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Overview

@ Basic notions

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 2/38



@ System (S): acts on signals

y =S|y

@ inputs (u) and outputs (y)

u(t)

inputs

System S
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CT-LTI 1/O system models

@ Time domain:Impulse response function
is the response of a SISO LTI system to a Dirac-delta input function
with zero initial condition.

@ The output of S can be written as

y(t) = /oo h(t — 7)u(r)dT = /OO h(r)u(t — 7)d7

—0 —00

l 3(t) lh(t)
t t
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CT-LTI state-space models

@ General form - revisited

x(t) = Ax(t) + Bu(t) , x(to) = x(0)
y(t) = Cx(1)

with
> signals: x(t) e R" | y(t) e R, u(t) € R"
> system parameters: A€ R™" B e R"™"  CeRP*" (D=0 by
using centering the inputs and outputs)
@ Dynamic system properties:

» observability
» controllability
> stability
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© Bounded input-bounded output (BIBO) stability
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Signal spaces

@ Lg signal spaces
L4]0,0) = {f :[0,00) = R ’ f is measurable and / [f(t)]9dt < O}
0
special case

Lo[0,00) = {f :[0,00) — R | f is measurable and sup |f(t)| < oo}
t>0

@ Remark: L4 spaces are Banach spaces with norms

ity = ([ Ircoreac) v

1]l = sup [£(2)]
t>0
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Vector valued signals

e Lg multidimensional signal spaces

Let 7(t) € R", Vt >0, then

Lg[0,00) = {f : [0, 00) = R”

f is measurable, / £ (t)]]7 dt < oo}
0

where ||f(t)]| = \/fT(t)f(t) is the Euclidean norm in R"

@ Lg is a Banach space equipped with the signal norm

o0 1/q
norm: [f]], = ( / ||f<t)||;'dt)

@ Remark: The case L5 is special, because the norm can be originated
from an inner product (therefore, £, is a Hilbert-space)
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BIBO stability — general

Definition (BIBO stability)
A system is externally or BIBO stable if for any bounded input it responds
with a bounded output

ull <M <oo=ly|| < M2 < o0

where ||-]| is a signal norm.
v

@ This applies to any type of systems.
@ Stability is a system property, i.e. it is realization-independent.
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BIBO stability — 1

@ Bounded input-bounded output (BIBO) stability for SISO systems

lu(t)] < Mi <o0, VE>0 = |y(t)|<Ma<oo, Vt>0

Theorem (BIBO stability)
A SISO LTI system is BIBO stable if and only if

/ |h(t)|dt < M < o0
0

where M € R™ and h is the impulse response function.
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BIBO stability — 2

Proof:
< Assume [ |h(t)|dt < M < oo and u is bounded, i.e.
lu(t)] < My < oo, YVt € Rf. Then

()] < |/0°o h(r)u(t — 7)dr| < My /OOO Ih(7)|dr < My - M = M,

= (indirect) Assume [, [h(7)|dT = oo, but the system is BIBO stable.
Consider the bounded input:

1 if h(r)>0
u(t —7) = sign h(r) = { 0 if h(r)=0
-1 if h(r)<O0
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e Stability in the state space
@ Stability of nonlinear systems
@ Asymptotic stability of CT-LTI systems
@ The Lyapunov method
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Stability of nonlinear systems

@ Consider the autonomous nonlinear system:
x=f(x), xeX=R", f:R" - R"

with an equilibrium point: f(x*) =0

» x* stable equilibrium point: for any € > 0 there exists § € (0,¢) such
that for ||x* — x(0)|| < § [|x* — x(t)|| < € holds.

» x* asymptotically stable equilibrium pint: x* stable and tlim x(t) = x*.
—00
» x* unstable equilibrium point: not stable

» x* locally (asymptotically) stable: there exists a neighborhood U of x*
within which the (asymptotic) stability conditions hold

» x* globally (asymptotically) stable: U =R"
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Example: asymptotic stability

RLC circuit, parameters: R =1, L =10"'H, C = 10'F.
uc(0) =1V, i(0) =1A, upe(t)=0V

15

— i[A]
M

_ L L
0 05 1 15
ids [1]
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Non-asymptotic stability

(R)LC circuit, parameters: R =0 Q(!), L=10"1H, C = 1071F.
uc(0) =1V, i(0) = 1 A, upe(t) =0V
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Example: instability

x1 = x1+0.1x

_ T
% = —02x + 2% 0 X(0)=[2
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e Stability in the state space
@ Stability of nonlinear systems
@ Asymptotic stability of CT-LTI systems
@ The Lyapunov method
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Stability of CT-LTI systems

@ (Truncated) LTI state equation with (v = 0):
x=A-x, xeR", Ae¢ R™", x(0) = xo

@ Equilibrium pont: x* =0
@ Solution:
x(t) = et - xg

@ Recall: A diagonalizable (there exists invertible T, such that
T-A-T7!

is diagonal) if and only if, A has n linearly independent eigenvectors.
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Asymptotic stability of LTI systems — 1

Stability types:
o the real part of every eigenvalue of A is negative (A is a stability
matrix): asymptotic stability
@ A has eigenvalues with zero and negative real parts

> the eigenvectors related to the zero real part eigenvalues are linearly
independent: (non-asymptotic) stability

» the eigenvectors related to the zero real part eigenvalues are not
linearly independent: (polynomial) instability

@ A has (at least) an eigenvalue with positive real part: (exponential)
instability
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Asymptotic stability of LTI systems — 2

Theorem

The eigenvalues of a square A € R™" matrix remain unchanged after a
similarity transformation on A by a transformation matrix T :

A = TAT

Proof:

Let us start with the eigenvalue equation for matrix A
A=), EeR", AeC
If we transform it using ¢’ = T¢ then we obtain
TAT1T¢ = \T¢
A =\
G. Szederkényi (PPKE)
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Asymptotic stability of LTIl systems — 3

Theorem

A CT-LTI system is asymptotically stable iff A is a stability matrix.

Sketch of Proof: Assume A is diagonalizable

A 0 ... 0
— A ... 0
A=TAT 1= _

0 0 A

eMt 0 0

. . 0 et 0

x(t)=et-x , et = _
0 0 et
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BIBO and asymptotic stability

Theorem
Asymptotic stability implies BIBO stability for LTI systems. J

Proof:

x(t) = e*x(0) + /Ot AT Bu(r)dr, y(t) = Cx(t)

x(t)|| < [le?tx(to) + M [f eAt=")Bdr|| =
. 0
= ||e*(x(to) + M [y e *"Bd7)|| =
= [|e*(x(to) + M[-A"te A" BJ})|| =
= ||e?[x(tg) — MA~te=AtB + MA~1B]||

Ix(8)]] < [le*(x(to) + MA™*B) — MA™'B]|
PPKE-ITK 22/38
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e Stability in the state space
@ Stability of nonlinear systems
@ Asymptotic stability of CT-LTI systems
@ The Lyapunov method
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Lyapunov theorem of stability

@ Lyapunov-function: V: X — R
» V>0, if x#x* V(x*)=0
» V continuously differentiable

> V non-increasing, i.e. &V/(x)= %—ZX = %—Zf(x) <0

Theorem (Lyapunov stability theorem)

o If there exists a Lyapunov function to the system x = f(x), f(x*) =0,
then x* is a stable equilibrium point.

o If % V < 0 then x* is an asymptotically stable equilibrium point.

@ If the properties of a Lyapunov function hold only in a neighborhood
U of x*, then x* is a locally (asymptotically) stable equilibrium point.
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Lyapunov theorem — example

@ System:
x=—(x-1)3

@ Equilibrium point: x* =1

@ Lyapunov function: V/(x) = (x — 1)?

@ The system is globally asymptotically stable
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CT-LTI Lyapunov theorem — 1

Basic notions:
o @ € R™" symmetric matrix: Q = QT ie. [Qlij = [Q])i (every
eigenvalue of Q is real)
@ symmetric matrix Q is positive definite (Q > 0):
xTQx > 0,¥x € R", x # 0 (< every eigenvalue of Q is positive)
@ symmetric matrix Q is negative definite Q < 0: x” Qx < 0,¥x € R”,
x # 0 (& every eigenvalue of @ is negative)

Theorem (Lyapunov criterion for LTI systems)

The state matrix (A) of an LTI system is a stability matrix if and only if
there exists a positive definite symmetric matrix P for every given positive
definite symmetric matrix Q such that

ATP+PA=—-Q
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CT-LTI Lyapunov theorem — 2

Proof:

< AssumeV Q@ > 03 P > 0 such that ATP + PA= —Q. Let
V(x) = x"Px.

V= xTPx+x"TPx=xT(ATP+ PA)x <0

= Assume A is a stability matrix. Then

o0
.
P = / e’ Qe dt
0
ATP 4 PA= /m AT ATt QeAtar 4 /°° ATt Adt = [ TQeME —0— @ = —Q
) o
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@ Examples
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Example: stability of RLC circuit — 1

Model (X1 = iL, X2 = Uc, Upe — 0, R = ]., C= 0.1, L= 0.05)2

W] [-% 1
X £ 0 x2

eigenvalues of A (roots of = b(s)): —10 & 10/

= the RLC circuit is asymptotically stable
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Example: stability of RLC circuit — 2

Lyapunov function: sum of kinetic and potential energies

1 1 L 0
V(x) = §(fo +C04) = EXT [ 0 C } X

d % 1
V= gxx = 5(>‘<TP>< +xTPx) = —Rx}
the sum of energies is not increasing (decreasing if x; # 0 and R > 0)
independently of the actual values of the parameters

| the electric energy is preserved (is constant: %V =0),if R=0.
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Example: stability of RLC circuit — 3

Plot of the Lyapunov function:

0.07 4
0.06 4
0.05 4
0.04 4
0.03 1
0.02 1

0.01 4
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Example: stability of RLC circuit — 4

Level sets of the Lyapunov function (ellipses):

0.6

0.4

0.2
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Example: stability of RLC circuit — 5

The solution of the ODE (voltages and currents) in the phase space:

0.8

0.6

0.2
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© Stability region of nonlinear systems
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Quadratic stability region

@ Use quadratic Lyapunov function candidate with a given positive
definite diagonal weighting matrix @ (tuning parameter!)

VIx()] = (x =x)"- Q- (x —x¥)

@ Dissipativity condition gives a conservative estimate of the stability
region

dV  9Vdx 9V

gt T oxdi - ax ¥

» f(x) = f(x) in the open loop case with u =0
> f(x

(x) = f(x) + g(x) - C(x) in the closed-loop case where C(x) is the
static state feedback
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Quadratic stability region: an example - 1

@ Nonlinear system

f(l == 0.4-X1X2 - 1.5X]_
x» = —0.8x1x0 — 1.5xp + 1.5u
y = x

@ Equilibrium point with v* = 7.75

= x| 2
x| | 375

@ Locally linearized system

s _ [0 o8], [0,
- -3 =31 1.5
y = [0 1]%
@ Eigenvalues of the state matrix are Ay = —1.5 and A\, = —1.6 so
equilibrium x* (and not the whole system!) is locally asymptotically

stable.

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 36/38



Quadratic stability region: an example - 2

@ Quadratic Lyapunov function
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Quadratic stability region: an example - 3

@ Time derivative of the quadratic Lyapunov function

dv(/dt

e

7Y
of.@,,;;::

577 %
( 'l,!,.‘.i
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