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@ Introduction
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Introductory example

Consider the following SISO CT-LTI system withe realization (A,B,C)

-1 10 1
A=| 2 -1 0|, B=|0|, C=[10 1]
1 00 1

The model is observable but it is not controllable.

Question: Can the model be written in a new coordinates system, such
that the new model is both observable and controllable? (and what are the
conditions / consequences)

Transfer function:

252 +44s

34282

H(s)
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Introduction — 1

@ For a given (SISO) transfer function H(s) = s; the state space

model (A, B, C, D) is called an nth order rea//zatlon if

H(s) = C(s/ —A)B+D,

where A€ R™", B € R™1, C e R*" D eR.

(The state space repr. for a given transfer function is not unique).

@ An n-th order state space realization (A, B, C, D) of a given transfer
function H(s) is called minimal , if there exist no other realization
with a smaller state space dimension (i.e., with a smaller A matrix)

@ An n-th order state space model (A, B, C,D) is called jointly
controllable and observable if both O, and C, are full-rank matrices.

Assumptions from now on: SISO systems, D =0
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Introduction — 2

@ The transfer function is invariant for state transformations

@ The roots of the transfer function's denominator are the eigenvalues of
matrix A (a(s) is the characteristic polynomial of A)

e For a given transfer function H(s), any two arbitrary jointly
controllable and observable realizations (A1, Bi, C1) and (Ag, B2, (3)
are connected to each other by the following coordinates
transformation

T =07YC, A)O(Co, Az) = C(Ay, B1)C YAz, Bo)

(without proof)
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Introduction — 3

Matrix polynomials:

p(x) = cpx" + Cro1Xx" 14+ +ax+c, xeER
p(A) = A" + cn 1A+ A+ ol

important properties:
@ a matrix polynomi:_al commutes wit.h any power of the argument
matrix, namely: A'P(A) = P(A)A’
@ eigenvalues: \;[P(A)] = P(\i[A])
@ Cayley-Hamilton theorem: every n x n matrix is a root of its own
characteristic polynomial (p(x) = det(A — x/))
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© An overview of the problem and its solution
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Overview — 1

Lemma 1

N

(AB.C) is jointly eme? H(s) is
controllable and irreducible
observable Theorem 1

Theorem 2
Theorem 3

(A,B,C) is minimal

Lemma 3

equivalent state space and 1/O model properties
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Overview — 2

Consider SISO CT-LTI systems with realization (A, B, C)
@ Joint controllability and observability is a system property
@ Equivalent necessary and sufficient conditions
@ Minimality of SSRs

@ lIrreducibility of the transfer function
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e Computations and proofs
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Hankel matrices

@ A Hankel matrix is a block matrix of the following form

[ CB CAB . . . CA" 1B T
CAB CA’2B . . . CA"B
H[l,n—1] =
| CA""1B CA"B . . . CA*' 2B

o It contains Markov parameters CA'B that are invariant under state
transformations.
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Lemma (1)

If we have a system with transfer function H(s) = % and there is an n-th

order realization (A, B, C) which is jointly controllable and observable, then
all other n-th order realizations are jointly controllable and observable.

Proof
S
CA
O(C,A) = ’ , C(A,B):[B AB A’B . . . A”_IB]
CA‘”_1

H[L,n— 1] = O(C, A)C(A, B)
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Controller form realization

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
with ) i o
—a; —ao —an 1
1 0 0
/qc - ’ [gc =
| 0 0 1 0 | | 0 |
C.= [ by b . . . b, ]

with the coefficients of the polynomials
a(s) =s"+a1s" 1 +..+a, 15+a, and b(s) = bys" P+ ...+ b, 15+ b,
that appear in the transfer function H(s) = b(s)

a(s)
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Observer form realization

where _ ) 3 )
—al 10 0 bl
—a 0 1 0 b2
Ao = : , Bo = :
—ap—1 0 0 ... 1 bn-1
| —a, 0 0 ... 0] | bn |
Co=[100 ... 0], Do=D

with the coefficients of the polynomials
a(s) =s"+a1s" ' +...+a, 15+a, and b(s) = bys" 1+ ...+ b,_15+ b,

that appear in the transfer function H(s) = 28
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Definition (Relative prime polynomials)

Two polynomials a(s) and b(s) are coprimes (or relative primes) if
a(s) = [1(s — @i); b(s) =T1(s — B;) and a; # B; for all 7,;.

In other words: the polynomials have no common roots.

Definition (Irreducible transfer function)

A transfer function H(s) = % is called to be irreducible if the
polynomials a(s) and b(s) are relative primes.
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Lemma (2)

An n-dimensional controller form realization with transfer function

H(s) = % (where a(s) is an n-th order polynomial) is jointly controllable
and observable if and only if a(s) and b(s) are relative primes (i.e., H(s) is
irreducible).

Proof
@ A controller form realization is controllable and
O = I,b(A.)
0 1
i 0 10 c R7<N
10 .0

@ Non-singularity of b(A¢)
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Proof of Lemma 2. — 1

0
C el T
enT_l
h=[en e1 . . al=] "~ =1 |
. 0
B
[ —ay —ay . . . —a, ]
1 0 0
—a; —a —a
AC: ) e’TAC_{[ ! egr n]
i1
0o 0o . .1 0 |
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Proof of Lemma 2. — 2

@ Computation of the observability matrix O, = IN,,b(AC) € RM<n
@ 1st row:
el b(A) =e  bAT Y + . 4+ el b, 1Ac + €] by,
n-th term: [0 ... 0 by
(n —1)-th term: b,_1e] Ac = b,,_le,z—_1 =[0 ... bp—1 0]

el b(A)=[b1 ... bo_1 by]=C

@ 2nd row:

el 1b(Ac) = el Acb(Al) = el b(A)A:. = e |b(A.) = CA.

@ and so on ...
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Proof of Lemma 2. — 3

O. is nonsingular
o iff b(Ac) is nonsingular because matrix /, is always nonsingular

@ b(Ac) is nonsingular iff det(b(Ac)) # 0
which depends on the eigenvalues of b(A.) matrix

@ the eigenvalues of the matrix b(Ac) are b(A;), i=1,2,...,n
Ai is an eigenvalue of A., i.e a root of a(s) = det(sl — A)

det(b(Ac)) = Hb()\ 40
T

a(s) and b(s) have no common roots, i.e. they are relative primes
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@ Minimal realization conditions
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Minimal realization conditions — 1

Theorem (1)

H(s) = % (where a(s) is an n-th order polynomial) is irreducible if and
only if all of its n-th order realizations are jointly controllable and
observable.

Proof: combine Lemma 1. and 2.

@ We assume that any nth order realization H(s) is jointly controllable
and observable = A controller form is jointly controllable and
observable = H(s) is irreducible (Lemma 2)

@ We assume that H(s) is irreducible = the controller form realization
is jointly controllable and observable (Lemma 2) = Any nth order
realization is jointly controllable and observable (Lemma 1)
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Minimal realization conditions — 2

Definition (Minimal realization)

An n-dimensional realization (A, B, C) of the transfer function H(s) is minimal if
one cannot find another realization of H(s) with dimension less than n.

Theorem (2)

H(s) = 58 is irreducible iff any of its realization (A, B, C) is minimal where
H(s) = C(sl — A)"'B

Proof: by contradiction

@ We assume that H(s) is irreducible, but there exists an nth order realization,
which is not minimal = there exists an mth (m < n) order realization
(A, B, C) of H(s) = from this realization we can obtain the transfer
function H(s), for which the order of its denominator m, which is a
contradiction (since H(s) is reducible).

@ We assume that the nth order realization (A, B, C) is minimal, but
H(s) = C(sl — A)~!B is reducible = From the simplified transfer function
one can obtain an mth order realization, such that m < n, that is a

contradiction.
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Minimal realization conditions — 3

Theorem (3)

A realization (A, B, C) is minimal iff the system is jointly controllable and
observable.

Proof:  Combine Theorem 1 and Theorem 2 .

Lemma (3)

Any two minimal realizations can be connected by a unique similarity
transformation (which is invertible).

Proof:  (Just the idea of it)

T = O_I(Cl, Al)O(CQ, Az) = C(Al, Bl)C_I(AQ, 82)
exists and it is invertible: this is used as a transformation matrix.
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© Decomposition of uncontrollable / unobservable systems
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Decomposition of uncontrollable systems

We assume that (A, B, C) is not controllable. Then, there exists an
invertible transformation T such that the transformed system in the new

coordinates system (x = Tx) will have the form
] _[A A | [ = 4| By
X2 0 AE Xo 0
X1
y = [ CC CE ] |: )_(2 :|

and
H(s) = Cc(sl — A.)*B.
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Controllability decomposition — example

Matrices of the state-space :

A:[; _5} B:[”, C=[11], D=0

Controllability matrix:

Transformation:

The transformed model:

z\—[—é _f]s—[é] c=[2 1]
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Decomposition of unobservable systems

We assume that (A, B, C) is not observable. Then there exists an invertible
matrix transformation T, such that the transformed system in the new

coordinates system (x = Tx) will have the form

Rl AR ] E ]

and
H(s) = Co(sl — Ao) 1B,
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Observability decomposition — example

Matrices of the state-space model:

A:[_; _g] B:“], C=[11], D=0

Observability matrix:

Transformation:

The transformed model:

A—[:}L g’]s—[g] c=[1 0]
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@ General decomposition theorem
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General decomposition theorem

Given an (A, B, C) SSR, it is always possible to transform it to another
realization (A, B, C) with partitioned state vector and matrices

_ 4T
X = [ Xco Xco Xco Xco ]
Eco 70 El?} 70 Eco
= | A A Ax Axy =_ | B
A= 0 0 As O B= 0
0 0 A As 0

C=[Co 0 Ce 0 |
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General decomposition theorem

The partitioning defines subsystems

@ Controllable and observable subsystem: (Ao, Beo, Cco) is minimal, i.e.
n < nand

H(s) = Ceo(sl — Aco) 'Beo = C(sl — A)71B
o Controllable subsystem
ZCO O ECO Val
(Lo an] - (2] - ree o1
@ Observable subsystem
Zco Z13 Eco al ral
( |: O ZEO :| ) |: 0 :| 9 [ CCO CCO j| >
@ Uncontrollable and unobservable subsystem

([A=] . [0] . [o])
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Introductory example — review

Consider the following SISO CT-LTI system withe realization (A,B,C)

-1 10 1
A=| 2 -1 0|, B=|0|, C=[10 1]
1 00 1

The model is observable but it is not controllable.
Its transfer function and its simplified form:

_ 2s°+4s  2s+4
3 422—5 24251

H(s)

Its minimal state space realization (eq. controller form):
_ [ -2 1 _ 1 -
A_[ : 0], 3_[0], C=[2 4]
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@ joint controllability and observability of (A, B, C) has important
consequences, since it is equivalent to:
> a state space realization with the minimum number of state variables
(minimal realization, i.e., A cannot be smaller)
> H(s) = C(sl — A)™'B = & s irreducible
@ non-controllable and/or non-observable state space models can be
transformed such that the non-controllable / non-observable states are

clearly visible in the new coordinates

@ it's easy to determine a minimal realization from a
non-controllable/non-observable SS model (simplification of the
transfer function, canonical realization)
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