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Needed from mathematics

matrices: row/column rank, image, left/right kernel, determinant,
characteristic polynomial
matrix polynomials, Cayley-Hamilton theorem
quadratic forms
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Revision from previous lecture

system: operator (input signals −→ output signals)
LTI models: I/O: H(s), state space: (A,B,C ,D)

states: form the state space; knowing the model, input, and initial
state the future states and outputs can be computed
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Brief problem statements of observability and
controllability
General form of SS models – revision

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x(0)
y(t) = Cx(t)

signals: x(t) ∈ Rn , y(t) ∈ Rp , u(t) ∈ Rr

system parameters: A ∈ Rn×n , B ∈ Rn×r , C ∈ Rp×n (assumption
without loss of generality: D = 0)

Studied system properties:

observability: determining the initial condition
(we need state information from the measurements (output) knowing the
model)

controllability: setting the initial condition
we want to influence (change) the state with appropriate input knowing the
model

G. Szederkényi (PPKE-ITK) Computer Controlled Systems PPKE-ITK 7 / 40



1 Problem statement

2 Observability

3 Controllability

4 Geometrical interpretation

G. Szederkényi (PPKE-ITK) Computer Controlled Systems PPKE-ITK 8 / 40



Observability of LTI systems – 1

Problem formulation
Given:

a state space model (A,B,C ) (D = 0)
input u
measured values y on a finite time horizon

To be computed:
The value of state vector x on a finite time horizon

It is sufficient to compute: x(t0) = x0

Definition. The system (A,B,C ) (or, equivalently, the pair (A,C )) is
observable, if x(t0) can be determined from a finite measurement of y .
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Observability – example 1

We consider the known RLC circuit. We measure the voltage of the
capacitor (uC ). We want to obtain the value of the current (i).

x =

[
i
uC

]
, u = ube , y = x2

A =

[
−R

L − 1
L

1
C 0

]
, B =

[ 1
L
0

]
, C =

[
0 1

]

G. Szederkényi (PPKE-ITK) Computer Controlled Systems PPKE-ITK 10 / 40



Observability – example 2
Elementary acceleration model (without friction, air resistance etc.):

F = m · a = m · ẍ1

in state space form:

ẋ1 = x2

ẋ2 = u,

where x1 is the position, x2 is the velocity, and u = F
m .

A =

[
0 1
0 0

]
, B =

[
0
1

]
Problems/tasks:

a) Can we determine the velocity if the position is measured only?
(i.e. C = [1 0])

b) Can we determine the position if the velocity is measured only?
(i.e. C = [0 1])
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Observability of LTI systems – 2

Necessary and sufficient condition.

A state space model (A,B,C ) is observable if and only if the
observability matrix On is full-rank.

On =



C
CA
.
.
.

CAn−1


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Observability of LTI systems – 3

Proof: (by construction)

y = Cx
ẏ = Cẋ = CAx + CBu
ÿ = Cẍ = CA(Ax + Bu) + CBu̇ = CA2x + CABu + CBu̇
.
.

y (n−1) = Cx (n−1) = CAn−1x + CAn−2Bu + ...+ CABu(n−3) + CBu(n−2)

y
ẏ
ÿ
.
.
.

y (n−1)


=



C
CA
CA2

.

.

.
CAn−1


x +



0 0 . . . 0
CB 0 . . . 0
CAB CB 0 . . 0
. . . . . .
. . . . . .
. . . . . .

CAn−2B CAn−3B . . CB 0





u
u̇
ü
.
.
.

u(n−1)


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Observability of LTI systems – 4

Y(t) = Onx(t) + T U(t)

Expressing x(t)
x(t) = O−1

n (Y(t)− T U(t)),

where O−1 denotes the (generalized) inverse of On

x(t) can be uniquely determined if and only if rank On(A,C ) = n.
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Controllability of LTI systems – 1

Problem formulation
Given:

a state space mode (A,B,C )

initial condition x(0), and x(T ) 6= x(0) desired final state

To be computed:
an appropriate u input signal, which drives the system from state x(t1) to x(t2)
in finite time.

Definition. The system (A,B,C ) (or, equivalently, the pair (A,B)) is
controllable if, given a finite duration T > 0 and two arbitrary points x0, xT ∈ Rn,
there exists an appropriate input u such that for initial condition x(0) = x0, the
value of the state vector at time T is x(T ) = xT .
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Controllability – example

System: RLC circuit i(0) = 1A, u(0) = 0V
Does there exist an input voltage function ube , such that we have
i(t1) = 5A, u(t1) = 10V, and t1 < M <∞?
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Controllability – example 2

Elementary acceleration model again

ẋ = Ax + Bu

where x1 is the position, x2 is the velocity, and u = F
m

matrices of the SS model:

A =

[
0 1
0 0

]
, B =

[
0
1

]
Problem/task:
Compute an acceleration command such that the speed is exactly x2 = 30m/s at
distance x1 = 200m?
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Controllability of LTI systems – 2

Necessary and sufficient condition
A state space model with matrices (A,B,C )

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

is controllable if and only if, the controllability matrix Cn is of full-rank

Cn =
[
B AB A2B . . An−1B

]
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Controllability of LTI systems – 3

Proof: (by construction)∫∞
−∞ f (t)δ′(t)dt = −f ′(0)∫∞
−∞ f (t)δ(n)(t)dt = (−1)nf (n)(0)

f (τ) = e−Aτ , f ′(τ) = −Ae−Aτ

f (n)(τ) = (−1)nAne−Aτ

Input: linear combination of Dirac-δ and its time derivatives.
u(t) = g1δ(t) + g2δ̇(t) + ...+ gnδ

(n−1)(t)
According to the principle of superposition:

x(0+) = x(0−) + g1h(0−) + g2ḣ(0−) + ...+ gnh
(n−1)(0−)

x(0+) = x(0−) + g1B + g2AB + ...+ gnA
n−1B
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Controllability of LTI systems – 4

Assuming that x(0−) = 0 we get:

x(0+) =
[
B AB A2B . . . An−1B

]


g1
g2
.
.
.
gn


for an arbitrary final state value x(0+) there exists a unique weighting vector
[g1...gn]T if and only if rank Cn(A,B) = n.
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Diagonal realization

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

where

ẋ =


λ1 . . . 0
. . . . .
. . . . .
. . . . .
0 . . . λn

 x +


b1
.
.
.
bn

 u

y =
[
c1 . . . cn

]
x
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Controllability in case of a diagonal realization

Controllability matrix

Cn =
[
B AB . . An−1B

]
=


b1 λ1b1 λ2

1b1 . .
. . . . .
. . . . .
. . . . .
bn λnbn λ2

nbn . .

 =

=


b1 . . . 0
. . . . .
. . . . .
. . . . .
0 . . . bn




1 λ1 . . λn−1
1

. . . . .

. . . . .

. . . . .
1 λn . . λn−1

n


This matrix is the so-called Vandermonde-matrix , which is nonsingular if
λi 6= λj (i 6= j).

rank Cn = n ⇔ det Cn 6= 0
det Cn =

∏
i bi
∏

i<j(λi − λj)
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Transfer function of a diagonal SISO realization

H(s) = C (sI − A)−1B =
n∑

i=1

cibi
s − λi

=
b(s)

a(s)

where I is the unit matrix.

If cj = 0 or bk = 0 for a given j or k, then the transfer function can
be rewritten by using a smaller number of partial fractions.

H(s) =
n∑

i=1

cibi
s − λi

=
b(s)

a(s)
, n < n
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Computing a realizable (smooth) input for a
target state
Given: A, B, x(0) (initial state), x(t̄) (target state)
To be determined: u, t̄ (finite)
Assumption: input is in the form u(t) = BT eA

T (t̄−t)z , where z ∈ Rn (z =?)

x(t̄) = eAt̄x(0) +

∫ t̄

0
eA(t̄−τ)BBT eA

T (t̄−τ) · zdτ

Let ξ = t̄ − τ , then:

x(t̄) = eAt̄x(0) +

[∫ t̄

0
eAξBBT eA

T ξdξ

]
︸ ︷︷ ︸

GC (t̄)

·z

From this, the input parameters can be expressed as

z = G−1
c (t̄)

(
x(t̄)− eAt̄x(0)

)
, provided that G−1

c (t̄) exists for some t̄
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The controllability Gramian

GC (t) =

∫ t

0
eAτBBT eA

T τdτ

is the controllability Gramian

The following is true:

The controllability matrix is of full rank if and only if GC (t) is positive
definite (and therefore, invertible) for some t ≥ 0.

controllability =⇒ a smooth input can be computed to arbitrarily change
the state in finite time
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Remark on the powers of A

Q: Why is it that there is no need for higher powers of A than An−1 in the
controllability/observability matrices?

A: It follows from the Cayley-Hamilton theorem that An, An+1, . . . can be
expressed as a linear combination of A0 = I , A, . . . , An−1

characteristic polynomial of A:

p(λ) = det(λI − A) = a0 + a1λ+ a2λ
2 + · · ·+ anλ

n

Then: a0I + a1A + a2A
2 + . . . anA

n = 0

An =
n−1∑
i=0

āiA
i

An+1 = A · An = ā0A + ā1A
2 + · · ·+ ān−1A

n =

= ā0A + ā1A
2 + · · ·+ ān−1

n−1∑
i=0

āiA
i

and so on =⇒ AiB and CAi for i ≥ n cannot increase the rank of the
controllability and observability matrix, respectively
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Geometrical interpretation of observability

(A,C ) unobservability subspace of the system:

set of initial condition values, which cannot be distinguished from each
other knowing (measuring) the output signal

namely, starting the system operation from any initial condition from the
unobservability subspace, the system will produce the same output

Computing the basis of the unobservability subspace ker(On)
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Example

Matrices of the state space model:

A =

[
1 2
−2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Observability matrix:

O2 =

[
1 1
−1 −1

]
Basis of the unobservability subspace:

ker(O2) = span
{[
−1
1

]}
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Example
Input given to the system:
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Example

State variables of the system and its output for x(0) = [−1 1]T
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Example

State variables of the system and its output for x(0) = [4 − 4]T
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Geometrical interpretation of controllability

(A,B) controllability subspace of a system:

set of state vectors x1 ∈ Rn, which can be reached in finite time from the
origin of the state space (x(0) = 0).
∃u : [0,T ]→ Rm, T <∞ such that x(T ) = x1

in other words, there does not exist any input signal u(t) for which the
state vector can leave the controllability subspace.

Computing the basis of the controllability subspace im(Cn)
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Example

Matrices of the state space model:

A =

[
1 −2
2 −3

]
, B =

[
1
1

]
, C =

[
1 1

]
, D = 0

Controllability matrix:

C2 =

[
1 −1
1 −1

]
Basis of the controllability subspace:

im(C2) = span
{[

1
1

]
,

[
−1
−1

]}
= span

{[
1
1

]}
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Example
Input given to the system:
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Example

State variables of the system, in case of x(0) = [0 0]T
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Example
Input given to the system:
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Example

State variables of the system, in case of x(0) = [0 0]T
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Summary

observability: possibility to compute the state (initial condition) from
inputs and outputs knowing the model
controllability: possibility to reach a given target state (initial
condition) with appropriate input knowing the model
necessary and sufficient condition: full rank of the
observability/controllability matrix
geometry: controllability subspace, unobservability subspace
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