

to t1 to t3
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Sampling of CT-LTI systems

Given:
x = Ax + Bu
y = Cx+ Du

sampling of u using zero order hold
U(T) = U(tk) = U(k) , b ST <tk

Uniform (equidistant) sampling: tx1 — tx = h = const

To be computed:
state space model of the sampled (discretized) system
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Discrete time state equations - 1

Solution of the continuous time state equation

t
x(t) = eAtT0)x(tp) +/ At Bu(r)dr
to
Substitution: t = tx,1 and ty = t
tet1
x(tks1) = eA(fk+1—tk)X(tk) + / eA(t"“_T)Bu(T)dT
ty
uniform sampling and 0 = 7 — ty, tyy1 —T=h—0

x(k + 1) = e*x(k) + [ A=) Bu(k)d =
x(k + 1) = e*x(k) + e [ e~ A9 d6Bu(k)
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Discrete time state equations - 2

x(k +1) = e*x(k) + " /0 ' e Y% dfBu(k)
and i
/0 e Mdo=[-Ate Mg = AT - )
Discrete time state equations
x(k 4+ 1) = e*x(k) + A7 (e — 1) Bu(k)
DT-LTI state equations for sampled systems

x(k+ 1) = Ox(k) + Tu(k)
d=eM=1+Ah+.. , T=AY M- NB=(h+4"+.)B
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DT-LTI state space models

x(k+1) = &x(k) + Tu(k) state equation
y(k) = Cx(k) 4+ Du(k) output equation

with given x(0) initial condition and
x(k) e R", y(k) e RP, u(k) e R
finite dimensional vectors, and
SPeR™" TeR™ , CecRP", DecRP

matrices
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Solution of DT-LTI state equations

x(1) = &x(0) 4 'u(0)
x(2) = ®x(1) + Tu(1) = ®2x(0) + ®ru(0) + Mu(1)
x(3) = ®x(2) + Fu(2) = ®3x(0) + P2 u(0) + ¢lu(l) + Mu(2)

;(k) = ®x(k — 1) + Tu(k — 1) = ®kx(0) + Y50 k1T u())
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DT-LTI 1/O system models — 1

Impulse response function: 1/O model for SISO systems

= [u(0) u(1)u(N =1)]" ¥ =[y(0) y(1)..y(N-1)]"

General linear model
Y=HU+Y,

where H is an n x n matrix, and Y, contains the initial conditions.
In case of causal systems, H is lower triangular

k
y(k) :Z J) + yp(k)

where h(k,j) is the impulse response function
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DT-LTI 1/O system models — 2

Impulse response function of LTI models: h(k,j) = h(k —j)
From the solution of the state equation (with D = 0):

x(k) = dx(k — 1) + Tu(k — 1) = ®kx(0) + Y125 @k~ u())
y(k) = Cx(k) = CO*x(0) + Yk 1c¢k—f 1ru(J)

0 k<1
h(k) :{ COFIr k> 1

discrete time analogue of the impulse response function.

Discrete time Markov parameters: COK—IT
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Discrete time signals

f={f(k),k=0,1,..}

signal norms of scalar valued discrete time signals

@ infinity norm
[flloo = Sliplf(k)l

@ 2-norm

IFE=">_ f(k)

k=—o00
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Shift operators

Definition: forward shift operator: g
performs the following operation with a DT signal:

af (k) = F(k + 1) (1)

Definition: backward shift operator (delay): g1
performs the following operation:

g f(k) = f(k—1) (2)
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DT-LTI I/O system models — 3

Discrete difference equations: for SISO systems
Using forward differences

y(k+n.) 4+ a1y(k+ns — 1)+ ... + an,y(k) = bou(k + np) + ... + bn,u(k)
where n, > np (proper). More compact form:

A(q)y(k) = B(q)u(k) , A(q) = q"+a1q™ *+..4a,, , B(q) = boq™+b1q" ' +...+ by,
Using backward differences

y(k) 4+ aiy(k — 1)+ ...+ an,y(k — na) = bou(k — d) + ... + bn,u(k — d — np)
where d = n, — np > 0 is the delay. More compact form:

A (g M)y(k) =B (g Yu(k—d) , A"(¢")=q"A(q™")
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DT-LTI I/O system models — 4

Pulse transfer operator
Computed from the DT-LTI state space model

x(k+1) =®x(k) +Tu(k) , y(k)= Cx(k)+ Du(k)
x(k + 1) = gx(k) = ®x(k) + Tu(k)

x(k) = (gl — ®) T u(k)
y(k) = Cx(k) + Du(k) = [C(ql — ®)~IT + D]u(k)

H(q) pulse transfer operator of the state space model (¢,T, C, D):
H(q) = C(ql —®)"Ir +D

discrete time analogue of the transfer function.
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DT-LTI I/O system models — 5

Pulse transfer operator, SISO case:

B
H(q) = C(ql —®)™'r + D = 8) , deg B(q) < deg A(q) =n
where A(q) is the characteristic polynomial of matrix ®.
Relation with discrete difference equations

~—

y(k)+aiy(k — 1)+ ...+ any(k — n) = byu(k — 1) + ... + byu(k — n)

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 15 /18



Poles of DT-LTI systems — 1

continuous time discrete time

state eq.  x(t) = Ax(t) + Bu(t) x(kh+ h) = ®x(kh) + [u(kh)

b= eAh
output eq. y(t) = Cx(t) y(kh) = Cx(kh)
poles Ai(A) Ai(®)

Ai(®) = Mi(Ah
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Poles of DT-LTI systems — 2

Re z
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discretization of CT-LTI models: constant sampling time is assumed
@ zero order hold: the input is constant between two sampling instants

@ state equation can be integrated: LTI difference equation is obtained,
output equation remains the same

@ state equation can be solved in discrete time

o shift operator: |/O models (filters) can be obtained from state space
models

@ asymptotic stability: poles are strictly inside the unit circle
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