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Systems

System (S): acts on signals

y = S[u]

inputs (u) and outputs (y)

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 3 / 38



CT-LTI I/O system models

Time domain:Impulse response function
is the response of a SISO LTI system to a Dirac-delta input function
with zero initial condition.
The output of S can be written as

y(t) =

∫ ∞
−∞

h(t − τ)u(τ)dτ =

∫ ∞
−∞

h(τ)u(t − τ)dτ
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CT-LTI state-space models

General form - revisited

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x(0)
y(t) = Cx(t)

with
I signals: x(t) ∈ Rn , y(t) ∈ Rp , u(t) ∈ Rr

I system parameters: A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n (D = 0 by
using centering the inputs and outputs)

Dynamic system properties:
I observability
I controllability
I stability
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Signal spaces

Lq signal spaces

Lq[0,∞) =

{
f : [0,∞)→ R

∣∣∣ f is measurable and
∫ ∞

0
|f (t)|q dt < 0

}
special case

L∞[0,∞) =

{
f : [0,∞)→ R

∣∣∣ f is measurable and sup
t≥ 0
|f (t)| <∞

}
Remark: Lq spaces are Banach spaces with norms

‖f ‖q =

(∫ ∞
0
|f (t)|q dt

)1/q

‖f ‖∞ = sup
t≥ 0
|f (t)|
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Vector valued signals

Lnq multidimensional signal spaces

Let f (t) ∈ Rn, ∀t ≥ 0, then

Lnq[0,∞) =

{
f : [0,∞)→ Rn

∣∣∣ f is measurable,
∫ ∞

0
‖f (t)‖q2 dt <∞

}
where ‖f (t)‖ =

√
f T (t)f (t) is the Euclidean norm in Rn

Lnq is a Banach space equipped with the signal norm

norm: ‖f ‖q =

(∫ ∞
0
‖f (t)‖q2 dt

)1/q

Remark: The case L2 is special, because the norm can be originated
from an inner product (therefore, L2 is a Hilbert-space)
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BIBO stability – general

Definition (BIBO stability)

A system is externally or BIBO stable if for any bounded input it responds
with a bounded output

‖u‖ ≤ M1 <∞⇒ ‖y‖ ≤ M2 <∞

where ‖·‖ is a signal norm.

This applies to any type of systems.
Stability is a system property, i.e. it is realization-independent.
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BIBO stability – 1

Bounded input-bounded output (BIBO) stability for SISO systems

|u(t)| ≤ M1 <∞, ∀t ≥ 0 ⇒ |y(t)| ≤ M2 <∞, ∀t ≥ 0

Theorem (BIBO stability)

A SISO LTI system is BIBO stable if and only if∫ ∞
0
|h(t)|dt ≤ M <∞

where M ∈ R+ and h is the impulse response function.
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BIBO stability – 2

Proof:
⇐ Assume

∫∞
0 |h(t)|dt ≤ M <∞ and u is bounded, i.e.

|u(t)| ≤ M1 <∞, ∀t ∈ R+
0 . Then

|y(t)| ≤ |
∫ ∞

0
h(τ)u(t − τ)dτ | ≤ M1

∫ ∞
0
|h(τ)|dτ ≤ M1 ·M = M2

⇒ (indirect) Assume
∫∞
0 |h(τ)|dτ =∞, but the system is BIBO stable.

Consider the bounded input:

u(t − τ) = sign h(τ) =


1 if h(τ) > 0
0 if h(τ) = 0
−1 if h(τ) < 0
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Stability of nonlinear systems

Consider the autonomous nonlinear system:

ẋ = f (x), x ∈ X = Rn, f : Rn → Rn

with an equilibrium point: f (x∗) = 0
I x∗ stable equilibrium point: for any ε > 0 there exists δ ∈ (0, ε) such

that for ‖x∗ − x(0)‖ < δ ‖x∗ − x(t)‖ < ε holds.

I x∗ asymptotically stable equilibrium pint: x∗ stable and lim
t→∞

x(t) = x∗.

I x∗ unstable equilibrium point: not stable

I x∗ locally (asymptotically) stable: there exists a neighborhood U of x∗

within which the (asymptotic) stability conditions hold

I x∗ globally (asymptotically) stable: U = Rn
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Example: asymptotic stability

RLC circuit, parameters: R = 1 Ω, L = 10−1H, C = 10−1F .
uC (0) = 1 V, i(0) = 1 A, ube(t) = 0 V
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Non-asymptotic stability

(R)LC circuit, parameters: R = 0 Ω(!), L = 10−1H, C = 10−1F .
uC (0) = 1 V, i(0) = 1 A, ube(t) = 0 V

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 15 / 38



Example: instability

ẋ1 = x1 + 0.1x2
ẋ2 = −0.2x1 + 2x2

, x(0) = [12]T
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Stability of CT-LTI systems

(Truncated) LTI state equation with (u ≡ 0):

ẋ = A · x , x ∈ Rn, A ∈ Rn×n, x(0) = x0

Equilibrium pont: x∗ = 0
Solution:

x(t) = eAt · x0

Recall: A diagonalizable (there exists invertible T , such that

T · A · T−1

is diagonal) if and only if, A has n linearly independent eigenvectors.
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Asymptotic stability of LTI systems – 1

Stability types:
the real part of every eigenvalue of A is negative (A is a stability
matrix): asymptotic stability
A has eigenvalues with zero and negative real parts

I the eigenvectors related to the zero real part eigenvalues are linearly
independent: (non-asymptotic) stability

I the eigenvectors related to the zero real part eigenvalues are not
linearly independent: (polynomial) instability

A has (at least) an eigenvalue with positive real part: (exponential)
instability
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Asymptotic stability of LTI systems – 2

Theorem
The eigenvalues of a square A ∈ Rnxn matrix remain unchanged after a
similarity transformation on A by a transformation matrix T :

A′ = TAT−1

Proof:
Let us start with the eigenvalue equation for matrix A

Aξ = λξ , ξ ∈ Rn , λ ∈ C

If we transform it using ξ′ = T ξ then we obtain

TAT−1T ξ = λT ξ

A′ξ′ = λξ′
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Asymptotic stability of LTI systems – 3

Theorem
A CT-LTI system is asymptotically stable iff A is a stability matrix.

Sketch of Proof: Assume A is diagonalizable

Ā = TAT−1 =


λ1 0 . . . 0
0 λ2 . . . 0

. . . 0
0 . . . 0 λn



x̄(t) = eĀt · x̄0 , eĀt =


eλ1t 0 . . . 0
0 eλ2t . . . 0

. . . 0
0 . . . 0 eλnt
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BIBO and asymptotic stability

Theorem
Asymptotic stability implies BIBO stability for LTI systems.

Proof:

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ, y(t) = Cx(t)

||x(t)|| ≤ ||eAtx(t0) + M
∫ t
0 eA(t−τ)Bdτ || =

= ||eAt(x(t0) + M
∫ t
0 e−AτBdτ)|| =

= ||eAt(x(t0) + M[−A−1e−AτB]t0)|| =
= ||eAt [x(t0)−MA−1e−AtB + MA−1B]||

||x(t)|| ≤ ||eAt(x(t0) + MA−1B)−MA−1B||
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Lyapunov theorem of stability

Lyapunov-function: V : X → R
I V > 0, if x 6= x∗, V (x∗) = 0
I V continuously differentiable
I V non-increasing, i.e. d

dtV (x) = ∂V
∂x ẋ = ∂V

∂x f (x) ≤ 0

Theorem (Lyapunov stability theorem)

If there exists a Lyapunov function to the system ẋ = f (x), f (x∗) = 0,
then x∗ is a stable equilibrium point.
If d

dtV < 0 then x∗ is an asymptotically stable equilibrium point.
If the properties of a Lyapunov function hold only in a neighborhood
U of x∗, then x∗ is a locally (asymptotically) stable equilibrium point.
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Lyapunov theorem – example

System:
ẋ = −(x − 1)3

Equilibrium point: x∗ = 1
Lyapunov function: V (x) = (x − 1)2

d

dt
V =

∂V

∂x
ẋ = 2(x − 1) · (−(x − 1)3) =

= −2(x − 1)4 < 0

The system is globally asymptotically stable
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CT-LTI Lyapunov theorem – 1

Basic notions:
Q ∈ Rn×n symmetric matrix: Q = QT , i.e. [Q]ij = [Q]ji (every
eigenvalue of Q is real)
symmetric matrix Q is positive definite (Q > 0):
xTQx > 0,∀x ∈ Rn, x 6= 0 (⇔ every eigenvalue of Q is positive)
symmetric matrix Q is negative definite Q < 0: xTQx < 0,∀x ∈ Rn,
x 6= 0 (⇔ every eigenvalue of Q is negative)

Theorem (Lyapunov criterion for LTI systems)

The state matrix (A) of an LTI system is a stability matrix if and only if
there exists a positive definite symmetric matrix P for every given positive
definite symmetric matrix Q such that

ATP + PA = −Q
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CT-LTI Lyapunov theorem – 2

Proof:
⇐ Assume ∀ Q > 0 ∃ P > 0 such that ATP + PA = −Q. Let
V (x) = xTPx .

d

dt
V = ẋTPx + xTPẋ = xT (ATP + PA)x < 0

⇒ Assume A is a stability matrix. Then

P =

∫ ∞
0

eA
T tQeAtdt

ATP + PA =

∫ ∞

0
AT eA

T tQeAtdt +

∫ ∞

0
eA

T tQeAtAdt = [eA
T tQeAt ]∞0 = 0 − Q = −Q
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Example: stability of RLC circuit – 1

Model (x1 = iL, x2 = uC , ube = 0, R = 1, C = 0.1, L = 0.05):[
ẋ1
ẋ2

]
=

[
−R

L − 1
L

1
C 0

] [
x1
x2

]
eigenvalues of A (roots of ≡ b(s)): −10± 10i
⇒ the RLC circuit is asymptotically stable

G. Szederkényi (PPKE) Computer Controlled Systems PPKE-ITK 29 / 38



Example: stability of RLC circuit – 2

Lyapunov function: sum of kinetic and potential energies

V (x) =
1
2

(Lx2
1 + Cx2

2 ) =
1
2
xT
[
L 0
0 C

]
x

d

dt
V =

∂V

∂x
ẋ =

1
2

(ẋTPx + xTPẋ) = −Rx2
1

the sum of energies is not increasing (decreasing if x1 6= 0 and R > 0)
independently of the actual values of the parameters
! the electric energy is preserved (is constant: d

dtV = 0), if R = 0.
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Example: stability of RLC circuit – 3

Plot of the Lyapunov function:
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Example: stability of RLC circuit – 4

Level sets of the Lyapunov function (ellipses):
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Example: stability of RLC circuit – 5

The solution of the ODE (voltages and currents) in the phase space:
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Quadratic stability region

Use quadratic Lyapunov function candidate with a given positive
definite diagonal weighting matrix Q (tuning parameter!)

V [x(t)] = (x − x∗)T · Q · (x − x∗)

Dissipativity condition gives a conservative estimate of the stability
region

dV

dt
=
∂V

∂x

dx

dt
=
∂V

∂x
f (x)

I f (x) = f (x) in the open loop case with u = 0
I f (x) = f (x) + g(x) · C (x) in the closed-loop case where C (x) is the

static state feedback
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Quadratic stability region: an example - 1

Nonlinear system

ẋ1 = 0.4x1x2 − 1.5x1
ẋ2 = −0.8x1x2 − 1.5x2 + 1.5u
y = x2

Equilibrium point with u∗ = 7.75

x∗ =

[
x∗1
x∗2

]
=

[
2

3.75

]
Locally linearized system

˙̃x =

[
0 0.8
−3 −3.1

]
x̃ +

[
0
1.5

]
ũ

ỹ =
[
0 1

]
x̃

Eigenvalues of the state matrix are λ1 = −1.5 and λ2 = −1.6 so
equilibrium x∗ (and not the whole system!) is locally asymptotically
stable.
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Quadratic stability region: an example - 2

Quadratic Lyapunov function

V (x) = (x − x∗)T ·
[
1 0
0 1

]
· (x − x∗)
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Quadratic stability region: an example - 3

Time derivative of the quadratic Lyapunov function
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